

Steven R. Radosevich

Allometric equations are useful tools for predicting tree biomass when direct measurements are impractical. Any factor affecting plant growth can be a significant variable in allometric equations. Density and species proportion are spatial variables that influence tree growth and should be considered when developing allometric equations. This consideration is especially pertinent when developing equations for use in replacement series experiments (de Wit, 1960), where density and species proportion are treatment variables.

Allometric equations for three-year-old Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) were developed as part of a replacement series experiment in Belfair, Washington. The primary objective of the study was to generate equations for predicting seedling component biomass. Another objective was to test the significance of density and proportion in biomass prediction. Douglas-fir and red alder biomass components were best predicted by stem diameter, total height, and crown width. Density was a significant variable for predicting Douglas-fir leaf biomass and total biomass. However, density was positively correlated with biomass, contrary to normal yield-density relationships, and so was excluded from the model. The percent cover of weed species on the plot was a significant variable for predicting Douglas-fir root biomass. Red alder total biomass was correlated with proportion,
indicating that biomass was higher when sample trees were surrounded by a higher number of red alder than of Douglas-fir. Generally, the most significant spatial variable for predicting Douglas-fir biomass was the percent cover of weed species. The most significant spatial variable for predicting red alder biomass was the distance to the nearest neighboring tree. Suggestions for determining the roles of density and proportion in allometric equations for use in replacement series experiments are given.

The Role of Density and Proportion in Allometric Equations of Douglas-fir and Red Alder Seedlings

by
Pamela T. Cooke

A THESIS
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of Master of Science

Completed April 14, 1987
Commencement June, 1987

Signature redacted for privacy.
Head of department of Forest Science
Signature redacted for privacy.
Dean of Graduate School

Date thesis is presented _ April 14, 1987
CHAPTER 1. INTRODUCTION AND OBJECTIVES OF STUDY 1
Allometry 1
Plant competition 2
Competition with Douglas-fir and red alder 7
Study objectives 8
CHAPTER 2. THE ROLE OF DENSITY AND PROPORTION IN ALLOMETRIC EQUATIONS FOR DOUGLAS-FIR AND RED ALDER SEEDLINGS. 9
Abstract 9
Introduction 10
Methods. 11
Study area. 11
Field procedures 11
Data collection and analysis. 14
Results and Discussion 17
Biomass values. 17
Allometric equations using dimensional and spatial variables 18
Allometric equations using only spatial variables 24
Summary. 27
Literature Cited 28
CHAPTER 3. IMPLICATIONS AND IMPROVEMENTS OF THE SIUDY 30
Considerations for Future Research 30
Implications and Improvements for Future Research 34
BIBLIOGRAPHY 36
APPENDICES
1 Appreviations and definitions of terms available for model selection 41
2 Douglas-fir means by basal area 42
3 Douglas-fir means by total cover 43
4 Red alder means by nearest distance. 44
5 Douglas-fir means by proportion. 45
6 Red alder means by proportion. 46
7 Raw data 47

LIST OF FIGURES

Figure		Page
1.1	Law of constant final yield	4
1.2	Reciprocal yield law	4
1.3	Individual yield vs. density	5
2.1	Replacement series design	13
2.2	Density, cover, and proportion measurements	15
3.1	Theoretical patterns of growth representing three different genotypes, species, or sites	33

LIST OF TABLES

Tables		Page
2.1	Allometric equations for Douglas-fir and red alder	19
2.2	Equations for Douglas-fir and red alder bio- mass when spatial measurements alone were considered	25
A.1	Important variables for predicting tree seedling biomass	31
A.2	Abbreviations and definitions of terms avail- abler model selection	41
A. 3	Means and standard deviations of Douglas-fir dimensions and biomass by basal area	42
A. 4	Mimensions and biomass by percent total cover of weed species	43
Means and standard deviations for red alder dimensions and biomass by distance to the nearest neighboring tree	44	
A. 5	Means and standard deviations for Douglas-fir dimensions and biomass by proportion	45

THE ROLE OF DENSITY AND PROPORTION IN ALLOMETRIC EQUATIONS OF DOUGLAS-FIR AND RED ALDER SEEDLINGS

CHAPTER 1

INTRODUCTION AND OBJECTIVES OF STUDY

Abstract

Allometry Allometry is the study of the change in growth of various parts of an organism (Grier, Lee, and Archibald, 1984). Allometric equations have been used widely in forest research to determine tree biomass values, because they provide estimates of biomass when direct sampling is impractical or prohibitive to the experimental design (Satoo and Madgwick, 1982). Allometric equations relate difficult-measured parameters (e.g., leaf biomass, root biomass) to parameters that are measured more easily. Most authors estimate tree size by stem diameter, tree height, or a combination of these values and correlate tree size with tree biomass (Satoo and Madgwick, 1982). Since allometry describes the change in proportion of parts of a tree due to growth, any factor that affects tree growth can be significant in allometric equations. Such factors may include site characteristics, plant density, plant spatial arrangement, and species proportion. Satoo and Madgwick (1982), in a summary of forest biomass studies, believe that predicting tree biomass from stem diameter may be applicable generally to stems and entire trees, but not to tree canopies. Canopy components also are affected by growth stage, stand density, and site conditions (Satoo and Madgwick, 1982). Leaf biomass increases with total biomass when trees are young, but later becomes independent of total biomass. No differences in leaf biomass could be attributed to stand density when stand canopies of Pinus banksiana, \underline{P}. densiflora, and

P. sylvestris closed (Satoo and Madgwick, 1982). Root biomass often is not considered in plant allometrics. When root biomass has been considered, it varies in response to plant densities. Studies have shown positive, negative, and no responses to density (Satoo and Madgwick, 1982).

Allometric equations for plant populations usually require logarithmic transformations. The distribution of seedling biomass becomes positively skewed and often achieves a log-normal distribution under competitive conditions (Hutchings and Budd, 1981). An advantage of fitting a logarithmic equation for plant biomass is that the resultant form of the equation is flexible, while accounting for variances of weight with tree size (Satoo and Madgwick, 1982). The transformed model also meets statistical assumptions of constant variance and random error.

A disadvantage of logarithmic transformations is they are not linear. Thus, when the distribution of $\ln (Y)$ at X is normal, the distribution of Y will be skewed. The antilog of $\ln (Y)$ is the median of the skewed distribution, not the mean (Baskerville, 1972). However, the mean of the biomass is the value of interest. Several factors have been developed to correct for this bias in data transformation (Mountford and Bunce, 1973; Baskerville, 1972). Flewelling and Piennar (1981) summarized these correction factors and presented guidelines for choosing the proper factor based on model use, sample size, and mean squared error term. Another disadvantage of logarithmic transformations is that the sum of the estimates of the component tree parts may not equal the estimate of the total tree (Kozak, 1970). Therefore, stratification of sampling material improves the reliability of the biomass estimates (Madgwick, 1971).

Plant Competition

A goal of plant competition research is to elucidate the factors contributing to changes in plant growth. It is agreed generally that important factors to consider when studying plant
interactions are plant density and species proportion. Plant density directly affects plant growth. Plant biomass production is related to the resources available to plants and is approximately linear to the uptake of the limiting resource (Spitters, 1983ab). Therefore, competition among plants is reflected in their relative biomass accumulation. The "law of constant final yield" (Kira et al., 1953) is based on the principle that low plant densities have a larger space available to them. Thus, plant biomass responds to alterations in density in a plastic manner. At high plant densities, however, biomass reaches an equilibrium and no longer responds to increases in density [Fig. 1.1]. Similarly, the "reciprocal yield law" (Shinozaki and Kira, 1956) indicates that individual plants size will decrease with increasing plant density. This observation occurs because the resources available to individual plants diminishes as the number of plants in a given area increases [Fig. 1.2].

In addition to plant density, species proportion also may affect plant biomass. Species proportion is the relative density of each species in a mixture, and can be expressed as a ratio. Expansion of the "reciprocal yield law" by Spitters (1983ab) to include multiple species indicates that in a mixture the relative density of one species will influence the yield of other species in the mixture. By considering species proportion, effects of interspecific competition on plant biomass can be addressed. It is unlikely that plants will behave as individuals when interacting with individuals of the same or differing species.

The effects of density and proportion are dependent on plant size and resource availability (Harper, 1977). According to the "reciprocal yield law" [Fig. 1.2], plant biomass decreases as density increases. However, at low densities plants do not experience competitive inhibition, so biomass is not affected until a threshold density is attained [Fig. 1.3]. The threshold density represents the time or number of plants when density-induced stress occurs. Any factor that decreases the rate of plant growth can be

FIGURE 1.1. Law of Constant Final Yield.

FIGURE 1.2. Reciprocal Yield Law, where W is individual plant yield.

DENSITY

FIGURE 1.3. Individual Yield vs. Density, where Y_{1} is individual yield in the absence of ${ }^{1}$ competetive stress due to density.
expected to delay the onset of density stress and interspecific interactions and to reduce the intensities of stress and interactions (Harper, 1977).

Many experimental designs have been employed to study the influence of various factors on intra- and interspecific competitive interactions (Radosevich, 1987). An often used approach is the replacement series experiment. In this approach, total plant density is constant while the species proportions vary to pure stands of each species (de Wit, 1960; Jolliffe, 1984). The replacement series is believed to allow separation of interspecific competitive effects from those of intraspecific competition. The experimental density is usually arbitrarily chosen in these experiments. The degree of interaction between the species is of ten dependent on the chosen density even though the density throughout the experiment remains constant (Jolliffe et al., 1984). Jolliffe et al. (1984) advise that replacement series be replicated over a range of densities to improve the interpretation of replacement series experiments.

Species proportion also must be considered as a factor when allometric equations are used to estimate plant biomass in replacement series experiments. Species proportion is a discrete variable in these types of experiments. If proportion is treated as a variable during the experimental analysis, it also must be treated as a variable in initial calculations that provide the data for analysis. Ignoring species proportion during allometric calculations of biomass assumes that it is constant throughout the experiment. Interspecific competition also may influence plant biomass accumulation differently than intraspecific competition. If this is the case, relative species density (proportion) should more accurately account for differences in plant biomass than total density alone. The role of density and species proportion in competitive interactions must be understood to accurately interpret the factors affecting inter- and intraspecific competition. If they are not adequately considered, they become confounding factors or unaccounted sources of experimental variation.

Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) have been the subjects of many experiments on inter- and intraspecific competition. Tarrant (1961) observed that interplanting Douglas-fir and red alder increased Douglas-fir size and total stand biomass over Douglas-fir monocultures. This observation has been confirmed by Binkley (1983), Binkley et al. (1984), Bormann and Gordon (1984), Miller and Murray (1978), and Atkinson and Hamilton (1978). Binkley et al. (1984) observed that natural seeding of Sitka alder (Alnus sinuata) into a Douglas-fir plantation increased current average dbh (diameter at breast height, approximately 1.5 m), five-year average basal area growth, and stem biomass increment. In another study, Binkley (1983) observed that the influence of red alder on Douglas-fir growth was mediated by site factors. On a nitrogen deficient site, average Douglas-fir diameter was larger in the presence of red alder. However, the presence of red alder on a fertile site was correlated with decreased Douglas-fir biomass. Unfortunately, density and species proportion have never been considered as independent variables in such studies.

Density has been considered in the development of allometric equations for plant species in monoculture. Bormann and Gordon (1984) found that accounting for stand density in allometric equations for five-year-old red alder increased the predictability of their equations for tree growth. Stand density strongly affected average tree dimensions. In another study with juvenile red alder, Smith and De Bell (1974) found that differences in tree size and biomass were associated with differences in stand density, as a measure of tree crowding. They concluded that stand density (degree of crowding) is at least as important as site quality in determining yield of fully stocked red alder stands. Honer (1971) observed significant differences in allometric equations for balsam fir biomass when trees were grown in open vs. closed stands. Allometric equations also may be influenced by the proportion
of plant species in an experiment. Brand (1986a) found that the interspecific competition due to surrounding shrubs affected the allometric relationship of height to basal area for Douglas-fir. Douglas-fir growth vigor was more strongly related to the degree of intraspecific competition than basal area or height measures (Brand, 1986b). Oliver (1984) evaluated the effects of tree spacing with shrub association on ponderosa pine (Pinus ponderosa) growth. He found that shrub crown cover was related significantly to periodic annual increment in diameter, height, and stem volume of the pine. There also appeared to be an interaction between density and interspecific competition, because spacing significantly influenced diameter increment only when most shrubs were removed.

Study Objectives

Douglas-fir and red alder may respond to density and species proportion in a way that can be quantified in allometric equations for biomass. The significance of density and species proportion as independent variables also should be considered in competition research. This consideration is imperative in replacement series experiments where density and species proportions influence the inter- and intraspecific interactions of the species.

The objective of this study is to develop allometric equations for three-year-old Douglas-fir and red alder seedings. This is a necessary component of a more inclusive replacement series experiment. ${ }^{1}$ A second objective of the study is to determine the significance of tree density and species proportion as predictors of tree biomass.

[^0]
CHAPTER 2

THE ROLE OF DENSITY AND PROPORTION IN ALLOMETRIC EQUATIONS FOR DOUGLAS-FIR AND
RED ALDER SEEDLINGS

ABSTRACT

Allometric equations for three-year-old Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) seedings were developed. Two types of equations were generated for each species. The first equations contained both dimensional and spatial (density and proportion) independent variables to predict biomass. The second type of equations contained only spatial variables to predict biomass. Fifteen measures of density and one measure of proportion were considered (Appendix l).

Douglas-fir and red alder component biomass was best predicted by stem diameter, total height, and crown width. Density was a significant variable for predicting Douglas-fir leaf biomass and total biomass. However, density was positively correlated with biomass, contrary to normal yield-density relationships, and so was excluded from the final biomass models. The percent cover of weed species surrounding the sample trees was a significant variable for predicting Douglas-fir root biomass. Red alder total biomass was correlated with species proportion indicating that red alder biomass was higher when sample trees were surrounded by a larger number of red alder than Douglas-fir. Red alder root nodules also were significantly correlated with the percent cover of annual species surrounding sample trees. When considering only spatial variables in the models, Douglas-fir component biomass was correlated significantly with the total percent cover of weed species. Red alder biomass was correlated with the distance to the nearest neighboring tree.

INTRODUCTION

The need for allometric equations in plant competition experiments is obvious when plant biomass values are required, but direct sampling is not possible. The biomass generally is predicted from allometry by estimates of tree size (Satoo and Madgwick, 1982). Since allometry describes the change in proportion of parts of a tree due to growth, any factor that affects tree growth can be significant in allometric equations. Such factors may include site characteristics, plant density, plant spatial arrangement, and species proportion. It is especially germane in competition research using replacement series experiments to separate interspecific from intraspecific interactions to consider the effects of density and proportion on allometric equations. In replacement series experiments, plant density is an arbitrarily chosen fixed value and species proportion ranges from l:l mixtures to pure stands (monocultures) of each species (de Wit, 1960). Density and proportion influence the degree of interference (Harper, 1977; Jolliffe et al., 1984). It is, therefore, important to have a mechanism to account for species differences due to experimental density and proportion. Jolliffe et al. (1984) advise that replacement series be replicated over a range of densities to improve the interpretation of the experimental results. Understanding the effects of density and proportion on plant interference and quantifying these factors in allometric equations facilitates interpretation of inter- and intraspecific competition.

Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) have been the subjects of many experiments on inter- and intraspecific competition (Tarrant, 1961; Binkley, 1983; Binkley et al., 1984; Bormann and Gordon, 1984; Miller and Murray, 1978; Atkinson and Hamilton, 1978). Unfortunately, density and species proportion have never been considered as independent variables in such studies.

Density has been considered in the development of allometric equations for plant species in monoculture. Bormann and Gordon (1984) found that accounting for stand density in allometric equations for five-year-old red alder increased the predictability of their equations for tree growth. Allometric equations also may be influenced by the proportion of plant species in an experiment. Brand (1986a) found that the interspecific competition due to surrounding shrubs affected the allometric relationship of height to basal area for Douglas-fir.

An objective of this experiment is to develop allometric equations for three-year-old Douglas-fir and red alder seedings. ${ }^{1}$ A second objective is to determine the significance of tree density and species proportion as predictors of tree biomass.

METHODS

Study Area

The study was established on a portion of a 34 ha clearcut near Belfair, Washington that was harvested during the summer of 1984. The elevation of the area is approximately 150 m . The original stand was railroad logged in the early 1900's. It was dominated by 70 year-old Douglas-fir (Pseudotsuga menziesii) with scattered madrone (Arbutus menziesii) and red alder (Alnus rubra). The site index of the original stand was 107 according to McArdle's 100-year site index (McArdle et al., 1961).

The soil is classified as a Shelton Gravelly Sandy Loam. It is characterized by glacial till parent material and a hardpan approximately one meter below the surface. The soil contains 62% rock by weight. Total bulk density is $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. The soil has

[^1]low water-holding capacity. Drainage occurs rapidly in the top horizons but slowly in the lower horizons. Parts of the site are saturated from December to March. Average total nitrogen on the site ranges from 1200 ppm at 0.15 cm to 430 ppm at $60-90 \mathrm{~cm}$. The site receives $140-200 \mathrm{~cm}$ of precipitation per year, most of which falls from December to March. ${ }^{2}$ Therefore, the soil during the summer months is extremely dry. In September, 1986, the soil contained 18% water by volume. Prior to the establishment of the study, the vegetation on the site was 8% shrub species and 24% herb species. ${ }^{3}$

Field Procedures

In March, 1985, two-year-old nursery grown Douglas-fir seedlings and one-year-old wild red alder seedlings were planted in a replacement series experiment [Fig. 2.1]. Originally, the study had eleven treatments consisting of monocultures of Douglas-fir and red alder, and a $1: 1$ mixture of Douglas-fir and red alder, each planted at four spacings ($30 \mathrm{~cm}, 45 \mathrm{~cm}, 60 \mathrm{~cm}$, and 85 cm between neighboring trees). The 85 cm spacing was implemented for monocultures only due to the original experimental design. The plot sizes ranged from $1.44 \mathrm{~m}^{2}$ with the 30 cm spacing to $5.76 \mathrm{~m}^{2}$ with the 60 cm spacing. Each plot contained nine sample trees surrounded by a row of border trees [Fig. 2.2]. The experiment was arranged in a randomized complete block with three blocks. Blocks were chosen according to topographic variation which was indicative of a soil moisture gradient.

An array of measurements was taken when the trees were planted. These measurements were repeated at the end of the first growing season (October, 1985) and at the end of the second growing season, when the experiment was harvested (September, 1986). Measurements included total height of the seedling, stem diameter 2 cm above

[^2]

FIGURE 2.1. Replacement Series Design showing monocultures of Douglas-fir (4) and red alder (•) and a l:l proportion of each species. Total density of this hypothetic experiment is 25 trees.
the ground, crown width measured in two perpendicular directions, and length from the ground to the first live branch. In addition to these measurements, samples of ten to twenty trees of each species were partitioned into biomass components, dried and weighed when the experiment was established and after the first growing season. These measurements of total, stem, leaf, and root biomass and the above-mentioned field measurements were used to derive preliminary allometric equations. Other weed species were not removed during the experiment. However, the percent cover of plant species other than trees was ocularly estimated on each plot after each growing season.

At harvest (September, 1986) the trees were measured, excavated, and transported to Oregon State University. Roots and foliage were cleaned of dirt and other debris, separated into above-ground and below-ground components, and dried at $70^{\circ} \mathrm{F}$. for 72 hours. After drying, the Douglas-fir needles were separated from the branches. Red alder leaves were discarded because the trees were harvested after leaf abscission had begun. Each tree component was weighed. A random sample of red alder root nodules from 27 seedlings was taken. The nodules were removed from the root system prior to drying.

Data Collection and Analysis
Allometric equations were to be developed for each treatment and compared among monocultures and species mixtures. However, tree mortality required a revision of this method of data collection and analysis. Thus, data were analyzed on the basis of individual trees rather than as groups of trees, since the density and the species proportion surrounding surviving trees could be obtained readily by measurements of distance among individuals.

Several measurements of density were used [Fig. 2.2]. One measurement of density was based on the number of occupied planting spots (potential $n=8$) surrounding each sample tree. This number was expanded to trees per m^{2}. The disadvantage of this

\% Total $=$ Percent cover of all annual and shrub species on the plot.
\% Shrubs $=$ Percent cover of all shrub species on the plot.
\% Annual = percent cover of all herbaceous species on the plot.
$\mathrm{Ba}=$ Basal area of the stems on the plot $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$.
$\mathrm{Ca}=$ Crown area of the stems on the plot $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$.
Dist $=$ Distance to the nearest neighboring tree.
$\mathrm{Ba} /$ Dist $=$ Basal area of the stems on the plot divided by the distance to the nearest neighboring tree.
$\mathrm{Ca} /$ Dist $=$ Crown area on the plot divided by the distance to the nearest neighboring tree.
Dens $=$ Density of the stems occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).

DensDF $=$ Density of Douglas-fir occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).
DensRA $=$ Density of red alder occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).
Prop $=$ Number of Douglas-fir seedlings/total number of seedings surrounding the sample tree.

Avedist $=$ Average distance to eight surrounding neighbors.
FIGURE 2.2. Density, cover, and proportional measurements collected to determine the influence of density and proportion on Douglas-fir ($\mathbf{(1)}$ and red alder (•) biomass.
method was that the expansion factor from the number of occupied planting spots to trees per m^{2} was different for each treatment. Thus, densities obtained for sample trees in different treatments were not calculated on the same basis. This method also assumed that only trees affecting the sample tree were those directly surrounding it. Another measure of density was based on the average distance to the eight surrounding trees. This measurement assumed that surrounding trees were equally spaced around the sample tree. The third measurement of density was based on the distance from the sample tree to the closest neighboring tree. The fourth density measurement was based on the total tree basal area per plot as calculated by the sum of the cross-sectional stem areas. The fifth measurement was similar to the fourth, but was based on the total crown area per plot as calculated by the sum of the cross-sectional crown areas. To incorporate distance to the nearest neighboring tree with a measure of tree size, basal area per nearest distance and crown area per nearest distance also were calculated.

Proportion was calculated as the number of Douglas-fir trees that occupied the eight planting spots surrounding a sample tree divided by the total number of planting spots that were occupied. Proportion ranged from zero to unity, with zero indicating no Douglas-fir and all red alder surrounded the sample tree. Unity indicated all Douglas-fir and no red alder surrounded the sample tree.

The regression procedure in SAS (SAS Institute, 1985) was used to generate allometric equations for Douglas-fir and red alder biomass from dimensional and spatial variables. In this analysis, density and proportion were tested as significant variables. Equations also were developed using only density and proportion as independent variables. This procedure allowed an assessment of variation in tree component biomass explained by only spatial factors.

RESULTS AND DISCUSSION

Biomass Values
A list of abbreviations and definitions is shown in Appendix 1. Means and standard deviations of tree biomass and dimensions are shown in Appendices 2-6. Significant differences between means were calculated using Scheffe's statistic (SAS Institute, 1985). This test is valid for all possible comparisons of means with different sample sizes. Of the fifteen density measurements, the most significant density descriptors of Douglas-fir biomass were basal area and the total percent cover of weed species [App. 2 \& 3]. As will be discussed later, basal area and the percent total cover of weeds have low predictive abilities for Douglas-fir biomass, but are significant when stepwise regression is applied to spatial measurements alone. According to Scheffe's statistic, means of total biomass, leaf biomass, root biomass, total height, and stem diameter were different between basal area $0-3.0 \mathrm{~cm}^{2} / \mathrm{m}^{2}$ and $12.1-14.0 \mathrm{~cm}^{2} / \mathrm{m}^{2}$ [App. 2]. There were no discernible differences among means at different percent covers [App. 3].

The most significant density measurement describing red alder biomass was distance to the nearest neighboring tree. All the variables, except nodule biomass, were different between a distance of $30-60 \mathrm{~cm}$ [App. 4]. For crown width, all of the distances are significantly different.

Means and standard deviations for each species by proportion are listed in Appendices 5 and 6 . For both species, there were no significant differences in tree biomass means attributable to proportion. These data were used to develop allometric equations for Douglas-fir and red alder biomass and to test the significance of density and proportion for predicting biomass.

Allometric Equations using Dimensional
and Spatial Variables
Allometric equations developed to estimate biomass for three-year-old Douglas-fir and red alder seedlings required logarithmic transformations to meet statistical assumptions of normal distribution, constant variance, and random error. The red alder nodule biomass equations did not require transformation. Equations were generated for seedling components of growth, rather than total biomass only. According to Kozak (1970), predicting biomass for component parts improves the reliability of estimates. Logarithmic transformations result in statistically biased biomass estimates. However, Madgwick and Satoo (1975), in a simulated sample of trees for biomass prediction, found that bias due to transformation was minor compared to the variation among replicated samples. Correction factors are based on the mean squared error (MSE) of the model predicting biomass. Since the MSE's generated in this analysis are similar to those generated by Madgwick and Satoo, correction factors were not used in biomass predictions. The allometric equations for Douglas-fir and red alder follow the general form:

$$
\ln \hat{Y}_{i}=\hat{B}_{0}+\hat{B}_{1} \ln X_{1}+\hat{B}_{2} \ln X_{2}+\ldots \hat{B}_{i} \ln X_{i}
$$

where: $\quad \hat{Y}=$ the independent variable, biomass

$$
\begin{aligned}
X_{i}= & \text { the independent variables, either dimensional } \\
& \text { or spatial }
\end{aligned}
$$

$$
\hat{B}_{i}=\text { the slopes. }
$$

These equations are listed in Table 2.1.
Variables were selected according to the following criteria: significance of independent variables $(|t|>p=0.06)$, Mallow's Cp statistic (Draper and Smith, 1981), adjusted R^{2}, MSE, and multicollinearity of the variables. In all equations no variables have a variance inflation factor greater than 4.0 which indicates low multicollinearity (Gunst and Mason, 1980). In spite of the large number of variables available for model selection, few independent variables were necessary to adequately predict tree biomass. The

TABLE 2.1. Allometric equations for Douglas-fir and red alder.

Species	Y	Intercept	$\ln \left(\mathrm{D}^{2} \mathrm{H}\right)$	$\ln \left(\mathrm{C}^{2} \mathrm{H}\right)$	\ln (Diam)	Prop	Dens	\% Total	R^{2}	MSE
Douglas-fir	1n(Stbio)	-4.7	0.7	0.1	--*	--	--	--	0.91	0.03
	\ln (Lfbio)	-4.0	--	0.3	1.6	-	0.01	--	0.83	0.06
		-3.9	--	0.3	1.5	--	0.01	--	0.81	0.06
	1 n (Rtbio)	-3.5	--	0.1	1.8	--	--	0.002	0.79	0.07
	\ln (Totbio)	-2.7	--	0.2	1.7	--	0.005	--	0.91	0.03
		-2.7	--	0.2	1.6	--	--	--	0.91	0.03
Red alder	\ln (Stbio)	-6.4	0.8	0.2	--	-	--	--	0.91	0.05
	\ln (Rtbio)	-3.1	--	--	2.3	--	--	--	0.87	0.06
	1 n (Totbio)	-3.5	--	0.2	2.0	-. 14	--	--	0.94	0.04

*

Blank spaces indicate variables were not significant in the equations.
The equation for red alder nodule biomass did not require transformation and is: Nodbio $=$ $1.06+.00015\left(\mathrm{D}^{2} \mathrm{H}\right)-.04(\%$ Annual $) \quad \mathrm{R}^{2}=0.65 \quad \mathrm{MSE}=0.3$
Y refers to dependent variables, \ln (Stbio), \ln (Lfbio), \ln (Rtbio), \ln (Totbio) which aredefined respectively as the natural logarithris of stem biomass, leaf biomass, root biomass, and total biomass. Intercept refers to the Y-intercept of the allometric equations. Independent variables are $\ln \left(D^{2} H\right), \ln \left(C^{2} H\right), \operatorname{In}(D i a m)$, Prop, Dens, \% Total, and \% Annual, which are defined respectively as the natural logarithm of (stem diameter) ${ }^{2} *$ total height, natural logarithm of (average crown width) ${ }^{2}$ * total height, natural logarithm of stem diameter, proportion (number of Douglas-fir seedlings/total number of seedlings surrounding the sample tree), density of the stems occupying the eight planting spots surrounding the sample tree, percent cover of all herbaceous and shrub species on the plot, and percent cover of all herbaceous species on the
variables selected for the equations of tree components were similar for the two species. The equations for Douglas-fir and red alder stem biomass incorporated the same variables. These two equations have significantly different slopes ($\alpha \leqslant .01$) and significantly different coefficients for $\ln ^{2} H(\alpha \leqslant .01)$, but the coefficients for $l_{n D^{2}} \mathrm{H}$ are not significantly different.

Tree density was not a significant factor for predicting Douglas-fir or red alder stem and total biomass. However, the effects of tree density may not yet be apparent because of the severity of the environmental conditions. Abrams (1985) found significant differences in growth rates between stands of Quercus spp., but the differences could not be correlated with changes in stand density. Instead, growth rates were correlated with edaphic factors.

The allometric equations for Douglas-fir root biomass show that root biomass was sensitive to interspecific interactions. Root biomass decreased with increasing weed cover. The detection of interspecific interaction in roots and not in other plant parts may be due to three facrors: (1) greater sensitivity of roots to moisture and nutrient depletion by weeds, (2) large root systems in proportion to other plant components, and (3) length of time the experiment was in progress. These factors may have enabled the detection of interspecific interaction in roots while this effect was not detected for other plant parts. Although below-ground competition may eventually affect above-ground allometry, the results of this experiment indicate that below-ground interspecific interactions are not yet affecting Douglas-fir above-ground biomass.

Although direct measurements of soil moisture content and soil nutrient availability were not made during the course of this experiment, it is plausible that moisture and nutrients were limiting to the seedlings because of site characteristics. Soil measurements taken when the study was established indicated that available nitrogen and water-holding capacity were low and
bulk density was high. Resource limitations would be accentuated by higher densities of competing species. Roots are more sensitive to cold, heat, and desiccation than above-ground parts (Larcher, 1980). Therefore, water and nutrient limitations combined with higher sensitivity of roots than in other plant parts could lead to less root biomass when there was a high percent cover of competing species.

Theoretically, the intensity of density effects is influenced by the size of the interacting individuals. Douglas-fir root biomass sensitivity to the presence of weeds may indicate that the roots grew larger in proportion to other plant parts. Thus, roots were able to interact significantly, whereas other tree components could not. Roots may attain a larger size relative to above-ground parts due to a shift in carbohydrate allocation under environmental stress. The annual plants and shrubs that invaded the plots after the experiment was established utilized resources that could have been available to the trees. The trees, therefore, may have experienced stress due to depleted moisture and nutrient level caused by weed presence. Allocation patterns can be altered in plants under stress to favor root growth (Waring and Schlesinger, 1985). Concurrently, roots experienced less moisture stress than the shoot, and so can receive an improved carbohydrate supply, enabling active growth. Nutritionally stressed Scots pine allocated more than 60% of their photosynthate below ground. In contrast, trees receiving nutrient supplements allocated less than 40% of their photosynthate below ground (Linder and Axelsson, 1982, in Waring and Schlesinger, 1985). Keys and Grier (1981) studied net production of forty-year-old Douglas-fir on high- and low-productivity sites. The low site they chose was in western Washington and had a soil similar in type, water-holding capacity, and nutrient content to the soil used in this experiment. They found above-ground net production on the high site was 13.7 MT/ha compared with $7.3 \mathrm{MT} / \mathrm{ha}$ on the low site. Below-ground net production on the high site was $4.1 \mathrm{MT} / \mathrm{ha}$ compared with $8.1 \mathrm{MT} / \mathrm{ha}$
on the low site. The difference in total net production between the two sites was small ($2.4 \mathrm{MT} / \mathrm{ha}$). They concluded that the difference in above-ground productivity may be due to a greater need for investment in roots on harsh sites. Baskerville (1960), in studies of production in mixed balsam fir stands, found that roots form a greater proportion of total stand biomass in dense stands than in sparse stands.

In addition to an altered allocation pattern, the differential growing seasons of plant components also may have enabled roots to grow larger and, consequently, to develop interspecific interactions. In temperate regions, root elongation begins earlier and ends later than shoot elongation (Kozlowski, 1971). Root elongation may continue for several weeks after shoots stop growing in species whose shoots are preformed in the buds, such as Douglas-fir (Koslowski, 1971). Douglas-fir seedling roots have two flushes of growth. One flush occurs in the early spring and the other in the late fall. Shoots usually have only a single flush of growth and then growth declines to a low level during the summer (Cleary et al., 1982). The longer growing season of roots is due to a wider range of optimum temperatures for root growth than for above-ground parts (Larcher, 1980).

Density was a significant factor for predicting Douglas-fir leaf biomass and total biomass [Table 2.1]. For leaf biomass, the inclusion of density in the allometric equation slightly improved the predictability of the equation. For total biomass, the inclusion of density did not significantly change the equation or its predictability. The coefficient for density in both equations was positive, indicating larger tree size was correlated with higher density. Positive coefficients may reflect a sheltering effect by neighboring seedlings from harsh environmental conditions, a reduction in weed competition through shading, or microsite differences. It is plausible that water, soil, and nutrient availabilities were not homogeneous over the site. Higher resource availability would be correlated with
higher survival and growth rates. Regardless of the mechanism that caused the density interaction, the variable in these equations did not represent density effects alone since size is not positively correlated with density according to the "reciprocal yield law." Therefore, density was not included in the allometric equations for Douglas-fir leaf and total biomass, although it was a significant variable.

Red alder total biomass increased when the sample tree was surrounded by a higher proportion of its own species. This increase in biomass may indicate microsite improvement by red alder or a microsite difference that was present before the red alder were planted. Red alder root nodules fix atmospheric nitrogen, and convert it to a form utilized by plants. Studies have demonstrated improved soil characteristics and increased soil nitrogen when red alder was present in a stand. A twenty-year-old red alder stand can accumulate $6 \mathrm{MT} /$ ha of nitrogen from nitrogenfixation and $160 \mathrm{MT} /$ ha from litter fall (Zavitkovski and Stevens, 1971). In a study near Olympia, Washington, soil nitrogen accumulated at a nearly constant rate of $35 \mathrm{~kg} / \mathrm{ha} / \mathrm{yr}$ in the mineral soil beneath five to forty-year-old red alder stands. Organic matter content also was 20% higher and bulk density was lower than in an adjacent Douglas-fir stand (Bormann and DeBell, 1981). A heavy red alder understory added $870 \mathrm{~kg} / \mathrm{ha}$ of nitrogen to the top 50 cm of soil in a mixed Douglas-fir/red alder stand (Berg and Doerksen, 1975). Increased soil and foliar nitrogen often is correlated with increased Douglas-fir biomass (Binkley et al., 1984; Binkley, 1983; Miller and Murray, 1979; Tarrant, 1961). Higher Douglas-fir biomass was not significantly correlated with higher proportion of red alder in this study. Perhaps the effect of species proportion on Douglas-fir would have been more apparent if the experiment had been extended another growing season.

Red alder nodule biomass decreased as the percent cover of herbaceous plants increased [Table 2.1]. Photosynthate supply
is the major limiting factor in nitrogen fixation and nodule formation (Wheeler and McLaughlin, 1979). Low light levels inhibit nodule formation (Dawson and Gordon, 2979). Herbaceous plants surrounding the red alder shaded the seedling trees and may have decreased the amount of photosynthate produced by the red alder. Lower photosynthate levels would lead to lower carbohydrates available to the nodule bacterị. Decreased nodule biomass also may be the result of lower soil moisture. Nodule forming bacteria are sensitive to moisture level (Waring and Schlesinger, 1985). The coarse soil on the site has a low moisture-holding capacity and the presence of herbaceous plants would deplete the moisture level further. Therefore, the percent cover of herbaceous plants may be related to nodule biomass due to a depletion of soil moisture.

Allometric Equations Using Only Spatial Variables

The roles of density and proportion of trees and other vegetation for predicting tree biomass when no other source of variation was considered also were determined. Density and proportion measures alone were regressed against tree biomass. The density measures available for model selection were: density (trees $/ \mathrm{m}^{2}$), density of Douglas-fir (trees $/ \mathrm{m}^{2}$), density of red alder (trees $/ \mathrm{m}^{2}$), percent cover of herbaceous plants, percent cover of shrubs, percent cover of herbaceous plants + shrubs, basal area ($\mathrm{cm}^{2} / \mathrm{m}^{2}$), crown area $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$, distance to the nearest neighboring tree (cm), average distance to the neighboring tree (cm), basal area divided by the nearest distance, the crown area divided by the nearest distance, and the lograithms of these variables [App. 1]. The equations are of the form:

$$
\hat{\ln }_{i}=\hat{B}_{0}+\hat{B}_{X}
$$

where $\hat{Y}=$ the dependent variable, biomass

$$
X_{i}=a n \text { independent spatial variable. }
$$

The equations are listed in Table 2.2.

TABLE 2.2. Equations for Douglas-fir and red alder biomass when spatial measurements alone were considered.

Species	Y	Intercept	\% Total	Dist	R^{2}	$\mathrm{p}(\mathrm{F}>\hat{\mathrm{F}})$
Douglas-fir	\ln (Stbio)	3.4	-. 006	-_*	0.08	0.0008
	\ln (Lfbio)	3.0	-. 006	--	0.07	0.0019
	\ln (Rtbio)	2.5	-. 008	--	0.13	0.0001
	In(Totbio)	4.1	-. 006	--	0.10	0.0002
Red alder	\ln (Stbio)	2.7	--	0.04	0.30	0.0001
	\ln (Rtbio)	2.0	--	0.03	0.30	0.0001
	\ln (Totbio)	3.1	--	0.03	0.31	0.0001
	Nodbio	No variables significant at . 05 level.				

[^3]These results indicate that Douglas-fir and red alder are sensitive to different spatial variables which have different levels of predictability. The only significant density measure to predict the biomass of Douglas-fir was the percent cover of weed species surrounding the sample trees. Total percent cover was significant for all Douglas-fir components of biomass as well as for total biomass. However, not considering weed species in the equations, density (as measured by the logarithm of basal area) was the most significant indicator. The equations generated have little predictive ability and do not account for variability in biomass, indicating that density does not play a major role in predicting Douglas-fir biomass at this time. For red alder, the only significant density measure to predict biomass was the distance to the nearest neighboring tree. The distance to the nearest tree alone accounted for 30% of the variation in biomass. Nodule biomass could not be predicted from spatial parameters alone. Proportion was not a significant predictor for Douglasfir and red alder without other parameters being considered in the model. When analyzing experimental data where density is a variable, it is important to determine which measure of density most accurately predicts biomass.

Allometric equations generated in this study can be quantitatively compared to equations generated in other studies if they utilize the same variables and transformations. Without these similarities, the equations can only be qualititatively compared. For example, Zavitkovski and Stevens (1972) generated allometric equations for red alder biomass but used (stem diameter) ${ }^{2} \mathrm{x}$ height and [stem diameter) ${ }^{2} *$ height] ${ }^{2}$ as independent variables. These equations cannot be compared with the equations from this study which use (stem diameter) ${ }^{2} \mathrm{x}$ height, (crown diameter) ${ }^{2}{ }^{*}$ height, and stem diameter as independent variables. Numerous equations have been generated for Douglas-fir biomass, most using stem diameter as the only independent variable (Tholz et al., 1979). Qualitative comparisons can be made between the equations
generated in this study and those generated for red alder by Bormann and Gordon (1984). They assessed the effects of stand density on red alder size and related stand density to nitrogenase activity. Their first premice was that higher photosynthetic rates would lead to greater nitrogenase activity. They hypothesized that trees in dense stands may have reduced foliage relative to the respiratory surface. Therefore, less photosynthate would be available for the below-ground system. They found that trees in high-density stands allocated less photosynthate to root nodules for nitrogen fixation. They also found that increased growing space was correlated with a greater leaf mass and a higher rate of nitrogen fixation per tree assuming that density effects occur regardless of the interacting species. Bormann and Gordon's findings are consistent with the results of this study. Red alder nodule biomass was negatively correlated with a higher percentage cover of herbaceous weeds.

Other similarities between the allometric equations generated by Bormann and Gordon and those generated in this study cannot be made for several reasons. First, Bormann and Gordon found that density was a significant variable for predicting root biomass. Density was not a significant variable for predicting root biomass in this study. Second, Bormann and Gordon did not use logarithmic transformations for the independent dimensional variables (dbh and $\left.(d b h)^{2}\right)$. Third, Bormann and Gordon used different independent variables to predict biomass than were used in this study. Statistical comparisons among allometric equations generated in different studies can only be made when the equations utilize the same variables and transformations.

SUMMARY

The roles of density and proportion in allometric equations for predicting biomass of Douglas-fir and red alder seedings vary with the plant part being predicted and the method of density
measurement. The total percent cover of weed species was a significant variable for predicting Douglas-fir root biomass when dimensional variables also were in the equation. When considering only spatial variables, the total percent cover of weeds was a significant variable in regression equations for Douglas-fir biomass, although the equations had little predictive power. Red alder total biomass was correlated with species proportion, indicating trees were larger when surrounded by a higher proportion of red alder than Douglas-fir. Red alder root nodules also were sensitive to the percent cover of annual species. Considering only spatial variables, red alder biomass was positively correlated with the distance to the nearest neighboring tree. Accounting for density and proportion in allometric equations for Douglas-fir and red alder seedlings can improve the predictability of the equations. However, the appropriate method of determining density should be evaluated for each species.

LITERATURE CITED

Abrams, M. D. 1985. Age-diameter relationships of Quercus species in relation to edaphic factors in gallery forest in northeast Kansas. For. Ecol. Manage. 13(3/4):181-194.

Baskerville, G. L. 1960. Dry-matter production in immature balsam fir stands: roots, lesser vegetation, and total stand. For. Sci. 12:49-53.

Berg, A., and A. Doerksen. 1975. Natural fertility of a heavily thinned Douglas-fir stand by understory red alder. Research Note No. 56, Oregon State University School of Forestry, Corvallis.

Binkley, D. 1983. Ecosystem production in Douglas-fir plantations: Interactions of red alder and site fertility. For. Ecol. Mgmt. 5:215-227.

Binkley, D., J. D. Lousier, and K. Cromack. 1984. Ecosystem effects of Sitka alder in a Douglas-fir plantation. For. Sci. 3(1):26-35.

Cleary, B. D., R. D. Greaves, and P. W. Owston. 1982. Seedlings. In: Cleary, B. D., R. D. Greaves, and R. K. Hermann (Eds.). Regenerating Oregon's Forests. Oregon State University School of Forestry, Corvallis, pp. 63-97.

Dawson, J. O., and J. C. Gordon. 1979. Photoassimilate supply and nitrogen fixation in Alnus. In: Gordon, J. C., C. T. Wheeler, and D. A. Perry (Eds.). Symbiotic Nitrogen Fixation Fixation in the Management of Temperate Forests. Proceedlings of a workshop. Oregon State University.

Draper, N., and H. Smith. 1981. Applied Regression: Analysis. 2nd ed. John Wiley and Sons, N.Y.

Gholz, H. L., C. C. Grier, A. G. Campbell, and A. T. Brown. 1979. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. OSU For. Res. Lab., Research Paper 41.

Gunst, R. F., and R. L. Mason. 1980. Regression Analysis and Its Application: A Data-oriented Approach. Marcel Dakker, Inc., N.Y.

Keyes, M. R., and C. C. Grier. 1981. Above- and below-ground net productivity in a 40-year-old Douglas-fir stand on low- and highproductivity sites. Can. J. For. Res. 11:599-605.

Kozlowski, T. T. 1971. Growth and Development of Trees, Vol. II: Cambial Growth, Root Growth, and Reproductive Growth. Academic Press, N.Y.

Larcher, W. 1980. Psychological Plant Ecology. Springer-Verlag, N.Y.

McArdle, R. E., W. H. Meyer, and D. Bruce. 1961. The Yield of Douglas-fir in the Pacific Northwest. Tech. Bull. No. 201, USDA.

Miller, R. E., and M. D. Murray. 1978. Effects of red alder on the growth of Douglas-fir. In: Briggs, D. G., D. S. DeBell, and W. A. Atkinson (Eds.). Utilization and Management of Alder. PNW Rng. and Exp. Sta., Gen. Tech. Rep., PNW-70. USDA, Portland, Oregon, pp. 288-306.

SAS Institute. 1985. SAS/STAT Guide for Personal Computers, Version 6 Edition. Cary, N.C.

Satoo, T., and H. A. I. Madgwick. 1982. Forest Biomass. Dr. W. Junk Pub., London.

Tarrant, R. F. 1961. Stand development and soil fertility in a Douglas-fir and red alder plantation. For. Sci. 7:238-246.

Waring, R. H., and W. H. Schlesinger. 1985. Forest Ecosystems: Concepts and Management. Academic Press, Orlando.

Wheeler, C. T., and M. E. McLaughlin. 1979. Environmental modulation of nitrogen fixation in actinomycete nodulated plants. In: Gordon, J. C., and C. T. Wheeler, and D. A. Perry (Eds.). Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Proceedings of a workshop. Oregon State University, Corvallis.

Zavitkovski, J., and R. D. Stevens. 1971. Primary productivity of red alder ecosystems. Ecology 53(2):235-242.

CHAPTER 3

IMPLICATIONS AND IMPROVEMENTS OF THE STUDY

Considerations for Future Research

This study was initiated as part of a larger replacement series experiment to develop site-specific allometric equations and to determine the significance of density and species proportion for predicting tree biomass. The larger experiment addresses the effects of inter- and intraspecific competition between Douglas-fir and red alder on three sites in the Pacific Northwest: a highproductivity site on the Cascade Head Experimental Forest, Oregon, a medium-productivity site on the H. J. Andrews Experimental Forest, Oregon, and a low-productivity site near Belfair, Washington. The duration of the study is 25 years. This thesis addresses a narrow time frame on only one of the sites, but suggests considerations for the entire study.

Areas of consideration revealed by this study are: (1) significant factors to quantify for predicting tree biomass, (2) timing and duration of the measurements for developing allometric equations, and (3) site specificity of the equations. The important parameters revealed by this study for predicting tree seedling biomass are listed in Table 3.1. Choosing independent variables for model building can be an endless task. Independent variables can be differentiated into four classes: dimensional, spatial, growth, and interaction. Tree biomass has conventionally been predicted by dimensional parameters. Diameter, height, and crown width are widely accepted as the most significant variables for predicting tree biomass (Satoo and Madgwick, 1982). The additional spatial parameters, proportion, total percent cover, nearest distance, and basal area may fine-tune the equations to represent site factors. Various methods of measuring density have different predictive abilities and appear to be species-specific. Therefore, when incorporating density into an allometric equation, it is important

TABLE 3.1. Important variables for predicting tree seedling biomass

Estimate	Independent Variables		
	Major Importance	Variable in Model	Minor Importance ${ }^{\text {a }}$
lnStbio	Diameter Height Crown width	$\begin{aligned} & \ln \left(D^{2} H\right) \\ & \operatorname{In}\left(C^{2} H\right) \end{aligned}$	$\begin{aligned} & \% \text { Total } \\ & \ln (B A)^{b} \\ & \text { Dist }^{\text {c }} \end{aligned}$
InRtbio	Diameter Height Crown width \% Total	$\begin{aligned} & \ln (D i a m) \\ & \ln \left(C^{2} H\right) \end{aligned}$	$\begin{aligned} & \ln (B A)^{b} \\ & \text { Dist }^{c} \end{aligned}$
$\operatorname{lnLfbio}{ }^{\text {b }}$	Diameter Height	$\begin{aligned} & \ln (D i a m) \\ & \ln \left(C^{2} H\right) \end{aligned}$	$\begin{aligned} & \% \text { Total } \\ & \ln (B A) \end{aligned}$
lnTotbio	Diameter Height Crown width Proportion ${ }^{c}$	$\begin{aligned} & \ln \left(D^{2} H\right) \\ & \operatorname{In}\left(C^{2} H\right) \\ & \text { Prop }^{c} \end{aligned}$	$\begin{aligned} & \% \operatorname{Tota}^{b} \\ & \ln (B A)^{b} \\ & \text { Dist }^{c} \end{aligned}$
Nodule	Diameter Height \% Annuals	$D^{2} \mathrm{H}$ \% Annual	

[^4]to determine which measure of density most accurately predicts biomass. Growth-type parameters, such as initial size and current growth rate, also may add predictive ability to allometric equations. In the beginning phases of this analysis, initial diameter and height were considered as independent variables. However, these variables were later excluded from the models for two reasons. First, future users of the equations are not guaranteed prior information about the sample trees. Second, growth parameters are conventionally used for modeling growth, not for predicting biomass (Ritchie and Hann, 1986; Valentine, 1986). Several interaction terms which incorporated size with density were suggested for model building but none of them were significant.

The proper timing of dimensional measurements and the duration of the experiment also are significant considerations. The measurements should be taken after cessation of the active growing period but before leaf abscission. Measurements also should extend through a sufficient number of growing seasons to adequately determine the significance of density and proportion. Two growing seasons may be a long enough period for seedlings planted on a higher-quality site. However, it was not long enough to detect density effects, other than those from herbaceous and shrub species, on Douglas-fir or red alder. The experimental period also was not long enough to detect proportion effects on Douglas-fir. New equations should be developed every three to five years until the trees have reached a stable growth rate [Fig. l.1]. In dense stands, the stability of the allometric equations over time depends on when self-thinning begins (Smith, 1986).

Early growth rates are strongly affected by species, genotype, and environment (Daniel et al., 1979) [Fig. 3.1]. Variable growth rates in juvenile trees may cause the slope and the intercept of the equations to vary as the trees grow older. Site specificity of the equations is another important consideration, especially with juvenile trees. The resource availability and growing season on the site strongly affects the growth of tree components in

FIGURE 3.1. Theoretical patterns of growth. Tree different lines may represent three different genotypes, species, or sites. (Adapted from Daniel et al., 1979).
relation to one another (Harding and Grigal, 1986). Thus, allometric equations should be developed for each of the three sites for the Radosevich/Hibbs replacement series in progress.

Implications and Improvements for Future Research

The implications of the results of this study are pertinent to developing allometric equations for other sites. First, competition from weeds may greatly affect tree growth. Therefore, weed species should either be eliminated from the experiment or accurately quantified. Second, tree components have differential sensitivities to density and proportion and may react to these factors at different ages. For example, Douglas-fir root biomass is sensitive to percent cover of weeds at age 3 , but may not be at age 10. Likewise, red alder stem biomass is not sensitive to density at age 3 but may be at a later age [Fig. 3.1].

Several aspects of this study could have been improved. These suggestions should be noted for future development of allometric equations. The original design was a replacement series experiment. Allometric equations were to be developed for each species at every density and proportion in the experiment. The equations would then have been tested to determine if there were significant differences in slope or intercept attributable to density and proportion. However, heavy seedling mortality confounded the geometry of the design so that density and proportion were no longer discrete variables. The original approach was abandoned in favor of an individual seedling approach. The density and proportion that each seedling experienced were used as continuous independent variables and tested for their significance in model selection.

Tree seedling mortality always is a concern when establishing an experiment in the field. The problem is magnified, however, when the experiment is established on a "poor" site and will only continue for two or three growing seasons. Therefore, it would be wise to implement a design that is not strongly affected by mortality but can still meet the objectives of developing allometric
equations and testing the significance of density and proportion. Mead and Riley (1981) state that there are no adequate designs for investigating the effects of spatial arrangement in intercropping research. However, possible designs which incorporate density and species proportion are the Nelder design (Nelder, 1962) and the Addition Series (Spitters, 1983ab). Mead and Riley (1981) also propose a design in which the intimacy and the spatial arragnement of each species are varied between two species. Within these approaches, data can be analyzed on an individual plant basis.

The need for additional measurements often is apparent after a study has been completed. The objectives of this thesis did not include correlating environmental variables with parameters in the allometric equations. However, knowledge of the environment would facilitate and validate interpretation of the equations. Environmental factors of interest are soil moisture, soil nutrient content, and light availability. Additional plant parameters to quantify are plant moisture stress, total percent cover of all species including Douglas-fir and red alder, and percent crown cover that individual trees are experiencing. Ritchie and Hann (1986) found that the most influential variables in height growth analysis were tree position (tree height/height of surrounding trees) and crown competition factor.

Future research should focus on correlating environmental conditions with the variables in the allometric equations. Another focus should be determining how the equations change as the trees grow. Allometric relationships of red alder have been found to change over time. As the stand nears self-thinning the equations reach a stable level (Smith, 1986). In conjunction with determining how the equations change, inquiry should be made about sampling methods for larger trees. Biomass of tree components, especially roots, will be difficult to obtain. Helpful references on this subject are Valentine et al. (1984), Valentine and Hilton (1975), Santantonio et al. (1977), Jackson and Chittenden (1981), and Keyes and Grier (1981).

BIBLIOGRAPHY

Abrams, M. D. Age-diameter relationships of Quercus species in relation to edaphic factors in gallery forests in northeast Kansas. Forest Ecology Management, 1985, 13(3/4):181-194.

Atkinson, W. A., and W. I. Hamilton. The value of red alder as a source of nitrogen in a Douglas-fir/red alder mixed stand. In: Briggs, D. G., D. S. DeBell, and W. A. Atkinson (Eds.). Utilization and Management of Red Alder. PNW Forest and Range Experiment Station, USDA, Portland, Oregon, 1978, pp. 337-351.

Baskerville, G. L. Dry-matter production in immature balsam fir stands: Roots, lesser vegetation, and total stand. Forest Science, 1960, 12:49-53.

Baskerville, G. L. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 1972, 2:49-53.

Berg, A., and A. Doerksen. Natural fertility of a heavily thinned Douglas-fir stand by understory red alder. Research Note No. 56. Oregon State University School of Forestry, Corvallis, 1975.

Binkley, D. Ecosystem production in Douglas-fir plantations: Interactions of red alder and site fertility. Forest Ecology and Management, 1983, 5:215-227.

Binkley, D., J. D. Lousier, and K. Cromack. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Science, 1984, 3(1):26-35.

Bormann, B. T., and D. S. DeBell. Nitrogen content and other soil properties related to age of red alder stands. Soil Science of America Journal, 1981, 45(2):428-432.

Bormann, B. T., and J. C. Gordon. Stand density effects in young red alder plantations: Productivity, photosynthate partitioning, and nitrogen fixation. Ecology, 1984, 65(2):394-402.

Brand, D. G. Competition-induced changes in developmental features of planted Douglas-fir in southwestern British Columbia. Canadian Journal of Forest Research, 1986, 16:191-196.

Brand, D. G. A competition index for predicting the vigour of planted Douglas-fir in southwestern British Columbia. Canadian Journal of Forest Research, 1985, 16:23-29.

Cleary, B. D., R. D. Greaves, and P. W. Owston. Seedlings. In: Regenerating Oregon's Forests. Cleary, B. D., R. D. Greaves, and R. K. Hermann (Eds.). Oregon State University School of Forestry, Corvallis, 1982, pp. 63-97.

Daniel, T. W., J. A. Helms, and F. S. Baker. Principles of Silviculture. New York: McGraw-Hill, 1979.

Dawson, J. O., and J. C. Gordon. Photoassimilate supply and nitrogen fixation in Alnus. In: Gordon, J. C., C. T. Wheeler, and D. A. Perry (Eds.). Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Proceedings of a workshop held April 2-5, 1979, Oregon State University, Corvallis.

Draper, N., and H. Smith. Applied Regression Analysis, 2nd ed. New York: John Wiley and Sons, 1981.

Flewelling, J. W., and L. V. Pienaar. Multiple regression with log-normal errors. Forest Science, 1981, 27(2):281-289.

Grier, C., K. Lee, and R. Archibald. Effect of urea fertilization on allometric relations in young Douglas-fir trees. Canadian Journal of Forest Research, 1984, 14(6):900-904.

Gholz, H. C., C. C. Grier, A. G. Campbell, and A. T. Brown. Equations for estimating biomass and leaf area of plants in the Pacific Northwest. OSU Forest Research Lab., Research Paper 41, 1979.

Gunst, R. F., and R. L. Mason. Regression Analysis and Its Application: A Data-oriented Approach. New York: Marcel Dekker, Inc., 1980.

Harding, R. B., and D. R. Grigal. Site quality influences on biomass estimates for white spruce (Picea glauca) plantations. Forest Science, 1986, 32(2):443-446.

Harper, J. L. Population Biology of Plants. New York: Academic Press, 1977.

Honer, T. G. Weight relationships in open- and forest-grown balsam fir trees. In: Forest Biomass Studies, Young, H. E. (Ed.). Orono, Maine: University of Maine Press, 1971, pp. 65-78.

Hutchings, M. J., and C. S. J. Budd. Plant competition and its course through time. BioScience, 1981, 31(9):640-645.

Jackson, D. S., and J. Chittenden. Estimation of dry matter in P. radiata root systems. New Zealand Journal of Forest Science, 1982, 11:164-182.

Jolliffe, P. A., A. N. Minjas, and V. C. Runeckles. A reinterpretation of yield relationships in replacement series experiments. Journal of Applied Ecology, 1984, 21:227-243.

Keyes, M. R., and C. C. Grier. Above- and below-ground net productivity in a 40-year-old Douglas-fir stand on low- and highproductivity sites. Canadian Journal of Forest Research, 1981, 11:599-605.

Kira, T., H. Ogawa, and N. Sakazaki. Intraspecific competition among higher plants. I. Competition-yield-density interrelationship in regularly dispersed populations. J. Inst. Poly. Osaka City University, 1953, Vol. 4, Series D, pp. 1-16.

Kozak, A. Methods for ensuring additivity of biomass components by regression analysis. Forest Chronical, 1970, 46:402-404.

Kozlowski, T. T. Growth and Development of Trees, Vol. II: Cambial Growth, Root Growth, and Reproductive Growth. New York: Academic Press, 1971.

Larcher, W. Physiological Plant Ecology. New York: Springer-Verlag, 1980.

Madgwick, H. A. I. The accuracy and precision of estimates of the dry matter in stems, branches, and foliage in an old-field Pinus virginiana. In: Young, H. E. (Ed.). Forest Biomass Studies, 1971. University of Maine Press, Orono, Maine, pp. 105-112.

Madgwick, H. A. I., and T. Satoo. On estimating the above-ground weights of tree stands. Ecology, 1975, 56:1446-1450.

McArdle, R. E., W. H. Meyer, and D. Bruce. The Yield of Douglasfir in the Pacific Northwest. USDA Technical Bulletin No. 201, 1961 .

Mead, R., and J. Riley. A review of statistical ideas relevant to intercropping research. Journal of the Royal Statistical Society A, 1981, 144(4):462-509.

Miller, R. E., and M. D. Murray. Effects of red alder on the growth of Douglas-fir. In: Utilization and Management of Alder. Briggs, D. G., D. S. DeBell, and W. A. Atkinson (Eds.). PNW Forest and Range Experiment Station, USDA, Portland, Oregon. General Technical Report PNW-70, 1978, pp. 288-306.

Mountford, M. D., and R. G. H. Bunce. Regression sampling with allometrically related variables, with particular reference to production studies. Forestry, 1973, 46(2):203-212.

Nelder, J. A. New kinds of systematic designs for spacing experiments. Biometriciology, 1962, 18:283-307.

Oliver, W. W. Brush reduces growth of thinned ponderosa pine in northern California. Pacific Southwest Forest and Range Experiment Station, Research Paper PSW-172, 1984.

Radosevich, S. R. Experimental methods to study crop and weed interactions. In" Altieri, M. A., M. Z. Liebman (Eds.). Plant Competition and Other Ecological Approaches to Weed Control in Agriculture. CRC Press, 1987 [in press].

Ritchie, M. W., and D. W. Hann. Development of a tree height growth model for Douglas-fir. Forest Ecology Management, 1986, 15(2): 135-145.

SAS Institute. SAS/STAT Guide for Personal Computers, Version 6 Edition, 1985. Cary, N.C.: SAS Institute, Inc.

Santantonio, D., R. K. Hermann, and W. S. Overton. Root biomass studies in forest ecosystems. Pedobiologica, 1977, 17:1-31.

Satoo, T., and H. A. I. Madgwick. Forest Biomass. London: Dr. W. Junk Publishers, 1982.

Smith, J. H. G., and D. S. De Bell. Some effects of stand density on biomass of red alder. Canadian Journal of Forest Research, 1974, 4:335-340.

Smith, N. J. A Model of stand allometry and biomass allocation during the self-thinning process. Canadian Journal of Forest Research, 1986, 16:990-995.

Spitters, C. J. T. An alternative approach to the analysis of mixed cropping experiments. I. Estimation of competition effects. Netherlands Journal of Agricultural Science, 1983a, 31:1-11.

Spitters, C. J. T. An alternative approach to the analysis of mixed cropping experiments. II. Marketable yield. Netherlands Journal of Agricultural Science, 1983b, 31:143-145.

Shinozaki, K., and T. Kira. Intraspecific competition among higher plants. VII. Logistic theory of the C-D effect. Journal of the Institute of Polytechnics, Osaka City University, 1956, 7:35-72.

Tarrant, R. F. Stand development and soil fertility in a Douglasfir and red alder plantation. Forest Science, 1961, 7:238-246.

Valentine, H. T., and S. J. Hilton. Sampling oak foliage by the randomized-branch method. Canadian Journal of Forest Research, 1977, 7:295-298.

Valentine, H. T., L. M. Tritton, and G. M. Furnival. Subsampling trees for biomass, volume, or mineral content. Forest Science, 1984, 30(3):673-681.

Valentine, H. T. Tree-growth models: Derivations employing the pipe-model theory. Journal of Theoretical Biology, 1986, 117(4):579-586.

Waring, R. H., and W. H. Schlesinger. Forest Ecosystems: Concepts and Management. Orlando: Academic Press, Inc., 1985.

Wheeler, C. T., and M. E. McLaughlin. Environmental modulation of nitrogen fixation in actinomycete nodulated plants. In: Gordon, J. C., C. T. Wheeler, and D. A. Perry (Eds.). Symbiotic Nitrogen Fixation in the Management of Temperate Forests. Proceedings of a workshop held April 2-5, 1979, Oregon State University, Corvallis.

White, E. H., W. L. Pritchett, and W. K. Robinson. Slash pine root biomass and nutrient concentrations. In: Forest Biomass Studies. Young, H. E. (Ed.). Orono, Maine: University of Maine Press, 1971, pp. 165-176.

Wit, C. T. de. On Competition. Vers. landbouwkd. onderz., 1960, No. 66.8 .

Zavitovski, J., and R. D. Stevens. Primary Productivity of red alder ecosystems. Ecology, 1971, 53(2):235-242.

APPENDICES

APPENDIX 1. Abbreviations and definitions of terms available for model selection

Diam $=$ Stem diameter measured 2 cm above the ground (mm).
$\ln ($ Diam $)=$ Natural logarithm of Diam.
Ht = Total height of the tree seedling (cm).
$\ln (\mathrm{Ht})=$ Natural logarithm of Ht.
Crwdth $=$ Average crown width of seedling (cm).
ln(Crwdth) $=$ Natural logarithm of Crwdth.
$\mathrm{D}^{2} \mathrm{H}=$ (diameter ${ }^{2}$) x (height).
$\ln \left(D^{2} H\right)=$ Natural logarithm of $D^{2} H$.
$\mathrm{C}^{2} \mathrm{H}=$ (crown width ${ }^{2}$) x (Height).
$\ln \left(C^{2} H\right)=$ Natural logarithm of $C^{2} H$.
Totbio $=$ Biomass of the total tree seedling (g).
$\ln ($ Totbio $)=$ Natural logarithm of Totbio.
Stbio $=$ Biomass of the tree stem, branches, and buds (g). $\ln ($ Stbio $)=$ Natural logarithm of Stbio.

Rtbio $=$ Biomass of the tree roots (including nodules for red alder (g).
$\ln ($ Rtbio $)=$ Natural logarith of Rtbio.
Lfbio $=$ Biomass of the tree leaves (g).
\ln (Lfbio) $=$ Natural logarithm of Lfbio.
Nodbio $=$ Biomass of the red alder root nodules (g).
\% Total $=$ Percent cover of all annual and shrub species on the plot.
\% Shrubs $=$ Percent cover of all shrub species in the plot.
\% Annual = Percent cover of all herbaceous species on the plot.
$\mathrm{Ba}=$ Basal area of the stems on the plot $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$.
$\ln (\mathrm{Ba})=$ Natural logarithm of Ba .
$\mathrm{Ca}=$ Crown area of the stems on the plot $\left(\mathrm{cm}^{2} / \mathrm{m}^{2}\right)$.
$\ln (\mathrm{Ca})=$ Natural logarithm of Ca .
Dist $=$ Distance to the nearest neighboring tree.
Avedist = Average distance to eight nearest neighboring trees.
$\mathrm{Ba} /$ Dist $=$ Basal area of the stems on the plot divided by the distance to the nearest neighboring tree.
CA/Dist $=$ Crown area on the plot divided by the distance to the nearest neighboring tree.
Dens $=$ Density of the stems occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).
DensDF = Density of Douglas-fir occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).
DensRA = Density of red alder occupying the eight planting spots around the sample tree (trees $/ \mathrm{m}^{2}$).
Prop $=$ Number of Douglas-fir seedlings/total number of seedlings surrounding the sample tree.

APPENDIX 2. Means and standard deviations of Douglas-fir dimensions and biomass by basal area.

BA $\mathrm{cm}^{2} / \mathrm{m}^{2}$ *	n		$\begin{gathered} \text { Totbio } \\ (\mathrm{g}) \end{gathered}$	Stbio (g)	Lfbio (g)	Rtbio (g)	$\begin{gathered} \mathrm{Ht} \\ (\mathrm{~cm}) \end{gathered}$	Diam (mm)	$\begin{gathered} \text { Crwdth } \\ (\mathrm{cm}) \end{gathered}$
0-3.0	21	$\overline{\mathrm{X}}$	34.9 ${ }^{\text {a }}$	$16.9{ }^{\text {a }}$	11.0^{α}	7.0^{a}	$57.9^{\text {a }}$	$9.5^{\text {a }}$	$29.3{ }^{\text {a }}$
		sd	15.0	8.3	5.2	2.6	14.7	1.4	10.3
3.1-6.0	17	$\overline{\mathrm{X}}$	$51.8^{\alpha b}$	27.6^{a}	$16.7^{a b}$	$9.2^{a b}$	$65.1{ }^{a b}$	$10.5^{a b}$	$29.8{ }^{\text {a }}$
		sd	45.3	24.3	14.1	9.5	17.4	2.8	11.6
6.1-8.0	28	$\overline{\mathrm{X}}$	$62.9{ }^{a b}$	$31.4^{\text {a }}$	$19.5^{a b}$	$12.0{ }^{a b}$	$72.6^{a b}$	$12.1{ }^{a b}$	$34.8{ }^{\text {a }}$
		sd	33.4	16.6	11.1	6.6	14.6	2.8	7.8
8.1-12.0	14	$\overline{\mathrm{X}}$	$62.3^{a b}$	32.7^{a}	$18.0{ }^{a b}$	$11.6^{a b}$	$77.4^{a b}$	$12.4{ }^{a b}$	$33.3{ }^{\text {a }}$
		sd	28.3	14.7	9.6	4.7	13.4	2.3	10.4
12.1-14.0	37	$\overline{\mathrm{X}}$	$63.2{ }^{\text {b }}$	$29.5{ }^{\text {a }}$	$21.2^{\text {b }}$	$12.5{ }^{\text {b }}$	$74.6{ }^{\text {b }}$	$11.8{ }^{\text {b }}$	37.0^{a}
		sd	28.4	13.9	10.4	5.8	15.2	2.2	10.9
14.1-18.0	13	$\overline{\mathrm{X}}$	$50.8^{a b}$	$24.6{ }^{\text {a }}$	$16.7^{a b}$	$9.5^{a b}$	$68.3^{a b}$	$10.8{ }^{a b}$	31.7^{a}
		sd	21.5	10.4	7.6	4.6	10.4	1.7	8.0
18.1-20.0	9	$\overline{\mathrm{X}}$	$53.3{ }^{a b}$	$23.8{ }^{\text {a }}$	$19.2{ }^{a b}$	$10.3^{a b}$	$70.0{ }^{a b}$	$9.0{ }^{a b}$	$31.9^{\text {a }}$
		sd	30.0	14.4	11.1	5.4	13.8	2.1	8.4

Note: Different letters indicate significantly different ($p<.05$) means (Scheffe's test).

* Refer to Appendix 1 for definition of terms.

APPENDIX 3. Means and standard deviations of Douglas-fir dimensions and biomass by \% total cover of weed species. α

\% Total *	n		Totbio (g)	Stbio (g)	Lfbio (g)	Rtbio (g)	$\begin{gathered} \mathrm{Ht} \\ (\mathrm{~cm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\text { Diam }}$	Crwdth (cm)
10	31	$\overline{\mathrm{X}}$	61.6	30.6	19.1	11.9	72.9	11.5	33.7
		sd	40.1	20.2	12.7	7.8	17.9	2.4	12.3
20	8	$\overline{\mathrm{X}}$	80.9	35.6	28.5	16.8	79.6	13.2	40.9
		sd	25.9	12.7	10.4	4.7	11.8	1.6	14.2
30	13	$\overline{\mathrm{X}}$	72.1	38.3	20.6	13.2	81.8	13.7	38.4
		sd	14.9	8.1	5.3	3.3	12.4	1.5	5.3
40	27	$\overline{\mathrm{X}}$	61.3	29.6	20.5	11.2	70.3	11.7	32.5
		sd	33.1	16.1	11.4	6.7	14.2	2.7	7.8
50	22	$\overline{\mathrm{X}}$	42.0	19.4	13.4	9.2	63.5	10.1	30.3
		sd	20.3	9.5	7.5	4.3	13.3	1.9	8.6
60	8	$\overline{\mathrm{X}}$	40.4	19.2	13.0	8.3	68.9	10.0	35.3
		sd	25.2	12.6	8.0	5.6	15.6	2.2	10.9
70	15	$\overline{\mathrm{X}}$	49.8	23.9	17.1	8.7	68.7	10.0	30.3
		sd	24.8	12.2	9.0	4.8	11.7	2.0	7.7
90	7	$\overline{\mathrm{X}}$	37.8	18.5	12.4	6.9	62.7	9.4	31.6
		sd	23.6	12.7	7.9	3.8	21.1	1.4	14.8
100	8	$\overline{\mathrm{X}}$	40.2	23.8	13.1	7.1	59.1	10.4	31.6
		sd	21.5	18.6	9.1	4.2	12.9	2.6	9.3

[^5]APPENDIX 4. Means and standard deviations for red alder dimensions and biomass by distance to the nearest neighboring tree.

$\begin{aligned} & \text { Dist }{ }^{* *} \\ & (\mathrm{~cm}) \end{aligned}$	n		Totbio (g)	Stbio (g)	Rtbio (g)	$\begin{gathered} \text { Nodbio* } \\ (\mathrm{g}) \end{gathered}$	$\begin{aligned} & \mathrm{Ht} \\ & (\mathrm{~cm}) \end{aligned}$	$\begin{aligned} & \text { Diam } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { Crwdth } \\ & (\mathrm{cm}) \end{aligned}$
30	22	$\overline{\mathrm{X}}$	76.3^{a}	$52.7{ }^{\text {a }}$	$23.6{ }^{\text {a }}$	$0.80{ }^{\text {a }}$	$129.7{ }^{\text {a }}$	$14.1{ }^{\text {a }}$	$58.0{ }^{\text {a }}$
		sd	48.6	33.7	15.6	0.42	25.3	3.1	16.0
45	28	$\overline{\mathrm{X}}$	$126.2^{\text {a }}$	$92.4{ }^{\text {a }}$	$33.9{ }^{\text {a }}$	$1.26^{\text {a }}$	$147.3^{a b}$	$17.0{ }^{\alpha}$	78.7^{b}
		sd	75.1	59.2	17.9	0.78	31.6	3.7	24.9
60	28	$\overline{\mathrm{X}}$	$220.5^{\text {b }}$	$162.9{ }^{\text {b }}$	$57.6{ }^{\text {b }}$	$1.44^{\text {a }}$	$166.6^{\text {b }}$	21.2^{b}	$94.3{ }^{\text {a }}$
		sd	139.2	114.4	31.8	1.04	40.7	5.1	26.0

${ }^{*}$ Sample sizes for Nodbio were 6, 7, and 9, respectively.
**
Refer to Appendix 1 for definition of terms.
Note: Different letters indicate significantly different ($p \leqslant .05$) means (Scheffe's test).

APPENDIX 5. Means and standard deviations for Douglas-fir dimensions and biomass by proportion.

Prop*	n		Totbio (g)	Stbio (g)	$\begin{aligned} & \text { Lfbio } \\ & (\mathrm{g}) \end{aligned}$	Rtbio (g)	$\begin{gathered} \mathrm{Ht} \\ (\mathrm{~cm}) \end{gathered}$	$\begin{aligned} & \text { Diam } \\ & (\mathrm{mm}) \end{aligned}$	Crwdth (cm)
0.4	7	$\begin{aligned} & \overline{\mathrm{x}} \\ & \mathrm{sd} \end{aligned}$	$\begin{aligned} & 71.5^{a} \\ & 35.6 \end{aligned}$	$\begin{aligned} & 35.0^{a} \\ & 17.4 \end{aligned}$	$\begin{aligned} & 23.8^{a} \\ & 12.2 \end{aligned}$	$\begin{gathered} 12.7^{a} \\ 7.7 \end{gathered}$	$\begin{aligned} & 82.0^{a} \\ & 19.5 \end{aligned}$	$\begin{aligned} & 11.6^{a b} \\ & 3.3 \end{aligned}$	$\begin{aligned} & 42.1^{a} \\ & 11.9 \end{aligned}$
0.5	18	$\begin{gathered} \overline{\mathrm{X}} \\ \text { sd } \end{gathered}$	$\begin{aligned} & 68.7^{a} \\ & 19.4 \end{aligned}$	$\begin{gathered} 32.9^{a} \\ 9.7 \end{gathered}$	$\begin{gathered} 22.6^{a} \\ 8.7 \end{gathered}$	$\begin{gathered} 13.2^{a} \\ 3.8 \end{gathered}$	$\begin{aligned} & 76.9^{a} \\ & 12.8 \end{aligned}$	$\begin{gathered} 12.7^{a} \\ 1.7 \end{gathered}$	$\begin{gathered} 37.9^{a} \\ 8.5 \end{gathered}$
0.6	10	$\begin{gathered} \overline{\mathrm{X}} \\ \mathrm{sd} \end{gathered}$	$\begin{aligned} & 52.2^{a} \\ & 31.5 \end{aligned}$	$\begin{aligned} & 26.2^{a} \\ & 15.0 \end{aligned}$	$\begin{aligned} & 16.4^{a} \\ & 11.5 \end{aligned}$	$\begin{aligned} & 9.6^{a} \\ & 5.6 \end{aligned}$	$\begin{aligned} & 67.8^{\alpha} \\ & 17.3 \end{aligned}$	$\begin{gathered} 10.9^{a b} \\ 2.5 \end{gathered}$	$\begin{aligned} & 32.7^{a} \\ & 14.8 \end{aligned}$
0.7	6	$\begin{gathered} \overline{\mathrm{x}} \\ \mathrm{sd} \end{gathered}$	$\begin{aligned} & 42.5^{a} \\ & 16.8 \end{aligned}$	$\begin{gathered} 19.8^{a} \\ 9.0 \end{gathered}$	$\begin{gathered} 14.6^{a} \\ 5.6 \end{gathered}$	$\begin{aligned} & 8.1^{a} \\ & 3.9 \end{aligned}$	$\begin{gathered} 65.0^{\alpha} \\ 6.5 \end{gathered}$	$\begin{gathered} 10.4^{\alpha b} \\ 1.8 \end{gathered}$	$\begin{gathered} 31.1 \\ 8.2 \end{gathered}$
0.8	13	$\begin{gathered} \overline{\mathrm{x}} \\ \mathrm{sd} \end{gathered}$	$\begin{aligned} & 50.5^{a} \\ & 23.7 \end{aligned}$	$\begin{aligned} & 25.2^{a} \\ & 12.6 \end{aligned}$	$\begin{gathered} 15.9^{a} \\ 6.6 \end{gathered}$	$\begin{aligned} & 9.4^{a} \\ & 6.1 \end{aligned}$	$\begin{aligned} & 70.8^{a} \\ & 14.4 \end{aligned}$	$\begin{gathered} 10.8^{a b} \\ 2.0 \end{gathered}$	$\begin{gathered} 31.8^{a} \\ 6.5 \end{gathered}$
1.0	85	$\begin{gathered} \overline{\mathrm{x}} \\ \mathrm{sd} \end{gathered}$	$\begin{aligned} & 53.6^{a} \\ & 33.8 \end{aligned}$	$\begin{aligned} & 26.4^{a} \\ & 17.4 \end{aligned}$	$\begin{aligned} & 17.1^{\alpha} \\ & 11.2 \end{aligned}$	$\begin{gathered} 10.5^{a} \\ 6.5 \end{gathered}$	$\begin{aligned} & 68.2^{a} \\ & 15.8 \end{aligned}$	$\begin{gathered} 11.0^{b} \\ 2.6 \end{gathered}$	$\begin{gathered} 32.1 \end{gathered}{ }^{a}$

Note: Different letters indicate significantly different ($p<.05$) means (Scheffe's test).
*Refer to Appendix 1 for definition of terms.

APPENDIX 6. Means and standard deviations of red alder dimensions and biomass by proportion. ${ }^{\alpha}$

Prop **	n		Totbio (g)	Stbio (g)	Rtbio (g)	$\begin{gathered} \text { Nodbio * } \\ (\mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{Ht} \\ (\mathrm{~cm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\underset{\text { Diam }}{ }}$	Crwdth (cm)
0.0	40	$\overline{\mathrm{x}}$	133.5	96.9	36.5	1.35	146.6	16.8	71.5
		sd	121.1	98.2	28.1	1.16	39.1	5.3	24.6
0.4	4	X	177.6	137.4	40.2	0.57	149.0	18.9	100.0
		sd	56.1	49.5	12.1	0.5	36.3	1.8	21.7
0.5	14	$\overline{\mathrm{X}}$	208.5	154.8	53.6	1.06	163.8	20.7	93.8
		sd	130.9	100.8	32.2	0.30	38.5	5.3	29.5
0.6	12	$\overline{\mathrm{X}}$	129.2	94.7	34.6	1.23	149.3	17.1	
		sd	88.9	66.6	22.9	0.90	32.0	4.3	24.5
0.7	5	$\overline{\mathrm{X}}$	127.9	87.4	40.5	1.62	138.0	17.7	71.5
		sd	72.3	52.1	21.0	1.07	28.0	3.8	24.7
0.8	2	$\overline{\mathrm{X}}$	87.3	50.1	37.2	1.54	138.0	17.6	98.8
		sd	14.2	7.9	22.1	1.54	15.6	5.4	50.6
1.0	1	$\overline{\mathrm{X}}$	54.4	37.8	16.6	0.40	131.0	13.5	55.5
		sd		.	16.6	0.40	131.0	13.5	55.5

[^6]APPENDIX 7
Raw Data

a) Include spaces in the total columns occupied. egg. $1 x$, AS $=1-6$ columns.
b) Valid formats are: A=alpha, I= whole integer. Fadecimal, Esci.notation.
\qquad CONTINUED, reverse side. Please indicate comments about this file on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State University Corvallis, OR 97331-5704 503-754-2244
yariable defimition form
Page 2 of 3
(Complete one form for each format type)

CONTINUED, reverse side

Forest Science Data Bank. Forest Science Dept.. Oregon State University Corvallis. OR 97331-5704 503-754-2244

CONTINUED, Reverse side

Forest Science Data Bank. Forest Science Dept., Oregon State University Corvallis. OR 97331-5704 503-754-2244

111	380	0 -	1016	40	
111.	330	35	910	3	
111	480	30	2613	58	
111	300	20	1921	37	
111	310) 40	1215	39	
111	380	- 30	2318	42	160205
11.	295	25	1013	50	
111	360	- 90	911	46	130270
111	255	15	119	37	95205
121	400	40	1810	44	
121	420	80	$14 \geq 1$	56	
121	F80	30	1813	45	
121	490	95	117	47	120235
121	450	60	2 4 40	64.	
121	385	20	78	42	80210
121	430	25	23 19	52	1501.90
121	400	80	1522	43	
121	580	45	921	37	
131	300	צ5	1120	58	150270
131.	450	20	1025	46	
131	490	20	1015	49	
$1 \geq 1$	35	5	1316	52	
1315	30	5	1511	50	180180
131	470	40	2017	57	
1317	310	15	118	44	13520
1318	460	15	914	60	
1319	270	15	1414	42	
211	350	55	718	29	
2112	440	60	1315	48	130220
2113	355	50	1811	56	
2114	285	25	513	47	160205
2115	310	70	97	38	
2116	25	20	914	39	
2117	355	20	1413	42	
2118	580	60	1725	48	
2119	310	75	911	3	
2211	430	35	2524	52	
2212	385	5	1913	41	
2218	895	25	219	46	105210
2214	420	20	2517	52	
2215	490	40	14 23	50	
2216	600	60	3226	64	180200
2217	510	15	166	58	
2218	340	60	1125	42	130230
2219	485	40	$15 \geq 1$	72	
231. 1	310	80	1116	36	$180-210$
2312	490	175	1011	50	
2313	460	20	918	50	
2314	490	75	2529	61	
315	450	20	1014	36	
216	450	35	1714	51	100230
2317	510	30	1721	68	120170
S18	430	35	2315	48	

231	9	460	20	15	22	50		
311	1	310	40	11	12	35		
311	2	390	40	17	25	45		
311	3	410	35	8	9	46		
311	4	460	40	13	21	5	210	150
311	5	340	30	13	13	39		
311	6	345	30	10	11	30		
311	7	285	30	11	20	3 3	90	170
311	8	460	40	10	26	52		
311	9	400	20	25	15	51	210	210
321	1	460	30	15	21	74	± 00	240
321	2	450	55	24	17	56	130	190
321	3	355	50	18	20	צ9		
221	4	420	70	24	32	48		
321	5	390	80	24	37	49	85	220
321	6	370	30	19	15	42		
321	7	380	35	15	14	40		
321	8	360	60	17	21	36		
321	9	420	50	9	23	47		
323	1	320	35	11	19	48		
323	2	280	20	11	8	41		
323	3	400	40	15	28	56	150	205
323	4	455	50	17	28	56	210	220
323	5	300	35	9	24	52		
323	6	430	40	30	25	43		
323	7	350	15	12	12	40	85	295
323	E	395	75	7	9	42		
צ2S	9	290	15	9	10	38		
411	1	375	85	14	8	42	100	240
411	2	270	30	10	14	30		
411	3	810	150	6	8	40		
411	4	550	40	12	16	36		
411	5	445	30	21	30	52	140	250
411	6	270	115	6	6	32		
411	7	270	15	14	13	36		
411	8	265	20	12	8	37	80	160
411	9	445	5	23	15	56		
421	1	570	50	42	22	75		
421	2	460	70	27	24	51	180	320
421	3	350	50	5	7	42		
421	4	305	80	20	13	30	90	240
421	5	395	75	23	17	45		
421	6	380	10	30	24	45		
421	7	290	20	11	9	59		
421	8	380	50	10	14	46	150	260
421	9	400	50	8	9	47		
481	1	3 SO	20	13	25	40		
431	2	290	80	5	5	30		
431	\%	320	10	10	21	40	145	300
431	4	460	40	13	24	51		
431	5	285	20	12	16	32		
431	-	305	15	9	16	50	130	260
431	7	420	50	12	17	50		
431	8	350	10	16	12	50	170	270

4 1	9	495	15	19	23	84		
512	1	420	60	9	9	59	120	270
512	2	345	30	23	21	37		
512	3	450	65	7	5	49		
512	4	330	65	17	27	43		
512	5	355	11	6	5	38		
512	6	35	10	11	14	48	130	270
512	7	565	45	31	$\Sigma 1$	79		
512	8	235	30	6	6	31		
512	9	485	55	15	24	63	30	370
522	1	420	30	17	21	61	240	240
522	2	295	40	6	6	30		
522	Z	510	40	13	9	65		
522	4	420	20	24	13	81		
522	5	360	60	1.6	12	46		
522	6	500	80	22	28	75	180	380
522	7	280	5	17	17	66		
522	8	425	40	20	15	49		
522	9	600	40	30	21	69		
532	1	420	3	7	11	42		
532	2	350	20	23	26	61		
532	$\underset{\square}{3}$	420	70	20	16	59	260	150
532	4	365	15	8	13	43		
532	5	280	25	8	11	36	50	230
52	6	370	60	16	22	50		
52	7	590	155	17	15	60	90	240
52	8	290	120	6	14.	40		
532	9	490	80	14	6	61		
612	1	490	60	13	17	50		
612	2	615	80	17	18	82		
612	3	480	75	7	9	55	100	295
612	4	325	45	7	7	36		
612	5	410	30	11	17	49	150	280
612	6	545	12	5	5	38		
612	7	360	12	7	4	42		
612	8	440	75	9	7	46		
612	9	530	115	26	23	76	240	250
622	1	535	20	24	28	58		
622	2	380	85	6	8	50		
622	3	550	40	18	7	42		
62	4	470	45	34.	29	57	125	190
622	5	455	40	27	27	72		
622	6	285	30	15	12	71		
622	7	510	70	15	7	51		
622	8	38	15	9	ε	47		
622	9	470	25	20	32	80	220	250
6 G	1	370	40	10	$1 \pm$	52		
632	2	470	40	15	14	46	100	305
632	3	440	45	15	20	63		
632	4	± 10	50	7	7	32		
632	5	$5 \% 0$	20	1.500	28	45		
632	6	470	80	17	18	48		
632	7	310	60	11	12	45	100	290
632	8	440	110	23	13	55		

632	9	260	40	7	12	45		
712	1	355	35	13	11	42	110	190
712	2	420	65	20	26	58		
712	3	510	75	17	20	56	190	250
712	4	380	4.0	17	20	45		
712	5	450	60	10	16	46		
712	6	380	25	17	1.9	49	130	180
712	7	305	15	9	8	32		
712	θ	440	40	29	27	48		
712	9	425	3	9	11	49		
722	1	590	50	15	9	57	90	220
722	2	4:5	150	6	6	48		
729	3	4.00	100	4	4	3 B		
722	4	250	25	6	\checkmark	33		
722	5	180	60	2	2	29		
722	6	260	30	5	7	28	25	290
722	7	315	5	12	6	34		
722	8	260	55	10	19	26		
72\%	4	400	75	4	4	39	50	280
732	1	590	120	14	11	64		
732	2	340	30	6	6	52	50	1.60
732	3	490	30	10	20	45		
732	4	600	170	19	23	60		
732	5	450	30	21	17	44		
732	6	240	60	3	3	24		
732	7	410	40	13	20	38	± 5	130
73	8	320	25	5	5	玉2		
782	9	350	20	6	6	40		
812	1	4.40	150	10	11	43	70	210
812	2	390	± 5	5	11	30		
812	3	715	70	24	21.	65		
812	4	225	40	10	10	32		
812	5	55	100	16	23	68	290	300
812	6	605	90	20	24	78		
812	7	525	55	1 13	12	48	90	200
812	8	450	110	4	11	48		
812	9	280	20	11	7	39		
822	1	390	10	14	14	53	90	200
822	2	300	45	11	6	58		
822	3	250	15	7	8	38		
82	4	430	90	11	14	51		
822	5	380	30	8	8	31		
822	6	600	100	25	15	17	140	280
822	7	210	20	6	5	28	100	180
82	8	395	30	6	11	41		
822	9	665	70	21	21	65		
832	1	370	60	7	7	34	90	180
882	2	210	70	5	5	35		
832	3	360	100	7	9	32		
832	4	530	90	$3{ }^{3}$	21	59		
832	5	345	140	10	5	29		
$8 \bigcirc 2$	6	340	40	6	3	36	20	215
8.9	7	355	10	12	13	44		
$8 \mathrm{S2}$	8	360	20	8	6	41		

8329	510	40	12	20	60	105	240
9111	360	30	19	12	58	210	210
9122	445	110	8	10	41	± 0	276
9113	465	30	15	21	64		
9124	55	70	26	16	60	140	250
9115	350	40	9	6	40	90	300
9126	450	50	6	19	41		
9127	245	20	5	8	34		
9118	480	5	24	23	64	210	190
9129	505	25	18	14	57		
91110	340	60	16	21	50	100	240
91211	490	30	19	17	70		
91112	370	30	16	11	57	160	230
91113	380	20	8	10	50		
91214	510	110	10	8	57		
91115	450	35	21	26	50	160	230
91216	450	100	7	6	41	90	240
91117	355	20	6	10	39	190	210
91218	460	35	22	15	48		
9211	320	35	9	8	41		
922 2	370	30	18	12	36		
921 3	450	55	18	22	64	240	265
9224	715	240	10	23	84		
9215	370	З	12	8	32		
9226	370	20	14	12	4.4		
9227	530	130	19	16	53		
9218	300	20	7	12	39	90	240
9229	480	120	18	19	60		
92110	270	25	5	5	39		
92211	320	110	7	9	52	40	260
92112	345	20	20	15	50		
92113	390	5	22	20	48		
92214	330	100	8	15	48	65	270
92115	440	35	9	11	50	150	210
92216	380	40	25	16	53		
92117	395	55	22	20	53		
92216	460	180	15	9	45	90	210
9311	255	± 5	11	22	49		
9322	340	60	18	16	52		
9313	450	15	± 1	19	80		
9×2	36	30	15	11	63		
9315	450	50	27	31	47		
$93 \% 6$	235	35	13	1.4	56	220	260
9327	380	110	5	5	46	95	215
9318	310	30	9	7	39		
9329	490	30	22	26	88		
93110	380	30	11	14	41		
93211	380	50	14	10	50		
98112	520	30	34	28	70	180	220
93113	510	60	17	10	60	230	240
93214	4.40	110	16	1.3	52		
93115	430	25	25	20	48		
93216	380	35	18	24	72	120	240
93117	420	20	12	16	50		

93218	300	20	10	14	42		
10121	450	80	13	10	68	240	260
1011 －	385	25	18	24	\square		
1012	560	50	14	$\underline{0}$	66	160	290
10114	410	115	7	11	40	80	190
10125	250）	40	6	7	29		
10116	550	100	12	21	56		
10117	30	45	± 7	15	124	80	210
10128	885	20	18	14	48		
10119	520	60	24	21	59		
101210	$\bigcirc 40$	25	\pm	8	29	170	150
101111	560	15	8	号	6.	140	160
101212	± 10	20	7	9	± 8		
101213	$\square 10$	60	6	7	$\square 9$		
101114	410	20	14	17	47		
101215	520	든	20	20	67		
101116	± 20	5	20	13	45		
101217	500	65	17	21	50		
101118	450	70	16	28	57		
10221	460	40	14	21	51		
$10 \% 12$	5	150	21	11	5	220	200
1022	$5 \mathrm{5CO}$	110	12	11	48		
10214	440	30	21	2 C	48	160	240
10205	550	60	27	19	59	270	280
10216	430	35	12	ZS	50		
1021	340	15	12	21	43		
$10 \% 9$	80	30	2゙\％	14	4.4		
10219	470	40	12	－4	47		
102210	420	70	17	2 E	54		
102111	55	40	27	14	66		
1022 2	245	55	10	18	44		
$10221 \pm$	500	100	21	14	50	100	$\because 10$
102114	490	20	21	1.9	59		
102215	360	40	15	8	35		
102116	290	20	17	8	\square		
102917	470	140	20	17	49		
102118	$5 \square$	30	1 B	27	60	170	180
1011	365	15	11	10	51		
1032	360	60	4.	4	4.9	110	140
$10 \leq$	± 45	30	27	18	38		
$10 \div 4$	275	40	7	5	$\because 4$	60	180
1015	± 80	$\square 5$	19	17	38	190	220
1096	420	65	17	21	62		
1067	280	$\square 5$	2	2	± 1		
1018	280	15	10	16	50		
$10 \underline{\square} 9$	50	60	18	\pm	71		
$10 \div 110$	4.00	15	－2	19	50		
10×11	\because ジO	30	6	17	45		
$10 \% 112$	410	50	17	20	60	≥ 10	240
$10 \leq 113$	370	15	14	20	45	140	200
6צ14	450	25	10	9	40	60	280
10S115	495	15	28	30	61	125	240
$10 \leq 216$	310	3	4	4	34		
10117	3 B	120	7	6	30		

102218	380	1.5	13	7	31		
11111	440	15	14	12	48		
11122	455	20	1. 7	16	5	160	52
11113	400	40	8	19	46	90	280
11124	420	50	10	15	5		
11115	435	30	19	$\Xi 1$	52		
11.1.2 6							
11127	465	150	5	19	41	90	190
11118	-45	100	10	9	46	160	140
11129	290	50	7	8	40		
111110	340	60	9	18	42		
111211	495	65	11	15	48		
111112	340	100	7	11	42		
11111 \%	280	10	18	14	$\underline{6}$		
111214	345	120	5	5	41	140	220
111115	צ20	40	14	17	46	1.20	170
111216	520	60	11	19	74		
111117	SE	40	14	13	4.0		
111218	S50	10	5	8	47		
11221	3 B	50	10	8	35	170	160
11212	500	79	30	30	60		
11223	380	40	5	5	\%	150	250
11214	480	65	29	19	$5 \square$		
11215	270	1. 0	9	8	40		
11216	-15	10	-	15	55		
11217	510	40	تك	18	54	105	210
1122	410	1-0	든	\because	4.		
11215	36	70	1. 0	5	8		
11220	430	100	15	15	68		
112111	425	10	2-	13	41	95	205
112212	555	90	22	10	72	220	± 10
112213	315	30	13	13	40		
112114	435	20	15	14	50		
1129	-20	10	12	16	46		
112116		50	11	7	39	150	175
112217	50	ت	ت゙5	12	5		
112118	400	20	17	14	± 7		
11 ± 1	20	50	12	$1 \pm$	± 8	80	240
1132	370	\bigcirc	12	14	67	50	290
$11 \leq 1-$	425	40	13	12	6		
11324	270	50	21	18	45		
11315	410	20	15	11	67		
11326	240	40	13	15	45		
1127	270	110	צ	3	3		
11318	290	20	9	21	40		
11 ¢9	420	90	27	22	78		
113110	30	15	14	29	48		
11 ± 21	435	5	10	6	48		
$11 \% 112$	385	20	-	20	48	115	200
11311%	295	40	1. 1	5	28	60	210
117214	4555	70	6	12	50	90	250
11.115	215	50	15	17	43		
113216	3-5	50	12	17	62	270	260
11 ± 117	390	150	ζ	9	39		
113218	585	\bigcirc	22	21	78		

DATACODE
FORMAT TYPE
FORMAT TYPE
STUDYID
BELDM2.DAT DATA TITLE: Doughis-fir and red alder measiements

a) Include spaces in the total columns occupied. egg. $1 X$, AS $=1-6$ columns. b) Valid formats are: A=alpha, I whole integer. Fadeciall, Esci.notation.
\qquad CONTINUED, reverse side.

Please indicate comments about this file on reverse side.

Forest Science Data Bank. Forest Science Dept.。 Oregon State University Corvallis, OR

(Complete one form for each format type)

CONTINUED, reverse side

Forest Science Data Bank. Forest Science Dept., Oregon State University Corvallis, OR 97331-5704 503-754-2244
(Complete one form for ALL format types)

datacode STUDYID BELDAMz.DET

DATE $\frac{9}{10} \frac{23 / 85}{d a}$
recorder Painela Bold
Variable code
Mane value brief description of each coded value

CONTINUED, Reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University Corvallis, OR 97331-5704 503-754-2244

111	1	520	40	2 S	16	62	
111	2	435	70	22	18	46	
111	I	585	25	20	27	84	
111	4	± 10	15	27	12	48	
111	5	400	40	18	15	51	
111	6	495	20	24	20	61	
111	7	405	30	15	12	51	
111	8	480	90	こ2	17	55	
111	9	35	20	15	21	50	
121	1						1
121	2						1.
121	\pm	365	40	14	11	55	2
121	4	545	95	18	10	63	5
121	5	505	5	25	4	75	
121	6	460	25	15	14	55	
121	7	565	30	27	20	63	
121	8	400	105	17	21	49	
121	9	445	40	14	23	46	5
131	1	390	105	11	13	65	6
131	こ	545	60	17	19	59	
131	3						1
131	4	400	155	21	21	92	
131	5	360	15	21	17	5	
151	6	560	80	22	2	70	
131	7	425	5	18	20	75	
1 ± 1	8	625	25	22	2E	92	
1－1	\％	360	10	31	20	76	
211	1	360	60	12	10	49	
211	2	500	70	14	15	59	
211	\square	$\square 0$	75	10	12	49	2
211	4	35	30	17	15	47	
211	5	± 60	60	15	17	50	
211	6	890	10	16	17	5	
211	7	430	15	14	15	55	5
211	8	455	40	18	29	73	
211	9	$\because 70$	70	12	12	43	
221	1	555	50	23	20	75	
221	2	450	95	18	11	52	
221	\＃	460	8	ご	11	64	
221	4	510	50	17	15	75	
221	5	575	30	19	24	66	
221	6	685	65	27	26	84	
21	7	595	40	17	15	64	
221	8	450	60	15	19	46	
221	Y	610	40	30	こを	85	
2s1	1	36	40	7	12	49	
231	玉						1
231	3	497	90	15	11	60	
231	4						1
2 Z 1	5	560	90	19	14	62	
231	6	500	130	11	11	65	

2ら1	7						1
231	8	500	60	17	16	62	
ご1	5	630	50	26	こ7	88	
¿j1．	1	340	50	16	15	57	10
－11	2	465	50	17	36	56	
311	3	475	80	15	12	60	
こ11	4	520	70	16	24	71	
［11	5	450	40	18	1%	64	
$\cdots 11$	6	590	5	13	10	52	
311	7	430	4.0	25	26	66	
± 11	8	720	60	3	3－3	105	
311	5	490	40	23	20	81.	
－21	1	600	40	28	20	100	
321	2	5ごら	90	25	13	83	
221	\pm						1
321	4	540	70	19	31	71	
22	5	480	E5	20	± 6	58	
321	6	435	40	20	17	6.	
221	7	475	3	21	21	71	
321	8						1
－21	9	540	60	24	19	72	
$\underline{31}$	1.	35	60	7	9	5	
31	2						1
331	3						1
－1	4	520	70	29	6	55	
3 J ］	5	350	140	13	19	50	
区゙1	6	465	60	54	43	58	
331	7						1
31	8	500	70	17	13	57	
3 B 1	9	355	40	15	11	40	
411	1	445	90	18	19	55	
441	2	50	35	13	1.9	5	
441	\pm	555	140	13	11	4i	
441.	4	42゙5	45	17	17	58	
441	5	550	40	± 9	28	60	
441	6	2\％	120	10	11	4.1	
441	7	385	20	17	19	66	
441	8	340	20	29	20	60	
441	9	580	90	26	18	69	
421	1	580	50	42	30	82	2
421	こ	510	85	16	30	62	
421	3	460	45	17	13	60	
421	4	370	40	16	15	60	
421	5	490	70	26	2	5	
421	6	510	40	28	99	65	
421.	7	590	50	18	17	5	5
421	θ	470	70	16	15	52	Ξ
421	5	490	140	19	17	62	
4J1	1	420	25	21	ご	60	
4.1	2						1
$4{ }^{3} 1$	3	\％85	00	19	16	55	
451	4	56	55	16	17	65	
431	5	550	160	15	13	40	
431	6	970	25	13	12	60	

431	7	485	60	19	16	75	
431	8	450	50	15	15	55	
4 1	9						1
512	1	910	60	3.3	± 4	79	
512	2	560	± 0	57	$\underline{-9}$	65	
51%	-						1
512	4	765	75	24	54	75	
512	5						1
512	6	760	20	± 7	34	88	
512	7						1
512	8						1
512	9	735	200	25	34	76	4
522	1	745	15	27	3	77	
52.	2	590	125	22	2 B	58	
522	\pm	705	45	21	18	88	
5	4	590	40	S	30	106	
522	5	650	90	31	19	60	
522	6	710	60	36	57	100	
522	7	465	20	36	-2	75	
522	8	540	50	43	32	70	
522	9	795	80	42	70	107	
$5 \square$	1	690	10	± 1	27	86	
52	2						1
52	\square	490	80	20	2	74	
53	4	820	125	28	28	110	
53	5	545	50	10	15	51.	
5	6	550	150	3	ES	72	
5.2	7	1045	300	29	3	104	
53	8	590	20	8	9	70	2
52	9	845	260	26	29	78	
612	1	780	5	25	20	66	
612	2	1040	65	25	3	106	
612	$\underset{\square}{\square}$						1
612	4	700	65	22	39	76	
612	5	725	160	2 S	36	92	6
612	6						1
612	7						1
612	8	830	250	38	3	90	6
612	9	885	225	-6	उ)	105	6
622	1	725	15	39	$\underline{4}$	81	
622	2	640	35	25	1Ξ	83	6
62.	3	375	40	2	14	51	
622	4	635	40	49	54	88	
62	5	775	\bigcirc	40	-	94	
62 c	6	520	25	25	15	76	
622	7	760	50	ご	27	64	
62 F	8	575	100	24	14	77	
622	9	830	40	26	40	95	
63	1						1
65	2	539	120	46	27	85	
632	\pm						1
$6 \pm$	4						1
622	5	240	97	θ	7	59	2

6326	180	00	1111	41	2
6327	515	90	2410	50	
6328					1
6329	615	120	3219	70	
S41. 1	430	50	1715	60	
3412	505	60	4030	70	
341	560	80	1722	77	
3414	510	40	1822	62	
3415	510	60	1916	73	
\$416	480	80	2621	89	
3417	365	10	1712	58	
3418	470	30	2) 21	86	
341.9	505	40	1614	66	
7221	910	60	2529	84	
722 2	670	00	353	82	
722 \%					1
7224	595	50	2023	73	
7225	360	60	1516	64	9
7226					1
7227	675	85	3326	57	
7228					1
7229					1
7821	1045	130	44 45	114	
732					1
7323	795	110	2319	85	
7324					1
7325	580	55	1815	55	
7326					1
7327	640	265	2018	61	
7328	480	50	16.18	42	
7329	600	180	1615	60	
8121	875	180	5147	78	4
8122	700	120	2923	62	
812 3	1090	60	§4 34	95	
8124	435	45	2015	60	
8125	1080	100	5751	104	
8126	945	110	55.5	112	
8127	940	120	4040	89	
8128	855	80	4768	91.	
8129					1
8221	770	30	4321	129	
8222					1
82 z	380	40	1717	45	10
8224	1490	140	10096	141	
82 L	380	40	$16 \quad 13$	44	10
8226	1305	250	8875	150	
8227	805	40	5049	123	
8228	1000	00	5047	104	
8229	1020	00	3025	117	4
8.321					1
8322	220	00	1013	25	10
$8 \geq 23$					1
832 4	810	40	4256	95	
8325					1

8 ± 26						1
832 7	490	25	17	57	80	
8328						1
8329	620	00	41	28	75	
9111	460	30	27	2 S	76	
9122	710	110	21	26	62	
911 Z	585	20	\square	29	82	5
9124	810	60	37	29	75	
9115						1.
9126						1
F127	510	20	26	25	49	
9118	560	25	23	28	77	
9129	790	20	18	21	72	
91110	495	60	19	29	71	
91211						1
91112	500	こち	$\underline{2}$	19	72	
91113	470	25	20	22	84.	
91214	730	230	26	17	75	6
91115	440	60	25	15	57	2
91216						1
91.117	420	00	$2 \pm$	20	53	
91218						1
9211	370	45	10	20	54	
922	675	170	15	± 1	53	
9213	59	70	26	21	82	
9224	960	250	2 C	20	87	6
9215	455	50	32	1. 6	44.	
9226	835	80	45	24	71	
9207	730	120	39	34	B1	
9218	400	120	17	17	47	
9298	765	385	39	3 B	74	
92110	365	20	16	18	40	
92211	610	140	27	29	83	6
92112	$\triangle 20$	10	13	12	70	
92113	585	35	16	2З	63	
92914	510	100	Э	25	71	9
92115	455	100	14	1%	57	10
92216	725	70	25	29	74	
92117	505	75	26	24	66	
92218						1
9311	540	50	15	21	62	
9322	615	40	32	55	76	
9313	545	20	35	22	81	
9824	815	65	27	24	96	
7315	5.5	80	13	2 L	62	
7326	210	15	13	9	62	10
9327	680	45	24	15	70	
938	± 90	25	10	12	5	
93.9						1
$9 \bigcirc 110$	430	65	21	17	61	
9311	710	35	≤ 1	55	75	
9 112	505	15	27	32	89	2
93113	635	80	Z 2	26	86	
9 Y 14	940	05	30	39	81	

93115	500	90	1018	75	
93216	915	45	-6 52 1	104	
9311%	5	00	2420	62	
93218	560	50	2118	66	
10121.	980	60	7061	114	
10112	790	30	1327	61	2
1012	705	120	3862	93	
10114	490	110	1715	63	
10125					1
10116	645	95	1829	70	
10117	430	20	4778	72	
10128	780	45	3940	88	
10119	620	80	52	73	
101210	525	60	2219	54	
101111	615	60	19 25	80	
101212					1
101213	680	40	4447	82	
101114	530	15	38	75	
101215	790	45	4847	92	
101116	45	30	2116	75	
101217	865	1.65	4038	80	
101118	585	85	2237	66	
10221	900	0	3552	$10 \pm$	
10212	615	140	21 3	81	
10223	1020	30	3842	81	
10214	490	± 5	22 25	74	
10225	710	75	$\square 79$	89	
10216	510	40	$20 \leq 4$	90	10
10217	430	10	257	91	
1028	755	50	6243	100	
10219	55	70	2028	74	
102210	770	115	56	101	
102111	630	± 5	32 23	107	
102212	660	00	2868	99	
102213	790	100	$44-6$	79	
102114	585	15	2921	91	
102215	505	45	1419	67	
102116					1
102217	745	60	5.40	100	
102118	630	45	2030	81	10
10 ± 1	485	10	$18 \quad 1.7$	73	
10צ2	1025	125	4562	117	
$10 \pm 1 \mathrm{y}$	385	45	2118	55	
1054	760	00	5631	108	
10315	445	30	1219	56	
10326	1010	40	696	142	
1027					1
$10 \leq 18$	± 45	00	2018	98	
10.2 ¢	855	50	57 4	154	
103110	455	¢5	こS 20) 72	
10821	915	40	544	49	
103112	510	70	3121	192	
10.113	410	30	1414	461	5
$10 \leq 214$	1120	170	3529	115	

103115	555	20	42	21	85	
10316	915	70	70	63	126	
103117	455	190	19	17	57	
10218	540	00	44	22	67	
11111	550	30	16	18	67	
11122						1
1111 Z	590	60	14	28	60	
11124						1
11115	540	50	25	40	68	
11126						1
11127	610	1.3	18	13	52	
11118	505	120	20	19	58	
11129						1
111110	390	60	13	14	52	
111211						1
111112	375	95	11	$1 \pm$	42	$\underset{\sim}{3}$
111118	3 O	30	$1 \underset{\sim}{3}$	19	51	
111214						1
111115	390	ES	22	18	55	
111216						1
111117						1
111218						1
11221	610	60	40	40	70	
1121 2	610	90	22	30	70	
112\%	660	45	29	54	76	
11214	59	90	16	19	68	
11225	635	00	29	30	82	
11216	425	00	16	17	64	
11217	505	50	23	18	60	2
11228	510	120	24	47	73	
1121 ¢	515	65	1%	18	72	
112210	900	3	56	57	114	
112111	490	00	18	20	71	
112212	$9 \% 0$	50	\pm	36	97	5
11221	850	70	52	47	106	
112114	505	30	18	21	78	
112215	650	00	42	55	100	
112116	460	45	26	24	74	
112217	805	30	56	56	100	
112118	520	40	19	19	63	
1121	440	05	19	15	55	
1132	760	5	59	36	125	
$1131-$						1.
1132	60	00	44	25	85	
11315	520	25	21	25	95	
11296	450	00	25	29	165	
1137						1
11318	350	05	19	2 B	75	
11329	1030	55	51	61	115	
11 S 110	420	O5	20	39	50	
11.211	570	45	26	± 1	120	10
113112	465	15	22	17	76	
$11 \pm 11 \underset{\sim}{3}$	$\underset{40}{ }$	55	11	6	45	

$113214 \quad 725 \quad 25 \quad 54 \quad 76 \quad 105$
$\begin{array}{llllll}113115 & 465 & 165 & 12 & 9 & 50\end{array}$ $113216 \quad 960 \quad 95 \quad 5255112$ $113117 \quad 495 \quad 05 \quad 15 \quad 15 \quad 53$ $113218 \quad 980 \quad 606148135$

datacode	DATE	1212186	RECORDER	Pam Bold					
format trpe		DATA TITLE: Dimensional measurements							
SUDYID BELDOM DAT							of DF and	RA	fter
STUOYID BELDMJ.DAT	second growing season, Belfair, WA (Final Harvest Data)								

variable mame									COLUMAS OCCUPIED	FORTRAM FORMAT	$\begin{gathered} \text { CODED } \\ (\checkmark) \end{gathered}$	UXITS	$\begin{aligned} & \text { MISS.VAL. } \\ & \text { CODE } \\ & \hline \end{aligned}$	VARIABLE LABEL
1	T	m							1-2	F2.0		-		
2	R	E	p						4	F1.0		-		
3	15	P	E	c	61	E	5		6	F1.0	\cdots	-		
4	T	R	N	0	-				8-9	F2.0		-		
5	H	T	T	\bigcirc	${ }_{0} T$				12-14	F3.0		cm		
6	H	T	-	L	c				17-18	F2.0		cm		
7	c	R	w	-	01				20-22	F3.0		cm		
8	c	R	W	10	2				24-26	F 3.0		cm		
9	D	1	A	M	A				28-30	F 3.1		mm		
10	D	A	M						32.33	F2.0	\sim	-		
11	A	N	N	\bigcirc	< 0	m	P p		35-36	F2.0		\%		
12	5	H	R	B	c	0	m	P	38.39	F2.0		\%		
13														
24														
25														
16														
27														
18														.

a) Include spaces in the total columns occupied, e.g. $1 X, A 5=1-6$ columns.
b) Valid formats are: A=alpha, l= whole integer, F=decimal, E=sci.notation.

CONTINUED, reverse side. Please indicate comments about this file on reverse side.

[^7] (Complete one form for each format type)

FORMAT TYPE
STUDYID BELDIm3.DAT
variable
MAME
BRIEF DEFIMITIOM OF EACH VARIABLE
PRECISIOM

TMT	Treatment (*/-11)	-
REP	Replication (*1-3, 4 on TMT3)	-
Species	Coded value for species	-
TRNO	Tree number in plot (*1.9 monoculture, */18 mixture)	-
H TTOT	Total tree height from ground to top	1.0 cm
HTBLC	Height from ground to first live branch	1.0 cm
CRWD1	Crown with measuring North. South	1.0 cm
CRWD 2	Crown width measuring East-kest	1.0 cm
DIAM	Stem diameter 2 cm above ground	0.1 mm
OAM	Coded value for damage	-
ANNCOMP	percentage cover of herbaceous plants on plot	5%
SHEBCOMP	percentage cover of shrub plants on plot	5\%

CONTINUED, reverse side

Forest Science Data Bank. Forest Science Dept., Oregon State University Corvallis. OR 97331-5704 503-754-2244

810821
variable code specification form

CARD ITPE CARD IYPE ___

Continued, Reverse

	040 ar	$0 \vee 0 \pm 1+$		$00+1$	$\infty 0 \times 1$
	トゥートロ	－	トワトロமトゥー	மゥமமம	
$190+6$	150				
V何	¢ F 000	$0 \pm \infty$		$\mapsto \sim r 00$	$0 \text { \& }$
	$\underset{O}{6} \underset{0}{A}+$			¢fy	$\infty 0 \cup 1$
4 G	＋¢ ¢ ¢ ∞	$\cup \pm 0010$	avvernara		回
	\pm ¢ V W	¢！¢ ¢ ¢	fivamotaro		
サ守	$\therefore+\ln +0$	04040		040 CHCA	1080
	FOb	人1～00		$\because \mathrm{H}$	
ト - －+ －	ャトゥゅト	ャレトゥ		ートゥமค	$8 \stackrel{\sim}{6} \stackrel{0}{6}$
	¢ヵ¢ ¢			$\stackrel{\circ}{\circ} \mathrm{CH}$	
ャレャレ			\pm		1.
101515		$\cdots \quad \vdash$			
	464	トゥットロー	¢0¢0000	040	$\underset{\infty}{\infty} \underset{\infty}{\infty}$
	0000		06006	0006	
トレッート		ットに上に		151040	404
6000060060	101010	06000	0000000	1.2010100	606

	$\stackrel{+}{+}$	0.00		4	$V \mathrm{OH}+\mathrm{O}$
¢may	0	ャット		$\stackrel{+}{4}$	
	0	6上9		$\stackrel{\square}{6}$	
	¢			${ }_{0}^{0}$	
	$\stackrel{\square}{0}$			0	\mathfrak{a}
	$\stackrel{\sim}{\mathrm{cm}}$	5	Gyg 60	$\stackrel{\square}{\square}$	
$0{ }^{4}$	$\stackrel{\sim}{\bullet}$		$\stackrel{\bullet}{\bullet} \quad \stackrel{\square}{\bullet}$		
	$\stackrel{\square}{0}$	888	9898gge	0	
	0	$\pm \pm \pm$	Aft 5 ¢f	din	灾它它

$\begin{array}{lll} 9 & 1 & 1 \\ 9 & 1 & 1 \end{array}$											
9	1	2	22	1.17	20	57	38	132		15	52
9	91	2	24	111	3	59	46	160		15	22
9	1	2	27	118	30	48	42	120		15	22
9	1	2	29	136	50	72	58	130		15	22
$\begin{array}{lllllllllllllllll}9 & 1 & 2 & 7 & 136 & 50 & 72 & 58 & 130 & 15 & 22\end{array}$											
9											
91											
912											
912											
9	2	1	1	61	9	34	31	81		20	37
9	2	1	8	67	5	41	39	140		20	37
9	2	1	5	69	10	31	S6	100		20	37
8	2	1	8	63	8	28	2 S	9%		20	37
9	2	1.	10	61	7	80	37	80		0	37
9	2	1	12	6	0	20	23	66		20	37
9	2	1	1%	105	9	56	54	116		20	37
9	2	1	15	54	10	18	24	74		20	37
9	2	1.	17	71	1.4	48	38	108		20	37
9	2	2	6	149	48	67	59	138		20	37
9	2	2	7	113	21	51	52	120		20	37
9	2	2	14	100	26	50	44	119		20	37
5	2	2	16	131	25	50	61	15		20	37
922											
722											
922											
922											
922											
9	3	1	1	65	7	29	29	96		10	62
9	3	1	3	606	25	29	36	112		10	62
9	3	1	5	65	8	28	24	108		10	62
9	3	1	8	59	4	20	26	70		10	62
9	3	1	10	62	2	21	19	94		10	62
9	z	1	12	48	0	22	20	99	10	10	62
9	$\underline{3}$	1	13	8%	22	40	34	111		10	62
9	\pm	1	15	60	17	31	29	125	5	10	62
7	J	1	17	56	15	27	34	65	5	10	6
10	1	1	4	58	13	25	23	107		15	5
10	1	1	6	90	15	3	30	142		35	5
10	1	1	7	74	7	52	36	151		15	5
10	1	1	9	E.	5	4.7	42	145		15	4
0	1	1	11	B1	5	34	32	146		15	5
10	1	1.	14	98	14	75	66	143		15	4
0	1	1	16	77	4	38	5	134		15	5
10	1	1	18	76	13	36	32	108		15	5
	1	1								15	5
0	1	2	1	175	4.	125	87	219		15	5
0	1	2	3	152	16	83	65	174		15	5
0	1	2	8	150	1.6	70	66	162		15	5
	1	2	10	100	8	42	32	120		15	5
0	1	2	13	126	12	48	65	16		15	5
	1	2	15	134	25	77	100	179		15	5

DATA TITLE: Root widths and lengths at final harvest, Belfair, WA (addition to BELDIM3.DAT)

variable mame							$\begin{aligned} & \text { COLUMNS } \\ & \text { OCCUPIED } \end{aligned}$	fortran FORMAT	CODED (V)	UXITS	$\begin{gathered} \text { MISS.VAL. } \\ \text { CODE } \end{gathered}$	variable LABEL
1	T	m	7				1-2	F2.0		-		
2	R	E	P				4	F1.0		-		
3	5	p	E	c 1	1 E	5	6	F1.0	\checkmark	-		
4	7	2	N	\bigcirc			8-9	F2.0		-		
5	R	T	ω	D			12-14	F 3.0		cm		
6	R	T	\llcorner	N			17-19	F 3.0		cm		
7												
8												
9												
$\underline{1}$												
21												
12												
13												
14												
15												
16												
17												
18												

a) Include spaces in the total columns occupied, e.g. $1 x$, A5 $=1-6$ columns. b) Valid formats are: $A=a l p h a, ~ I=$ whole integer. F=decimal, Esci.notation.

Forest Science Data Bank, Forest Science Dept. Oregon State University Corvallis, OR

97331-5704

___ CONTINUED, reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University Corvallis. OR 97331-5704 503-754-2244

VARIABLE CODE SPECIFICATION FORM

9	1	2	7	29	21
9	1.	2	9	34	22
9	1	2			
9	1	2			
9	1	2			
9	1	2			
9	1	2			
9	2	1	1	43	15
9	2	1	\pm	28	25
9	2	1	5	16	19
9	2	1	8	15	13
9	2	1	10	28	15
9	2	1	12	21	21
9	2	1	13	22	19
9	2	1	15	29	19
9	2	1	17	27	25
9	2	2	6	36	23
9	2	2	7	35	25
9	2	2	14	21	18
9	2	2	16	46	29
9	2	2			
9	2	2			
9	2	2			
9	2	2			
9	2	2			
9	3	1	1	30	29
9		1	3	22	24
9	팔	1	5	25	21
9	3	1	8	26	16
9	Z	1	10	21	30
9	उ	1	12	16	21
9	\%	1	13	25	21
9	उ	1	15	16	18
9	I	1	17	21	10
9	ت	2	4	16	31
9	E	2			
9	3	2			
9	3	2			
9	3	2			
9	3	2			
9	3	2			
9	3	2			
9	S	2			
10	1	1.	4.	25	27
10	1	1	6	42	26
10	1	1	7	37	28
10	1	1	9	30	23
10	1	1	11	38	21
10	1	1	14	32	20
10	1	1	16	31	23
10	1	1	18	30	22
	1	1			
10	1	2	1	37	25
10	1	2	3	56	28

10	1	2	8	41	26
10	1	2	10	3.3	21
10	1	2	13	40	27
10）	1	2	15	± 1	46
10	1	2			
10	1	2			
10	1	2			
10	2	1	\cdots	20	34
10	\cdots	1	4	24	34
10	2	1	6	44	23
10	2	1	7	2＇	21
10	2	1.	9	27	28
10	2	1	11	2	18
10	2	1	14.	3	25
10	2	1			
10	2	1	18	56	25
10	2	2	1	54	45
10	2	2	\square	47	61
10	士	2	5	47	41
10	2	2	8	± 4	15
10	2	2	10	130	20
10	2	\cdots	12	50	40
10	2	こ	13	57	44
10	2	ご	15	$\underline{8}$	37
10	ב	2	17	40	19
10	$\underset{\square}{\square}$	1.	1	20	13
10	$\underset{\sim}{\square}$	1	3	$2 \square$	11
10	$\underset{\sim}{\square}$	1	8	2	20
10	\pm	1	10	28	14
10	3	1	12	54	29
10	I	1	13	17	16
10	3	1	15	27	17
10	$\underset{\sim}{\square}$	1	17	28	21
10	\pm	1			
10	\pm	2	4	50	48
10	$\underline{\square}$	て	6	19	2 B
10	\pm	2			
10	B	2	9	32	43
10	\pm	2	11	24	23
10	Ξ	2	14	24	22
10	\because	2	16	12	31
10	S	2	18	19	27
10	B	2			
11.	1	1	1	27	16
11	1	1	\pm	16	15
11	1	1	5	14	20
11	1	1	8	11	12
1 j	1.	i．	10	10	15
11	1	1	13	13	15
11	1	1	15	16	15
11	1	1			
11	1	1			
11	2	1	2	26	26
11	2	1	4	21	18

11	2	1	6	22	21
11	2	1	7	21	18
11	2	1	9	17	22
11	2	1	11	32	20
11	2	1	14	23	16
11	2	1	16	16	17
11	2	1	18	28	25
11	2	2	1	54	23
11	2	2	3	44	25
11	2	2	5	26	37
11	2	2	8	45	18
11	2	2	10	45	31
11	2	2	12	31	34
11	2	2	13	71	26
11	2	2	15	41	29
11	2	2	17	56	17
11	3	1	1	21	17
11	3	1			
11	Ξ	1	5	17	23
11	3	1	8	26	20
11	3	1	10	17	16
11	3	1	12	14	22
11	3	1	13	13	16
11	3	1	15	17	19
11	Ξ	1	17	25	21
11	3	2	4	25	21
11	3	2	6	30	26
11	Ξ	2	9	46	51
11	3	2	11	41	27
11	3	2	14	60	35
11	Ξ	2	16	65	27
11	3	2	18	44	26

841010

variable format form
Page _ of 3

variable mame									$\begin{aligned} & \text { COLUMNS } \\ & \text { OCCUPIED } \end{aligned}$	$\begin{aligned} & \text { FORTRAK } \\ & \text { FORMAT } \end{aligned}$	$\begin{aligned} & \text { CODED } \\ & (\checkmark) \end{aligned}$	UNITS	$\begin{gathered} \text { MISS. VAL. } \\ \text { CODE } \\ \hline \end{gathered}$	variable Label
1	5	P	E	c	$c 1$	e	s	5	1	F1.0	-			
2	T	R	N	, 0					2-3	F2.0				
3	H	T	T	0	01	T			. $4-7$, F4. 1		cm		
4	H	T	B	L	C				$9-11$	$1 x_{1}, F=1$		cm		
5	C	R	ω	0	T	H	1	1	13-14	$1 \mathrm{x}, \mathrm{F} 2.0$		cm		
6	D	1	A	m					15-17	, F2.0		mm		
7	R	T	ω	d	T	T H			19.21	$1 \times . F 3.1$		cm		
8	IR	7	L	N	NG	G T		H	22-24	F3.1		cm		
9	T	B	1	\bigcirc	O				26-18	1x, F3:1		9		
10	R	T	B	1	0				30-32	1x,F3,1		9		
11	5	T	B	1	0	0			33-35	F 3.1		9		
12	L	F	5	1	0	0			36.38	F 3.1		9		
13	C	R	W	D	T	TH	2	2	39-40	\cdots F 2.0		cm		
14	L	E	A	D	E	$E R$			42-44	\|x, F3.1		cm		
15														
16														
17														
18														

a) Include spaces in the total columns occupied. e.g. $1 X, A 5=1-6$ columns. b) Valid formats are: A=alpha, I= whole integer. Fadeciaal, Esci.notation.

___ CONTIMUED, reverse side. Please indicate coments about this file on reverse side.

Forest Science Data sank. Forest Science Dept., Oregon State University Corvallis. OR

97331-5704
503-754-2244

VARIABLE DEFIMITIOM FORM
Page 2 of
(Complete one form for each format type)
datacode
DATE $\frac{5}{10} / \frac{14}{d a} \frac{85}{y r}$
RECORDER Pam Bold
FORMAT TYPE \qquad

STUDYID EELB/OL.DAT

___ CONTINUED, reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University Corvallis. OR 97331-5704 503-754-2244

CONTINUED, Reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University Corvallis, OR 97331-5704 503-754-2244

1.	430	40	$27 \quad 54$	110280	281	047035050	
12	410	40	2447	120230	235	022080017	
1Ξ	$\triangle 60$	60	16 － 0	150215	191.	010012011	
14	± 60	¢5	642	120215	190	014021029	
15	± 40	50	1630	110200	160	009010012	
16	350	55	640	120180	179	020020013	
17	400	50	1537	1.00240	180	012020020	
18	320	50	13 S	120220	163	015012010	
19	370	25	1140	100210	183	013020025	
110	515	105	$26 \quad 51$	85175	207	015085030	
111	400	50	1068	240250	270	050052040	
112	460	50	3045	150220	210	020030080	
113	465	40	840	10020	160	010020020	
114	－80	55	1840	135200	185	011019020	
115	410	50	12 F	60250	161.	098015013	
116	630	50	36 67	250210	ゼO9	042072060	
117	550	40	2255	22010	240	039055054	
118	665	50	1540	210215	172	O20025020	
114	205	40	$20 \leq 1$	85370	159	010010010	
120	440	5	837	13525	179	017020012	
121	510	40	1859	240290	248	024050060	
122	－20	40	1049	260210	169	011016010	
123	500	50	1875	4.00250	328	060081050	
124	470	40	1664	170250	292	042061052	
12【゙す	420	30	2448	15020	210	025050026	
126	410	40	253	150280	190	013022020	
227	565	20	678	260390	290	090070	
228	880	95	750	185220	181	080027	
224	380	50	2055	260300	210	040041	
23	550	35	2988	240290	281	060091	
231	500	60	650	170500	178	OSOO21	
232	440	± 5	2061	250230	239	055050	
2\％	305	205	4 －5	1001.90	150	013010	
294	410	70	1260	360290	27	068040	
2\％5	50	50	$46 \quad 84$	400520	379	150119	
296	3 SO	40	2952	210170	200	949080	
3 1	540	$\because 0$	41． 86	260280	389	16811810346	120
\square	400	70	1552	170810	117	$45 \quad 34 \quad 3817$	85
－	410	20	178	220280	277	15 ± 745018	100
± 4	220	100	1549	90250	89	51231512	90
35	405	140	2165	24.0140	131	$54 \quad 47 \quad 5017$	50
± 6	$\square 00$	20	1667	220220	124	$39 \quad 5045$	80
37	370	40	1146	170280	102	51 26 2623	80
± 8	－35	40	1054	140150	75	24272413	70
39	500	90	1982	170220	223	84776218	100
－10	660	160	1910%	210270	291	1071404421	80
311	575	50	31102	± 40500	451	18115911121	EO
$\underline{Z 12}$	520	00	2991	250580	267	1011016517	110

COLUMNS FORTRAN CODED MISS. VAL. VARIABLE

a) Include spaces in the total columns occupied, egg. $1 x, A 5=1-6$ columns.
b) Valid formats are: A=alpha, I= whole integer. Fedecimal, E=sci.notation.
\qquad CONTIMUED, reverse side.
please indicate comments about this file on reverse side.

Forest Science Data Bank. Forest Science Dept., Oregon State University Corvallis, OR

27331-5704
503-754-2244

VARIABLE DEFIMITIOM FORM
Page 2 of 3 (Complete one form for each format type)

FORMAT TYPE

\qquad
STUDYID BELBIOZ.DAT

CONTINUED, reverse side

VARIABLE CODE SPECIFICATION FORM

DATA SET CODE \qquad
\qquad
CARD TYPE

STUDY ID BELBIO2.DAT Date/Inicials 12-2-86 -PB

vartable (name)	$\begin{aligned} & \text { CODE } \\ & \text { VALUE } \end{aligned}$	definition of code vaiue
species	1	Douglas - fir
	2	red alder
		-
	,	
		.
		. \cdot
		-
		-
		-

Continued, Reverse

1	1	1	1	± 68	207	± 46	000	250	± 62	250	000	010
1	1	1	2	208	92	154	000	250	262	250	000	010
1	1	1	3	516	163	382	000	250	シ62	250	000	010
1	1	1	4.	94	59	92	000	250	± 62	250	000	010
1	1	1	5	121	83	131	000	250	－62	250	000	010
1	1	1	6	345	104.	255	000	250	362	250	000	010
1	1	1	7	1 ± 8	88	128	000	250	± 62	250	000	010
1	1	1	8	239	105	165	000	250	20	259	000	010
1	1	1	9	116	27	74	000	250	± 62	250	000	010
1	2	1	\pm	117	5	105	000	222	4 Y 7	222	000	010
1	z	1	4	209	101	127	000	194	459	154	000	010
1	2	1	5	344.	209	256	000	167	506	167	000	010
1	2	1	6	321	127	255	000	167	506	167	000	010
1	－	1	7	154	66	78	000	2 G 0	262	250	000	010
1	2	1	8	199	96	132	000	194	45%	194	000	010
1	2	1										
1	2	1										
1	2	1										
1	\pm	1	1	108	3	59	000	250	262	250	000	010
1	$\underset{\sim}{\square}$	1	2	ごS	101	210	000	222	400	229	000	010
1	$\underset{\sim}{\square}$	1	4	460	135	287	00	250	36	250	000	010
1	$\underset{\sim}{\square}$	1	5	275	67	195	000	222	415	22	000	010
1	\pm	1	6	280	101	159	000	292	400	229	000	010
1	－	1	7	138	52	80	000	250	－62	250	000	010
1	\pm	1	8	569	185	269	000	250	± 62	250	000	010
1	\pm	1	9	254	95	225	000	250	± 62	250	000	010
1	3	1										
2	1	1	1	139	50	88	000	111	543	111	000	010
2	1	1	2	250	158	127	000	111	543	111	000	010
2	1.	1	$\underline{\square}$	101	シ2	89	000	111	54.	1． 11	000	010
2	1	1	4	150	66	123	000	111	54.	111	000	010
2	1	1.	5	152	95	117	000	111	543	111	00	010
2	1	1	6	31	73	172	000	111	543	111	000	010
2	1	1	7	245	116	186	000	111	543	J． 11	000	010
2	1	1	8	448	$16 \pm$	362	000	111	543	111	000	010
2	J．	1	9	1． 0	54	92	000	111	54	111	000	010
2	2	1	1	217	74	15\％	000	99	600	99	000	010
2	2	1	2	119	60	60	000	99	6 ES	99	000	010
2	2	1	$\underset{\sim}{3}$	79	46	59	000	111	543	111	000	010
2	2	1	4	197	90	101	000	1．11	543	111	000	010
2	2	1	5	247	122	122	000	111	543	111	000	010
2	2	1	6	651	228	405	OOO	111	543	111	000	010
2	2	1	7	207	65	115	000	111	543	111	000	010
2	2	1.	θ	181	94	89	000	111	543	111	00	010
2	2	1	9	47\％	175	± 18	000	111	543	111	00	010
2	З	1	1	6－		22	000	74	73	74	000	010
2	\underline{Z}	1	3	298	58	123	000	74	838	74	00	010
2	3	1.	4	61	20	TO	00	49	E94	49	000	010
2	ت	1	6	20%	58	86	000	49	894	49	90	010
2		1.	9	677	164	34	000	49	95	49	000	010
2	－	1										
2	\geq	1										
2	\pm	1										
2	彐	1										

3	2	1	1	846	342	581	000	6：	724	67	000	010
$\underset{ }{ }$	2	1	2	393	157	240	000	56	797	56	000	10
3	2	1	4	529	173	35	000	56	8%	56	000	010
\pm	2	1	5	389	139	174	000	49	905	49	000	010
\pm	z	1	6	220	163：	121	000	45	905	49	000	010
3	2	1	7	389	112	2E2	000	56	779	56	000	010
3	\cdots	1	9	44.4	16\％	287	00	56	799	56	000	010
3	2	1										
3	こ	1.										
3	ت	1	1	1．55	72	139	000	42	1095	42	000	010
\pm	$\underline{\square}$	1	5	186	81	108	000	28	1161	28	000	010
E	\because	1	6	177	58	116	000	42	1117	42	000	010
$\underset{\sim}{\square}$	\pm	1	9	100	39	58	000	49	949	49	00	010
3	3	1										
3	\square	1										
\pm	\pm	1										
\pm	\because	1										
3	3	1										
3	4	1	1	24.	94	132	000	63	724	63	000	010
3	4	1	2	407	134		000	6	724	6	000	010
3	4	1	$\underset{\sim}{\square}$	449	149	281	000	69	724	6	000	010
\pm	4	1	4	37	192	170	000	6	724	6	000	010
\pm	4	1	$\stackrel{\square}{5}$	382	161	2S	000	6.	724	6	000	010
S	4	1	6	467	168	129	000	63	724	$6 \pm$	000	010
3	4	1.	7	178	37	61.	000	63	724	$6 \pm$	000	010
3	4	1	8	589	163	265	000	6 6	724	6	000	010
3	4	1	9	802	107	153	00	63	724	6.	000	010
3	1	1	1	168	68	135	000	63	724	6	000	010
\pm	1	1	2	182	62	148	000	$6 \pm$	724	$6 \pm$	000	010
3	1	1	$\underset{\sim}{r}$	286	89	187	000	$6 \pm$	724	6	000	010
\pm	1	1	4	220	73	124	000	63	724	6	000	010
$\underset{-}{\square}$	1	1	5	145	95	119	000	$6 \pm$	724	6	000	010
\pm	1	1	6	112	59	80	00	6	724	6	000	010
\pm	1	1	7	140	68	102	000	$6 \pm$	724	6	000	010
\because	1.	1	8	1048	437	652	000	6	724	6	000	010
$\stackrel{-}{\square}$	1	1	9	248	122	112	000	63	724	6	00	010
4	1	1	1.	94	77	50	000	69	725	69	000	010
4	1	1	2	142	66	108	000	56	905	56	000	010
4	1	1	4	13.6	59	104	000	67	Q	69	000	010
4	1	1	6	85	44	54	000	56	905	56	000	010
4	1	1	7	120	69	100	000	69	725	69	000	010
4	1	1	8	175	89	147	000	56	875	56	000	010
4	1	1	9	183	108	$1 \leq 1$	00 O	56	905	56	O0\％	010
4	1	1										
4	1	1										
4	\cdots	1	1	Ξ	125	172	00	69	725	69	00	010
4	2	1	\because	8.4	－	47	000	69	$8 \leq 1$	67	00	010
4	－	1	4	1． 48	8	1.03	00	4\％	981	42	000	010
4	2	1	5	142	66	75	000	42	981	42	000	010
4	こ	1	6	260	$日 2$	100	000	67	725	69	00	010
4	2	1	7	72	42	63	め○	56	905	56	00	010
4	2	1	9	67	38	46	000	69	$8 \div 1$	69	000	010
4	2	1										
4	玉	］										

信 					
Vorm＋1］－	~ 0010		a0vorn＋ith	$50+10$	¢0
	$010+\infty$	$v+1006$			
		－¢－		¢¢0	
	O000\％	¢ommomb	0 atotary		$\sqrt{0} 0$
	$\cdots \cdots$	C10 \％m	प－150raidm		
	∞ $0 \sim 0$ 0		¢0x 060		－vord
				か的め－	$0 \times \sim$
오오	응	心88心	9896806	$\underset{6}{6}$	armor
				O	180
	GOGO	G68	엉心氏心	GOG	COC
$\begin{array}{llllll} \\ + & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$			リリットリーツ－	以上以上m	
	ataroob	¢0円		motaso	cham 0
		－	O10 Oro	Qmonv	0000
$\begin{aligned} & \text { V } \\ & 0 \cos \\ & 0 \cos \end{aligned}$	O－0000．	Undorocm			$\cdots \mathrm{m}+\mathrm{m}$
	－¢ ¢－		$\begin{aligned} & 6+\square+0 \\ & 0 \rightarrow 0 \end{aligned}$		
	$0 \mapsto m-\infty$			$S_{0} A G_{0}$	moder
GO氏日	$\underset{\substack{6}}{\substack{6}}$	$\begin{gathered} 68688 \\ 0688 \end{gathered}$	氏	GOCOO	$\frac{0}{0} 0 \cdot 0$
Vverad		－	サr－trmm－		000
	atjujua	OVm0	Orbobiva	$0 \operatorname{jog}$	66
Q8G688	O600	O心O60			
	$\mathscr{6} 6$	8688	응心氏丶	$\mathscr{C O}$	OOOO

9	1	1	10	241	171	228	000	139	54.3	B．	56	05
7	1	1	12	245	113	20.	000	137	565	111	28	1． 0
9	1	1	13	410	124	343	000	194	58	111	83	05
9	1	1.	17	138	61	1.54	000	167	587	139	28	O8
9	1	1										
9	1	1										
9	1.	2	2	401	175	000	080	250	36	111	139	0
9	1	2	4	174%	477	000	000	194	546	8%	111	05
9	1	2	7	37	117	OOO	000	167	55	83	83	06
9	1	2	9	406	155	000	075	167	54%	83	8S	06
9	1	2										
9	1	2										
9	1.	2										
9	1	2										
9	1	2										
9	2	1.	1	85	62	89	000	194	437	139	56	07
9	2	1	－	－25	175	246	000	1.37	512	139	000	10
9	マ	1	5	146	42	86	000	167	475	139	28	08
9	2	1	8	143	49	89	000	194	437	139	56	07
9	2	1	10	109	40	83	000	167	475	139	28	08
9	こ	1	12	98	26	5	000	194	437	139	56	07
9	2	1	13	427	116	243	000	22	415	111	111	04
9	2	1	15	72	28	± 4	000	167	490	111	56	06
9	こ	1	17	224	146	170	000	167	475	139	28	0 O
9	2	2	6	55	200	000	154	167	468	111	56	08
9	2	2	7	382	117	00	041	222	468	111	111	00
9	こ	2	14	219	75	000	000	167	612	8%	83	06
5	2	\because	16	378	162	000	040	139	680	111	28	10
9	2	2										
9	－	2										
9	\cdots	2										
9	－	2										
9	\cdots	2										
9	Z	1	1	29%	55	174	000	154	437	134	56	97
9	$\underset{\sim}{\square}$	1	3	296	77	152	000	194	437	189	56	07
7	Z	1	5	205	68	129	000	167	475	134	28	08
9	$\underset{\sim}{3}$	1	8	110	23	84	000	137	512	139	00	010
9	3	1	10	175	56	126	000	167	475	139	2 C	08
9	\pm	1	12	203	78	102	000	139	512	139	000	010
9	Z	1	13	$\Xi 76$	102	178	0 OO	167	475	1.5	28	08
9	－	1	15	142	48	89	000	139	512	139	00	010
9	Z	1	17	118	56	47	000	134	以12	139	000	010
10	1	1	4	171	87	156	000	92	656	67	25	07
10	1	1	6	551	206	274	000	79	719	67	12	08
10	1	1	7	421	168	415	000	86	679	47	37	05
10	1	1	9	410	238	374	000	99	623	49	49	04
0	1	1	11	414	200	256	000	79	712	67	12	08
0	1	1	14	535	163	407	000	104	600	67	37	06
0	1	1	16	900	154	2－7	000	92	656	67	25	07
10	1	1	15	235	131	183	000	79	712	67	12	98
0	1	1										
0	1	2	1	1653	637	000	000	74	759	57	37	06
0	1	2	3	726	250	00	111	74	759	37	± 7	06
0	1	2	8	676	269	000	000	99	656	± 7	62	04

11	Ξ	2	11	626	280	000	151	63	724	28	75	05
11	I	2	14	4．45	528	000	00	42	1042	28	14	08
11	$\underset{\sim}{3}$	2	16	14才5	574	000	000	49	93	28	21	97
11	J	\because	18	1565	592	000	2 S	49	$9 \div 6$	28	21	07
11	$\underset{\sim}{3}$	2										
11	Z	2										
11	2	2	1	793	323	000	000	56	$8 \leq 0$	28	28	06
11	2	2	T	1632	421	000	000	65	724	28	\％	05
11	2	\cdots	5	825	276	00	081	63	724	28	35	O5
11	2	2	8	943	$\because 75$	0	100	63	724	20	35	Os
11	2	2	10	307	1008	000	000	63	724	28	5	O5
11	2	－	12	581	$\square 2$	00	00	56	830	2日	2 S	06
11	2	\cdots	1－	5940	1201．	000	00	63	724	2 S	5	06
11	2	2	15	1786	658	000	00	63	724	28	35	05
11	2	\cdots	17	1806	526	00	117	63	724	28	\％	5
11	2	1	2	43	14%	160	000	65	724	35	28	0
11	2	1	4.	406	143	2 F	000	65	724	35	28	5
11	2	1	6	258	90	141	000	56	799	5	~ 1	Ot
1	2	1	7	222	111	1 Oह	000	65	724	5	28	5
11	2	1	9	424	134	190	000	63	724	区	20	05
11	2	1.	1.1	3 S 1	81	127	00	63	724	5	2 C	0
11	2	1	14	344	88	86	000	63	724	－5	28	05
11	2	1	16	345	81	167	00	63	724	5	2 E	05
11	2	1	18	412	122	274	00	63	724	3	28	05
11	1	1	1	4.8	124	288	Oप	28	1130	2日	00	010
11	1	1	$\underline{\square}$	108	65	77	00	28	1130	2 B	000	010
11	1	1	5	195	119	148	000	21	1567	21	000	010
11	1	1	8	247	60	123	00	는	1097	T5	000	010
11	1	1	10	88	24	49	000	28	1280	20	000	010
11	1	1	13	85	37	85	000	28	11.8	28	000	010
11	1	1	15	13	56	58	000	35	11.74	35	00	010

[^0]: ${ }^{1}$ Hibbs, D. E. and S. E. Radosevich. Intra- and Interspecific Interactions between Red Alder and Douglas-fir. USDA Grant Proposal, 1984, 84-CRCR-1434.

[^1]: ${ }^{1}$ Hibbs, D. E. and S. E. Radosevich. Intra- and Interspecific Interactions between Red Alder and Douglas-fir. USDA Grant Proposal, 1984, 84-CRCR-1434.

[^2]: ${ }^{2}$ Washington DNR Soil Survey, 1981.
 ${ }^{3}$ Harrington, T. and B. Yoder, personal communication, 1987.

[^3]: *

 Blank spaces indicate variables were not significant in the equations.

 Y refers to dependent variables $\ln ($ Stbio), $\ln ($ Lfbio), $\ln ($ Rtbio), $\ln ($ Totbio), and Nodbio which are defined respectively as the natural alogarithms of stem biomass, leaf biomass, root biomass, and total biomass, and as nodule biomass. Intercept refers to the Y-intercept of the allometric equations. Independent variables are \% Total and Dist which are defined respectively as the percent cover of all herbaceous and shrub species on the plot, and the distance to the nearest neighboring tree. R^{2} is the coefficient of determination. MSE is the mean squared error of the models. $P(F>\hat{F})$ is the conditional probability of observing a value of F as extreme as the observed value given that the null hypothesis is true (slope $=0$).

[^4]: ${ }^{a}$ Variable needs further investigation or longer experimental period to determine significance.
 b.Applies to Douglas-fir only.
 ${ }^{c}$ Applies to red alder only.
 Refer to Appendix 1 for definition of terms.

[^5]: $a_{\text {No significant }}$ differences between means.
 Refer to Appendix 1 for definition of terms.

[^6]: *Sample sizes for Nodbio are 7, 1, 5, 5, 2, 3, and 1, respectively. **

 Refer to Appendix 1 for definition of terms.
 ${ }^{a}$ No significant differences between means.

[^7]: Forest Science Data sank. Forest Science Dept., Oregon State University Corvallis, OR 97331-5704

