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The Forest Inventory and Analysis (FIA) program conducts an annual 

inventory throughout the United States. In the western United States, 10% of all plots 

(one panel) are measured annually, and a moving average is used for estimating 

current condition and change of forest attributes while alternative methods are sought 

in all regions of the United States.  

This dissertation explored alternatives to the moving average in the Pacific 

Northwest using Current Vegetation Survey data collected in Oregon and Washington. 

Several nearest neighbor imputation methods were examined for their suitability to 

update plot-level forest attributes (basal area/ha, stems/ha, volume/ha, biomass/ha) to 

the current point in time. The results were compared to estimates obtained using a 

moving average and a weighted moving average. In terms of bias and accuracy, the 

weighted moving average performed better than the moving average. When the most 

recent measurements of the variables of interest were used as ancillary data, 

randomForest imputation outperformed both the moving average and the weighted 

moving average. 



 

  

For estimating current basal area/ha, stems/ha, volume/ha, and biomass/ha, 

tree-level imputation outperformed plot-level imputation. The difference in bias and 

accuracy between tree- and plot-level imputation was more pronounced when the 

variables of interest were summarized by species groups. 

Nearest neighbor imputation methods were also investigated for estimating 

mean annual change in selected forest attributes. The imputed mean annual change 

was used to update unmeasured panels to the current point in time. In terms of bias 

and accuracy, the resulting estimates of current basal area/ha, stems/ha, volume/ha, 

and biomass/ha outperformed the results obtained using plot-level imputation. 

Information on hard to estimate forest attributes such as cavity tree and snag 

abundance are important for wildlife management plans. Using FIA data collected in 

Washington, Oregon, and California, nearest neighbor imputation approaches and 

negative binomial regression models were examined for their suitability in estimating 

cavity tree and snag abundance. The negative binomial models were preferred to the 

nearest neighbor imputation approaches. 

 



 

  

 
 
 
 
 
 
 
 
 
 

©Copyright by Bianca N.I. Eskelson 
November, 21 2008  
All Rights Reserved 



 

  

 
Examination of Imputation Methods to Estimate Status and Change of Forest 

Attributes from Paneled Inventory Data 
 
 

by 
Bianca N.I. Eskelson 

 
 
 
 

A DISSERTATION 
 

submitted to  
 

Oregon State University 
 
 
 
 

in partial fulfillment of  
the requirements for the  

degree of 
 

Doctor of Philosophy 
 
 
 
 

Presented November, 21 2008 
Commencement June 2009 



 

  

Doctor of Philosophy dissertation of Bianca N.I. Eskelson presented on November, 21 
2008. 
 
APPROVED: 
 
_____________________________________________________________________ 
Major Professor, representing Forest Resources 
 
_____________________________________________________________________ 
Head of the Department of Forest Engineering, Resources and Management 
 
_____________________________________________________________________ 
Dean of the Graduate School 
 
 
 
I understand that my dissertation will become part of the permanent collection of 
Oregon State University libraries. My signature below authorizes release of my 
dissertation to any reader upon request. 
 
 
_____________________________________________________________________ 

Bianca N.I. Eskelson, Author 
 



 

  

ACKNOWLEDGEMENTS 
 

The task is almost done and I have the chance to look back on years full of new 

experiences, rewarding work, innumerable challenges, and many achievements. This 

would not be complete without appreciating the outstanding people who have 

accompanied me along the way. 

I offer my most sincere gratitude to Dr. Temesgen Hailemariam, who did an 

outstanding job as my advisor. Without his careful guidance, his constant support, and 

his unfailing confidence in me, this work would not have been possible. I also extend 

my greatest thanks to my doctoral committee composed of Drs. Tara Barrett, David 

Hann, Daniel Schafer, and Steven Radosevich, who have answered a never ending 

flow of questions about FIA and CVS data, general modeling issues, and statistics. 

Thank you all for your help, guidance, patience, and encouragement. 

Special thanks go to Carol Apple, Jim Alegria, Bob Brown, and Melinda 

Moeur for providing help in obtaining national forest data, to Kurt Campbell for 

assistance with volume and biomass equations, to Matt Gregory and Janet Ohmann for 

sharing their ancillary data with me, and to Greg Johnson and Dave Marshall for 

inviting me to Federal Way and providing me with crucial feedback on some of my 

work.  

Many thanks go to my fellow Forest Biometrics students and fellow basement-

dwellers for countless lunch and tea breaks as well as discussions about forest 

biometrics and life in general. 



 

  

I am most grateful for the love and support of my family and friends at home 

who have encouraged me in all my decisions and who I could turn to whenever I 

needed advice or simply someone to talk to. 

 Finally, I want to thank Emiliano and the Corvallis judo community, who 

have become my Corvallis family over the past years and who have provided me with 

friendship and a way of life that has shaped me more than anything else. Thank you 

for your faith in me!  

This research was supported by funding from the US Forest Service, Pacific 

Northwest Research Station, Forest Inventory and Analysis program. The views 

described here are those of the author alone and do not represent those of the US 

Forest Service. 



 

  

CONTRIBUTION OF AUTHORS 
 

Drs. Tara Barrett and Temesgen Hailemariam provided extensive comments, 

professional expertise, and financial support for chapters 2, 3, 4, and 5. 



 

  

TABLE OF CONTENTS 

 
 Page 

CHAPTER 1: INTRODUCTION .................................................................................. 1 

CHAPTER 2: ESTIMATING CURRENT FOREST ATTRIBUTES FROM 
PANELED INVENTORY DATA USING PLOT-LEVEL IMPUTATION: 
A STUDY FROM THE PACIFIC NORTHWEST ........................................... 9 

Abstract ............................................................................................................ 10 

Introduction...................................................................................................... 10 

Methods............................................................................................................ 13 

Results .............................................................................................................. 21 

Discussion ........................................................................................................ 22 

Conclusions...................................................................................................... 28 

CHAPTER 3: TREE-LEVEL IMPUTATION TECHNIQUES TO ESTIMATE 
CURRENT PLOT-LEVEL ATTRIBUTES IN THE PACIFIC 
NORTHWEST USING PANELED INVENTORY DATA ............................ 35 

Abstract ............................................................................................................ 36 

Introduction...................................................................................................... 37 

Methods............................................................................................................ 39 

Results .............................................................................................................. 45 

Discussion ........................................................................................................ 47 

Conclusions...................................................................................................... 49 

CHAPTER 4: IMPUTING MEAN ANNUAL CHANGE AND ESTIMATING 
CURRENT FOREST ATTRIBUTES.............................................................. 55 

Abstract ............................................................................................................ 56 



 

  

TABLE OF CONTENTS (Continued) 

Introduction...................................................................................................... 56 

Methods............................................................................................................ 58 

Results .............................................................................................................. 64 

Discussion ........................................................................................................ 67 

Conclusions...................................................................................................... 68 

CHAPTER 5: ESTIMATING CAVITY TREE AND SNAG ABUNDANCE 
USING NEGATIVE BINOMIAL REGRESSION MODELS AND 
NEAREST NEIGHBOR IMPUTATION METHODS.................................... 74 

Abstract ............................................................................................................ 75 

Introduction...................................................................................................... 75 

Negative binomial regression models .............................................................. 80 

Nearest neighbor imputation methods ............................................................. 83 

Methods............................................................................................................ 84 

Results .............................................................................................................. 90 

Discussion ........................................................................................................ 94 

Conclusions...................................................................................................... 99 

CHAPTER 6: CONCLUSION................................................................................... 109 

Future directions ............................................................................................ 111 

Summary ........................................................................................................ 119 

BIBLIOGRAPHY...................................................................................................... 120 

APPENDIX A ............................................................................................................ 130 

APPENDIX B ............................................................................................................ 136 

 



 

LIST OF FIGURES 

 
Figure Page 

5.1: Frequency distribution of stands with up to 25 counts of cavity trees (left) and 
snags (right).................................................................................................... 104 

5.2: Diagnostic plots for cavity tree abundance for the negative binomial (NB), 
zero-inflated NB (ZINB), zero-altered NB (ZANB), and three NN 
imputation methods. χ2 is the χ2-statistic for the NB, ZINB, and ZANB 
models. w is the sum of the absolute values of dk. ......................................... 105 

5.3: Diagnostic plots for cavity tree abundance for the negative binomial (NB), 
zero-inflated NB (ZINB), zero-altered NB (ZANB), and three NN 
imputation methods. χ2 is the χ2-statistic for the NB, ZINB, and ZANB 
models. w is the sum of the absolute values of dk. ......................................... 106 

5.4: Frequency plots of prediction error of cavity tree abundance for the negative 
binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and 
three NN imputation methods. MSPE is the mean square prediction error. .. 107 

5.5: Frequency plots of prediction error of snag abundance for the negative 
binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and 
three NN imputation methods. MSPE is the mean square prediction error. .. 108 

 

 



 

LIST OF TABLES 

 
Table Page 

2.1: Number of plots measured by year of installation and national forest and 
corresponding panel assignment. All plots listed were remeasured in 2000. .. 30 

2.2: Summary of plot-level variables. .......................................................................... 31 

2.3: Tree species found in this study............................................................................ 32 

2.4: Imputation results for the set of ancillary variables that included climate, 
topography, and satellite data. The weights for the WMA are given in 
parentheses as follows (wt-3, wt-2, wt-1, wt)........................................................ 33 

2.5: Imputation results for using occasion 1 measurements of the variables of 
interest (BAocc1, SPHocc1, VOLocc1, and BIOTocc1) as ancillary data. 
The weights for the WMA are given in parentheses as follows (wt-3, wt-2, 
wt-1, wt). ............................................................................................................ 34 

3.1: Summary of plot-level variables in 2000.............................................................. 51 

3.2: Number of plots measured by year of installation and corresponding panel 
assignment. All plots listed were remeasured in 2000..................................... 52 

3.3: Imputation results.................................................................................................. 53 

3.4: Tree- and plot-level imputation results by species group. .................................... 54 

4.1: Number of plots measured by year of installation and corresponding panel 
assignment. All plots listed were remeasured in 2000..................................... 70 

4.2: Summary of plot-level variables in 2000.............................................................. 71 

4.3: Bias and RMSE of mean annual change of the variables of interest BA (basal 
area/ha), SPH (stems/ha), VOL (volume/ha), and BIOT (biomass/ha). Data 
set A comprised climate, topography, and satellite data. Data set B 
comprised occasion 1 measurements of the variables of interest. ................... 72 

4.4: Bias and RMSE of mean BA (basal area/ha), SPH (stems/ha), VOL 
(volume/ha), and BIOT (biomass/ha) in year 2000. Data set A comprised 
climate, topography, and satellite data. Data set B comprised occasion 1 
measurements of the variables of interest. ....................................................... 73 

5.1: Descriptive statistics for stands, n=10,607. ........................................................ 101 



 

  

LIST OF TABLES (Continued) 

5.2: Site class and height class descriptions and number of stands in each class. ..... 102 

5.3: Minimum, mean, and maximum bias and RMSE for the Y-variables (cavity 
tree abundance and snag abundance) and the square root (sqrt), inverse, 
and logarithmic (ln) transformations of the Y-variables over 200 sampling 
replications.  MSN and RF stand for the most similar neighbor and 
randomForest imputation methods, respectively. .......................................... 103 



 

 

EXAMINATION OF IMPUTATION METHODS TO ESTIMATE STATUS AND 
CHANGE OF FOREST ATTRIBUTES FROM PANELED INVENTORY DATA 

 

CHAPTER 1: INTRODUCTION  

Information on current forest condition and change is essential to assess and 

characterize resources and to support resource management and policy decisions. 

Since the 1930s the Forest Inventory and Analysis (FIA) program of the United States 

Department of Agriculture (USDA) Forest Service or its predecessor programs have 

conducted periodic inventories of forest land in the United States and provided data on 

the extent and condition of forest land, the volume of timber, timber growth, and 

timber removals (McRoberts 2000). These traditional periodic inventories provide 

data that can be used to characterize current conditions for only two or three years 

after each inventory and become less useful for this purpose over time (Reams et al. 

1999). Immediate estimation of the effects of catastrophic events (e.g., hurricanes, fire, 

insect infestations) on the forest resources is usually impossible with the data provided 

by the periodic inventory design (McRoberts 2000), and the inventory data of 

bordering states may differ in age by ten or more years, which makes analyses that 

span multiple states difficult (Gillepsie 1999). These and other deficiencies of the 

periodic inventory design have led to the blue ribbon panels on FIA in 1991 and 1997 

and finally to the Agricultural Research, Extension, and Education Reform Act of 

1998 (PL 105-185), known as Farm Bill, which mandates the USDA Forest Service to 
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conduct annual forest inventories in all states to be able to provide annual updates of 

each state’s forests (McRoberts 2000). 

The FIA developed the interpenetrating panel design which is now used for the 

annual inventory system of the USDA Forest Service (Van Deusen 2000). FIA had 

seriously considered an annual inventory approach since the early 1990s. In 1992, 

scientists at the North Central Research Station (NCRS) began to develop the Annual 

Forest Inventory System (AFIS) which uses satellite data to stratify plots into classes 

with different probabilities of disturbance. Plots with a high probability of disturbance 

have a higher probability of being sampled in a given year, while other plots are 

updated using models (Gillespie 1999). Shortly after the implementation of AFIS, the 

Southern Research Station (SRS) implemented the Southern Annual Forest Inventory 

System (SAFIS). This inventory system is similar to AFIS, but all field plots have the 

same probability of being sampled in a given year. AFIS and SAFIS are forerunners of 

the interpenetrating panel design that is now used for the annual inventory mandated 

by the 1998 Farm Bill (Frayer and Furnival 1999). 

The interpenetrating panel design is an annual three-phase inventory in which 

the FIA and Forest Health Monitoring (FHM) plots are merged (Brand et al. 2000, 

McRoberts 1999). The FHM program had established a nationwide lattice of 

hexagonal cells as a sampling framework to distribute its sampling plots regularly. The 

plots were measured annually in a four year cycle (Scott et al. 1993). The FIA 

hexagons are based on the FHM hexagons, but have an increased sampling intensity 

by the factor 27, which means that each FIA hexagon is 1/27 the size of an FHM 
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hexagon (approximately one plot per 2,400 ha). Each hexagon (2,402.7 ha) was 

systematically assigned to one of the five interpenetrating panels that provide 

systematic coverage of each state (Reams et al. 2005). 

Depending on the region, 10 or 20 percent of the total FIA plots in each state 

are measured each year. In the eastern states, all plots located in one of the five 

interpenetrating panels (20%) are measured each year so that a state’s inventory is 

completed in five years. Funding for all western states is for an inventory cycle of 10 

years (Brand et al. 2000, McRoberts 1999, Roesch and Reams 1999). The west coast 

states (California, Oregon, and Washington) have 10% of the plots being measured 

each year with Alaska and Hawaii having modified inventory systems (Azuma 2000). 

In Phase 1 of the inventory, remotely sensed data is used to classify land into 

forested and non-forested land, and spatial measurements of fragmentation, 

urbanization, and distance variables are made. Historically, aerial photographs have 

been used for this phase but the system is changing to methods based on satellite 

imagery. In Phase 2, data on the permanently established FIA field plots is collected. 

On accessible forested field plots, information on forest type, site attributes, tree 

species, tree size, and overall tree condition is collected. Non-forest plots are also 

visited in order to quantify the rates of land use change. A subset of the Phase 2 plots 

is visited in Phase 3 (approximately one plot every 38,400 ha) to collect an additional 

set of data related to forest health conditions. Phase 3 plots are visited during the 

growing season in order to collect data covering a full vegetation inventory, tree and 
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crown condition, soil data, lichen diversity, coarse woody debris, and ozone damage 

(FIA 2005). 

The annual inventory harmonizes inventory techniques in assessing and 

monitoring current and future status of forest resources across temporal and spatial 

scales. This enables consistent comparison and reporting across states and among 

jurisdictions (Gillespie 1999, Reams et al. 1999, Van Deusen 2000). The annual 

inventory provides current information and quantifies variations that occur between 

the periods. With this information, it is possible to estimate annual current forest 

conditions and change, which are needed for effective policy and forest management 

decisions (Reams and Van Deusen 1999, Reams et al. 1999). The effect of 

catastrophic events on the forest resources may be observed sooner with an annual 

inventory, which is generally more adequate to observe trends and changes on a 

national scale than a periodic inventory. Most trends and changes would either be 

missed by the periodic inventory or documented years after their occurrence (Reams et 

al. 1999). Therefore, an annual inventory is preferred for forests with a high rate of 

change (Gillespie 1999). In areas where fieldwork does not depend on the seasons, the 

annual system allows field staff to be stationed in a certain working area. This 

eliminates the costs of constantly relocating staff and leads to lower training costs for 

replacements and greater retention of experienced staff. The fact that the fieldwork of 

the FIA and FHM programs has been merged increases the efficiency and 

effectiveness of both programs (Gillespie 1999, Van Deusen et al. 1999). 
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In an annual inventory, the sample size of one year is lower than in a periodic 

inventory and therefore the precision of the estimations in any given year is lower 

compared to the precision achieved with data of a periodic inventory (Van Deusen 

2000). When change is small, detection may take up to 20 years in western states. The 

new inventory design requires the development of new software for data management 

and analysis (Van Deusen 2000), which produces costs. The plots in one panel are 

distributed systematically in a state which requires longer travel times between the 

plots so that travel costs increase (Gillespie 1999, Van Deusen 2000). Where data 

collection is seasonal, field crews must travel more throughout the season, leading to 

higher employee turnover and greater training costs. 

The interpenetrating panel design is a rigid inventory system. This causes 

problems if the inventory budgets are uncertain and the measurements of one panel 

cannot be completed in one year. This is called “panel creep” and could be avoided by 

creating extra panels that allow some flexibility in measurement (Van Deusen 2000, 

Van Deusen 2002a). The rigid inventory design also leads to having only 5-year 

change intervals in the eastern states and 10-year change intervals in the western 

states. Change estimates for intervals other than five or ten years, respectively, depend 

on models and assumptions. By rotating the panel assignments, a mix of change 

intervals could be assured (Van Deusen 2000). 

Moving to an annual inventory system implicates significant changes not only 

in the FIA reporting but also in the estimation of various forest attributes. If only 

current year data are used for estimations, the results reflect current conditions, but 
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due to the small sample size, the achieved precision may be unacceptable (McRoberts 

2000). Estimation procedures that use data from previously measured panels can 

significantly improve the precision (Van Deusen 2000).  

Currently, FIA uses a moving average (MA) approach, which is operationally 

convenient and requires a minimum of assumptions (Gartner and Reams 2001), as 

default estimator. Using data from the panels measured in the most recent years, a MA 

approach can improve the precision of the estimates, when compared to using only 

data from plots measured in the current year. However, it rather reflects an average of 

conditions over the past ten years than current forest conditions (McRoberts 2000), 

resulting in a bias of the current year’s population parameter (Johnson et al. 2003). If a 

variable of interest indicates a strong trend, the moving average is likely to 

underestimate the current condition of this variable. If an abrupt shift in the inventory 

takes place, overestimation might occur (Reams et al. 1999) because the moving 

average reacts slowly to sudden changes in tree attribute variables (Johnson et al. 

2003). 

The MA estimator has been accepted as the FIA default estimator for the 

annual inventory system with the provision that it may be replaced if it can be 

improved by using updating techniques based on imputation techniques, growth 

models, or other methods (McRoberts 2000). Estimates based on updated data provide 

nearly the same precision that was achieved with periodic inventories, provided that 

updating procedures used are unbiased and sufficiently precise (McRoberts 2001). 

Different imputation and modeling approaches have been examined for updating data 
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of unmeasured panels to the current year (Van Deusen 1997, Gartner and Reams 2001, 

McRoberts 2001). So far, no research has been done in this area in the Pacific 

Northwest (PNW). 

Size and abundance of cavity trees and snags are among the variables 

measured and reported by FIA. Snags are important structural components of many 

forest ecosystems (Harmon et al. 1986) and as cavity trees they provide nesting, 

foraging, and roosting habitat for many wildlife species (Carey 1983, Bate et al. 1999). 

Knowledge about the size and abundance of cavity trees and snags is important for 

selecting and modeling wildlife habitat which can support forest planning efforts, 

regional inventories, and evaluation of different management scenarios. The 

relationship between cavity tree and snag abundance and stand attributes acquired 

from paneled data and the suitability and predictive abilities of parametric and nearest 

neighbor imputation methods have not yet been examined. 

The overall goal of this thesis is to explore new methods for estimating current 

forest condition and change that are designed for the type of data obtained in the 

annual inventory for the PNW region and compare their results to those from the MA 

approach. Specific objectives are to (1) examine plot-level nearest neighbor 

imputation techniques for estimating current plot-level attributes; (2) investigate tree-

level nearest neighbor imputation techniques for estimating current plot-level 

attributes; (3) explore the suitability of nearest neighbor imputation techniques to 

estimate mean annual change at plot-level; and (4) analyze the suitability of nearest 
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neighbor imputation methods and negative binomial regression models to estimate 

cavity tree and snag abundance. 

Objectives 1-4 of the dissertation are addressed in Chapters 2-5, respectively. 

Chapter 2 assesses the use of plot-level imputation techniques. Chapter 3 illustrates the 

estimation of current forest attributes using tree-level imputation techniques. Chapter 4 

explores plot-level imputation methods for estimating mean annual change using 

annual inventory data. Chapter 5 demonstrates the use of imputation techniques and 

negative binomial regression models to estimate cavity tree and snag abundance. 

Finally, Chapter 6 summarizes the key findings of the study and discusses future 

research that is needed to improve estimation of current status and change based on 

annual inventory data. 
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Abstract 

Information on current forest condition is essential to assess and characterize 

resources and to support resource management and policy decisions. The 1998 Farm 

Bill mandates the US Forest Service to conduct annual inventories to provide annual 

updates of each state’s forest. In annual inventories, the sample size of one year 

(panel) is only a portion of the full sample and therefore the precision of the 

estimations for any given year is low. To achieve higher precision, the Forest 

Inventory and Analysis program (FIA) uses a moving average (MA), which combines 

the data of multiple panels, as default estimator. The MA can result in biased estimates 

of current conditions and alternative methods are sought after. Alternatives to the MA 

have not yet been explored in the Pacific Northwest. Data from Oregon and 

Washington national forests were used to examine a weighted moving average 

(WMA) and three imputation approaches: Most similar neighbor (MSN), gradient 

nearest neighbor (GNN), and randomForest (RF). Using the most recent 

measurements of the variables of interest as ancillary variables, RF provided almost 

unbiased estimates that were comparable to those of the MA and WMA estimators in 

terms of root mean square error. 

Introduction 

Initiated by the Agricultural Research, Extension, and Education Reform Act 

of 1998 (PL 105-185) the Forest Inventory and Analysis (FIA) program of the US 

Forest Service has switched from periodic inventories that varied from state-to-state to 
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a consistent nationwide annual inventory. A portion of the inventory of the nation’s 

forests is now conducted annually within each state. The fraction of the plots 

measured annually is 10% in the western United States and 20% in the eastern United 

States. 

The precision of the estimates of current status and changes in the forest 

resources using only data from the panel of plots measured in the current year has 

been found to be unacceptable due to the small annual sample size (McRoberts and 

Hansen 1999). There have been efforts to combine data of multiple panels in order to 

achieve a higher precision. The current FIA default estimator is a moving average 

(MA), which is operationally convenient and requires few assumptions (Gartner and 

Reams 2001). The MA approach can improve the precision of the estimates by using 

data from the panels measured in the most recent years. However, MA reflects an 

average of conditions over the past ten years rather than current forest conditions, 

resulting in a bias of the current year’s population parameter (McRoberts 2000, 

Johnson et al. 2003). The MA estimates can be improved with a weighted moving 

average (WMA) which weighs panels that were measured more recently more heavily 

than those measured earlier (Roesch and Reams 1999). Other approaches to combine 

data from all panels include: 1) updating unmeasured panel data to the current year 

using a) growth models (Lessard et al. 2001, McRoberts 2001); b) time series models 

(Johnson et al. 2003); or c) mixed estimation (Scott et al. 1999, Van Deusen 1996, 

1999, 2002b); 2) filling in missing panel data using tree- and plot-level imputation 

techniques (McRoberts 2001, Gartner and Reams 2001, 2002); or 3) modifying the 
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annual inventory of interpenetrating, non-overlapping panels to an inventory system 

with balanced annual partial remeasurements so that estimators based on sampling 

with partial replacement can be used (Scott et al. 1999, Arner et al. 2004). 

There is a need to develop new methods which will be included in the annual 

inventory system according to their performance (Reams et al. 1999). Since spatial, 

temporal, and forest characteristics differ within and among regions it is unclear if any 

single technique will work for all regions (Patterson and Reams 2005), and it is 

necessary to evaluate different methods in all regions. Studies comparing different 

alternatives to the MA approach for estimating current forest attributes in the Pacific 

Northwest (PNW) are still lacking whereas a variety of methods have been tested in 

the other regions of the United States (McRoberts 2001, Lessard et al. 2001, Van 

Deusen 1996, 1997, 1999, 2002b; Arner et al. 2004). 

The imputation and modeling approaches examined by McRoberts (2001) 

asserted that model development requires a greater resource investment than 

development of an imputation procedure. As the difference in the estimation results 

was negligible, it is reasonable to focus on investigating and improving the imputation 

techniques. McRoberts (2001) pointed out that development of models might be 

facilitated as soon as the annual inventory is established for several years and provides 

calibration data from fixed radius FIA plots at five or ten year intervals. Unlike 

modeling approaches, imputation techniques require reference data at the application 

phase. An advantage, however, is that they update themselves when data are added or 
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removed from the data base (Sironen et al. 2003) and the reference data will increase 

every year after establishment of the annual inventory. 

Depending on the intended use, tree- and plot-level imputation techniques 

differ in their predictive abilities and suitability (Gartner and Reams 2002). If diameter 

distributions by species are required, tree-level imputation will be necessary. 

Therefore, tree-level imputation might be more suitable for complex uneven-aged 

multi-species stands, where detailed information in the form of tree-lists is needed to 

describe the stand structure. Only tree-level imputation techniques allow 

determination of the distribution of individual tree growth and mortality, individual 

tree size change, and change by species and tree size classes. In a separate study, we 

are comparing the performance of tree-level and plot-level imputation.   

The objectives of this study are to: 1) use paneled data from the PNW to 

estimate current forest attributes with the FIA default method and compare the MA 

results with estimates based only on the data from the current panel; and 2) examine 

three different plot-level imputation methods to fill-in values for the missing panels as 

well as a WMA and assess their performance against MA. 

Methods 

Data 

The data used in this study consist of 618 plots from six national forests that 

were collected as part of the Pacific Northwest Regions’ Current Vegetation Survey 

(CVS) of the US Forest Service. The plots were installed between 1993 and 1997 and 
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remeasured in 2000. The particular national forests sampled were the Colville (28), 

Mt. Hood (111), Ochoco (82), Rogue River (70), Wallowa-Whitman (199), and 

Winema (128) (Table 2.1). 

Panel data is a special case of inventory data with measurements taken at 

different times. In order to mimic a panel system with the available data the plots were 

assigned to the following panels: panel 1 (P1) were those measured in 1993 and 1994, 

panel 2 (P2) were those measured in 1995, panel 3 (P3) were those measured in 1996 

and 1997, and panel 4 (P4) were a part of those measured in 2000. All plots were 

measured in the year 2000 but for the simulations 25% of the plots were randomly 

assigned to P4 and the remaining 75% of the plots belong to P1, P2, and P3 based on 

their year of installation. This resulted in P1, P2, and P3 having different sizes in each 

iteration. P1, P2, and P3 lack data of the national forests Rogue River, Coleville, and 

Winema, respectively, since no data was collected in those forests in the 

corresponding years (Table 2.1).  

The basic CVS sampling unit is one hectare (ha) in size. Five plots are installed 

in each sampling unit with each plot consisting of three permanent circular, nested 

subplots of different sizes. Which trees are measured in each of the three nested 

subplots depends upon their diameter at breast height (DBH in cm). Max et al. (1996) 

provided a detailed description of the inventory. In this study only live trees with DBH 

of 12.7 cm or larger were used. Missing heights (HT in m) were filled using height 

models developed in Barrett (2006). Volume and biomass equations from the US 

Forest Service were used to calculate gross cubic-meter volume and total gross oven 
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dry weight biomass (USDA 2000). For each plot, basal area in m2 per ha (BA), stems 

per ha (SPH), volume in m3 per ha (VOL), and biomass in tons per ha (BIOT) were 

calculated and summarized (Table 2.2). 

A total of 33 species were present on the plots (Table 2.3). The most frequently 

encountered species were Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 

ponderosa pine (Pinus ponderosa C. Lawson), grand fir (Abies grandis (Douglas ex D. 

Don) Lindl.), lodgepole pine (Pinus contorta Douglas ex Louden), white fir (Abies 

concolor (Gord. & Glend.) Lindl. ex Hildebr.), and western hemlock (Tsuga 

heterophylla (Raf.) Sarg.), in decreasing order. 

Thematic Mapper (TM) images from 2000 were extracted from the national 

land-cover database 2001 (Homer et al. 2004) and were used as ancillary data. The 

raw imagery bands 1 to 5 and band 7 (TM1, TM2, TM3, TM4, TM5, TM7) as well as 

the Tasseled Cap (TC) transformations of the 6 axes (TC1 – TC6) were used. The 

normalized difference vegetation index (NDVI) and three commonly used band ratios 

(band 4 to band 3 (R43), band 5 to band 4 (R54), and band 5 to band 7 (R57)) were 

calculated. Tree canopy cover (CANOPY) was extracted from the national land-cover 

database 2001 (Homer et al. 2004). 

Climate and topography variables were used as another source of ancillary 

data. Elevation (EL in m) was recorded as part of the CVS inventory. Annual 

precipitation (ANNPRE) and mean annual temperature (ANNTMP) (Table 2.2) were 

extracted from DAYMET Daily Surface Weather Data and Climatological Summaries 

(Thornton et al. 1997, Thornton and Running 1999). Slope (%) and aspect (degrees) 
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were derived from a 30 m digital elevation model using Arc Workstation GRID 

surface functions and commands (Environmental Systems Research Institute 1991). 

Plot-level imputation techniques 

The available 618 plots were randomly split without replacement into 154 plots 

(25%) constituting P4 and 464 plots (75%) that, based on the year of their first 

measurement, belong to P1, P2, and P3. 

Using the data from P4, the mean values of the variables of interest (Y) for the 

year 2000 (SAMPLE25 estimator) were calculated as: 

[2.1] 25 , 4
: 4

/
i

SAMPLE t i
i Y P

Y Y
∈

= ∑ n  

where  is the observed Y value of the ith plot at time t, which is the year 2000, and 

n4 is the number of plots in P4. 

,t iY

The MA estimator, the FIA default method, was also used to calculate the 

current mean values for the variables of interest: 

[2.2] ( ) ititititMA YYYYY ,,1,2,34 *25.0*25.0*25.0*25.0 +++= −−−  

where 3,t iY − , 2,t iY − , 1,t iY − , and ,t iY  are the mean values of the variables of interest of P1, 

P2, P3, and P4, respectively. This MA(4) estimator will be referred to as MA in the 

following. The MA takes into account that the panels include different numbers of 

plots. The following WMA takes the varying number of plots per panel into account 

and allows allocating weights declining with time lapsed since the most recent 

measurement: 
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[2.3] ( ) ittittittittWMA YwYwYwYwY ,,11,22,334 **** +++= −−−−−−  

where , , , and  are the weights of P1, P2, P3, and P4, respectively. 

Larger weights were chosen for P3 and P4 (

3tw − 2tw − 1tw − tw

1tw − = = 0.3) than for P1 and P2 

( = = 0.2). WMA(4) will be referred to as WMA. 

tw

3tw − 2tw −

Nearest neighbor (NN) imputation methods are donor-based methods where 

the imputed value is either a value that was actually observed for another plot or the 

average of values for more than one plot. Forest attributes that are measured on all 

plots are referred to as ancillary variables. Variables of interest are those forest 

attributes that are only measured on a subset of plots. Plots with measured ancillary 

variables and variables of interest are called reference plots and target plots are those 

that only have ancillary variables measured. In this study, the target plots were 

assumed to be non-sampled plots lacking inventory data (panels 1-3). The reference 

plots constituted the pool of potential plots with ground and ancillary data (P4), which 

could be selected to impute the inventory data for the target plots. 

The most similar neighbor (MSN) method (Moeur and Stage 1995) has been 

shown to provide reasonable imputation results for forest attributes (Moeur and Stage 

1995, LeMay and Temesgen 2005). The gradient nearest neighbor (GNN) method 

(Ohmann and Gregory 2002) has successfully been used to map forest composition 

and structure (Ohmann and Gregory 2002, Ohmann et al. 2007). The randomForest 

(RF) method (Crookston and Finley 2008) has been found to provide a flexible and 

robust alternative to traditional NN imputation methods such as MSN and GNN for 
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estimating forest attributes such as BA and SPH (Hudak et al. 2008). MSN, GNN, and 

RF were examined using the yaImpute R package version 1.0-6 (Crookston and Finley 

2008). For MSN and GNN, the similarity between reference and target plots is defined 

using a weighted Euclidean distance: 

[2.4] 2 ( ) ( )ij i j i jD X X W X X ′= − −   

where W is the weight matrix, iX  is a vector of standardized values of the ancillary 

variables for the ith target plot; and jX  is a vector of standardized values of ancillary 

variables for the jth reference plot. The ancillary variables for both target and reference 

plots were standardized using the mean and variance of the ancillary variables of the 

reference plots. 

For MSN, the weight used is 2W ′= ΓΛ Γ , where Γ  is the matrix of 

standardized canonical coefficients for the ancillary variables and  is the diagonal 

matrix of squared canonical correlations between ancillary attributes and ground 

variables (Moeur and Stage 1995). The “most similar” reference plot is hence selected 

based on similarity of the ancillary data, weighted by the correlations to the ground 

data. The ground data of the reference plot with the smallest distance is then imputed 

to the target plot. 

2Λ

The gradient nearest neighbor method (GNN) employs a projected ordination 

of the ancillary data based on canonical correspondence analysis (CCA) to assign the 

weights (Ohmann and Gregory 2002). 
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The RF method is a classification and regression tree (CART) method 

(Breiman 2001). The data and variables are randomly and iteratively sampled to 

generate a large group, or forest, of classification and regression trees. For RF two 

plots are considered similar if they tend to end up in the same terminal nodes in a 

forest of classification and regression trees. The distance measure is one minus the 

proportion of trees where a target plot is in the same terminal node as a reference plot 

(Crookston and Finley 2008, Hudak et al. 2008). 

Instead of filling in the missing values for panels 1 to 3 with their previous 

measurements, as was done in the MA calculation, MSN, GNN, and RF were explored 

to impute the missing values, and then estimate the overall mean of the variables of 

interest for the year 2000: 

[2.5] , , , ,
: 1 : 2 : 3 : 4

/
i i i i

IMP imp i imp i imp i t i
i Y P i Y P i Y P i Y P

Y Y Y Y Y
∈ ∈ ∈ ∈

⎡ ⎤
= + + +⎢ ⎥
⎣ ⎦
∑ ∑ ∑ ∑ n  

where IMP refers to the NN imputation method used and  is the imputed Y value 

for the ith plot. 

,imp iY

BA, SPH, VOL, and BIOT were used as variables of interest and SAMPLE25, 

MA, WMA, and the three imputation methods were compared based on the overall 

means of the variables of interest in the year 2000 (see Equations 2.1-2.3 and 2.5). 

 

Two sets of ancillary variables were tested for the imputation methods: The 

first set included climate, topography, and satellite data and the second set consisted of 

the previous measurements of the variables of interest that were taken at measurement 

occasion 1 in the years 1993 to 1997 (BAocc1, SPHocc1, VOLocc1, BIOTocc1). 
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The methods were compared by randomly splitting the available data of 618 

plots into 154 reference and 464 target plots, applying each method, determining mean 

estimates for the variables of interest in the year 2000 (see Equations 2.1 – 2.3 and 

2.5), and comparing the estimates to the observed mean values of the variables of 

interest in the year 2000: 

[2.6] ,
1

/
n

OBS t i
i

Y Y
=

=∑ n  

where  is the observed Y value of the ith plot at time t, which is the year 2000. ,t iY

The basis of evaluation was accuracy, as expressed by the root mean square 

error (RMSE), and bias, calculated as the mean difference between the estimates and 

the observed mean values (Equation 2.6) from 500 iterations of randomly splitting the 

data. Five hundred iterations were considered sufficient because other studies have 

found RMSE and bias to stabilize at around 200 iterations (e.g., Arner et al. 2004). 

Both RMSE and bias were expressed as percent of the observed mean for each 

variable of interest:  

[2.7] 
( )

1

1

% *100

n
i i

i
n

i
i

est obs
mB ias

obs

m

=

=

−

=
∑

∑

 

[2.8] 
( )

1

1
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n
i i

i
n

i
i
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m
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−

=
∑

∑

 

where m = 500. 
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Results 

For BA and SPH, the RMSE values of MA were about half the size of those 

observed for SAMPLE25. For VOL and BIOT the RMSE values for MA were about a 

third of those observed for SAMPLE25. SAMPLE25 results were virtually unbiased 

with absolute values of 0.13% and less. Bias for the MA results ranged from -2.63% 

for SPH to -1.98% for BIOT. MA estimates were very precise and the bias contributed 

most to the RMSE. The opposite was true for the virtually unbiased SAMPLE25 

estimates, where the variance contributed most to the RMSE (Table 2.4). WMA 

reduced the bias and with that the RMSE for SPH even further. For BA, VOL, and 

BIOT the bias became positive and the RMSE values increased for VOL and BIOT 

compared to those of the MA (Table 2.4). 

When climate, topography, and satellite data were used as ancillary variables, 

MSN provided better results than SAMPLE25 in terms of RMSE for BA, VOL, and 

BIOT but worse results than MA and WMA. MSN imputation resulted in negligible 

bias with absolute values less than 0.3%, hence, outperforming the MA and WMA 

results in terms of bias. The variance contributed most to the RMSE values of the 

MSN estimates (Table 2.4). Using climate, topography, and satellite data as ancillary 

variables, RF provided slightly better results than MSN in terms of RMSE for all four 

variables of interest. With values ranging from 0.26% to 0.89% bias was slightly 

larger than for MSN but still negligible. As for SAMPLE25 and MSN, the variance 

contributed most to the RMSE (Table 2.4). GNN imputation results were by far the 
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worst when climate, topography, and satellite data were used as ancillary variables 

with RMSE values around 15% and positive bias around 10% (Table 2.4). 

When BAocc1, SPHocc1, VOLocc1, and BIOTocc1 were used as ancillary 

variables, the MSN results had a negative bias ranging between -2.90% and -4.56%. 

The bias contributed most to the RMSE values, which were still slightly better than 

those of SAMPLE25. However, MA and WMA now outperformed MSN both in terms 

of bias and RMSE (Table 2.5). RF results improved both in terms of bias and RMSE 

when previous measurements were used as ancillary variables and outperformed MA 

in terms of bias and RMSE. RF also provided better results than WMA in terms of 

bias for all four variables of interest and for VOL and BIOT in terms of RMSE (Table 

2.5). GNN estimates were even worse with the second set of ancillary variables, 

resulting in large positive bias exceeding 29% and large RMSE values exceeding 36% 

(Table 2.5).  

Discussion 

The SAMPLE25 estimator should provide unbiased estimates. In this study the 

bias was not equal to zero but reached values up to 0.13%. If all possible subsamples 

of size 154 were taken, SAMPLE25 should result in a bias of zero. Since not all 

possible subsamples were taken, the negligible bias observed for the method in this 

study was probably due to the number of iterations that was performed.  

As found in other studies (Van Deusen 2002b, Arner et al. 2004), MA, the FIA 

default estimator, resulted in improvements in terms of RMSE compared to using only 
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the current panel as the basis of estimating current forest attributes. However, MA 

resulted in negatively biased estimates. This bias is commonly referred to as lag bias, 

which arises because the MA estimator tends to underestimate current forest 

conditions. In the given example, the four year gap between P3 and P4 increased the 

lag bias and it is expected that the lag bias would have been smaller for a regular four 

panel inventory where panels are only a year apart. Most studies on the MA 

performance have been done in other regions where the inventory cycle is five years, 

and the lag bias of the MA has been found to be more than compensated by a 

reduction in variance for a five year inventory cycle by ‘borrowing’ strength in terms 

of sample size from previous years (Johnson et al. 2003). 

MA provides unbiased estimates for the midpoint of the period and is hence 

not valid as end of period estimator. When used as end of period estimator as done by 

FIA and in this study, the MA has the tendency to mask temporal trends (Roesch and 

Reams 1999) and provide biased estimates for the end of the period. One approach to 

solve this problem is to apply weights that give more weight to the most recently 

measured panels. This was done for the WMA, which provided improved estimates in 

terms of bias and RMSE for BA and SPH but increased bias and RMSE values for 

VOL and BIOT compared to MA. The selection of the weights poses a problem that is 

not yet solved. Choosing appropriate weights requires the knowledge of the trend 

inherent in the data which is hardly ever known. Breidt (1999) presented models that 

can be used for selecting the weights somewhat objectively. Arner et al. (2004) found 

an increase in RMSE for mean volume and mean annual volume change with 
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increasing larger weights for recent years, and Johnson et al. (2003) have shown that 

equal weights lead to the lowest RMSE in most situations. 

P1, P2, and P3 lack data of the national forests Rogue River, Coleville, and 

Winema, respectively (Table 2.1), which suggests that the panels might not have 

accurately characterized the population of interest. This feature could have been 

exacerbated by the random assignment of plots to P4. MA assumes that each yearly 

sample covers the population of interest (Johnson and Williams 2004). Hence, the MA 

results in this study might have been compromised by this data feature. FIA plots are 

assigned to the panels in a systematic manner, so that each FIA panel covers the 

population of interest systematically which ensures that the annual sample maintains 

its spatial properties. Hence, the performance of the MA estimator using actual FIA 

data is expected to be better than in the given example. 

Longer inventory cycles will have negative effects on the performance of the 

MA and WMA estimators in terms of bias (Johnson et al. 2003). Hence, it is 

questionable whether the MA estimator is optimal for the PNW region where the 

inventory cycle length is 10 years. However, if the lag bias could be corrected, the MA 

and WMA estimators could provide RMSE values substantially lower than those of 

the SAMPLE25 estimator. 

Three plot-level imputation techniques were examined which performed 

differently in terms of bias and RMSE compared to the SAMPLE25, MA, and WMA 

estimators. Although MSN imputation using climate, topography, and satellite data 

improved the results compared to the SAMPLE25 estimates in terms of RMSE for 
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BA, VOL, and BIOT, the improvements in RMSE seemed minor considering the 

computational expenses of applying imputation techniques. Employing imputation 

techniques is questionable if the improvements are not substantial. MA and WMA 

estimators outperformed MSN imputation in terms of RMSE when climate, 

topography, and satellite data were used as ancillary data and in both bias and RMSE 

when previous measurements were used as ancillary data. Hence, the results of this 

study did not indicate any advantage of MSN imputation over the MA and WMA 

estimators.  

GNN results were not close to those obtained by SAMPLE25, MA, WMA, 

MSN or RF, which might be due to the fact that CCA requires the use of 

environmental factors for the ordination. GNN has been developed for pixel 

imputation (Ohmann and Gregory 2002) and it is possible that gradients in the 

environmental factors are not picked up when plot-level data is being used in 

combination with the available climate, topography, and satellite data. GNN should 

not be used with previous measurements as ancillary data since those do not provide 

any environmental factors that are necessary for the CCA step in the GNN analysis. 

This explains the bad results achieved by GNN with previous measurements as 

ancillary variables (see Table 2.5). 

The results of this study support the findings of Hudak et al. (2008) that RF 

represents a robust alternative to traditional imputation methods. In this study, RF was 

the only imputation method that provided results that could compete with the results of 

the MA and WMA estimators. When RF was used with previous measurements as 
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ancillary variables it did not only outperform the WMA estimates in terms of bias but 

also in terms of RMSE for two of the four variables of interest. This suggests further 

exploration of this method with different data sets. 

In a 10 panel inventory system, using previous measurements as ancillary 

variables is expected to result in overpredictions of the variables of interest. The 

current panel is used as reference data and its previous measurements are 10 years old. 

The previous measurements of the remaining nine panels constituting the target data 

are one to nine years old. Matching on previous measurements will result in 

overpredicting growth. Using an updated MA as introduced by Gartner and Reams 

(2002), where only the panels that have the most outdated measurements are being 

updated, might avoid the problem of overprediction when previous measurements are 

being used as ancillary variables. In a 10 panel system, the first five panels would be 

updated with imputation methods based on previous measurements as ancillary 

variables for estimating the status of the variables of interest in year 10. Then a MA 

would be calculated based on the updated values of panels one through five and the 

measurements obtained for panels six through 10. 

The efficiency of the imputation methods depends on the strengths of 

relationships between the variables of interest and the ancillary data. The data in this 

study showed only weak association between forest inventory attributes and ancillary 

variables from TM images, climate, and topography data. The findings of this study do 

not provide any incentive to prefer the use of NN imputation methods that employ 

climate, topography, and satellite data as ancillary variables over the use of MA and 
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WMA estimators. Data of higher quality than that derived from TM images could 

have the potential to improve the NN imputation techniques. Variables derived from 

Light Detection and Ranging (LiDAR) data are an example (e.g., Hudak et al. 2008). 

Throughout all estimation methods, RMSE was larger for VOL and BIOT than 

for BA. The poorer results for VOL and BIOT might be due to the fact that these two 

variables are transformations of both tree DBH and HT and, therefore, they are three 

dimensional variables on the landscape. BA, on the other hand, is a two dimensional 

variable because it is based only on the DBH measurements. Many of the ancillary 

variables available in this study for imputation are themselves only two dimensional 

variables. Again, three dimensional LiDAR data have the potential to improve the 

imputation techniques for VOL and BIOT. 

The results of the imputation methods might have been impaired by a 

combination of the number of plots used as reference stands (P4, 154 plots) and the 

large number of species and forest types in the six national forests that were used in 

this study. The diversity in the data and the small number of plots suggest that it was 

probably not easy to find good matches in some of the cases. Since imputation 

methods do not extrapolate and only interpolate when k > 1 (Crookston et al. 2002), it 

is important that the reference data spans the full range of the population in the space 

of the ancillary variables without any large gaps. If this is not given, the availability of 

similar reference observations may be reduced and imputation error increases (Stage 

and Crookston 2007). The random assignment of plots to P4 might have resulted in 

plot combinations for P4 that did not represent the population well which would have 
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negatively influenced the performance of the imputation methods. FIA annual 

inventory data assures a systematic coverage of the population of interest for each 

panel so that it seems more likely to find good matches and an improvement of 

imputation results could be expected. 

Conclusions 

Compared to the SAMPLE25 estimator the MA estimator improved the 

estimates in terms of RMSE and worsened the estimates in terms of bias. The WMA 

estimator improved the results for two of the variables of interest compared to the MA. 

The performance of the MA and WMA estimators should be explored using an actual 

10-year inventory system in order to examine the increase in lag bias for a long 

inventory cycle. Different weighting schemes in a 10-year inventory system need to be 

explored for the WMA estimator. 

With the available ancillary data, MSN and GNN could not compete with any 

of the other estimation methods. RF results were best when previous measurements of 

the variables of interest were used as ancillary variables and outperformed the MA and 

WMA estimators in terms of bias and were comparable in terms of RMSE. Using RF 

imputation with previous measurements as ancillary variables might provide an 

approximately unbiased alternative to the biased MA and WMA estimators in the 

PNW. Because overprediction of the variables of interest might occur, more research 

on the behavior of this method in a 10 panel system is warranted. 
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For the MA and WMA estimates, the variance was very small and bias 

contributed most to the RMSE values. If the lag bias could be corrected, the RMSE 

values would be reduced substantially and the MA and WMA results might 

outperform all other methods. Methods for correcting the MA and WMA lag bias 

should be sought. If the lag bias is not corrected for, users should be aware that they 

are estimating a midpoint value rather than an end of period value when they use the 

MA estimator. 

Due to the data structure and the random assignment of plots to P4, the panels 

did not always represent the population well. This had impacts on the MA and WMA 

estimates as well as on the NN imputation results. All methods are expected to show 

improved results when actual FIA data is used since FIA panels provide complete 

coverage of the population with equal number of plots for each year. 

Acknowledgements 

We thank Janet Ohmann and Matt Gregory for sharing their ancillary data 

from the NLCD and DAYMET with us and for their insights on the data. We 

appreciate the help that Jim Alegria, Carol Apple, Bob Brown, and Melinda Moeur 

provided in obtaining national forest data, and thank Kurt Campbell for assistance 

with volume and biomass equations. We also thank David Hann, three anonymous 

reviewers, and the assistant editor for their helpful review comments. 



 30

 

Table 2.1: Number of plots measured by year of installation and national forest and 
corresponding panel assignment. All plots listed were remeasured in 2000. 

Year of 
Installation Colville Mt. 

Hood Ochoco Rogue 
River 

Wallowa- 
Whitman Winema Total Assigned 

Panel 
1993 7 0 0 0 0 0 7 1 
1994 4 9 23 0 99 94 229 1 
1995 0 51 41 20 77 34 223 2 
1996 16 51 18 50 23 0 158 3 
1997 1 0 0 0 0 0 1 3 
Total 28 111 82 70 199 128 618  
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Table 2.2: Summary of plot-level variables. 

Variable Minimum Mean Maximum Std 
Basal area (m2/ha) 0.24 24.32 105.35 19.00 
SPH (stems/ha) 1 305 1517 221 
Volume (m3/ha) 0.66 224.82 1444.74 221.04
Total gross oven dry weight biomass 
(tons/ha) 0.58 134.09 800.64 132.64

Canopy cover (%) 0 54 97 29 
Slope (%) 0 23 83 17 
Elevation (m) 274 1389 2377 321 
Annual precipitation (ln cm) 
(scaled * 100) 577 683 817 48 

Mean annual Temperature (ºC) 
(scaled * 100) 60 579 1067 166 
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Table 2.3: Tree species found in this study. 

Scientific Name Common Name Frequency
Abies amabilis (Douglas ex Louden) Douglas ex 
Forbes Pacific silver fir 913 

Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. White fir 2,325 
Abies grandis (Douglas ex D. Don) Lindl. Grand fir 2,935 
Abies lasiocarpa (Hook.) Nutt. Subalpine fir 645 
Abies ×shastensis (Lemmon) Lemmon [magnifica × 
procera] Shasta red fir 854 

Abies procera Rehder Noble fir 245 
Acer macrophyllum Pursh Bigleaf maple 93 
Alnus rubra Bong. Red alder 81 
Arbutus menziesii Pursh Pacific madrone 126 
Betula papyrifera Marsh. var. commutata (Regel) 
Fernald Paper birch 6 

Castanopsis chrysophylla (Douglas ex Hook.) A. 
DC. Golden chinquapin 71 

Calocedrus decurrens (Torr.) Florin Incense cedar 140 
Cornus nuttallii Audubon ex Torr. & A. Gray Pacific dogwood 3 
Juniperus occidentalis Hook. Western juniper 517 
Larix occidentalis Nutt. Western larch 801 
Pinus albicaulis Engelm. Whitebark pine 96 
Pinus attenuata Lemmon Knobcone pine 14 
Pinus contorta Douglas ex Louden Lodgepole pine 2,758 
Picea engelmannii Parry ex Engelm. Engelmann spruce 651 
Pinus lambertiana Douglas Sugar pine 177 
Pinus monticola Douglas ex D. Don Western white pine 78 
Pinus ponderosa C. Lawson Ponderosa pine 5,040 
Populus balsamifera L. ssp. trichocarpa (Torr. & A. 
Gray ex Hook.) Brayshaw Black cottonwood 5 

Populus tremuloides Michx. Quaking aspen 33 
Prunus emarginata (Douglas ex Hook.) D. Dietr. Bitter cherry 2 
Pseudotsuga menziesii (Mirb.) Franco Douglas-fir 8,202 
Quercus chrysolepis Liebm. Canyon live oak 184 
Quercus garryana Douglas ex Hook. Oregon white oak 11 
Quercus kelloggii Newberry California black oak 8 
Taxus brevifolia Nutt. Pacific yew 35 
Thuja plicata Donn ex D. Don Western redcedar 577 
Tsuga heterophylla (Raf.) Sarg. Western hemlock 2,123 
Tsuga mertensiana (Bong.) Carrière Mountain hemlock 960 

 

http://plants.usda.gov/java/profile?symbol=ACMA3
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Table 2.4: Imputation results for the set of ancillary variables that included climate, 
topography, and satellite data. The weights for the WMA are given in parentheses as 
follows (wt-3, wt-2, wt-1, wt). 

 BA SPH VOL BIOT 
Method % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE 
SAMPLE25 -0.02 5.29 0.13 5.05 -0.08 6.59 -0.06 6.67 
MA -2.54 2.60 -2.63 2.68 -1.92 2.06 -1.98 2.12 
WMA (0.2,  
0.2, 0.3, 0.3) 0.58 0.98 -1.58 1.74 2.51 2.71 2.58 2.78 

MSN 0.05 3.73 0.29 5.13 -0.19 5.01 -0.15 4.97 
GNN 10.14 15.10 10.11 14.89 8.97 15.72 9.67 16.35 
RF 0.44 3.60 0.89 4.99 0.37 4.96 0.26 4.89 
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Table 2.5: Imputation results for using occasion 1 measurements of the variables of 
interest (BAocc1, SPHocc1, VOLocc1, and BIOTocc1) as ancillary data. The weights 
for the WMA are given in parentheses as follows (wt-3, wt-2, wt-1, wt). 

 BA SPH VOL BIOT 
Method % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE 
SAMPLE25 -0.02 5.29 0.13 5.05 -0.08 6.59 -0.06 6.67 
MA -2.54 2.60 -2.63 2.68 -1.92 2.06 -1.98 2.12 
WMA (0.2, 
0.2, 0.3, 0.3) 0.58 0.98 -1.58 1.74 2.51 2.71 2.58 2.78 

MSN -3.91 4.35 -2.90 3.68 -4.41 4.97 -4.56 5.09 
GNN 30.67 36.12 43.92 51.48 29.55 36.57 34.53 41.09 
RF -0.30 1.58 -0.85 2.78 -0.06 1.90 -0.09 1.79 
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Abstract 

The Forest Inventory and Analysis program (FIA) of the US Forest Service 

conducts a nationwide annual inventory. One panel (20% or 10% of all plots in the 

eastern and western United States, respectively) is measured each year. The precision 

of the estimates for any given year from one panel is low, and the moving average 

(MA), which is considered to be the default estimator, can result in biased estimates of 

current conditions. An alternative to the MA is sought after, and studies comparing 

different alternatives to the MA approach for estimating current forest attributes in the 

Pacific Northwest are lacking. Paneled data from national forests in Oregon and 

Washington were used to explore nearest neighbor (NN) imputation methods to 

project all panels to a common point in time. When using the most recent ground 

measurements of the panels measured in prior years as ancillary data, tree-level NN 

imputation outperformed the MA estimator in estimating basal area/ha, stems/ha, 

volume/ha, and biomass/ha in terms of bias and root mean square error (RMSE) and 

plot-level NN imputation in terms of RMSE. When basal area/ha, stems/ha, 

volume/ha, and biomass/ha were summarized by three species groups, tree-level NN 

imputation outperformed plot-level NN imputation in terms of both bias and RMSE. 

Tree-level NN imputation outperformed the MA in terms of bias and RMSE for 

estimating basal area/ha, stems/ha, volume/ha, and biomass/ha for species group ‘pine’ 

and provided comparable results in terms of bias and RMSE for species groups 

‘Douglas-fir’ and ‘other.’ 
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Introduction 

Information on current forest condition is essential to assess and characterize 

resources and to support management and policy decisions. The 1998 Farm Bill 

mandates the US Forest Service to conduct annual inventories to provide annual 

updates of each state’s forest. Only 10% or 20% of all plots in the western and eastern 

United States, respectively, are measured annually. Because only a portion of the full 

sample is measured annually, the precision of the estimates for any given year is low. 

To achieve higher precision, the Forest Inventory and Analysis program (FIA) uses a 

moving average (MA) as default estimator which combines the data of multiple 

panels. In the presence of trend, biased estimates will result, if the MA is applied to 

the end of the period to estimate current conditions. Other approaches to combine data 

from all panels include: 1) updating unmeasured panel data to the current year with 

growth models (Lessard et al. 2001); 2) using time series models (Johnson et al. 

2003); 3) mixed estimation (Van Deusen 1996); or 4) filling in missing panel data 

using tree- and plot-level imputation techniques (Gartner and Reams 2001, 2002, 

McRoberts 2001). Since spatial, temporal, and forest characteristics differ within and 

among regions it is unclear if any single technique will provide satisfactory results for 

all regions (Patterson and Reams 2005). It may be necessary to evaluate different 

methods for a variety of issues and regions. Studies comparing different alternatives to 

the MA approach for estimating current forest attributes in the Pacific Northwest 

(PNW) are lacking. 
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Nearest Neighbor (NN) imputation methods are donor-based, which means 

that the imputed value was either observed for another unit or was calculated as the 

average of values from more than one unit. NN imputation can be performed on 

different levels. Eskelson et al. (in press; Chapter 2) have shown that plot-level 

imputation, that is plot-level attributes (e.g., basal area/ha) are imputed, can provide 

more accurate results than the MA approach. They found the randomForest (RF) 

imputation method (Crookston and Finley 2008), which is an extension of 

classification and regression tree (CART) methods (Breiman 2001), to outperform 

other NN imputation methods. Imputation can also be performed at the tree-level, that 

is tree-level attributes (e.g., diameter at breast height (DBH in cm)) are imputed, and 

the results of the tree-level imputation are then summarized for each plot (e.g., 

imputed DBH is used to calculate basal area/ha). 

Depending on the intended use, tree- and plot-level imputation techniques 

differ in their predictive abilities and suitability (Gartner and Reams 2002). Plot-level 

and tree-level NN imputation techniques might have a similar relationship to each 

other as whole stand growth models, which might not apply in heterogeneous 

conditions (Curtis and Hyink 1985), have with single-tree growth models, which can 

provide more detailed information about stand dynamics and structure (Burkhart 

1992). Tree-level nearest neighbor (NN) imputation techniques have been successfully 

used to estimate tree volumes and heights (Korhonen and Kangas 1997), single-tree 

biomass (Fehrmann et al. 2008) as well as 5-year diameter growth and bark thickness 

(Sironen et al. 2001, 2003, 2008). 
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The objectives of this study are to: 1) use paneled data from the PNW to 

estimate current forest attributes (see Table 3.1) using tree-level imputation methods 

and compare their performance against the MA and the estimates based only on the 

data from the current panel; 2) examine the performance of tree-level imputation 

methods to estimate current forest attributes by species groups; and 3) compare tree-

level and plot-level imputation results. 

Methods 

Data 

The data used in this study consist of 618 plots from six national forests that 

were collected as part of the Pacific Northwest Region’s Current Vegetation Survey 

(CVS) of the US Forest Service. The plots were installed between 1993 and 1997 and 

remeasured in 2000. The particular national forests sampled were the Colville (28), 

Mt. Hood (111), Ochoco (82), Rogue River (70), Wallowa-Whitman (199), and 

Winema (128). 

Five plots are installed in each basic CVS sampling unit, which is one hectare 

(ha) in size. Each plot consists of three permanent circular, nested subplots of different 

sizes in which trees are measured depending upon their DBH. For a detailed 

description of the CVS inventory see Max et al. (1996). Tree height (HT in m) is only 

subsampled and missing HTs were filled using height models developed in Barrett 

(2006) for live trees with DBH of 12.7 cm or larger. Volume and biomass equations 

from the US Forest Service were used to calculate gross cubic-meter volume and total 
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gross oven dry weight biomass (USDA 2000). For each plot, basal area in m2 per ha 

(BA), stems per ha (SPH), volume in m3 per ha (VOL), and biomass in tons per ha 

(BIOT) were calculated and summarized (Table 3.1). BA, SPH, VOL, and BIOT were 

also calculated for each of the following three species groups: 1) ‘Douglas-fir’; 2) 

‘pine’ including all occurring pine species; and 3) ‘other’ including other conifers and 

hardwoods. Basal area in larger trees (BAL in m2) was calculated for each tree. 

Ingrowth for each plot was determined by calculating BA, SPH, VOL, and BIOT for 

all trees that were present in 2000 but not present at the first measurement occasion. 

BA and SPH were also calculated for small trees with DBH larger than 2.54 cm and 

smaller than 12.7 cm. 

The data set comprises 30,709 trees in 33 species. The most common species 

in decreasing order are Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), ponderosa 

pine (Pinus ponderosa C. Lawson), grand fir (Abies grandis (Douglas ex D. Don) 

Lindl.), lodgepole pine (Pinus contorta Douglas ex Louden), white fir (Abies concolor 

(Gord. & Glend.) Lindl. ex Hildebr.), and western hemlock (Tsuga heterophylla (Raf.) 

Sarg.) (see Chapter 2 (Eskelson et al. in press) for details). 

In NN imputation methods, ancillary variables are those variables that are 

measured on all units. Thematic Mapper (TM) images from 2000 were extracted from 

the national land-cover database 2001 [NLCD 2001 (Homer et al. 2004)] and used as 

ancillary data. The raw imagery bands 1 to 5 and band 7 (TM1, TM2, TM3, TM4, 

TM5, TM7) as well as the Tasseled Cap (TC) transformations (TC1 – TC6) (Kauth 

and Thomas 1976) were used. The normalized difference vegetation index (NDVI) 
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and three commonly used band ratios (band 4 to band 3 (R43), band 5 to band 4 (R54), 

and band 5 to band 7 (R57)) were calculated. Percent canopy cover was extracted from 

the NLCD 2001 (Homer et al. 2004). 

The following climate and topography variables for plot locations were 

additionally used as ancillary data: Annual precipitation and mean annual temperature 

(Table 3.1) [Data source: DAYMET Daily Surface Weather Data and Climatological 

Summaries (Thornton et al. 1997, Thornton and Running 1999)], elevation (EL in m) 

and transformations (EL2, ln(EL)) [Data source: CVS inventory], and slope (%) and 

aspect (degrees) and transformations (cosine(aspect), sine(aspect), 

cosine(aspect)*slope, and sine(aspect)*slope) [Data source: 30 m digital elevation 

model using Arc Workstation GRID surface functions and commands (Environmental 

Systems Research Institute 1991)]. These climate, topography, and satellite variables 

have been successfully used as ancillary data for NN imputation methods in previous 

studies (e.g., Chapter 2 (Eskelson et al. in press), Ohmann and Gregory 2002). 

Imputation techniques 

Panel data is a special case of inventory data with measurements taken at 

different times. All plots were remeasured in 2000. In order to mimic a panel system 

with the available data 25% of the plots (154) were randomly assigned to P4 and the 

remaining 75% of the plots (464) were assigned to P1, P2, and P3 based on their year 

of installation. This resulted in P1, P2, and P3 having different sizes for each iteration 

(Table 3.2). 
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The variables of interest (Y) in this study were BA, SPH, VOL, and BIOT. 

Their observed mean value in the year 2000 was calculated as: 

[3.1] ∑
=
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where Yi is the observed Y value of the ith plot in 2000 and n = 618. The observed 

mean value was used as best available estimate of the true mean. 

For each plot in P4, BA, SPH, VOL, and BIOT were calculated using the tree 

data from P4. The mean values of Y for the year 2000 (SAMPLE25 estimator) were 

calculated as: 
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where Yi is the observed Y value of the ith plot, and n4 is the number of plots in P4. 

The MA estimator, the FIA default method, is: 

[3.3] ( ) ititititMA YYYYY ,,1,2,34 *25.0*25.0*25.0*25.0 +++= −−−  

where 3,t iY − , 2,t iY − , 1,t iY − , and ,t iY  are the mean values of the variables of interest of P1, 

P2, P3, and P4, respectively. The MA takes into account that the panels include 

different numbers of plots. Instead of equal weighting of the panels a weighted version 

of [3.3] is proposed: 

[3.4] ( ) ittittittittWMA YwYwYwYwY ,,11,22,334 **** +++= −−−−−−  

where wt-3, wt-2, wt-1, and wt are the weights of P1, P2, P3, and P4, respectively. Larger 

weights were chosen for P3 and P4 (wt-1 = wt = 0.3) than for P1 and P2                    
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(wt-3 = wt-2 = 0.2). MA(4) and WMA(4) will be referred to as MA and WMA, 

respectively. 

Instead of using the previous measurements to fill in the Y values for P1, P2, 

and P3, as is done with MA and WMA, the current Y values of P1, P2, and P3 were 

imputed using tree-level RF and plot-level RF imputation. Target data are units that 

have ancillary variables measured only (e.g., trees or plots in P1, P2, and P3). 

Reference data are units where both variables of interest and ancillary variables were 

measured (e.g., trees or plots in P4). RF imputation was employed using the yaImpute 

R package (Crookston and Finley 2008). Details on RF imputation can, for example, 

be found in Hudak et al. (2008).  

For tree-level RF, the target trees were assumed to be non-sampled trees 

lacking inventory data in 2000. DBH, HT, and mortality for each target tree were 

imputed using DBH, HT, and BAL at the previous measurement (DBHocc1, HTocc1, 

and BALocc1) as ancillary data. The reference trees constituted the pool of potential 

trees with inventory and ancillary data (P4), which could be selected to impute the 

DBH, HT, and mortality for the target trees. Ingrowth of BA, SPH, VOL, and BIOT 

was imputed at the plot-level using BA and SPH of small trees at the previous 

measurement as well as the available climate, topography, and satellite data as 

ancillary data. BA, SPH, VOL, and BIOT were calculated for each plot based on the 

imputed tree data and the imputed ingrowth. 

For plot-level RF the previous measurements of the four variables of interest 

(BAocc1, SPHocc1, VOLocc1, BIOTocc1) were used as ancillary data since this was 
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found to provide better imputation results than using climate, topography, and satellite 

data in a previous study. For more details see Chapter 2 (Eskelson et al. in press). 

For both tree-level and plot-level RF the overall mean of the variables of 

interest for the year 2000 was estimated as: 
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where Yimp,i is the imputed Y value for the ith plot and ‘IMP’ refers to either tree-level 

RF or plot-level RF.  

SAMPLE25, MA, WMA, and the tree-level and plot-level RF imputation 

methods were compared based on the overall means of the variables of interest in 

2000 (see Equations 3.2 – 3.5). The five estimation methods were also compared 

based on their performance of estimating the four variables of interest by species 

groups ‘Douglas-fir’, ‘pine’, and ‘other.’ 

The basis of evaluation was accuracy, as expressed by the root mean square 

error (RMSE), and bias, calculated as the mean difference between the estimates 

(Equations 3.2 – 3.5) and the observed mean values (Equation 3.1) from m = 200 

iterations of randomly splitting the data. Two hundred iterations were considered 

sufficient because other studies have found RMSE and bias to stabilize at around 200 

iterations (e.g., Arner et al. 2004). Both RMSE and bias were expressed as percent of 

the observed mean for each variable of interest: 
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Results 

The SAMPLE25 estimator provided virtually unbiased estimates for all four 

variables of interest. Its RMSE values ranged from 4.89% for SPH to 6.58% for BIOT. 

The MA estimates had a negative bias with values from -1.93% for VOL to -2.58% for 

SPH. The MA estimator provided very precise estimates with the bias contributing 

most to the RMSE. The WMA estimator reduced both bias and RMSE for BA and 

SPH. For WMA the bias of VOL and BIOT estimates was positive and the RMSE was 

larger than those for MA (Table 3.3). 

Plot-level RF imputation resulted in small negative bias and smaller RMSE 

values than those of the MA estimator. In terms of RMSE, plot-level RF imputation 

only outperformed the WMA for VOL and BIOT (Table 3.3). 

Tree-level RF imputation produced a small positive bias in BA, VOL, and 

BIOT but a small negative bias in SPH. Its RMSE values were smaller than those of 

the MA and the plot-level RF imputation. Tree-level RF imputation outperformed the 
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WMA estimates in terms of bias and RMSE for SPH, VOL, and BIOT. The variance 

contributed most to the RMSE for both tree- and plot-level imputation (Table 3.3). 

By species group the SAMPLE25 estimator provided virtually unbiased results 

(0.62% or less). RMSE values ranged from 8.52% for ‘pine’ BA to 11.17% for ‘other’ 

BIOT (Table 3.4). 

The MA estimator resulted in a larger negative bias for the four variables of 

interest for species group ‘pine’ which contributed most to the RMSE values of more 

than 9%. For the species group ‘Douglas-fir’ and ‘other,’ MA resulted in small bias 

with absolute values ranging from 0.30% to 1.17% and RMSE values ranging from 

1.00% to 1.68% (Table 3.4). 

WMA estimates were biased for all three species groups with the bias being 

largest for ‘pine.’ The bias contributed most to the RMSE values, which exceeded the 

RMSE values of the MA estimates and the RMSE values for ‘pine’ for the 

SAMPLE25 estimates (Table 3.4). 

Plot-level RF imputations resulted in a smaller bias than with WMA for all 

species groups. However, RMSE values for RF exceeded those of WMA for all but 

‘pine’ (Table 3.4). 

Tree-level RF imputation outperformed SAMPLE25, WMA, and plot-level RF 

imputation in terms of RMSE. Compared to MA, tree-level RF imputation provided 

smaller RMSE values for ‘pine’ and slightly larger RMSE values for ‘Douglas-fir’ and 

‘other’ (Table 3.4). 
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Discussion 

The performance of the MA estimator in terms of the variance-bias trade-off 

was as expected. As in most other studies (e.g., Arner et al. 2004, Johnson et al. 2003, 

Van Deusen 2002), the large bias was found to be more than compensated for by the 

high precision. Hence, MA provided better estimates in terms of accuracy than 

SAMPLE25. MA is a temporal ‘midpoint’ estimator yielding biased estimates at the 

end of a time-series in the presence of trend (Roesch and Reams 1999). Giving more 

weight to the more recently measured panels resulted in the WMA estimator, which 

improved the estimates for BA and SPH in terms of bias and hence, also in terms of 

RMSE. 

MA by species groups outperformed WMA in terms of both bias and RMSE. 

The larger weights applied for P3 and P4 for WMA increased the negative bias for 

species group ‘pine’ and resulted in large positive bias for all variables of interest for 

species groups ‘Douglas-fir’ and ‘other.’ This indicates that weights applied to the 

WMA which improve the MA for estimating BA, SPH, VOL, and BIOT do not 

necessarily improve the MA when the variables of interest are summarized by species 

group. Choosing appropriate weights for the WMA requires the knowledge of the 

trend inherent in the data. If the trend inherent in BA, SPH, VOL, and BIOT differs 

from the trend of the variables of interest summarized by species group, different 

weights need to be chosen for the WMA. Objective ways for choosing appropriate 

weights are still lacking. Panels that do not change much should receive larger weights 

than panels that exhibit a lot of change. Knowledge about change could possibly be 
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acquired from remotely sensed data, growth models, or other information on, for 

example, fire or insect outbreaks. 

Tree-level RF imputation outperformed MA in terms of bias and RMSE for 

estimating BA, SPH, VOL, and BIOT. This is due to the lag bias inherent in the MA 

estimator. Tree-level imputation attempts to update the tree data, which results in a 

smaller bias than that observed for MA. Compared to the WMA, which tries to adjust 

the lag bias of the MA estimator, the improvement of tree-level RF imputation is less 

pronounced. If the lag bias of the MA could be adjusted, MA might outperform RF 

tree-level imputation in terms of both bias and RMSE since the MA estimates are 

more precise than those of the tree-level RF imputation. 

When the variables of interest were summarized by species groups, the MA 

slightly outperformed tree-level RF imputation in terms of RMSE for species groups 

‘Douglas-fir’ and ‘other’ because the MA resulted in low bias for those variables. For 

species group ‘pine’ MA resulted in large bias and therefore tree-level RF imputation 

provided much better results for the variables of interest for species group ‘pine’ in 

terms of bias and RMSE.  

Tree-level RF imputation outperformed plot-level imputation for estimating 

BA, SPH, VOL, and BIOT as well as for estimating the variables of interest 

summarized by species groups. The results of this study suggest that tree-level RF 

imputation should be preferred over plot-level RF imputation for estimating total BA, 

SPH, VOL, and BIOT or for estimating BA, SPH, VOL, and BIOT by species group. 

The same considerations for choosing single-tree growth models over whole-stand 
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growth models probably apply for choosing tree-level NN imputation over plot-level 

NN imputation and depend mainly on the demands of the user. 

In this study, tree-level variables were imputed using reference trees 

irrespective of whether the tree species of reference and target trees matched. Imputing 

only within tree species or species group might improve the results for tree species 

such as Douglas-fir, ponderosa pine, grand fir, lodgepole pine, white fir, and western 

hemlock which occur frequently in the data set. However, results for rare tree species 

would definitely degrade with decreasing number of possible reference trees. Overall 

results could possibly be improved by imputing tree-variables for frequent tree species 

within tree species but using the complete reference data set for rare tree species. 

Conclusions 

This study has shown that tree-level RF imputation has the potential to provide 

better results in terms of bias and accuracy for estimating plot-level attributes such as 

BA, SPH, VOL, and BIOT than can be achieved with the SAMPLE25, MA, and 

WMA estimators, or plot-level RF imputation. 

Giving more weight to most recently measured panels by using a WMA 

improved the estimates for BA, SPH, VOL, and BIOT compared to the MA estimates. 

When the variables of interest were summarized by species group, MA outperformed 

WMA in terms of bias and accuracy. More research is warranted for finding objective 

methods for choosing appropriate weights. 
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Tree-level RF imputation outperformed MA and WMA in terms of bias and 

accuracy when BA, SPH, and VOL were estimated. When the variables of interest 

were summarized by species group, MA provided slightly better estimates in terms of 

accuracy than tree-level RF imputation. 

Tree-level imputation outperformed plot-level imputation. This might be due 

to the fact that tree-level NN imputation requires more information and is based on a 

more detailed representation of the stand than plot-level imputation.  

The results of the tree-level NN imputation methods tested in this study 

provide a good argument to further develop the application of tree-level NN 

imputation techniques for estimating current forest attributes from paneled inventory 

data. 
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Table 3.1: Summary of plot-level variables in 2000. 

Variable Minimum Mean Maximum Std 
Basal area (m2/ha) 0.24 24.32 105.35 19.00 
SPH (stems/ha) 1 305 1517 221 
Volume (m3/ha) 0.66 224.82 1444.74 221.04
Total gross oven dry weight biomass 
(tons/ha) 0.58 134.09 800.64 132.64

Canopy cover (%) 0 54 97 29 
Slope (%) 0 23 83 17 
Elevation (m) 274 1389 2377 321 
Annual precipitation (ln cm) 
(scaled * 100) 577 683 817 48 

Mean annual Temperature (ºC) 
(scaled * 100) 60 579 1067 166 
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 Table 3.2: Number of plots measured by year of installation and corresponding panel 
assignment. All plots listed were remeasured in 2000. 

Year of Installation # of Plots Assigned Panel
1993 7 1 
1994 229 1 
1995 223 2 
1996 158 3 
1997 1 3 
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Table 3.3: Imputation results. 

 BA SPH VOL BIOT 

Method % 
bias 

% 
RMSE 

% 
bias 

% 
RMSE 

% 
bias 

% 
RMSE 

% 
bias 

% 
RMSE 

SAMPLE25 0.05 5.29 -0.20 4.89 0.20 6.53 0.26 6.58 
MA -2.53 2.60 -2.58 2.63 -1.93 2.08 -1.97 2.12 
WMA 0.59 1.03 -1.54 1.72 2.52 2.74 2.62 2.83 
plot-level 
RF -0.44 1.50 -0.73 2.52 -0.26 1.78 -0.22 1.66 

tree-level 
RF 0.44 1.09 -0.60 1.31 0.43 1.36 0.42 1.35 
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Table 3.4: Tree- and plot-level imputation results by species group. 

 BA ‘Douglas-fir’ BA ‘pine’ BA ‘other’ SPH ‘Douglas-fir’ SPH ‘pine’ SPH ‘other’ 
Method % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE 
SAMPLE25 0.41 9.94 0.29 8.52 -0.33 10.10 -0.39 10.21 0.49 10.04 -0.56 9.99 
MA 0.40 1.14 -9.85 9.89 -0.70 1.18 -0.30 1.00 -9.28 9.35 0.61 1.15 
WMA  6.63 6.79 -13.49 13.57 3.86 4.12 2.21 2.64 -14.51 14.61 4.95 5.14 
plot-level RF 2.34 9.65 2.19 9.75 -4.01 8.25 2.05 11.01 2.01 10.36 -4.13 9.01 
tree-level RF -0.54 1.63 0.98 1.68 -0.39 1.21 -0.57 2.25 -1.54 2.80 -0.93 1.74 

 

 VOL ‘Douglas-fir’ VOL ‘pine’ VOL ‘other’ BIOT ‘Douglas-fir’ BIOT ‘pine’ BIOT ‘other’ 
Method % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE % bias % RMSE 
SAMPLE25 0.62 10.99 0.23 8.84 -0.15 11.05 0.56 10.68 0.23 8.62 0.02 11.17 
MA -0.77 1.50 -9.27 9.31 0.48 1.19 -1.17 1.68 -9.36 9.40 0.48 1.21 
WMA  6.88 7.09 -11.89 11.98 5.59 5.82 6.06 6.28 -12.15 12.23 5.95 6.17 
plot-level RF 2.00 9.94 1.94 10.36 -3.17 8.57 1.81 9.63 2.18 10.24 -3.04 8.39 
tree-level RF -0.84 2.05 3.74 4.02 -1.25 1.97 -3.37 3.76 8.36 8.54 -0.91 1.81 
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Abstract 

When a temporal trend in forest conditions is present, standard estimates from 

paneled forest inventories can be biased. Thus methods that use more recent remote 

sensing data to improve estimates are desired. Paneled inventory data from national 

forests in Oregon and Washington, U.S.A., were used to explore three nearest 

neighbor (NN) imputation methods to estimate mean annual change of four forest 

attributes (basal area/ha, stems/ha, volume/ha, biomass/ha). The randomForest 

imputation method outperformed the other imputation approaches in terms of root 

mean square error. The imputed mean annual change was used to project all panels to 

a common point in time by multiplying the mean annual change with the length of the 

growth period between measurements and adding the change estimate to the 

previously observed measurements of the four forest attributes. The resulting estimates 

of the mean of the forest attributes at the current point in time outperformed the 

estimates obtained from the standard national estimator, a moving average approach. 

Introduction 

Keeping national inventories of forests updated to reflect current conditions 

poses substantial logistical and accuracy issues (Gillis and Leckie 1996). In theory, a 

paneled inventory system can provide current information when only the most recent 

panel is used (Reams and Van Deusen 1999), but in practice, most forestry 

applications are at a spatial scale that require combining field plots from multiple 

years to achieve sufficient information (McRoberts 2001, Tomppo et al. 2008). 
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However, combining field plots from multiple years to estimate current conditions can 

cause a lag bias when forest conditions are changing over time. 

In the United States (US), the national inventory of forests is collected with a 

panel system by the Forest Inventory and Analysis (FIA) program of the US Forest 

Service. The FIA default estimator is a moving average (MA) approach (Bechtold and 

Patterson 2005) which is known to result in biased estimates when trend is present 

(Van Deusen 2002b). In the western US, the problem of lag bias is exacerbated by a 

relatively long remeasurement interval (10 years), shifts in forest management in 

response to altered economic and social conditions, changing climate, and a high but 

variable disturbance rate from wildfire, disease, and insects. Thus there is interest in 

using remote sensing information to reduce lag bias in estimates of current forest 

condition. Combining remote sensing and other ancillary data with field plots has 

become common for improving forest inventory information (Tomppo et al. 2008) 

Imputation to combine field and remote sensing data is often used for mapping 

or small area estimation (e.g., Katila and Tomppo 2002, Ohmann and Gregory 2002, 

Finley and McRoberts 2008), and these methods typically impute point-in-time plot 

attributes. In contrast, when using imputation to update paneled inventory data, it is 

possible to impute mean annual change (MAC) for a plot. For example Arner et al. 

(2004) estimated mean annual net volume change using MA approaches and sampling 

with partial replacement approaches and McRoberts (2001) imputed the difference in 

basal area between two measurements to plots with missing measurements to update 

basal area for plots measured in previous years to a current point in time. There are 
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few studies for the western US that examine alternatives to the MA (e.g., Chapter 2 

(Eskelson et al. in press)) and none that we are aware of that impute MAC rather than 

point-in-time measurements. 

The objectives of this study are to: 1) use paneled data from a study area in the 

western United States to estimate mean annual change (MAC) of forest attributes 

using three nearest neighbor imputation methods; and 2) to estimate current forest 

attributes from paneled inventory data by updating the most recent measurement with 

imputed MAC. The results are compared with the estimates obtained from the MA 

estimator and the data from the current panel. 

Methods 

Data 

In this study, 618 plots from six national forests that were collected as part of 

the Pacific Northwest Region’s Current Vegetation Survey (CVS) of the US Forest 

Service were used. The particular national forests, sampled between 1993 and 1997 

and remeasured in 2000, were the Colville (28), Mt. Hood (111), Ochoco (82), Rogue 

River (70), Wallowa-Whitman (199), and Winema (128) (Table 4.1). 

Five plots were installed in each basic CVS sampling unit (1 ha in size) with 

each plot consisting of three permanent circular, nested subplots of different sizes. For 

a detailed description of the CVS inventory see Max et al. (1996). Live trees with 

diameter at breast height (DBH in cm) of 12.7 or larger were used in this study and 

height models developed in Barrett (2006) were employed to fill in missing heights 
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(HT in m). Gross cubic-meter volume and total gross oven dry weight biomass were 

calculated with volume and biomass equations from the US Forest Service (USDA 

2000). For each plot, basal area in m2 per ha (BA), stems per ha (SPH), volume in m3 

per ha (VOL), and biomass in tons per ha (BIOT) were calculated and summarized 

(Table 4.2). MAC for BA, SPH, VOL, and BIOT were calculated by dividing the 

difference of the observed values in 2000 and the observed value at the occasion one 

measurement by the growth period length (GPL) between the two measurements. 

Thematic Mapper (TM) images from 2000 were used as ancillary data. The 

raw imagery bands 1 to 5 and band 7 (TM1, TM2, TM3, TM4, TM5, TM7), the 

Tasseled Cap (TC) transformations of the 6 axes (Kauth and Thomas 1976) as well as 

percent canopy cover were extracted from the national land-cover database 2001 

(Homer et al. 2004). Three commonly used band ratios (band 4 to band 3, band 5 to 

band 4, and band 5 to band 7) and the normalized difference vegetation index (NDVI) 

were calculated. 

In addition to the satellite data, the following climate and topography variables 

were used as ancillary data (Table 4.2): Annual precipitation and mean annual 

temperature [Data source: DAYMET Daily Surface Weather Data and Climatological 

Summaries (Thornton et al. 1997, Thornton and Running 1999)], Elevation (EL in m) 

and its transformations EL2 and ln(EL) [Data source: CVS inventory], and slope (%) 

and aspect (degrees) and transformations (cosine(aspect), sine(aspect), 

cosine(aspect)*slope, sine(aspect)*slope) [Data source: 30 m digital elevation model 
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using Arc Workstation GRID surface functions and commands (Environmental 

Systems Research Institute 1991)]. 

Nearest Neighbor Imputation 

Nearest neighbor (NN) imputation methods are donor-based methods. 

Variables of interest are those forest attributes that are only measured on a subset of 

plots (e.g., MAC of BA, SPH, VOL, and BIOT). Ancillary variables are the attributes 

that are measured on all plots. In this study, satellite, climate, and topography data as 

well as the most recent measurements of BA, SPH, VOL, and BIOT that were taken at 

measurement occasion 1 in the years 1993 to 1997 constitute the available ancillary 

data. Reference data are the plots for which both variables of interest and ancillary 

variables are available. Target data are the plots for which only the ancillary variables 

are available. The reference plots constitute the pool of potential plots which could be 

selected to impute the MAC data for the target plots. 

The most similar neighbor (MSN) method (Moeur and Stage 1995), the 

gradient nearest neighbor (GNN) method (Ohmann and Gregory 2002), and the 

randomForest (RF) method (Crookston and Finley 2008) have been shown to provide 

reasonable imputation results for forest attributes (Moeur and Stage 1995, LeMay and 

Temesgen 2005, Hudak et al. 2008) and for mapping forest composition and structure 

(Ohmann and Gregory 2002, Ohmann et al. 2007). MSN, GNN, and RF were 

conducted using the yaImpute R package version 1.0-6 (Crookston and Finley 2008). 
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The similarity between reference and target plots is defined using a weighted 

Euclidean distance for MSN and GNN: 

[4.1] 2 ( ) ( )ij i j i jD X X W X X ′= − −  

where W is the weight matrix, Xi is a vector of standardized values of the ancillary 

variables for the ith target plot; and Xj is a vector of standardized values of ancillary 

variables for the jth reference plot. The ancillary variables for both target and reference 

plots were standardized using the mean and variance of the ancillary variables of the 

reference plots. For MSN, the weight used is 2W ′= ΓΛ Γ , where  is the matrix of 

standardized canonical coefficients for the ancillary variables and  is the diagonal 

matrix of squared canonical correlations between ancillary attributes and variables of 

interest (Moeur and Stage 1995).  

Γ

Λ2

For the gradient nearest neighbor method (GNN) the weights are assigned by 

employing a projected ordination of the ancillary data based on canonical 

correspondence analysis (CCA) (Ohmann and Gregory 2002). 

The RF method is an extension of classification and regression tree (CART) 

methods (Breiman 2001). The data and variables are randomly and iteratively sampled 

to generate a forest of classification and regression trees. If two plots tend to end up in 

the same terminal nodes in a forest of classification and regression trees, they are 

considered to be similar. The RF distance measure is one minus the proportion of trees 

where a target plot is in the same terminal node as a reference plot (Crookston and 

Finley 2008, Hudak et al. 2008). 
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Estimation procedures 

Panel data is a special case of inventory data with measurements taken at 

different times. A panel system was imitated with the available data by randomly 

assigning 25% of the plots to P4 (154 plots) and the remaining 75% of the plots (464 

plots) to P1, P2, and P3 based on their year of installation (Table 4.1). 

BA, SPH, VOL, and BIOT were the variables of interest (Y). The observed 

mean values of Y in 2000 were used as the best available estimate of the true mean: 

[4.2] ∑
=

=
n

i
iOBS nYY

1

/  

where Yi is the observed Y value of the ith plot in 2000 and n = 618. 

Using the data from P4 only, the mean values of Y for the year 2000 

(SAMPLE25 estimator) were calculated as: 

[4.3] 4
4:

25 / nYY
PYi

iSAMPLE
i

∑
∈

=  

where Yi is the observed Y value of the ith plot, and n4 is the number of plots in P4. 

The MA estimator, the FIA default method, is: 

[4.4] ( ) ititititMA YYYYY ,,1,2,34 *25.0*25.0*25.0*25.0 +++= −−−  

where 3,t iY − , 2,t iY − , 1,t iY − , and ,t iY  are the mean values of the variables of interest of P1, 

P2, P3, and P4, respectively. This MA(4) estimator will be referred to as MA in the 

following. 

Instead of filling in the missing values for panels 1 to 3 with their previous 

measurements, as was done in the MA calculation, MSN, GNN, and RF were explored 
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to impute the MAC of the variables of interest. The imputed MAC was then used to 

update the variables of interest for P1, P2, and P3 to the year 2000 as follows: 

[4.5]  iiimpitiimp GPLMACYY *,,, +=

where Yimp,i is the imputed Y value for the ith plot in 2000 and Yt,i is the observed Y 

value for the ith plot at time t, which is 1993/1994, 1995, and 1996/1997 for P1, P2, 

and P3, respectively. MACimp,i is the imputed MAC for the ith plot with imp referring 

to the NN imputation method used. GPLi is the growth length period between the 

initial measurement (1993-1997) and 2000. 

The overall mean of the variables of interest for the year 2000 is then estimated 

as follows: 

[4.6] , , , ,
: 1 : 2 : 3 : 4

/
i i i i

IMP imp i imp i imp i t i
i Y P i Y P i Y P i Y P

Y Y Y Y Y
∈ ∈ ∈ ∈

⎡ ⎤
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⎣ ⎦
∑ ∑ ∑ ∑ n  

where IMP refers to the NN imputation method used and Yimp,i is the imputed Y value 

for the ith plot as described in Equation 4.5. 

Two sets of ancillary variables were tested for the imputation methods: The 

first set included the available climate, topography, and satellite data (Data set A) and 

the second set consisted of the previous measurements of the variables of interest that 

were taken at measurement occasion 1 from 1993 to 1997 (Data set B: BAocc1, 

SPHocc1, VOLocc1, BIOTocc1). 

 

SAMPLE25, MA, and the three imputation methods were compared based on 

the overall means of the variables of interest in 2000 (see Equations 4.3, 4.4, and 4.6). 

The basis of evaluation was accuracy, as expressed by the root mean square error 
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(RMSE), and bias, calculated as the mean difference between the estimates and the 

observed mean values (Equation 4.2) from m = 500 iterations of randomly splitting the 

data. Both RMSE and bias were expressed as percent of the observed mean for each 

variable of interest:  

[4.7] 
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The MAC estimates based on MSN, GNN, and RF imputation were also 

compared with RMSE and bias calculated from m = 500 iterations of randomly 

splitting the data. 

Results 

MSN imputation provided similar results for MAC estimates for both sets of 

ancillary variables with the variance contributing most to the RMSE. When BAocc1, 

SPHocc1, VOLocc1, and BIOTocc1 were used as ancillary variables, the estimates 

were slightly biased but had smaller RMSE values than the virtually unbiased 

estimates based on climate, topography, and satellite data (Table 4.3). GNN estimates 

of MAC had large bias (> 66%), which contributed most to the RMSE. Using climate, 
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topography, and satellite data as ancillary variables resulted in smaller bias and hence, 

smaller RMSE values than using BAocc1, SPHocc1, VOLocc1, and BIOTocc1 as 

ancillary variables (Table 4.3). In terms of RMSE, RF using climate, topography, and 

satellite data as ancillary variables provided the best estimates of MAC. RF using 

BAocc1, SPHocc1, VOLocc1, and BIOTocc1 as ancillary data provided virtually 

unbiased estimates for three of the four variables of interest and smaller RMSE values 

than those achieved by either MSN or GNN imputation (Table 4.3). 

For estimating current BA and SPH the RMSE values of MA were about half 

the size of those observed for SAMPLE25. For estimating current VOL and BIOT the 

RMSE values for MA were about a third of those observed for SAMPLE25. 

SAMPLE25 results were virtually unbiased. MA results were precise but biased and 

the bias contributed most to the RMSE. The opposite was true for the virtually 

unbiased SAMPLE25 estimates, where the variance contributed most to the RMSE 

(Table 4.4). 

MSN resulted in estimates of current BA, SPH, VOL, and BIOT that showed 

negligible bias for both sets of ancillary variables, with the bias being smaller when 

climate, topography, and satellite data were used as ancillary variables. The RMSE 

values were smaller when BAocc1, SPHocc1, VOLocc1, and BIOTocc1 were used as 

ancillary variables. For both sets of ancillary variables, the MSN estimates 

outperformed the MA estimates in terms of both bias and RMSE (Table 4.4). 

For the GNN estimates of current forest attributes, bias contributed most to 

RMSE. When BAocc1, SPHocc1, VOLocc1, and BIOTocc1 were used as ancillary 
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variables, the bias and hence the RMSE was larger than for the ancillary variable set 

including climate, topography, and satellite data. For both sets of ancillary variables, 

bias and RMSE were larger than for any of the other estimators (Table 4.4). 

For both sets of ancillary variables, the RF estimates exhibited negligible bias, 

with the bias being smaller for BA and SPH when climate, topography, and satellite 

data were used as ancillary variables and the bias for VOL and BIOT being smaller 

when BAocc1, SPHocc1, VOLocc1, and BIOTocc1 were used as ancillary variables. 

RMSE values were smallest when climate, topography and satellite data were used as 

ancillary variables. For both sets of ancillary variables, RF imputation outperformed 

the MA estimates both in terms of bias and RMSE (Table 4.4). 

RF using climate, topography, and satellite data as ancillary variables provided 

the best results overall in terms of bias and RMSE for estimating current BA, SPH, 

VOL, and BIOT, followed by MSN and RF using BAocc1, SPHocc1, VOLocc1, and 

BIOTocc1 as ancillary variables (Table 4.4). 

In a previous study, RF imputation using BAocc1, SPHocc1, VOLocc1, and 

BIOTocc1 as ancillary data for directly imputing current BA, SPH, VOL, and BIOT 

provided the most accurate estimates compared to the SAMPLE25 and MA estimators 

and MSN and GNN imputation. The results of this plot-level RF imputation are 

provided in Table 4. See Chapter 2 (Eskelson et al. in press) for details. The MSN and 

RF results for estimating current BA, SPH, VOL, and BIOT in this study outperform 

the plot-level RF imputation from the previous study in terms of both bias and RMSE 

(Table 4.4). 
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Discussion 

After the start of the second inventory cycle, MAC can be estimated using 

remeasured plots (Arner et al. 2004). Considering the year 2000 as the start of the 

second inventory cycle, MAC was estimated in this study. The results of the three NN 

imputation methods that were explored to impute MAC of forest attributes showed the 

same pattern that was observed in an earlier study where the same three NN 

imputation methods were used to impute BA, SPH, VOL, and BIOT (see Chapter 2 

(Eskelson et al. in press)). RF imputation provided the best results in terms of RMSE 

followed by MSN. The results of this study suggest that GNN plot-level imputation is 

not adequate to impute MAC of forest attributes. This might be due to the fact that the 

CCA in the GNN procedure requires the use of environmental factors for the 

ordination (Ohmann and Gregory 2002) which might not be picked up in the ancillary 

data that was used for the imputation. 

The performance of using MAC of forest attributes of one inventory cycle to 

predict MAC for the next inventory cycle could not be tested in this study since only 

one remeasurement of the plots was available for the CVS data. This is an area of 

research that should be pursued as soon as multiple remeasurements of the FIA annual 

inventory are available in the western US. 

When BA, SPH, VOL, and BIOT were updated to the year 2000 using MAC 

estimates obtained from MSN and RF imputation, the estimates of the mean BA, SPH, 

VOL, and BIOT in 2000 outperformed those of the SAMPLE25 and MA estimators in 

terms of accuracy. These results indicate that updating the variables of interest for 
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unmeasured plots to the current point in time using estimated MAC from MSN or RF 

imputation should be preferred over using the SAMPLE25 or MA estimators for 

estimating the current forest attributes. 

The estimates of mean BA, SPH, VOL, and BIOT in 2000 using MAC 

estimates obtained from RF and MSN imputation also outperformed the estimates 

from RF plot-level imputation that was used to directly impute BA, SPH, VOL, and 

BIOT in 2000 (see Chapter 2 (Eskelson et al. in press)). This is due to the fact that the 

approach using the imputed MAC estimates makes use of the previously observed 

measurements. Adding a multiple of estimated MAC to the previously observed 

measurement will result in current estimates that will be close to the actual values 

even if the estimated MAC values were not perfect. If the current BA, SPH, VOL, and 

BIOT are imputed directly as was done in Chapter 2 (Eskelson et al. in press), the 

imputed values can be either close to the actual values or they can be completely 

different. 

Conclusions 

MSN and RF imputation provided adequate estimates of MAC of forest 

attributes, whereas GNN imputation should not be used to impute MAC of forest 

attributes with the ancillary data that was available in this study. 

Updating previously observed measurements of forest attributes with imputed 

MAC estimates resulted in estimates of mean BA, SPH, VOL, and BIOT for the year 
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2000 that outperformed the estimates of SAMPLE25 and MA estimators in terms of 

accuracy. 

Updating previously observed measurements of forest attributes with imputed 

MAC estimates also outperformed imputing BA, SPH, VOL, and BIOT for the year 

2000 directly using RF imputation and should therefore be preferred. 
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Table 4.1: Number of plots measured by year of installation and corresponding panel 
assignment. All plots listed were remeasured in 2000. 

Year of 
Installation 

# of Plots Assigned Panel

1993 7 1 
1994 229 1 
1995 223 2 
1996 158 3 
1997 1 3 
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Table 4.2: Summary of plot-level variables in 2000. 

Variable Minimum Mean Maximum Std 
Basal area (m2/ha) 0.24 24.32 105.35 19.00 
SPH (stems/ha) 1 305 1517 221 
Volume (m3/ha) 0.66 224.82 1444.74 221.04 
Biomass (tons/ha) 0.58 134.09 800.64 132.64 
Canopy cover (%) 0 54 97 29 
Slope (%) 0 23 83 17 
Elevation (m) 274 1389 2377 321 
Annual precipitation (ln cm) 
(scaled * 100) 577 683 817 48 

Annual temperature (ºC) 
(scaled * 100) 60 579 1067 166 
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Table 4.3: Bias and RMSE of mean annual change of the variables of interest BA (basal area/ha), SPH (stems/ha), VOL 
(volume/ha), and BIOT (biomass/ha). Data set A comprised climate, topography, and satellite data. Data set B comprised 
occasion 1 measurements of the variables of interest. 

  Mean annual 
change in BA 

Mean annual 
change in SPH 

Mean annual 
change in VOL 

Mean annual 
change in BIOT 

Method Data Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE%
MSN A 0.7 21.66 -3.09 41.91 -0.03 25.58 0.15 23.93 
GNN A 69.18 80.35 156.68 172.18 72.75 85.25 66.74 79.67 
RF A -1.78 15.98 -2.18 35.18 -4.68 19.5 -4.74 17.87 
MSN B 1.6 21.37 -0.49 38.76 4.18 24.48 3.04 23.02 
GNN B 98.34 136.74 297.26 475.71 88.54 121.62 95.48 131.76 
RF B -0.33 20.67 -2.5 38.58 0.28 23.92 -0.65 22.36 
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Table 4.4: Bias and RMSE of mean BA (basal area/ha), SPH (stems/ha), VOL (volume/ha), and BIOT (biomass/ha) in year 
2000. Data set A comprised climate, topography, and satellite data. Data set B comprised occasion 1 measurements of the 
variables of interest. 

  BA SPH VOL BIOT 
Method Data Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE%
SAMPLE25  -0.02 5.29 0.13 5.05 -0.08 6.59 -0.06 6.67 
MA  -2.54 2.60 -2.63 2.68 -1.92 2.06 -1.98 2.12 
MSN A 0.17 1.56 0.02 2.01 0.05 1.94 0.11 1.90 
GNN A 5.45 6.25 7.90 8.67 6.03 7.02 5.82 6.88 
RF A -0.04 1.12 0.01 1.70 -0.34 1.42 -0.33 1.35 
MSN B 0.33 1.47 0.25 1.87 0.48 1.77 0.44 1.73 
GNN B 7.66 10.38 15.02 23.77 7.16 9.76 8.16 11.10 
RF B 0.29 1.47 0.27 1.88 0.29 1.77 0.25 1.72 
Plot-level RF B -0.30 1.58 -0.85 2.78 -0.06 1.90 -0.09 1.79 
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Abstract 

Cavity tree and snag abundance data are highly variable and contain many zero 

observations. This study predicts cavity tree and snag abundance from variables that 

are readily available from forest cover maps or remotely sensed data using negative 

binomial (NB), zero-inflated NB (ZINB), and zero-altered (ZANB) regression models 

as well as nearest neighbor (NN) imputation methods. The models are developed and 

fit to data collected by the Forest Inventory and Analysis (FIA) program of the US 

Forest Service in Washington, Oregon, and California. All three NB regression models 

provided reasonable results and outperformed the NN imputation methods. 

Introduction 

In the past decades, traditional timber-oriented forest management has 

broadened to commodity production while managing forest resources in an 

ecologically sustainable manner. Derived benefits include managing forest for 

wildlife, enhancing biodiversity, and protecting water quality. 

Snags (standing dead trees) are a significant structural component of many 

forest ecosystems (Harmon et al. 1986). They create nesting, foraging, and roosting 

habitat for a variety of wildlife species that depend on snags and large trees for 

survival and reproduction (Bate et al. 1999, Russell et al. 2006, Wisdom and Bate 

2008). Snags are important for the maintenance of biodiversity (Shorohova and 

Tetioukhin 2004, Aakala et al. 2008) as many dead wood dependent organisms are 

confined to snags during their life cycle (Nilsson et al. 2002). Snags also contribute to 
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ecological processes and decay dynamics (Ganey and Vojta 2005). Episodic events 

(e.g., insect outbreaks, fire, snow- and wind-caused stem breakage) create large 

quantities of snags. Small-scale mortality caused, for example, by competition or 

suppression, continuously creates smaller quantities of snags (Aakala et al. 2008). 

Cavity trees contribute to diverse forest structure and wildlife habitat 

(Temesgen et al. 2008). Cavity trees are live trees or snags that contain a hole that 

provides wildlife species with shelter from the elements and protection from 

disturbance by predators and competitors (Carey 1983). Cavity trees provide many 

birds, mammals, reptiles, and amphibians with habitat for nesting, roosting, loafing, 

hibernating, and eating. They also provide escape cover and food storage locations 

(Carey 1983, Jensen et al. 2002). 

Cavity-nesting birds and other wildlife species depend on an adequate and 

continuous supply of cavity trees and snags (Fan et al. 2003a). Timber harvest and 

human access can have substantial effects on snag density (Wisdom and Bate 2008). 

Because of the removal of cavity trees and snags under intensive timber management, 

the availability of cavity trees is a concern in resource management and conservation 

(Fan et al. 2004). The maintenance of snags in suitable abundance and stages of decay 

is critical to the preservation of biodiversity and the sustained functioning of forest 

ecosystems (DeLong et al. 2008). 

Managers need to understand the nature of the cavity resource and the patterns 

of abundance of cavity trees in order to effectively manage forest resources for 

ensuring viable populations of cavity-using wildlife (Carey 1983). Regional 
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summaries of current amounts of dead wood, including snags and down woody debris, 

are needed for broad-scale assessment of wildlife habitat (Ohmann and Waddell 

2002). Snag abundance is frequently used to incorporate habitat requirements of 

cavity-nesting wildlife into management plans. Snag abundance, however, does not 

take into account live cavity trees (Allen and Corn 1990). Although the proportion of 

stems with cavities is often at least twice as high for snags as for live trees (e.g., 

Goodburn and Lorimer 1998, Fan et al. 2003b, Temesgen et al. 2008), cavities tend to 

be more common in live trees because live trees are more abundant than snags 

(Goodburn and Lorimer 1998). Hence, cavity tree abundance, which considers both 

live trees and snags, should be used as an indicator in wildlife habitat models or to 

formulate wildlife tree retention in management plans. 

Cavity tree abundance is highly variable even among forest stands that are 

similar in many other respects (Fan et al. 2004). This is due to the fact that cavity 

development is a relatively rare event governed by stochastic processes such as fire, 

insect attack, disease, and mechanical or chemical injury that can lead to tree death or 

injury (Carey 1983). Tree characteristics and stand attributes such as size, decay class, 

and species only play a partial role in cavity tree development (Fan et al. 2003a). 

Recent studies have estimated cavity tree abundance at the stand level. For 

example, Temesgen et al. (2008) used nearest neighbor imputation and classification 

and regression tree (CART) methods to estimate cavity tree abundance. Fan et al. 

(2003a) estimated cavity tree abundance by stand age and basal area using CART, and 

described the cavity tree density distribution within a cluster using the Weibull 
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probability density function. They found that the proportion of stands with cavity trees 

increases with increasing stand age and increasing basal area. Fan et al. (2005) 

quantified the frequency and size distribution of cavity trees in seedling/sapling, pole, 

sawtimber, and old-growth stands based on plot data. Fan et al. (2004) simulated 

cavity tree dynamics under alternative harvest regimes. Most other studies 

concentrated on the distribution of cavity trees or snags on the individual tree or 

species level. Fan et al. (2003b) explored factors associated with cavity tree abundance 

and developed models that can be used to predict relative frequency of cavity trees 

based on tree size, species, and decay class. Carey (1983) found tree diameter 

measured at 1.37 m above the ground (DBH) and site index to be good indicators for 

cavity tree abundance. 

In the states of California, Oregon, and Washington, information on cavity tree 

and snag occurrence along with other information such as species, DBH, and height of 

individual trees is collected as part of the national inventory of public and private 

forests (the Forest Inventory and Analysis [FIA] Inventory). The FIA inventory uses 

an interpenetrating panel design with 10 panels in the western states, where all plots 

located in one of the 10 interpenetrating panels (10%) are measured each year (Brand 

et al. 2000). In order to estimate current cavity tree and snag abundance from paneled 

inventory data, the information on cavity tree and snag abundance in the current year 

needs to be updated for all unmeasured panels. It is of interest to be able to do this 

with variables that are readily available from forest cover maps or remotely sensed 

data (e.g., aerial photographs, satellite data, LiDAR). These variables will collectively 
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be referred to as map label variables in this study. If cavity tree and snag abundance 

can be predicted from map label variables, accurate, spatially comprehensive, current, 

and very detailed information on cavity tree and snag abundance could also be 

provided to managers and planners interested in assessing wildlife habitat of their 

forests (Temesgen et al. 2008). 

Count distributions are useful to describe non-negative integer values such as 

the number of snags or cavity trees per plot. Poisson regression is the basic count 

model upon which a variety of other count models are based. The Poisson distribution 

assumes equidispersion which means that the mean and variance are equal. The 

development of more general count models such as the negative binomial (NB) 

distribution, which do not assume equidispersion, has been driven by the fact that 

equality of mean and variance is rarely found in natural resource data. A variety of NB 

regression models has been developed to accommodate additional violations of 

distributional assumptions, such as no zeros or excess zeros in the data, which often 

occur in natural resource data (Hilbe 2007, p. 8-10).  

The objectives of this study are 1) to compare the suitability and predictive 

abilities of negative binomial regression models to estimate snag and cavity tree 

abundance using map label variables; and 2) to use distribution-free nearest neighbor 

(NN) imputation methods to impute snag and cavity tree abundance and compare the 

imputation results with the results of NB regression models. 
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Negative binomial regression models 

Count regression models are a subset of discrete response regression models 

and aim to explain the number of occurrences or counts of an event. Poisson 

regression is the basic count model and the Poisson distribution is characterized as 

[5.1] 
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where , μ > 0, the random variable y is the count response, and the 

parameter μ is the mean. A Poisson regression model is obtained by relating the mean 

μ to a vector of explanatory variables, x, by , where β is a vector of regression 

coefficients to be estimated.  
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A consequence of the Poisson probability mass function (Equation 5.1) is that 

the mean and variance are equal, that is [ ] [ ] μ== xYExYVar || . When data do not fit 

the Poisson distribution, it is typically because of overdispersion, meaning the 

variance of the model exceeds the value of the mean. The NB distribution, which can 

be derived as a gamma mixture of Poisson distributions, employs an extra parameter α 

that directly addresses the overdispersion in the Poisson models. The NB distribution 

is characterized as 

[5.2] ( )
( ) ( )

y

y
yyYP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γ+Γ

+Γ
==

αμ
αμ

αμα
α α

11
1

11
1)(

1

 

where and μ > 0. α represents the degree of overdispersion. The mean is μ, 

the same as the Poisson, but the variance is  thus allowing the mean to exceed 
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μ (Hilbe 2007, p. 78, 80). NB regression models are obtained in the same way as 

Poisson regression models by relating the mean μ to a vector of explanatory variables, 

x, by . βμ
Txe=

Although the NB model is more flexible than the Poisson, there is no guarantee 

that it provides an adequate model for the count data. Excess zeros or no zeros in the 

data violate the distributional assumptions that apply equally to the Poisson and NB 

distributions. Other possible violations of the distributional assumptions occur when 

the data contain censored or truncated observations, or when the data are structured as 

panels (e.g., clustered and longitudinal data) (Hilbe 2007, p. 11-13). 

Zero-inflated Poisson (ZIP) and zero-inflated NB (ZINB) regression models 

have been developed to account for data with a high percentage of zero counts 

(Lambert 1992, Welsh et al. 1996). Zero-inflated models are mixture models 

combining a count distribution with a point mass at zero. In zero-inflated models there 

are two sources of zeros: zeros come from either the count distribution or from the 

point mass (Lambert 1992, Hall 2000). The ZINB model is defined as follows: 
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where ( )γf zero= ,;0 zπ  is the probability of belonging to the point mass component 

and (1 – π) is the probability of belonging to the count distribution. z is a vector of 

explanatory variables used in the logistic model and γ is a vector of regression 

coefficients to be estimated. ( )β,; xyfcount  corresponds to the NB probability function 
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given in Equation 5.2 and ( ) ( ) ( )( )ααμβ 111,;0 −+−=xfcount  where α represents the 

degree of overdispersion and μ is related to a vector of explanatory variables, x, by 

, where β is a vector of regression coefficients to be estimated. βμ
Txe=

Another approach for dealing with excess zeros in the data is to model the 

response as having two states: a state in which no cavity trees or snags occur and a 

state in which cavity trees or snags occur with varying levels of abundance (Welsh et 

al. 1996). The first state, a binary process which generates positive versus zero counts, 

is modeled applying logistic regression. Given that cavity trees are observed, the 

number of cavity trees (the second state) can be modeled by a zero-truncated Poisson 

(ZTP) or zero-truncated NB (ZTNB) distribution. The process generating positive 

counts only commences after crossing a zero barrier or hurdle. The combined models 

are known as conditional models (Welsh et al. 1996) or are referred to as Poisson and 

NB hurdle models or as zero-altered Poisson (ZAP) and zero-altered NB (ZANB) 

models (Hilbe 2007). In the NB case, the combined regression model is defined as 

follows: 
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where ( )γ,;0 zzero is the probability of a zero count and (f )( )γ,;01 zf zero−  is the 

probability of overcoming the hurdle. z is a vector of explanatory variables used in the 

logistic model and γ is a vector of regression coefficients to be estimated. 
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=  is a ZTNB model, with ( )β,; xyfcount  and 

( )β,;0 xfcount  defined as above. All observations are used to fit ( )γ,;0 zf zero , treating 

positive counts as 1’s in the logistic regression framework. The data are separated into 

two subsets, using only data with positive counts to fit ( )β,x;yfzt . For more details o

ZAP and ZANB models see Cameron and Trivedi (1998, p.123-128; 2005, p. 544-

546, p. 680, 681). 

n 

Nearest neighbor imputation methods 

NN imputation approaches are donor-based methods where the imputed value 

is either a value that was actually observed for another item or unit or the average of 

values from more than one item or unit. These donors can be determined in a variety 

of ways. Forest attributes that are measured on all units are referred to as X-variables. 

Y-variables are those forest attributes that are only measured on a subset of units—in 

this case cavity tree and snag abundance. Units with measured X- and Y-variables are 

called reference data and target data are those units that only have X-variables 

measured. The similarity between target and reference data is determined with a 

distance metric defined in the feature space of the X-variables (LeMay and Temesgen 

2005).  
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Methods 

Data 

Data for this study were obtained from the FIA inventory from Washington, 

Oregon, and California collected in the years 2001 to 2007. For details about the 

inventory see Bechtold and Patterson (2005). Each field plot is composed of a cluster 

of four points, with each point being composed of two nested fixed-radius plots 

(subplot and microplot) used to sample trees of different size (Bechtold and Scott 

2005). Unique polygons (also called condition-classes) on the FIA plot are 

distinguished by structure, management history, or forest type. Only data collected on 

the subplots were used for this study and summarized by condition-classes. The data 

set contained 10,607 stands (or condition-classes) that covered a wide range of ground 

and map label variables (Tables 5.1 and 5.2). 

Cavity presence was collected in the field by classifying each live tree or snag 

taller than 1.5 m and greater than 12.5 cm DBH into one of three categories: 1) no 

cavity present, 2) cavity greater than 15.2 cm diameter present, and 3) cavity less than 

15.2 cm diameter but no larger cavities present. Cavity presence was only recorded for 

trees with cavities that could, in the field crew’s judgment, be used by wildlife such as 

birds or mammals. Cavity tree abundance is assumed to be additive from individual 

trees in a stand and is quantified as the number of cavity trees (both live trees and 

snags) per stand without apportioning it by species or species groups. Cavity tree 

abundance can be assumed to be under-recorded, as field crews are more likely to miss 

cavities than record cavities that do not exist. Snag abundance is the number of 
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standing dead trees per stand, and snags only included dead trees that leaned less than 

45 degrees from vertical. 

While 66% of the cavities were observed in snags, 34% of the cavities were 

found in live trees. Live trees (88% of standing trees) are more abundant than snags 

(12% of standing trees), but only 0.86% of all live trees had cavities compared to 

12.55% of the snags. Of the 10,607 stands, 2,796 and 6,293 contain cavity trees and 

snags, respectively, resulting in large numbers of zero counts for both cavity tree and 

snag abundance (Figure 5.1). 

Average stand age was used to represent stand development stage. The 

midpoint of five height classes was used (Table 5.2). Slope, aspect, elevation and 

transformations of these three variables (Salas et al. 2008) as well as the midpoint of 

seven site classes (Table 5.2) represented site conditions. Percent of conifer basal area 

and very broad forest type groups described general species composition. Four forest 

type groups were used: 1) Douglas-fir (2549), 2) fir/spruce/mountain hemlock (1180), 

3) other conifers (4324), and 4) hardwoods (2554). Four owner groups were 

distinguished: 1) Forest Service (4975), 2) other federal (1039), 3) state and local 

government (653), and 4) private (3940). The group of private forest owners includes 

corporations, non-governmental conservation and natural resources organizations, 

unincorporated local partnerships, associations and clubs, Native Americans, and 

individuals. The group of other federal forest owners includes the National Park 

Service, the Bureau of Land Management, the Fish and Wildlife Service, the 

Department of Defense/Energy, and other federal owners.  
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Negative binomial (NB) regression models 

The data set was randomly split into modeling (75%, 7,955 stands) and 

validation (25%, 2,652 stands) data sets. The modeling data set was used to fit NB, 

ZINB, and ZANB models in R using quasi-Newton optimization methods (R 

Development Core Team 2008, Zeileis et al. 2008). Snag abundance and cavity tree 

abundance were used as response variables, respectively. Map label variables related 

to site, ownership, forest development stage, and general species composition were 

used as explanatory variables. 

Explanatory variables that did not contribute significantly in explaining 

variation were dropped from the NB, ZINB, and ZANB models. Nested and non-

nested models were compared using Akaike’s information criterion (AIC; Akaike 

1973, 1974) and Schwarz’s Bayesian information criterion (BIC, Schwarz 1978): 

[5.5] ( ) pLAIC *2ln*2 +−=  

[5.6] ( ) ( )npLBIC ln*ln*2 +−=  

where p is the number of parameters that were estimated in the model, n is the number 

of observations in the modeling data set, and ln(L) is the natural logarithm of the log-

likelihood of the model. The parameter estimates as well as the AIC and BIC values 

for the cavity tree and snag models are shown in Appendix B.1 and B.2, respectively. 

The parameter estimates of the NB, ZINB, and ZANB models were used to 

predict cavity tree and snag abundance for the validation data set. In order to assess 

the adequacy of the models for predicting the overall counts of cavity trees and snags, 
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the chi-square goodness-of-fit test was calculated using observed and predicted counts 

from the validation data set of cavity trees and snags, respectively. 

[5.7] 
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where # denotes the frequency of observations  in count class k across the data set 

and  is the predicted probability of an observation to belong to count class k. 

This statistic is -distributed with (m-1) degrees of freedom since no model 

parameters were estimated from the validation data set. The number of count classes, 

m, was 14 and 78 for cavity tree and snag counts, respectively. For cavity trees the 

largest count class m = 14 included counts of 13 and up (13+). For snags the largest 

count class m = 78 included counts of 77 and up (77+). It is questionable whether 

the -statistic is reliable since many observed frequencies were either zero or smaller 

than 5. Hence, diagnostic plots, which plot the differences between predicted and 

observed probabilities against the count classes k, were used to detect any predictive 

bias and assess goodness-of-fit (Lambert 1992, Fortin and DeBlois 2007). The 

difference dk between predicted probabilities and observed frequencies is computed as: 
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where n is the number of observations in the validation data set and the rest is defined 

as above. As suggested by Fortin and DeBlois (2007), the sum of the absolute 
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differences dk was defined as w and used as an index of the goodness-of-fit of the 

different NB regression models and the imputation methods. 

Nearest Neighbor (NN) imputation 

Two imputation methods were employed in this study using the yaImpute 

package in R (Crookston and Finley 2008): 

1) MSN — Most Similar Neighbor (Moeur and Stage 1995) 

2) RF — randomForest (Breiman 2001, Crookston and Finley 2008) 

In the MSN procedure (Moeur and Stage 1995), the distance metric is of 

quadratic form:  

[5.9] ( ) ( )2 'ij i j i jd X X W X X= − −  

where iX  is the (1 x p) vector of X-variables for the ith observation unit, jX  is the 

(1 x p) vector of X-variables for the jth reference observation unit, and W is a (p x p) 

symmetric matrix of weights. W is derived from canonical correlation analysis which 

makes use of the relationships between X- and Y-variables so that stronger correlations 

result in higher weights for a particular X (LeMay and Temesgen 2005). 

The RF method is a classification and regression tree (CART) method 

(Breiman 2001). The data and variables are randomly and iteratively sampled to 

generate a large group, or forest, of classification and regression trees. For RF two 

units are considered similar if they tend to end up in the same terminal nodes in a 

forest of classification and regression trees. The distance measure is one minus the 
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proportion of trees where a target unit is in the same terminal node as a reference unit 

(Crookston and Finley 2008, Hudak et al. 2008). 

Cavity tree and snag abundance were used as Y-variables, as well as square 

root (sqrt(Y)), inverse (1/(Y+1)), and logarithmic (ln(Y+1)) transformations of these 

variables. The X-variables used for the NN imputation are: average stand age, percent 

conifers, height class midpoints, site class midpoints, elevation (EL), EL2, slope, 

slope*cosine(aspect), and slope*sine(aspect).  

The 7,955 stands that were used as modeling data sets for the NB, ZINB, and 

ZANB models were randomly split into target (25%) and reference (75%) stands 200 

times and nearest neighbors were imputed for each of the 200 target data sets using 

MSN and RF for each of the four Y-variable sets (original units and three 

transformations of cavity tree and snag abundance). The average difference between 

imputed and observed values (often called bias) and the root mean squared error 

(square root of the average squared difference; RMSE) were calculated as fit statistics 

to evaluate the results for each simulation: 

[5.10] 
( )

n

observedimputed
bias

n

i
ii∑

=

−
= 1  

[5.11] 
( )

n

observedimputed
RMSE

n

i
ii∑

=

−
= 1

2

 

where n is the number of target stands. 
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Bias and RMSE were used to select three imputation approaches that were then 

used to compare NB regression models with imputation methods. 

Comparison of NB regression models and NN imputation methods 

To compare NB regression models with NN imputation methods on a per stand 

basis, the validation and modeling data sets used for the NB regression models are 

used for the NN imputation as target and reference data sets, respectively. The results 

of the NB regression models and the NN imputation are then visually compared by 

plotting histograms of the prediction errors (PE) that are computed as follows: 

[5.12]  ii observedpredictedPE −=

where observedi are the observed cavity tree and snag counts for the ith stand and 

predictedi are the predicted counts for the ith stand from the NB regression models and 

the NN imputation methods. Positive and negative PE values indicate overestimation 

and underestimation, respectively. 

Results 

The bias (average difference) for cavity tree and snag abundance averaged over 

the 200 sampling replications was zero or close to zero for the original units and the 

three transformations when the nearest neighbor was imputed using MSN. RF 

imputation resulted in a negative mean bias of the 200 sampling replications for 

estimating cavity tree and snag abundance using the original units or any of the three 

transformations. The range of the bias of the 200 replications was slightly smaller for 
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the RF imputation than for the MSN imputation when the original units or either of the 

transformations was used (Table 5.3). 

For MSN and RF, the RMSE for snag abundance averaged over the 200 

sampling replications (mean RMSE) was smallest for the original units and the range 

of the RMSE was smallest for the logarithmic transformation for MSN imputation. 

Mean RMSE for cavity tree and snag abundance was smaller for RF than for MSN 

when the original units or either of the transformations was used as Y-variables. The 

range of the RMSE of the 200 replications was also smaller for the RF imputation for 

all four sets of Y-variables (Table 5.3). 

MSN and RF imputation with the original units as Y-variables as well as MSN 

imputation with the logarithmic transformation as Y-variables were chosen to be 

compared to the NB regression models. 

For estimating cavity tree abundance, the ZINB model had the largest χ2-

goodness-of-fit statistic with a value of 11.57 compared to values of 5.63 and 6.89 for 

the NB and ZANB models, respectively. The critical χ2-statistic was 22.36 for the 

probability of a greater value = 0.05 and 13 degrees of freedom (no parameters were 

estimated from the validation data set). Since the χ2-goodness-of-fit statistic of none of 

the three models exceeded the critical χ2-statistic, there is no evidence that any of the 

three models are inadequate for estimating cavity tree abundance. 

In addition, the diagnostic plots (Figure 5.2) were used to compare the models 

and to identify potential model misspecifications. Differences dk were calculated as 

predicted probabilities minus observed proportions (Equation 5.7) so that positive 
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values indicate overestimations and negative values indicate underestimation. All 

three regression models underestimated zero counts and showed a good fit for counts 

of five and larger (Figure 5.2). The NB model had the lowest w = 0.0279. 

Diagnostic plots for the MSN and RF imputation with the original units as Y-

variables as well as MSN imputation with the logarithmic transformation as Y-

variables showed that the RF imputation highly overestimated the zero cavity tree 

counts. MSN imputation with the original units and the logarithmic transformation 

resulted in an underestimation of zero counts. The w values indicated that the 

differences were closest to the reference line dk = 0 for the MSN model with the 

original units as Y-variables, resulting in a w value of 0.0279 (Figure 5.2).  

For estimating snag abundance, the NB model outperformed the ZINB and 

ZANB models according to the χ2-goodness-of-fit statistic. The critical χ2-statistic was 

98.48 for the probability of a greater value = 0.05 and 77 degrees of freedom (no 

parameters were estimated from the validation data set). The χ2-goodness-of-fit 

statistic of the ZANB model was slightly smaller than the critical χ2-statistic which 

suggests that the model fit was still acceptable. The χ2-goodness-of-fit statistic of the 

ZINB model greatly exceeded the critical χ2-statistic which indicated that the model 

did not adequately characterize snag abundance. 

The diagnostic plots (Figure 5.3) show that the NB and ZANB models 

underestimated the zero snag counts. The ZINB model estimated the zero counts well, 

however, it greatly underestimated k = 1 which caused the large w value. The NB 

model had the smallest w value indicating generally small differences dk. 
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The diagnostic plots for the MSN and RF imputation with the original units as 

Y-variables as well as MSN imputation with the logarithmic transformation as Y-

variables show that the differences dk for small k values were farther away from the 

reference line dk = 0 than those for the three NB regression models. RF imputation 

resulted in the largest dk values highly overestimating the zero counts. MSN 

imputation with the logarithmic transformation had the smallest differences dk 

resulting in the smallest w value of 0.0852 which still exceeded the w values of all 

three regression models (Figure 5.3). 

The NN imputation methods had larger numbers of prediction errors fall 

between -0.5 and 0.5 than the NB regression models for the cavity tree counts. The RF 

imputation using the original units as Y-variables had the largest number of prediction 

errors (1611) and the ZINB model had the smallest number of prediction errors (1461) 

fall within this range. The prediction errors of the NN imputation methods covered the 

whole range of possible values between -13 and 13 which resulted in mean square 

prediction error (MSPE) values that were about twice as large as the MSPE observed 

for the NB regression models (Figure 5.4). The ZINB model had the smallest MSPE 

value of 1.25. None of the three NB regression models resulted in overpredictions 

larger than 3 counts. However, each model had one underprediction that exceeded 12 

counts (Figure 5.4). 

As for the cavity tree abundance on a per stand level, the NB regression 

models resulted in smaller MSPE values for the snag abundance with the ZINB model 

having the smallest MSPE value (19.88) (Figure 5.5). None of the NB regression 
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models overpredicted snag counts by more than 13 counts but for all three models the 

largest underprediction was around 54 counts. Most of the prediction errors fell into 

the range between 1 and 3 for the NB regression models, whereas most of the 

prediction errors of the NN imputation methods were between -1 and 1. RF imputation 

performed best among the NN imputation methods in terms of MSPE (Figure 5.5). 

The prediction errors for the RF imputation ranged between -55 and 77. For the MSN 

imputation using the original units as Y-variables the range was (-58, 70) and for the 

logarithmic MSN imputation the range was (-58, 60).   

Discussion 

The results of the simulation of the NN imputation methods indicated that RF 

generally performed better than MSN in terms of the range of bias and RMSE and the 

mean RMSE for predicting cavity tree and snag abundance. The RF method was 

employed in this study because it has been found to produce results that were 

generally superior to other NN imputation methods for predicting basal area and tree 

density by species (Hudak et al. 2008). The results of this study confirm the 

conclusion of Hudak et al. (2008) that RF imputation represents an alternative to 

traditional NN imputation methods. 

Transformations on the Y-variables had been tested with the hope to improve 

the relationships between the X- and Y-variable sets. An improved relationship 

between X- and Y-variables could have had a positive impact on the canonical 

correlation analysis that is used in MSN imputation to determine the weight matrix W. 
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Temesgen et al. (2008) imputed cavity trees per hectare using MSN imputation and 

found that using the square root transformation of cavity trees per hectare as Y-

variable improved the imputation results. It was assumed that the assumption about 

linear correlations was better met with the square root transformation (Temesgen et al. 

2008). The ranges of cavity tree abundance (0-13) and snag abundance (0-77) were 

very small in this study due to using actual tree counts rather than the expanded tree 

per hectare values as Y-variable. It is suspected that none of the transformations have 

substantially improved the results of the MSN and RF imputation in terms of bias and 

RMSE due to the small observed ranges of the Y-variables.  

Poisson, ZIP and ZAP models were fit to the data but did not provide adequate 

results due to the overdispersion that is present in the data. The expected values for 

zero as well as large cavity tree and snag counts were much too low for the Poisson 

model and were only somewhat improved by the ZIP and ZAP models (results not 

shown). Hence, this study focused on the application of NB regression models which 

allow for overdispersion. For predicting overall cavity tree and snag abundance the 

NB, ZINB, and ZANB models all fit reasonably well. However, the NB model 

resulted in the lowest χ2-goodness-of-fit statistic and w. Since some of the counts have 

less than 5 observations, it was questionable if the χ2-goodness-of-fit statistic provided 

reliable results, but its results were confirmed by the diagnostic plots and goodness-of-

fit index w. For predicting cavity tree and snag abundance on a per stand basis, the 

ZINB model slightly outperformed the ZANB and NB models in terms of the MSPE 

value. However, the differences were only minor so that the use of the simpler NB 
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model seems preferable for predicting cavity tree and snag abundance. In addition, the 

difficulty of assigning biological meaning to the components of the ZINB and ZANB 

models raises the issue of overfitting (Affleck 2006) and interpretation of these 

models. If mechanisms could be identified that separate the conditions associated with 

zero cavity trees and snags from conditions associated with positive counts of cavity 

trees and snags, ZANB models would provide the advantage of modeling these two 

aspects separately (Welsh et al. 1996). However, in the given case, this property of the 

ZANB model is considered an unnecessary complication to the application. Another 

disadvantage of ZINB and ZANB models is that they provide a composite predictor 

that does not benefit from the path invariance property so that  models like the NB 

model that allow for unobserved heterogeneity seem preferable for assigning further 

structure to the mean (Affleck 2006). 

Cavity trees and snags are rare in forest ecosystems and thus more difficult to 

predict than many other forest attributes (Temesgen et al. 2008). The prediction of 

cavity tree and snag abundance is complicated by the fact that generally little 

association is found with environmental factors and stand-level attributes such as 

forest type, slope, aspect, and site index (Fan et al. 2003b). This is due to the fact that 

random processes such as fire, wind, and insect outbreaks play a major role in creating 

snags and cavities resulting in a  large variability in cavity tree and snag abundance 

(Carey 1983). Hence, it will probably always be difficult to predict cavity tree and 

snag abundance from stand-level variables that are readily available from forest cover 

maps or remotely sensed data. However, the inclusion of variables which were not 
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available in this study could have potentially improved the results of the NB 

regression models.  

Snag abundance generally increases with successional development (Ohmann 

and Waddell 2002). Fan et al. (2005) found mean cavity tree abundance to increase 

with increasing stand-size class expressed as seedling/sapling, pole, sawtimber, old-

growth. In this study, average stand age was the only explanatory variable that was 

used to represent stand development stage. Including other variables such as stand-size 

class in the set of explanatory variables might improve the prediction of cavity tree 

and snag abundance. Timber harvest and human access can have substantial effects 

decreasing snag abundance in areas of intensive timber harvest and increased human 

access (Wisdom and Bate 2008). Explanatory variables that represent harvest history 

and degree of human access could potentially improve the prediction of cavity tree and 

snag abundance. 

Formal tests that allow comparing parametric models such as the NB 

regression models with NN imputation methods do not exist. The diagnostic plots 

proposed by Lambert (1992) to detect model misspecifications in zero-inflated models 

as well as the goodness-of-fit statistic w introduced by Fortin and DeBlois (2007) 

provided efficient and convenient ways to show differences between observed and 

expected counts which could not only be used to detect model misspecification in the 

NB, ZINB, and ZANB models but also to compare the results of these models with 

those provided by the NN imputation methods. All NB regression models and NN 

imputation methods resulted in large differences between observed and expected 
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counts for counts of 5 and smaller. However, the differences between observed and 

expected counts decreased faster with increasing counts for the NB regression models 

than for the NN imputation models. This suggests that the NB regression models, in 

particular the NB model, should be preferred over the NN imputation methods to 

predict overall cavity tree and snag abundance. 

Frequency histograms of the prediction and prediction errors were used to 

visualize and compare the predictions of cavity tree and snag counts per stand of the 

NB regression models and the NN imputation methods. The NB regression models 

resulted in a few large underpredictions but no large overpredictions of cavity tree and 

snag counts. Hence, the NB regression models tend to be more conservative in their 

predictions of cavity tree and snag abundance than NN imputation methods which 

result both in large over- and underpredictions. For management applications that take 

into account wildlife habitat it is better to base actions on models that are conservative 

with respect to overpredictions of cavity tree and snag abundance. 

All cavity trees and snags were considered equally valuable in this study. 

Neither cavity size and cavity location on the tree nor decay stage and size of snags, 

which are important criteria in evaluating habitat quality for certain wildlife species, 

was taken into account. Hence, no inferences can be made about the quality or 

potential use of cavity trees and snags for wildlife species, even though the results of 

this study provided reasonable estimates of cavity tree and snag abundance. In order to 

be useful for management purposes, it will be necessary to use methods that allow the 

estimation of cavity tree and snag abundance while simultaneously providing 
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information on the size and location of cavities as well as the decay stage and size of 

snags. Taking advantage of the multivariate nature of the NN imputation methods, 

they could be used to simultaneously impute the abundance of cavity trees and snags 

as well as their quality attributes. This could be a major advantage of the NN 

imputation methods over the NB regression models. Other quality attributes that are 

important for certain wildlife species are tree species, percent bark cover, and presence 

of a broken top (Spiering and Knight 2005). Information on snag dynamics, such as 

longevity and the rates at which their quality changes, is also required to be able to 

fully take snags into account in forest management (Aakala et al. 2008).  

Conclusions 

NB, ZINB, and ZANB models provided reasonable results for predicting 

overall cavity tree and snag abundance as well as for predicting cavity tree and snag 

abundance per stand. The NB model should be preferred to the ZINB and ZANB 

models due to its easier application and simpler interpretation. 

NB regression models performed better than NN imputation methods. For 

predicting cavity tree and snag abundance per stand, NB regression models should be 

preferred to NN imputation methods since they do not result in large overpredictions 

of the cavity tree and snag counts and hence provide more conservative results. 

NN imputation methods might provide a tool for predicting cavity tree and 

snag abundance as well as their qualities in one step. The knowledge of cavity tree and 

snag quality will be necessary for evaluating wildlife habitat. 
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Table 5.1: Descriptive statistics for stands, n=10,607. 

Variable Minimum Mean Median Maximum Std 
Cavity tree counts 0 0.50 0 13 21.88
Snag counts 0 2.63 1 77 4.80 
Percent Conifer 0 0.78 1 1 0.36 
Average Stand Age (years) 0 92 75 1009 85 
Elevation (m) 0 1031 1006 3366 682 
Aspect (degrees) 0 158 155 360 115 
Slope (%/100) 0 0.31 0.27 1.51 0.24 
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Table 5.2: Site class and height class descriptions and number of stands in each class. 

Site class # stands Height class # stands
15.7+ m3/ha/year 221 0 – 9.99 m 229 
11.6-15.6 m3/ha/year 872 10 – 19.99 m 3963 
8.4-11.5 m3/ha/year 2046 20 – 29.99 m 2626 
5.9-8.3 m3/ha/year 1722 30 – 39.99 m 1112 
3.5-5.8 m3/ha/year 2293 40 – 49.99 m 432 
1.4-3.4 m3/ha/year 1865 50+ m 145 
0-1.3 m3/ha/year 1588   
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Table 5.3: Minimum, mean, and maximum bias and RMSE for the Y-variables (cavity tree abundance and snag abundance) 
and the square root (sqrt), inverse, and logarithmic (ln) transformations of the Y-variables over 200 sampling replications.  
MSN and RF stand for the most similar neighbor and randomForest imputation methods, respectively. 

  Cavity trees Snags 
  Bias RMSE Bias RMSE 

Method Response min mean max min mean max min mean max min mean max
MSN Y -0.10 0.00 0.10 1.41 1.55 1.68 -0.41 -0.01 0.46 5.81 6.64 7.62
MSN sqrt(Y) -0.12 0.00 0.10 1.38 1.55 1.70 -0.49 0.00 0.47 5.91 6.69 7.60
MSN 1/(1+Y) -0.11 0.00 0.10 1.43 1.55 1.70 -0.41 -0.01 0.40 5.76 6.69 7.65
MSN ln(Y+1) -0.09 0.00 0.10 1.39 1.55 1.68 -0.39 0.01 0.49 5.96 6.66 7.56
RF Y -0.20 -0.13 -0.04 1.29 1.43 1.56 -0.70 -0.29 0.08 5.53 6.33 7.21
RF sqrt(Y) -0.21 -0.13 -0.05 1.29 1.43 1.57 -0.68 -0.27 0.06 5.61 6.39 7.13
RF 1/(1+Y) -0.21 -0.12 -0.05 1.31 1.44 1.54 -0.66 -0.23 0.12 5.61 6.46 7.31
RF ln(Y+1) -0.21 -0.13 -0.04 1.30 1.43 1.55 -0.64 -0.26 0.09 5.63 6.42 7.13
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Figure 5.1: Frequency distribution of stands with up to 25 counts of cavity trees (left) 
and snags (right). 
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Figure 5.2: Diagnostic plots for cavity tree abundance for the negative binomial (NB), 
zero-inflated NB (ZINB), zero-altered NB (ZANB), and three NN imputation 
methods. χ2 is the χ2-statistic for the NB, ZINB, and ZANB models. W is the sum of 
the absolute values of dk. 
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Figure 5.3: Diagnostic plots for cavity tree abundance for the negative binomial (NB), 
zero-inflated NB (ZINB), zero-altered NB (ZANB), and three NN imputation 
methods. χ2 is the χ2-statistic for the NB, ZINB, and ZANB models. W is the sum of 
the absolute values of dk. 
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Figure 5.4: Frequency plots of prediction error of cavity tree abundance for the 
negative binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and three 
NN imputation methods. MSPE is the mean square prediction error. 
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Figure 5.5: Frequency plots of prediction error of snag abundance for the negative 
binomial (NB), zero-inflated NB (ZINB), zero-altered NB (ZANB), and three NN 
imputation methods. MSPE is the mean square prediction error. 
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CHAPTER 6: CONCLUSION 

The goal of this dissertation was to explore alternatives to the moving average 

(MA), the Forest Inventory and Analysis (FIA) default estimator, for estimating 

current forest condition and change from paneled inventory data in the Pacific 

Northwest (PNW). In the process, a variety of data sets were examined for their 

potential use for this research. Data from the Current Vegetation Survey (CVS) and 

annual FIA inventory data were used to complete the study. Specific objectives were 

to 1) examine plot-level nearest neighbor imputation techniques for estimating current 

plot-level attributes; 2) investigate tree-level nearest neighbor imputation techniques 

for estimating current plot-level attributes; 3) explore the suitability of imputation 

techniques to estimate mean annual change at plot-level; and 4) analyze the suitability 

of nearest neighbor imputation methods and negative binomial regression models to 

estimate cavity tree and snag abundance. 

In Chapter 2, a weighted moving average (WMA) and three nearest neighbor 

(NN) plot-level imputation techniques (MSN, GNN, and RF) were examined as 

alternatives to the MA. Using the most recent measurements of the variables of 

interest as ancillary variables, RF provided almost unbiased estimates that were 

comparable to those of the MA and WMA estimators. MSN and GNN could not 

compete with any of the other methods with the available ancillary variables. For the 

MA and WMA estimates, the variance was very small and bias contributed most to the 

root mean square error (RMSE). For the imputation methods, the variance contributed 
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most to the RMSE. If the lag bias of the MA could be corrected, MA might 

outperform all other methods. 

In Chapter 3, tree-level NN imputation techniques were assessed and compared 

with MA and WMA estimators as well as plot-level NN imputation. RF imputation 

was used for both tree-level and plot-level imputation. Tree-level imputation 

outperformed plot-level imputation as well as the MA and WMA estimators in 

estimating current forest attributes such as BA, SPH, VOL, and BIOT. When the 

variables of interest were summarized by three species groups, tree-level imputation 

also outperformed plot-level imputation. The more detailed information that is 

required for the tree-level imputation provides the potential for more detailed output. 

For species groups ‘Douglas-fir’ and ‘other,’ MA and tree-level imputation provided 

comparable results, whereas tree-level imputation outperformed MA for species group 

‘pine.’ 

In Chapter 4, mean annual change (MAC) estimation of forest attributes using 

MSN, GNN, and RF imputation was attempted. The imputed MAC was used to 

project all panels to a common point in time. The resulting mean estimates of the 

forest attributes outperformed the estimates based on SAMPLE25, MA, and WMA 

estimators in terms of accuracy. Updating previously observed measurements of forest 

attributes with imputed MAC estimates also outperformed imputing BA, SPH, VOL, 

and BIOT for the year 2000 directly using RF imputation as was done in Chapter 2. 

In Chapter 5, the use of negative binomial regression models and NN 

imputation methods to predict cavity tree and snag abundance was explored. Negative 
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binomial (NB), zero-inflated NB (ZINB), and zero-altered NB (ZANB) models were 

found to provide reasonable results for estimating cavity tree and snag abundance. Due 

to its simpler application and interpretation the NB model is preferred over the ZINB 

and ZANB models. NN imputation models resulted in both large under- and 

overpredictions of cavity tree and snag abundance, whereas NB models only resulted 

in large underpredictions, therefore providing more conservative results. 

Future directions 

Several future research areas were identified: 1) Verifying results with 10 

panel data set; 2) Correcting lag bias for moving average; 3) Examining alternative 

sources of ancillary data for nearest neighbor imputation; 4) Comparing the 

performance of tree-level nearest neighbor imputation vs. tree-level growth models; 5) 

Estimating change; and 6) Improving cavity tree and snag abundance estimation. 

Specific needs for each of the research topics are discussed below. 

Verifying results with 10 panel data set 

For the exploration of tree-level and plot-level imputation, CVS data was used 

in this study because it is the only data in the PNW that is comparable to the FIA 

inventory data and has remeasurements available. FIA data from the PNW could not 

be used because no remeasurements exist yet. The CVS data set could only be used to 

imitate a four panel inventory and could not be used to examine how the selected 

methods would perform in a 10 panel inventory. It is strongly recommended that this 

research be replicated with another data set. This could be done with a simulated test 
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population such as those constructed by McRoberts (2001), Johnson et al. (2003), 

Arner et al. (2004), and Roesch (2007a). 

In this study the sampling intensity equaled 25%. For the 10-panel inventory in 

Oregon the sampling intensity is only 10%. Hence, the sampling intensity decreases 

for the FIA annual inventory in the PNW compared to this study. A sampling intensity 

of 20% has been found to be sufficient for estimating stand level variables using NN 

imputation methods (Moeur 2000, LeMay and Temesgen 2005). Further research is 

warranted to test whether a sampling intensity of 10% provides enough reference plots 

for NN imputation methods. 

The CVS data used in this study only covered national forests. Therefore, 

several aspects that are pertinent to the analysis of FIA data could not be considered. 

For example, ownership related attributes could not be taken into account. Ownership 

can be considered an important predictor variable for estimating current forest 

attributes from FIA data and should be taken into account for FIA data analyses. This 

could possibly be achieved by imputing within strata, for example, impute within 

ownership group. Eskelson et al. (2008) did not find stratified MSN approaches to 

improve the imputation results but ascribed this to the small number of plots used in 

the study. The FIA inventory data from the PNW should provide enough plots for 

performing imputation separately within ownership group. The CVS data was 

measured in 1994 and the following years. Hence, no or few management operations 

were carried out between measurements due to the Northwest Forest Plan that came 

into effect in 1994. When the FIA data is analyzed, silvicultural treatments and other 
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management operations need to be taken into account in the models used to update the 

panels that are not measured in the current year.  

Correcting lag bias for moving average 

The results of this study showed that the MA estimator provides very precise 

but biased estimates whereas the NN imputation methods provide less biased results 

with large variance. If the lag bias of the MA estimator could be corrected, the MA 

would possibly outperform all other methods in terms of both bias and RMSE due to 

its high precision. Using weighted moving averages which apply weights that give 

more weight to the most recently measured panels is an approach to adjust for the lag 

bias of the MA. However, the selection of the weights is not yet solved. Research for 

finding methods that allow an objective selection of the weights is warranted. The 

trend that is inherent in the data needs to be known for choosing appropriate weights 

for the WMA, which poses another problem for the weight selection. Furthermore, the 

application of the MA and WMA estimators in a 10 panel inventory needs to be tested 

in order to explore their behavior for a long inventory cycle. It can be expected that the 

lag bias of the MA increases with increasing inventory cycle length (Johnson et al. 

2003). 

Examining alternative sources of ancillary data for nearest neighbor imputation 

The climate, topography, and satellite data available in this study were not 

found to be very useful for NN imputation. Instead of using Landsat TM data as 

ancillary data, research should focus on using higher resolution data such as LiDAR. 
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The potential of LiDAR data for predicting forest attributes such as plot-level basal 

area, tree density, and volume has been demonstrated using multiple linear regression 

(Hudak et al. 2006), ratio estimation (Corona and Fattorini 2008), and NN imputation 

approaches (Maltamo et al. 2006, Hudak et al. 2008). Combining ancillary data 

derived from LiDAR and aerial photographs has been shown to improve the 

estimation of species specific stand attributes in terms of accuracy (Maltamo et al. 

2006, Packalén and Maltamo 2007). 

Basal area/ha is a two dimensional variable whereas volume/ha and biomass/ha 

are three dimensional variables derived from DBH and height. In this study, many of 

the ancillary variables used for imputation were two dimensional variables. Using 

three dimensional ancillary data derived from LiDAR data could possibly improve the 

imputation results for three-dimensional variables such as volume/ha and biomass/ha. 

In this study, initial values of the variables of interest were used as ancillary 

data, which provided very good results for the RF imputation. Predicted values of the 

variables of interest from growth and yield models could be used as ancillary variables 

(e.g., Gartner and Reams 2002). Yet another option could be to predict growth rates 

and mortality rates with growth and yield models and employ them as ancillary data 

for imputation methods. This approach combines growth and yield models with 

imputation approaches and might lead to more precise estimates than using only either 

imputation methods or growth and yield models. Research in this area is warranted. 
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Comparing the performance of tree-level nearest neighbor imputation vs. tree-level 
growth models 

In this study, individual-tree growth models were not used to update height and 

diameter of P1, P2, and P3 data to the year 2000. Tree-level NN imputation has been 

shown to provide comparable or better results than traditional regression models for 

Norway spruce (Picea abies Karst.) and Scots pine (Pinus sylvestris L.) stands with 

low variability (Sironen et al. 2001, 2003, Fehrmann et al. 2008). The data used in this 

study included 33 species and a wide variety of stand size and density conditions. It is 

recommended that the performance of tree-level NN imputation be compared against 

regression models using data obtained from the PNW. This will help to ascertain 

whether tree-level NN imputation can compete with regression models under more 

variable conditions than those shown in Sironen et al. (2001, 2003) and Fehrmann et 

al. (2008).   

An advantage of regression techniques used in traditional growth and yield 

models is that, once the model parameters have been estimated, the growth model 

equations are easy to apply and to communicate. Growth models can be employed 

without having access to a database of raw data collected from a diverse set of site or 

stand conditions (Fehrmann et al. 2008). While growth models need to be refitted to 

be updated and keep their validity, NN imputation approaches update themselves 

when data are added or removed from the database (Sironen et al. 2001, 2003). 

Therefore, NN imputation approaches are considered an alternative to regression 

models, once a larger single-tree data base is available (Fehrmann et al. 2008). 
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A frequently mentioned advantage of NN imputation over growth models is 

that the NN imputation techniques are multivariate and able to estimate multiple 

variables (e.g., HT, DBH, crown ratio) simultaneously (e.g., Katila and Tomppo 2002) 

whereas models have to be fit for each variable separately when modeling approaches 

are used. NN imputation methods are able to preserve the covariance structure of the 

data if only the nearest neighbor is used in the imputation process, which is important 

if the data is used for further modeling (Fehrmann et al. 2008). This is crucial for 

management applications that require information on multiple forest attributes and 

where estimates of these attributes must be compatible (McRoberts 2008). However, 

compatible estimates can also be achieved with traditional growth and yield models 

when systems of equations are used (e.g., Borders 1989, Hasenauer et al. 1998). 

Different growth intervals are required for updating paneled inventory data. 

Available growth models such as ORGANON (Hann 2006) and FVS (Stage 1973) 

provide five and 10 year growth intervals, respectively, which can be interpolated to 

provide the required growth intervals. Another option is to use annualized growth 

equations (e.g., Cao 2000, Weiskittel et al. 2007). When NN imputation is done by 

matching on initial values, the different growth intervals could cause a problem. The 

FIA annual inventory data in the PNW where each plot is remeasured every 10 years 

provides data on ten year growth periods only. In order to impute tree data at time t for 

the missing nine panels that were measured 1 to 9 years before, reference data is 

needed that can be matched to 1 to 9 year old data. The FIA inventory, however, only 

provides initial values from 10 years ago in the reference data. When tree-level 
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imputation is used with the FIA data from the PNW, the results might become biased 

due to the fact that the reference data only provides 10 year old data to match on. If the 

annual FIA inventory was a balanced annual partial remeasurement design as 

suggested by Arner et al. (2004), the reference data would include remeasurements 

that provide all possible growth periods. However, a balanced annual partial 

remeasurement design would not be very practical. Performing NN imputation by 

matching on predicted values from growth and yield models could evade the problem 

of different growth intervals. Further investigation of this is warranted.  

A major disadvantage of the NN imputation methods is that extrapolation 

beyond the distribution of available reference data is impossible (Moeur and Stage 

1995), which makes the predictions highly dependent on the number of available 

reference data. When only the nearest neighbor is used in the imputation, interpolation 

is impossible (Crookston et al. 2002). Hence, the reference data needs to cover the 

whole range of ancillary data without any large gaps (Stage and Crookston 2007). 

Another disadvantage of the NN imputation methods is that error estimation 

techniques are still under development (e.g., Kim and Tomppo 2006, McRoberts et al. 

2007). 

Estimating change 

Change in forest attributes is at least as important to most users of FIA data as 

current status of forest attributes (Van Deusen 2002b). Change estimation could not be 

explored with the available CVS data in this study, since the data did not provide two 
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remeasurements of each plot. Compatible estimators of the components of change for 

paneled inventory data have been explored (Roesch 2007a, 2007b). 

Using imputed mean annual change to update unmeasured panels to the current 

time has shown great potential in this study and suggests that mean annual change 

imputation could be used for change estimation.  

Traditionally, change estimation is performed with growth and yield models. 

Change estimation could also be approached using tree-level nearest neighbor 

imputation. This study has shown the potential of tree-level randomForest imputation 

for updating tree diameter, height, and mortality. More research is warranted for 

improving tree-level nearest neighbor imputation for imputing diameter growth, height 

growth, change in height to crown base, and mortality. 

Improving cavity tree and Snag abundance 

Estimation of cavity tree and snag abundance was explored using data from the 

annual FIA inventory. No remeasurements were available at the time of this study. As 

soon as remeasurements are available, the NN imputation methods and NB models 

should be tested using previous information on cavity tree and snag abundance as 

explanatory variables. This could possibly improve the results, when the information 

of unmeasured FIA plots is updated to the current year. 

For providing updates to paneled data or for providing data to unsampled 

stands or polygons, the evaluation of the cavity tree and snag abundance models 
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would need to include looking at whether the results are also relatively unbiased and 

accurate by ownership, forest-type, and other strata. 

Summary 

Methods for estimating current condition and change of forest attributes from 

paneled inventory data that could replace the moving average, which is the current 

Forest Inventory and Analysis default estimator, are examined. This dissertation 

explored a variety of tree-level and plot-level nearest neighbor imputation methods for 

updating unmeasured panels to the current point in time. In the process, nearest 

neighbor imputation methods were also compared to negative binomial regression 

models for their predictive abilities of estimating cavity tree and snag abundance. 

Tree-level as well as plot-level imputation using the randomForest method showed 

great potential for updating forest attributes of unmeasured panels, but further research 

on employing the moving average, weighted moving average, and randomForest 

imputation to a 10 panel inventory is warranted. Further research on comparing tree-

level nearest neighbor imputation with individual-tree growth models is also highly 

warranted. The nearest neighbor imputation methods could potentially be improved by 

using growth model predictions as ancillary data or by using ancillary data with higher 

resolution such as LiDAR data. 
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LIST OF SYMBOLS USED IN THE TEXT 

Symbol Definition Units 

% percent - 

AFIS Annual Forest Inventory System - 

AIC Akaike’s information criterion - 

ANNPRE Annual precipitation ln cm (scaled 
* 100) 

ANNTMP Mean annual temperature °C (scaled * 
100) 

BA Basal area m2/ha 

BAL Basal area in larger trees m2 

BALocc1 Basal area in larger trees measured at 
occasion 1 

m2 

BAocc1 BA measured at occasion 1 m2/ha 

BIC Schwarz’s information criterion - 

BIOT Total gross oven dry weight biomass Tons/ha 

BIOTocc1 BIOT measured at occasion 1 Tons/ha 

CANOPY Tree canopy cover % 

CART Classification and regression tree - 

CCA Canonical correspondence analysis - 

cm centimeter - 

CVS Current Vegetation Survey - 

DBH Diameter at breast height cm 

DBHocc1 Diameter at breast height measured at 
occasion 1 

cm 
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LIST OF SYMBOLS USED IN THE TEXT (Continued) 

Dij
2 Distance metric for nearest neighbor 

imputation 
- 

dk Difference between predicted 
probabilities and observed frequencies 

- 

EL Elevation m 

esti Refers to the estimated or imputed 
value for unit i 

- 

FHM Forest Health Monitoring - 

FIA Forest Inventory and Analysis - 

GNN Gradient nearest neighbor - 

ha hectare - 

HT Total tree height m 

HTocc1 Total tree height measured at 
occasion 1 

m 

IMP Refers to nearest neighbor imputation 
method 

- 

k Count class - 

L() Log-likelihood of model - 

LiDAR Light Detection and Ranging - 

ln(EL) Natural logarithm of EL - 

m meter - 

m Number of count classes (Chapter 5) - 

m Number of iterations of randomly 
splitting data (Chapters 2-4) 

- 
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LIST OF SYMBOLS USED IN THE TEXT (Continued) 

MA  Moving Average - 

MAC Mean annual change - 

MSN Most similar neighbor - 

MSPE Mean square prediction error - 

n Number of observations - 

NB Negative binomial - 

NCRS North Central Research Station - 

NDVI Normalized difference vegetation index - 

NN Nearest neighbor - 

obsi Refers to the observed value for unit i - 

p Number of explanatory variables - 

P1 Panel 1 - 

P2 Panel 2 - 

P3 Panel 3 - 

P4 Panel 4 - 

PE Prediction error - 

PNW Pacific Northwest - 

RF randomForest - 

RMSE Root mean square error in percent of 
mean 

% 

SAFIS Southern Annual Forest Inventory 
System 

- 

SAMPLE25 Estimator using data from Panel 4 only - 
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LIST OF SYMBOLS USED IN THE TEXT (Continued) 

SPH Stems per hectare - 

SPHocc1 SPH measured at occasion 1 - 

sqrt() Square root - 

SRS Southern Research Station - 

TC Tasseled Cap - 

TM Thematic Mapper - 

US Unites States - 

USDA United States Department of 
Agriculture 

- 

VOL Gross cubic-meter volume m3/ha 

VOLocc1 VOL measured at occasion 1 m3/ha 

w Sum of absolute differences dk - 

wt-3 , wt-2 , wt-1,, wt, Panel weights of P4, P3, P2, and P1 - 

W Weight matrix in distance metric Dij
2 - 

WMA Weighted Moving Average - 

x Vector of explanatory variables - 

X Ancillary variable - 

Y Variable of interest - 

z Vector of explanatory variables - 

ZANB Zero-altered negative binomial - 

ZAP Zero-altered Poisson - 

ZINB Zero-inflated negative binomial - 
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LIST OF SYMBOLS USED IN THE TEXT (Continued) 

ZIP Zero-inflated Poisson - 

ZTNB Zero-truncated negative binomial - 

ZTP Zero-truncated Poisson - 

α Degree of overdispersion in NB 
regression model 

- 

β Vector of regression coefficients - 

γ Vector of regression coefficients - 

µ Mean for Poisson and NB regression 
models 

- 

π Probability of belonging to point mass 
component in ZINB regression model 

- 

χ2 Chi-square - 

Γ Matrix of standardized canonical 
coefficients for the ancillary variables 

- 

Λ2 Diagonal matrix of squared canonical 
correlations between ancillary and 
ground variables 

- 
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PARAMETER ESTIMATES AND AIC AND BIC VALUES FOR THE CAVITY 
TREE AND SNAG MODELS 

Appendix B.1: Summary of fitted negative binomial (NB), zero-inflated NB (ZINB), 
zero-altered NB (ZANB) regression models for cavity tree abundance: coefficient 
estimates from count and zero models with standard errors in parentheses. 

 NB ZINB ZANB 
Count Model    
(Intercept) -1.0860 

(0.1571) 
-0.1403 
(0.2070) 

-0.7352 
(0.3955) 

Average stand age 0.0011 
(0.0003) 

  

% conifer -0.7259 
(0.1105) 

-0.5429 
(0.1603) 

-0.4959 
(0.2171) 

Height class midpoints (m) 0.0351 
(0.0030) 

0.0179 
(0.0031) 

0.0129 
(0.0041) 

Elevation (m) -0.0002 
(0.0001) 

-0.0003 
(0.0001) 

-0.0003 
(0.0001) 

Slope (%/100) -0.5644 
(0.3378) 

-0.8624 
(0.4026) 

 

Slope*cosine(aspect) 0.1524 
(0.0820) 

  

Slope*ln(elevation) 0.1593 
(0.1593) 

0.1755 
(0.0568) 

0.0870 
(0.0267) 

Forest type: 
fir/spruce/mountain hemlock 

0.3965 
(0.0930) 

0.2990 
(0.0931) 

0.2239 
(0.1507) 

Forest type: other conifers -0.0384 
(0.0711) 

-0.0758 
(0.0709) 

-0.0116 
(0.1189) 

Forest type: hardwoods 0.3002 
(0.0947) 

0.2377 
(0.1068) 

0.3546 
(0.1760) 

Owner: other federal -0.2791 
(0.0895) 

-0.2711 
(0.0886) 

-0.2623 
(0.1525) 

Owner: state and 
local governments 

-0.1642 
(0.1060) 

-0.2334 
(0.1058) 

-0.3886 
(0.1709) 

Owner: private -0.2160 
(0.0636) 

-0.2453 
(0.0657) 

-0.3032 
(0.1067) 

Site class midpoints 
(m3/ha/year) 

0.0171 
(0.0068) 

  

    
Zero Model    
(Intercept)  0.3525 

(0.2825) 
-1.4610 
(0.1387) 
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Appendix B.1 (continued) 
    
Average stand age  -0.0179 

(0.0033) 
0.0013 

(0.0004) 
% conifer  1.3573 

(0.3293) 
-0.7126 
(0.1202) 

Height class midpoints (m)  -0.0513 
(0.0141) 

0.0388 
(0.0028) 

Slope (%/100)  -0.7928 
(0.5067) 

0.3351 
(0.1117) 

Slope*cosine(aspect)  -0.7570 
(0.2920) 

0.1699 
(0.0902) 

Forest type: 
fir/spruce/mountain hemlock 

  0.3530 
(0.0958) 

Forest type: other conifers   -0.0803 
(0.0734) 

Forest type: hardwoods   0.2109 
(0.1032) 

Owner: other federal   -0.2569 
(0.0971) 

Owner: state and 
local governments 

  -0.0508 
(0.1113) 

Owner: private   -0.1574 
(0.0638) 

# estimated parameters 16 22 28 
AIC 14,218 14,117 14,159 
BIC 14,329 14,271 14,355 
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Appendix B.2: Summary of fitted negative binomial (NB), zero-inflated NB (ZINB), 
zero-altered NB (ZANB) regression models for snag abundance: coefficient estimates 
from count and zero models with standard errors in parentheses. 

 NB ZINB ZANB 
Count Model    
(Intercept) 0.9057 

(0.1078) 
1.0580 

(0.1119) 
-0.7352 
(0.3955) 

Average stand age -0.0006 
(0.0003) 

-0.0015 
(0.0002) 

 

% conifer -0.4089 
(0.0786) 

-0.1617 (0.094) -0.4959 
(0.2171) 

Height class midpoints (m) 0.0290 
(0.0021) 

0.0202 
(0.0022) 

0.0129 
(0.0041) 

Elevation (m) 0.0002 
(0.0000) 

0.0001 
(0.0000) 

-0.0003 
(0.0001) 

Slope (%/100) 0.1527 
(0.0730) 

  

Slope * ln(elevation)   0.0870 
(0.0267) 

Forest type: 
fir/spruce/mountain hemlock 

0.5235 
(0.0648) 

0.4849 
(0.0624) 

0.2239 
(0.1507) 

Forest type: other conifers -0.1026 
(0.0493) 

-0.0625 
(0.0477) 

-0.0116 
(0.1189) 

Forest type: hardwoods -0.0888 
(0.0683) 

0.0464 
(0.0806) 

0.3546 
(0.1760) 

Owner: other federal -0.3603 
(0.0601) 

-0.2676 
(0.0591) 

-0.2623 
(0.1525) 

Owner: state and 
local governments 

-0.2860 
(0.0750) 

-0.2616 
(0.0716) 

-0.3886 
(0.1709) 

Owner: private -0.6635 
(0.0438) 

-0.0658 
(0.0419) 

-0.3032 
(0.1067) 

Site class midpoints 
(m3/ha/year) 

-0.0182 
(0.0049) 

  

    
Zero Model    
(Intercept)  -1.5600 

(0.6450) 
-1.4610 
(0.1387) 

Average stand age  -0.0197 
(0.0029) 

0.0013 
(0.0004) 

% conifer  1.952 (0.3855) -0.7126 
(0.1202) 
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Appendix B.2 (continued) 
    

Height class midpoints (m)  -0.0778 
(0.0147) 

0.0388 
(0.0028) 

Elevation (m)  -0.0004 
(0.0001) 

 

Slope (%/100)  -1.3375 
(0.3343) 

0.3351 
(0.1117) 

Slope * cosine(aspect)   0.1699 
(0.0902) 

Forest type: 
fir/spruce/mountain hemlock 

 -0.0750 
(0.3466) 

0.3530 
(0.0958) 

Forest type: other conifers  0.2611 
(0.2369) 

-0.0803 
(0.0734) 

Forest type: hardwoods  0.8396 
(0.3586) 

0.2109 
(0.1032) 

Owner: other federal   -0.2569 
(0.0971) 

Owner: state and 
local governments 

  -0.0508 
(0.1113) 

Owner: private   -0.1574 
(0.0638) 

Site class midpoints 
(m3/ha/year) 

 0.1212 
(0.0199) 

 

# estimated parameters 16 19 24 
AIC 14,218 14,114 14,156 
BIC 14,329 14,247 14,324 

 


