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Abstract approved:

Allometric equations are useful tools for predicting tree bio-
mass when direct measurements are impractical. Any factor
affecting plant growth can be a significant variable in allometric
equations. Density and species proportion are spatial variables
that influence tree growth and should be considered when develop-
ing allometric equations. This consideration is especially
pertinent when developing equations for use in replacement series
experiments (de Wit, 1960), where density and species proportion
are treatment variables.

Allometric equations for three-year-old Douglas-fir (Pseudo-
tsuga menziesii) and red alder (Alnus rubra) were developed as
part of a replacement series experiment in Belfair, Washington. The
primary objective of the study was to generate equations for pre-
dicting seedling component biomass. Another objective was to test
the significance of density and proportion in biomass prediction.
Douglas-fir and red alder biomass components were best predicted
by stem diameter, total height, and crown width. Density was a
significant variable for predicting Douglas-fir leaf biomass and
total biomass. However, density was positively correlated with
biomass, contrary to normal yield-density relationships, and so
was excluded from the model. The percent cover of weed species on
the plot was a significant variable for predicting Douglas-fir root

biomass. Red alder total biomass was correlated with proportion,



indicating that biomass was higher when sample trees were surround-
ed by a higher number of red alder than of Douglas~fir. Generally,
the most significant spatial variable for predicting Douglas-fir
biomass was the percent cover of weed species. The most signifi-
cant spatial variable for predicting red alder biomass was the
distance to the nearest neighboring tree. Suggestions for
determining the roles of density and proportion in allometric

equations for use in replacement series experiments are given.
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THE ROLE OF DENSITY AND PROPORTION IN ALLOMETRIC
EQUATIONS OF DOUGLAS-FIR AND RED ALDER SEEDLINGS

CHAPTER 1

INTRODUCTION AND OBJECTIVES OF STUDY

AllometrX

Allometry is the study of the change in growth of various
parts of an organism (Grier, Lee, and Archibald, 1984). Allometric
equations have been used widely in forest research to determine
tree biomass values, because they provide estimates of biomass when
direct sampling is impractical or prohibitive to the experimental
design (Satoo and Madgwick, 1982). Allometric equations relate
difficult-measured parameters (e.g., leaf biomass, root biomass)
to parameters that are measured more easily. Most authors esti-
mate tree size by stem diameter, tree height, or a combination of
these values and correlate tree size with tree biomass (Satoo and
Madgwick, 1982). Since allometry describes the change in propor-
tion of parts of a tree due to growth, any factor that affects tree
growth can be significant in allometric equations. Such factors
may include site characteristics, plant density, plant spatial
arrangement, and species proportion. Satoo and Madgwick (1982), in
a summary of forest biomass studies, believe that predicting tree
biomass from stem diameter may be applicable generally to stems and
entire trees, but not to tree canopies. Canopy components also are
affected by growth stage, stand density, and site conditions (Satoo
and Madgwick, 1982). Leaf biomass increases with total biomass
when trees are young, but later becomes independent of total bio-
mass. No differences in leaf biomass could be attributed to stand

density when stand canopies of Pinus banksiana, P. densiflora, and




P. sylvestris closed (Satoo and Madgwick, 1982). Root biomass often
is not considered in plant allometrics. When root biomass has been
considered, it varies in response to plant densities. Studies

have shown positive, negative, and no responses to density (Satoo
and Madgwick, 1982).

Allometric equations for plant populations usually require
logarithmic transformations. The distribution of seedling biomass be-
comes positively skewed and often achieves a log-normal distribu-
tion under competitive conditions (Hutchings and Budd, 1981). An
advantage of fitting a logarithmic equation for plant biomass is
that the resultant form of the equation is flexible, while account-
ing for variances of weight with tree size (Satoo and Madgwick,
1982). The transformed model also meets statistical assumptions of
constant variance and random error.

A disadvantage of logarithmic transformations is they are not
linear. Thus, when the distribution of 1n(Y) at X is normal, the
distribution of Y will be skewed. The antilog of 1n(Y) is the
median of the skewed distribution, not the mean (Baskerville, 1972).
However, the mean of the biomass is the value of interest. Several
factors have been developed to correct for this bias in data trans-
formation (Mountford and Bunce, 1973; Baskerville, 1972).
Flewelling and Piennar (1981) summarized these correction factors
and presented guidelines for choosing the proper factor based on
model use, sample size, and mean squared error term. Another dis-
advantage of logarithmic transformations is that the sum of the
estimates of the component tree parts may not equal the estimate of
the total tree (Kozak, 1970). Therefore, stratification of samp-
ling material improves the reliability of the biomass estimates

(Madgwick, 1971).

Plant Competition

A goal of plant competition research is to elucidate the
factors contributing to changes in plant growth. It is agreed

generally that important factors to consider when studying plant



interactions are plant density and species proportion. Plant
density directly affects plant growth. Plant biomass production

is related to the resources available to plants and is approximately
linear to the uptake of the limiting resource (Spitters, 1983ab).
Therefore, competition among plants is reflected in their relative
biomass accumulation. The "law of constant final yield" (Kira et
al., 1953) is based on the principle that low plant densities have

a larger space available to them. Thus, plant biomass responds to
alterations in density in a plastic manner. At high plant densi-
ties, however, biomass reaches an equilibrium and no longer

responds to increases in density [Fig. 1.1]. Similarly, the "recip-
rocal yield law'" (Shinozaki and Kira, 1956) indicates that individual
plants size will decrease with increasing plant density. This ob-
servation occurs because the resources available to individual
plants diminishes as the number of plants in a given area increases
[Fig. 1.2].

In addition to plant density, species proportion also may
affect plant biomass. Species proportion is the relative density
of each species in a mixture, and can be expressed as a ratio.
Expansion of the ''reciprocal yield law'" by Spitters (1983ab) to
include multiple species indicates that in a mixture the relative
density of one species will influence the yield of other species
in the mixture. By considering species proportion, effects of
interspecific competition on plant biomass can be addressed. It
is unlikely that plants will behave as individuals when interacting
with individuals of the same or differing species.

The effects of density and proportion are dependent on plant
size and resource availability (Harper, 1977). According to the
"reciprocal yield law" [Fig. 1.2], plant biomass decreases as den-
sity increases. However, at low densities plants do not experience
competitive inhibition, so biomass is not affected until a thresh-
old density is attained [Fig. 1.3]. The threshold density repre-
sents the time or number of plants when density-induced stress

occurs. Any factor that decreases the rate of plant growth can be



FIGURE 1.1.

/W e

DENSITY

Law of Constant Final Yield.

FIGURE 1.2.

DENSITY ———————

Reciprocal Yield Law, where W is
individual plant yield.



THRESHOLD DENSITY

YIELD

DENSITY

FIGURE 1.3. Individual Yield vs. Density, where Y
is individual yield in the absence of
competetive stress due to density.



expected to delay the onset of density stress and interspecific
interactions and to reduce the intensities of stress and interac-—
tions (Harper, 1977).

Many experimental designs have been employed to study the in-
fluence of various factors on intra- and interspecific competitive
interactions (Radosevich, 1987). An often used approach is the re-
placement series experiment. In this approach, total plant density
is constant while the species proportions vary to pure stands of
each species (de Wit, 1960; Jolliffe, 1984). The replacement series
is believed to allow separation of interspecific competitive effects
from those of intraspecific competition. The experimental density
is usually arbitrarily chosen in these experiments. The degree of
interaction between the species is often dependent on the chosen
density even though the density throughout the experiment remains
constant (Jolliffe et al., 1984). Jolliffe et al. (1984) advise
that replacement series be replicated over a range of densities to
improve the interpretation of replacement series experiments.

Species proportion also must be considered as a factor when
allometric equations are used to estimate plant biomass in replace-
ment series experiments. Species proportion is a discrete variable
in these types of experiments. If proportion is treated as a vari-
able during the experimental analysis, it also must be treated as
a variable in initial calculations that provide the data for
analysis. Ignoring species proportion during allometric calcula-
tions of biomass assumes that it is constant throughout the experi-
ment. Interspecific competition also may influence plant biomass
accumulation differently than intraspecific competition. If this
is the case, relative species density (proportion) should more
accurately account for differences in plant biomass than total
density alone. The role of density and species proportion in com-
petitive interactions must be understood to accurately interpret
the factors affecting inter- and intraspecific competition. If
they are not adequately considered, they become confounding fac-

tors or unaccounted sources of experimental variation.



Competition with Douglas-fir and Red Alder

Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra)

have been the subjects of many experiments on inter- and intra-
specific competition. Tarrant (1961) observed that interplanting
Douglas-fir and red alder increased Douglas-fir size and total
stand biomass over Douglas-~fir monocultures. This observation
has been confirmed by Binkley (1983), Binkley et al. (1984),
Bormann and Gordon (1984), Miller and Murray (1978), and Atkinson
and Hamilton (1978). Binkley et al. (1984) observed that

natural seeding of Sitka alder (Alnus sinuata) into a Douglas-fir

plantation increased current average dbh (diameter at breast height,
approximately 1.5 m), five-year average basal area growth, and stem
biomass increment. In another study, Binkley (1983) observed that
the influence of red alder on Douglas-fir growth was mediated by
site factors. On a nitrogen deficient site, average Douglas-fir
diameter was larger in the presence of red alder. However, the
presence of red alder on a fertile site was correlated with de-
creased Douglas-fir biomass. Unfortunately, density and species
proportion have never been considered as independent variables in
such studies.

Density has been considered in the development of allometric
equations for plant species in monoculture. Bormann and Gordon
(1984) found that accounting for stand density in allometric equa-
tions for five-year-old red alder increased the predictability of
their equations for tree growth. Stand density strongly affected
average tree dimensions. In another study with juvenile red alder,
Smith and De Bell (1974) found that differences in tree size and
biomass were associated with differences in stand density, as a
measure of tree crowding. They concluded that stand density (de-
gree of crowding) is at least as important as site quality in
determining yield of fully stocked red alder stands. Honmer (1971)
observed significant differences in allometric equations for
balsam fir biomass when trees were grown in open vs. closed stands.

Allometric equations also may be influenced by the proportion



of plant species in an experiment. Brand (1986a) found that the
interspecific competition due to surrounding shrubs affected the
allometric relationship of height to basal area for Douglas-fir.
Douglas-fir growth vigor was more strongly related to the degree of
intraspecific competition than basal area or height measures (Brand,
1986b). Oliver (1984) evaluated the effects of tree spacing with

shrub association on ponderosa pine (Pinus ponderosa) growth. He

found that shrub crown cover was related significantly to periodic
annual increment in diameter, height, and stem volume of the pine.
There also appeared to be an interaction between density and inter-
specific competition, because spacing significantly influenced

diameter increment only when most shrubs were removed.

Study Objectives

Douglas-fir and red alder may respond to density and species
proportion in a way that can be quantified in allometric equations
for biomass. The significance of density and species proportion
as independent variables also should be considered in competition
research. This consideration is imperative in replacement series
experiments where density and species proportions influence the
inter- and intraspecific interactions of the species.

The objective of this study is to develop allometric equa-
tions for three-year-old Douglas-fir and red alder seedlings. This
is a necessary component of a more inclusive replacement series
experiment.! A second objective of the study is to determine the
significance of tree density and species proportion as predictors

of tree biomass.

lHibbs, D. E. and S. E. Radosevich. Intra- and Interspecific Inter-
actions between Red Alder and Douglas-fir. USDA Grant Proposal,
1984, 84-CRCR-1434.



CHAPTER 2

THE ROLE OF DENSITY AND PROPORTION IN ALLOMETRIC
EQUATIONS FOR DOUGLAS-FIR AND
RED ALDER SEEDLINGS

ABSTRACT

Allometric equations for three-year-old Douglas-fir (Pseudo-

tsuga menziesii) and red alder (Alnus rubra) seedlings were

developed. Two types of equations were generated for each species.
The first equations contained both dimensional and spatial (density
and proportion) independent variables to predict biomass. The
second type of equations contained only spatial variables to pre-
dict biomass. Fifteen measures of density and one measure of
proportion were considered (Appendix 1).

Douglas-fir and red alder component biomass was best predicted
by stem diameter, total height, and crown width. Density was a
significant variable for predicting Douglas-fir leaf biomass and
total biomass. However, density was positively correlated with
biomass, contrary to normal yield-density relationships, and so
was excluded from the final biomass models. The percent cover of
weed species surrounding the sample trees was a significant
variable for predicting Douglas~fir root biomass. Red alder total
biomass was correlated with species proportion indicating that
red alder biomass was higher when sample trees were surrounded by
a larger number of red alder than Douglas-fir. Red alder root
nodules also were significantly correlated with the percent cover
of annual species surrounding sample trees. When considering only
spatial variables in the models, Douglas-fir component biomass was
correlated significantly with the total percent cover of weed
species. Red alder biomass was correlated with the distance to the

nearest neighboring tree.



10

INTRODUCTION

The need for allometric equations in plant competition experi-
ments is obvious when plant biomass values are required, but direct
sampling is not possible. The biomass generally is predicted from
allometry by estimates of tree size (Satoo and Madgwick, 1982).
Since allometry describes the change in proportion of parts of a
tree due to growth, any factor that affects tree growth can be
significant in allometric equations. Such factors may include
site characteristics, plant density, plant spatial arrangement,
and species proportion. It is especially germane in competition
research using replacement series experiments to separate inter-
specific from intraspecific interactions to consider the effects
of density and proportion on allometric equations. In replacement
series experiments, plant density is an arbitrarily chosen fixed
value and species proportion ranges from 1:1 mixtures to pure
stands (monocultures) of each species (de Wit, 1960). Density and
proportion influence the degree of interference (Harper, 1977;
Jolliffe et al., 1984). It is, therefore, important to have a
mechanism to account for species differences due to experimental
density and proportion. Jolliffe et al. (1984) advise that replace-
ment series be replicated over a range of densities to improve the
interpretation of the experimental results. Understanding the
effects of density and proportion on plant interference and quanti-
fying these factors in allometric equations facilitates interpre-
tation of inter- and intraspecific competition.

Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus

rubra) have been the subjects of many experiments on inter- and
intraspecific competition (Tarrant, 1961; Binkley, 1983; Binkley
et al., 1984; Bormann and Gordon, 1984; Miller and Murray, 1978;
Atkinson and Hamilton, 1978). Unfortunately, density and species
proportion have never been considered as independent variables in

such studies.
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Density has been considered in the development of allometric
equations for plant species in monoculture. Bormann and Gordon
(1984) found that accounting for stand density in allometric
equations for five-year-old red alder increased the predictability
of their equations for tree growth. Allometric equations also may
be influenced by the proportion of plant species in an experiment.
Brand (1986a) found that the interspecific competition due to sur-
rounding shrubs affected the allometric relationship of height to
basal area for Douglas-fir.

An objective of this experiment is to develop allometric
equations for three-year-old Douglas-fir and red alder seedlings.l
A second objective is to determine the significance of tree density

and species proportion as predictors of tree biomass.
METHODS

Study Area

The study was established on a portion of a 34 ha clearcut
near Belfair, Washington that was harvested during the summer of
1984. The elevation of the area is approximately 150 m. The
original stand was railroad logged in the early 1900's. It was

dominated by 70 year-old Douglas-fir (Pseudotsuga menziesii) with

scattered madrone (Arbutus menziesii) and red alder (Alnus rubra).

The site index of the original stand was 107 according to McArdle's
100-~year site index (McArdle et al., 1961).

The soil is classified as a Shelton Gravelly Sandy Loam. It
is characterized by glacial till parent material and a hardpan
approximately one meter below the surface. The soil contains 627%

rock by weight. Total bulk density is 1.5 g/cm®. The soil has

lHibbs, D. E. and S. E. Radosevich. Intra- and Interspecific Inter-
actions between Red Alder and Douglas-fir. USDA Grant Proposal,
1984, 84-CRCR-1434.
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low water-holding capacity. Drainage occurs rapidly in the top
horizons but slowly in the lower horizons. Parts of the site are
saturated from December to March. Average total nitrogen on the
site ranges from 1200 ppm at 0.15 cm to 430 ppm at 60-90 cm. The
site receives 140-200 cm of precipitation per year, most of which
falls from December to March.’? Therefore, the soil during the
summer months is extremely dry. In September, 1986, the soil
contained 18% water by volume. Prior to the establishment of the
study, the vegetation on the site was 87 shrub species and 247%

herb species.?®

Field Procedures

In March, 1985, two-year-old nursery grown Douglas-fir seed-
lings and one-year-old wild red alder seedlings were planted in a
replacement series experiment [Fig. 2.1]. Originally, the study
had eleven treatments consisting of monocultures of Douglas-fir
and red alder, and a 1l:1 mixture of Douglas-fir and red alder, each
planted at four spacings (30 cm, 45 cm, 60 cm, and 85 cm between
neighboring trees). The 85 cm spacing was implemented for monocul-
tures only due to the original experimental design. The plot
sizes ranged from 1.44 m® with the 30 cm spacing to 5.76 m? with
the 60 cm spacing. Each plot contained nine sample trees surrounded
by a row of border trees [Fig. 2.2]. The experiment was arranged in
a randomized complete block with three blocks. Blocks were chosen
according to topographic variation which was indicative of a soil
moisture gradient.

An array of measurements was taken when the trees were planted.
These measurements were repeated at the end of the first growing
season (October, 1985) and at the end of the second growing season,
when the experiment was harvested (September, 1986). Measurements

included total height of the seedling, stem diameter 2 cm above

*Washington DNR Soil Survey, 1981.

*Harrington, T. and B. Yoder, personal communication, 1987.
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the ground, crown width measured in two perpendicular directions,
and length from the ground to the first live branch. In addition
to these measurements, samples of ten to twenty trees of each
species were partitioned into biomass components, dried and
weighed when the experiment was established and after the first
growing season. These measurements of total, stem, leaf, and

root biomass and the above-mentioned field measurements were

used to derive preliminary allometric equations. Other weed
species were not removed during the experiment. However, the per-
cent cover of plant species other than trees was ocularly estimated
on each plot after each growing season.

At harvest (September, 1986) the trees were measured, exca-
vated, and transported to Oregon State University. Roots and
foliage were cleaned of dirt and other debris, separated into
above~ground and below-ground components, and dried at 70°F. for
72 hours. After drying, the Douglas-fir needles were separated
from the branches. Red alder leaves were discarded because the
trees were harvested after leaf abscission had begun. Each tree
component was weighed. A random sample of red alder root nodules
from 27 seedlings was taken. The nodules were removed from the

root system prior to drying.

Data Collection and Analysis

Allometric equations were to be developed for each treatment
and compared among monocultures and species mixtures. However,
tree mortality required a revision of this method of data collec-
tion and analysis. Thus, data were analyzed on the basis of in-
dividual trees rather than as groups of trees, since the density
and the species proportion surrounding surviving trees could be
obtained readily by measurements of distance among individuals.

Several measurements of density were used {Fig. 2.2]. One
measurement of density was based on the number of occupied plant-
ing spots (potential n = 8) surrounding each sample tree. This

number was expanded to trees per m’. The disadvantage of this
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ample Tree

Surrounding Planting Spots

Nearest Distance (one of eight possible directions to
nearest neighbor)

A &
® °
A—07 A
° °
A A

o —@—Pp—@

% Total = Percent cover of all annual and shrub species on the plot.
% Shrubs = Percent cover of all shrub species on the plot.

% Annual = percent cover of all herbaceous species on the plot.

Ba = Basal area of the stems on the plot (cm?/m?).

Ca = Crown area of the stems on the plot (cm?/m?).

Dist = Distance to the nearest neighboring tree.

Ba/Dist = Basal area of the stems on the plot divided by the dis-
tance to the nearest neighboring tree.

i

Ca/Dist = Crown area on the plot divided by the distance to the

nearest neighboring tree.

Dens = Density of the stems occupying the eight planting spots around
the sample tree (trees/m?).

DensDF = Density of Douglas-fir occupying the eight planting spots
around the sample tree (trees/m?).

DensRA

1

Density of red alder occupying the eight planting spots
around the sample tree (trees/m?).

Prop = Number of Douglas-fir seedlings/total number of seedlings
surrounding the sample tree.

Avedist = Average distance to eight surrounding neighbors.

FIGURE 2.2. Density, cover, and proportional measurements collected
to determine the influence of density and proportion on
Douglas—-fir (A) and red alder (®) biomass.
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method was that the expansion factor from the number of occupied

? was different for each treatment.

planting spots to trees per m
Thus, densities obtained for sample trees in different treatments
were not calculated on the same basis. This method also assumed
that only trees affecting the sample tree were those directly
surrounding it. Another measure of density was based on the
average distance to the eight surrounding trees. This measurement
assumed that surrounding trees were equally spaced around the
sample tree. The third measurement of density was based on the
distance from the sample tree to the closest neighboring tree.

The fourth density measurement was based on the total tree basal
area per plot as calculated by the sum of the cross-~sectional stem
areas. The fifth measurement was similar to the fourth, but was
based on the total crown area per plot as calculated by the sum of
the cross-sectional crown areas. To incorporate distance to the
nearest neighboring tree with a measure of tree size, basal area
per nearest distance and crown area per nearest distance also were
calculated.

Proportion was calculated as the number of Douglas-fir trees
that occupied the eight planting spots surrounding a sample tree
divided by the total number of planting spots that were occupied.
Proportion ranged from zero to unity, with zero indicating no
Douglas—fir and all red alder surrounded the sample tree. Unity
indicated all Douglas-fir and no red alder surrounded the sample
tree.

The regression procedure in SAS (SAS Institute, 1985) was
used to generate allometric equations for Douglas-fir and red
alder biomass from dimensional and spatial variables. In this
analysis, density and proportion were tested as significant vari-
ables. Equations also were developed using only density and pro-
portion as independent variables. This procedure allowed an
assessment of variation in tree component biomass explained by

only spatial factors.
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RESULTS AND DISCUSSION

Biomass Values

A list of abbreviations and definitions is shown in Appendix
1. Means and standard deviations of tree biomass and dimensions
are shown in Appendices 2-6. Significant differences between
means were calculated using Scheffe's statistic (SAS Institute,
1985). This test is valid for all possible comparisons of means
with different sample sizes. Of the fifteen density measurements,
the most significant density descriptors of Douglas-fir biomass
were basal area and the total percent cover of weed species
[App. 2 & 3]. As will be discussed later, basal area and the
percent total cover of weeds have low predictive abilities for
Douglas~fir biomass, but are significant when stepwise regression
is applied to spatial measurements alone. According to Scheffe's
statistic, means of total biomass, leaf biomass, root biomass,
total height, and stem diameter were different between basal area
0 - 3.0 cm®*/m® and 12.1 - 14.0 cm?/m® [App. 2]. There were no
discernible differences among means at different percent covers
[App. 3].

The most significant density measurement describing red
alder biomass was distance to the nearest neighboring tree. All
the variables, except nodule biomass, were different between a
distance of 30-60 cm [App. 4]. For crown width, all of the dis-
tances are significantly different.

Means and standard deviations for each species by propor-
tion are listed in Appendices 5 and 6. For both species, there
were no significant differences in tree biomass means attributable
to proportion. These data were used to develop allometric equa-
tions for Douglas-fir and red alder biomass and to test the sig-

nificance of density and proportion for predicting biomass.
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Allometric Equations using Dimensional
and Spatial Variables

Allometric equations developed to estimate biomass for three-
year-old Douglas-fir and red alder seedlings required logarithmic
transformations to meet statistical assumptions of normal distri-
bution, constant variance, and random error. The red alder nodule
biomass equations did not require transformation. Equations were
generated for seedling components of growth, rather than total bio-
mass only. According to Kozak (1970), predicting biomass for com-
ponent parts improves the reliability of estimates. Logarithmic
transformations result in statistically biased biomass estimates.
However, Madgwick and Satoo (1975), in a simulated sample of trees
for biomass prediction, found that bias due to transformation was
minor compared to the variation among replicated samples. Correc-
tion factors are based on the mean squared error (MSE) of the
model predicting biomass. Since the MSE's generated in this ana-
lysis are similar to those generated by Madgwick and Satoo, correc-
tion factors were not used in biomass predictions. The allometric

equations for Douglas-fir and red alder follow the general form:

AN = ~N AN ~N + . ] AN
in Yi Bo + Bl lnXl + B2 lan . Bi lnXi
where: Y = the independent variable, biomass
Xi = the independent variables, either dimensional
or spatial
§i = the slopes.

These equations are listed in Table 2.1.

Variables were selected according to the following criteria:
significance of independent variables ([t|> p = 0.06), Mallow's Cp
statistic (Draper and Smith, 1981), adjusted R?, MSE, and multi-
collinearity of the variables. In all equations no variables have
a variance inflation factor greater than 4.0 which indicates low
multicollinearity (Gunst and Mason, 1980). In spite of the large
number of variables available for model selection, few independent

variables were necessary to adequately predict tree biomass. The



TABLE 2.1. Allometric equations for Douglas-fir and red alder.

Species Y Intercept 1n(IfH) 1n(CzH) In(Diam) Prop Dens ¥ Total R2 MSE
Douglas-fir 1n(Stbio) -4.7 0.7 0.1 - - —  0.91 0.03
In{Lfbio) -4.0 - 0.3 1.6 - 0.01 - 0.83 0.06

-3.9 - 0.3 1.5 — - - 0.81 0.06

1n(Rtbio) ~3.5 - 0.1 1.8 - - 0.002 0.79 0.07

In(Totbio) -2.7 - 0.2 1.7 - 0.005 - 0.91 0.03

-2.7 - 0.2 1.6 - - - 0.91 0.03

Red alder 1n(Stbio) -6.4 0.8 0.2 - - - - 0.91 0.05
In(Rtbio) -3.1 - - 2.3 - - - 0.87 0.06

1n(Totbio) -3.5 — 0.2 2.0 ~-.14 - - 0.94 0.04

*
Blank spaces indicate variables were not significant in the equations.

The equation for red alder nodule biomass did not require transformation and is: Nodbio =
1.06 + .00015(D’H) ~ .04(% Annual)  R? = 0.65 MSE = 0.3

Y refers to dependent variables, 1n(Stbio), In(Lfbio), In(Rtbio), In(Totbio) which aredefined
respectively as the natural logarithnis of stem biomass, leaf biomass, root biomass, and total
biomass. Intercept refers to the Y-intercept of the allometric equations. Independent vari-
ables are In(D2H), 1n(02H), In(Diam), Prop, Dens, % Total, and ¥ Annual, which are defined re-
spectively as the natural logarithm of (stem diameter)? * total height, natural logarithm of
(average crown width)? * total height, natural logarithm of stem diameter, proportion (number
of Douglas~fir seedlings/total number of seedlings surrounding the sample tree), density of
the stems occupying the eight Planting spots surrounding the sample tree, percent cover of all
herbaceous and shrub species on the plot, and percent cover of all herbaceous species on the
plot. R? is the coefficient of determination. MSE is the mean squared error of the model.

61
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variables selected for the equations of tree components were simi-
lar for the two species. The equations for Douglas-fir and red
alder stem biomass incorporated the same variables. These two
equations have significantly different slopes (o € .0l) and signi-
ficantly different coefficients for 1nC?H (o < .0l), but the coeffi-
cients for 1nD?H are not significantly different.

Tree density was not a significant factor for predicting
Douglas-fir or red alder stem and total biomass. However, the
effects of tree density may not yet be apparent because of the
severity of the environmental conditions. Abrams (1985) found
significant differences in growth rates between stands of Quercus
Spp., but the differences could not be correlated with changes in
stand density. Instead, growth rates were correlated with
edaphic factors.

The allometric equations for Douglas-fir root biomass show
that root biomass was sensitive to interspecific interactions.
Root biomass decreased with increasing weed cover. The detection
of interspecific interaction in roots and not in other plant
parts may be due to three facrors: (1) greater sensitivity of
roots to moisture and nutrient depletion by weeds, (2) large root
systems in proportion to other plant components, and (3) length
of time the experiment was in progress. These factors may have
enabled the detection of interspecific interaction in roots while
this effect was not detected for other plant parts. Although
below-ground competition may eventually affect above~ground allo-
metry, the results of this experiment indicate that below-ground
interspecific interactions are not yet affecting Douglas-fir
above-ground biomass.

Although direct measurements of soil moisture content and
s0il nutrient availability were not made during the course of
this experiment, it is plausible that moisture and nutrients
were limiting to the seedlings because of site characteristics.
Soil measurements taken when the study was established indicated

that available nitrogen and water-holding capacity were low and
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bulk density was high. Resource limitations would be accentuated
by higher densities of competing species. Roots are more sensitive
to cold, heat, and desiccation than above-ground parts (Larcher,
1980). Therefore, water and nutrient limitations combined with
higher sensitivity of roots than in other plant parts could lead

to less root biomass when there was a high percent cover of com-
peting species.

Theoretically, the intensity of density effects is influenced
by the size of the interacting individuals. Douglas-fir root
biomass sensitivity to the presence of weeds may indicate that
the roots grew larger in proportion to other plant parts. Thus,
roots were able to interact significantly, whereas other tree com-
ponents could not. Roots may attain a larger size relative to
above-ground parts due to a shift in carbohydrate allocation under
environmental stress. The annual plants and shrubs that invaded
the plots after the experiment was established utilized resources
that could have been available to the trees. The trees, there-
fore, may have experienced stress due to depleted moisture and
nutrient level caused by weed presence. Allocation patterns can be
altered in plants under stress to favor root growth (Waring and
Schlesinger, 1985). Concurrently, roots experienced less moisture
stress than the shoot, and so can receive an improved carbohy-
drate supply, enabling active growth. Nutritionally stressed
Scots pine allocated more than 60% of their photosynthate below
ground. In contrast, trees receiving nutrient supplements allo-
cated less than 407 of their photosynthate below ground (Linder
and Axelsson, 1982, in Waring and Schlesinger, 1985). Keys and
Grier (1981) studied net production of forty-year-old Douglas-fir
on high- and low-productivity sites. The low site they chose was
in western Washington and had a soil similar in type, water-holding
capacity, and nutrient content to the soil used in this experiment.
They found above-ground net production on the high site was 13.7
MT/ha compared with 7.3 MT/ha on the low site. Below-ground net
production on the high site was 4.1 MT/ha compared with 8.1 MI/ha
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on the low site. The difference in total net production between
the two sites was small (2.4 MT/ha). They concluded that the dif-
ference in above-ground productivity may be due to a greater need
for investment in roots on harsh sites. Baskerville (1960), in
studies of production in mixed balsam fir stands, found that
roots form a greater proportion of total stand biomass in dense
stands than in sparse stands.

In addition to an altered allocation pattern, the differen-
tial growing seasons of plant components also may have enabled
roots to grow larger and, consequently, to develop interspecific
interactions. In temperate regions, root elongation begins
earlier and ends later than shoot elongation (Kozlowski, 1971).
Root elongation may continue for several weeks after shoots stop
growing in species whose shoots are preformed in the buds, such
as Douglas-fir (Koslowski, 1971). Douglas~fir seedling roots
have two flushes of growth. One flush occurs in the early
spring and the other in the late fall. Shoots usually have only
a single flush of growth and then growth declines to a low level
during the summer (Cleary et al., 1982). The longer growing
season of roots is due to a wider range of optimum temperatures
for root growth than for above-ground parts (Larcher, 1980).

Density was a significant factor for predicting Douglas-fir
leaf biomass and total biomass [Table 2.1]. For leaf biomass,
the inclusion of density in the allometric equation slightly
improved the predictability of the equation. For total biomass,
the inclusion of density did not significantly change the equa-
tion or its predictability. The coefficient for density in both
equations was positive, indicating larger tree size was corre-
lated with higher density. Positive coefficients may reflect
a sheltering effect by neighboring seedlings from harsh envi-
ronmental conditions, a reduction in weed competition through
shading, or microsite differences. It is plausible that water,
soil, and nutrient availabilities were not homogeneous over the

site. Higher resource availability would be correlated with
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higher survival and growth rates. Regardless of the mechanism that
caused the density interaction, the variable in these equations did
not represent density effects alone since size is not positively
correlated with density according to the 'reciprocal yield law."
Therefore, density was not included in the allometric equations

for Douglas-fir leaf and total biomass, although it was a signifi-
cant variable.

Red alder total biomass increased when the sample tree was
surrounded by a higher proportion of its own species. This in-
crease in biomass may indicate microsite improvement by red alder
or a microsite difference that was present before the red alder
were planted. Red alder root nodules fix atmospheric nitrogen,
and convert it to a form utilized by plants. Studies have demon-
strated improved soil characteristics and increased soil nitrogen
when red alder was present in a stand. A twenty-year-old red
alder stand can accumulate 6 MT/ha of nitrogen from nitrogen-
fixation and 160 MT/ha from litter fall (Zavitkovski and Stevens,
1971). In a study near Olympia, Washington, soil nitrogen
accumulated at a nearly constant rate of 35 kg/ha/yr in the
mineral soil beneath five to forty-year-old red alder stands.
Organic matter content also was 207% higher and bulk density was
lower than in an adjacent Douglas-fir stand (Bormann and DeBell,
1981). A heavy red alder understory added 870 kg/ha of nitrogen
to the top 50 cm of soil in a mixed Douglas-fir/red alder stand
(Berg and Doerksen, 1975). Increased soil and foliar nitrogen
often is correlated with increased Douglas-fir biomass (Binkley
et al., 1984; Binkley, 1983; Miller and Murray, 1979; Tarrant,
1961). Higher Douglas-fir biomass was not significantly corre-
lated with higher proportion of red alder in this study. Perhaps
the effect of species proportion on Douglas-fir would have been
more apparent if the experiment had been extended another growing
season.

Red alder nodule biomass decreased as the percent cover of

herbaceous plants increased [Table 2.1]. Photosynthate supply
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is the major limiting factor in nitrogen fixation and nodule forma-
tion (Wheeler and McLaughlin, 1979). Low light levels inhibit
nodule formation (Dawson and Gordon, 2979). Herbaceous plants
surrounding the red alder shaded the seedling trees and may have
decreased the amount of photosynthate produced by the red alder.
Lower photosynthate levels would lead to lower carbohydrates
available to the nodule bacteria. Decreased nodule biomass also
may be the result of lower soil moisture. Nodule forming bacteria
are sensitive to moisture level (Waring and Schlesinger, 1985).
The coarse soil on the site has a low moisture-holding capacity
and the presence of herbaceous plants would deplete the moisture
level further. Therefore, the percent cover of herbaceous plants
may be related to nodule biomass due to a depletion of soil

moisture.

Allometric Equations Using Only Spatial Variables

The roles of density and proportion of trees and other vegeta-
tion for predicting tree biomass when no other source of variation
was considered also were determined. Density and proportion
measures alone were regressed against tree biomass. The density
measures available for model selection were: density (trees/ﬁz),
density of Douglas~fir (trees/m?), density of red alder (trees/m?),
percent cover of herbaceous plants, percent cover of shrubs, per-
cent cover of herbaceous plants + shrubs, basal area (cm2/m2),
crown area (cm2/m2), distance to the nearest neighboring tree (cm),
average distance to the neighboring tree (cm), basal area divided
by the nearest distance, the crown area divided by the nearest
distance, and the lograithms of these variables [App. 1]. The
equations are of the form:

~ ~ ~

InY, =B _+ B X,

i 0 i
where Y = the dependent variable, biomass
Xi = an independent spatial variable.

The equations are listed in Table 2.2.
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TABLE 2.2. Equations for Douglas-fir and red alder biomass
when spatial measurements alone were considered.

Species Y Intercept % Total Dist R*> p(F > F)
*
Douglas-fir 1n{(Stbio) 3.4 -.006 - 0.08 0.0008
In(Lfbio) 3.0 -.006 - 0.07 0.0019
In(Rtbio) 2.5 -.008 - 0.13 0.0001
In(Totbio) 4,1 -.006 -— 0.10 0.0002
Red alder 1n(Stbio) 2.7 - 0.04 0.30 0.0001
1n(Rtbio) 2.0 - 0.03 0.30 0.0001
1n(Totbio) 3.1 - 0.03 0.31 0.0001
Nodbio No variables significant at .05 level.

*
Blank spaces indicate variables were not significant in the
equations.

Y refers to dependent variables In(Stbio), In(Lfbio), 1ln(Rtbio),
In(Totbio), and Nodbio which are defined respectively as the
natural alogarithms of stem biomass, leaf biomass, root biomass,
and total biomass, and as nodule biomass. Intercept refers to
the Y-intercept of the allometric equations. Independent vari-
ables are 7% Total and Dist which are defined respectively as the
percent cover of all herbaceous and shrub species on the plot,
and the distance to the nearest neighboring tree. R? is the
coefficient of determination. MSE is the mean squared error of
the models. P(F>F) is the conditional probability of observing
a value of F as extreme as the observed value given that the null
hypothesis is true (slope = 0).
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These results indicate that Douglas-fir and red alder are
sensitive to different spatial variables which have different
levels of predictability. The only significant density measure
to predict the biomass of Douglas-fir was the percent cover of
weed species surrounding the sample trees. Total percent cover
was significant for all Douglas-fir components of biomass as well
as for total biomass. However, not considering weed species in
the equations, density (as measured by the logarithm of basal
area) was the most significant indicator. The equations generated
have little predictive ability and do not account for variability
in biomass, indicating that density does not play a major role in
predicting Douglas-fir biomass at this time. For red alder, the
only significant density measure to predict biomass was the dis-
tance to the nearest neighboring tree. The distance to the
nearest tree alone accounted for 30% of the variation in biomass.
Nodule biomass could not be predicted from spatial parameters
alone. Proportion was not a significant predictor for Douglas-—
fir and red alder without other parameters being considered in
the model. When analyzing experimental data where density is a
variable, it is important to determine which measure of density
most accurately predicts biomass.

Allometric equations generated in this study can be quanti-
tatively compared to equations generated in other studies if they
utilize the same variables and transformations. Without these
similarities, the equations can only be qualititatively compared.
For example, Zavitkovski and Stevens (1972) generated allometric
equations for red alder biomass but used (stem diameter)2 x height
and [stem diameter)? * height]2 as independent variables. These
equations cannot be compared with the equations from this study
which use (stem diameter)? x height, (crown diameter)? # height,
and stem diameter as independent variables. Numerous equations
have been generated for Douglas-fir biomass, most using stem
diameter as the only independent variable (Tholz et al., 1979).

Qualitative comparisons can be made between the equations
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generated in this study and those generated for red alder by
Bormann and Gordon (1984). They assessed the effects of stand
density on red alder size and related stand density to nitrogenase
activity. Their first premice was that higher photosynthetic rates
would lead to greater nitrogenase activity. They hypothesized
that trees in dense stands may have reduced foliage relative to
the respiratory surface. Therefore, less photosynthate would be
available for the below-ground system. They found that trees in
high-density stands allocated less photosynthate to root nodules
for nitrogen fixation. They also found that increased growing
space was correlated with a greater leaf mass and a higher rate

of nitrogen fixation per tree assuming that density effects occur
regardless of the interacting species. Bormann and Gordon's find-
ings are consistent with the results of this study. Red alder
nodule biomass was negatively correlated with a higher percentage
cover of herbaceous weeds.

Other similarities between the allometric equations generated
by Bormann and Gordon and those generated in this study cannot be
made for several reasons. First, Bormann and Gordon found that
density was a significant variable for predicting root biomass.
Density was not a significant variable for predicting root biomass
in this study. Second, Bormann and Gordon did not use logarithmic
transformations for the independent dimensional variables (dbh and
(dbh)z). Third, Bormann and Gordon used different independent
variables to predict biomass than were used in this study. Statis-
tical comparisons among allometric equations generated in different
studies can only be made when the equations utilize the same

variables and transformations.

SUMMARY

The roles of density and proportion in allometric equations
for predicting biomass of Douglas-fir and red alder seedlings vary

with the plant part being predicted and the method of density
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measurement. The total percent cover of weed species was a
significant variable for predicting Douglas-fir root biomass when
dimensional variables also were in the equation. When considering
only spatial variables, the total percent cover of weeds was a
significant variable in regression equations for Douglas-fir
biomass, although the equations had little predictive power. Red
alder total biomass was correlated with species proportion, indi-
cating trees were larger when surrounded by a higher proportion of
red alder than Douglas-fir. Red alder root nodules also were
sensitive to the percent cover of annual species. Considering

only spatial variables, red alder biomass was positively correlated
with the distance to the nearest neighboring tree. Accounting for
density and proportion in allometric equations for Douglas-fir and
red alder seedlings can improve the predictability of the equations.
However, the appropriate method of determining density should be

evaluated for each species.
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CHAPTER 3

IMPLICATIONS AND IMPROVEMENTS OF THE STUDY

Considerations for Future Research

This study was initiated as part of a larger replacement series
experiment to develop site-specific allometric-equations and to de-
termine the significance of density and species proportion for
predicting tree biomass. The larger experiment addresses the
effects of inter- and intraspecific competition between Douglas-fir
and red alder on three sites in the Pacific Northwest: a high-
productivity site on the Cascade Head Experimental Forest, Oregon,
a medium-productivity site on the H. J. Andrews Experimental Forest,
Oregon, and a low-productivity site near Belfair, Washington. The
duration of the study is 25 years. This thesis addresses a narrow
time frame on only one of the sites, but suggests considerations
for the entire study.

Areas of consideration revealed by this study are: (1) signi-
ficant factors to quantify for predicting tree biomass, (2) timing
and duration of the measurements for developing allometric equa-
tions, and (3) site specificity of the equations. The important
parameters revealed by this study for predicting tree seedling bio-
mass are listed in Table 3.1. Choosing independent variables for
model building can be an endless task. Independent variables can
be differentiated into four classes: dimensional, spatial, growth,
and interaction. Tree biomass has conventionally been predicted by
dimensional parameters. Diameter, height, and crown width are
widely accepted as the most significant variables for predicting
tree biomass (Satoo and Madgwick, 1982). The additional spatial
parameters, proportion, total percent cover, nearest distance, and
basal area may fine-tune the equations to represent site factors.
Various methods of measuring density have different predictive
abilities and appear to be species-specific. Therefore, when in-

corporating density into an allometric equation, it is important
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TABLE 3.1. Important variables for predicting tree seedling
biomass
Independent Variables
a
Estimate Major Importance Variable in Model Minor Importance
. . - 2 L b
InStbio Diameter In(D“H) % Total
Height In(c2H) 1n(BA)P
Crown width Dist®
InRtbio Diameter 1n(Diam) 5
Height In(C*H) 1n(BA)
Crown width Dist®
% Total
lanbiob Diameter In(Diam) % Total
Height 1n(C?H) In(BA)
1nTotbio Diameter 1n(D?H) % Total?
Height In(c?n) 1n(BA)
Crown width Dist®
Proportion® Prop®
Nodule Diameter D2H
Height
% Annuals % Annual

a : : . . :
Variable needs further investigation or longer experimental
period to determine significance.

bApplies to Douglas-fir only.
cApplies to red alder only.

Refer to Appendix 1 for definition of terms.
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to determine which measure of density most accurately predicts bio-
mass. Growth-type parameters, such as initial size and current
growth rate, also may add predictive ability to allometric equations.
In the beginning phases of this analysis, initial diameter and
height were considered as independent variables. However, these
variables were later excluded from the models for two reasons.
First, future users of the equations are not guaranteed prior in-
formation about the sample trees. Second, growth parameters are
conventionally used for modeling growth, not for predicting biomass
(Ritchie and Hann, 1986; Valentine, 1986). Several interaction terms
which incorporated size with density were suggested for model build-
ing but none of them were significant.

The proper timing of dimensional measurements and the duration
of the experiment also are significant considerations. The measure-
ments should be taken after cessation of the active growing period
but before leaf abscission. Measurements also should extend through
a sufficient number of growing seasons to adequately determine the
significance of density and proportion. Two growing seasons may be a
long enough period for seedlings planted on a higher-quality site.
However, it was not long enough to detect density effects, other than
those from herbaceous and shrub species, on Douglas-fir or red alder.
The experimental period also was not long enough to detect proportion
effects on Douglas-fir. New equations should be developed every
three to five years until the trees have reached a stable growth rate
[Fig. 1.1]. 1In dense stands, the stability of the allometric equa-
tions over time depends on when self-thinning begins (Smith, 1986).

Early growth rates are strongly affected by species, genotype,
and environment (Daniel et al., 1979) [Fig. 3.1]. Variable growth
rates in juvenile trees may cause the slope and the intercept of the
equations to vary as the trees grow older. Site specificity of
the equations is another important consideration, especially with
juvenile trees. The resource availability and growing season

on the site strongly affects the growth of tree components in
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FIGURE 3.1. Theoretical patterns of growth. Tree different lines
may represent three different genotypes, species, or
sites. (Adapted from Daniel et al., 1979).
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relation to one another (Harding and Grigal, 1986). Thus, allo-
metric equations should be developed for each of the three sites

for the Radosevich/Hibbs replacement series in progress.

Implications and Improvements for
Future Research

The implications of the results of this study are pertinent to
developing allometric equations for other sites. First, competi-
tion from weeds may greatly affect tree growth. Therefore, weed
species should either be eliminated from the experiment or accurate-
ly quantified. Second, tree components have differential sensiti-
vities to density and proportion and may react to these factors at
different ages. For example, Douglas-fir root biomass is sensitive
to percent cover of weeds at age 3, but may not be at age 10. Like~
wise, red alder stem biomass is not sensitive to density at age 3
but may be at a later age [Fig. 3.1].

Several aspects of this study could have been improved. These
Suggestions should be noted for future development of allometric
equations. The original design was a replacement series experiment,
Allometric equations were to be developed for each species at every
density and proportion in the experiment. The equations would
then have been tested to determine if there were significant differ-
ences in slope or intercept attributable to density and proportion.
However, heavy seedling mortality confounded the geometry of the
design so that density and proportion were no longer discrete
variables. The original approach was abandoned in favor of an in-
dividual seedling approach. The density and proportion that each
seedling experienced were used as continuous independent variables
and tested for their significance in model selection.

Tree seedling mortality always is a concern when establishing
an experiment in the field. The problem is magnified, however,
when the experiment is established on a "poor" site and will only
continue for two or three growing seasons. Therefore, it would
be wise to implement a design that is not strongly affected by

mortality but can still meet the objectives of developing allometric
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equations and testing the significance of density and proportion.
Mead and Riley (1981) state that there are no adequate designs for
investigating the effects of spatial arrangement in intercropping
research. However, possible designs which incorporate density and
species proportion are the Nelder design (Nelder, 1962) and the
Addition Series (Spitters, 1983ab). Mead and Riley (1981) also pro-
pose a design in which the intimacy and the spatial arragnement of
each species are varied between two species. Within these approach-
es, data can be analyzed on an individual plant basis.

The need for additional measurements often is apparent after
a study has been completed. The objectives of this thesis did not
include correlating environmental variables with parameters in the
allometric equations. However, knowledge of the environment would
facilitate and validate interpretation of the equations. Environ-
mental factors of interest are soil moisture, soil nutrient con-
tent, and light availability. Additional plant parameters to
quantify are plant moisture stress, total percent cover of all
species including Douglas-fir and red alder, and percent crown
cover that individual trees are experiencing. Ritchie and Hann
(1986) found that the most influential variables in height growth
analysis were tree position (tree height/height of surrounding
trees) and crown competition factor.

Future research should focus on correlating environmental
conditions with the variables in the allometric equations. Another
focus should be determining how the equations change as the trees
grow. Allometric relationships of red alder have been found to
change over time. As the stand nears self-thinning the equations
reach a stable level (Smith, 1986). In conjunction with determin-
ing how the equations change, inquiry should be made about sampling
methods for larger trees. Biomass of tree components, especially
roots, will be difficult to obtain. Helpful references on this
subject are Valentine et al, (1984), Valentine and Hilton (1975),
Santantonio et al. (1977), Jackson and Chittenden (1981), and Keyes
and Grier (1981).
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APPENDIX 1. Abbreviations and definitions of terms available for
model selection

Diam = Stem diameter measured 2 cm above the ground (mm).
In(Diam) = Natural logarithm of Diam.

Ht = Total height of the tree seedling (cm).
In(Ht) = Natural logarithm of Ht.

Crwdth = Average crown width of seedling (cm).
In(Crwdth) = Natural logarithm of Crwdth.

D’H = (diameter?) x (height).
1n(D?H) = Natural logarithm of D%H.

C’H = (crown width?) x (Height).
In(C?H) = Natural logarithm of CZ%H.

Totbio = Biomass of the total tree seedling (g).
In(Totbio) = Natural logarithm of Totbio.

Stbio = Biomass of the tree stem, branches, and buds (g).
- In(Stbio) = Natural logarithm of Stbio.

Rtbio = Biomass of the tree roots (including nodules for red
alder (g).
In(Rtbio) = Natural logarith of Rtbio.

Lfbio = Biomass of the tree leaves (g).
In(Lfbio) = Natural logarithm of Lfbio.

Nodbio = Biomass of the red alder root nodules (g).

% Total = Percent cover of all annual and shrub species on the

plot.
% Shrubs = Percent cover of all shrub species in the plot.
% Annual = Percent cover of all herbaceous species on the plot.

Ba = Basal area of the stems on the plot (cm?/m?).
1n(Ba) = Natural logarithm of Ba.

Ca = Crown area of the stems on the plot (cm?®/m?).
In(Ca) = Natural logarithm of Ca.

Dist = Distance to the nearest neighboring tree.
Avedist = Average distance to eight nearest neighboring trees.

Ba/Dist = Basal area of the stems on the plot divided by the
distance to the nearest neighboring tree.

CA/Dist = Crown area on the plot divided by the distance to the
nearest neighboring tree.

Dens = Density of the stems occupying the eight planting spots around
the sample tree (trees/m?).

DensDF = Density of Douglas—fir occupying the eight planting spots
around the sample tree (trees/m?).

DensRA = Density of red alder occupying the eight planting spots
around the sample tree (trees/m?).

Prop = Number of Douglas-fir seedlings/total number of seedlings
surrounding the sample tree.




APPENDIX 2. Means and standard deviations of Douglas-fir dimensions and biomass by basal area.

*

BA cm®/m® n Totbio Stbio Lfbio Rtbio Ht Diam Crwdth
(g) (8) (g) (8) (cm) (mm) (cm)

0 - 3.0 21 X 34.97 16.9% 11.0% 7.0% 57.9% 9.5% 29.3%
sd  15.0 8.3 5.2 2.6 14.7 1.4 10.3

3.1-6.0 17 X 51.8%7  27.6° 16,790 9.2%° 6517  10.5%P 29.8%
sd  45.3 24.3 14.1 9.5 17.4 2.8 11.6

6.1-8.0 28 X 62.9%7  31.4° 19.5% 12,07 726 1249 34.87
sd  33.4 16.6 11.1 6.6 14.6 2.8 7.8

8.1-12.0 14 X 62.3%° 32,72 18.0%° 11,6 77.4% 1249 33.3%
sd  28.3 14.7 9.6 4.7 13.4 2.3 10. 4

12.1-14.0 37 X 63.2” 29.5% 21.2 12.57 74.67 11.8° 37.0%
sd  28.4 13.9 10.4 5.8 15.2 2.2 10.9

14.1-18.0 13 X 50.8%7 24,69 16.7% 9.5%  68.3%%  10.8% 31.7%
sd  21.5 10.4 7.6 4.6 10.4 1.7 8.0

18.1-20.0 9 X 53.3%° 23,87 19.2%  10.3%  70.0% 9.0% 31.97
sd  30.0 14.4 11.1 5.4 13.8 2.1 8.4

Note: Different letters indicate significantly different (p < .05) means (Scheffe's test).

*
Refer to Appendix 1 for definition of terms.
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APPENDIX 3. Means and standard deviations of Douglas-fir dimensions and biomass by % total cover
of weed species.?

%
% Total n Totbio Stbio Lfbio Rtbio

Ht Diam Crwdth

(g) (g) (g) (g) (cm) (mm) (cm)

10 31 X 61.6 30.6 19.1 11.9 72.9 11.5 33.7
sd 40.1 20.2 12.7 7.8 17.9 2.4 12.3

20 8 X 80.9 35.6 28.5 16.8 79.6 13.2 40.9
sd 25.9 12.7 10.4 4.7 11.8 1.6 14.2

30 13 X 72.1 38.3 20.6 13.2 81.8 13.7 38.4
sd 14.9 8.1 5.3 3.3 12.4 1.5 5.3

40 27 X 61.3 29.6 20.5 11.2 70.3 11.7 32.5
sd 33.1 16.1 11.4 6.7 14.2 2.7 7.8

50 22 X 42.0 19.4 13.4 9,2 63.5 10.1 30.3
sd 20.3 9.5 7.5 4.3 13.3 1.9 8.6

60 8 X 40.4 19.2 13.0 8.3 68.9 10.0 35.3
sd 25.2 12.6 8.0 5.6 15.6 2.2 10.9

70 15 X 49.8 23.9 17.1 8.7 68.7 10.0 30.3
sd 24.8 12.2 9.0 4.8 11.7 2.0 7.7

90 7 X 37.8 18.5 12.4 6.9 62.7 9.4 31.6
sd 23.6 12.7 7.9 3.8 21.1 1.4 14.8

100 8 X 40.2 23.8 13.1 7.1 59.1 10.4 31.6
sd 21.5 18.6 9.1 4.2 12.9 2.6 9.3

a . . .
No significant differences between means.

*
Refer to Appendix 1 for definition of terms.
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APPENDIX 4. Means and standard deviations for red alder dimensions and biomass by distance to
the nearest neighboring tree.

pist** n Totbio Stbio Rtbio Nodbio® Ht Diam Crwdth
(cm) (g) (g) (g) (g) (cm) (m) (cm)
- a a a a a a a

30 22 X 76.3 52.7 23.6 0.80 129.7 14.1 58.0
sd 48.6 33.7 15.6 0.42 25.3 3.1 16.0
45 28 X 126.2% 92.4% 33.9% 1.26% 147.3%P 17.0% 78.7°
sd 75.1 59.2 17.9 0.78 31.6 3.7 24.9
60 28 X 220.57 162.97 57.67 1.44% 166.67 21.27 94.3%
sd 139.2 114.4 31.8 1.04 40.7 5.1 26.0

*
Sample sizes for Nodbio were 6, 7, and 9, respectively.

EE
Refer to Appendix 1 for definition of terms.

Note: Different letters indicate significantly different (p < .05) means (Scheffe's test).
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APPENDIX 5,

Means and standard deviations for Douglas-fir dimensions and biomass by proportion.

Prop* n Totbio Stbio Lfbio Rtbio Ht Diam Crwdth
(g) (g) (g) (g) (em) (mm) (cm)

0.4 7 X 71.5% 35.0% 23.8% 12.7 82.0%  11.6% 42,19
sd 35.6 17.4 12.2 7.7 19.5 3.3 11.9

0.5 18 X 68.7¢ 32.9% 22.6% 13.2 76.9%  12.79 37.9%
sd 19.4 9.7 8.7 3.8 12.8 1.7 8.5

0.6 10 X 52.2% 26.2¢ 16.4¢ 9.6 67.8%  10.9% 32.7¢
sd 31.5 15.0 11.5 5.6 17.3 2.5 14.8

0.7 6 X 42.5% 19.8% 14.6% 8.1 65.0%  10.4% 31.1%
sd 16.8 9.0 5.6 3.9 6.5 1.8 8.2

0.8 13 X 50.5% 25.2% 15.9¢ 9.4 70.8%  10.8% 31.8%
sd 23.7 12.6 6.6 6.1 14.4 2.0 6.5

1.0 85 X 53.6% 26.4¢ 17.19 10.5 68.2%  11.07 32.14
sd 33.8 17.4 11.2 6.5 15.8 2.6 9.9

Note: Different letters indicate significantly different (p < .05)

*Refer to Appendix 1 for definition of terms.

means (Scheffe's test).
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APPENDIX 6. Means and standard deviations of red alder dimensions and biomass by proportion.a

Prop** n Totbio Stbio Rtbio Nodbio® Ht Diam Crwdth
(g) (g) (g) (g) (cm) (mm) (cm)
0.0 40 X 133.5 96.9 36.5 1.35 146.6 16.8 71.5
sd 121.1 98.2 28.1 1.16 39.1 5.3 24.6
0.4 4 X 177.6 137.4 40.2 0.57 149.0 18.9 100.0
sd 56.1 49.5 12.1 - 36.3 1.8 21.7
0.5 14 X 208.5 154.8 53.6 1.06 163.8 20.7 93.8
sd 130.9 100.8 32.2 0.30 38.5 5.3 29.5
0.6 12 X 129.2 94.7 34.6 1.23 149.3 17.1 77.9
sd 88.9 66.6 22.9 0.90 32.0 4.3 24.5
0.7 5 X 127.9 87.4 40.5 1.62 138.0 17.7 71.5
sd 72.3 52.1 21.0 1.07 28.0 3.8 24.7
0.8 2 X 87.3 50.1 37.2 1.54 138.0 17.6 98.8
sd 14,2 7.9 22.1 - 15.6 5.4 50.6
1.0 1 X 54,4 37.8 16.6 0.40 131.0 13.5 55.5
sd - _— - - —_— _— —_—

%
Sample sizes for Nodbio are 7, 1, 5, 5, 2, 3, and 1, respectively.

*%
Refer to Appendix 1 for definition of terms.

a e e .
No significant differences between means.
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YARIABLE FORRAY FORN Page § of 3

841010
DATACODE DATE 5 /u [/ 65 RECORDER  Rm Baid
FORMAT TYPE o e T - :
STUDYID OATA TITLE: Dogglos-fic ond red gldec initol 4ugnﬁr7
BELDIM Y. DAT dote dor  dimensional gnolyals. - Belfair ai'te
COLUMNS® FORTRAN' CODED MISS.YAL. VARIABLE
VARIABLE NAME  OCCUPIED FORMAT (V)  UNITS CODE LABEL
1 I | -2 FL.0 _—
2 “K £ |P 3 Fl.0 -
3llslplelc|i te Y Fl1.0 v | —
4 JIT R INJo 5-0 72.0
s b |rlo Ix,8-10 .1 | F4. em
[miTﬁ Lic %B-15 | F3.) em
7]](_ fWID T I 1,17 14 F2.0 om
8 “c Rijwpp [T |8 A0-22 Fo em
o {|O][AIM Ix, AH-20.01 F3.1 mm
10 JIR[Tjwp [T]H X,28-311 | Fy.! em el
11 |2 7L nfalT 3a-35 4| F 4. cm ‘blank”
ne
hs |
o
15 ﬂ
16 |
17
18

a) Include spaces 1n the total columns occupied, e.g. 1X, AS = 1-6 columns.
b) Valid formats are: A=alpha, I= whole integer, F=decimal, E=sci.notation.

- CONTINUED, reverse side. Please indfcate comments about this file

on reverse side.

Forest Sctfence Data Bank, Forest Science Dept., Oregon State Unfversity

Corvalliis, OR

97331-5704

§03-754-2244



VARIABLE DEFINITION FORN
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Page 2. of;gL

1841010
(Complete one form for each format type)
DATACODE DATE S5/ 1 / 85 RECORDER A £/
‘ ‘ ~86 TdE.CYF-
FORMNAT TYPE o
STUDYID Boypimg paT
VARIABLE
NANRE BRIEF DEFINITION OF EACH VARIABLE PRECISION

T™™T Treatment number (1-11) assigned b cack plot -
REP The replication (1-3) that the plet is « part of —
SPECIES Coded valuc for 4ree species R
TRNO The frec number of +he trec measured N -
HTTOT The total height of +he tree {rom Yhe ground 0.5 cm
HTBLC The height from the ground 4o +he HirsT live branch 0-5em
CRWDTH 1 The width of +he crown measured perpendicular Ho plot cm
CRWDTH Z The widlth of +he crown measured parallel +o plot em
DIAM | Tre diameter of the stem measured 3em above grounc o.1 mm
ETwDTH The width of Yhe rots measured ot Hhe greatesd point o.5cm
RTenaH The length of +he roofs Hrom the soil line 0.5cm

CONTINUED, reverse side

Forest Science Data Bank, Forest Science De
Corvallis, OR

97331-5704 503-754-2244

pt., Oregon State Unfversity
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841010 VARIABLE CODE FORN Page 3 of 3
(Complete one form for ALL format types)- _
RECORDER Pam Bolcl

DATACODE DATE S5 /1 /85
EE— " TWo 4 yr
STUDYID pecoymg.pat
VARIABLE CODE
NAME YALUE BRIEF DESCRIPTION OF EACH CODED YALUE
SPECIES 1 Douqglas - fir
2 red older

CONTINUED, Reverse side

Forest Science Data Bank, Forest Scifence Dept., Oregon State University
Corvallfs, OR 97331-5704 503-754-2244
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460 20O 15 2% 5O
310 40 11 12 35
IQO0 40 17 25 45
410 35 8 9 46
4460 40 13 21 5% Zio 190
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841010 VARIABLE FORNAT FORN Page ;_ of 3
DATACODE | DATE / 23185 RECORDER  Pame o Bnld
e e ame s fok

FORMAT TYPE
STUDYID - -

DATA TITLE: DQJQ’"I-Q‘"'["" and red o Ider Iﬁﬁ‘['&' /e me 0
- -

BELOImML. par afdry Lirt g.zom.‘njn Scasan - feidar sife
VARIABLE NAME ggéﬂ:?é: :g:;:¢u‘c23§o wars o cooe T " LABEL:
m| T 1-2_ F2.0 —
e (P %) Fl.o —
slelelclilels| | & F1.0 -
TleiN|o 5 F2.0 -
H{TiTlolT Ix,8-H | F4.[ em
wirig e [x,13-15 | F 3.1 oM
clelololr ] Ix. 17191 F3.0 om
o [Q 51 oY 1t R V4 d0-22 | F3.0 cm
D {AIm Ix, 24-26 } F3.1\ mm
D{A|m 3637 | Fao — | —

- ‘ ‘
- jon o s v |~ O (@ [0 | n e W IN (e

8 |
2) Include spaces in the total columns occupfed, e.g. 1X, A5 = 16 columns.
b) Valid formats are: A=alpha, I= whole integer, F=decimal, E=sci.notation.
CONTINUED, reverse side. Please indicate comments about this file
on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State Unfversity
Corvallis, OR $7331-5704 §03-754-2244
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Page J of 3

841010
(Complete one form for each format -type)
DATACODE DATE 9 / 23/ 85  RECORDER _Aemelo Bold
WO ~da " yr - 7
FORMAT TYPE
STUDYID g ym 2. oAT
VARIABLE
NAME BRIEF DEFINITION OF EACH VARIABLE PRECISION
T T Treatrment nuraber (1-i) _astianed 4n each plot —
REP Rephicaton (i-3) +had the plet iz o part ot —
SPECIES Coded Nalue fTor drec opecies -
TENO The. Nuumber of Yhe tree meaguved —_—
HYTOT Total height of +he trec fom dhe  grourel 0.5 cm
HTBLC Height from Hhe ground Yo e first five branch 0. 5 om
CRLLOTH 2 The widbh of He cvowon meotured Berpendicular to Blot (O am
ceoomt 2 |The width of Hhe crown nwasured pavallel do the plot 1O e
Diam . Ster  diaweker ™Meaturved 3.0 v o lBeue Qrewvd 0.l mm
DA Damoae Cocle _

CONTINUED, veverse side

forest Science Data Bank, Forest Science Dept., Oregoh State University

Corvallis, OR

97331-5704 503-754-2244
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841010 VARIABLE CODE FORM Page 3 of 3
(Complete one form for ALL format types)_
DATACODE DATE _9 / 23/85 RECORDER _fhme /o Bolol
“®o ~da “yr

STUDYID Be/pimz DAY

VARIABLE CODE
NAME = VALUE BRIEF DESCRIPTION OF EACH CODED VALUE

éPe‘ch; { Doualas - fir
2 fed olcler
Dead

Dead ‘o
Aot Dead

Browsse bamge

M

Chloroic

Ne crotic
E)e,r{ or Brofen e,

Curled or df—‘(O-’N\(—cL /€a\1r5

o 3 PRV IV~ |G 0 P S KGN N

B

Iﬂie c‘l DO\L’Y\Q‘QE

10 Loterals Faller ¢hor leader

CONTINUED, Reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University
Corvallis, OR 97331-5704 £03-754-2244
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841010 YARIASLE FORMAT FORM Page | of 3
DATACODE DATE 271 217186 RECORDER Fam Bolol
-_— %0 —da “yr

FORRAT TYPE
DATA TITLE: Dimensional measurements of DF and BA ofter

STUDYID Becpm3.phT
econd growine season . Belfair, WA (Final Harvesd Date

COLUMNS® FORTRAN' CODED MISS.VYAL. VYARIABLE
VARIABLE NMAME  OCCUPIED FORMAT (v))  UNITS CODE LABEL
1 {ITim|r -2 F2.0 -
2 fIR |E|* 4 Fl.o -
PIE|c |1 IEls 4 Fl.0 — -
LiNjO 8-9 Fa2.0 _
TitloiT 12-14 F3.0 cm
TidjLjc 13 -18 Fl.0 cm
tiwlo]a 20-22 F3.0 em
Eiw|o 2 24-20 F3.0 cm.
VIR |m 28-30 | F3.\ mm
A {m 32.33 | Fao0 - | -
Nn| cjolm{p| | 35-3¢ | Fa.0 %
HR|B|cJoIm|P] 38.34 F2.0 %
16
17 |
18 |
a) Include spaces in the total columns occupied, e.g. 1X, A5 = 1-6 columns.
b) Valid formats are: A=alpha, I= whole integer, F=decimal, E=scf.notation.

CONTINUED, reverse side. Please indficate comments about this file
on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State Univefsity
Corvallis, OR 97331-5704 503-754-2244



841010

DATACODE
FORNAT TYPE

VARIABLE DEFINITION FORM

{Complete one form for each format type)

69

Page 7 of 3

DATE /2 2/ 8¢ RECORDER ?.8oid
~®6 ~da yr

STUDYID BfLoim3 DAT

VARIABLE
NANE BRIEF DEFINITION OF EACH VARIABLE PRECISION

TmT Treatment  (*1-11) —~
REP Replication (*1-3, ¢ on TMTS) -
sPeies Coded Nalue for species _ —
TRNO Tree aumber in plot (*1-3 monocutbure,  */-18 mixthute) | —
HTToT Total 4ree height from groumd fo enst fop 1.6 cm
HTBLC Height from ground 4o first live branch 1.0cm
ciwdl Crown withh Measuring MNocth - South 1.Ocm
LRWD 2 (rown width weasuring Fast- kest LOcm
DIAmM Stern diameter 2 cm  above 9round .l mem
DAM Coded value for damage —
ANNComP petcentage cover of herbaccous plants on plot 5%
SHEBCOMP peccentage  cover of ohrub plants on plot 5%

CONTINUED, reverse stide

Forest Scifence Data Bank, Forest Scfi
Corvallis, OR

97331-5704 503-754-2244

ence Dept., Oregon State University




DATA SET CODE

CARD TYPE

VARIABLE
_(name)

VARIABLE CODE SPECIFICATION FORM

70

810821

STUDY ID AécOm3. DAT Date/Initials j2-2-86 - P5

PAGE I of 3

CODE DEFINITION OF CODE VALUE

VALUE

SPeECteS

1 k'uales -

2 red older

DA

_Pead

Dead dop

Almost deadl

Prowse dqmujc

Chlorot ©

Necrothc

Bent or broken stem

Curled oy deformed {eaves

Insecd damagc
Laterals $aller dhan leader

Lo'_o(l!.u-ﬁ-u"-‘21)11»--

p—

Branches below afound - lag;ﬂﬁ' stem measurecl

Replanted 2-1-8G

[

O Continued, Reverse

0sU
Fores: Science
Data Bank
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841010 VARIABLE FORMAT FORN Page | of ;L
DATACODE DATE 12/ 2/ 8¢ RECORDER PB
- “®0 ~da yr

FORMAT TYPE
DATA TITLE oot widths a lenath

STUDYID BeLDim3A DAT
haryest Qel{mr WA (adicﬂa.a_‘b_ﬂﬂmﬂ.ﬁ_ﬂ)_

COLUMNS® FORTRAN' CODED MISS.YAL. VARIABLE
VARIABLE NAME OCCUPIED FORMAT ) UNITS CODE LABEL
1{iTimT -2 F2.0 —
2 IR|E|? 9 Fil.0 —
3fIsiPlEflc |t |E]ls b Fl.o / -
4 R|nlo 8-9 F2.0 -
§ {RIT|«|D -4 F3.0 cm
6 T LN 13-19 F3.0 om
7
8
o|
ho |
1
3
he |
15 “
16 |
17 |
18 "
a) Include spaces in the total columns occupied, e.g. 1X, AS = 1-6 columns.
b) valid formats are: A=alpha, I= whole integer, F-decinal Essci.notation.

CONTINUED, reverse side. Please indicate comments about this file
on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State University
Corvallis, OR 97331. 5704 503-754-2244
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841010 VARIABLE DEFINITION FORM Page Z of 5
(Complete one form for each format type)
DATACODE - "DATE 2l 11 & RECORDER PB
- : “®mo ~da “yr
FORMAT TYPE
STUDYID BeLDimaA DAY
VARIABLE
NAME BRIEF DEFINITION OF EACH VARIABLE PRECISION
TMT Trectment (*I-11) —
RE? Repli cection (#[-3) —
SPECEDS Coded value for species —
TENO Tree number (* /-9 monocwltuses, */-18 mixtures) -
ETwoD Root width at widest point 1.0 cm
[AgE N Root fength from root collar fo (ongest point l Ocm

CONTINUED, reverse side

Forest Science Data Bank, Forest Science Dept
Corvallis, OR 97331-5704 503-754-2244

+» Oregon State University
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810821
VARIABLE CODE SPECIFICATION FORM
DATA SET CODE STUDY ID ﬂELDlmsﬁ.Qmate/Initials 12-2-80 PO
CARD TYPE PAGE 3 of 2
VARIABLE CODE DEFINITION OF CODE VALUE
_(nawe) VALUE
SPECIES 1 Do 9 les - fir
2 red alder
E] Continued, Reverse
0SsU

Fores: Science
Dara Bank
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841010 YARIABLE FORMAY FORN Page __ of 3
DATALUDE DATE 5 /. /4 185 RECORDER Ao S/
- “®0 “da “yr
FORMAT TYPE - : - . |
STUDYID BBl DA DATA TITLE: T7,fig/ r{)/anﬁnja dimenairng o binmogs
of Dovclos.fir and red aldec seedlings - DelHaroite.
ncludes
COLUMNS®™ FORTRAN' CODED MISS.VYAL. VYARIABLE
VARIABLE NAME  OCCUPIED FORMAT  (v) UNITS CODE LABEL
1 llafrlefctiije ] ! £1.0 “
2 ll7izinjo 4-3 £A.0 '
3 ivjr]TiolT r Y7 CFq ! om
4 |HIT)8]L 9-/ Iy, Fa-1 om
s Hclejwlo Ir (H|L /13-4 IX, Fi.0 - om
6ol lalm 19-/7 L FAO mm
7“& Tl [T|A m,);\ X F 3.1 oM
;J]L‘iLMﬁTH 22- 24  F 3 e
gﬂT‘ﬁ 1o Al- 18 | Ix. F31 g
nzﬂk 18| jo 30-32 | F3d 9
11 |57 |51 |0 35-35 F3.1 b
2 NLlF15]1 |0 36 -38 F 3. 9
h3 ciRpafolr M2l {39-90 ... Fr0 cm
4l fe]alvlelR vz -44 |, F3 em
15
16
17
18 H

a) Include spaces in the total columns occupied, e.g. 1X, A5 = 1-6 columns.
b) valid formats are: A=alpha, I= whole integer, F=decimal, E=sci.notation.

CONTINUED, reverse side. Please indicate comments about this file
on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State Unfversity
Corvallis, OR §7331-5704 §03-754-2244



841010

DATACODE
FORMAT TYPE

VARIABLE DEFINITION FORN
(Complete one form for each format type)

S/ 1 85

89

Pagg 2 of £

DATE 85 RECORDER _om Bo/d
“®mo ~da Tyr -

STUDYID A/ pos. DAT
'VARIABLE

NANME BRIEF DEFINITION OF EACH VARIABLE PRECISION
SPFCIES Coded value Hor Hrec Species
TANO The number azsioned T Yhe tee measuredd
HTOT Total height of Scedling frerm sorl fevel 0.5cm
HTBLC Height from qround b fist /ive branch, 0. 5em
CRWDTH 1 Width of the live Crowsn ot widec? point ,»(',m“j;,, 15 g, cm
Diam Diameter of stem Jem above 9round o lmm
RTLWOTH Width of the foots ot +he wickect point 0.5CM
RTLN&TH Length of roots from seiliine 0.5 cm
T80 Total biomass of criec! seedling wih fare ol9
RT Blo Biomoss of roots 619
sTBio fiomass of Stem olg
LF Bio Biomass of lecaves 0.19
(RWDTH Z width of clown £-W fist quawing Stuson  only om
Leader Leng+h of leader; Jizt gowing s€usen only 0.5 om

CONTINUED, reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University

Corvallis, OR

$7331-5704 503-754-2244
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841010 VARIABLE CODE FORR Page | of 3z
(Complete one form for ALL format types) ‘
DATACODE DATE 5 _/ M 185 RECORDER £ fBo/cf
: “®mo da “yr
STUDYID B2 ol P
VARIABLE CODE
NAME YALUE 'BRIEF DESCRIPTION OF EACH CODED VALUE
SPECIEDS / DOU“]/OS"FY?' initial  slaating dote
2 ' - J
red _alder . 4ol Slandine dota
7 = 7
3 Dhelas- Fic - Liad  arowino _season
7 7 o J
4 red alder Aiﬁé{.?huﬁﬂ34A5€Q$oO"'

CONTINUED, Reverse side

Forest Science Data Bank, Forest Science Dept., Oregon State University
Corvallis, OR 97331-5704 §03-754-2244
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281
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190
160
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180
1673
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270
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180
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240
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1575 74
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54 47
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24 27
84 77
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Z017
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SR
24173

218
4421

18115911121

101101

6517

120
85
100
90
S0
a0
80O
70
100
80
HO
110
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e
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655
83
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491
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785
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97 B6 6133
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JIOFET2916158
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841010 VARIABLE FORMAT FORN Page | of 3
DATACODE DATE 2 / L/ 8¢ RECORDER  Pam Balok
“®mo —da yr
FORMAT TYPE
- DATA TITLE: Biomoss and proxi - DF <A,
srunvlo <Bio2- DAY ﬁclfﬁir Nﬂ e angl ba(!e§+ do'f\'-\
COLUMNS®™ FORTRAN' CODED MISS.VAL. VYARIABLE
VARIABLE NAME OCCUPIED FORMAT (v) UNITS CODE LABEL
1 {7 imjr -2 Fa.0 —
2 IR|e|P 4 Fl.o -
3JL$ PIE (7 Fl.0 e -
4 F RN 8-9 Fi1.0 —
s lls|Tid -9 Fyq.l grams
6 JIx|Tin a-19 F4.l grams
7 HL|eiP 21-23 F3-1 grams
8 jinjolo 25-27 F3.2 grems
o lioleln 29-31 | F3.1 o
0Jivftis 33-3¢ F4. ) cm
1 o leln 38-40 | Fai ¥
2 llo]en yz-vy | F3.1 /e
L; “p R|o You-ug | F3.1 -
he |
hs |
16 |
7 ||
18 |
a) Include spaces in the total columns occupied, e.g. 1X, A5 = 1-6 columns.
b) Valid formats are: A=alpha, I= whole integer, F=decimal, E=sci.notation.

CONTINUED, reverse side.

Please indicate comments about this file
on reverse side.

Forest Science Data Bank, Forest Science Dept., Oregon State Univefsity

Corvallis, OR

97331-5704

503-754-2244
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841010 VARIABLE DEFINITION FORR Page Z of 3

(Complete one form for each format type)

DATACODE DATE i /_ 2 [/ 3« RECORDER _PB
- m0 da yr

FORMAT TYPE
STUDYID pecpin2.DAT

VARIABLE

NANME BRIEF DEFINITION OF EACH VARIABLE PRECISION
TmNmT Treatmead (*1-11) -

|__ReP Replication (*1-3) —
SPELIES Coded value for spedes -
TRNO Tree number in Plot (#1-9 in monoculiures  #1-18 in misbures)] -
$TBI0 Dry weight of stem « bubs o.l9
RTBIO Dry weight of roots  Cincluding nodules Jor BRY o.lg
LFB© Dry weight of DF needles (no A date) o-l9
NoD Dry weight of RA ot nodules (sample of 30) 6.0 9
DENS. Densi iy (‘H/m;) surrounding  sample Hree 0.1 trees
DISY Average distance jo 8 neavest drees O.lem
DENSDF Density of Douglas.fir surrounding sample dree 6.1 drees
DENSRA Density of Red alder surrounding sample dree 0. [ 4rees
PRo? number of DF surrounding semple Ju 4 ymber of Hees sucound-| O
Tne  Bample iret.

CONTINUED, reverse side

Forest Science Data Bank, Forest Science Dept., Ore o-n 3
Corvallfs, OR 97331-5704 503_75‘_22“1’ . g tate Unfversity




DATA SET CODE

95

810821
VARIABLE CODE SPECIFICATION FORM

STUDY ID BeL®ioz.DAT Date/Initials _12-2-8CG  -PB

CARD TYPE PAGE _3 of 5
VARIABLE CODE DEFINITION OF CODE VALUE
(name) VALUE
stecies | Douqlas- fir
2 red alder

D Continued, Reverse

0SU
Forecs: Science
Dara Bank
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