Section II
Foliage and Seed-feeding and Mining Insects

LYGUS BUG CONTROL IN CARROT SEED
Daniel F. Mayer and Jeff Lunden
Washington State University-IAREC
Prosser, WA 99350

Large scale (1-5 acre) insecticide trials were conducted to evaluate six contact and one systemic insecticide for lygus bug control in five commercial seed fields. Aerial applications of contact insecticides were made by fixed wing aircraft or helicopter. The systemic insecticide was banded into the soil during the lay-by cultivation. Sampling was done throughout the summer every four to nine days by a standard sweeping technique. Lygus bug counts as well as counts of some species predaceous to lygus were made. Plants were harvested and seed germination tests were run. Seed set counts were taken as a measure of pollinator activity levels.

Some differences in length of control were evident between treatments at each location. In general, Pounce provided longer control than Monitor; Temik proved better than a mix of Dylox plus Meta systox R; Dylox out performed Spur; Lorsban and Ammo were approximately the same; and Spur provided as good a control as Monitor. In these same tests percent seed set was better with Pounce than Monitor; Temik than Dylox plus Meta systox R; Ammo than Lorsban; and Spur than Monitor. Dylox and Spur did not differ in percent seed set. Some differences in seed germination were also noted among treatments.

ONION THRIPS CONTROL ON ONIONS
Daniel F. Mayer and Jeff Lunden
Washington State University-IAREC
Prosser, WA 99350

Three foliar-applied and one soil-applied insecticides were evaluated in small replicated plots for control of thrips on bulb onions. The soil-applied systemic was applied once and the foliar pesticides twice with twenty days between applications. Thrips counts were taken eight days after each application. Yield and storage data were collected at the end of the season.

Significant differences in the number of thrips were evident between treatments on both sampling dates. Lorsban at two rates (0.5 and 1.0 lb ai/A) and Parathion (0.75 lb ai/A) were consistently better than the check. Spur at three rates (0.075, 0.1 and 0.15 lb ai/A) showed some control with only the middle rate significantly different than the check. At the second sampling all treatments were significantly different than the check but did not differ among themselves.

Yield data showed little variation among treatments and little correlation to thrip levels.