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Seamless, high-resolution topobathymetric digital elevation models (DEMs) of rivers are important for 

generating hydrodynamic models, studying water quality and related ecological issues, modeling flood 

vulnerability, and numerous other applications. However, such DEMs can be difficult to generate, due to 

a lack of topographic and bathymetric source data. Even where the source data exist, the disparate data 

sets can be difficult to merge, due to differences in spatial resolutions, uncertainties, and datums. 

Advanced surveying technologies, including unmanned aircraft systems (UAS), structure from motion 

(SfM) photogrammetry, lidar, RTK GNSS, and sonar systems capable of being operated from 

autonomous survey boats, may assist in filling the riparian data voids, provided robust, reliable techniques 

can be developed for merging such data. This study investigates new methods of seamless 

topobathymetric river mapping using RTK GNSS, lidar, single beam echosounder and UAS-derived point 

clouds. As an example application, this study focuses on the evaluation of a location for a whitewater 

park on the Rogue River near the prior site of the Gold Ray Dam, which was removed in 2010.  Data for 

the site were collected with a small, multirotor UAS, single beam echosounder, and GNSS. Limited 

existing airborne lidar data for the site were also available. A data merge approach to remotely measure 

river geomorphology and the surrounding topography was developed. The approach involves combining 

the multi-sensor data, based on both uncertainty and distance. The results indicate that the methodology 

may be viable for low-cost, high-resolution, and high-accuracy topobathymetric river mapping from 

disparate source data, supporting whitewater park site evaluation, as well as a host of other uses. 
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Seamless Topobathymetric River Mapping Through Multi-Sensor Data 

Integration: Lidar, Sonar, RTK GNSS and Structure from Motion 

 

1 Introduction 

River engineers, planners and government officials require dense, accurate, up-to-date topographic-

bathymetric data for rivers in order to produce hydrodynamic models, which are crucial for a number of 

applications (Hardy et al. 1999; Horritt et al. 2006; Buttner 2007; Raber et al. 2007). In order to 

understand hydraulic responses to whitewater features, river dynamics studies require high accuracy 

terrain models of both the river bed and the floodplain (Alho et al. 2009). However, seamless high-

resolution topobathymetric river DEMs are rarely produced, due to the technological differences of 

various data acquisition methods on land and under water (Flener et al. 2013), as well as the inherent 

challenges in river mapping, which can include swift currents, shallow waters, dynamic flows, and 

seasonal variability in geomorphology. 

 

There are a number of advanced surveying technologies that hold promise for filling topobathymetric data 

voids in riparian zones. Unmanned aircraft systems (UAS), combined with structure from motion (SfM) 

photogrammetry are currently receiving considerable attention for river mapping (Lejot et al. 2007; 

Javernick et al. 2014). Additionally, autonomous survey boats equipped with GNSS and sonar are also 

attracting attention for river channel mapping (Ferreira et al. 2009). Real-time kinematic (RTK) GNSS 

transects are another common means of generating river survey data (Koljonen et al. 2012; Merwade et al. 

2008). A challenge, however, lies in the fact that these technologies tend to generate data with greatly 

differing spatial densities and uncertainties. Another common challenge is that the data may be initially 

referenced to different horizontal and vertical datums.  

 

Hence, to fully leverage emerging surveying technologies and techniques for the riparian zone, new data 

merging techniques are of interest. This study focuses on such techniques, using, as an example 

application, the evaluation of a proposed whitewater park location. The study site comprises a proposed 

whitewater park location on the Rogue River, as well as an alternative location, approximately five miles 

(eight kilometers) upstream. The site was flown with a DJI S900 multirotor UAS. Additionally, RTK 

GNSS data were collected for a number of topographic and shallow bathymetric locations within the site. 

The UAS and RTK GNSS data acquisitions were planned for low-flow states. Next, sonar data were 
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acquired at a high-flow stage using a single-beam echosounder on a cataraft. A custom Inverse Distance 

Weighting (IDW) algorithm was created in Matlab in order to produce a seamless topobathymetric DEM 

from the input data, using both distance and uncertainty information. From the final DEM product, 

various hydrodynamic models can be produced for studying water quality and related ecological issues, 

modeling flood vulnerability, and numerous other applications. The results indicate that this combination 

of survey technologies may be a viable, cost-effective approach to topobathymetric river mapping, using 

the data merge procedures developed in this research.  

1.1 Example Application and Study Site  

Whitewater parks are watercourses that have been artificially modified for the purposes of creating 

whitewater activities for canoeists and kayakers. The presence of a whitewater park can benefit a 

community through river restoration and economic development (Moorman et al. 2007). Locations 

conducive to these parks include natural, modified, and human-made river channels (Loomis 2011).  

Building a whitewater park may require consent and permits from both federal and state agencies that 

oversee water resources, such as the Army Corps of Engineers (USACE), and the Department of Natural 

Resources (American Whitewater 2007). Whitewater parks are built as a recreational amenity in many 

rivers, and, as with the construction of other types of channel-spanning structures, they can significantly 

alter hydraulic conditions, affecting fish habitat. It has been noted that some of the effects can be 

beneficial, such as increasing pool area, which is a key component of healthy salmonid habitat and is 

often a primary goal of habitat-improvement projects (Larscheid and Hubert 1992; Roni et al. 2008). 

Deeper pools are also beneficial to fish because they provide cover and essential habitat during very low 

flows (Binns 1994; Harig et al. 2000). Generally, to receive a permit for a whitewater park location, an 

alternative study is performed on a different location, such that the impacts at the two locations can be 

carefully analyzed, and the better of the two options can be selected. The alternative study includes 

topographic and bathymetric mapping of the area in order to determine important site characteristics.  

 

A whitewater park has been proposed on the Rogue River (Anderson 2016). The proposed location is the 

westernmost channel and west bank of the Rogue River at Ti’Lomikh Falls, approximately one mile (1.6 

km) north of I-5 in Gold Hill, Oregon. This channel was modified as part of a historic gold mining 

operation, and, therefore, it is not considered to be a natural channel. A main aspect of the proposed 

project is the removal of the hazard of a prominent midstream boulder, known as the “Muggers Rock”, 

which renders the channel marginally runnable for commercial whitewater rafting (Anderson 2016). 

Additional goals are to create a whitewater slalom rapid and several whitewater freestyle waves, and 
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improve the recreational value of the channel by removing the hazard. Considerations for this project 

include impacts on fish passage and First Nation’s traditional uses. Since Coho Salmon are protected by 

the Endangered Species Act-subject species, fish passage impacts of the project are also an important 

consideration.  

 

For purposes of demonstrating a topobathymetric data merge, this project focuses on a potential 

alternative location approximately five miles (8 km) upstream from Ti’Lomikh Falls, at the post-dam 

removal site of Gold Ray Dam. This location was home to Gold Ray Dam, one of the oldest structures on 

the Rogue River, until its removal in 2010. The dam sat idle for 39 years before it was removed, due to it 

being deemed a significant barrier to salmon and steelhead migration, as well as a liability risk for the 

County (HDR 2009). This location was chosen based on its significantly-altered state throughout history 

(natural state of the river altered numerous times since in 1904), ease of river access from both sides, ease 

of spectator viewing and access, minimal vegetation removal required, and scenery of the iconic Table 

Rock and Mt. McLaughlin. River access is available from either side, with Upper River Road located on 

river left and Gold Ray Estates located on river right. Additionally, this location is in close proximity to 

populated areas, and potential participants.  

1.1.1 Site Characteristics 

The geomorphology of the Gold Ray area of interest (AOI) varies throughout the reach, comprising of 

areas of bedrock, gravel, and sand. Immediately downstream of the dam there is a reach of exposed 

bedrock on river left as the Rogue River enters a canyon. Additionally, two bedrock islands lie midstream 

in the upper reach of the AOI with a large bedrock shelf present mid-AOI on river right, as seen in Fig. 1. 

Upstream of the dam was an impounded area inundated 1904-2010 with numerous sloughs and extensive 

riparian area. The upper section of the AOI is mostly comprised of gravel and sand, verified by vibracore 

samples collected by Gravity Consulting LLC (HDR 2009). A simple visual observation of the site yields 

existing river features present, producing natural waves and rapid formations throughout the reach. This 

observation displays suitable gradient for the feasibility to construct multiple standing waves or play 

holes. 
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Figure 1. Ti'Lomikh Falls location in relation to Gold Ray Dam site location (left). Ti'Lomikh Falls West channel (right) with 

Mugger's Rock located mid-stream near the top of the channel. Gold Ray Dam Study Site (Bottom) 
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2 Materials and Methods 

2.1 Data Collection 

A common approach for generating topobathymetric river data sets is collecting RTK GNSS surveyed 

topographic cross-sections and integrating this data with bathymetric echosounding data (Flener et al. 

2013, Maxwell and Smith 2007, Merwade et al. 2008). While small reaches of shallow rivers can be 

surveyed using pole-mounted RTK GNSS, the limits of these methods are reached fairly quickly with the 

increase in both the depth of water and the size of the area to be surveyed (Flener et al. 2013). A 

minimalist approach for representing fluvial terrain features while surveying topographic cross-sections is 

to occupy a point, on both sides of the river, at the top of the river bank (TOB) above the high water 

mark, a point at the edge of the water (EOW), and a point at the toe of the slope (TOS) within the water. 

The TOS point ensures topographic data set overlap with the bathymetric echosounding data set. Beyond 

collecting TOB, EOW, and TOS points, the denser the point pattern within the topographic cross sections, 

the more accurate the resulting DEM becomes. However, the density of the point pattern is directly 

proportional to the time spent surveying (Flener et al. 2013). Therefore, for longer reaches of river, 

incremental cross-sections are surveyed while traveling downstream, and the surveyed point pattern is 

generally quite sparse.  

 

The positional accuracy of RTK-GNSS measured points can hardly be surpassed by other measuring 

techniques; however, remote sensing methods, such as UAS-SfM photogrammetry and echosounding 

techniques, can provide a much wider and denser spatial coverage (e.g., Flener et al. 2013). A common 

configuration for river mapping involves using a pole-mounted transducer fixed to a rigid floating 

watercraft. As the watercraft is propelled through the water, soundings are stored continuously in a data 

collector, georeferenced by a GNSS receiver affixed atop the transducer pole.  

 

This study mapped the project site using a combination of UAS-based SfM, single-beam echosounder and 

RTK GNSS. Data was acquired during varying river levels: 

1. Low discharge: In order to acquire SfM river data in the form of exposed bathymetry (gravel bar, 

sand bar, exposed bedrock, etc.) the survey team acquired SfM data on October 9th, 2016 when 

the river was hovering around its lowest discharge of 44 cms (cubic meters per second) or 1550 

cfs (cubic feet per second). At this river stage, large gravel bars, and large areas of exposed 

bedrock were visible above water, as seen in Fig. 2.  
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Figure 2. View of river at a flow rate of 44cms, looking upstream from river right. 

 

2. High discharge: In order to provide as much overlap as possible with the SfM data, sonar data 

was acquired at the highest flow feasible for data collection on December 13, 2016. This flow 

was estimated to be 113-142 cms (roughly 4000-5000 cfs), as shown in Fig. 3. The water level 

needed to be high enough to cover rocks, allowing enough depth between the outboard propeller 

and the river bottom, to propel the boat upstream. However, if the water level was too high, the 

water velocity would be too fast for the 8-hp outboard motor to propel the watercraft upstream 

and would not ensure multiple overlapping sonar passes.  

 

 

Figure 3. View of river at a flow rate of 128 cms (4500 cfs) from river right. 
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Three separate surveys were performed to collect all necessary topography and bathymetry data: 

 Survey 1:  The first survey was performed on October 9, 2016 and included setting ground 

control for a UAS flight mission in order to acquire SfM data.  

 Survey 2:  The second survey was performed on December 12, 2016 in order to acquire 

Topography Data along the northern river bank, or river right.  

 Survey 3:  The third survey was performed the following day, December 13, 2016, to acquire 

bathymetry data along the river corridor, as well as finish topography data collection along the 

Southern river bank, or river left.  

For all surveys, the RTK GNSS 3D Coordinate Quality (3DCQ) maximum limit was set to 0.05 m. Any 

data point failing to meet this 3DCQ threshold was not stored in the data collector. 

 

2.1.1 RTK Topography Data Collection 

RTK GNSS was used to establish temporary project control and to collect spot elevations throughout the 

AOI. The RTK GNSS base station was set up over a temporary control point (CP001), which consisted of 

a survey tack placed into a wooden survey hub driven into the ground. Two additional temporary control 

stations (CP002 and CP003) were also established within the site. The base station consisted of a Leica 

GNSS GS14 receiver attached to a 2-meter fixed height tripod. Both the base and radio/antenna setup 

were powered using a single deep-cycle marine battery. Two more GNSS receivers were attached to 2-

meter fixed survey rods, with flat topo shoes used for the rod base, to acquire coordinates of a number of 

points within the Gold Ray Dam AOI. A total of 1,097 RTK points were collected within the river 

corridor, to be used as ground truth for the SfM point cloud, and also to fill in holes in areas where SfM 

failed (e.g., heavily vegetated areas).   

The only National Geodetic Survey (NGS) survey mark near the Gold Ray site was a First Order Class II 

vertical control station, NZ0224 (Fig. 4). This mark is a standard brass disk in an area of outcropping 

bedrock, 0.2 km west of the intersection of the graveled road, 4.7 m south of the near rail, and 0.3 m 

above the tracks.  The horizontal coordinates were reported by NGS to have been scaled from a 

topographic map. While these horizontal coordinates were not used, NZ0224 was occupied with the RTK 

GNSS rover as a check on the vertical accuracy of the RTK survey. 
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Figure 4. Occupying vertical control station with a GNSS receiver, NZ0224, on river left above the railroad tracks. 

The horizontal coordinates and NAVD 88 Geoid 12B orthometric height for the base location, CP001, 

were established by statically occupying the hub and logging 5 hours of RINEX data. The GNSS RINEX 

data file collected was uploaded to NOAA’s Online Positioning User Service (OPUS) to obtain 

coordinates for CP001, tied to the National Spatial Reference System (NSRS).  

 

As an independent verification of the control coordinates, a 3-minute occupation on hub CP001 was 

performed using the GS14 GNSS receiver, receiving real-time corrections via cellular data from the 

Oregon Real-time GNSS Network (ORGN). ORGN occupations were performed on all three control hubs 

(CP001, CP002, CP003) and were compared to the other base-to-rover RTK positions.   

2.1.2 Structure from Motion (SfM) Data Collection 

UAS-based aerial imagery was acquired when the river was at the low discharge of 44 cms. The flights 

were conducted under OSU’s FAA Certificate of Authorization (COA) 2016-WSA-101-COA. Before 

flights commenced, The RTK base, radio, and rover was configured. 12 black-and-white, “iron-cross” 

pattern ground, control point (GCP) photo identifiable targets were then placed throughout the scene (Fig. 

5). Best efforts were made to evenly disperse the geometry of the 12 GCPs to cover the entire AOI, with 

GCP location placement focused on areas near the riparian zone (stream/bank interface). In addition, a 

few targets were placed at higher elevations throughout the site in hopes of achieving better vertical 
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control within the SfM point cloud. A Zet Director whitewater kayak was deployed to navigate the swift 

current and rapids in order to set ground control targets on islands, gravel bars, and river banks difficult to 

access by foot. A Leica GS14 rover was used to occupy the center of each GCP for a duration of three 

minutes, in order to acquire an RTK GNSS coordinate for each target location, as shown in figure 5 

below.  

 

 

Figure 5. Occupying GCP10 (black and white aerial target). The blue Zet Director whitewater kayak is pictured in the 

background. 

Imagery was collected using a Sony A5000 HD digital camera affixed to a 3-axis aerial gimbal mounted 

to a DJI S900 hexacopter (Fig. 6). The entire setup and flights were performed between 11:30 am and 

5:30 pm local on a sunny 80 °F (27 °C) day. The Mission Planner software was used to design the flight 

mission, collecting 340 images, with 80% overlap and 75% sidelap. The AOI flown was roughly 59,900 

m2 (48.6 acres), requiring four batteries to perform four separate 17-minute flights at a 65-m flying height 

above ground level (AGL) above the starting location (near CP001).  

 

  

Figure 6. Attaching Sony a5000 camera to 3-axis aerial gimbal mounted to bottom of DJI S900. 
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2.1.3 RTK Bathymetry Data Collection 

Bathymetric data was collected on December 13, 2016 between 9:00am and 3:30pm. The discharge of the 

Rogue River below Gold Ray Dam was 4500 cfs dropping to 4200 cfs (127-119 cms) within the data 

collection time frame. A SOTAR cataraft with custom aluminum frame was used to navigate the swift 

Rogue River current. An aluminum motor mount was designed to attach to the stern of the frame, 

allowing the attachment of an 8 horsepower outboard motor, as shown in Fig. 7 below. The outboard 

motor was used to propel the whitewater craft upstream during data collection, and laterally across the 

current allowing the team to survey cross sections of the river.  

  

Figure 7. Single-beam echosounder data acquisition for project site. 

Soundings were collected using a Seafloor Systems Inc. HydroLite-TM echosounder mounted vertically 

to the bow of the cataraft frame (Fig. 7), as shown in the figure above. The HydroLite transducer was 

attached at the bottom of a fixed survey rod, with a Leica GNSS GS14 receiver fixed at the top of the rod. 

The GNSS receiver was time-synced with the echosounder, allowing the user to collect both 

georeferenced depths and ellipsoid heights of the river bottom, stored in real-time to the Leica CS15 data 

collector synced to the GS14 receiver. 

2.1.4 Lidar Data Collection  

Watershed Sciences, Inc. collected airborne light detection and ranging (lidar) data of the Medford area 

for the Oregon Department of Geology and Mineral Industries (DOGAMI) in 2009. The airborne lidar 

dataset was downloaded from NOAA’s Digital Coast data access viewer (Davidson and Miglarese 2003). 
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The lidar was flown on April 26, 2009. The data provider reported the absolute accuracy of the lidar data, 

assessed via a comparison against Real Time Kinematic (RTK) ground control points. Within the 

Medford Stud Area, the closest RTK points to the Gold Ray Dam AOI were collected along a 530-m 

section of Tolo Road, approximately 2.4 km to the southeast. The reported absolute accuracy, or deviation 

between laser points and RTK survey points, of the Medford area was 0.05 m (RMSE). Minimum 

deviations in elevation were -0.18 m and maximum deviations in elevation were 0.12m, with an average 

deviation of 0.04 m (Watershed Sciences 2009). Relative accuracy statistics were also reported, based on 

the inter-comparison of 384 flightlines and over 7 billion points. The reported relative accuracy statistics 

from the data provider were: mean: 0.037 m; median: 0.034 m; and standard deviation: 0.038 m. 

2.2 Data Processing 

Figure 8 shows the spatial extent of the acquired topographic and bathymetric data.  

 

 

Figure 8. Data acquired (yellow-lidar, green-SfM, blue-Sonar GNSS, red-RTK GNSS). 

2.2.1 GNSS Processing 

The RTK base occupied a permanent hub set at CP001. Two other permanent hubs were set at locations 

CP002 and CP003 (Fig. 9). An NGS fist order class II vertical control hub (NZ0224) was used to 

constrain all surveys in the vertical direction. In order to obtain accurate coordinates for CP001, over 5 
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hours of static RINEX data was collected at the point, and then processed in NOAA’s Online Positioning 

User Service (OPUS) using the precise orbits. In addition, CP001 was occupied for three minutes using a 

GNSS rover connected to the Oregon Real-Time Network (ORGN), to obtain additional corrected 

coordinates for the base location.  

 

 

Figure 9. Horizontal control Hubs (CP001, CP002, CP003) and Vertical Control Mark (NZ0224). 

When the base location is not known (and not specified during base set up), a GNSS code-based reference 

location, accurate within a few meters, is selected as the reference location for the base, and all real-time 

correction baselines are projected from the reference location. Due to all real-time correction baselines 

being stored in the data collector, once improved coordinates location for the base have been established, 

all baseline vectors can then be translated in Leica Geo Office 8.3, generating translated/adjusted 

coordinate values for the rest of the RTK survey data points. As a check on the base station coordinates, 

the OPUS solution coordinates were compared to the ORGN coordinates for CP001 (Table 1). 

Table 1. Comparison of OPUS solution coordinate vs. ORGN coordinate for control point CP001. 

 
 Northing (m)  Easting (m)  Orth. Height (m) 

CP001 (OPUS) 88607.657 1295600.363 351.273 

CP001 (ORGN) 88607.651 1295600.361 351.264 

Difference 0.006 0.002 0.009 
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The OPUS and the ORGN coordinates agreed within millimeters in X, Y, and Z. The OPUS solution was 

chosen as the fixed coordinate for CP001, since 5 hours of occupation data was applied to that solution, as 

opposed to 3 minutes of occupation using the ORGN.  The initial code-based estimated reference 

coordinates, the adjusted reference base coordinates, and the corresponding translation of all RTK values 

acquired during the first, October 9th, 2016, survey is shown in Table 2.  

Table 2. Derived coordinate translation parameters for RTK GNSS Survey 1 adjusted data. 

 
 Northing (m)  Easting (m)  Orth. Height (m) 

Base Reference (Estimated) 88607.731 1295598.674 351.595 

Base Reference (Adjusted) 88607.657 1295600.363 351.273 

RTK Coordinate 

Translation 

-0.074 1.689 -0.322 

 

While performing the first RTK survey, the vertical control mark N70224 was occupied for 3 minutes. As 

a check on the vertical accuracy of the RTK survey, the CP001 adjusted orthometric height was compared 

to the published NGS orthometric height for N70224, shown in Table 3. The elevation from the rover 

occupation was 3.46 cm lower than the published NGS elevation. This discrepancy is not uncommon for 

vertical offset between RTK elevations and NGS published elevations. 

Table 3: Vertical offset between RTK adjusted data and NGS published Vertical control N70224. 

 
 Orth. Height (m) 

N70224 (RTK adjusted) 356.952 

N70224 (Published) 356.987 

Difference -0.035 

 

While a single check point is obviously insufficient for accuracy assessment, the 3.5 cm discrepancy in 

the orthometric height of N70224 was taken as a rough indication of the vertical accuracy of the RTK 

survey for purposes of this project.  Likewise, as a rough indication of the horizontal accuracy of the 

control survey, hubs CP002 and CP003 were occupied with the ORGN connected receiver for 3 minutes 

each. After the RTK baselines were adjusted, a comparison was performed on the adjusted northing, 

easting, and orthometric heights of the ORGN data and the adjusted RTK data (Table 4).  
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Table 4. Comparison of adjusted RTK coordinates and ORGN coordinates for control hubs CP002 and CP003. 

 
 Northing (m)  Easting (m)  Orth. Height (m) 

CP002 (Adjusted RTK) 88700.181 1295766.430 349.278 

CP002 (ORGN) 88700.186 1295766.424 349.294 

Difference -0.005 0.006 -0.016 

CP003 (Adjusted RTK) 88576.024 1295446.626 350.675 

CP003 (ORGN) 88576.024 1295446.625 350.684 

Difference -0.000 0.001 -0.009 

 

With the horizontal and vertical coordinates now established for CP001, the second and third surveys 

occupied the existing CP001 base location and used the known coordinates as the fixed reference base for 

all other baselines. Due to the base coordinates being known, no adjustments or translations were 

performed for surveys two and three. Because of this, CP001 for all three surveys were identical (held 

fixed). Table 5 shows the comparison of the coordinate CP002 from survey two with the first adjusted 

RTK survey coordinates. CP002 was not occupied during Survey 3. 

Table 5. Comparison of Adjusted RTK coordinates from Survey 1 to coordinates from Survey 2 for control hub CP002. 

Point Id  Northing (m)  Easting (m)  Orth. Height (m) 

CP002 (Adjusted RTK) 88700.182 1295766.430 349.278 

CP002 (Survey 2) 88700.185 1295766.428 349.272 

Difference -0.003 0.002 0.006 

 

Table 6 shows the mean and standard deviation of the coordinate CP003 from all three surveys. CP003 

was occupied twice during Survey 3. 

Table 6. Mean and standard deviation of the coordinates for CP003 from all three surveys. 

 
 Northing (m)  Easting (m)  Orth. Height (m) 

CP003 (Adjusted RTK) 88576.024 1295446.626 350.676 

CP003 (ORGN) 88576.024 1295446.625 350.685 

CP003 (Survey 2) 88576.012 1295446.629 350.679 

CP003 (Survey 3) 88576.016 1295446.631 350.679 

CP003 (Survey 3) 88576.022 1295446.632 350.679 

Mean 88576.020 1295446.629 350.680 

Standard Deviation  0.006 0.003 0.003 

 

As a rough indication of the vertical accuracy of Survey 2 and 3, the NGS mark N70224 was occupied 

during survey 2 for three minutes, and occupied twice on survey 3 for three minutes each. The mean 
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orthometric height of N70224 was calculated using the elevations established from survey 2 and 3, and 

was then compared to the published NGS elevation (Table 7).  

Table 7. Mean N70224 NAVD 88 orthometric height compared to NGS N70224 published height 

Point Id  NAVD 88  Geiod 12B Orth. Height (m) 

N70224 (Survey 2) 356.968 

N70224 (Survey 3) 356.97 

N70224 (Survey 3) 356.97 

Mean 356.969 

N70224 (NGS published) 356.987 

Difference   -0.018 

 

2.2.2 Sonar Processing 

Turbidity, aeration, and other in-stream factors can negatively affect sonar returns, resulting in noisy 

bathymetric data. It is important to extract noisy points, or outliers, from a data set in order to yield an 

accurate gridded dataset of the bathymetry profile. In this project, manual noise removal was performed. 

Fig. 10 below displays an example of bathymetry data within a cross section of the Rogue River, before 

and after noise extraction.  

 

 

Figure 10. Before (top) and after (bottom) noise removal. 

 

2.2.3 SfM Processing 

SfM processing and point cloud generation was performed in Agisoft Photoscan version 1.2.6.2834. A 

total of 340 images were aligned using the highest accuracy parameter setting, with the pair preselection 
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parameter disabled. 40,000 key points and 5,000 tie points were set under the alignment parameters.  

Figure 11 shows camera locations and image overlap, with camera locations represented as black dots, 

and image overlap represented by the color gradient.  

 

  

Figure 11. Camera locations and image overlap. 

 

The Ground Control Points (GCPs) were imported as a CSV file, and the point cloud was georeferenced 

by matching GCP coordinates with the corresponding photo targets within the imagery. The ground 

sample distance (GSD) was 1.6 cm and the marker accuracy was set to 2 pixels with tie point accuracy set 

to 3 pixels. The sparse point cloud generated had a RMSE of 26 cm, as reported by Photoscan, with most 

influence coming from vertical error, due to inaccurate water and vegetation tie points. Poor water and 

vegetation tie points were systematically removed within the sparse point cloud. After, the cameras were 

realigned and the relative accuracy of the sparse point cloud was improved to 4.7 cm RMSE. Table 8 

contains the control point accuracy output, as provided by Agisoft Photoscan. It is important to note 

however, that the reported control point accuracy statistics within the SfM software are generally overly 

optimistic, if taken as an indication of the overall accuracy of the point cloud (Slocum and Parrish, 2017).  
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Table 8. GCP accuracy output 

Label X error (cm) Y error (cm) Z error (cm) 3D error (cm) 

GCP01 0.5 2.2 -5.0 5.5 

GCP02 0.1 -0.8 5.2 5.3 

GCP03 0.0 -0.1 -7.5 7.5 

GCP04 -3.2 1.8 2.3 4.3 

GCP05 1.1 -1.4 7.6 7.8 

GCP06 -1.2 0.4 -1.1 1.7 

GCP07 1.9 -1.2 2.3 3.2 

GCP08 -1.3 -0.3 -5.1 5.3 

GCP09 0.7 -0.4 3.7 3.8 

GCP10 0.0 0.0 -4.3 4.3 

GCP11 0.9 -1.1 0.5 1.5 

GCP12 0.1 -0.1 0.1 0.2 

RMSE 1.3 1.1 4.4 4.7 

 

 

Photoscan computes the 3D error, 𝜀3𝐷, as:   

𝜀3𝐷 = √𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2        (1) 

 

The RMSE is computed as: 

RMSE = √
∑ 𝑣𝑖

2𝑛
𝑖=1

𝑛
       (2) 

 

where n is the number of GCPs, and vi  represents an individual estimated error. The dense point cloud 

was then generated and false tie points were manually cleaned out of the final reconstruction within 

Agisoft Photoscan (Fig. 12). The dense point cloud’s reconstruction parameters were high quality, and 

moderate depth filtering, generating nearly 56 million points.  
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Figure 12. Ground Control Points overlaid onto noise-edited dense point cloud. 

 

To prepare the dense point cloud for input into the IDW algorithm, removal of all vegetation and noisy 

points were required, in order to generate an accurate terrain model. Point reclassification (vegetation 

removal) was performed manually in LP360, by viewing one small profile of the terrain at a time (Fig. 

13), and stepping through the data. Additionally, there were areas where SfM failed, and formed a 

“fuzzy” point cloud as opposed to a well-defined terrain profile, as shown on the right side of the land 

profile in Fig. 14 below. These “fuzzy” areas did not have high accuracy and were classified as noise 

(Fig. 15).  
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Figure 13. Example cross section used for vegetation removal. 

 

Figure 14. RGB SfM point cloud (only extremely noisy points removed) with vegetation in tact. 

 

Figure 15. Vegetation removal and “fuzzy” edge point removal where SfM failed (far right of terrain profile). 

 

2.2.4 Lidar Processing 

The 2009 Medford area lidar was flown prior to dam removal in 2010, and therefore has significant 

temporal changes as compared to the current state of the AOI. Upstream of the dam had the most 

significant temporal changes. However, a few small areas within the AOI had not been affected by the 
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dam removal, and were used in the gridding process, primarily to fill in data voids in areas of dense 

vegetation. These areas were non-inundated by the dam impoundment, and thus remained unchanged by 

the change in water stage post dam removal. In order to detect these unaffected areas, historic aerial 

imagery was compared to current imagery of the AOI, in order to begin isolating areas within the lidar 

data that appeared visually unchanged (Fig. 16). Overlapping RTK GNSS data were then used to verify 

the undisturbed locations, by analyzing cross sections within LP360, and manually extracting lidar data 

with significant vertical differences (greater than 0.5 meters) from the reference data. Figures 16 and 17 

show the lidar data that was incorporated in the gridding algorithm.   

 

 

Figure 16. Lidar points utilized in gridding algorithm, overlaid onto the historic Gold Ray Dam site imagery pre dam removal. 

 

Figure 17. Lidar points utilized in gridding algorithm, overlaid onto 2016 Gold Ray Dam site imagery post dam removal. 
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With the exception of the dam, powerhouse, fish ladder, and other adjoining attributes, a large portion of 

the topography downstream of the dam remained unchanged due to most of the topography being made 

up of exposed bedrock, or large boulders. In large areas of dense vegetation, lidar proved beneficial in the 

retrieval of ground elevation points.  

2.2.5 Accuracy Assessment 

Uncertainty estimates for each input dataset are needed for the custom IDW algorithm developed in this 

work. Although there are numerous methods by which uncertainties could be obtained, in this study they 

were computed through an empirical accuracy assessment (i.e., a comparison of each “test” dataset 

against a “reference” or “control” dataset of higher accuracy). Between the RTK GNSS, lidar, sonar and 

SfM datasets, it is reasonable to assume that the RTK GNSS is the most accurate (i.e., has the lowest 

uncertainty). With this starting assumption, the RTK GNSS dataset was used as the reference dataset, 

while the lidar, sonar, and SfM datasets were used as test datasets. The accuracy assessment was 

performed in QCoherent LP360 software (ArcGIS extension version) Control Points function. Within this 

tool, a surface was generated from each test data set using a traditional Inverse Distance Weighting 

(IDW) algorithm with the search radius set to 1 meter and the power parameter set to 2. Vertical 

differences, dZ, were then calculated from each RTK GNSS point to each test surface in areas of overlap. 

The means and standard deviations of the dZ’s were calculated (Table 9).   

 

Table 9. Results of empirical accuracy assessment performed in LP360. 

Dataset μ (m) σ (m) n 

Lidar 0.00 0.16 48 

Sonar 0.02 0.09 26 

SfM -0.01 0.14 238 

 

By convention, a positive bias, μ, signifies the control data set is higher than the surface generated from 

the test data set. Points lying outside the 3σ threshold were considered outliers, and were removed from 

the dataset. Since a bias was present for the sonar and SfM data sets, a vertical translation was performed 

to remove this bias prior to input into the gridding algorithm.  

 

The σ values listed in Table 9 for the lidar, sonar, and SfM datasets were used as the input uncertainties in 

the custom IDW algorithm used to combine the data. For the RTK GNSS dataset, 0.05 m was used as the 

input uncertainty value, based on the 3DCQ of 0.05 m enforced within the Lieca data acquisition 
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software. This uncertainty value was chosen, based on the assumption that the vertical accuracy of RTK 

GNSS is equal to, or better than, the 3DCQ threshold.  

 

The uncertainty estimates obtained in through this procedure are plausible indicators of the relative 

uncertainties for input into the custom IDW algorithm. However, these results should not be construed as 

an indication of the best achievable accuracy with any of the technologies listed. Factors contributing to 

the results listed in Table 9 include temporal changes between acquisition dates, surveying rugged terrain 

(Fig. 18), and utilizing some sparse data located in low vegetation areas (Fig. 19) in order to fill data 

voids in areas difficult to access by foot. Large areas of woody debris build-up (Fig. 20) were present 

throughout the AOI, which also contributed to larger vertical uncertainties.  

 

 

Figure 18. Rugged terrain within AOI 
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Figure 19. Low vegetation area difficult to access by foot (e.g. top of bank) 

 

Figure 20. Areas of woody debris build up 
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2.2.6 IDW (Traditional)  

The types of remote sensing technologies involved in this paper include: lidar, sonar, RTK GNSS, and 

SfM. All of these technologies produce datasets composed of irregularly-spaced (X,Y,Z) spatial 

coordinates, or point clouds. Due to the nature of point clouds’ incomplete measurement of topographic 

and bathymetric features, interpolation of the sparse point cloud data is necessary to generate a surface 

needed for two- and three-dimensional hydrodynamic models, which, in turn, are required for whitewater 

park design.   

 

To generate a regularly-spaced grid from the irregularly-spaced lidar, sonar, and RTK GNSS point 

clouds, an interpolation algorithm is used. One of the most widely-used interpolation algorithms is the 

inverse distance weighted (IDW) algorithm. This method is widely used by geoscientists, in part due to 

the ability to easily explain the IDW methodology summarized by the implementation of spatial auto-

correlation (Kalkhan 2011). IDW is a type of deterministic interpolation method that uses a mathematical 

function to predict unknown values, where the predicted values are directly based on the surrounding 

measured values, weighted according to their distances from the interpolated point. Traditionally, the 

parameter setting for IDW is a power function, where the power variable, p, determines how rapidly 

weights fall off with distance from the interpolated point (Lu and Wong 2008): 

 

𝑧𝐼𝐷𝑊 =
∑ 𝑧𝑖𝑑𝑖

−𝑝𝑛
𝑖=1

∑ 𝑑
𝑖
−𝑝𝑛

𝑖=1

     (3) 

     

where 𝑧𝐼𝐷𝑊 is the interpolated value, and di is the distance from the grid node to the sample (measured) 

point i whose measured value is zi. A common default value for the power parameter, p, is 2.  

IDW is an appropriate interpolation method when interpolating from spatially correlated point datasets 

that are non-directionally dependent, are non-clustered and contain no data outliers (Rodriguez 2015). For 

elevation surfaces, the output from IDW results in flattening peaks and valleys unless the area of interest 

has a high point density. 

2.2.7 IDW Uncertainty Weighted Gridding Algorithm 

This paper implements a custom IDW algorithm that interpolates multi-sensor sparse point datasets, based 

not only on the traditional power parameter used to weight distances from a corresponding grid node, but 

also factors in a weight for the uncertainty of each dataset. The importance of this modified form of the 

IDW algorithm for this research (and, for that matter, for multi-sensor river mapping in general) is that 
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the integration of data sets from disparate surveying technologies requires a means of accounting for 

differing uncertainties of the inputs, as well as distance from the node. 

 

𝑧𝑈𝐼𝐷𝑊 =
∑ 𝑧𝑖𝑑𝑖

−𝑝
𝑢−𝑞𝑛

𝑖=1

∑ 𝑑𝑖
−𝑝

𝑢−𝑞𝑛
𝑖=1

    (4) 

  

where u is the standard uncertainty (1 σ) of the data point zi, q is the power parameter for uncertainty 

weighting, and all other variables are as defined previously. The algorithm was designed so that any 

number of datasets could be seamlessly gridded. The inputs for the algorithm are the multi-sensor datasets 

each in a “.las” file type (ASPRS 2013), the corresponding dataset uncertainties, the final grid resolution, 

search radius, and power variable used for the distance weighting. The algorithm first extracts all of the X, 

Y, and Z sparse data points from each “.las” file. It then calculates the gridding boundaries or extents, 

specifying x and y grid dimensions large enough to encompass all datasets. Next, grid node locations are 

calculated based on the grid resolution size input. Weights for each dataset are then calculated as the 

inverse square of the standard uncertainty (i.e., q = 2). At this point, the algorithm starts at the first grid 

node and calculates a distance to each sparse data point for all datasets. The input search radius is then 

used as a filter to only select data points within the search radius of the grid node. The final local mean 

value for the corresponding grid node is calculated using Eq. 4. This value is then stored, and the 

algorithm moves to the next grid node, and repeats this process for all grid nodes. The algorithm 

continues on to plot the gridded data, and save the result as an elevation heat map colored georeferenced 

DEM. The complete MATLAB Script is shown in the appendix.  

3 Analysis 

The customized IDW produced a seamless topographic-bathymetric DEM (Fig. 21) from four different 

multi-sensor datasets which can be used for a variety of hydrodynamic modeling functions. The gridded 

product appears to be a reasonable solution without significant artifacts. Since an independent, higher-

accuracy “ground truth” data does not exist, an independent assessment for output accuracy cannot be 

performed, and without that data, validation of the solution is not possible. However, certain measures 

were taken during data acquisition to minimize data gaps, and maximize data overlap, since the higher the 

degree of overlap, the higher the probability of achieving a smooth, seamless and realistic integrated 

solution. This was performed by collecting bathymetry data during high water levels and topographic data 

during low water levels. Conforming to these conditions will produce the best possible dataset to perform 

the integration (Quadros et al. 2008).  
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Figure 21. Final merged topobathymetric DEM for the AOI, shown as a hillshade in ArcGIS. 

 

Before becoming an input in the gridding algorithm, the largest offsets within the datasets were ~0.15 m, 

which is reasonable for most hydrodynamic modeling functions. UAS-based SfM point data covered the 

dry river channel, and also collected data for limited portions of the submerged river channel. Since the 

refraction of light at the water surface is not taken into account in the creation of the SfM point cloud, the 

positional accuracy of the submerged data points is unknown; however, all submerged SfM points kept 

for modelling input aligned with either the echosounder data or RTK GNSS data within ± 0.15 m. As 

shown in Fig. 21, some data voids could not be interpolated across for a 0.5 m grid resolution due to the 

sparse nature of the echosounder data.  

 

Overall, the algorithm processed over 40 million data points, the majority being densely populated SfM 

data points, and was able to generate a gridded DEM product in 36 hours which we consider reasonable, 

due to the complexity of merging disparate topobathymetric river data sets. The model allows for 

prominent river features to be detected, due to the high spatial resolution of the DEM (0.5 m), which 

could be a valuable tool for a white water park designer.  
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4 Discussion 

River systems are inherently dynamic and experience geomorphic changes on a daily basis. Because of 

this, there are inherent temporal differences between the topographic and bathymetric surveys. In areas of 

bedrock there were no perceptible changes within the data collection timeframe. However, in areas of 

gravel and fine sediment, perceptible changes could be seen within the overlapping datasets. Overall, no 

drastic changes were present between the first and second survey and the previously acquired lidar data 

that was used. Figures 22 and 23 show an example cross section through all four datasets, displaying the 

agreement and accuracy of data overlap.  

 

 

Figure 22. Overlapping data colored by data source (green-SfM, red-lidar, blue-RTK topo, yellow-sonar). 

 

Figure 23. Cross section of merged data sets colored by classification (green-SfM, red-lidar, blue-RTK topo, yellow-sonar) with 

axes in meters.  

An interesting phenomena discovered in the dataset was a 0.15-m systematic vertical offset between the 

SfM point data and the RTK GNSS data on areas of exposed bedrock. These areas of decreased accuracy 

were consistent throughout the AOI, occurring at locations far away from ground control targets, as 

expected, but also locations relatively close to ground control point targets. Figures 24 and 25 below 
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highlight the two locations where the phenomena occurred. In Fig. 24, it is interesting to see the profile 

view (bottom) of the data, where the SfM and RTK GNSS data agree within a couple of centimeters over 

the gravel and grassy portion of the island, but then jump up 0.15 m above the areas of exposed bedrock, 

only 10 m away. Fig. 25 shows a bedrock island where another 0.15 m vertical offset was seen between 

the RTK GNSS data and the SfM point data. However, this location was in the middle of the river, with 

the closest GCP being 26 m away.  

 

 

Figure 24: 15-cm vertical offset on exposed bedrock consistent throughout AOI (lower image). RTK GNSS (red dots) and SfM 
(green dots) shown in the bottom image. GCP 11 is represented as the largest red square. 



                                                                                                                                                                        29  
 

 
 

 

Figure 25: Bedrock island with GCP10 located 26m away from island (closest GCP). 

 

By analyzing the overlapping sparse data, the largest areas of uncertainty were in the submerged SfM 

datapoints, and the areas of exposed bedrock. In either case, these locations agreed within ± 0.16 cm of 

the RTK GNSS data, and with the use of the customized IDW algorithm performing a moving average on 

the combined dataset in order to grid the data, it is assumed that the final output DEM’s accuracy should 

be close to, if not better than ± 0.16 m vertically. 

5 Conclusions 

Seamless, accurate, up-to-date topobathymetric DEMs are vital for river engineering and science 

applications, yet are notoriously difficult to generate. Challenges in river topobathymetric mapping range 

from logistical/environmental issues (variable and sometimes swift flows, changing channel 

characteristics) to technological and methodological (differing horizontal and vertical datums and spatial 

accuracies and resolutions of source data). This study takes a first step towards addressing these 

challenges by investigating a new, multi-sensor, multi-temporal fusion methodology for topobathymetric 

river mapping. The methods were tested by considering, as an example application, the evaluation of a 

proposed whitewater park site on the Rogue River in Oregon, near the site of the former Gold Ray Dam. 

Data collected for the project site included UAS imagery (processed in commercial SfM software to 

generate point clouds and orthoimagery), RTK GNSS transects and spot elevations, and single beam 

echosounder data. To facilitate a seamless merged product, the UAS and RTK GNSS data were collected 

under low discharge conditions (44 cms), while the sonar data were collected under high discharge 
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conditions (113-142 cms) after a period of heavy rain. The data were combined using a modified version 

of the IDW algorithm, which was custom developed for this study, and accounts for both distance and the 

differing uncertainties of the inputs. 

 

The methods appear quite promising for seamless topobathymetric river mapping. The UAS, RTK, and 

single beam echosounder data acquisitions were conducted safely and efficiently over a span of ~3 

months (approximately 3 days of data acquisition, total). The acquisition strategy that involved using 

land-based survey technologies at low-flow river stages and boat-based methods at high-flow stages was 

determined to enable highly-beneficial overlap for merging the data. The custom IDW algorithm was 

found to work well for the data merge portion of the project, providing a high-resolution (0.5 m), 

seamless, and relatively gap-free topobathymetric DEM. Implemented in MATLAB, the custom IDW 

algorithm was reasonably computationally efficient, although optimization of the code is a recommended 

area of further research. Conceptually, the modified IDW algorithm developed and tested in this work is 

superior to the conventional IDW algorithm in its ability to handle greatly differing uncertainties in the 

input source data from disparate surveying technologies. In this study, quantitative evaluation of the final 

topobathymetric DEM was limited, however, due to a lack of additional ground truth for performing 

accuracy assessments. Visual assessment of the output confirmed that the DEM was free of seamlines and 

other noticeable artifacts. A recommendation for future work is to collect additional reference data for the 

site to both quantify the accuracy of the merged topobathymetric product and refine the parameters in the 

custom IDW algorithm – particularly, the relative weighting between distance from the interpolated point 

and uncertainty.  

 

Another recommendation for future work is to collect additional bathymetric data, in order to minimize 

data voids in the subaqueous portion of the AOI. One way to do this would be to collect more in-stream 

hand-held RTK GNSS rod occupations when the river is at the lowest level. Data collection using the 

echosounder at high river flows was unsuccessful in whitewater areas, whereas, these same areas could 

potentially be accessed on foot at lower river levels. If available, a multibeam echosounder (MBES) or 

phase differencing bathymetric sonar (PDBS) would be highly beneficial. Small, autonomous survey 

boats are also of interest for river mapping, and could be incorporated into follow-on research. 

Additionally, topobathymetric lidar would be another source data to investigate merging using the 

methods of this study. Finally, a follow-on study investigating the degradation of the SfM-derived point 

clouds, due to the areas of highly-reflective bedrock, is recommended. 
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Kellum MATLAB Algorithm: 

 

runKellumIDW.m 

%% Run Kellum IDW with ‘.las’inputs 

% Depedencies: lasdata.m (Author: Teemu Kumpumki / Tampere University of  

% Technology 2014) available here:  

% https://www.mathworks.com/matlabcentral/fileexchange/48073-lasdata 

 

clc 

clear 

close all 

  

FILENAMES = {'C:\Research_Kory\RogueRiver\Edited_Las_files\RTK_topo_edited_groundpts02.las',...  

              'C:\Research_Kory\Rogue River\Edited_Las_files\Sonar_edited_bathypts02_Translated.las',... 

               'C:\Research_Kory\Rogue River\Edited_Las_files\SfM_Edited_groundpts02_translated.las',... 

               'C:\Research_Kory\Rogue River\Edited_Las_files\Lidar_All_Edited_groundpts02.las'}; 

  

      

ACCURACY{1} = 0.05;  %3 sigma standard deviation of the mean per dataset 

ACCURACY{2} = 0.09; 

ACCURACY{3} = 0.14; 

ACCURACY{4} = 0.16; 

  

DX = 0.5; %0.5 meter resolution 

RADIUS = 5; 

POWER = 2; 

  

%% Processing Code 

ndatasets = numel(FILENAMES); 

x=cell(ndatasets,1); 

y=cell(ndatasets,1); 

z=cell(ndatasets,1); 

fprintf('Loading Point Data... %s\n',datestr(now)); 

for iFilenumIndex = 1:ndatasets 

    [dname,fname,ext] = fileparts(FILENAMES{iFilenumIndex}); 

    fprintf('\t Loading (%.f/%.0f) [%s]: %s\n',iFilenumIndex,ndatasets,datestr(now),[dname '/' fname ext]); 

    [x{iFilenumIndex},y{iFilenumIndex},z{iFilenumIndex}] = readxyz(FILENAMES{iFilenumIndex}); 

end 

fprintf('Finished Loading Data... %s\n',datestr(now)); 

[xi,yi]=calcGridBounds(x,y,DX); 

[zg,npts]=KellumIDW(x,y,z,ACCURACY,xi,yi,RADIUS,POWER); 

  

%% Plot Data 

figure(1) 

pcolor(xi,yi,zg);shading flat 

figure(gcf) 



                                                                                                                                                                        36  
 

 
 

title('IDW gridded data'); 

axis equal 

  

%% Write Geotiff 

Zdata=zg; 

R = maprasterref('RasterSize',[numel(yi) numel(xi)],'ColumnsStartFrom','South'); 

R.XWorldLimits = [xi(1) xi(end)]; 

R.YWorldLimits = [yi(1) yi(end)]; 

key.GTModelTypeGeoKey = 1; 

key.GTRasterTypeGeoKey = 1; 

key.ProjectedCSTypeGeoKey = 32767; 

geotiffwrite('C:\Research_Kory\Matlab\zdata_geotiff.tif',Zdata,R,'GeoKeyDirectoryTag',key) 

geoZ  = imread('zdata_geotiff.tif'); 

fprintf('Class type of Z: %s\n', class(Zdata)) 

fprintf('Class type of data in GeoTIFF file: %s\n', class(geoZ)) 

fprintf('Does data in GeoTIFF file equal Z: %d\n', isequal(geoZ, Zdata)) 

figure 

mapshow('zdata_geotiff.tif','DisplayType','texturemap') 

title('Peaks - Stored in GeoTIFF File') 

  

readxyz.m 

function [x,y,z]=readxyz(filename) 

  

[~,~,ext] = fileparts(filename); 

  

tf=strcmp(ext,'.las'); 

  

if tf==1 

    [x,y,z] = readLasToXYZ(filename); 

else 

    [x,y,z] = readCsvToXYZ(filename);  

end 

  

end 

 

readLasToXYZ.m 

function [x,y,z] = readLasToXYZ(filename) 

  

dataStruct = lasdata(filename); 

x = dataStruct.x; 

y = dataStruct.y; 

z = dataStruct.z; 

  

end 
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readCsvToXYZ.m 

function [x,y,z] = readCsvToXYZ (filename) 

  

dat = importdata(filename); 

  

if isstruct(dat) 

    x = dat.data(:,1); 

    y = dat.data(:,2); 

    z = dat.data(:,3); 

else 

    x = dat(:,1); 

    y = dat(:,2); 

    z = dat(:,3); 

end 

  

end 

 

calcGridBounds.m 

%This function will develop a grid x and y 

function [xi,yi]=calcGridBounds (x,y,dx) 

  

ndatasets = numel(x); 

  

MinX = nan(ndatasets,1); 

MaxX = nan(ndatasets,1); 

MinY = nan(ndatasets,1); 

MaxY = nan(ndatasets,1); 

  

for countIndex= 1:ndatasets 

    MinX(countIndex)=min(x{countIndex}(:)); 

    MinY(countIndex)=min(y{countIndex}(:)); 

    MaxX(countIndex)=max(x{countIndex}(:)); 

    MaxY(countIndex)=max(y{countIndex}(:)); 

end 

  

MinXfinal = min(MinX); 

MinYfinal = min(MinY); 

MaxXfinal = max(MaxX); 

MaxYfinal = max(MaxY); 

  

xi = MinXfinal:dx:MaxXfinal; 

yi = MinYfinal:dx:MaxYfinal; 

  

end 
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KellumIDW.m 

function [zg,npts]=KoryKellumIDW(x,y,z,accuracy,xi,yi,r,p) 

  

%%xi grid array 1x n (n=#elements) 

%%yi grid array 

  

%% Make Sparse Data all Column Arrays 

x = x(:); 

y = y(:); 

z = z(:); 

  

%% Loop through variables 

  

zg = nan(numel(yi),numel(xi)); % preallocate variable 

npts = nan(numel(xi),numel(yi)); %preallocate 

%% 

startTime = now; %Loop Time Code  

for iGridXindex=1:numel(xi) %Grid Indexing 

    for jGridYindex=1:numel(yi) 

         

        loopXval = xi(iGridXindex); %real node coordinates 

        loopYval = yi(jGridYindex); 

                 

       %%Calculate Accuracy weights from all data sets  

       Wacc = calculateWacc(accuracy);   

              

        for kDatasetIndex = 1:numel(x)%loop through datasets 

            dataSetXpts = x{kDatasetIndex}; 

            dataSetYpts = y{kDatasetIndex}; 

            D = calcDist2Points(loopXval,loopYval,dataSetXpts,dataSetYpts);%nodeX,nodeY,x,y 

            inRadiusIndex = find(D<=r); 

            Zvals{kDatasetIndex}=z{kDatasetIndex}(inRadiusIndex);%find z values within Distance range 

and stores in cell 

            wAccuracy{kDatasetIndex}=ones(numel(Zvals{kDatasetIndex}),1)*Wacc{kDatasetIndex}; 

            Dvals = D(inRadiusIndex);%Finds distances correlated to matching z values within radius 

            wDist{kDatasetIndex} = 1./(Dvals.^p);  %calcs weight for each z val and stores in cell 

            

        end 

        %at this point all Z values within search radius and corresponding 

        %wDist and wAcc are calculated and stored in cell array 

             

        %final gridded zvalue weighted by distance and accuracy   

        for lDatasetIndex = 1:numel(x)  

            

Zn{lDatasetIndex}=sum(Zvals{lDatasetIndex}.*wDist{lDatasetIndex}.*wAccuracy{lDatasetIndex});    

%numerator of zfinal 
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            Zd{lDatasetIndex}=sum(wDist{lDatasetIndex}.*wAccuracy{lDatasetIndex});%denomenator of 

zfinal 

 

        end 

         

        numerator=0; 

        for lDatasetIndex=1:numel(x) 

            iNum=Zn{lDatasetIndex}; 

            numerator=numerator+iNum; 

        end 

         

        denomenator=0; 

        for lDatasetIndex=1:numel(x) 

            jDen=Zd{lDatasetIndex}; 

            denomenator=denomenator+jDen; 

        end 

                        

        Zfinal=numerator./denomenator; 

         

        zg(jGridYindex,iGridXindex)=Zfinal; %places value in allocated matrix 

         

        npts(jGridYindex,iGridXindex)=numel(Dvals); 

    end 

     

    loopStatus(startTime,iGridXindex,numel(xi),1); 

end 

  

  

end 

 

loopStatus.m 

function loopStatus(startTime,curLoopNum,nLoops,nskip) 

% LOOPSTATUS outputs status of for loop to the command line 

%   Outputs the current loop number, the current time, and the expected 

%   time the loop will finish to the Matlab command line.  This is useful 

%   when running long for loops, to estimate how far along they are.   

% 

%   Simply add a 'startTime = now'; command before the loop, and then add  

%   this function at the end of the loop. 

% 

%   Note: The estimate relies on the for loop remaining relatively constant 

%   throughout the duration of the collect. 

%  

% Inputs: 

%   - startTime  : 1 : datenum : matlab datenum of time when the loop began 

%   - curLoopNum : 1 : int     : the current loop number 

%   - nLoops     : 1 : int     : the total number of loops 



                                                                                                                                                                        40  
 

 
 

%   - nskip      : 1 : int     : the total status lines to skip 

%  

% Outputs: 

%   - n/a  

%  

% Examples: 

%   NLOOPS = 1000; 

%   NSKIPS = 10; 

%   startTime = now; 

%   for i=1:NLOOPS 

%       pause(.05) 

%       loopStatus(startTime,i,NLOOPS,NSKIPS) 

%   end 

%   datestr(now) 

% 

% Dependencies: 

%   - n/a 

%  

% Toolboxes Required: 

%   - n/a 

%  

% TODO: 

%  

% Author        : Richie Slocum 

% Email         : slocumr@oregonstate.edu 

% Date Created  : 14-Apr-2016 

% Date Modified : 14-Apr-2016 

  

if nargin==3 

    nskip = 1; %default to output every loop 

end 

  

if mod(curLoopNum,nskip)==0 

    t = now - startTime; %time it took for the first nLoops 

    avgLoopTime = t/(curLoopNum);  

    loopsRemaining = nLoops-curLoopNum; 

     

    estimTime = avgLoopTime*loopsRemaining;  

  

    estimDatenum = datestr(now + estimTime); 

     

    fprintf('%.0f/%.0f \t Now: %s \t Expected: %s \t Remaining: %s\n',... 

        curLoopNum,nLoops,datestr(now),estimDatenum, ... 

        datestr(estimTime,'dd:HH:MM:SS')); 

end 

  

end 
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calculateWacc 

%Calculates a weight for corresponding dataset uncertainty 

function Wacc = calculateWacc(accuracy) 

  

Wdenominator=0; 

 for iAccIndex = 1:numel(accuracy) %loops through accuracy matrix 

     iDenom = 1./accuracy{iAccIndex}^2; %last part of equation denominator 

      Wdenominator = Wdenominator + iDenom; 

  end 

  

 for jAccIndex = 1:numel(accuracy) 

     iAcc = 1./accuracy{jAccIndex}^2; %first part of equation denominator 

     Wacc{jAccIndex} = iAcc*(1./Wdenominator); 

 end 

  

end 

  

 

calcDist2Points.m 

function D = calcDist2Points(nodeX,nodeY,xsparse,ysparse)  

% calculate distance from node to sparse pts 

D = sqrt((nodeY-ysparse).^2+(nodeX-xsparse).^2); 

end 
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