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CHAPTER 1
 

INTRODUCTION
 

Magnetic vortices (quantized bundles of magnetic flux) are peculiar to 

type-II superconductors and offer novel, interesting phenomena to be 
explored. The mechanisms that govern vortex movement are not completely 

understood, which is technologically important because moving vortices 

destroy superconductivity. Here, true superconductivity is defined by the 

vanishing of ohmic resistivity. In applications it would be beneficial if 

superconductors were truly superconducting, at least in the limit of zero 

applied current. Conventional theory for vortex motion predicts that a type-II 

superconductor, in a penetrating magnetic field, will always have some 

resistance; the resistance may fall below the detection limit, but will never be 

zero. This model of flux creep (§ 1.4) was able to explain the behavior of low 

transition temperature type-II superconductors (LTS). However, this model 

does not explain the experimental resistivity-current density (p J) data of 

high temperature superconductors (HTS). A further quandary concerning the 

magnetic behavior of these materials results from the existence of an 
irreversibility line (IL) in the magnetic field-temperature (HT) phase 

diagram. Below this line (low T) the magnetization is irreversible; the zero 

field cooled and field cooled magnetizations are different. Above the IL, the 

magnetization is reversible. The more recent theories of vortex glass and 

collective creep attempt to describe the vortex system and the p J data of 

HTS. 
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1.1 Superconductivity 

Superconductivity has been defined using several criteria, induding the 

behavior of a material in a magnetic field and the vanishing of resistance at a 

transition temperature Tc. A powerful phenomenological description of 

superconductors was presented by Ginzburg and Landau (GL) in 1950. This 

model assumes that a superconductor can be described by a complex order 

parameter tlf =11111e4. The free energy is expanded in a power series of v, and 

the values of the coefficients of expansion can be limited based on physical 

principles. 

A microscopic theory of superconductivity was presented in 1957 by 

Bardeen, Cooper, and Schrieffer (Tinkham, 1975). The BCS theory assumes 

that superconductivity arises owing to interactions between electrons and 

phonons. (A phonon is the quantum of an elastic wave in a solid.) Because 

of the electron-phonon interaction, electrons feel a positive attraction and 

become bound in pairs (Cooper pairs) which travel through the material 

without dissipation. In 1959 Gor'kov showed that the GL theory is a limiting 

case of the BCS theory; the order parameter v is the wavefunction of the of 

the center-of-mass motion of the Cooper pairs. Therefore, a superconductor 

can be defined by the existence of a many-particle condensate wavefunction 

= ItPlei. which has phase coherence over macroscopic distances (Tinkham, 

1975). 

Superconductors can be divided into two classes based on the relative 

sizes of two material-dependent lengths. The penetration depth A, and the 

coherence length k quantify the spatial variation of the magnetic field and 



3 

the wave function respectively. The ratio of these lengths is called the 
Ginzburg-Landau parameter x = . A superconductor is type-I if x <T and 

type-II if x > wl . Type-I superconductors are in the Meissner state when the 

applied field is less than the thermodynamic critical field Hc; the field is 

expelled by the superconductor, which is accomplished by having 

supercurrents (currents consisting of superelectrons, ones bound in Cooper 

pairs) flow within A. of the surface. These supercurrents create a field which 

exactly cancels the applied field, resulting in a net field of zero inside the 

sample. Type-I superconductors are normal (not superconducting) in fields 

greater than H. 

Abrikosov (1957) showed that defect-free, type-II superconductors have 

two superconducting phases. The Meissner phase occurs when the applied 

magnetic field is less than the lower critical field Ha, as it does in type-I 

superconductors. However, at Ha the magnetic field enters the sample in 

quantized bundles of magnetic flux called vortices, (or vortex lines, flux lines, 

flux tubes, fluxons, or fluxoids). Each vortex contains one quantum of 

magnetic flux 0, .h = 2.07 x10-15 T - m2, where h= Planck's constant and e 
2e 

is the charge of an electron. The vortex lines are essentially parallel to the 

applied field, and (in a simple model) consist of a normal core surrounded by 

circling supercurrents, as depicted in Fig. 1.1. 

The whirlpool-like vortex nature of these currents gives vortices their 

name. The magnitude 11111 of the superconducting order parameter 'P .ItPlei4) 

is zero at the center of the vortex core, and the phase 0 changes by 27r upon 

circling a vortex. The radius of the vortex core (which is normal) is -4; 1111 is 
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KW:ER:0mM 

2X 

Figure 1.1. Schematic representation of a vortex. The order parameter is 
significantly suppressed in the vortex core which has a radius of -4, the 
coherence length. Supercurrents flow around the core out to a radius of -At, 
the penetration depth. 

significantly suppressed over a distance of about 2 . The magnetic field 

extends from the center of the core - A; vortex currents occur out to about 2A . 

The whirling current around each vortex creates a magnetic field, which 

shields the bulk of the superconductor from the field entering the vortex core. 

Abrikosov showed that, in this mixed state, vortices arrange themselves in a 

regular triangular pattern called the vortex lattice. The average intervortex 

spacing is denoted by ao, which can be estimated as follows. 

The number N of vortices penetrating an area A is 

total flux through A BA
N = 1.1

flux per vortex 0, 
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where B is the applied field. For a square lattice of vortices, a unit cell 

contains 4 =1 vortex, and has an area A = a02. Therefore, 1= Ba
° or, 

4)o 

ao =1(1); [for a triangular lattice the exact result is aa =1.075 (Tinkham,4:113° 

1975)]; as the field is decreased, ao increases. 

At a high field B =Ha vortices become closer than 2 (a0 .24), causing 

their cores to overlap and destroying superconductivity since the current can 

no longer find a superconducting path. The field at which this occurs is called 

the upper critical field and is given by (Clem, 1990) 

4)0 1.2Hc2 = 
2nab2 

(which differs by a factor of 1 from the result one would obtain by
2K 

combining the above equations, owing to oversimplifications in the 

preceding argument). 

1.2 High Transition Temperature Superconductors 

High- Tc superconductors (HTS) differ from conventional low-Tc 

superconductors (LTS) in several ways. They generally have much higher 

transition temperatures (Tc-20-134 K) than LTS (Tc<20 K). HTS are extreme 

type-II, with large Ginzburg-Landau parameters (x-100). They are copper-

oxides with a perovskite crystal structure, as shown in Fig. 1.2 for 
Nd1.85Ceod5Cu04.), and YBa2Cu307_8. Superconductivity occurs in the Cu-0 

planes which makes these materials highly anisotropic. The in-plane (in the 

ab plane) coherence length and penetration depth are andand Aab, 
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Nd2CexCu04_ 5 YBa2Cu306,x 
a=3.95X 

orthorhombic phase 

0 Ba Cu(1) 

0 Y Cu(2) 

00 
a=3.821b=3.88. 

1 

0° ° 0
1 

1 

1 0c=11.70 A 

T' phase Cu planco­
0 

1

LO 
0-.Cu a 0o 

0 Nd(Ce) 
1 

00 *cT.
 

tru, PR 

Figure 1.2 Crystal structure of NdCeCuO and YBaCuO 



7 

respectively. Similarly, the out-of-plane (along the c direction) values are 

denoted , and X,. The anisotropy y is y E (---1- = 22--b- = .-L where mab and 
?nab k. xab 

NIz are the effective mass in the ab and c directions, respectively. Table 1.1 

lists some values of these parameters. 

1.3 Dissipation in Superconductors 

A primary source of dissipation (resistance) in superconductors is the 

movement of vortices, because moving vortices create an electric field E 

according to E cc B x v. If there is an electric field and current is flowing, then 

there is resistivity p since J = 1E. One impetus for vortex movement is the 
P

presence of an applied current (which is necessary in most applications of 

superconductors) since current causes a Lorentz force density J x B to be 

exerted on the flux lines. Thus, in a defect-free superconductor, the vortex 

lattice phase is not a truly superconducting state. The experimental 

observation however, is that the resistance does vanish at some temperature. 

This is due to vortices becoming pinned by imperfections in the 

superconductor. 

1.4 Pinning and Flux Creep 

If a superconductor has imperfections (such as vacancies, impurities, 

interstitials, twin boundaries, etc.) vortices tend to get pinned at the defects, 

which both impedes their movement and disrupts the uniform lattice 

arrangement; Larkin and Ovchinnikov (1979) showed that, in the presence of 

static (quenched) disorder, there is no long-range correlation of vortex 
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positions (even for weak pinning), beyond the Larkin-Ovchinnikov 

correlation length (k). On length scales shorter than this, the vortices are 

arranged in a lattice, but regular lattice structure is destroyed on longer length 

scales. The flux-creep model [pioneered by Anderson and Kim (Anderson, 

1962; Anderson and Kim, 1964)] considered the problem of a single vortex (or 

a bundle of size Rd moving independently in a random pinning potential. 

The vortex bundles jump over potential barriers, of height Uo, via thermal 

activation; the solution to this problem gives a resistivity 

u0P(.1, T) = 2 exp(_)sing 1.3 
Jc k T J kBB c T 

where Jc(B) is the critical current density at T =0 and pc(B, T) is the 

resistivity at .1 = (Brandt, 1993). 

At a large current Jc (the critical current or depinning current) the 

Lorentz force becomes much greater than the pinning force. When this 

occurs, the vortices are not impeded by the pinning potential and vortex 

movement is slowed only by a viscous drag force; this is known as flux-flow 

(FF). The constant FF resistivity in this regime 

P(J) = PFF 1.4 

may be obtained from Eq. 1.3, for the limit of I >> h, or from models such as 

the one developed by Bardeen and Stephen (Bardeen and Stephen, 1965; 

Tinkham, 1975). 

The resistivity in Eq. 1.3 is not zero, even in the limit of zero applied 

current; to see this, consider J<< lc, then U 
is small and 

kBT 
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sinh( U° j U° . In this regime, called thermally assisted flux flow
Jc kBT Jc kBT 

(TAFF), Eq. 1.3 becomes 

p(j) Uo Lio 
1.5 

kBT kBT TAFF 

which is a constant for constant T. The point is moot for low-Tc 
Uosuperconductors because --100 so pTAFF becomes too small to measure. 
kBT 

However, in high-Tc superconductors, EL- 10 (Kes et al., 1989).
kBT 

In the intermediate current regime, (J = Jr), and if LI, >> kBT, then a 

current dependent resistivity is expected from Eq. 1.3. To obtain this result, 

the sinh function is expanded (recall 2sinhx = ex e-x) yielding 

p(J, T) = pc Lc{exp[-I-L(-- +1)]}. 1.6 
BJ kT kBT J 

If Uo >> kBT and J = Jc, then the second exponential approaches zero, and 

Eq. 1.6 becomes 

U0 Jp(J T) = pcl:cexp[ 1.7
k T 1B 

This can be generalized to 

p(J, T) = pc -exp[ 1.8J kBT 

where the function U(J) depends on the model of dissipation; the Anderson-

Kim model is then a specific case of Eq. 1.8 with 
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U(J) =U(1 1.9 

With no applied current, the activation energy U(J) is just the pinning 

energy Uo, which is the same form as the result obtained in Eq. 1.5. 

1.5 Thermal Disorder 

In addition to the static disorder introduced by impurities, HTS are also 

subject to dynamic disorder owing to thermal fluctuations. [It has been 

suggested (Brandt, 1993) that quantum fluctuations may be the primary source 

of dynamic disorder in YBCO above 4T.] Thermal fluctuations are more 

important in HTS than LTS because of the higher T shorter (vortices form 

at higher fields, since Ha = ), larger y (reducing the interaction
27Etai, 

between vortices in different planes), and longer A, than found in LTS; 

typical values for these parameters appear in Table 1.1. 

The importance of thermal fluctuations are quantified by the Ginzburg 

number Gi (Blatter et al., 1994) 

(TckB 
1.10 

G1 lic2Aab3 

where TckB is the thermal energy, He =17-111`2 is the thermodynamic critical 
1/2 

field (Tinkham, 1975), .7.(11- = is the anisotropy, and lc = 7- is theml 42 xab 

Ginzburg-Landau parameter. The Ginzburg number is about 10-2 in YBCO, 

10-4 in NCCO, and 10-12 in LTS. This makes it possible to see the effects of 

thermal fluctuations in HTS. 
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Thermal fluctuations cause vortices to move about (much like 

molecules in a fluid) resulting in a finite linear resistance. In this vortex 

liquid state there is no long-range correlation of the vortex positions, 

although there are short-range correlations. Instead of a true phase 
transition, Ha marks a smooth crossover from the normal state to the vortex 

liquid state. This crossover region is dominated by thermal fluctuations, and 

has a width given approximately by TT.TcGi in a weak field; the width varies 

with field as (Blatter et al., 1994) 

Table 1.1. Material characteristics of YBCO and NCCO. 

LTS YBCO NCCO 

A(0) 10 140v I30v 

(nm) 

kab (0) 10a 1-1.5E, P­ 7-0 t, v 

(nm) 

Ha (T) 1004 g 2.711 

Mc 

i 1 5-7 20-251, K 

Gi 10-12p 10-20 10-4 

ABlatter, et al., 1994 
aBrandt, 1993 
5Dalichaouch et al., 1990 
EDolan et a/., 1989 
1Hermann, 1992 
1Hidalca and Szuld, 1989 
q'Mao et al., 1995. 
1c0 and Markert, 1993 
gWelp et al., 1989
"Wu et al., 1993 
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2 

Hc2 (T) 1.11TT 

In systems with little disorder (such as untwinned single crystals) a 

vortex lattice may, at some temperature, melt into a vortex liquid; this is 

generally expected to be a first order transition. The melting temperature (in 

the absence of pinning) is often estimated using the Lindemann criterion 

(Lindemann, 1910). In this approximation the lattice is assumed to melt 

when the size of the vortex displacements u becomes comparable to the 

intervortex spacing, 

(u2y. cao. 1.12 

where c is the Lindemann number. For conventional liquids c=0.1-0.2; 

Monte Carlo simulations for the melting of a model vortex lattice found 

c=0.2-0.3 (Ryu et al., 1992). It is expected that the width of the melting region 

t, differs from TT by a numerical factor (Feigel'man et al., 1993), 

3_7 1.13 
tT
 

Apparently, Feigel'man et a/. assume that the melting transition is second 

order. 

1.6 Vortex Glass, Bose Glass and Collective Creep 

More recent theories for flux motion in HTS (for J < Jr) consider vortices 

in superconductors as objects which have length, in contrast to the flux creep 

model. One theory, collective creep (Feigel'man, et al., 1989; Natterman, 1990; 

Fischer and Natterman, 1991) approaches the problem by considering vortices 
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as elastic objects. Another theory is the vortex glass (VG) model of Fisher, 

Fisher, and Huse (FFH) (Fisher, Fisher, and Huse, 1991; Fisher, 1989; Huse, 

Fisher and Fisher, 1992). (For review articles on the vortex glass theory, see 

Bishop, Gammel, and Huse, 1993; Bishop, 1992; Fisher, 1993; Blatter et al., 

1994.) FFH suggest that the low temperature state is a different phase of 

vortex matter, and that there should exist a second-order phase transition 

between the vortex liquid state and the vortex glass state. Both models predict 

the same functional form for the low-temperature p J isotherms, 

p cc ex(k)
I 

but have different predictions for the value of 1.1. (see § 2.6 and 2.7). 

Another model which proposes a vortex phase transition was presented 

by Nelson, and Vinokur (Nelson and Vinokur, 1992; Hwa, Nelson and 

Vinokur, 1993), who considered superconductors with line defects (such as 

weak-link grain boundaries), in contrast to point defects (such as vacancies, 

interstitials, or microscopic grain boundaries), and predicted that such a 

system will undergo a phase transition from a liquid state to a Bose glass (BG) 

state. Although it is not certain whether the BG and VG transitions belong to 

different universality classes, the two models have different predictions for 

the angular dependence of the transition temperature. 

One way to distinguish between a true phase transition (with time and 

length scales which diverge at criticality) and a gradual slowing down with 

long-range (but finite) correlations, is to search for evidence of a phase 

1.14 
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transition via the critical scaling of p J isotherms. A phase transition 

would be characterized by universal static 1" and dynamic z critical exponents. 

1.7 Experimental Evidence for a Vortex Glass Phase Transition 

The first experimental evidence lending support to the VG idea was 

obtained by Koch et al. (1989), who performed a critical scaling analysis of the 

p J characteristics of YBa2Cu307_8 (YBCO) thin films. This was followed by 

experiments on both ceramic (Worthington et a/., 1991) and single crystal 

(Gammel, Schneemeyer, and Bishop, 1991) YBCO. Similar experiments have 

been performed using Bi2Sr2Ca1Cu208+8 (Bi2212) (Safar et al., 1992), 

Bi2Sr2Ca2Cu3O10 (Bi2223) (Li et al., 1994; Yama saki et a/., 1994), 

Nd1.83Ce0.15Cu04.3, (NCCO) films (Yeh et al., 1992), and amorphous Mo3Si 

films (Yeh et al., 1993a). Gammel, Schneemeyer, and Bishop (1991) lowered 

the measured voltage regime by several orders of magnitude using a SQUID 

picovoltmeter; they observed no deviation from the behavior predicted by 

Eq. 1.14 (even at the lowest voltages) for isotherms below the transition. 

Olsson et al. (1991) studied the ac response of the resistivity in the region 

above Tg and found that the data are consistent with the VG model. Size 

effects were examined in YBCO films by Dekker et al. (1992) and by Ando, 

Kubota, and Tanaka (1992). Dekker et al. analyzed the effects of decreasing 

film thickness and found confirming evidence that the lower critical 

dimension d1 of the vortex glass transitions lies between 2 and 3, as predicted 

by FFH. Ando, Kubota, and Tanaka examined the effect of having very 

narrow bridges. 
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To investigate the possible existence of a Bose glass transition, angle-

resolved studies have been performed on YBCO thin films by Woltgens et al. 

(1993) and by Silver, de Lozanne, and Thompson (1993). Woltgens et al. 

confirm the existence of a vortex glass transition in YBCO, but not the Bose 

glass transition. However, Silver, de Lozanne, and Thompson found 

evidence for a BG state when the magnetic field is applied nearly parallel to 

the c-axis of the film, but a VG state for fields applied at angles greater than a 

critical angle. 

Several unsettled issues remain concerning the existence and the nature 

of the purported vortex phase transition. Most notable is whether the 

observed scaling relation is indicative of a true phase transition, or is merely a 

convenient parameterization. If a phase transition occurs, then one expects 

universal critical exponents and scaling functions. Universality seems to be 

established in YBCO films at high magnetic fields; the exponents converge to 

z-5.7, v-1.7 (as demonstrated in Table 1.2), which is consistent with the 

predictions of the vortex glass model. The exponents for YBCO single crystals 

seem to be different from those of films (z 3.5, 1<v<3). This may signal that 

crystals belong to a different universality class than films (Kotzler et al., 

1994a), rather than pointing to a lack of universality of the transition. 

Curiously, previous work on NCCO films (Yeh et al., 1992) did not yield 

exponents consistent with YBCO films, but instead are closer to those of YBCO 

crystals. Furthermore, work done on Bi2223 gives exponents which match 

neither YBCO film nor YBCO crystal data. These results suggest that more 

experiments are necessary to establish the existence of universality, which 

motivates this work on NCCO and YBCO films, and our investigation of the 

anomalous low-field results. Concurrently with this work, Chang, Lue, and 
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Chou (1994) found z=7, v=0.75 for an YBCO film in ambient field, (similar to 

what we find at low field), but these authors did not present any data taken in 

an applied field. 

Another open question is the nature of the low-temperature phase. If 

the VG or the CC model correctly describes the method of dissipation below 

Tg, then Eq. 1.14 should fit the low T data. While very good fits to the data are 

obtained (both here and in the literature), several odd features result-- such as 

a current dependence of the exponent p.. The extraction of 4 from this data is 

discussed. 

Understanding the role of defects, dimensionality, and anisotropy in 

determining the phase diagram and low-temperature properties of HTS 

continues to be an interesting challenge. 
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Table 1.2. Overview of critical exponents reported in the literature. 

field thickness! widthSystem I v I z I 2vo I 
0 

Reference Im _ (um) 1 (puri). 
YBCO film I 

I I I I I 
p(J) Hllc 1.7 4.8(2) 0.5-4 0.4 8 Koch 

1989 
p(j)H11c 1.9 4.8 2 0.3 Dekker 

1992 
p(j)HlIc 1.0 - 1.2 4.8 4 - 6 0.28 10 Silver 

1993p(J) FlIc 1.0 -1.2 6.0 
p(I) HIV 1.2(6) - 5.6 (1.0) - * 1- 3 5.6 - Ando 

19920.7(2) 9.7(7) 0.54 
p(j) HIV 1.4(1) 6.1(2) 1.5 0.01 - 5 50 This work 

1.1(1) 8.3(3) - 0 - 0.015 
o(co) HlIc 1.1(4) 5.2(6) 0.55 Olsson 

1991 

p(J) HlIc 1.6(2) 4.9(2) 1.5 0.5-6 0.1 42 Xenikos 
1993 

P(I) 1.8(1) 5.0(1) 0.25-5 0.4 70 Deak 
1993 

PO HI lc, 1.70(2) 5.8(1) 5 0.35 20 WOltgens
1993I-11c 

a(w) HIV 1.7(2) 5.5(5) 1.5(2) 0.4-4 0.25 radius Kotzler 
1994b=1500
 

P(i) 0.75 7 0 0.2 100
 
19an91 

YBCO 
crystal 

a(w) HlIc 3.1(3) 3.1(3) 0.4-12 Kotzler 
1994aa(w) KU 1.6(3) 6.3(3) 

pa) 0.65(5) 3.0(2) 1.33 0.1-7 20 Yeh 
1993aHIlc, HIc
 

monocrystal 2(1) 4.3 (1.5) 1.33 15 - 6 100 2000 Gammel
 
1991p(J) HlIc 

polycrystal 1.1(2) 4.6(2) 0.05 - 1.5 300 1500 Worthington 
1991p(J) HlIc
 

polycrystal 1.4(2) 3.0(2) 50 mT- 2000 2000 Tiernan
 
1992p(J) HlIc 8 mT
 

NCCO
 
film p(J) HlIc 1.6(2) 5.1(3) 1.3 0.1 - 1 180 200 This work
 

1.0(1) 7.3(1) 1.3 .001-.03
 
film p(J) Hllc 2.1 3.0 1.2 0-0.63 180 Yeh
 

1992p(J) I-11c 2.7 2.5 1.6
 
Bi2223
 

film Hllc p(J) 12.2 0.69 0.5-4 0.06-0.1 20-50 Yamasaki
 
1994
 

tape Hllc p(J) 8.5(1.5) 1.25(15) 2.5 0.4-1.2 60 5000 Li
 
1994 

* see Appendix C 
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CHAPTER 2
 

THEORY
 

2.1 General 

FFH propose that even though long-range positional order of the vortex 

lattice is destroyed in the presence of random pinning, a form of long-range 

order remains for temperatures below the vortex glass transition temperature 

Tg. They suggest that, below Tg, the vortices become fixed at sample-specific 

locations determined by vortex interactions with each other and with pinning 

sites. Because the vortices are immobile in this state, there exists a non-trivial 

long-range order in the phase (1) of the superconducting order parameter 'F. 

Since the vortices are immobile, once the gauge invariant phase has been set 

at one point in the system, the phase at any point is determined. The pattern 

of the long-range order is random, reflecting the random positions of the 

vortices. Although the phase is random in space, in the vortex glass state 
(below Tg) it is frozen in time, analogous to spin orientations in a spin glass. 

(The phase coherence described above is also referred to as off-diagonal long-

range order, ODLRO.) Above Tg, the vortices are thought to be in a vortex 

liquid state with short-range correlations, but no long-range order of any 

kind; the vortices move freely and there is no superconductivity. 

The vortex glass model envisions that dissipation occurs via thermal 

nucleation and subsequent growth of vortex loops. A wavy vortex line may 

be thought as a combination of a straight vortex line and vortex loops, as 

shown in Fig. 2.1. 
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A
 

wavy vortex vortex 
vortex line loop 

Figure 2.1. A deformed vortex line. A vortex line with wiggles may be 
considered the superposition of a straight vortex line and vortex loops. The 
size of the vortex loop excitation is characterized by L. 

For temperatures greater than Tg, the thermally-nucleated loops are 

large enough that they grow to infinity, resulting in dissipation. For 

temperatures below Tg, the loops collapse and there is no dissipation. 

(Dissipation is often referred to as phase-slip.) 

The transition from vortex liquid to vortex glass is expected to be second-

order (owing to impurities) and as a consequence critical scaling applies 

within the critical regime; the transition should be characterized by length 

vG and time ti scales which diverge at the vortex glass transition 
temperature Tg as 
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4c cc 1 and 2.1 
Tg
 

where v and z are the static and dynamic critical exponents respectively. 

FFH propose that the relevant length scale is the vortex glass correlation 

length VG which is the length over which the phase is correlated; the 

appropriate time scale ti is vortex glass correlation time, which is essentially 

the time it takes a fluctuation the size of VG to relax (Huse, Fisher, and 

Fisher, 1992). A dimensional argument leads to the ansatz the resistivity p 

versus current density J isotherms will scale according to 

(.1=1:
P(J) 

k8T 2.2 

where the F+ are universal scaling functions and d is the dimensionality 

(§ 2.3). This expression is valid for any second-order normal-to­

superconducting phase transition. Assuming a dimensionality of three, 

Eq. 2.2 may be written as 

P(J) cc tiv-CF±(41!G7.4)° )- 2.3 

For finite J and T, the resistivity should be finite. Therefore, VG must cancel 

in the above equation at Tg, since VG diverges at the transition. For this to 

occur Ft lz,-G1 at Tg or, equivalently, 

(z-1) (z-1) 
2 2 

FIIRVG0o riaGOo POo pz-1 2.4
) kBTg kBTg 

WC 

Substituting this back into Eq. 2.3 we find that p has a power law dependence 

on J at Tg, 
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(z-1) 
2 

P(J) '''' I 2.5 

Defining a characteristic current scale 17,1 as 

kBT 
2.6Li = ,t2 

Wo,VG 

Eq. 2.3 may be written as 

p(i)- a-GzF±(-L). 2.7I 
Vortex glass theory predicts that, above Tg, F+ should describe a vortex liquid, 

which is anticipated to have a current-independent resistivity Pun at low 
current densities. Therefore, F+ should approach a constant as 1 > 0 and

In, 

Eq. 2.7 becomes 

p(T > Tg, L --> 0) = Pun ' ViGz 2.8 
LI 

Using 17G oc 1T 
v 

(Eq. 2.1) the above equation may be written as
T 

.8 

v(z 1)
T 

1P lin = Po 2.9 
Tg 

Eq. 2.7 may now be written in the succinct form 

. --jP p ( I 2.10 
Plin ± Inl 

To elaborate on the above ideas, issues related to second-order phase 

transitions and critical scaling will be outlined in § 2.2. Then, a plausibility 

argument leading to the scaling equation (Eq. 2.2) will be presented in § 2.3. In 
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§ 2.4-2.6, the vortex glass theory will be developed more fully. The collective 

creep model will be sketched in § 2.7. 

2.2 Second Order Phase Transitions and Critical Scaling 

Transitions occur owing to interparticle interactions (e.g. in a fluid) or to 

quantum correlations (e.g. in 4He) (Uzunov, 1993; Yeomans, 1992). (The 

latter are referred to as pseudo-interactions.) Interactions can lead to 

cooperative behavior, resulting in ordering, but thermal fluctuations 

interfere with this cooperation. Different phases usually arise from the 

dominance of either interactions or thermal fluctuations. The order in a 

system is quantified by the order parameter co, usually defined such that it is 

zero in the disordered state and positive in the ordered state. The order 

parameter can be scalar (density in a fluid), vector (magnetization in a 

ferromagnetic) or complex (a wavefunction in superfluid 4He). 

A transition is first order if the first derivative of the thermodynamic 

potential is discontinuous, but is second order if the first derivative is 

continuous but the second derivative is discontinuous. In a second-order 

transition the phases become indistinguishable at the transition; this 

thermodynamic state is called the critical state and the behavior occurring 

near this point is called critical behavior. 

A gradual increase in correlations characterizes second-order phase 

transitions. The distance over which correlations occur is given by the 

correlation length t, which becomes infinite at the transition temperature, Tt 
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2.11 

(This correlation length should not be confused with the superconducting 

coherence length presented in § 1.1.) For example, consider a magnetic 

system where the spins are aligned in the ordered phase but random in the 

disordered phase. At high temperatures, the system is completely disordered. 

As Tt is approached, small regions begin to form in which the spins are 

aligned, as exemplified in Fig. 2.2. The maximum size of these regions is The 

MPhase 1 
Phase 2 

Figure 2.2. Critical fluctuations. As criticality is approached, fluctuations 
occur on all length scales up to . Each fluctuating region contains smaller 
regions of fluctuations. 

maximum size of these regions is characterized by . The regions are not 

uniform, but contain smaller fluctuating regions, and even smaller 

fluctuating regions occur within these. Thus, there are correlated regions of 

all sizes up to . Just below Tt, most of the system is ordered with regions (all 

sizes up to ) which are disordered. (The system is not completely ordered 

except at T =O.) 
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The order parameter (1) can be written as the sum of its equilibrium 

value (T) and a fluctuating part &p, 

2.12 

The equilibrium value if-) is the statistical average of 9, 

Tp- = (9). 2.13 

The average of the fluctuations is zero 

(8(0= 0 2.14 

but the fluctuations exhibit strong correlation properties so that the 
correlation functions (89m), (m=2,3...) can be large. The instability of the 

phases near Tt is due to large fluctuation correlations. Of particular interest is 

the pair (two-point) correlation function G(R) which quantifies the 

correlation between two points separated by a distance R, 

G(R) = (&p(x)&p(x + R)). 2.15 

Away from criticality, G(R) decreases exponentially with distance, 

(d-1) 

G(R) R 2 e 2.16 

for R> t, 0* 1--T << 1, and d> 2. At criticality, oo and Eq. 2.16 is no
Tt 

longer valid; instead, the correlation function decreases with distance as a 

power law, 

G(R) 
1 

2.17 

where ti is a critical exponent (Yeomans, 1992). 
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In the VG theory, the order parameter is the superconducting 

wavefunction v and the gauge invariant correlation function is (Fisher, 

Fisher, and Huse, 1991) 

2 

GVG(r) = (*(r')exp[triiiv .d/lic(r + r')) 2.18 
r' 

where ( ) denotes a thermal average and the overbar indicates a spatial 

average over r. 

The order parameter is time-independent only if the system is in 

thermal equilibrium; the time it takes the system to return to equilibrium 

after a disturbance is given by the relaxation time T. Time dependent 

(dynamic) critical phenomena are important in understanding transport 

properties such as thermal and electrical conductivity and sound propagation 

(Hohenberg and Halperin, 1977). In analogy with the static case, the order 

parameter is represented as 

y(x,t) = (7(x)+8,(x,t) 2.19 

and we define 

G(t -0=09(0E9(0). 2.20 

When the size of the fluctuating regions become large, the time required for 

ordering (or disordering) becomes long. Thus, the relaxation time becomes 

long near Tt, 

T .= t z. 2.21 
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The scaling ansatz Eqs. 2.21 and 2.11 are supported by renormalization group 

ideas and calculations (Fisher, 1987). 

The scaling hypothesis was pioneered by Kandoff (1971) using a block-

spin approach, and developed into the revolutionary renormalization 

approach of Wilson, who received the Nobel prize in 1982 (Yeomans, 1992). 

Near the transition, 4 is larger than all other relevant lengths in the problem 

and can be regarded as the only important length. Finite-range effects (such as 

the details of the interaction potential) should not be essential to the critical 

behavior. Since at the transition fluctuations occur on all length scales, the 

properties of the system are unaltered by a change in scale. Kandoff imagined 

breaking the system into blocks of length La, where a is the interparticle 

spacing (as exemplified in Fig. 2.3) and a < La «4. The enlargement of the 

block size from aL to aL' (aL < « 4 ) removes the short-range aL') effects 

of the interparticle interactions. As 4 increases, the size of the interacting 

units is increased (rescaled). Individual spins are replaced by the average spin 

of each block; instead of focusing on interacting spins, interactions between 

blocks of spins are considered. As 4 grows, so does the block size, in such a 

way that the thermodynamic functions are rescaled but do not change form. 
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4 
LaT' 0.
 

Figure 2.3. Kandoffs block spin approach. Shown is an array of sites with 
spacing a. The lattice is divided into cells of length La on each side, such that 
a <La <. 

Implementing the scaling hypothesis is made easier using dimensional 

analysis (Ma, 1976; Barenblatt, 1987; Kandoff, 1971). A scale transformation 

which changes a length interval AX to AX' is, 

Ax -- ,6,,V= s'Ax. 2.22 

A scale transformation with s=3 triples the unit of length. The scale 

dimension (or simply dimension) of dx is -1. If a scale transformation 

changes A to A' according to 

A > A' = s-x A 2.23 

then the scale dimension of A is X. The scale dimension of (Ax)2 is -2 and 

that of volume is -d. 
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2.3 Justification of the Scaling Equation 

Wolf, Gubser, and Imry (1979) presented the first scaling equations for a 

superconducting transition that the author is aware of. [The scaling 

expression of Wolf, Gubser, and Imry can be written in the form used here 

and by FFH (Chang, Lue, and Chou, 1994).] Following Blatter et al. (1994), a 

dimensional argument leading to the scaling equation (Eq. 2.2) is as follows. 

The vector potential scales as inverse length. Since 

dA
E 

at 2.24 

the electric field E should scale as 

rz.-1 -z-1 
2.25 

so the appropriate scaling combination for the electric field is 

E4 z+1 
2.26 

The total free energy is not changed under a scale transformation, so it has 

scale dimensions of zero (Ma, 1976). Therefore, the free energy density f 

scales as d. According to FFH (1991), 

2.27 

so that J should scale as 

44-d 1 -d 
2.28 

This gives the scaling combination for J as 

gd-1 
2.29 
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Evidently, the appropriate scaling relation is (Barenblatt, 1987; Blatter et al., 

1994) 

(scaled E). (scaled J)Fl[scaled J] 2.30 

or, 

Emi jo-GiFi(IvaG---1) 
2.31 

which may be written as, 

E igtz-iFi (g15-2 ) 
2.32 

or, 

P Gd-G2-zFiNvd-G1), 2.33 

which is essentially Eq. 2.2. The existence of a scaling relation provides 

evidence for a phase transition, but does not give a physical description of the 

ordered phase or the dissipative mechanism at low temperatures. 

2.4 Dissipation via the Nucleation and Growth of Vortex Loops 

Even with no field applied there is a finite probability that a vortex loop 

will nucleate. The energy of a vortex loop of radius R, in the absence of 

currents, is given by the elastic energy 

LIE 2zRe1, 2.34 

where el is the energy per unit length of the vortex, or the line tension. 

There is a corresponding inward elastic force on the vortex loop since 

FE = -VUE, SO 
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FE ~ 27W1. 2.35 

This elastic force causes the thermally nudeated vortex loops to collapse. 

However, if a current is flowing in the superconductor, there will also be 

an outward Lorentz force on the vortex loops. The energy gained by having a 

vortex loop in a region of uniform current density J can be estimated as 

follows. The Lorentz force on a magnetic loop (actually a donut-shaped tube) 

is given by 

F = f(JxB)dV/ . 2.36 

Assuming JIB, B constant in the flux tube and zero otherwise, 

F = JBVI . 2.37 

The volume V of the vortex tube is given approximately as the cross-sectional 

area of the tube a multiplied by the average circumference of the tube 2nR. 

The magnetic flux in a vortex tube is equal to 00 = Ba. Therefore, 

V = a2nR=27r.R0° 
B . 2.38 

Substituting this into Eq. 2.37 gives the outward Lorentz force F1 on the flux 

tube, 

Fl =27r001R, 2.39 

The energy gained by creating a loop is given by 

R 
Ul = -IF/ -d1 

0 . 2.40 

=-007r1R2 

http:a2nR=27r.R0
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The total free energy of a vortex loop is given by summing the elastic (Eq. 

2.35) and Lorentz (Eq. 2.40) energies, 

U 2;rRei 007rJR2. 2.41 

When the Lorentz force is greater than the elastic force we expect the 

thermally activated vortex loops to grow and dissipation to occur. 

The critical radius Rc at which a thermally nucleated vortex will grow, 

due to the Lorentz force of the current, is found by minimizing U with 

respect to R giving, 

2.42 

The free energy barrier is then given by L/(Rc) = 1

2 

. The Boltzman 
10 

probability of nucleating a vortex loop with a radius equal to Rc is 

exp [U(RR) / kBT] = exp [ 21E12 
.1001cBT 2.43 

Defining a characteristic "thermal current density" IT (set by the temperature) 

as, 

7[E 2 
IT = 1 2.44 

OoksT 

Eq. 2.43 may be written as, 

FITT 2.45 
L J 

Vortices moving with a velocity v create an electric field E which is
 

proportional to v. According to Fisher (1993), the velocity is given by a
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characteristic distance multiplied by a rate, where the rate is proportional to 

the Boltzman factor multiplied by the current, so 

E ,-.: v ,--iexpELL). 2.46
I 

Some authors (e.g., Fisher, Fisher, and Huse, 1991) do not include this last 

factor of J in the calculation resulting in 

E = V . exp(-111-. 2.47
I 

Eqs. 2.46 and 2.47 are approximately equal since (for isotherms below Tg) the 

current range over which E (or p) increases is small, and Jconstant. Eq. 2.46 

yields a resistivity of 

p(J).--. exp(-1-) 2.48 

This is the expression FFH write for the resistivity in zero applied field, e.g. 

dissipation in the Meissner state. When there is an applied field, Fisher 

(1989) and FFH anticipate a length dependence of the free-energy barrier. 

2.5 Length Dependence of the Free Energy Barrier 

Flux creep treats vortices as point objects moving across a potential 

landscape (see § 1.4). However, vortices are extended objects, provided the 

anisotropy is sufficiently small that the superconducting layers are strongly 

coupled. Therefore, the energy barrier for vortex movement or loop 

nucleation may depend on length. Fisher (1989) and FFH propose that the 

http:exp(-111-.2.47
http:iexpELL).2.46
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free energy FL of a vortex loop excitation (see Fig. 2.1) will grow with the 

length L of the excitation as 

FL = Ye. 2.49 

where Y is the stiffness coefficient and 0 is the stiffness exponent. (To 

provide some motivation for Eq. 2.49, it is useful to consider an Ising system; 

see Appendix A.) If 0 > 0 then excitations are energetically costly and unlikely 

to occur, but if 0 < 0 then excitations are cheap and occur readily. When the 

system is at the lower critical dimension, 0 = 0. Thus an ordered state can 

exist only if 0 is positive. The free energy barrier BL to create a vortex loop 

excitation will grow at least as fast as the loop energies, 

BL ALA` 2.50 

where xi, 0. This ansatz was used by Fisher (1987) and Fisher and Huse 

(1988) to describe the properties of the ordered phase of spin glasses. The 

Lorentz energy -007EJR2 (Eq. 2.40) is generalized to 00Jok where A is the 

effective projected area of the excitation normal to J. It is assumed that A 

scales with length as A - Lx, with lc -1 (for a loop lc = 2) so that the 

Lorentz energy scales as 

00/L' 2.51 

Setting this equal to the excitation energy YLe, we find that a current J creates 

a vortex excitation with a characteristic size 

1 

y
L 2.52 

Therefore, the free energy barrier should scale with current as 
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Av

( y jx-e
BL 2.53 

(Po/ 

Following the arguments leading to Eq. 2.48, the resistivity is (Fisher, 1993), 

P(/)' exP(131")kBT 

( 'V 2.54 
A (Y)x-o 

..-- exp 
kBT T 

1 IWith 1.t = 2- , we write this as (c.f. Eq. 1.14)
lc 0 

p(J). exp[-(1-el 2.55
I 

2.6 Universality and the Predicted Values of the Critical Exponents 

The critical exponents for a system should depend only on the 

universality dass to which it belongs (Yeomans, 1992; Binney et al., 1992). For 

models with short-range interactions, the static universality dass should vary 

with the spatial dimensionality d and the symmetry index n of the order 

parameter, but not on the detailed interactions in the system. The symmetry 

index is the number of components in the order parameter (Uzumov, 1993). 

In a fluid (9 =density) n=1. In a ferromagnet (9=magnetization) 1<n<3 

depending on the type of magnetic ordering. In a system with complex 

structure, n can be larger than 3. Above the upper critical dimension du of 

the system, the exponents lock into d-independent values, given by mean­

http:exp[-(1-el2.55
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field theory. There are additional factors which determine the dynamic 

universality class, such as the conservation laws and the equation of motion 

for the order parameter (Hohenberg and Halperin, 1977). The vortex glass 

transition is assumed to belong to the same universality class as magnetic 

spin glasses (Fisher, Fisher, and Huse, 1991). (For a review of spin glasses see 

Binder and Young, 1986.) 

Several numerical calculations have been performed which attempt to 

estimate the critical exponents. Most of these assume that the vortex glass 

state is adequately described by the Hamiltonian for the gauge glass model, 

H = hjcos((t)i Aid 2.56 
(q) 

where Oi is the phase of v at the ith lattice site, Jij is the Josephson 

interaction between sites i and j (usually taken to be a positive constant 
LI-40), and A11 is the vector potential between to grains, 

Ai. = 2n JA(F)dl 2.57 
1 i 

In the gauge glass model A11 is a random number between 0 and 2n. (In the 

XY spin glass model Aq is chosen randomly to be either 0 or 7L, in the XY 

ferromagnet Aij=0, and in the XY antiferromagnet Ara.) The gauge glass 

model was presented by Ebner and Stroud (1985) to describe samples with 

superconducting grains weakly coupled via either the proximity effect or 

Josephson tunneling. It is hoped that this Hamiltonian (Eq. 2.57) includes the 

correct symmetry of the order parameter, randomness, and frustration. 

Current and voltage are often introduced into the problem via the Josephson 

current-phase relation 
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Iii = Jc sin(Oi -4i Aij) 2.58 

and the Josephson voltage-phase relation 

SL(loi _4) .) 2.59 
27c dt I 

where Ic is the Josephson critical current. 

In developing a mean-field model for the VG transition (valid in 

dimensions greater than or equal to du=6) Dorsey, Huang, and Fisher (1992) 

extracted the values z = 4 and v = 0.5, the same result as obtained for Ising 

spin glasses. This model used the Ginzburg-Landau Hamiltonian, model A 

dynamics (which assumes a nonconserved order parameter; see Hohenberg 

and Halperin, 1977), and introduced quenched disorder by defining a random 

Tc; the work closely paralleled calculations for spin glasses. It is expected that 

both z and v increase with decreasing dimensionality, but in 3D z may not 

increase as much as it does in the Ising model, zising = 6 ±1 (Fisher, Fisher, 

and Huse, 1991). A first order expansion in £ = 6 - d about d = 6 for the gauge 

glass model (Houghton and Moore, 1988) yields the result v= -i-1 +24; for 

d = 3 (c = 3) this corresponds to v - 1.1 (though one might question the 

extension of the expansion to d = 3, since e = 3 is not small). Using finite-

temperature Monte-Carlo simulations of the size-dependence of the domain 

wall energy, Reger et al. (1991) determined v = 1.3 ± 0.4, z = 4.7 ± 0.7 for the 

gauge glass model. Thus, it is expected that z =4, 4 7 and v =1- 2 for the VG 

phase transition. 
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FFH predict that 0 <it <1. Moore and Murphy (1994) performed a real-

space renormalization-group calculation using the gauge glass model; they 

found xi, = 0 .-: 0.26 and argued that x = d 1, resulting in 12 -,-. 0.15. 

Numerical calculations indicate that the lower critical dimension d1 ... 3. 

Using domain-wall renormalization group calculations, Reger et al. (1991) 

found 0 E-_- 0 for a 3D gauge glass, suggesting that d1 to be just less than or equal 

to 3. Cieplak et al. (1992) used a Migdal-Kandoff renormalization-group 

scheme for the gauge glass and found 0 = 0.26, so di, < 3. 

2.7 Collective Creep 

Collective creep (CC) (Feigel'man et al., 1989; Natterman, 1990; Fischer 

and Natterman, 1991) combines collective pinning theory (Larkin and 

Ovchinnikov, 1979) with the ideas of Anderson and Kim (Anderson, 1962; 

Anderson and Kim, 1964). Like the VG model, CC also envisions that 

dissipation occurs via the nucleation and growth of vortex loops. However, 

the two theories make different assumptions about the relative sizes of the 

characteristic loop radius R and the extent of vortex positional correlation. 

The distances over which vortex positions are correlated are called the 

Larkin- Ovchinnikov lengths: k for the longitudinal direction (II B), and k 

for the transverse direction (1 B). The VG model assumes there is a phase 

coherence which extends to distances longer than the positional order R and 

thus considers lengths R >> Rc. The CC model assumes weak pinning, 

resulting in large positional correlations lengths. In this limit, the typical 

loop size is smaller than the positional correlation length R 12c and the 

vortex system can be described by elastic-medium theory; the distortions of 
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the flux line lattice u (due to pinning, the Lorentz force, and thermal 

fluctuations) from a perfect, static lattice, are described by elastic continuum 

model, so vortices are treated as rubber bands. The free energy associated with 

the distortion is 

2 
F = fd3r hi c66) (V .11)2 +51--6 (V uf +54(1a ) + Uo] 2.60 

2 _L 2 az 

where the ca are elastic moduli; cli is the bulk, cu is the tilt, and c66 is the 

shear (Brandt, 1993). The pinning potential Uo(u, r) describes the lattice 

interactions with defects. The compressibility (V - u)2 is often neglected. 

Central to the CC model is the idea (from collective pinning theory) that 

there is a correlation volume V, within which the positions of vortices are 

correlated. The correlation volume depends on the relative sizes of Lc and 

the interlayer spacing 1, as shown in Fig. 2.4. 

If the positional correlation is longer than the interlayer spacing Lc > I 

then the system is considered 3D, and if Lc <1 then the system is 2D. The 

correlation volume in the 3D limit is simply vc =LcRc2. In the 2D limit 

Vc =1Rc2 . 

The CC model predicts the same low-temperature form for p(J) as does 

the VG model, namely (c.f. Eqs 1.14, 2.55) 

p(.1).. exp[(L; 1. 2.61 
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Figure 2.4. Correlation volume Vc for 2D and 3D structures. (a) 3D, 
when the longitudinal positional correlation is greater than the 
interlayer spacing Lc >1, and (b) 2D, when Lc <1. 
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The predicted value for It depends both on the dimensionality of the system 

and on the size of K. relative to the penetration depth A.. The correlation 

volume is considered large if Rc > X., and small if Rc < X; if the correlation 

length is less than the intervortex spacing (Rc <a0), single vortex pinning 

occurs. For 3D the predictions are g -÷-, 0.14 (single vortex pinning), 
3 7g = 1.5 (small K.), and µ = = 0.78 (large Vs). For 2D the predictions are 

11= 9 =112 (small Vc), and ix .-1 = 0.5 (large Tic). Recall that the VG
8 2 

prediction is 0 <,u <1. 
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CHAPTER 3
 

EXPERIMENT
 

3.1 YBaCuO and NdCeCuO General Properties 

Comparing the p J characteristics of NCCO and YBCO gives insight 

into the relative importance of Tc and thermal fluctuations in HTS vortex 

dynamics. In many ways, NCCO is an anomaly within the family of copper-

oxide HTS; it has a modest Tc near 20 K which reduces the importance of 

thermal fluctuations. NCCO is also more anisotropic than YBCO and has a 

longer coherence length. A comparison of their characteristics appears in 

Table 1.1. 

These materials have strikingly different magnetoresistance 

characteristics, which is evident in the contrast between their resistivity-

temperature curves, shown in Fig. 3.1 (Hermann, 1992; Tate and Hermann, 

1992). In YBCO the pT curves exhibit dramatic fan-shaped broadening with 

increasing magnetic field. The broadening is not as pronounced in NCCO 

where there is an almost parallel shift of the pT curves with decreasing 

field. Thus, critical scaling of NCCO and YBCO p J characteristics helps 

isolate the primary factors which govern vortex dynamics. 

3.2 Thin Film Samples 

The thin film YBCO sample was provided by P. Berberich and H. Kinder 

at the Technical University of Munich (Berberich et al., 1988). The NCCO 
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Figure 3.1. Typical magnetoresistance characteristics of HTS. (a) For an NCCO 
film and (b) for an YBCO film with H II c. (From Hermann, 1992.) 
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sample is courtesy of S. N. Mao and X. X. Xi at the University of Maryland 

(Mao et al., 1992). The dimensions and characteristics of the films are listed in 

Table 3.1. 

Table 3.1. Characteristics of the thin-film samples. 

material film thickness width length Tc OTC Pn substrate 

name (nm) (gm) (mm) (K) (K) gilcm 

YBCO 27.08.91 160 50 0.05 86.4 2 480 MgO
 

NCCO NX542 180 200 1.23 18.6 1.4 148 YSZ
 

All films are c-axis oriented, that is, with the c axis of the film parallel to 

the normal of the substrate surface. Each film was made into microbridge 

using wet-etching photolithography. Fig. 3.2 is a schematic drawing of the 

microbridges. 

The YBCO film was made by thermally evaporating the constituent 

materials onto a MgO substrate in an oxygen atmosphere. The NCCO film 

was made by pulsed laser deposition onto a Y-stabilized ZrO2 (YSZ) substrate 

in a nitrous oxide atmosphere. 

The transition temperatures in Table 3.1 are defined by the temperature 

where p < 10-3gIcm at ambient field, with a width ATc = T onset-Tc. (Tonset 

marks the onset of the superconducting transition.) The resistivity at Tonset is 

denoted pn . The p-T plot for the NCCO film is displayed in Fig. 3.3. 

http:27.08.91
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Figure 3.2. Dimensions of the thin-film samples.
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Figure 3.3. p-T curves for the NCCO film used in this experiment. The data 
are for fields (H c) of (left to right) 1.5 T,1 T, 0.5 T, 0.25 T, 0.1 T, 0.05 T, and OT. 

3.3 The Standard Four-Point Configuration 

Electrical contact was made to the films in a four-point configuration in 

order to eliminate the contact and lead resistance from the resistance 

measurement. In this method, the two current leads and the two voltage 

leads all have different contact points. Because of this, no current flows 

through the two voltage contacts or lead wires (provided a voltmeter with 

sufficiently high impedance is used). Consequently, there is no voltage drop 

over these; the only voltage drop is across the thin film. Therefore, a high 

contact resistance should cause difficulties only because of heating effects. In 
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practice, however, a high contact resistance can result in peculiar voltage 

readings, which can thwart our ability to get meaningful data at low voltages. 

Because of this, it is important to have low contact resistance. 

The contact resistance was determined by measuring the film resistance 

in both two-terminal and four-terminal configurations. The two-terminal 

measurement includes the resistances of the film, the lead wires, and two 

contacts. The four-terminal measurement includes only the film resistance. 

Subtracting these two numbers and estimating the lead resistance yields a 

value for the contact resistance. The contact resistance was also estimated by 

measuring the two-terminal resistance of the film at temperatures well below 

T,. 

3.4 Sample Holder 

The sample holder for each film consisted of Cu-dad PC (printed circuit) 

board, mounted onto a Cu block. The Cu block contained both a carbon-glass 

and a Pt resistance thermometer. Contact pads were photolithographically 

etched out of the Cu on the PC board, and a layer of Au was electroplated onto 

these (see Appendix B). The film was set in a pocket which was milled out of 

the PC board, and was held in place with screws and Silly Puttyl. Thermal 

grease was applied between the sample and the Cu block2. Electrical contact 

from the sample holder to the top of the variable temperature insert was 

achieved using Cu wire and Au connector pins3. The pins were attached to 

1 Silly Putty, Binney and Smith Inc., Easton, PA 18044. 
2 Cry-Con grease, Lakeshore, Westerville, OH 43081. 
3 R30/C socket pin, Vectorbord, Vector Electronic Company, Sylmar, CA. 
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both the wire and the sample holder using low-thermal-noise solder4. 

Contact from the sample holder to the film was made using thin (about 0.05 

mm) Au wire. The method of attaching this wire was different for the two 

materials. 

3.5 Contact To The Film 

3.5.1 YBaCuO 

Electrical contact to the YBCO sample was made using a Au ultrasonic 

bonding techniques. The film had Au pads, which had been evaporated onto 

the film at the Technical University of Munich. Au wire was attached both to 

these pads and to the Au pads of the sample holder using ultrasonic bonding, 

resulting in a contact resistance of about 40 SI per contact. 

3.5.2 NdCeCuO 

Making electrical contact to the NCCO samples was less straightforward, 

perhaps owing to the presence of a high-resistance oxide layer on the surface. 

The technique that proved to be most successful is based on a method used by 

Kussmaul (1992). It differs from the YBCO contact method in that the Au 

wire was not bonded, but attached to the sample holder using BiPb solder, and 

attached to the film using Ag paint in the following manner. The film was 

etched in a dilute (1:10) solution of glacial acetic acid and deionized water for 

4 IND #255 solder, 0.030" diameter, The Indium Corporation of America, Utica, NY 13502. 
5 Martin Wybourne and John Wu, University of Oregon, Eugene, OR. 
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10 minutes in an ultrasonic cleaner. The acid was cleaned off with methanol 

for a few minutes (again in the ultrasonic cleaner). The film was then 

expediently placed onto a mask and then into an evaporator where about 

200 run of Au was evaporated onto the film. The Au was annealed in air for 

20 minutes at 190 °C inside of a hotplate oven (a disk of ceramic placed on a 

hotplate and covered with a glass beaker). The Au wires were then 

encouraged to sit on the Au pads, and Ag paint was applied6. The paint was 

allowed to dry for at least 12 hours in air, often with a light bulb shining on it 

(60 °C) for an hour or two. The resulting contact resistance was less than 1 

per contact. 

3.6 Experimental Procedure 

To obtain p j data, the film was placed in a variable temperature insert 

(VTI) in a liquid-He dewar. Using a Lake Shore DRC-91CA temperature 

controller and adjusting the liquid He flow into the VTI, temperature 

fluctuations and drift in the cryostat were generally held to less than 30 mK 

(peak-to-peak) for each isotherm, resulting in a standard deviation of less 

than 10 mK for each isotherm. For many of the data sets (the more recent 

ones), the temperature drift is less than the scatter and the standard deviation 

was typically 2-3 mK per isotherm. For low temperatures (near 20 K), the 

temperature gradient between the sample and the flow valve [at the bottom 

of the VTI (see Hermann, 1992)] can be made almost zero by adjusting the 

flow valve; for example, if the sample temperature is greater than that at the 

flow valve, then opening the flow valve brings the two temperatures closer. 

At higher temperatures (near 80 K) a temperature gradient in the system 

6 Silver Print, GC Electronics, Rockford, IL 61102. 
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seems unavoidable. Typical P-D-I (proportional-derivative-integral) settings 

on the Lake Shore temperature controller are 50-5-20 (near 20 K) and 300-8-30 

(near 80 K). The temperature stability is usually better if the heater is 

operating in the 50-100% power range rather than in the 1-50% range. 

Generally, if sufficient time elapses between measuring isotherms, the 

temperature will be reasonably constant during the measurement. 

The magnetic field was applied parallel to the c-axis of the sample and 

was generated by a 9-T NbTi superconducting magnet. For high fields (above 

50 mT), current was supplied to the magnet by a Cryomagnetics IPS-100 

power supply. For low fields, either a Kepco ATE-36-8M power supply or a 

Keith ley 220 current source was used, and the current was read by a Keith ley 

195A multimeter. The magnetic fields were calculated from the current in 

the magnet, assuming field varies linearly with current. Remnant fields and 

self fields may change the absolute determination of the field by a few mT; 

this is significant only at the lowest fields. Direct current was supplied to the 

film using a Keith ley 220 current source and the voltage was measured by a 

Keith ley 182 nanovoltmeter. Thermal offsets were minimized by reversing 

the current direction; the current was applied for 1.8 s in each direction, 

which represents 10% of each measurement cycle. Each reading was an 

average of 30 voltage measurements. We incremented the current from a 

value where the voltage is below our resolution of 15 nV to just below the 

critical current density. Each isotherm took 10 to 30 minutes to generate. The 

isotherms are typically 100 mK apart, except at ambient field for YBCO where 

they are more closely spaced. The magnet's power supply, the current source, 

the nanovoltmeter, and the thermometers were monitored and controlled 

remotely by Lab View software on an Apple Macintosh Quadra 800. 
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3.7 Analysis Procedure: Obtaining v, z, and Tg 

At each field we measure p J isotherms (typically 20 - 100) around Tg. 

By appropriate choice of the scaling parameters Tg, v and z, each set of 

isotherms collapses onto two psc versus Jsc curves, where psc is the scaled 

resistivity, 

Psc = po 3.1
Tg 

and Jsc is the scaled current density, 

2v 
J T 

3.2
Tgi-

Therefore, when psc is plotted versus Jsc all of the isotherms for a given 

field collapse onto one of the two universal functions, F., and F_, according 

to Eq. 2.3 as shown in Fig. 3.4. 

To find the scaling parameters we begin by defining a range of possible 

Tg values from those isotherms that show neither upward nor downward 

curvature at low currents on a logp versus log J plot, since p should have a 

power-law dependence on I at Tg (see Eq. 2.5). One is chosen as the most 

likely critical isotherm which gives an initial value of the parameter z from 

the slope (z21) of the critical logp versus log J isotherm. 

For T > Tg we expect a constant resistivity min at low currents and predict 

that it varies with T as Min T gls according to Eq. 2.9. So, for each 

isotherm with T greater than Tg, log pun is plotted against log1T- Tgl; the plot 
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Figure 3.4. Construction of the universal functions. (a) p-I isotherms for the 
YBCO film in a field of 1 T and (b) the same data collapsed. The dashed 
isotherms are outside the scaling region. The displayed isotherms are about 
1 K apart, and comprise about 10% of the data. 
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is linear in the critical regime, with a slope s = v(z 1) which gives a value for 

v as v = Each of the other candidates for the critical isotherm also yields 

a trial set of T g, and v. 

To obtain the best collapse, the exponents are optimized for what is 
deemed the most reasonable value of Tg (observing the constraints on the 

parameters). Then, Tg is varied (within the range determined by the 

isotherms which show neither upward nor downward curvature) and the 

parameters are adjusted at each value. The final parameters are taken from 

what is considered the best scaling plot. Generally, the quality of the scaling 

deteriorates near the outer limits of possible Tg values. Determining the 

optimum collapse of the data is a qualitative decision; it is taken as the one 

which results in the data falling onto one of two well-defined lines with the 

least deviation. The range of parameters which yield a reasonable collapse of 

the data is used to estimate the errors in the parameters. 

At sufficiently high current densities, one expects flux-flow effects to 

dominate (see § 1.4). Indeed, at the highest current densities all isotherms 

show a downward curvature, presumably owing to flux-flow effects, and 

some cutoff criterion is necessary. For isotherms above the transition, it is 

clear by inspection where the high-current downward curvature sets in; it 

corresponds approximately to p = 12. For isotherms below the transition, it is 

difficult to distinguish between the high-current flux-flow curvature and the 

downward curvature expected by the VG model; we generally cut this data 

less aggressively, using the criterion Al = constant. Fig. 3.5(a) displays the raw 

p J for YBCO with a field of 10 mT applied parallel to the c axis, and (b) is 
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the same data after cutting both the noise at low voltages and the flux-flow 

curvature at high currents. Fig. 3.6 shows how the NCCO 30 mT data were 

cut. (The sharp increase in resistivity at high currents seen in a few isotherms 

in Fig. 3.6(a) results from catastrophic heating effects.) 



54 

J (Acm2) 106 

I V I 1 I 1111 I 1 I V VIII V I WW1 I I V x11111 I I II II
 

p (Slcm) 

YBCO 
10 mT ti c (b) 

, I I I ItIll I I 11.1111 I I I
11111 I I II1111 I 1111111 I 11111
1041
 

101 J (Acm2) 106
 

Figure 3.5. p-I isotherms for YBCO in 10 mT 11c, before and after being cut. 
Data are (a) before being cut and (b) after being cut. The isotherms are 0.1 K 
apart. The dashed isotherms are outside the scaling region. The full 
temperature range is 85.3 - 87.4 K, with a scaling region of 85.3 - 87.1 K. 
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Figure 3.6. p-I isotherms for NCCO in 5 mT II c, before and after being cut. 
Data are (a) before being cut and (b) after being cut. Data a) before being cut 
and (b) after being cut. The isotherms are 0.1 K apart. The dashed isotherms 
are outside the scaling region. The full temperature range is 15.9 - 19.3 K, 
with a scaling region of 17.8 - 18.6 K. 
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The universal functions can be divided into four regions, as depicted in 
Fig. 3.7. 

106 

10 -12 

io -5 io 7 

Scaled Current Density, Jsc 

Figure 3.7. Regions of the universal scaling functions F+. The horn denotes 
F+ near Tg, the elbow is the region near F +(Jnl), the wing refers to F+ for 
T>>Tg, and the tail describes R for T«T8' (These functions are for the NCCO 
film in an applied field of 0.5 T.) 

The "horn" denotes Ft near Tg, the "tail" is F away from Tg, the 

"elbow" describes F+ near F+(J7,/), and the "wing" is where F+ .1, as shown 

in Fig 3.7. A very poor choice of Tg results in severe deviations at the horn. 

For example, some isotherms may fall on the wrong function, neither 

function, or may be shaped like the letter "s". The horn is also quite sensitive 
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to the choice of z, which is reasonable since z describes the slope of the 
isotherm at Tg. Another indication that T is not correct is if most of thes 

isotherms have odd shapes. A broad elbow in an otherwise nice collapse may 

signal that v is wrong. For YBCO, deviations in the tail generally mean that 

z is incorrect, and deviations in the wing usually signify that v has not been 

optimized; for NCCO, both exponents affect the wing and tail. 

Fig. 3.8 displays the scaling collapse of the data appearing in Figs. 3.5 and 

3.6, for the YBCO film in 10 mT II c, and the NCCO film in 5 mT ll c, 

respectively. Figs. 3.9-3.25 show the p-.1 isotherms and scaling collapse for 

both films and all fields (except 0 T). The quality of the scaling has improved 

as our technique has, resulting in good, though not optimal, scaling for the 

earliest data. However, all of the scaling collapses presented here are 

comparable to most of the published data (see references in Table 1.2). The 

primary source of diminished scaling quality results from leaving too much 

of the high-current data (that which shows the effects of flux flow [see § 1.4 

and 3.7)]. 

http:3.9-3.25
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Figure 3.8. Scaling collapse for (a) YBCO with 10 mT ll c, and (b) NCCO with 
5 mT II c. 



59 

10-4
 

p (S2cm) 

10-1° 

J (Acm2) 105 

1o9 

T V z 
B 

18.19 0.93 7.40 

Pic 

104Jsc 

Figure 3.9. p-I isotherms and scaling collapse for NCCO with 1 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.10. p--.1 isotherms and scaling collapse for NCCO with 30 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. The temperature range is 15.14 - 19.90 K. (b) Data in (a) 
collapsed onto the two universal functions according to Eq. 2.2. 
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Figure 3.11. p-I isotherms and scaling collapse for NCCO with 50 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.12. p-.1 isotherms and scaling collapse for NCCO with 100 mT li c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.13. p-f isotherms and scaling collapse for NCCO with 0.25 T c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.14. p-I isotherms and scaling collapse for NCCO with 0.5 T II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.15. p-I isotherms and scaling collapse for NCCO with 1 T H c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 



66 

10-4 IF 1 1 1 11111 1 1 1 I 111111 1 1 1 V !Mil ­

Ow 

p (S/cm) 

10-1° 

101 J (Acm2) 105
 

109
 

T V z 
B 

85.65 1.00 8.50 

Psc 

10-6
 

10-3 104
Jsc 

Figure 3.16. p-j isotherms and scaling collapse for YBCO with 1 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.17. p-I isotherms and scaling collapse for YBCO with 3 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.18. p-I isotherms and scaling collapse for YBCO with 5 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.19. p-I isotherms and scaling collapse for YBCO with 15 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.20. p-I isotherms and scaling collapse for YBCO with 100 mT II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.21. p-I isotherms and scaling collapse for YBCO with 0.25 T II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 22. 
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Figure 3.22. p-J isotherms and scaling collapse for YBCO with 1 T II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.23. p-I isotherms and scaling collapse for YBCO with 2.5 T II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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Figure 3.24. p-I isotherms and scaling collapse for YBCO with 5 T II c. (a) 
Resistivity-current density isotherms. The dashed isotherms are outside the 
scaling region. (b) Data in (a) collapsed onto the two universal functions 
according to Eq. 2.2. 
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CHAPTER 4
 

RESULTS
 

Dc p J isotherms were measured for the NCCO film in applied 

magnetic fields from 1 mT - 1 T, and for the YBCO film in fields from 1 mT ­

5 T, including some in the milliTesla range for each film. It was found that 

the p J isotherms for both films and all fields measured scale according to 

Eq. 2.27. At high fields the critical exponents extracted are the same, constant, 

and consistent with the vortex glass theory. The universal scaling functions 

found at high fields are indeed universal, as seen in Fig. 4.1 which is the 

overlay of the universal functions obtained for two different YBCO films in 

an applied field of 5 T; one set of scaling functions was obtained by Woltgens 

et al. (1993) and one was obtained by us. At low fields we see a change in both 

the critical exponents and the scaling functions. 

4.1 Field Dependence of the Critical Exponents 

Fig. 4.2 displays the field dependence of the critical exponents for both 

films. Tables 4.1 and 4.2 list the exponents, including z from the slope of the 

critical isotherm and s from the fitting the Ain data. Tables 4.3 and 4.4 list the 

uncertainties in the exponents. For high fields, the extracted exponents are 

We also scaled p-I data for ambient field for both films. We did not measure any values of 
Plin with a power-law dependence on IT-T gl. Because of this, it is uncertain if any of the 
ambient field data lie within the scaling regime. Some of the measured isotherms could be 
within the scaling regime but with a linear resistance which is below our measurement 
resolution. For the NCCO film we find a reasonable collapse of the data within a region 
of 0.6 K around T g using the parameters Tg=18.17±0.03 K, z=10.4±0.005, and v=1.04±0.005. 
For the YBCO film, we used Tg=85.80 K, z=8.8, and v=1.03. 

7 

http:Tg=85.80
http:Tg=18.17�0.03
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Figure 4.1. Comparison of the universal functions for two YBCO films. The 
figure shows both the data from Woltgens et al. (1993) Fig. 3, and the data 
presented in this thesis. The films have 5 T II c. 



77 

II V WU.] . 

8 

7
 
Z
 

6 
X

it r i f 
5 

X YBaCuO . (a) 
I 2 11111/11II V 

NdCeCuO 

1.6 

O nV 5( 

1.2 

(b) 
fl. A II a 1 0 It IIIII I 111./ B."! 11111

0.8
 
10-3 10 ' 101
 

H (T) 

Figure 4.2. Dynamic and static exponents as a function of field. (a) shows z 
and (b) v. Crosses are the values for the YBCO film, and the circles are for the 
NCCO film. The uncertainty in Tg is the primary source of the error in the 
exponents; once Tg has been specified, the uncertainty becomes much 
smaller. 
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Z E--' 5.6±0.5 and v -a: 1.5±0.2. As the field is decreased, z increases and v 

decreases. At the lowest fields (below 30 mT), z and v become constant again 

with v .:-., 1, z .a- 7.3 (for NCCO) and z a- 8.5 (for YBCO). Though the exponents 

for YBCO and NCCO are the same within error, the average low-field value 

for z is higher for YBCO than for NCCO. The values for the exponents are 

presented in Tables 4.1 and 4.2. 

1sSWe find that s resulting from fitting the min data to plin = Po i 
T g 

consistent with s calculated using v and z from scaling s E v(z 1) (recall 

Eq. 2.9), as shown in Tables 4.1 and 4.2. We obtain s :+: 7 ± 1.5 for both films, 

with considerable scatter but without systematic field dependence. 
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Table 4.1. Critical exponents for NCCO obtained using different methods. 
The values which gave the best data collapse are denoted zsc and vsc. The 

dynamic exponent z from p «I 2 at Tg is labeled 'z p(J)@Tg'. The 

combination s = v(z -1) from plin « IT-Tgls is denoted s. The percent difference 
between these values and those used in the scaling collapse are listed. 

' H 
(T) Vse I Zse H

p(J)@Tg 7 diff. I v (z0. scsc-1) s_ % diff._ 

1 1.8 4.9 5.0 3 6.7 6.9 2 
0.5 1.7 4.9 5.0 1 6.9 6.8 1 

0.25 1.4 5.4 5.3 1 6.3 6.2 1 

0.1 1.3 5.4 5.4 0 5.6 5.1 9 
0.05 1.1 5.4 5.3 2 4.9 4.5 9 
0.03 1.1 7.4 7.6 3 6.7 5.5 20 
0.005 0.9 7.2 7.1 2 5.7 5.2 10 
0.001 0.9 7.4 8.2 10 6.0 5.5 ; 8 

Table 4.2. Critical exponents for YBCO obtained using different methods. 

H z 
zsc % cliff. vsc(zsc -1) s % cliff.(T) vsc 

5 1.5 5.6 5.7 0.2 6.7 6.9 3 
2.5 1.6 5.5 5.8 3 7.3 7.4 2 

1 1.6 5.9 5.7 3 7.8 7.7 1 

0.25 1.7 6.0 6.7 12 8.4 6.8 21 
0.1 1.4 6.2 6.7 8 7.4 7.4 1 

0.03 1.2 6.4 6.4 1 6.6 6.7 1 

0.015 1.2 6.5 6.7 1 6.6 6.8 3 
0.010 1.2 7.5 8.0 7 8.1 8.1 0.1 
0.005 1.1 7.4 7.1 4 7.2 6.9 3 
0.003 1.1 8.5 8.6 2 8.1 8.2 3 
0.001 1.0 8.5 9.7 13 7.5 7.5 0.1 
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Table 4.3. Summary of scaling exponents for the NCCO film. These values
 
were obtained by optimizing the scaling collapse. The upper uncertainty in v
 
is denoted as 8v+ and the lower as 8v._; similarly, the uncertainties in z are
 
Sz+ and Sz_. 

H 
8v+ 8v_ I zsc 8z+ 8z_(T) I vsc 

1 1.75 0.10 0.01 4.85 0.8 0.4 
0.5 1.74 0.09 0.02 4.94 0.7 0.4 

0.25 1.44 0.01 0.00 5.35 0.7 0.5 
0.1 1.27 0.08 0.02 5.40 0.1 0.1 

0.05 1.12 0.01 0.02 5.40 0.7 0.0 
0.03 1.05 0.14 0.03 7.37 1.5 1.4 

0.005 0.92 0.01 0.01 7.23 0.1 0.1 
0.001 0.93 0.01 0.05 7.40 0.6 0.3 

Table 4.4. Summary of scaling exponents for the YBCO film. These values 
were obtained by optimizing the scaling collapse. The upper uncertainty in v 
is denoted as 8v+ and the lower as 3v_; similarly, the uncertainties in z are 
8z+ and 6z_. 

H 
8v+ 8v_ I zsc az+ 3z_(T) I vsc 

5 1.45 0.20 0.20 5.65 0.4 0.4 
2.5 1.60 0.05 0.05 5.55 0.3 0.3 

1 1.59 0.04 : 0.04 5.90 0.4 0.4 
0.25 1.70 0.04 0.04 5.95 0.5 0.5 
0.1 1.42 0.03 0.01 6.20 0.7 0.3 

0.03 1.24 0.05 0.05 6.35 0.8 0.8 
0.015 1.19 0.03 0.03 6.55 0.6 0.5 
0.010 1.24 0.07 0.01 7.50 0.9 1.0 
0.005 1.12 0.05 0.05 7.40 1.0 1.0 
0.003 1.08 0.03 0.03 8.47 0.7 1.0 
0.001 1.00 0.00 0.00 8.50 1.0 0.5 
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4.2 Field Dependence of Tg 

The H-T phase diagrams resulting from this experiment appear in 

Fig. 4.3(a) and Fig. 4.4(a). The Ha (T) line is obtained from inverting Tc(H) 

where Tc is defined as the temperature at which the resistivity is half the 

normal state value. [Perhaps a more accurate estimate of Ha(T) would be to 

use the slope of M(T) with a correction for the vortex cores (Hao et al., 1991; 

Welp et al., 1992); however, the estimate used in this thesis should be 

sufficient for our purposes.] 

The circles denote T values, which are listed in Tables 4.5 and 4.6. It isg 

expected (Fisher, Fisher, and Huse, 1991) that in the XY critical regime, at 

small fields, and dose to Tc, 

2v° 
H eciTcTgl 

with v°... 
2 

. Most of the high field data published is consistent with this (see 

Table 1.2). We show that the dependence of H on ITc(0) Tg(H)I is neither a 

single power-law nor a linear function over the whole field range. 

For YBCO, in the high field regime (H> 0.1 T), H depends almost linearly 

on Tg as shown by the line in Fig. 4.4(a). This region, with the inclusion of 

the mean field transition temperature, can also be described by 
Hcc[Tc(0)Tg(H)r° with vo = 0.75, which is a solid line in Fig. 4.4(b). 

Fitting the vortex glass transition temperature Tg to the function 

H ..[Tg(0)Tg(H)12v° 
4.1 
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results in v, = 0.65 for the NCCO film (using Tg(0) = 18.2 K) and vo = 0.6 for 

the YBCO film. These fits are shown in Fig. 4.3 for the NCCO film and 

Fig. 4.4(b) for the YBCO film. 
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Figure 4.3. H-T phase diagram for the NCCO film with H II c. The cirdes 
denote Tg values. The line is a fit to H.ITg(0)-Ts(H)I2v° which yields vo = 0.65. 
For the Ha line in (a), Tc is defined as the temperature where the resistivity 
is 50% of the normal state value. (b) The glass transition temperatures and 
the H(Tg) fit on a semi-log plot. 
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Figure 4.4. H-T phase diagram for the YBCO film with H II c. The circles 

denote Tg values. In (b) it is seen that H depends almost linearly on IT-Tgl, 

but can be fit to HociTg(0)-Tg(H)12v° yielding vo = 0.6. Although 

HodTc(0)-Tg(H)12v° will fit the high-field data (with vo = 0.75), it does not 
describe the low field data. 
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Table 4.5. Tg and width of scaling region t for the NCCO film. The 
uncertainty 8er is the range of temperatures for which it is uncertain whether 
or not Pun has a power-law dependence on IT Tgl. 

H Tg T SiSTg+ ST8­ (K) (K)(T) (K) (K) (K) 
1 9.6 0.25 0.45 5.2 0.10 

0.5 12.85 0.30 0.17 4.0 0.18 
0.25 15.24 0.13 0.21 3.5 0.19 
0.1 17.21 0.09 0.09 2.1 0.13 
0.05 17.83 0.01 0.06 2.0 0.11 
0.03 17.85 0.10 0.15 2.2 0.07 
0.005 18.15 0.02 0.02 1.5 0.16 
0.001 18.19 0.02 0.02 1.6 0.04 

0 18.17 0.03 0.03 

Table 4.6. Tg and width of scaling region T for the YBCO film. The 
uncertainty tYr is the range of temperatures for which it is uncertain whether 
or not Pun has a power-law dependence on IT - Ts'. 

H 
(T) 

Tg 
(K) 

8Tg+ 

(K) 

ST8­
(K) 

T 
(K) 

Si 
(K) 

5 74.6 0.40 0.04 5.1 0.35 
2.5 80.11 0.30 0.03 

1 82.85 3 
0.25 84.73 2.8 0.7 
0.1 85.25 0.15 0.10 1.6 
0.03 85.25 0.15 0.15 

0.015 85.30 0.05 0.10 1.3 0.05 
0.010 86.01 0.10 0.20 
0.005 85.50 0.10 0.10 1.8 
0.003 85.56 0.15 0.15 
0.001 85.65 0.10 0.05 1.3 0.15 

0 85.80 0.05 0.05 
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4.3 Length Scales 

When the Lorentz energy gained by nucleating a loop (Eq. 2.40), is set 

equal to the thermal energy kBT of the system, we obtain a characteristic 

length scale Lc, 

2 kBT 
= . 4.2 

Above Tg, when this length is larger than the vortex glass correlation length 

> (low currents), the resistivity will be current independent (flux liquid 

state). When Lc 4, non-linearities set in and the resistivity becomes 

strongly current dependent. This gives a physical picture of the relation 

stated previously (§ 2.1), namely, 

kBT 
4.3Jnt = A 2 

111oVG 

where Jnl is the current density at which the resistivity is no longer current 

independent for isotherms with T>Tg. This can also be used to roughly 

estimate 'VG as 

127 = C kBT 
G 4.4 

where the dimensionless prefactor C (assumed of order unity) is not known. 

There are several ways of obtaining Jnl. All reasonable methods give the 

same temperature dependence, 

2v 

1- 4.5= LT Tg 
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Figure 4.5. Vortex glass correlation length as a function of temperature. Data 
are for NCCO in 1 T (open circles) and 1 mT (solid circles); see text. The actual 
magnitude of the correlation length may differ from that shown, which 
would shift 4.vG vertically. The film thickness is depicted as a horizontal line. 

but result in different values of J. The solid curves in Fig. 4.5 result from 

defining In/ as that current for which F,(./,),--- 3.5 in the scaled plot (e.g. 
v 

Fig. 3.8) and then extrapolating to low temperatures using EVG ' 1-T . The 

resulting temperature dependence for the NCCO film is consistent with 

finding mill by estimating the current on the p-J plot where p first deviates 

from linearity. These appear in Fig. 4.5 as points (C was adjusted so that the 

points would lie on the solid curves). The same form for Jill is obtained from 
d log E

using the criterion that Jill is the current for which =1.2 (Woltgens,
clog J 
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1993). The latter two definitions of In! result in liG>t, which is unphysical 

and sets an upper bound on C in Eq. 4.4. 

The penetration depth is assumed to have a temperature dependence 

given by the two-fluid model (Tinkham, 1975), 

1 

1(T) = A (41 --11Q114] 4.6
Tc(H) 

but is otherwise taken to be field-independent. The penetration depth, 

evaluated at Tg, is only weakly field dependent, as shown in Fig. 4.6. For 

NCCO it varies from 0.24 gm at low fields to 0.14 gm at 1 T; for YBCO it 

101 I1 11111 II I 111 11111 I I 

- a0 

t 
N4%6 

(Ts)g 

I 
"1/41,4:1 IN w ,r - .. . ,, 

NCCO .....;,..: 
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I I I 1 11111 I I IIIIIIII I I 1 1 1 1111 I I 11 1111 

10-2 104 10° 

H (T) 

Figure 4.6. Relevant lengths as a function of field for the NCCO film. The 
solid line depicts the film thickness t, the dashed line represents the average 
intervortex spacing ao, and the dotted line is the penetration depth A 
evaluated at Tg(H). 
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changes from 0.5 gm at low fields to 0.25 gm at 5 T. (Near Ha, the effective 

screening length increases, resulting in a field dependent penetration depth 

(Clem, 1990) 

1 

I2
4B)=X(0)[1 4.7HBc2(T) 

This correction has not been calculated explicitly, but would change X by less 

iirthan 10%.) The average intervortex spacing a = le- increases from 0.02 gm
° B 

at 5 T to 1 gm at 1 mT. The film widths (not shown) remain larger than all 

other lengths, but the film thickness is exceeded by both ao and VG in certain 

regimes. 

4.4 The Elusive Critical Exponent p. 

The scaling of p J isotherms investigates the possibility of a phase 

transition, but does not directly probe whether or not the low temperature 

phase is a vortex glass. To determine this, one must fit the low-temperature 

data to Eq. 1.14 (c.f. Eqs. 2.55 and 2.61). Furthermore, the values of '1 resulting 

from this analysis should help determine if the VG or CC model best 

describes the system, since these models have different predictions for p (see 

§ 2.7). 

Two methods for fitting the low-temperature p J isotherms to Eq. 1.14 

have been reported. The first analysis was reported by Dekker, Eidelloth, and 

Koch (1992), who linearized Eq. 1.14 by writing it as 

lnp = lnpo + vor[J-11. 4.8 
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A straight line fit to hip versus J-1` is performed for various values of p., 

and the /./ which gives the best fit is deemed to be the correct value of ii; the 

slope and y-intercept of this line give .10 and po. It was found that it is a 

function not only of magnetic field and temperature, but also current. 

Leghissa et al. (1993) approached the problem differently. Rather than 

finding one value of /1 for each p J curve, they allow u to vary with 

current along each isotherm. By calculating 

d (dlog E
log 4.9140 = dlogT dlog./} 

every curve generates a function p(J). To find the temperature dependence 

of ii, the maximum of each p(J) is defined as it*, and u * (T) is then 

displayed. Thus, the method of Leghissa et al. also generates ji = it(T, B, J). 

The analysis methods of both Dekker, Eidelloth, and Koch and Leghissa 

et al. were used to extract values of y from some of the data presented in this 

thesis. Experimental problems were encountered with each method. As 

mentioned previously (§ 1.4 and 3.7) at sufficiently high currents flux flow 

effects should dominate, and a downward curvature is expected in the 

log p log I curves. Using the method of Dekker, Eidelloth, and Koch it was 

found that the value obtained for g depends slightly on the criteria used to 

cut the data; it decreases by about 0.2 for every 5 x103 Acm-2 decrease in J 

(approximately each data point cut). In fact, if the current regime is too 

narrow, a fit to Eq. 1.14 gives it ---: 0. 
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Another difficulty in applying the method of Leghissa et al. is that the 

normal scatter present in experimental data is magnified when a derivative is 

taken, and further disproportioned when a second derivative is taken. Thus, 

it was necessary to smooth the data before applying Eq. 1.14. 

What we find for it is similar to what other researchers have found. In 

particular, we determine that u is a function of current as well as magnetic 

field and temperature. Thus, Eq. 1.14 must be modified to 

P(.1) ' exP[+°"(j)1
.1 j 1 

suggesting that perhaps neither the VG nor the CC model is sufficiently 

complete to fully describe the measured current dependence of the resistivity 

at low temperatures. However, Dekker, Eidelloth, and Koch propose that 

their data suggests two plateaus, one at high currents (1 = 0.94), and one at 

low (Az = 0.19). Thus, it is argued that the change in /2 is indicative of a 

crossover between high and low current regimes (with u constant in each), 

rather than indicating an explicit current dependence of Ai. 

4.10 
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CHAPTER 5
 

DISCUSSION
 

The high-field exponents lend support to the vortex-glass model of FFH. 

The critical exponents reported here for NCCO films are consistent with those 

found for YBCO films. Thus, the vortex transition is the same for the two 

materials. Indeed, the exponents for YBCO films are closer to those of NCCO 

films than to those of YBCO single crystals (Katz ler et al., 1994a). This 

suggests that the defect structure (which is likely to be similar in all 

perovskite films grown under similar conditions) is more important than 

intrinsic differences in chemical composition, Tc, pair coherence length, and 

Hc2, in determining the nature of the phase transition. A previous analysis of 

p J characteristics of an NCCO film (Yeh et al., 1992) resulted in values for 

critical exponents which were closer to those found for films than crystals. It 

has been proposed that the notably lower exponents some researchers find 

result from an attempt to scale the region of p J space where flux-flow 

effects are dominant, rather than the lower J regime where a vortex glass 

phase transition is expected. This argument is plausible for some of the 

published data. However, the deviations from scaling seen in the collapse of 

the NCCO film data of Yeh et al. (1992) do not seem sufficiently severe to 

justify this conclusion. 

The similarity of the exponents for the NCCO and YBCO films extends 

even to their field dependence. Such dependence is not predicted by scaling 

theory, where the critical exponents are determined only by the universality 

class of the transition. If these data are to be interpreted as the signature of a 
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phase transition, and not merely a convenient parameterization, the most 

likely explanation for the field dependence is that a fundamental change in 

the transition occurs at low fields. Preliminary work (Brown and Tate, 1995) 

points to the possibility that the vortex transition may be approaching first 

order at low fields. Nevertheless, several interpretations deserve 

consideration. 

5.1 Critical Regime 

It has been argued that the critical region becomes immeasurably small at 

low field (Koch, Foglietti, and Fisher, 1990). However, we define the critical 

region consistently at all fields and it remains measurable down to at least 
1 mT. The VG model predicts a power-law dependence of pun on IT T gl 

(Eq. 2.9). Fig. 5.1 shows that log pin, versus log IT Tgl is indeed a straight line 

up to some field-dependent temperature, as predicted. Furthermore, the 

value obtained for s is consistent with both the expected value and with that 

obtained by other experiments (see Tables 1.2, 4.1, and 4.2). This temperature 

can be used as an estimate of the critical region (Safar et al., 1992), which is 

displayed in Fig. 5.2(a) as a function of field for NCCO; the critical region 

decreases from 5 K at 1 T to 1.5 K at 1 mT. The widths of the critical regions 

for both films are listed in Tables 4.5 and 4.6. 

In § 1.5 it was stated that both the temperature width TT of the 

fluctuation dominated regime near Ha, and the width Tin of the melting 

transition (presumably assumed to be second order by Feigel'man et al., 1993) 

are predicted to vary with field as 
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Figure 5.1. Low-current resistivity Pun as a function of IT-Tg I. A linear slope 
on this log-log plot indicates that the resistivity obeys the predicted form. The 
temperature at which logp/in is no longer a linear function of log IT-Tgl 
defines the critical region. The data shown are for (a) the YBCO film in fields 
0 T, 5 mT, 30 mT, 0.1 T, 0.25 T, 1 T, 2.5 T and 5 T, and (b) the NCCO film in 
fields (from left to right) 1 mT, 0.1 T, 0.25 T. 0.5 T, and 1 T. 
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[Ha (T)I.. pTcGi% 5.1 
Hc2(°) 

where 84, 13 - 3 - 7 for Tm, and 13.1 for TT. It is reasonable to expect that the 

width of the vortex glass region may also have this form. For the NCCO film 

TcGiY3.1 and Ha -- 2.7 T (see Table 1.1). Eq. 5.1 fits the data quite well, as 

displayed in Figs. 5.2(a) and (b), yielding 8=0.5 and 13 - 5.4. Although the 

prefactor (3 seems reasonable, the exponent 6 differs considerably from the 

predicted value. 

5.2 Dimensional Crossover 

5.2.1 Comparison with Bi2223 Films 

In a recent paper that presented the scaling of p I isotherms for Bi2223 

films, Yamasaki et a/. (1994) suggested that the field-dependent exponents 

observed in YBCO could be explained by assuming a two-dimensional 

transition at low fields. They noted that upon setting d = 2 in the scaling 

analysis for the low fields, one could define 2D scaling exponents z' and v', 
which can be found from the 3D critical exponents using v' = 2v and z' = z-21; 

the resulting 2D critical exponents z' and v' are closer to the high field (d = 3) 

values. Even if it were clear in what sense low field implies two-

dimensionality, one would not expect the critical exponents to be the same in 

two dimensions as in three; a universality class is partly determined by the 

dimensionality. For example, the Ising model calls for v = 1.0 in 2D but 

v = 0.627 in 3D. In dimensions 
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NCCO film 
HI lc 

(a) 
. . . 1 ...11 . I . . . . 111 . ....... 

10 10-2 104 10° 

H (T) 

101 

- T=5.4[Hc2(1)/Hc2(0)]0.5 

Ha(0) 2.7 T 

Hc2(T)/Hc2(0) 10° 

Figure 5.2. Critical region t as a function of field for the NCCO film. The line 
is a fit to Eq. 5.1. The critical region above Tg is comprised of isotherms for 
which logpiin is a linear function of logIT-Tgl, and the critical region is 
assumed to be symmetric about Tg. This definition corresponds remarkably 
well with the range of isotherms which can be scaled. In (b), Ha(T) is 
obtained by defining ; as the temperature at which the resistivity is 50% of 
its normal state value. 
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above the upper critical dimension, du = 6, of the glass transition, the 

exponents should converge to their mean-field values z = 4 and v = 0.5 

(Dorsey, Huang, and Fisher, 1992); the exponents are expected to increase for 

dimensions less than du (Fisher, Fisher, and Huse, 1991). In light of this, it is 

not reasonable to change the value of d merely to preserve the high-field 

values of the critical exponents. 

However, the comparison between the Bi2223 films and the low-field 

data presented here is interesting. That experiment extracted 3D critical 

scaling exponents z =12.2, v = 0.69 and 2D exponents z' = 5.61, v' =1.38. Since 

Bi2223 is expected to be quasi-two-dimensional, they considered the latter 

more appropriate. While the 3D values of z and v are not identical to our 

low-field values, they are similar in that the dynamic exponent is higher and 

the static exponent is lower than predicted by the VG model. 

Bi superconductors are extremely anisotropic (y-55-100) and expected to 

behave quasi-two-dimensionally at high fields (.0.3 T), and three-
dimensionally at low fields. When the interlayer spacing 1 exceeds yao, the 

vortices are expected to decouple into so-called pancake vortices (Clem, 1991), 

resulting in reduced vortex interactions between superconducting planes. 

Rather than being treated as lines, vortices are taken as points (vortex 

pancakes) which interact within each layer. In YBCO, the crossover field is 

expected to be too large for this effect to be observed. 
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5.2.2 Size Effects and the Ando-Kubota-Tanaka Experiment 

Another interesting comparison is with a recent experiment by Ando, 

Kubota, and Tanaka (AKT) (1992). They determined the VG phase transition 

parameters for very narrow (<0.5 gm) YBCO microbridges, and observed a 

systematic increase in the dynamic exponent with decreasing bridge width. In 

their limited field range (1 - 3 T), they also found a small field dependence8. 

At the lowest flux densities in our experiment, the fraction of vortices along 

the edge of our wider YBCO microbridge width is comparable to that in the 

AKT experiment. AKT suggested that the increased z could be related to a 

softening of the vortex lattice. This softening, inferred from the systematic 

decrease in the value of Tg with film width at constant field, was explained by 

a reduced interaction energy density of vortices near the edge of the film. We 

could be observing a related effect since the elastic moduli of the vortex lattice 

decrease in the low-field region. It is also worth noting that, in contrast to our 

experiment, the large dynamic exponents observed in the AKT experiment 

are not accompanied by a decrease in the critical region. There, the critical 

region remains several Kelvin wide, even at the largest z-values. Finite size 

scaling (FSS) theory (Barber, 1983; Cardy, 1988) provides an alternative 

explanation of the AKT data. I have re-analyzed the AKT data within the 

context of FSS; see Appendix C. 

For our data, estimates of 41/G indicate that the field dependence of the 

exponents is not a finite size effect. A few Kelvin from Tg, 41/G can be directly 

estimated from ha via Eq. 4.4 (assuming d=3), and it is well below the film 

thickness. Close to Tg, our experimental resolution prohibits us from directly 

8. Y. Ando, private communication. 
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measuring J,a, but VG can be estimated by extrapolating the values far from 

T g. Although Eq. 4.4 gives only an estimate of 4G, we do not observe it 

leveling off as it would if t were limiting it. This is demonstrated in Fig. 4.5 

for 1 mT and 1 T for the NCCO film. This can be compared to Fig. 5.3, in 

which Woltgens (1993) finds experimentally that, for thin films, ,,G saturates 

at the film thickness. Woltgens estimated the correlation length along the c 

axis using, 

kBT 
5.2tc = 

TOoLl 

where = 5 (YBCO) and hi/ is defined as the J at which a 1°gE =1.2. In our 
a log J 

experiment, the region where would be greater than t decreases with 

field, which makes it more difficult to see the effects of dimensionality at low 

fields and less likely that the different low-field exponents can be an artifact of 

a finite-size effect. Moreover, the scaling exponents are unaffected by the 

inclusion of the data in this narrow temperature region. 

5.3 Length Scales Revisited 

The field dependence of the critical exponents could indicate a crossover 

between two different regimes. A crossover from 3ID to 2131 seems unlikely, as 

discussed in § 5.2. A field-induced change in the symmetry of the order 

parameter could result in a change in the universality class, but it is unclear 

what this symmetry change would be. An interesting possibility (Brown and 

Tate, 1995) is that the transition could be approaching first order at the lowest 

fields, since at low field the length scale characterizing the disorder may 

become smaller than the intervortex spacing. In any event, we should 
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examine the relationship between the average intervortex spacing a, and the 

other lengths in the system. 

For the NCCO data within the critical region as defined in § 5.1, IIG is 

smaller than a, for approximately half of the data at high fields; at the lowest 

10 -2 10-1 1 0 ° 

(TTg)ag 

Figure 5.3. Leveling-off of 17G for thin samples. Temperature dependence of 
the correlation length along the c axis of an YBCO film in an applied field of 
5 T, for various thicknesses. The solid lines denote the critical behavior

l 
ITTgl .tVG cc 

i 

The dashed lines indicate the leveling off upon approach of 
Tg. The inset shows the plateau tvG versus the nominal film thickness. The 
solid line denotes a linear relationship. (From Woltgens, 1993, Fig. 3.5.) 
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fields, VG < ao for all the scaled data. For YBCO at the highest fields, the scaled 

data is well within the temperature range for which PVC > ao. At lower fields, 

the limit VG = ao is approached. It seems reasonable that the physics should 

be different in the two limits. This possibility is suggested by Fisher, Fisher, 

and Huse (1991) where it is noted that if ao » 'VG the barrier for vortex 

recombination can be large, and that if the process is too slow to occur then 

the universality class of the transition and the glass phase may change 

(p. 152). Of course, a change in universality class would result in a change in 

exponents. A correlation length shorter than the intervortex spacing may 

suggest that dissipation is due to single-vortex movement (Ando, 1993). 

In Kandoff's block-spin approach described in § 2.1.2, the requirement 

was set that a < aL << with a the lattice spacing. However, since critical 

behavior results from correlation of the phase of the superconducting wave 

function, the lattice spacing may be set by the coherence length of the 

superconducting wavefunction, and not by the intervortex spacing. This was 

suggested by Ando (1993). FFH state that even a single vortex line in a 

random potential is in a glassy phase (p. 152). Indeed, they derived Eq. 1.14 for 

a single, randomly pinned vortex line, and then generalized to the case of 

many interacting vortices (p. 148). 

The intervortex spacing exceeds the penetration depth A,(Tg) below about 

30 mT for the NCCO film and 10 mT for the YBCO film, resulting in reduced 

vortex interaction. These fields are where the exponents have assumed their 

low-field values. Vortex interactions decrease with distance r as e1 for 

r >> A., and thus occur out to distances of order the penetration depth A. The 
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physics governing the transition could change for different vortex-interaction 

strengths. Since vortex interactions cause the phase coherence (Huse, Fisher, 

and Fisher, 1992) one may wonder how phase coherence can exist if the 

vortex separation exceeds the penetration depth, ao > X. However, critical 

phenomena are connected with fluctuations which are long-ranged compared 

with the range of the force; fluctuations don't probe the details of the 

microscopic interatomic potential (Kandoff, 1971). 

For completeness, it should noted that in the middle of the crossover 

region, ao equals the film thickness. However, it seems unlikely that this is 

significant. 

Another important length in the system is that which characterizes the 

range of disorder in the sample, which may become smaller than ao at low 

fields. It has been found that in very clean YBCO crystals (low disorder), a 

first-order transition occurs at fields below 10 T, but a second-order vortex 

glass transition occurs at higher fields. That work, coupled with preliminary 

work on twinned YBCO crystals (Brown and Tate, 1995), suggests that the 

anomalous low-field exponents found in films could be signaling a crossover 

from a second order transition to a first order. It remains unclear why pun 

continues to have a power-law dependence on IT Tgl, indicating the 

existence of a scaling region. It is also remarkable that the quality of the 

scaling collapse remains so good at low fields. If we are observing the start of 

a crossover to a first order transition, then evidently the physics in the 

crossover region is complicated 
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5.4 Other Experiments and Theoretical Predictions at Low Field 

We are not aware of a theoretical model which both attempts to describe 

a second-order phase transition at low fields and is consistent with our data. 

FFH predict that a transition into the Meissner phase will be characterized by 

z = 2 and v = 4, but in thin films Hci is anticipated to be smaller than the 

fields we used. A Kosterlitz-Thouless (KT) transition (which applies in two 

dimensions at zero field) predicts a power-law isotherm p oc.12 at the KT 

transition temperature. At Tg we observe a power-law isotherm at all fields, 

but our low field result is p « .13.2 

Zero-field E-J curves have been reported (Dekker et al., 1991) with an 

attempt to extract scaling exponents from them. There, the authors show data 

at 4 T and at zero field for a much thinner YBCO film (50 run) than is used 

here or in most of the other work reported in the literature. They note 

deviations from the 3D scaling at both fields, especially the lower, and 

attribute them to dimensional effects. For the zero-field data they use the 

isotherms at high current density in the vicinity of the mean-field transition 

temperature to extract a value of z = 2.0, which is in agreement with the 

prediction of FFH for the transition to the Meissner state, but they do not 

explore the crossover from the high-field value of z = 4.6. In our case, 

dimensional effects should be absent because the film is thicker. However, 

our zero-field Tg is defined in the same manner as at high field (namely, by a 

power-law p J isotherm) and is lower than the mean-field Tc, (defined from 

p < 10-3 pacm). 
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As mentioned in the introduction (§ 1.7), Chang et al. scaled p J data 

for an YBCO film in ambient field and found z=7. v=0.75, (similar to what we 

find at low field), but these authors did not present any data taken in an 

applied field. 

5.5 Conclusion 

This is the first consistent comparison of critical scaling in NCCO and 

YBCO thin films. Their dc p J characteristics in a magnetic field closely 

resemble one another and can be similarly scaled in the context of a second-

order normal-to-superconducting phase transition. Within error, we obtain 

the same critical exponents for the two materials. Hence, the same transition 

occurs in NCCO as in YBCO, even though these materials have different 

anisotropies, transition temperatures and coherence lengths; this helps isolate 

the primary factors which govern vortex dynamics in copper-oxide high-Tc 

superconductors. The high-field results, taken alone, support the VG 

hypothesis, indicating that there does exist a second-order phase transition 

from a vortex liquid to a truly superconducting vortex glass state. A 

consistent analysis of the low-field data yields a well defined, though narrow, 

critical region and gives different critical exponents. The field dependence of 

the critical exponents indicates a crossover between different regimes with 

decreasing field, suggesting that a fundamental change in the transition 

occurs at low fields. 
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APPENDIX A
 

DOMAIN WALL ENERGIES IN AN ISING MODEL
 

The Ising model consists of a lattice of sites, where each site can have a 

spin of a(r) = ±1. Aligned spins contribute and energy -Jii and unaligned 

spins contribute an energy +Jii; thus, it is energetically favorable for the spins 

to point in the same direction. The Ising Hamiltonian is 

3f = I Maio; HIcri A.1 
i(ii) 

where ( ) indicated a sum over nearest neighbors. For a pure Ising system 

Jiy = J = constant, and for an Ising spin glass m is random both in sign and 

magnitude. For a pure 1D Ising chain of N spins in zero applied field Eq. A.1 

becomes (Plischke and Bergerson, 1989), 

N-1 
n= -I I6i6i+1. A.2 

i=1 

The lowest energy Eo occurs when all of the spins are pointing in the same 

direction, as shown in Fig. A.1(a), 

N-1 
Eo =J X1= J(N 1). A.3 

I 

The next lowest energy occurs for configurations with one domain wall, as 

shown in Fig. A.1(b); spins 1 to j are one direction, and spins j +1 to N are 

the opposite direction. This results in an energy 
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a) E=E 
0
 

domain
 
wall
 

f b)	 E=E 0+2J 

wall energy = 2J 

Figure A.1. A 1D Ising chain. (a) shows the lowest energy configuration, 
which occurs when all spins are aligned. (b) depicts the second lowest energy 
state, which has one spin flip, or domain wall. 

j-1 N-1
E=.IX,1J X1+J=.1(N-2)+J	 A.4 

E=Eo+2J	 A.5 

The so-called wall energy is 21. In general, if there are M domain walls, then 

the energy is 

E=E0-FM2J.	 A.6 

Now consider an N x N, 2D Ising array, that is, a square lattice of spin sites. 

The lowest energy E0 is obtained when all the spins are in one direction 

E0 = 2J(N 1).	 A.7 

Fig. A.2 shows a 2D system with a domain wall which separates a region with 

spins up from a region with spins down. Every spin flip (highlighted by dots 

in the figure) contributes an energy 2J. The total energy is 
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E =E01 +2JL A.8 

where L is the length of the domain wall in units of the lattice spacing; 2JL is 

the wall energy. 

r - ­i - ­
f 

domain 
wall 

f I f 1 f ti 
L 

f I f f f 1 

Figure A.2. A 2D Ising lattice. The energy of the domain wall is proportional 
to its length. 

Minimum wall energies will occur for a point in the 1D Ising chain, a 

straight line in the 2D Ising array, and a d 1 plane in a d-dimensional Ising 

system, with energies given in Table A.1 

In general, one can define a "stiffness" I which describes the resistance 

of the ordered phase to variations in the local order parameter, 

I = YLe A.9 

where Y is the stiffness coefficient and 9 is the stiffness exponent. In the 

Ising model described above, Y = 2J and 9 = d 1. 



115 

Table A.1. Minimum wall energy configurations for various dimensions.
 

dimension geometry of wall with energy of said 
minimum domain wall 
wall energy 

1D point 2J 
2D line 2JL 

d d 1 plane 2JL`1-1 
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APPENDIX B
 

SAMPLE HOLDER: ETCHING AND ELECTROPLATING
 

Photolithography 

Applying, Spinning and Baking the Photoresist 

The sample holder is made from PC board with Cu on one side. The Cu 

is scrubbed with Comet and a scouring pad until it is light pink and water 

runs off in sheets. With fluorescent lights off (incandescent light can be used) 

the PC board is mounted onto the spinner. Photoresist is painted onto the PC 

board until it is completely covered; an even coat is desirable, but speed is 

more important since the photoresist dries quickly. The spinner is turned on 

for about 5-10 seconds (this time will vary depending on the spinner used). If 

the photoresist has too many dark streaks, a longer spin time may be better; if 

the resist is missing in streaks, a shorter spin time should be considered. If 

the coating is not sufficiently even it may be cleaned off with acetone. The 

photoresist is baked on for 30 minutes at 80-90°C (currently, a covered skillet 

is used for this, setting the PC board on marbles which lie on a metal screen in 

the skillet). 

Making the Pattern, and Exposing the Board to UV Light 

The etch pattern is made using CAD. Lines are drawn as thick as 

possible, since various sections may etch at different rates. An example 

appears in Fig. B.1. The pattern can be printed on a transparency, but vellum 
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(tracing paper) works better. The PC board is covered with this pattern, and 

exposed to UV light for about 8 minutes. 

Developing 

The PC board is then placed in a tray filled with developer, and scrubbed 

with a soft paintbrush for no longer than 4 minutes; this removes the 

photoresist that was softened by the UV light, but leaves intact the photoresist 

which was protected by the etch pattern. The PC board is then rinsed with 

water, and the developer is poured from the pan back into the jug. At this 

point, the PC board is no longer sensitive to light. 

mounting 
sample screws 
pocket 

(a) (b) 

Figure B1. Sample holder. (a) is the mask and (b) is a schematic of the final 
PC board. 
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Acid Etching 

The Cu that was not protected by the photoresist is removed by placing 

the PC board in acid. I use an FeC13 solution9 in a plastic container, constantly 

swishing the add around. When the board is done, the acid is rinsed off with 

water to stop the etching. The photoresist remaining on the board is 

removed with acetone. 

Electroplating 

For Au electroplating, one should have: 

Au electroplating solutionlo 
a large glass beaker 
a power supply, 0-10 V, 0-3 Amps (e.g. Kepco ATE-36-8M) 
two banana-alligator leads 
a small piece of stainless steel (for the anode) 
latex gloves 
plenty of KimwipesTM 
acetone. 

Electroplating should be done in a fume hood (due to the metal-cyanide 

complex in the solution). The Cu is attached to the negative power supply 

lead, and the piece of stainless steel is clipped to the positive lead. These are 

placed in a glass beaker filled with electroplating solution. I typically set the 

power supply to 10 V. If the solution is new, the Cu has a thin Au coating in 

a few seconds, and has accumulated a reasonable thickness of Au a minute or 

so later. Since the same solution is re-used each time, when the solution is 

old it may take an hour or more to coat the board. When the board comes out 

9 Radio Shack FeC13 acid etch
 
10 Dyna-Plate 24 karat Au electro-plating solution, Dyna-Plate, Inc., P.O. Box 2313, Bay St.
 

Louis, MO 39520. Ordered from Simon Golub and Sons, Portland, OR 97202. 
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it may have a dark layer, especially if the solution is old. If this layer does not 

come off with a KimwipeTM and acetone, fine grit (>400) sandpaper may be 

used. 
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APPENDIX C
 

FINITE SIZE SCALING AND THE AKT EXPERIMENT
 

The Ando-Kubota-Tanaka (AKT) experiment (1992) may be analyzed 

within the context of finite size scaling (FSS) theory (Barber, 1983; Cardy, 

1988). If the physical size of a system is finite (-L), then bVG is unable to grow 

to infinity in the finite directions, effectively resulting in a reduced 

dimensionality. A system finite ( 1,G = L) in one direction, but infinite in the 

other two, is considered quasi-two-dimensional. FSS effects should be 

observable only when 41,G = L; since AKT estimate that VG < L for all their 

data, perhaps FSS effects are not seen in their experiment. However, if the 

actual value of tvG is sufficiently different from that estimated, the AKT data 

may reflect both the edge effects originally considered and FSS effects. 

FSS theory predicts that Tg will vary with width w according to, 

Tg (W) ''' Tg (00)(1- bw-1) 

where b is a constant, Tg(w) is the width-dependent Tg [reduced from the 

bulk value Tg(00)1, and it is expected that A. = -1 . This reduction in transition 
v 

temperature with system size has been observed in several magnetic systems. 

(For experiments which have investigated FSS see e.g. Kenning et al., 1990; 

Tang et a/., 1991; Huang et al., 1993.) Eq. C.1 fits the AKT data quite well, 

giving v=0.99, 1.1, and 1.1 for 1T, 2T and 3T respectively. These are consistent 

with the values which AKT obtained using the usual 3D, large-sample 

scaling, (v=0.75 - 1.07). Because v-1 in this experiment, the equation AKT 

used to fit the Tg(w) data 

C.1 
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Tg (w) Tg (41- 2X(1- C)w-1) C.2 

(Eq. 1 in Ando, Kubota, Tanaka, 1992) has essentially the same form as the FSS 

form (Eq. C.1). Therefore, it is not surprising that the bulk values of Tg 

resulting from FSS analysis compare well to those obtained the AKT analysis, 

as shown in Table C.1. 

Table C.1. Tg values: comparison of FSS analysis and the analysis of AKT. 

Field Tg (K) Tg (K) 

(T) FSS analysis AKT analysis 

1 83.05 83.1 

2 80.91 81.0 

3 79.26 79.4 

Using either set of Tg values, a fit to the function II [T,(0)- Tg(H)12v° 

(with Tc=85.5 K) gives 2v0=4/3 within 9%. This compares well with 2vo 

found by other researchers for YBCO films (see § 4.2 and Table 1.2). However, 

in the original AKT analysis, the measured values of Tg were used, which 

are reduced from their bulk values according to either Eq. C.1 or Eq. C.2. This 

results in 2v0 being 13-60% higher than the expected value 2v0 =4/3. 




