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Abstract: In addition to precise 3D coordinates, most light detection and ranging (LIDAR) 

systems also record “intensity”, loosely defined as the strength of the backscattered echo for 

each measured point. To date, LIDAR intensity data have proven beneficial in a wide range 

of applications because they are related to surface parameters, such as reflectance. While 

numerous procedures have been introduced in the scientific literature, and even commercial 

software, to enhance the utility of intensity data through a variety of “normalization”, 

“correction”, or “calibration” techniques, the current situation is complicated by a lack of 

standardization, as well as confusing, inconsistent use of terminology. In this paper, we first 

provide an overview of basic principles of LIDAR intensity measurements and applications 

utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric 

LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and 

current intensity processing methods. We define terminology adopted from the most 

commonly-used conventions based on a review of current literature. Finally, we identify 

topics in need of further research. Ultimately, the presented information helps lay the 

foundation for future standards and specifications for LIDAR radiometric calibration. 

Keywords: LIDAR; laser scanning; intensity; normalization; correction;  

calibration; radiometric 
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1. Introduction 

Across a wide range of applications, the usefulness of light detection and ranging (LIDAR) data is 

enhanced by the availability of “intensity” values. To date, LIDAR intensity data have proven beneficial 

in data registration, feature extraction, classification, surface analysis, segmentation, and object detection 

and recognition, to name just a few examples. The list of applications also continues to grow rapidly, as 

LIDAR researchers and practitioners develop new and innovative uses of these data. The primary benefit 

of LIDAR intensity lies in the fact that it is related to surface reflectance and other surface characteristics. 

Unfortunately, there are also a number of confounding variables to which intensity is related, including 

parameters related to the data acquisition geometry, scanning environment, and sensors, themselves. To 

overcome this issue, a number of techniques have been developed to calibrate, normalize, or otherwise 

correct the recorded intensity values to produce values that are more useful and more closely related to 

true surface characteristics. 

Despite the rapid progress that has been made, and the wealth of published literature on this topic, 

there is very little consistency across efforts. Multiple individuals, groups, and organizations are 

currently applying vastly different processing approaches to LIDAR intensity, and using differing 

terminology to describe these procedures. Radiometric calibration, intensity normalization, and intensity 

correction are just a few of the terms used to refer to different processing approaches. The outputs are 

also given diverse names, including reflectance, albedo, amplitude, normalized intensity, corrected 

intensity, pseudo-reflectance, and relative reflectance. Even the term “intensity” itself is debated and 

variously defined. Not surprisingly, researchers, clients, and end users are often confused by these 

products and the terminology used by data providers to describe them. 

In this paper, we seek to address these pressing challenges. Our specific goals are to: (1) provide an 

overview of basic principles in LIDAR radiometric measurements and data processing; (2) discuss 

examples of how intensity values are being utilized for representative applications; (3) define consistent 

terminology (which we accomplish not by inventing new terms or insisting on a purist’s adherence to 

strict radiometric or photometric usage, but by adopting the most commonly-used conventions based on 

a review of current literature); (4) lay the foundations for future standards and specifications for LIDAR 

radiometric calibration; and (5) identify topics in need of further research. 

While it is hoped that this paper will prove useful to a broad range of users, the primary intended 

audience consists of practitioners who want to evaluate different radiometric processing approaches from 

an implementation perspective and/or LIDAR data consumers who want to better understand (and 

possibly control, through appropriate contract wording) the types of intensity-derived products that are 

delivered by LIDAR service providers. Hence, we avoid an elaborate theoretical formulation, while 

providing implementation-level details and extensive references for interested readers. 

2. Basics of LIDAR Intensity Measurement 

While LIDAR system designs differ markedly between different manufacturers and models, most 

current systems employ one or more receiver channels using an avalanche photodiode (APD), 

photomultiplier tube (PMT), or other photodetector to convert the received optical signal to an electrical 

signal, to which various ranging strategies can be applied. For example, the ranging can be performed 
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in hardware, using a constant fraction discriminator (CFD) and time interval meter, or by digitizing the 

received signal and applying any of a number of range detection algorithms to the output. Leading edge 

detection, centroid analysis, and deconvolution are just a few of the methods used to extract individual 

ranges from the return signal. Many of the photodetectors used in commercial topographic LIDAR 

systems are designed to be linear, meaning that the output photocurrent is linearly proportional to the 

input optical power over the detector’s operating range [1]. 

In addition to being used to extract ranges (which can be subsequently georeferenced) through any of 

the methods listed above, the received signal can be used to extract “intensity” values. While somewhat 

inconsistent with strict radiometric usage, the term intensity in this context refers to the amplitude of the 

return signal, which can be the analog electrical signal output from the photodetector or the digitized 

waveform. Figure 1a shows an example of the shape of a waveform emitted and returned. Usually the 

peak amplitude is used, but it is important to note that the point(s) selected on the return waveform 

(analog or digital) for intensity measurement vary from one manufacturer to another and are not 

necessarily coincident with the points used for range measurement. Figure 1b shows the difference in 

point selection on the return waveform from the peak detection and leading edge detection methods. For 

discrete-return systems employing hardware-based ranging and leading-edge detection, another strategy 

is to delay the intensity measurement by a fixed time after the range measurement. Interested readers are 

referred to [1] for a detailed discussion. 

 

Figure 1. (a) Example of the shape of a waveform emitted and returned; (b) point selection 

on the return waveform in the peak detection and leading edge detection methods;  

(c) saturation impact resulting from highly reflective objects close to the scanner, exceeding 

detection thresholds. 
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The amplitude—however and wherever it is measured—is then typically scaled to an 8, 12, or 16 bit 

dynamic range, at which point it can be provided as an additional parameter in an output LIDAR point 

cloud, for example using the “intensity” field in the point data records in a LAS file. 

The received optical signal at the detector and, hence, the derived intensity values, are related to the 

properties of the surface from which the laser pulse was reflected. Therefore, intensity is a potentially 

useful parameter in that it contains information about the surface. For example, Figure 2 illustrates 

histograms of intensity values measured by a terrestrial scanner on different surfaces in a street scene. 

Note that many objects have distinctly different intensity ranges and potentially could be segmented or 

classified using intensity information. 

 

Figure 2. (a) Panoramic representation of a scanned scene near an intersection  

(b,c) histograms of intensity values measured on different surfaces. 
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However, these intensity values (regardless of the specific details of how they are measured and 

recorded) are also affected by a number of other parameters, including transmittal power, range, angle 

of incidence, atmospheric transmittance, beam divergence, and detector responsivity (Section 4 will 

describe these in more detail). For users who wish to use intensity to analyze surface characteristics, 

these additional system and environmental variables can be considered nuisance parameters. Therefore, 

processing strategies which aim to remove the effects of these parameters on the intensity data may be 

desirable to enhance the utility of the data for the user’s intended application. These strategies, the 

terminology used to describe them, and the characteristics of the output, are the primary focus of the 

following sections. 

3. Applications of LIDAR Intensity 

The radiometric information provided by scanners has been used alone or as a supplement to other 

spatial and spectral remote sensing data in a variety of applications. Table 1 presents a summary of some 

currently-studied applications of LIDAR intensity including remote sensing data registration, land cover 

classification, natural environment sensing, bathymetry, structural damage detection, and transportation 

asset management. This list is by no means comprehensive; new applications continue to emerge at a 

high rate. 

Figure 3 shows several datasets as examples of applications of LIDAR intensity. Theoretically, 

materials have different spectral reflectance properties resulting in different backscattering laser 

intensities. Therefore, the LIDAR intensity can be used as a means to classify and detect different 

materials in scans of natural or urban environments. 

Although some methods involve simply using intensity values to “colorize” the point cloud, another 

common approach is to generate georeferenced 2D intensity images (Figure 3a). These images can be 

produced by gridding the data and using different operations such as the (weighted) mean, maximum, or 

minimum to assign the intensity value of grids containing multiple points. In an extension to 3D, it is 

also possible to create voxelized representations, in which each voxel stores an intensity value. 

A major application of LIDAR intensity that has been widely studied is to classify natural and urban 

cover surfaces. In initial efforts, Song et al. [2] and Charaniya et al. [3] indicated that intensity data 

enables the separation of typical land cover surfaces such as asphalt roads, grass, trees, and house  

roof captured in ALS scans. Brennan and Webster [4] and Matikainen et al. [5] developed methods  

for detection and classification of building structures. Arnold et al. [6] used intensity data to discriminate 

snow covered areas from bare ice in a glacier. Im et al. [7] conducted tests to evaluate different features 

for land cover classification and found that adding the LIDAR intensity to classification features results 

in 10% to 20% increase in the accuracy of results. The LIDAR intensity has been also used as a 

supplement feature with other remote sensing data for land cover classification. Zhou et al. [8] used 

LIDAR intensity data to facilitate land cover classification of shaded areas in aerial images. MacFaden 

et al. [9] used LIDAR intensity for detecting impervious surfaces not detectable in aerial images. 

LIDAR intensity is also used to detect common features in multiple sets of remote sensing data for 

registration. Methods using LIDAR intensity data have been developed for segmentation of multiple  

scans [10–14] and co-registration of scans and images [15–20]. 

Table 1. Example applications utilizing LIDAR intensity information. 
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Category Application References 

Cultural Heritage/Virtual 

Tourism 
Analysis of historical paintings/artifacts Digital preservation [21,22] 

Land cover classification 

Classification of urban surfaces [2,3,7] 

Detection and classification of buildings [4,5] 

Classification of glacier surfaces [6] 

Supplementing image-based land cover classifications [8,9] 

Remote sensing data 

registration 

Registration of multiple scans by identifying common features [10–14] 

integration of scans and images by identifying common features [15–20] 

Sensing natural 

environments 

Flood modeling and wetland hydrology [23,24] 

Tree classification, snag detection, and forest understory 

vegetation cover 
[25–30] 

Identification of different rock and soil layers [31] 

Lava flows aging [32] 

Snow cover change detection [33] 

Costal land cover mapping [34] 

Bathymetry (using 

bathymetric LIDAR) 

Benthic habitat mapping [35–39] 

Hydrodynamic and sedimentological properties [40] 

Structural damage 

detection 

Assessment of historic buildings [41] 

Crack detection of concrete structures [42–44] 

Detection of bridge surface degradation [45] 

Detection of wind-induced cladding damage [46–48] 

Transportation asset 

management 

Detection of road objects and features  

(e.g., markings, signs, manhole, culverts, etc.) 
[49–54] 

Pavement and tunnel damage detection [55,56] 

Extraction of road profile [57] 

 LIDAR intensity has also proven useful for sensing natural environments. Antonarakis et al. [23] 

and Lang et al. [24] developed methods for extracting natural surface roughness information for flood 

modeling and wetland hydrology. Mazzarini et al. [32] and Burton et al. [31] used LIDAR intensity data 

respectively for aging lava flows and sensing rock properties. Several researchers indicated the potential 

of LIDAR intensity in forest canopy classification and sensing [25–30]. LIDAR intensity data was also 

used for snow cover change detection [33] and coastal land cover mapping [34]. 

The water penetrating capabilities of bathymetric LIDAR enable the intensity returns to be used in 

detecting various seafloor features. For example, benthic habitat types can be classified using the relative 

reflectance values of the returns. Collin et al. [35] classified seabed features into four primary categories 

and used underwater photography to ground-truth the data. Several researchers examined the fusion of 

bathymetric LIDAR data with hyperspectral data to measure environmental parameters including seafloor 

reflectance, water depth and water column parameters [36,38,39]. Narayanan et al. [37] classified seafloor 

intensity values into habitat type using decision trees. Figure 3d shows relative reflectance values in 

which seafloor features can be distinguished. Long et al. [40] demonstrates that bathymetric LIDAR 

intensity waveforms can be used to determine sedimentological and hydrodynamic characteristics. 

Seafloor reflectance data from bathymetric LIDAR can be even more valuable than its 

terrestrial/topographic counterparts, due to the challenges typically encountered in obtaining detailed 

imagery of the seafloor from other airborne or spaceborne remote sensing technologies. 
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Figure 3. Example applications of LIDAR intensity. (a) Intensity image from ALS data;  

(b) intensity shaded point cloud showing damage to concrete in a tunnel (data courtesy of 

Oregon DOT); (c) Intensity shaded point cloud showing pavement lines and striping;  

(d) corrected bottom intensity image for mapping seafloor; (e) intensity colored point cloud 

showing different geologic layers in a cliff; (f) detection of reflective signs based on intensity 

values; (g) intensity colored point cloud showing damage to concrete walls after an 

earthquake; and (h) intensity-colored point cloud point cloud showing damage to roof 

cladding after a tornado. 

Variations of LIDAR intensity backscattered from intact and damaged materials have enabled advanced 

structural damage detection and quantification using LIDAR. Armesto-González et al. [41] employed 
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LIDAR intensity data to detect degraded stony materials in scans of historic buildings. Several 

researchers used LIDAR intensity to detect cracks in concrete structural components in their laboratory 

tests or post-disaster field investigations [42–44]. Kashani et al. [46–48] indicated that the LIDAR intensity 

data is an appropriate means to automatically detect cladding damage of buildings after wind storm events. 

LIDAR intensity data was used directly without any radiometric processing in some early studies [2–4], 

while subsequent work considered the impacts of radiometric calibration and correction. Gatziolis [26] 

and Korpela et al. [27] indicated that correcting the range and intensity data resulted in respectively 9% 

and 31% improvement in their LIDAR-based canopy classification results. Yan et al. [58] demonstrated 

that applying radiometric correction on scans of an urban area resulted in 9% to 13% improvement in 

accuracy of their land cover classification. Kaasalainen et al. [59] compared the LIDAR intensity data 

captured from a number of calibration reference targets with their “true” reflectance values obtained by 

a near-infrared digital camera. The study indicated that the radiometric calibration improves the accuracy 

of LIDAR-based target reflectance measurements. 

4. Effective Parameters Influencing Intensity Measurements 

As mentioned previously, several factors influence LIDAR intensity values that can distort its ability 

to directly measure reflectance. Table 2 provides a list of effective factors and brief description of their 

influence. As shown in the first column of Table 2, the effective factors to which intensity values are 

related can be divided into four main categories of (1) target surface characteristics; (2) data acquisition 

geometry; (3) instrumental effects; and (4) environmental effects. These factors are discussed in the 

following subsections. Figure 4 shows examples of variation in intensity values caused by some of these 

factors. 

Table 2. Effective factors influencing LIDAR intensity measurements. 

Category Factor Description Related References 

Target Surface 

Characteristics 

Reflectance (ρ) 

By definition, surfaces of higher reflectance will reflect 

a greater portion of the incident laser radiation, thereby 

increasing the received signal power. In radiometric 

calibration, this is typically the parameter of interest. 

[59–65] 

Roughness (ɳ) 
Surface roughness dictates the type of reflection  

(e.g., specular vs. diffuse) 
[62,66,67] 

Acquisition 

Geometry 

Range  

(R) 

The emitted pulse energy decays as a function of range 

or distance traveled. 
[27,58,63–65,68–73] 

Angle of Incidence  

(α) 

Greater angles of incidence typically result in less of 

the incident laser energy being backscattered in the 

direction of the receiver, thereby reducing received 

optical power. Additionally, when the laser beam 

strikes a surface obliquely, it increases the 

backscattering cross section. 

[58,62–66,68–72] 
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Table 2. Cont. 

Category Factor Description Related References 

 Multiple Returns 

When a single laser pulse reflects from objects, an 

attenuation correction can be applied to compensate for 

the energy split between objects.  

[74–76] 

Instrumental 

Effects 

Transmitted Energy 

(E) 

The amount of energy backscattered from targets is 

related to the amount of energy transmitted with every 

pulse. Transmitted pulse energy is related to peak 

transmitted power (which varies with pulse repetition 

frequency in many systems) and transmit pulse width. 

[59,61,65,77] 

Intensity Bit Depth 

(*-bit) and Scaling 

Different scanners use varying bit depth (e.g., 8-bit, 12-

bit or 16-bit) when digitizing the return signal. 

Recorded digital numbers (DNs) are typically scaled to 

fill the available dynamic range. 

[70,78] 

Amplifier for low 

reflective surfaces 

Some scanners amplify the intensity values measured 

on low reflective surfaces. 
[59–61,72] 

Automatic gain 

control (Ω) 

Some systems (e.g., Leica ALS systems) employ 

automatic gain control (AGC), which increases the 

dynamic range that can be accommodated but can also 

result in discontinuities in the intensity signal, if not 

compensated. 

[27,65,79] 

Brightness reducer 

for near distances 

Some scanners reduce intensity values measured on 

close objects (e.g., less than 10 m distance). 
[21,54,72] 

Aperture Size (Dr) 
A larger aperture admits more light, increasing received 

signal strength. 
[60] 

Environmental 

Effects 

Atmospheric 

Transmittance (T) or 

(ηatm) 

Radiant energy attenuates in propagating through the 

atmosphere, as a function of humidity, temperature 

pressure and other variables. 

[58,65,69,70] 

Wetness 

Wet surfaces also absorb more energy from the pulse 

(particularly at the 1.5 micron wavelength used in some 

systems), resulting in weaker returns. 

[61,69] 

 

Figure 4. Cont. 
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Figure 4. Examples of factors that influence intensity values. (a) Degraded intensity values 

with range on objects such as street lights and asphalt pavement; (b) dissimilar intensity 

values captured on walls with different angles of incidence (larger view in Figure 3g);  

(c) lower intensity values for multipath returns from reflections of the laser off of the water 

surface; and (d) degraded intensity values (blue) due to wet surfaces at a rocky intertidal site. 

4.1. Target Surface Characteristics 

All other parameters being equal, intensity values increase with surface reflectance because a more 

reflective surface will return more energy from the pulse. An exception is highly reflective surfaces  

(e.g., mirrors, glass, and water) that can cause specular reflection (mirror effect) and/or multipath. In the 

case of multipath, range and intensity values are made from pulses reflected from more than one surface 

and do not represent “true” surface properties [80]. 

Highly-reflective objects can present some challenges with LIDAR such as saturation and  

blooming [80]. Figure 1c shows an example of pulse saturation, which occurs with highly reflective 

objects located close to the scanner. Since the detectors are calibrated to have higher sensitivity to detect 

weaker returns from less reflective objects such as topography or buildings, returns from these objects 

exceed the detection threshold, resulting in truncation of the peak of the actual pulse. As a result, the 

range to the object is often underestimated. 

Blooming, in contrast, occurs on highly reflective objects located far from the scanner [80]. These 

objects appear larger in the point cloud than they actually are because of a bleeding effect of the laser 

pulse. The laser pulse diverges with distance, resulting in a larger spot size on the object as well as 

neighboring objects. Hence, the edge of the laser pulse that is not directed at the object, but a neighboring 

object can partially encompass the highly reflective object. This results in a much higher intensity return 

on the adjacent object than that would occur if the reflective object were closer. 

Reflectance is typically the parameter of interest in radiometric calibration. Reference targets with 

known reflectance are often used to analyze the impact of material reflectance on LIDAR intensity 

measurements and for radiometric calibration [59,62–66,72,77,81]. Some researchers also investigated 

LIDAR intensity values obtained from common natural and artificial materials such as sand, gravel, 

asphalt, concrete, and brick materials [59,61,62,65,66,72]. More specifics on these methods will be 

discussed later in the paper in Section 6. In order to extract “true” surface material parameters from intensity, 

the influence of other effective factors shown in Table 2 need to be eliminated or otherwise reduced. 
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4.2. Data Acquisition Geometry 

Factors related to data acquisition geometry such as range (i.e., distance between the sensor and the 

target) and angle of incidence (i.e., the angle between the emitted laser beam and the target surface 

normal) greatly influence LIDAR intensity (see Figure 4a,b). The majority of current intensity correction 

and calibration methods are developed for range and angle of incidence [27,58,62–66,68–73]. The primary 

influence of range on intensity is the fact that the pulse has to pass through more atmosphere and the pulse 

strength diminishes (i.e., spreading loss). Increases in range and angle of incidence also results in larger 

target backscattering cross sections. The pulse width increases with range, enlarging the laser footprint 

and effective backscattering cross section. However, the influence of laser beam divergence on 

backscattering cross section depends on the shape of targets. In extended targets where the size of target 

is larger than the laser footprint, the laser beam divergence has greater influence than for point (e.g., a leaf) 

and linear (e.g., wire) targets where the target area is much smaller than the laser footprint. 

The influence of range and angle of incidence varies in ALS and TLS. Ranges are typically much 

greater and exhibit less percent variability in ALS than in TLS. The scanning range (a function of flying 

height) in ALS is typically in the range of 600 m to 3000 m, sometimes lower with bathymetric LIDAR. 

While, except for rare cases of specific time of flight scanners that can capture points up to 6000 m, most 

TLS systems are typically only capable of measurements less than 300 m in range. TLS data, even those 

collected within a single scan, contains points with substantially variable ranges and angles of incidence. 

The TLS data includes much more data at oblique angles, particularly across ground surfaces [57]. 

Especially in close range scanning, objects such as walls can be found where part of data points have 

near orthogonal angle of incidence while other parts transition to oblique angles. Additionally in TLS, 

several scans are often merged and positioned with substantial overlap. This results in an object 

appearing in one scan at a different angle and range than in another scan, leading to a mix of intensity 

values on the object in the merged dataset. 

In addition to range and angle of incidence, intensity values are affected by how the beam can be split 

by multiple objects within the path of a single laser pulse, resulting in multiple returns. Attenuation 

correction processes have been proposed by [74,75] for correcting intensity values of laser returns 

obtained on forest floors. Reference intensity values are estimated from nearby single peak waveforms 

that are close to nadir. For simplicity, these points are taken from the same scanline with several 

screening criteria. The forest floor return intensity values are then adjusted based on an analysis of the 

integrals of the signals in the waveforms. 

4.3. Instrumental Effects 

Instrumental effects result in different intensity measurements from the same target when different 

sensors are used. Instrument specific parameters must be known or estimated to develop a LIDAR-based 

reflectance measurement method that is consistent for different instruments. The aperture size, laser 

wavelength, beam divergence, and emitted power vary between scanners and can influence the intensity 

measurement. The aperture size impacts the angular resolution of backscatter measurements [60]. 

Airborne laser scanners typically have larger aperture sizes (8 < Dr < 15 cm) than terrestrial laser 

scanners (a few cm) [60]. The laser wavelength often varies in the range of 600 nm to 1550 nm. 
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The received power is measured, digitized, scaled, and modified by sensors internally; however,  

this process can vary between different sensors. Discrete waveform scanners may use different peak 

detection methods causing changes in the range and intensity measurements. Once a returned pulse is 

detected, the pulse power is digitized to produce intensity which is encoded as an integer number. 

Typically, the intensity is scaled to a 16-bit value when LAS files are created [78]. Riegl scanners further 

modify the digitized intensity values and provide two more field values in their LAS exports: amplitude 

and reflectance, which are explained in [78]. Some scanners further modify intensity measurements, e.g., 

apply amplifiers for areas with low reflectance or reducers for near-distance areas [72]. Some ALS systems 

have the ability to adjust the gain using automatic gain control (AGC), which alters the intensity 

measurements [65]. In addition to the sensor itself, data processing software may apply further scaling 

or modification influencing intensity measurements. For instance, some software can apply unpredictable 

intensity scaling to enhance visual appearance [72]. If these internal processing steps are not known, 

documented, and adjusted with scans, it can be difficult, if not impossible, to calibrate intensity values 

and measure “true” reflectance values. 

4.4. Environmental Effects 

Atmospheric effects and wetness are the main environmental influences on LIDAR intensity values 

(except in bathymetric LIDAR, where water column effects dominate). The laser energy is attenuated 

while passing through atmosphere due to scattering and absorption of the laser photons [58,70]. Small 

particles suspended in the air such as dust or smoke (aerosol scattering) and air clusters in the atmosphere 

(Rayleigh scattering) cause laser scattering. Additionally, air molecules such as water vapor, carbon 

dioxide, oxygen, etc. cause laser absorption and energy loss. Atmospheric effects are more influential in 

ALS than TLS because the laser travels at further ranges as well as vertically with elevation; hence, there 

are more variance in atmospheric conditions between the scanner and targets. 

Another environmental effect is wetness. Kaasalainen et al. [61] indicated that moisture can cause a 

30% to 50% drop in reflectance of brick samples. For example, Figure 4d shows degraded intensity 

values (blue) due to wet surfaces at a rocky intertidal site. Intensity values can be used as a filter of 

erroneous data points. For example, Figure 4c shows lower intensity values on multipath returns that 

have reflected off of the water surface and onto the cliff before returning to the scanner. Hence, they 

create a reflection below the water surface that is not representative of the scene. Similarly, intensity 

information can also be used to filter spurious moisture points within a scan. 

4.5. Effective Factors in Bathymetric LIDAR  

While the intent of this paper is to focus primarily on topographic LIDAR, we provide a brief treatment 

of corresponding processing of bathymetric LIDAR to illuminate the similarities and differences 

between the two. It is also important to note that, due to the difficulty in capturing imagery of the seafloor 

with conventional imaging techniques, radiometric calibration of bathymetric LIDAR is incredibly 

important in enabling detailed seafloor characterization. 

Working with bathymetric LIDAR intensity requires additional parameters to be considered. The 

effect of parameters listed in Table 3 on the return intensity value will be demonstrated in Equation (4)  

(Section 5.2). Acquisition geometry parameters must now consider factors such as the bathymetric angle 
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of incidence, or the angle off nadir at which the pulse is transmitted from the aircraft, aircraft altitude, 

refracted beam angle, and the receiver field of view [82–87]. The water depth has a significant effect on 

the power of the return pulse, as the power decays exponentially with depth [35,84]. Because depth has 

such a pronounced effect on intensity values, it is highly important to have accurate depth estimates when 

calculating the bottom reflectance. The rate at which the return power decays at increasing depth is described 

by the diffuse attenuation coefficient. This coefficient is defined by [85,86] as the sum of the absorption 

coefficient and the backward scattering coefficient. For systems with smaller receiver field of view, it is 

also important to consider a forward scattering coefficient [82–86]. Figure 5 demonstrates typical 

acquisition geometry. 

 

Figure 5. Bathymetric LIDAR acquisition geometry (adapted from [74]). 

Table 3. Effective factors influencing bathymetric LIDAR intensity measurements. 

Category Factor Description 
Related 

References 

Acquisition 

Geometry 

Water Depth (D) 

In bathymetric LIDAR, pulse power decays 

exponentially with the product of water depth and 

the diffuse attenuation coefficient. 

[35,84] 

Off nadir transmit  

angle (θ) 

Affects the signal return due to pulse stretching 

and retro-reflectance of the surface material. 
[83,84] 

Receiver field of view 

loss factor (Fp) 

Loss factor due to a receiver FOV is insufficient 

to accommodate the spreading of the pulse in the 

water column. 

[82,87] 

OFF NADIR TRANSMIT 

ANGLE: θ

RECEIVER FIELD OF VIEW (FOV)

WATER DEPTH: D

EMITTED LASER PULSE

FORWARD SCATTER

BACK SCATTER

AIRCRAFT ALTITUDE: H

BOTTOM REFLECTANCE: ρ

WATER COLUMN BACK SCATTER 

BOTTOM REFLECTANCE: ρ
REFRACTED BEAM ANGLE: φ
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Table 3. Cont. 

Category Factor Description 
Related 

References 

Acquisition 

Geometry 

Aircraft altitude (H), 

refracted beam angle 

(Φ), effective area of 

receiver optics (Ar) 

Other acquisition geometry factors which have an 

effect on the return power as shown in the 

bathymetric LIDAR equation (Equation (4)). 

[82,85] 

Diffuse Attenuation 

Coefficient (K) 

Light traveling through the water column is 

exponentially attenuated, due to absorption and 

scattering by particles in the water. 

[83,84,86] 

Pulse stretching  

factor (n) 

Stretching of the pulse due to acquisition 

geometry and scattering properties of the water.  
[84,85] 

5. Basic Theory 

5.1. LIDAR Range Equation 

Theoretical or model-driven intensity processing methods are typically based on some form of the 

LIDAR range equation (also referred to as the laser radar range equation or simply the radar equation), 

the origins of which lie in the field of microwave radar [88]. This equation relates the received optical 

power to the transmitted power and other parameters related to the system, acquisition geometry, 

environment and target characteristics. Numerous forms of the LIDAR range equation can be found in 

the published literature (e.g., [70,72,88–91]), but most are equivalent or similar to that given in Equation 

(1): 

𝑃𝑟 =
𝑃𝑡𝐷𝑟

2η𝑎𝑡𝑚η𝑠𝑦𝑠σ

4π𝑅4β𝑡
2  (1) 

where Pr = received optical power (watts), Pt = transmitted power (watts), Dr = receiver aperture diameter 

(meters), σ = effective target cross section (square meters), ηatm = atmospheric transmission factor 

(dimensionless), ηsys = system transmission factor (dimensionless), R = range (meters), and  

βt = transmit beamwidth (radians). The effective target cross section describes the target characteristics 

and is given by: 

σ =
4π

Ω
ρ𝐴𝑡 (2) 

where ρ = target reflectance at the laser wavelength (dimensionless), Ω = scattering solid angle 

(steradians), and At = target area (square meters). Under the assumptions of an extended target  

(i.e., one that intercepts the entire laser beam) and Lambertian reflectance, a simplified form of the 

LIDAR range equation can be obtained (e.g., [70]): 

𝑃𝑟 =
𝑃𝑡𝐷𝑟

2η𝑎𝑡𝑚η𝑠𝑦𝑠ρ

4𝑅2
cos α𝑖 (3) 

where αi = angle of incidence, and all other variables are defined previously (for a discussion on  

non-Lambertian surfaces, please see [92]). Solving Equation (3) for reflectance, ρ, is mathematically 

trivial, but, in practice, the challenge lies in obtaining reliable estimates of all other parameters in the 
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equation. Some general approaches include: (1) combining parameters that are unknown but can be 

assumed constant over a single flight (or, at least, over a single flightline) to create a combined  

constant; (2) using manufacturer’s system specifications, when available; and (3) using assumed or 

empirically-determined values. Sometimes, radiometric processing methods that start out with a  

rigorous theoretical formulation can become more ad hoc through the introduction of a number of 

empirically-determined parameters. 

5.2. Bathymetric LIDAR Equation 

A version of the bathymetric LIDAR equation, adapted from [85], is provided in Equation (4). As 

with the LIDAR range equation shown above (Equations (1) and (3)), there are also numerous versions 

of this equation that contain different parameters and are based on different sets of assumptions and 

simplifications [35,37,38,87,93]. 

𝑃𝑟 =
(𝑚)𝑃𝑇ηρ𝐹𝑝𝐴𝑟𝑐𝑜𝑠2(θ)

π(𝑛𝑤𝐻 + 𝐷)2
𝑒𝑥𝑝(−2n(s, ω0, θ)𝐾𝐷𝑠𝑒𝑐(ϕ)) (4) 

where, Pr = received power, PT = transmitted power, η = system optical efficiency factor,  

ρ = reflectance of bottom, Fp = loss due to insufficient FOV, Ar = effective area of receiver optics,  

θ = off nadir transmit angle, nw = index of refraction of water, H = altitude of LIDAR above water,  

D = bottom depth, n(s, ω0, θ) = pulse stretching factor, s = scattering coefficient, ω0 = single scattering albedo, 

K = diffuse attenuation coefficient of water, and 𝜙 = nadir angle of LIDAR after entering the water. 

The bathymetric LIDAR equation can be used in a similar manner to its topographic-only counterpart 

in radiometric calibration. However, the situation in bathymetric LIDAR is even more complex, due to 

the greater number of system and environmental parameters, for which reliable estimates may be difficult 

to obtain. 

6. Processing Methods 

Raw LIDAR intensity data often undergoes some processing steps to reduce variation caused by the 

parameters discussed above and sometimes to extract true reflectance information. Unfortunately, there 

is inconsistency of terminology used in literature to describe these processing steps and procedures. 

These inconsistencies are further compounded by the fact that LIDAR data has permeated as an 

important data source for a wide variety of applications and is utilized by with people from diverse 

backgrounds. Hence, as of yet, there are no standardized definitions for terminology associated with 

intensity modification methods. Given that there are a wide range of applications supported by intensity 

information and that significant effort is required to determine and apply modifications, it is not always 

clear what adjustments have been applied to intensity information in a particular dataset. For the 

purposes of this paper, we distinguish four levels of intensity processing. Each level increases not only 

with respect to the accuracy and quality of information but also in effort required: 

Level 0: No modification (raw intensity): These are the basic intensity values directly provided by the 

manufacturer or vendor in their native storage format. They are typically scaled to values of 

0–1 (floating point), 0–255 (8-bit integer), or 0–65,535 (16-bit integer), depending on the 

manufacturer. However, the processes used for scaling the sensor voltages and any 
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adjustments applied are often unknown. Similar results can be obtained for the same scanner 

model by the same manufacturer; however, there typically is no direct agreement or 

relationship between values provided by different systems or manufacturers. In this paper, 

we refer to this as intensity, generically. 

Level 1: Intensity correction: In this process an adjustment is made to the intensity values to reduce or 

ideally eliminate variation caused by one or more effective parameters (e.g., range, angle of 

incidence, etc.). This process is performed by either a theoretical or empirical correction 

model. Intensity correction ultimately can result in pseudo-reflectance values. 

Level 2: Intensity normalization: In this process an intensity image is normalized through scaling to 

adjust the contrast and/or a shift to adjust the overall “brightness” to improve matching with 

a neighboring tile or overlapping strip (i.e., a histogram matching or normalization). 

Level 3: Rigorous radiometric correction and calibration: In this meticulous process, the intensity 

values from the LIDAR system are first evaluated on targets with known reflectance, resulting 

in the determination of calibration constants for the sensor. The calibration constants are then 

applied to future data that are collected with the system including additional Level 1 intensity 

corrections to account for any deviations in parameters (e.g., range, angle of incidence). When 

completed rigorously, this process results in “true” reflectance information. Hence, when 

radiometric calibration has been applied, consistent data can be obtained from different 

systems, operated with different parameters settings, and in different conditions. In this paper, 

we refer to these as reflectance values. 

The outputs of Levels 1 and 2 are typically referred to as “relative reflectance” values (sometimes 

“pseudo-reflectance”), while Level 3 is intended to generate “true” or “absolute” surface reflectance. It is 

also important to note that the processing levels are not necessarily intended to indicate a particular 

sequence of processing steps. 

Another common approach is to simply apply an ad hoc normalization with no proceeding correction. 

This process is similar to histogram adjustments in image processing software. This workflow is not 

considered as one of the defined levels, as it is primarily arbitrary and visual in nature so that the intensity 

values are improved for visual interpretation. 

The applications of the different processing levels are application specific and far too numerous to 

describe in detail. Briefly, however, Levels 1 and 2 are often sufficient for visual analysis and automated 

land cover classification. On the other hand, combination or comparison of reflectance data acquired 

with different systems and in different conditions may require a full Level 3 radiometric calibration. 

Similarly, extraction of true surface albedo requires Level 3 processing. In general, the higher the level 

the better the results will be for a range of applications. However, lower processing levels can typically be 

achieved more economically and prove sufficient for a particular user application. 

Tables 4 and 5 summarize some of intensity correction and radiometric calibration methods reported in 

the literature. The tables are organized by the level of intensity processing and type of scanners used. They 

also show the types of targets used as well as theoretical and empirical models developed. It should be 

noted that the tables do not include examples of processing levels 0 and 2. Level 0 is typically completed 

by the sensor itself. Level 2 processes are not included in the Table and will be summarized later in 

Section 6.4. The following sections review these methods and the basic theory behind them.
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Table 4. Selected intensity correction and calibration methods (A, B, C, D denote empirical coefficients, ref denotes a reference). 

Reference Scanner Level Targets Parameters Theoretical Model Empirical Model 

Luzum et al. 

[94] 

(ALS) Optech  

ALTM 1233 
1 n/a range (R) 𝐼𝑐 = 𝐼 ×

𝑅𝑖
2

𝑅𝑟𝑒𝑓
2 n/a 

Coren & Sterzai 

[68] 

(ALS) Optech 

ALTM3033 
1 

homogenous surface 

(asphalt road) 

range (R)angle of incidence 

(α) atm. attenuation coeff. 

(a) 

𝐼𝑐 = 𝐼 ×
𝑅𝑖

2

𝑅𝑟𝑒𝑓
2 ×

1

cos α
 𝐼𝑐 = 𝐼 × 𝑒−𝐴𝑅 

Starek et al. 

[73] 

(ALS) Optech  

ALTM 1233 
1 n/a range (R) 𝐼𝑐 = 𝐼 ×

𝑅𝑖
2

𝑅𝑟𝑒𝑓
2  n/a 

Hofle & Pfeifer 

[70] 

(ALS) Optech  

ALTM 3100 
1 

homogenous surface 

(asphalt road) 

range (R)angle of incidence 

(α) atm. attenuation coeff. 

(a) transmitted energy (ET) 

𝐼𝑐 = 𝐼 ×  
𝑅𝑖

2

𝑅𝑟𝑒𝑓
2  ×

1

cos α
× 10−2𝑎𝑅

×
𝐸𝑇𝑟𝑒𝑓

𝐸𝑇𝑗
  

𝐼𝑐 =  𝐼1000 × 𝑓(𝑅)  

𝑓(𝑅) = 𝐴𝑅2 + 𝐵𝑅 + (1 − 10002𝐴 − 1000 𝐵) 

Jutzi and Gross 

[71] 

(ALS) RIEGL  

LMS—Q560 
1 

homogenous surface 

(roof planes) 

range (R)angle of incidence 

(α) atm. attenuation coeff. 

(a) 

n/a 𝐼𝑐 = 𝐼 × 𝑅𝐴 × 𝑒2𝐵𝑅 × 𝑐𝑜𝑠𝐶(α) × 𝑒𝐷 

Korpela et al. 

[27] 

(ALS) Optech 

ALTM3100Leic

a ALS50 

1 homogenous surface 
range (R) automatic gain 

control (Gc) 
n/a 𝐼𝑐= 𝐼 ×

𝑅𝑖
𝐴

𝑅𝑟𝑒𝑓
𝐴 + I × B × (C − Gc) 

Vain et al. [95] 
(ALS) Leica  

ALS50-II 
1 

brightness calibration 

targets (tarps) 
automatic gain control (Gc) n/a 𝐼𝑐 = 𝐴 + 𝐵 × 𝐼 + 𝐶 ×  𝐼 × Gc  

Habib et al. [96] 
(ALS) Leica 

ALS50 
1 n/a 

range (R) angle of  

incidence (α) 
𝐼𝑐 = 𝐼 ×

𝑅𝑖
2

𝑅𝑟𝑒𝑓
2 ×

1

cos α
  n/a 

Yan et al. [58] 
(ALS) Leica 

ALS50 
1 n/a 

range (R) angle of incidence 

(α) atm. attenuation coeff. (a) 
𝐼𝑐 = 𝐼 ×

𝑅𝑖
2

𝑅𝑟𝑒𝑓
2  ×

1

cos α
× 𝑒−2𝑎𝑅 n/a 

Ding et al. [69] 
(ALS) Leica  

ALS50-I 
1 

overlapping scan 

areas 

range (R) angle of incidence 

(α) atm. attenuation coeff. (a) 
𝐼𝑐 = 𝐼 ×

𝑅𝑖
2

𝑅𝑟𝑒𝑓
2 ×

1

cos α
× 10−2𝑎𝑅 

𝐼𝑐∗ = 𝐼𝑐 × 𝑅𝐴 × 10−2𝐵𝑅 × 𝑐𝑜𝑠𝐶(𝛼) × 𝑒𝐷  

and Phong model 

Ahokas et al. 

[77] 

(ALS) Optech  

ALTM 3100 
3 

brightness calibration 

targets (tarps) 

range (R) atm. attenuation 

coeff. (a) transmitted 

energy (ET) reflectance (ρ) 

𝐼𝑐 = 𝐼 ×
𝑅𝑖

2

𝑅𝑟𝑒𝑓
2 ×

𝐸𝑇𝑟𝑒𝑓

𝐸𝑇𝑗
 ρ = 𝐴 × 𝐼𝑐 + 𝐵 
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Table 4. Cont. 

Reference Scanner Level Targets Parameters Theoretical Model Empirical Model 

Kaasalainen  

et al. [61] 

(ALS) Optech 

ALTM 3100 

Topeye MK 

Leica ALS50 

3 sand and gravel 

range (R)  

angle of incidence (α)  

total atmosphere  

transmittance (T)  

pulse energy (ET) 

method described by Vain et al. (2009) 

ρ =
𝐼𝑐

𝐼𝑟𝑒𝑓
  

where:  

Iref is reference Intensity measured at the same 

range of targets 

Vain et al. [65] 

(ALS) Above 

scanners + 

Optech ALTM 

2033 

3 

natural &  

commercial targets,  

brightness calibration 

targets (tarps) 

range (R) 

angle of incidence (α)  

total atmosphere  

transmittance (T)  

pulse energy (ET) 

𝐼𝑐 = 𝐼 ×
𝑅𝑖

2

𝑅𝑟𝑒𝑓
2 ×

1

cos α
×

1

𝑇2
×

𝐸𝑇𝑟𝑒𝑓

𝐸𝑇𝑗
 ρ = 𝐼𝑐 ×

ρ𝑟𝑒𝑓

𝐼𝑐.𝑟𝑒𝑓
 

Briese et al. 

[97] 

(ALS) RIEGL 

VQ820-G  

LMS-Q680i  

VQ-580 

3 
asphalt road, stone 

pavement 

range (R)  

angle of incidence (α)  

detected power (Pr)  

empirical calibration  

constant (Ccal)  

reflectance (ρ) 

ρ = 𝐶𝑐𝑎𝑙 ×
𝑅𝑖

2

cos α
 𝐶𝑐𝑎𝑙 = ρ𝑟𝑒𝑓 ×

cos α𝑟𝑒𝑓

𝑅𝑟𝑒𝑓
2  

Errington et al. 

[98] 
(TLS) 3DLS-K2 1 

overlapping scan 

areas 

range (R)  

angle of incidence (α)  

pseudo-reflectance (ρ) 

n/a 
The separation model proposed by Pfeifer et al. 

(2008) 

Fang et al. [21] 
(TLS) Z + F 

Imager5006i 
1 White paper targets 

range (R)  

angle of incidence (α)  

near-distance effect (n(R)) 

n/a 𝐼 = 𝑛(𝑅) ×
𝐴 × (1 − 𝐵 + 𝐵 cos α)

𝑅2
 

Pfeifer et al. 

[63,64] 

(TLS) Riegl 

LMS-Z420i & 

Optech ILRIS 

3D 

3 
brightness calibration 

targets (Spectralon ) 

range (R)  

angle of incidence (α)  

reflectance (ρ) 

n/a 

(1) 𝐼 = 𝑔1(𝑅) ∙ 𝑔2(ρ cos(𝛼))  

(2) 𝐼 = 𝑔3(ρ cos(𝛼) , 𝑔4(𝑅))  

where: g1: linear, g2: xA, g3: cubic polynomial, 

g4: vector valued 
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Table 4. Cont. 

Reference Scanner Level Targets Parameters Theoretical Model Empirical Model 

Kaasalainen  

et al. [59,60] 

(TLS) FARO 

LS HE80 
3 

brightness calibration 

targets (Spectralon) 

range (R)  

reflectance (ρ) 
n/a 

ρ = 10

𝐼
𝐼𝑟𝑒𝑓

−𝐴

𝐵   

where: Iref is 99% Spectralon ® reference Intensity 

measured at the same range of targets 

Kaasalainen  

et al. [59] 

(TLS) Leica 

HDS6000 
3 

brightness calibration 

targets (Spectralon )  

gravel 

range (R) n/a 

ρ =
𝐼

𝐼𝑟𝑒𝑓
  

where: Iref is 99% Spectralon ® reference Intensity 

measured at the same range of targets 

Table 5. Selected intensity correction and calibration methods exclusively for bathymetric LIDAR. 

Reference Scanner Level Targets Parameters Theoretical Model Empirical Model 

Tuell et al. [86] 
(ALB) Optech 

SHOALS 
3 

homogeneous 

surface (wall 

covered in 

painted tiles) 

See [86] for derivations of 

parameters applied. 

See Equation (28) in [86] for 

final model 
n/a 

Collin et al. [35] 
(ALB) Optech 

SHOALS 
1 n/a 

received power (PR)  

constant combining loss factors (W)  

transmitted power (PT)  

benthic reflectance (ρ)  

diffuse attenuation coeff. (K)  

depth (D) 

𝑃𝑅 = 𝑊 × 𝑃𝑇 × 𝜌 × 𝑒−2𝐾𝐷 

Fourier transform with low-pass 

filtering, then a nonlinear least squares 

regression correction for depth. 

Wang & Philpot 

[84] 

(ALB) Optech 

SHOALS 
1 n/a 

Bathymetric angle of incidence (θi)  

Derived coefficients (C) 
n/a 

Correction for bottom reflectance:  

𝑓(𝜽𝒊) = 𝐶1 ×  𝜽𝒊 + 𝐶2  

Correction for pulse stretching:  

𝑔(θ) = {
𝐶3 𝑒𝐶4𝛉𝒊, − 𝟗𝟎° < 𝛉𝒊 ≤ 0°

𝐶5𝑒𝐶6𝛉𝒊, 0° ≤ 𝛉𝒊 ≤ 𝟗𝟎°
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6.1. Theoretical Correction Methods 

Many theoretical corrections have been developed from the LIDAR range equation (Equation (3)).  

Most theoretical correction methods commonly compensate for variation in intensity data caused by 

range (R) and angle of incidence (α) [58,65,68–70,73,77,88,96]. Based on Equation (3), the received 

power reflected from extended targets is a function of the inverse range square (Figure 6a) and the cosine 

of the angle of incidence (Figure 6b). Therefore, in theoretical correction methods, the raw intensity data 

is multiplied by (R2/cos(α)), and then normalized with dividing by a user-defined reference range square 

(Rref
2) (Equation (5)). The corrected intensity values will be equivalent to the intensity values that would 

have been measured if the range and angle of incidence for all points were the defined reference range 

and zero, respectively. 

𝐼𝑐 = 𝐼 ∙  
𝑅𝑖

2

𝑅𝑟𝑒𝑓
2  ∙  

1

cos α
 (5) 

 

Figure 6. (a) Theoretical relationship of intensity measurements vs. range shown for two 

materials with different reflectance (ρ); and (b) theoretical relationship of intensity 

measurements vs. angle of incidence shown for two materials with different reflectance (ρ). 

Some limitations should be considered when using the range squared correction. First, the range 

squared correction works for extended targets but non-extended targets such as leaves and wires with an 

area smaller than the laser footprint show different range dependency [88]. Based on the LIDAR theory 

described before, the intensity recorded from non-extended targets is a function of inverse range with 

higher powers (e.g., 1/R3, 1/R4). Second, some terrestrial scanners are equipped with brightness reducers 

for near distances (e.g., less than 10 m) that cause a strong deviation between recorded intensities in near 

distances and the values calculated by the LIDAR theory equation [21,54,72]. Therefore, the range 

squared correction is not applicable for near distance intensities (e.g., less than 10 m) recorded by those 

scanners.

Several approaches to compensate for atmospheric effects have been reported. Generally, the detailed 

atmospheric conditions and effects are impractical to obtain. However, an approximated value for 

atmospheric effect should be chosen, which represent the average conditions between the sensor and 

targets. A common approach is to use radiative transfer simulation models such as MODTRAN. These 
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models can estimate atmospheric transmittance effects based on atmospheric visibility parameters. Vain 

et al. [65] used MODTRAN to estimate the total atmospheric transmittance (T) and corrected intensity 

values by multiplying with (1/T2). Some other studies applied more rigorous models based on the Beer-

Lambert Law in which the atmospheric transmittance is a function of range. Höfle and Pfeifer [70] and 

Ding et al. [69] defined an antilog function shown in Equation (6) and  

Yan et al. [58] defined an exponential decay function shown in Equation (7). In both models the 

attenuation coefficient a must be determined either by simulation models such as MODTRAN or by 

empirical methods. 

𝐼𝑐 = 𝐼 ∙ 10−
2𝑎𝑅
1000 (6) 

𝐼𝑐 = 𝐼 ∙ 𝑒−2𝑎𝑅 (7) 

Some correction models account for transmitted energy (Et) specifically when the pulse repetition 

frequency varies or different types of scanners were used during data acquisition [65,70,77]. Correlations 

between pulse repetition frequency and transmitted pulse energy such as those developed by [89,99] can 

be used to estimate the transmitted energy in each scan. Intensity values are then divided by the 

transmitted energy and multiplied to a user-defined reference energy value (Equation (8)). In order to apply 

this correction, the correlation between pulse repetition frequency and transmitted energy must be known 

for the scanning sensor used. 

𝐼𝑐 = 𝐼 ∙  
𝐸𝑇𝑟𝑒𝑓

𝐸𝑇𝑖
 (8) 

6.2. Empirical Correction Methods 

In an empirical correction method, the corrected intensity is defined as a function of one or more 

variables (e.g., range) and driven from data correlations rather than any physical information or 

theoretical equation. Empirical methods require homogenous surfaces such as asphalt roads, roof planes, 

brightness tarps, etc., that are captured in multiple scans with varying settings (e.g., varying ranges). Data 

captured from these overlapping areas are used to estimate the constant parameters in an empirical 

correction function, which is then applied to the whole dataset. Empirical methods are suitable when 

physical and sensor-related parameters in the LIDAR range equation (Equation (3)) are unknown. 

Examples of empirical correction methods have been reported in [27,54,68–71,95,98,100] (see Table 4). 

Coren and Sterzai [68] used data captured from asphalt roads to estimate the atmospheric attenuation 

coefficient in an exponential decay correction function as shown in Equation (7). Hofle and Pfeifer [70] 

adopted an empirical quadratic correction function correlating intensity and range values. Jutzi and Gross 

[71] and Ding et al. [69] devolved empirical intensity correction models including range and angle of 

incidence. Some studies presented empirical models to compensate for intensity variation caused by 

automatic gain control systems [27,95]. 

6.3. Bathymetric LIDAR Correction Methods 

Corrections for bathymetric LIDAR primarily come in determining systematic and environmental 

parameters. As with topographic LIDAR, the most rigorous method requires calibrating the system on a 
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surface with known reflectance. Reference [86] offers an example of a rigorous radiometric calibration 

in which the system is first calibrated against a target, then water optical properties are determined by 

fitting simulated waveforms to the measured waveform. In [35], the correction approach is a combination 

of a theoretical approach using a simplified version of the bathymetric LIDAR equation shown above, 

and an empirical approach using a Fourier Transform with low-pass filtering, then correcting for depth 

using a nonlinear least squares regression fit of the data. Reference [84] corrects for bottom reflectance 

using laboratory experiments observations and for pulse stretching using the analytical simulation of 

[101]. 

6.4. Intensity Normalization Procedures 

Following the aforementioned correction procedures, a normalization process is sometimes completed 

to compensate for differences in overlapping areas between flight-lines or individual scans. This 

normalization process is also sometimes completed to provide consistency between different sensors. 

Qin et al. [102] present a normalized reflective factor (NRF), which characterizes the radiometric 

attributes of a point cloud. In their approach, they apply corrections to intensity values based on energy, 

geometry and atmospheric effects. A visual analysis of the radiometric attributes is conducted for areas 

of overlap for quality control purposes. They also utilize hyperspectral imagery to compare the 

normalized intensity values in specific land cover classes for normalization. 

Yan and Shaker [79] propose a sub-histogram matching approach, primarily focused on minimizing 

the effects of automated gain control. They first perform corrections for geometric and environmental 

factors. They also provide a slope correction for steep slopes. Next, they identify regions of overlap with 

wide variability in intensity values. A histogram is generated for each strip. Gaussian components were 

then fit for sub-histograms found within the histogram. The intersections of these individual Gaussian 

components were then used as match strips between each strip. The process is then repeated for all 

overlapping strips and histogram equalization techniques were then applied such that the data were 

consistent between the strips. 

Teo and Yu [54] propose a normalization approach that considers adjacent strips as well as multiple 

scanners in a mobile laser scanner. In their approach, they employ an empirically-derived piecewise 

polynomial function for the range correction to account for close-range effects (e.g., <10 m). They then 

compare the maximum and minimum amplitude differences between strips for the intensity normalization 

to compute the normalization adjustment. The improvement is evaluated by comparing the mean 

amplitude differences before and after correction. 

6.5. Radiometric Calibration with Reference Targets 

Reference targets with known reflectance values are required for extracting true reflectance values 

from intensity data. Brightness reflectance targets such as tarps and Spectralon® targets with known 

nominal reflectance have been used in several studies [59,60,63–65,77,95]. Some studies performed 

laboratory or in situ measurements to determine reflectance values for available natural and commercial 

objects such as sand, gravel, asphalt, concrete, and brick materials and then used them as reflectance 

calibration targets [61,62,65,97]. 
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Two main calibration procedures were reported in literature. A common procedure is to separate the 

correction and calibration steps [61,65,69,77,97]. In this approach, first a theoretical or empirical 

correction model (explained in Sections 6.1 and 6.2) is applied to reduce variations in intensity data. 

Next corrected intensity values are converted to reflectance values by using empirical correlation 

functions driven from data captured on calibration targets. Another approach [59,60,63,64] combines 

the correction and calibration steps. 

7. Summary of Challenges and Future Direction 

As LIDAR intensity information continues to become increasingly useful in a wider range of 

applications with a diverse audience, greater emphasis is being placed on correction and calibration 

processes. A significant amount of insightful work has been completed to-date, in order to improve the 

utility of these intensity values. However, as of yet, there is no standard approach for correction or 

calibration implemented across manufacturers. In some cases, this is further compounded with no 

consistency between units from different systems from the same manufacturer. Numerical scaling and 

units to represent intensity are also not consistent between manufacturers of both hardware and software. 

While relative differences between intensity values tend to be generally consistent for a particular system 

and scan, they may be vastly different across different systems, scans, acquisition geometries, etc. This 

creates challenges when using or developing filtering or classification algorithms based on intensity 

values. 

While a significant amount of research has been conducted on correction or calibration methods,  

the selection and usage of parameters, as well as simplifying assumptions in the models, are still widely 

inconsistent between studies. In particular, no methods were found that can consider the influence of 

some key parameters (e.g., pulses with multiple returns will have lower intensity values since the beam 

footprint is spread across multiple objects). 

While formulating this review of current literature, several knowledge gaps were identified, including 

the need to: 

1. Develop relationships and unifying research for consistent intensity values/measures between 

LIDAR systems designed for platforms such as airborne, mobile, and terrestrial. Currently much 

research between these systems remains distinct; however, there are many similarities between 

these systems. 

2. Evaluate and account for the influences of surface characteristics such as roughness or wetness. 

3. Clarify what level of intensity processing is needed (or useful) for specific applications. For some 

applications, a Level 0 intensity value may prove sufficient. However, for advanced 

classifications (e.g., determination of plant species), Level 3 calibration may be required. 

4. Variance of intensity across wavelengths. The wavelength of LIDAR systems can also vary 

significantly. Even if a “true” reflectance is calculated from the intensity values, it is important 

to consider that such a reflectance only applies at the specific wavelength of the system. Many 

of the parameters described in this review are a function of the wavelength used. Hence, we 

recommend for future studies that the wavelength be included as a subscript of presented 

reflectance values (e.g., ρ532) obtained via LIDAR. 
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In addition to future research efforts, we provide the following recommendations to future data 

exchange standard formats such as the ASPRS “LAS” or the ASTM “E57” formats to better 

communicate processing completed with intensity data from a LIDAR scan. First, the addition of an 

attribute in the header could indicate the level of intensity processing applied. Second, an attribute field 

for the wavelength of the system would be helpful to provide context to these intensity values. 

Additionally, for critical applications both corrected and original values could be stored. Finally, a 

detailed description of the process should be documented in the metadata. 

As calibration methods continue to evolve, it is likely that future LIDAR systems will be capable of 

directly providing reflectance values on-board the hardware. Software solutions will continue to utilize 

this information further, improving processing workflows for a wide range of applications. The 

improved sensitivity will also result in LIDAR being utilized for a new host of applications that have 

not been envisioned. 
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