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ABSTRACT

A computationally efficient relocatable system for generalized inverse (Gl) modeling of barotropic ocean tides
isdescribed. The Gl penalty functional is minimized using arepresenter method, which requires repeated solution
of the forward and adjoint linearized shallow water equations (SWES). To make representer computationsefficient,
the SWEs are solved in the frequency domain by factoring the coefficient matrix for a finite-difference dis-
cretization of the second-order wave equation in elevation. Once this matrix is factored representers can be
calculated rapidly. By retaining the first-order SWE system (defined in terms of both elevations and currents)
in the definition of the discretized Gl penalty functional, complete generality in the choice of dynamical error
covariances is retained. This allows rational assumptions about errors in the SWE, with soft momentum balance
constraints (e.g., to account for inaccurate parameterization of dissipation), but holds mass conservation con-
straints. While the dynamical calculations involve elevations alone, depth-averaged currents can be directly
assimilated into the tidal model with this approach. The efficient representer calculation forms the basis for the
Oregon State University (OSU) Tidal Inversion Software (OTIS). OTIS includes software for generating grids,
prior model covariances, and boundary conditions; for time stepping the nonlinear shallow water equations to
generate afirst guess or prior solution; for preliminary processing of TOPEX/Poseidon altimeter data; for solution
of the Gl problem; and for computation of posterior error bars. Approximate Gl solution methods, based on
using a reduced set of representers, allow very large datasets to be inverted. OTIS regiona and loca Gl tidal
modeling (with grids containing up to 10° nodes) require only a few hours on a common desktop workstation.
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Use of OTIS is illustrated by developing a new regional-scale (1/6°) model of tides in the Indonesian Seas.

1. Introduction

A large fraction of the variance in many oceano-
graphic variables is due to tides. As a result, for many
practical applications in the marine environment (e.g.,
shipping and modeling of pollution dispersal) accurate
maps of tidal currents or elevations are often indis-
pensable. Knowledge of tides is of value in many sci-
entific studies as well. Here the tides are often seen as
a nuisance that must be removed from the data prior to
studies of longer period oceanographic variations. For
afixed observation site, such as a semipermanent moor-
ing, tides can be removed by filtering of time series.
With data taken from moving platforms (e.g., ships,
Lagrangian drifters, satellites) spatial and temporal var-
iations are aliased, rendering a simple filtering scheme
untenable, and again requiring accurate maps of tidal
fields. Tides are of course not just a source of noise.
For example, studies of ocean microstructure have
shown a correlation of turbulent dissipation rates with
tidal cycles (e.g., Polzin 1997; Ledwell et a. 2000), and
there is increasing evidence that tides may provide a
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significant source of energy for mixing the deep ocean
(Munk and Wunsch 1998; Egbert and Ray 2000). For
studies of this sort a detailed knowledge of the tidal
fields is again desirable.

The basic equations of tidal dynamics (e.g., Hender-
shott 1977) are comparatively simple and have been
understood since the time of Laplace. However, there
are a number of complications that still make accurate
modeling of even the barotropic tides a challenging
problem in practice. Difficulties include the need for
accurate open boundary conditions and bottom topog-
raphy, the need for approximate parameterizations of
dissipation in the tidal equations, solid earth effects, and
the effects of ocean stratification on the barotropic tides,
which may be difficult to account for without full 3D
modeling of baroclinic tidal currents. Examples of the
last complication include extraction of barotropic en-
ergy due to scattering over rough bottom topography
into baroclinic waves (Bell 1975; Baines 1982) and ef-
fects of stratification in deep water on depth-indepen-
dent tidal currents on the continental shelf (Cummins
et al. 2000).

Data assimilation methods offer a way around some
of these difficulties. By requiring the tidal fields to fit
estimates of tidal constants at even a limited number of
locations in the model domain, accuracy of tidal pre-
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dictions can be significantly improved. Early applica-
tions of some sort of data assimilation scheme include
the ““hydrodynamic interpolation” scheme of Schwid-
erski (1980) and early discussions of data assimilation
by Bennett and McIntosh (1982) and McIntosh and Ben-
nett (1984). Recent reviews of tidal data assimilation
are given by Egbert and Bennett (1996) and Kivman
(1997). Our focus here is on the generalized inversion
(Gl) scheme of Egbert et al. (1994), hereinafter EBF,
which was devel oped for assimilating TOPEX/Poseidon
(T/P) atimeter datainto a global barotropic tidal model.
The approach used involves minimizing aweighted sum
of squared misfits to the linearized shallow water equa-
tions and the data. To accomplish this, EBF used a‘‘ rep-
resenter’”’ approach (Bennett 1992). This scheme, which
we briefly review below, has some advantages over sim-
ple schemes (see Egbert and Bennet 1996; Egbert 1997;
Kivman 1997) but is very computationaly intensive,
since the dynamical equations must be solved essentially
twice (once forward in time and once backward) for
each observation.

For very large datasets such as the T/P altimetry,
some modifications of the computational approach are
thus required. EBF solved the global tidal inverse prob-
lem using a greatly reduced set of representers. Egbert
and Bennett (1996) and Egbert (1997) developed an
iterative solution method based on minimization of the
penalty functional in the data space using conjugate gra-
dients. This approach still uses a representer formula-
tion, but for large datasets it requires many fewer so-
lutions of the dynamical equations. Even with these re-
finements to the representer method, inverse modeling
of the large T/P dataset on a %5° nearly global grid re-
quired a major computational effort. Several months of
CPU time on a small supercomputer (a 32-node CM-5)
was required for the solution (Egbert 1997).

Here we describe a much more efficient numerical
implementation of a Gl scheme for barotropic tidal
modeling. The basic idea is quite simple: greatly im-
prove the efficiency of the numerical modeling scheme.
EBF solved the linear shallow water equations by ex-
plicit time stepping of the momentum and continuity
equations with a periodic forcing, followed by har-
monic analysis of the steady-state solution. Numerical
stability requires the time step in such a scheme to be
very short compared to the tidal period, so long run
times are required. As resolution isincreased (e.g., for
regional scale instead of global modeling) even shorter
time steps and longer run times are required. Here we
solve the equations in the frequency domain by direct
factorization of the coefficient matrix for a finite-dif-
ference approximation of the dynamical equations. The
advantage of this approach for the inverse problem is
clear: once the coefficient matrix has been factored,
repeated solution of both forward and backward equa-
tions (as required by the representer approach) is ex-
tremely fast.

The major difficulty with this approach is the very
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large size of the factored coefficient matrix for numer-
ical grids of reasonable size. Eliminating velocitiesfrom
the shallow water equations to yield a second-order el-
liptic equation for the tidal elevation alone reduces the
number of unknowns by a factor of 3, and thus matrix
size by afactor of 9. A similar approach has been used
previously in the finite-element inverse scheme de-
scribed by Lyard (1999). A key feature of the approach
developed here is that we retain the first-order system
of shallow water equations (defined in terms of eleva-
tions and currents) in the definition of the Gl penalty
function and only eliminate variables for the representer
calculation. With this formulation, complete generality
in definition of the dynamical error covariance is re-
tained, for example, allowing errors in the momentum
equations, but requiring exact conservation of mass (see
EBF). Thus currents can be computed from elevations
without assuming that the depth-integrated momentum
balance equations (which depend on bathymetry and
parameterization for dissipation and solid earth effects)
are exact; and current data can be assimilated, even
though all dynamical calculations are in terms of ele-
vations alone. This general approach should be appli-
cable to other oceanographic data assimilation problems
where it may be convenient to eliminate some variables
for dynamical calculations.

We have combined this efficient representer calcu-
lation scheme with software for generating grids, prior
model covariances, boundary conditions, and reduced
altimetry datasets into a relocatable package of pro-
gramsfor tidal datainversion. With this package, which
werefer toas OTIS (for OSU Tidal Inversion Software),
regional-scale tidal inverse problems (with grids con-
taining up to 10° nodes) can be solved in a few hours
on a common desktop workstation with a reasonable
amount (say 500 MB) of RAM.

Our primary goals in this paper are to present the
efficient representer calculation method and to provide
an overview of the relocatable tidal inversion software
package OTIS. In section 2 we review the tidal inverse
problem and the representer approach. In section 3 we
describe our approach for efficient calculation of rep-
resenters, both for elevation and current data. In section
4 we provide some further details on OTIS, including
methods for dealing with the very large T/P altimeter
dataset and calculation of posterior errors. Findly, in
section 5 we provide an illustrative application of OTIS,
inverting for barotropic tides in the seas surrounding
Indonesia.

The philosophy and theoretical underpinnings of our
inversion approach are not given extensive discussion
here. The reader is referred to EBF, Egbert and Bennett
(1996) and Egbert (1997) for this perspective.

2. Generalized inversion of tidal data

Our goal isto find tidal fields u, which are consistent
both with the hydrodynamic equations, which we denote
formally as
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Su = f, Q)
and with a K-dimensional vector d of tidal data
d=Lu. 2

In(2 L =]L, ..., L] corresponds to the K mea-
surement functionals, which relate the observed data to
the unknown tidal state u. Due to measurement errors
and inadequaciesin the necessarily approximate dynam-
ical equations, there will be in general no u that exactly
satisfies both equations. With the GI approach we com-
promise between (1) and (2) by minimizing the qua-
dratic penalty functional

Jid, u] = (Lu — d)"2;%(Lu — d)
+ (Su — f)™274(Su — fy). (3)

Here X, and 3, are the covariances for the data and
dynamical errors, which express our a priori beliefs
about the magnitude and correlation structure of er-
rors in the data, and in the assumed dynamical equa-
tions.

Specification of the dynamical error covariance X is
acritical part of theinverse problem, but is not the focus
of our discussion here. For all examples discussed (and
for OTIS) we use a covariance of the general form dis-
cussed in EBE This allows for spatialy varying dy-
namical error amplitudes, with a constant decorrelation
length scale. Amplitudes are estimated as described in
EBF based on an analysis of the dynamical equations,
using a preliminary global tidal model to estimate typ-
ical amplitudes of the tidal fields. Further details will
be given for the specific examples of section 5. Asin
EBF, we assume a simple diagonal form for the data
error covariance ..

a. The representer approach

If the dynamical equations of (1) are linear, the rep-
resenter approach (Bennett 1992) can be used to min-
imize (3). The minimizer of (3) can be written as

0= u+ D B @

where u, = S, is the exact solution of (1) and the
functions r, are the representers (Yosida 1980) of the
data functionals defined by L,, k = 1, K. Representers
can be calculated by first solving the adjoint of the dy-
namical equation

Stay, = A,, 5)

where A, is the averaging kernel for the data functional
L, (an impulse at x, for a point observation at this lo-
cation), and then solving the forward equation

Sl’k = Efak. (6)

Note that the forcing for (6) is the solution to (5)
smoothed by convolution with the dynamical error co-
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variance 2. The representer coefficients B = (B,, k =
1, K), are found by solving the K X K system of equa-
tions

(R +2)p=d— Lu,, ()
where R is the representer matrix with elements
Ry = Ljr. (8)

In the most straightforward application of the representer
approach, (5) and (6) are solved K times each for the
functionsr, R is constructed using (8), (7) is solved for
B, and finally the solution O is calculated via (4). As
discussed in EBF, Egbert and Bennett (1996), and Egbert
(1997), there are several variants on this approach that
approximate the full solution and are considerably more
efficient for large datasets. We consider some practical
aspects of these variants further in section 4.

b. Dynamical equations

We assume essentially linear shallow water dynamics
of the form

%+f2><u+g-HV({—{SAL)+F=fO )
T
o= "V-Uu. (10

Here { is the elevation of the sea surface; U is the
volume transport vector, equal to velocity times water
depth H; f is the Coriolis parameter; Z is oriented to
the local vertical; and F is the frictional or dissipative
stress. The astronomical tide-generating force with al-
lowance for the earth’s body tide (Hendershott 1977) is
denoted by f,.

Tidal loading and self-attraction (Hendershott 1972;
Ray 1998) are accounted for by theterm {.,, . EBF used
the crude approximation {s,, = 0.1¢ (e.g., Schwiderski
1980). In fact s, should be computed by convolution
of ¢ with the Green’s function for loading and self-
attraction (Farrell 1972; Ray 1998). Since this convo-
lution smoothes out small-scale features, and since
large-scale tidal elevations are now well determined
over most of the earth, s, isin fact now reasonably
well known, even where local details of tidal elevations
and currents remain uncertain. We thus move gHV {g,,
to the right-hand side of (9), so that the total specified
forcing becomes f = f, + gHV /., with g, computed
from aglobal tidal model. Note that since we ultimately
do not fit the dynamics of (9) exactly, small errors due
to this approximate treatment of tidal loading and self-
attraction can be corrected by the data. Boundary con-
ditions for (9) are no flow across the coast, and speci-
fications of either elevations or the normal component
of volume transports on any open boundaries. As with
the dynamical equations, we allow for errors in all of
the boundary conditions.

EBF assumed a simple linear parameterization of the
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dissipation term F = (r/H)U, where r is the bottom
friction coefficient. A more physically reasonable pa-
rameterization of dissipation due to bottom boundary
layer drag is quadratic in velocity (e.g., Pingree 1983)

F = (colvI/H)U, (11

where v is the total velocity vector (in particular, in-
cluding all tidal constituents), and the value of the non-
dimensional parameter c, is approximately 0.003. Pa-
rameterizing the dissipation asin (11) makesthe shallow
water equations nonlinear, so that the representer theory
for minimizing (3) is not strictly applicable. We use a
simple linearization approach. The prior solution u, is
computed for all major tidal constituents simultaneously
by time stepping the shallow water equations with the
quadratic dissipation of (11). We also include theinertial
terms (U - Vv) in (9), the nonlinearity in (10) (i.e., {U),
and horizontal eddy viscosity in this computation. For
most applications to regional-scale models (with grid
resolutions down to 10 km or so) including these ad-
ditional terms appears to make little difference to the
final tidal solutions, and will thus not be discussed fur-
ther here.

With the prior solution computed we linearize (11).
The simplest approach is to calculate the time-averaged
tidal velocity (including all constituents) to yield a spa-
tially varying linear drag coefficient k = (cp||v||/H).
Several refinements are possible. The time domain equa-
tions can be linearized around the solution u,, Fourier
transformed, and simplified by retaining only the sig-
nificant tidal frequencies. In the resulting linearized op-
erator the dissipative stress takes the form F = KU
where K isaspatialy varying drag tensor. Thereis also
a weak coupling in the linearized equations between
constituents. Other approaches to linearizing the dissi-
pation using more rigorous asymptotic analysis are dis-
cussed by Le Provost and Poncet (1978). We will not
pursue these refinements here, since all terms are de-
rived from an approximate (and to some degree ad hoc)
parameterization of F. Again we do not fit the dynamics
exactly, and errors due to our approximate treatment of
dissipation can be compensated by the data. With the
simple linearization used here, the dissipative termsin
the dynamical equations are at least of the proper order
of magnitude (in contrast to the simpler constant linear
drag coefficient used by EBF).

With dissipation linearized, the dynamical equations
are linear, and can be transformed to the frequency do-
main with individual tidal constituents (e.g., M., S, K,,
0,) decoupled. For our initial discussion of the repre-
senter calculation we thus take the tidal state vector u
= (U, V, ¢) to be volume transports and elevations for
a single tidal constituent of frequency . We take S to
be the linearized frequency domain shallow water equa-
tions, and we assume that the data are provided as har-
monic constants of either elevations or currents at a
series of locations x,. In this case the forcing for the
representer calculation (8) (i.e., L,) corresponds to an
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impulsive forcing at x,. As discussed in EBF, for direct
inversion of time domain data (as might be appropriate
for altimeter data with short time series, or shipborne
acoustic Doppler profiler measurements of currents
where harmonic analysis at fixed locations may be im-
possible) the observation functionals couple all con-
stituents together. Representers for this more compli-
cated case can be constructed from the single constituent
representersthat we focus on here (EBF). We summarize
the implementation of this complication into OTIS in
section 4.

3. Efficient calculation of representers

The bulk of the calculation required for the Gl ap-
proach of EBF lies in computing the representers. Here
we describe an efficient schemefor the repeated sol ution
of the shallow water equations required for this calcu-
lation. With the notation and approximations of the pre-
vious section, the frequency domain equations may be
written as

QU + gHV{? = f, (12
V-U+iwl =", (13)
where
iw + K —f
Q= . 14
f iw + Kk (14)

For now it is useful to allow for arbitrary forcing and
inhomogeneous boundary conditions of both the mo-
mentum and continuity equations. Appropriate forcing
and boundary conditions will be discussed more ex-
plicitly below. Assuming Q isinvertible at all locations
(this will be true providing k # 0 or w # f), we can
rewrite (12) as

U= —gHQ 1V + Q1 (15)

and combine this with (13) to get a second-order equa-
tionin ¢

V-gHQ V! — iw{ = V- Q, — f.. (16)
Solution of (1) can thus be accomplished by solving
(16) for ¢, then using the result in (15) to directly cal-

culate U. This provides our basic scheme for solving
the shallow water equations.

a. Numerical implementation

To describe our numerical implementation of the rep-
resenter calculation, we introduce the discrete operators
G, D, C, and A, which correspond, respectively, to

G: gHV D: V c: Q¢
A = DCG — iw: V- -QgHV —iw. (17)

For the discrete approximation we use a C-grid (Fig.
1). On this staggered grid G maps naturally from a pair
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FiG. 1. Grid conventions used in OTIS. An Arakawa C grid is used for all dynamical calcu-
lations. Volume transports U and V are specified on grid cell edges, and are interpreted to be
the average volume transport over the cell edge. Elevations are interpreted as the average over
the cell, and are given at the center. Boundary conditions at the coast are specified on the U and
V nodes. Open boundary conditions are given by specifying the elevation ¢ for open boundary

edge cells, or transports on edge U or V nodes.

of adjacent £ nodes onto the intermediate U or V node.
Similarly, D maps onto ¢ nodes from the four surround-
ing U and V nodes. The operator C, which maps from
U and V nodes back to U and V nodes is not so naturally
defined on a C grid. To implement this operator on a
U(V) node requiresfirst averaging over the four adjacent
V(U) nodes. Details are given in appendix A. The op-
erator A defined in terms of G, D, and C (and multi-
plication by iw), maps from ¢ nodes to ¢ nodes and
represents the second-order operator of the frequency
domain wave equation.

In terms of these discrete operators the full solution
u = (£, U) to (1) can be expressed formally as

£\ (A[—f, + DCf]
u/ CG{ + Cf,,

—A-1 -1
:< A A-1DC )(fg)_ a18)
CGA* C + CGADC/\f,
Arbitrary inhomogeneous boundary conditions at the
coast and open boundaries are readily implemented
through appropriate definitio of G, D, C, A, f,, and f,, on
the boundary nodes. Details are given in appendix A.
The partitioned matrix on the right side of (18) is a
discretization of the operator S—* needed to solve (6).
From (18) it is simple to derive the form for the discrete
inverse adjoint operator required to find the solution to

(5). For a general forcing A = (A,, A,), this takes the
form:

ag\ _ A [—A, + G*C*A ]
ay C*D*a, + C*A

[ -AT A-rG*C* A,
C*D*A-¥ C* + C*D*A-1G*C* \A,)’
(19

where the superscript asterisk denotes the conjugate
transpose of the matrix. To solve (5) and (6), we thus
proceed as follows. First the coefficient matrix A for the
wave equation is formed and factored into lower- and
upper-triangular matrices as A = LU. The full matrix
has a bandwidth of (m + 1) and, allowing for full piv-
oting, requires (3m + 4)nm complex words to store
(Anderson et a. 1992). For a global model domain (pe-
riodic in longitude) the matrix isno longer strictly band-
ed, but the solution algorithm is easily modified to allow
for this case (see appendix B).

Since A* = U*L*, multiplication byboth A-* and
A~ [required to use (18) and (19), respectively, to
solve (5) and (6)] can be accomplished rapidly by solv-
ing the appropriate triangular systems. All of the other
discrete operators appearing in (18) and (19) are very
sparse (and local) and hence require minima compu-
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tation. With A factored and stored in RAM, we can
rapidly compute a large number of representers, cor-
responding to observations at different locations.

The above discussion is completely general, allowing
for solution of the shallow water equations and adjoint
with arbitrary forcing. It isinstructive to explicitly con-
sider the simplifications that result for some more spe-
cialized (but highly relevant) cases.

b. Representers for elevation data

First we consider harmonic constants for tidal ele-
vation at locations x,, k = 1, K. In this case the aver-
aging kernel for data functional L, takes the form of an
impulse in the { component at x,. In (19) we thus have
A, = 0. Further simplification in the representer cal-
culation results from assuming, as in EBF, that the con-
tinuity equation (13) is exact. With the dynamical error
covariance %, partitioned between ¢ and U — V nodes
asin (18), this implies

0 0
2fz(o 2>;

that is, 3, acts only on U and V nodes. We can thus
formally write the elevation component of the repre-
senter as

r, = A~IDC3,C*D*A A, (20)

where A, is a unit magnitude impulsive forcing at X,.
The transport component of the representer r, is aso
readily calculated, but if only elevation dataisinverted,
computation of the representer matrix R needed to solve
(7) for the coefficients B8 requires only r .

Explicitly the stepsimplied by (20) are the following:

1) Using the LU factorization of A, solve the conjugate
transpose system with impulsive forcing at x,: A*a,
= A,. The solution is defined on the ¢ nodes.

2) Apply the local operators D* and then C*. These are
the transpose of D and C, respectively, and map «,
to «, defined on the U/V nodes.

3) Apply the covariance smoother 3, to «,.

4) Aply the local operators C and then D. This maps
the smoothed forcing of the momentum equations
(2;ay) to aforcing of the wave equation defined on
the ¢ nodes.

5) Using this forcing, solve the wave equation for r.

One issue we have not yet discussed explicitly is the
specification of boundary conditions for the representer
calculation. As shown in EBF, boundary conditions for
(5) are homogeneous (unless the data involve a mea-
surement on the boundary), but inhomogeneous bound-
ary conditions are required for (6). EBF give expres-
sions for the appropriate boundary conditions in terms
of the adjoint solution and boundary condition error
covariances. If the discrete operators G, D, C, and A
are set up as described in appendix A to allow for ar-
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bitrary elevations on boundary ¢ nodes, and arbitrary
normal volume transport on boundary U and V nodes,
the appropriate boundary conditions will automatically
be computed at steps (i) (for elevation boundary nodes)
and (ii) (for U and V boundary nodes). We discuss this
further in appendix A.

Asin EBF, separate covariances are used for smooth-
ing and scaling coastal boundary conditions, open
boundary conditions, and the forcing for (6). Errorsin
the coastal boundary conditions are assumed to arise
solely from approximation of the coast on the numerical
grid, and are thus not smoothed. Convolution with ap-
propriate boundary condition covariances is implicit in
step (iii) above, which is identical to the scheme de-
scribed in EBFE Since the model covariance 3 is sym-
metric, it is clear from (20) that the representer matrix
must be Hermitian (to the precision of numerical round-
off error). Thisis an advantage of the direct calculation
scheme used here. Numerical implementation of thefor-
ward and adjoint problems, including all boundary con-
ditions, is guaranteed to be consistent.

c. Calculation of the inverse solution: Currents

With the elevation components of the representers
calculated, we may construct R as in (8) (i.e., Ry is
computed by evaluating r, at x;) and solve (7) for .
Rather than explicitly forming the sum of representers
to calculate the Gl solution as (4), weredo the equivalent
of one representer calculation (8) with the single im-
pulsive forcing A, replaced by the combination X, B,A,
(see EBF).

Repeating steps (i)—(iii), we obtain

8f = X, C*D*A ¥ (E BkAk>- (21)
k

This is exactly the forcing error required to bring the
inverse solution 0 = u, + Su into agreement with the
data. Note that with the model covariance of EBF, &f
corresponds to forcing of the momentum equations, to-
gether with coastal and open boundary conditions. The
elevation component of éu is calculated from 6f as in
steps (iv) and (v) of the representer calculation as

8¢ = A-'DCS. (22)

From (18) the corresponding volume transports are
readily seen to be

8U = CGS¢ + Cof. (23)

It isimportant to note that the last step requiresknow-
ing the forcing error for the momentum equations. The
correction to the volume transport component 6U can-
not be recovered from 87 alone, because the momentum
equations, which relate U to the gradient of 8¢, do not
hold exactly.

Near the critical latitude where w = f the 2 X 2
matrices -* will be nearly singular if the drag coef-
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ficient k is small. This can result in noisy estimates of
dU, especially when calculations are donein single pre-
cision. In some cases, numerical round-off error can
result in transports U, which are not consistent with
the continuity equation. To stabilize calculation of sU,
we thus replace the direct calculation of (23) with a
weighed least squares fit of U to both (23) and V-8U
= —iwd{. A scheme similar to that described by Ray
(2001) is used.

d. Representers for velocity data

For a component of the depth-averaged velocity
measured at x, the forcing for the adjoint equation (19)
is of the form A = (0, A,), where A, is a unit mag-
nitude impulse, divided by water depth H (to account
for our formulation in terms of velocity transports).
Again assuming that the continuity equation is exact,
(18) and (19) imply that the representer can be cal-
culated as

5f = 3,[C*D*A-1G*C* + C*]A,

- r.\ [ A'DCéf
rg CGr, + Cof )
In this case it is most convenient to calculate the full
representer (elevation and transport components), al-
though if only current measurements are to be inverted,
only the transports need be saved for calculation of the
representer matrix.

The velocity representer calculation is somewhat
more complicated, but the basic steps are as outlined
above. There are two differences to note in (24). First,
the impulse A, must be converted to a forcing for the
adjoint wave equation G*C*A,. Second, thereis an ad-
ditional term C* A, (calculated directly from theimpulse
forcing) that must be added to «, after solving the ad-
joint equation, but before smoothing by ;.

(24)

4. Solution of large tidal inverse problems with
OTIS

A literal application of the representer approach out-
lined in section 2 requires computation of K repre-
senters (one for each data location), followed by so-
lution of the K X K system of equations (7), and for-
mation of the sum of (4). For inversion of altimeter
data, where K can easily exceed 10%, a direct appli-
cation of this approach is impractical. In this section
we consider approximations to the representer ap-
proach, which are practical for large datasets. We also
discuss some other ancillary aspects of thetidal inverse
calculations, including initial data processing stepsfor
altimeter data, treatment of time domain data, and cal-
culation of posterior errors. For the most part we use
variants on methods that have been described previ-
ously in some form in EBF or Egbert and Bennett
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(1996), so we present only a summary of the imple-
mentation of these calculationsin OTIS.

We initially consider inversion of harmonic constants
of tidal elevations and/or currents for a single constit-
uent. We then describe calculation of harmonic con-
stants for altimeter data, and then the extension to di-
rectly fitting time domain data where multiple constit-
uents are coupled and must be treated simultaneously.

a. The reduced basis approach

Representers for measurements of tidal elevations or
currents at nearby locations will typically be very sim-
ilar. More generally, the full set of K representers, which
form a basis for the minimizer of (3), are highly re-
dundant. It isthustypically possibleto form avery good
approximation to the minimizer of (3), using only a
subset of the representers. With a reduced basis ap-
proach (Parker and Shure 1982; EBF), we calculate a
relatively small subset of the representers and then min-
imize the penalty functional over linear combinations
of these. Note that although only a subset of representers
are computed and used as basis functions for theinverse
solution, all available data are still fit (Egbert and Ben-
nett 1996).

Let K be the number of locations where harmonic
constants are available. We choose a subset N of these
data locations, and calculate representers for this data
subset. Let R be the square N X N matrix defined in
(8), with elements corresponding to the N calculated
representers evaluated at the corresponding N data lo-
cations. Next, let P be the rectangular K X N matrix
with elements P, = L,r, that is, the calculated rep-
resenters evaluated at all K of the data locations. We
seek the minimizer of (3) among all linear combina-
tions of the N calculated representers (and the prior
model)

N
u=u,+ kZl Bl (25)

For u defined by (25) we clearly have

L(u = up) = EN: BiLr = PB.

Also, EBF show
S(U — Ug)*X*S(u — ug) = B*RB,

so for the subspace of solutions defined by (25) the
penalty functional (3) can be written in terms of the
representer coefficients B as

JB,dT = (d — PB)*X.Hd" — PB) + B*RP,
(26)

where d’ = d — Lu,. Note that in the limiting case
where all representers are calculated P = R, and the
coefficients obtained by minimizing (26) yield the glob-
a minimum of (3).
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To minimize (26) over the reduced coefficient vector
B, we compute the singular value decomposition
(SvD) of

3.1PE = WSQ*, (27)

where E = R~¥2, W, and Q are, respectively, K X N
and N X N matrices with orthonormal columns, and S
is the diagonal matrix of real positive singular values
s;. It issimple to show (e.g., Parker 1994) that the min-
imizer of (26) can then be written as

B = EQS(S? + vl)*w*d’, (28)

where v = 1. To calculate E = R~Y2 we use an eigen-
vector decomposition of the representer matrix R =
VWV*, sothat R~Y2 = VW Y2 whereV is orthonormal
and W is the diagonal matrix of positive real eigenval-
ues. To ensure stability in calculations with E we elim-
inate eigenvectors corresponding to small eigenvalues
. This truncation of representers based on the eigen-
vector decomposition of R can aso be used to reduce
the size of matrices for large problems, as described
further below. In (28) the parameter v controls the rel-
ative fit to data and dynamics. If both the data and
dynamical error covariance are correct, v should be one.
We introduce this extra parameter in OTIS to allow for
the possibility that covariances are misspecified. Once
al of the matrices in (28) have been computed, trial
solutions with different values of v are readily com-
puted, so this parameter can be tuned to adjust the rel-
ative fit to data and dynamics.

Clearly we would like to choose the subset of N lo-
cations for the calculated representers so that we do not
loose important details in the approximate inverse so-
[ution (25). The best way to ensure thisisfar from clear,
and some experimentation with different subsets of cal-
culated representers may be necessary. We consider an
example of this process in section 5.

Once the representer coefficients B are computed
these are used in (25) or (21)—(23) to compute the cor-
rection éu to the prior solution.

b. Processing of altimeter data

Here we describe processing steps used to prepare
TOPEX/Poseidon altimeter data for the inversion. The
starting point isaversion of the PATHFINDER database
(Koblinsky et al. 1999) with no tidal corrections applied
(B. Beckely 1999, personal communication). To prepare
the altimeter data for inversion, we first low-pass filter
the altimeter dataalong each ground track, and decimate
from the original spacing of ~7 km (measured by the
altimeter at a 1-s interval) to a spacing comparable to
the grid resolution. Simple averaging along track isrea-
sonable since al data in the window are observed at
essentially the same time (compared to the tidal cycle)
and at the same location (compared to the grid reso-
[ution). During the averaging process a simple median
filter is used to remove outliers.
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We allow for N, constituents and use the superscript
| to denote harmonic constants for individual constitu-
ents. The atimeter dataat timet and location x can then
be written as

Nc
dix, t) = Re{E a'(O[{'(x) + §'SE(X)]} +e (29
I=1

where £.(x) is the solid earth tide (e.g., Hendershott
1977); & represents error (for purposes of estimating the
tides this includes all nontidal oceanography as well as
measurement noise), and o'(t) = (1 + f'(t)) exp{i [«'(t
— to) + V'(t,) + p'(t)]} gives the slowly modulated
periodic variation for constituent . In this expression
o' isthe tidal frequency, V'(t,) is the Greenwich phase,
and f', p' are nodal corrections for amplitude and phase.

We compute (Y from the TPX0O.3 model of Egbert
(1997), using methods described in Ray and Sanchez
(1989). As with the loading and self-attraction L,
needed for forcing the forward model, {4 is essentially
a smoothed version of the ocean tide ¢'. A similar (and
reasonably accurate) solid earth tide estimate results
from any of the recent global ocean tide models con-
sidered by Shum et a. (1997). We use the estimated
(& to correct the altimeter data for solid earth tides, and
at the same time we subtract the prior model £,:

I=1

d'(x,t) = d(x, 1) — Re{i a'(O[2(x) + §$(X)]}- (30)

Finally, averages (over all times at each fixed location)
are subtracted from the data to eliminate geoid errors.
At a fixed data location x, the result is a time series
sampled at timest,, n = 1, ..., T,, which we denote
by d,. This T, dimensional vector satisfies

d, = ReAz] + &, (31)

where z, is the N, dimensional complex vector of cor-
rections to the prior solution at x, with elements z, =
2'(x) — Zy(x), 1 =1,...,N.. Here A, isthe T, X N,
matrix with |, n element

Tk
(B = @lt) — T 3 @)

Tk n=1
For TOPEX/Poseidon, time series at most locations are
now long enough to separate all major constituents. It
isthus possible to estimate the vectors of harmonic con-
stants z, by least squares fitting of (31) (see appendix
C). The resulting along-track estimates of z, can then
be used as data for constituent | at location X, in the

reduced basis inversion described above.

(32)

c. Time domain data

For short time series harmonic analysis of datafrom
a single location into individual constituents may not
be possible. As an extreme example, consider the case
of shipborne acoustic Doppler current profiler mea-



FEBRUARY 2002

Australia

00

EGBERT AND EROFEEVA

191

130 140 150 160

Fic. 2. Topography of the model domain region. White area corresponds to water depth less
than 100 m.

surements of currents, for which there will generally
be only a single observation at any fixed location. Al-
though any sort of harmonic analysis would obviously
be impossible, such data could still be assimilated into
amultiple constituent tidal model. In effect, the spatial
structure imposed by the dynamics allows data from
multiple locations but different times to be combined
in arational way, so that individual constituents can
still be separated (at least approximately) over the full
model domain.

The major complication with time-domain dataisthat
the equations for the representer coefficients for all N,
constituents are coupled. Matrices required for the in-
version are thus much larger (by afactor of N, for both
rows and columns), making computation of the repre-
senter coefficients for large datasets a challenge. Some
additional steps and approximations are thus required
to keep computations tractable. A second minor com-
plication with the time domain inversion is that the data
are intrinsically real, while the tidal constituents (and
the dynamical eguations) are most simply expressed in
the complex domain. This detail is easily dealt with,
though it complicates notation, and leads to a further
increase in storage requirements (by a factor of 2) for
some matrices. The time-domain tidal data inversion
problem is treated in some detail in EBF, along with the
more general case of dynamical errorsthat are correlated
between constituents of afixed species. This correlation
also leads to coupled equations for the representer co-
efficients, even for harmonically analyzed data. Here
we only summarize the key points for the simpler case
of time domain data with no interconstituent correlation
of dynamical errors.

Aswe show in appendix C the data vector for asingle
site can be reduced to at most M, = min(2N,, T,) el-
ements. This data reduction is accomplished by a ro-

tation in the data space with a QR decomposition, and
is thus unconditionally stable (and hence safe even if
constituents are poorly separated). The M, dimensional
reduced data vector d, still satisfies an equation of the
form given in (31), with the complex matrix A, replaced
by the M, X N, complex matrix B, defined in appendix
C.Let R, P',and E', | = 1, N, be as for the single
constituent case, and define the block diagonal matrices
P = diag(P', | = 1, N,) and E = diag(E', | = 1, N,).
Let B be the representer coefficients for all constituents,
and let d be the reduced data for al sites:

I
B:HEB d:HEE (33)
BNO 0 P

In appendix C we construct a sparse M X M matrix
B (where M = XK, M,) from the elements of the ma-
tricesB,, k = 1, K such that the full reduced data vector
satisfies:
d Re[BPB] + &' = Re[BPECQ] + &’

C
Re[Fc] + &' = [ReF — ImF] CR + &

1
=Fc+ ¢ (34)

The real matrix % ;*F is analogous to the complex ma-
trix % ;PE for the one constituent case. The solution
coefficient vector B can be found in a similar fashion,
by computing the singular value decomposition (SVD)
of 3;1F = WSQT, solving for the real coefficients ¢,

T = QS(S2 + vl)~wrTd, (35)

converting € to a complex vector ¢ = ¢, + ic,, and then
computing the full vector of representer coefficients (for
al constituents) as B = Ec.
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Fic. 3. Data locations used in study. TOPEX/Poseidon data sites shown as small open circles.
Representer sites are shown with various filled black symbols, as described in text just prior to

the callout of Fig. 9.

Note that the matrix F isM X (2N_N), and for large
datasets (and many tidal constituents) this matrix can
easily be too large to store in RAM or to SVD all at
once. Two modifications to the basic procedure are used
in OTIS to make multiconstituent inversion of large
datasets feasible. First, we reduce the sizes of the ma-
trices by truncating the matrices E' to include only the
largest N; < N eigenvalues of R'. This reduces the size
of F to M X (2N.N;). Second, we compute the SVD
with a two stage procedure, which alows an efficient
out of core algorithm. Further details are given in ap-
pendix C.

d. Posterior error calculation

Posterior errors for the inverse solution can be esti-
mated using the Monte Carlo approach described in Du-
shaw et al. (1997). Although these error bars will only
be as reasonable as the prior errors of both the data and
dynamics, they can provide at least some guidance in

assessing solution reliability. See Dushaw et al. (1997),
Egbert and Ray (2000), and Ray et al. (2001) for ex-
ample uses of these error bars. The calculation is or-
ganized in four steps:

1) Generate a series of | random forcings and boundary
conditions with the assumed dynamical error co-
variance, and solve the forward problem for this
forcing. That is, for realization i we compute:

SUi = SilE%UZWiu (36)

where w; is a vector of unit variance uncorrelated
complex Gaussian pseudorandom numbers. In the
representer calculation, smoothing with covariance
3, is accomplished by pseudo-time stepping a dif-
fusion equation a total of T steps (EBF). Multipli-
cation by %2 is thus accomplished by stopping the
smoothing after T/2 steps. It is readily verified that
the resulting smoothed random forcing error fields
3¥2w; have covariance ;. We estimate an adjust-

TaBLE 1. Summary of computational resources needed for representer calculation for eight constituents in single precision.

DEC Alpha,
one 500-MHz CM-5E,
Platform processor 64 processors Sun Ultra 10
Time step
Memory (Mb) 55 Mb 156 Mb N/A
CPU time (to time step one representer for 50 simulation days: dt = 40 s) 16.5h 1.75h N/A
CPU time (300 representers) 208 days 22 days N/A
Direct factorization
Memory (Mb) 446 Mb N/A 446 Mb
CPU time (factoring matrix—once each for eight constituents) 4 min N/A 48 min
CPU time (1 representer) 24 s N/A 2.7 min
CPU time (300 representers) 1.3h N/A 8 h
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TABLE 2. Rms of along tracks residuals (cm) for different solutions and depth ranges.

HC
Depth range Inverse Prior TPXO.3 GOT99 CSR4.0 errors
M,
H < 500 m 3.8 114 11.2 5.8 9.5 1.6
500 m < H < 2500 m 19 9.2 6.1 2.8 3.8 11
2500 m < H < 4000 m 14 7.1 3.6 15 2.2 11
H > 4000 m 1.3 5.6 2.3 13 15 1.0
82
H < 500 m 25 9.2 7.8 3.7 5.6 17
500 m < H < 2500 m 1.3 7.3 3.8 2.0 24 11
2500 m < H < 4000 m 1.0 5.7 25 11 14 11
H > 4000 m 0.9 4.3 2.0 1.0 1.0 1.0
Kl
H < 500 m 2.7 105 6.7 4.6 7.3 1.8
500 m < H < 2500 m 16 5.2 21 2.0 2.7 1.2
2500 m < H < 4000 m 1.3 3.7 15 14 19 12
H > 4000 m 1.3 2.8 13 13 15 11
O,
H < 500 m 2.2 8.1 5.1 2.7 3.4 1.9
500 m < H < 2500 m 11 3.6 15 1.3 19 13
2500 m < H < 4000 m 0.9 2.6 11 1.0 13 1.3
H > 4000 m 0.9 1.9 11 0.9 1.0 12

ment factor for the assumed dynamica error 3,
which makes the overall (spatially averaged) vari-
ance of the synthetic realizations consistent with the
magnitude of the model change for the actual inverse
solution. The adjustment factor is computed using
the difference between the prior solution and the
inverse solution. If the dynamical error magnitude
assumptions are correct, then the adjustment factor
should be near one.

2) For each realization evaluate the tidal error field éu
at the data locations x, and add measurement noise
(scaled with the assumed data error) to compute a
synthetic data vector d;. Again, an adjustment factor
is computed to make the synthetic data error con-
sistent with the actual inverse solution residuals. If
data error assumptions are correct, then the adjust-
ment factor should be near one. The synthetic data
vector then substituted into (28) or (35) to solve for
the representer coefficients B, i = 1, I.

3) For each B;, use (21)—(23) to compute the inverse
solutions O; = u, + 6u; (including elevations and
transports).

4) Using the actual synthetic solutions u; = u, + éu;
and theinversion results (;, posterior error variances
and covariances for any functional of thetidal fields
can then be calculated. For example the pointwise
variance of the estimated elevation for constituent |
is computed as

L

var(1) =

—IP
M-

I
[

DG 82)2.

— =

(37)

Note that this procedure can also be applied to cal-
culation of error barsfor more general (possibly non-
linear) functionals [e.g., spherical harmonic coeffi-
cients of the tides (Ray et al. 2001) or integrated
energy flux into shallow seas (Egbert and Ray
2000)].

5. Example of T/P data inversion for tidesin the
Indonesian Seas

Both the diurnal and semidiurnal tidesin the semien-
closed Indonesian Seas are spatially complex and of
large amplitude. Hatayama et al. (1996) review tidal
studies and present results from a new purely hydro-
dynamic model of the area. Tidal currents are large
enough to be of great practical importance to navigation
in many locations, and there is evidence that the tides
may play acrucial roleininterchange processesbetween
the Pacific and Indian Oceans (Hatayama et al. 1996).
Because the tides are greatly influenced by the complex
topography of the area they are quite difficult to model
accurately with apurely dynamical model (Mazzegaand
Berge 1994).

TOPEX/Poseidon altimeter data provide useful con-
straints on tidal elevations, at least in the larger seas
within the Indonesian archipelago. Elevation maps for
this area are included in most of the T/P-based global
tidal solutions discussed by Shum et al. (1997). How-
ever, there are great differences between al of the var-
ious solutions, and as we shall show below for the
TPXO0.3 solution of Egbert (1997), misfits to estimates
of tidal harmonic constants computed along the altim-
eter track can be quite large, frequently exceeding sev-
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FiG. 4. Example of an elevation representer for an observation of M, for a data location in the
China Seaindicated by the asterick. Amplitude contours are shown with solid lines, phase contours
with dashed gray lines. The highest amplitude values (~1.5 X 10-3) lie close to the representer
location. The zero phase line goes through the data site since the representer must be real at this

location.

era tens of centimeters. For these global ocean tide
models, grid resolution is too coarse to expect high ac-
curacy, given the complex and often shallow bathymetry
of the Indonesian seas. Higher-resolution assimilation
or inverse modeling is called for in this topographically
complicated area.

Mazzega and Berge (1994) assimilated T/P dataal ong
with tide gauges to model tidal fields in the Asian semi-
enclosed seas, particularly in the South China Sea and
in the Indonesian Seas (10°S—15°N, 105°-135°E).
Though €elevations in this model were shown to be a
significant improvement compared to Schwiderski
(1980), the relatively coarse %:° resolution used was in-
sufficient for estimating details of the tides in this area
(Hatayama et al. 1996). The coarse resolution and lim-
ited-area used by Mazzega and Berge (1994) were dic-
tated by the available computer resources. Despite con-
tinued rapid progress in computer technologies, hydro-
dynamic modeling and assimilation in such a complex
area remains a challenging problem, especialy given
the growing volume of data available for assimilation.
The Indonesian Seas thus provide a good illustration of
the effectiveness of the efficient Gl approach devel oped
in this paper. Here we concentrate on demonstrating the
advantages and effectiveness of the approach, rather
than providing a detailed interpretation of the dynamics
or consequences revealed by the inversion results.

We consider a model domain with longitude and |at-
itude limits 21°S-15.6667°N, 95°-165°E (70° X
36.6667°), shown in Fig. 2. The grid used is 420 X 240,
with %° resolution. Bathymetry was computed by av-
eraging the Gtopo30 topography database (Smith and
Sandwell 1997) onto the ¢ nodes of the C grid. Eight

principal tidal constituents (M,, S,, K,, O;, N,, P, K,,
Q,) are modeled.

The inversion scheme described in the previous sec-
tions was applied to 232 cycles of T/P altimeter data
from amodified version of the pathfinder database (K ob-
linsky et al. 1999) with no tidal corrections applied (B.
Beckeley 1999, personal communication). For this ex-
ample we used atimeter data for 5880 data sites, in-
cluding al crossover points in the model domain, and
each fifth location between crossover points, with a
spacing of ~28 km. The data locations are illustrated
in Fig. 3. A prior solution was obtained by time stepping
the nonlinear barotropic shallow water equations (in-
cluding advection, nonlinearities in the continuity equa-
tion, aquadratic parameterization of bottom friction, and
lateral eddy viscosity). Sea surface elevations from
TPXO0.3 (Egbert 1997) were used as the open boundary
conditions. As described in section 4, the T/P data were
then low-pass filtered along track before sampling at the
data sites, and equilibrium long-period tides, a correc-
tion for radial deformation, the prior solution, and the
time series average were subtracted from the altimeter
data at each data location. Finally, data were harmon-
ically analyzed for the eight modeled constituents, as
described in appendix C.

Using Eq. (20) 312 representers at the locations
shown by the filled symbols in Fig. 3 were calculated.
The dynamical error covariance 3, was defined follow-
ing the considerations outlined in EBF, using the prior
solution to estimate the spatially varying magnitudes of
errors in the momentum equations. The correlation
length scale for the dynamical errors was set to 200 km
(approximately eight grid cells). The continuity equation
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Fic. 5. Elevation for the (a), (b) prior and inverse (c), (d) solution for the M, (left) and K, (right) tidal constituent. Amplitude (in cm) is
shown with solid lines, and phases with dashed lines. The amplitude increment is 10 cm for M, and 5 cm for K;. The phase increment is

90° for M, and 45° for K,.

was assumed to be exact. An example of an elevation
data representer for an observation of M, in the South
China Seais given in Fig. 4.

The bulk of the computation required for implemen-
tation of the Gl approach lies in the representer cal-
culation. Computational resources required to calculate
representers for all eight constituents are compared in
Table 1, for several different computer platforms, and
for the time stepping and matrix factorization approach-
es. Factoring the coefficient matrix for the wave equa-
tion dramatically reduces the CPU time required for the
representer calculation.

The direct factorization approach alows for a de-
crease in computational time (relative to the time-step-
ping approach used for the representer calculation of
EBF) by a factor of approximately 3000. This alows
solution of moderate size problems on a standard work-
station that would not be practical with the time-step-
ping approach, even on a small supercomputer like the
CM-5E. Note, however, that the required RAM increas-
es rapidly with grid size. Storage of the banded matrix
A requires (3m + 4)N.. complex words, where N, is
the number of ocean nodes (excluding land). For our
420 X 240 grid, 446 Mb of RAM are required for single
precision computations. For double precision calcula-

tions close to 1 Gb of RAM would be required. Thisis
near the limit of RAM for a desktop workstation at this
time. Computations on significantly larger grids would
require use of a different class of computer, or modi-
fications to the algorithms to allow for blocked out-of-
core factorization schemes.

To compute the inverse solution, we used the single
constituent reduced basis approach [see Egs. (25)—(28)]
to calculate the representer coefficients B. The inverse
solution was then calculated using Egs. (21)—(23). Fig-
ure 5 shows elevations for the prior and inverse solution
for the M, and K, tidal constituents. The most significant
changes from the prior solution arein the shallow South
China, Java, and Arafura Seas, in the Gulfs of Carpen-
taria and Thailand, and in the Sulu Sea. The amplitude
of change in the elevation fields is as great as 60 cm
for M,, and 40 cm for K;.

Figures 6 and 7 show in-phase and quadrature tidal
currents for M, and K, for the inverse and selected parts
of the prior solutions. We show only the central part of
the model domain, where seas are shallowest and currents
largest. Assimilating T/P dataresultsin significant chang-
esin M, tidal currents in the Java, Timor, and Arafura
Seas, and along the northwest coast of Australia, where
currents in the inverse solution reach a few meters per
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Fic. 7. The K, (&) in-phase and (b) quadrature currents. The inverse solution is shown in the
larger images, with areas significantly different from the prior framed. Corresponding parts of the
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prior solution are shown in the lower rows of (a) and (b).
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Fic. 8. The M, along-track residuals for the real (&), (c) (left) and imaginary (b), (d) (right) inverse solution and TPXO.3 global solution.
TOPEX/Poseidon tracks are shown with straight lines. Curves denote the values of the residuals—the bigger the residuals the bigger the
distance between a track and a curve. Filled areas denote positive residuals and unfilled areas negative residuals.

second. (Note that plotted vector magnitudes are limited
to 1 m for clarity.) Fitting the altimeter data also results
in significant phase shifts of currents in the Timor Sea,
and of flow into the Sulu Sea and through Makassar
Straight, one of main connections between the Pacific
and Indian Oceans (Hatayama et al. 1996).

Major changes in the K, diurnal currents occur in the
adjacent parts of the South China and Java Seas, in the
Arafura Sea, and in the Gulf of Carpentaria, and also
in the Molucca, Halmahera, and Seram Seas (to the
northwest of New Guinea).

In Fig. 8 we plot the difference between the inverse
solution elevation and estimates of M, harmonic con-
stants computed along the T/P ground track. For com-
parison we also plot residuals computed using the
TPX0.3 global solution. For theglobal solution, residuals
are much larger, and spatially coherent (i.e., nearby re-
siduals all tend to have real and imaginary parts of the
same sign). For the inverse solution residuals mostly ook
like noise, with residuals on crossing tracks generally
having opposite signs. Thisimpliesthat the altimeter data
is not consistent with a dynamically realistic tidal solu-
tion, so that a significantly better fit is not possible.

Table 2 summarizes the root-mean-square residual
magnitude for the four main tidal constituents asafunc-

tion of water depth for the prior and inverse solutions.
Results are also given for TPX0O.3 and for two other
more recent global solutions—GOT99 (Ray 1999) and
CSR4.0 (R. Eanes 1999, personal communication). The
inversion procedure dramatically improvesfit to the data
compared to the purely hydrodynamic prior model in
all depth ranges, and for all constituents. Misfits for all
solutions increase in shallower water. In the shallowest
depth range (H < 500 m) the coarse (%2° resolution)
global models generally fit the data rather poorly, with
rmsmisfit for M, of the order of 10 cm, athough GOT99
fits the altimeter data significantly better in these shal-
low depths. The higher resolution inverse solution pro-
vides by far the best fit in shallower water. In deeper
water our regional inverse solution generally does not
fit the altimeter data significantly better than the global
solutions (especially compared to GOT99).

Although the deep water open boundary conditions
obtained from the global inverse solution TPXO.3 are
reasonably accurate, there are still significant discrep-
ancies between the prior solution and the altimetry data
in many shallow areas. This demonstrates that there are
significant errors in the dynamical equations used to
model the tide in this area. The two largest sources of
error are almost certainly in the bathymetry and in the
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Fic. 9. Rms misfit vs number of representers used in the reduced
basis solution. Curves for semidiurnal constituents are solid, and for
diurnal constituents dotted: (a) shallow depth range, H < 500 m; (b)
deeper depth range, 500 m < H < 2500 m.

representation of dissipation. Discrepancies in this area
between two widely available digital global topographic
databases [ETOPOS5 (National Geophysical Data Center
1992) and Gtopo30 (Smith and Sandwell 1997)] reach
~100 m over large areas in the shallows. It is not clear
which database is most accurate; most likely both con-
tain significant errors in this topographically (and po-
litically) complex area. For the prior model we assumed
the quadratic parameterization for bottom friction of
(11). Thisis at best an approximation, which must limit
solution accuracy in shallow seas where dissipative
terms are significant. Note also that there are areas of
steep topography within our domain, where generation
of internal tides by barotropic tidal flow may be sig-
nificant (e.g., Sjoberg and Stiegbrandt 1992; Egbert and
Ray 2001). These baroclinic processes, which are not
accounted for in the shallow water equations or our
parameterization of dissipative processes, can extract
significant energy from the barotropic tide.
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In the last column of Table 2 we give the average
least squares estimation errors for the along-track har-
monic constants. These give some indication of noise
levelsin the data In shallow water misfitsto the inverse
solution are dlightly larger than the harmonic constant
standard errors, suggesting slightly better fitsto the data
might be possible. However, some small-scale features
in the along-track tidal elevation harmonic constants
may be associated with baroclinic tides that are phase
locked to the barotropic tide (Ray and Mitchum 1997),
and this part of the signal should not be fit by a baro-
tropic model. In deeper water fit of the inverse solution
is about as good as possible. Overall, we conclude that
the inverse solution fits the altimeter data significantly
better than previous solutions, and probably about as well
as can be justified, given the level of noise in the data.

With the reduced basis approach, it is important to
choose the locations for the calculated representers so
that we do not loose important detailsin the approximate
inverse solution. For the Indonesian Seas solution, we
experimented with five different subsets of representers,
which are indicated by the different symbolsin Fig. 3.
The first subset consists of 90 representers spread uni-
formly on a subset of crossover points, denoted with
the filled squares. The second set includes an additional
90 representers marked by filled circles (the remaining
crossover points). The remaining subsets have an ad-
ditional 60, 30, and 42 representers, which are denoted
by diamonds, triangles, and inverted triangles, respec-
tively. These are placed between crossover points in
shallow seas and areas of complex bottom topography.
The final sets of representers were chosen after exam-
ination of residual plots (such as shown in Fig. 8) for
preliminary versions of the inverse solution. For the
results discussed above we used the final full set of 312.
Figures 9a,b shows along-track rms misfit versus the
number of representers N used for the solution, for the
two shallower depth ranges (H < 500 m, 500 m < H
< 2500 m). Thevalue at N = 0 corresponds to the prior
model misfit. For deeper areas misfits are reduced to
near the lowest levels with approximately 100 repre-
senters. For the shallowest depth, range misfits are still
falling with the addition of more representers, suggest-
ing that small additional improvements may be ob-
tained, particularly if the along-track misfit plot of Fig.
8 isused for guidance in choosing representer locations.
Alternatively, the conjugate gradient approach described
in Egbert and Bennett (1996) can be used to refine the
solution. However, as discussed above, given possible
complications due to surface expression of the internal
tides, it is not clear that better fits are actually justified.

Figures 10a,b show posterior errors for the M, and
K, elevations estimated using the Monte Carlo simu-
lation approach and Eg. (37). In the open ocean, errors
are less than 1 cm. Larger errors (4 cm) occur in the
shallower water, especially in the coastal areas where
tidal amplitudes are greatest, and residualsin Fig. 8 are
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is filled with gray: (a) M, and (b) K,.

largest. Similar pattern of error amplitudes are observed
for both diurnal and semidiurnal constituents.

6. Summary and conclusions

In principal the Gl approach has a number of signif-
icant advantages over simpler approaches to tidal data
assimilation such as nudging (Kantha 1995; Matsumoto
et a. 1995), or optimal interpolation (Mazzega and Ber-
ge 1994). The GI approach allows complete control over
conditioning of the inverse solution, provides a natural

framework for rational specification of errorsin the dy-
namical equations and data, and is optimal for the as-
sumed covariances. Also, Gl alowsfor the computation
of posterior error bars, and testing of hypotheses (e.g.,
Bennett 1992; Egbert 1997). However, the rather heavy
computations required for Gl are a significant enough
disadvantage to have limited the use of this approach
in practice. Here we have developed and implemented
an efficient linearized scheme, which makes routine ap-
plication of Gl to global and regional barotropic tidal
modeling quite feasible.
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To make the inversion efficient, we factor the coef-
ficient matrix for the frequency domain elevation wave
equation, derived from the linearized shallow water
equations by eliminating velocities. Once this matrix
has been factored, the repeated solution of the linearized
tidal equations required to calculate representersisvery
fast. This direct factorization approach is more than a
factor of 1000 faster than the time step representer cal-
culation used by EBF to calculate representers for a
global tidal inverse solution. Combined with a reduced
basis representer approach this solution scheme makes
application of the Gl approach to regional-scale tidal
modeling problems (with approximately 10° grid nodes
and 104 data) practical even on a desktop workstation.

To keep memory requirementsfor storing the factored
coefficient matrix reasonable, it isnecessary to eliminate
velocities from the coupled first-order system of shallow
water equations (12)—(13) to derive a wave equation in
the scalar elevation field. A key feature of our approach
is that we keep the penalty functional defined in terms
of the first-order equations, which embody conservation
of momentum and mass of the ocean fluid, so we can
allow for errorsin these original equations. If the penalty
functional were instead formulated directly in terms of
the wave equation, velocities could not be computed
from the inverse elevation solution without assuming
that the momentum equations (12) are exact. In effect
all of the error would then be assumed to bein Eq. (13).
In fact, this equation is just a simple statement of mass
conservation, which (with the equations expressed in
terms of volume transports) involves no unknown or
uncertain parameters. With a reasonable interpretation
of the transports and elevations on the C grid asaverages
over cell sides and the cell area, respectively, there is
not even any grid truncation error in the numerical ap-
proximation of this equation. In estimating currents it
would be unreasonable to not enforce mass conserva-
tion, but to require an exact fit to the momentum equa-
tions, which involve uncertain bathymetry, and approx-
imate parameterizations of dissipation and tidal loading
and self-attraction. The proper choice of covariance has
important implications for some applications. Egbert
and Ray (2001) show that empirical estimates of energy
dissipation obtained without enforcing mass conserva-
tion are too noisy to be interpreted, while stable and
informative estimates result when fit to (13) is enforced.

With the approach developed here it is possible to
enforce mass conservation exactly, leaving all error in
the momentum equations. It isalso possibleto assimilate
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tidal currents, even though all dynamical calculations
are done strictly in terms of elevations. This general
approach could be usefully applied to other assimilation
problems where some model variables can be eliminated
to simplify dynamical calculations, and then calculated
prognostically from those variables retained. The basic
idea is embodied in Eq. (18): by writing explicit ex-
pressions for the prognostic calculation equations, to-
gether these with the reduced dynamical equations, it is
straightforward to derive expressionsfor the appropriate
adjoints [i.e., Eg. (19)]. These show how to compute
the forcing error for the original coupled system, using
adjoints of the reduced system and of the prognostic
calculations.

Our efficient representer cal culation scheme has been
combined with programs for generating grids, boundary
conditions, tidal forcing, dynamical error covariances,
and altimetry datasets into a relocatable system for in-
verse barotropic tidal modeling. We have illustrated the
functionality of the system by constructing a new re-
gional-scale inverse solution for the main eight tidal
constituents in the complex Indonesian Seas. The so-
lution fits the altimetry data significantly better than
previously proposed coarser-scale global tidal models.
Our results suggest that with careful implementation
assimilation based on a rigorous Gl approach can be
quite efficient.
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APPENDIX A

Numerical Implementation Details

We consider operators G (gradient), D (divergence),
and C (multiplication by 1) as defined in section 3,
Eqg. (17). The nodes {;, U;, and V;; are defined as in
Fig. 1, section 3. Depth H;; is defined on the { nodes.
Let MY, MV, and M¢ be the water/land masks (O for
land nodes, 1 for ocean nodes). The node U or V; is
land if any adjacent ¢ node is. In particular masks are
zero for coastal boundary nodes. Then operators G, D,

and C can be expressed explicitly on the C grid as

Hi_y; + Hj

G {-UV

ij
i

Iy

- \

MUY
"F(ME .y, + M§)aA ¢ cos);

H; + H;_,

L.I(gij - gi—lj)

(A1)

O
O
O

T9Ms + Mi_)are

(Zij - gij—l)
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(Ui+1j - Uij) (\/ij+1 - Vij)
D: u,Vv - = Mg A2
¢ i 'l aA¢ costy aAf (
o = QWU + QW (Vu + Vi—lj + \/ij+1 + Vi—1j+1)
(P = U O M MY, + MY+ MY,
] ] ] ]
C: u,Vv- UV 0 (A3)

v, = apv, + aw
O

Here a is the radius of the earth, g is gravitational
acceleration, (6, ¢) are the latitude and longitude. The
2 X 2 matrices ) and ) are defined by (14) at the
U; and V;; nodes, and the following components of the
inverse matrices are used in (A3):

Q= [Q7lir QY = [
QF = [z

v = [QY]:

The operator A: { — ¢ from (17) is defined as a
concatenation of D, C, and G, plus the obvious scalar
multiplication by iw.

Land nodes are excluded from transforms (A1), (A2),
and (A3) by the masks. In particular, the gradient op-
erator is zero on al boundary U and V nodes. The op-
erators A and C require special definitions on boundary
nodes. Here C is identity on U/V boundary nodes:

C: Uy - Uy, V-V
and A is identity on ¢ boundary nodes:
Al G - &

It is easily verified from (18) that with these conven-
tions, the solution on any boundary node (say U;;) will
satisfy U;; = (f,);;, and similarly for the V and £ nodes.
With these conventions general inhomogeneous bound-
ary conditions at the coast and open boundaries can thus
be enforced. Note that this general form for the bound-
ary conditions is required because we allow for errors
in all boundary conditions (in particular in the no-flow
boundary condition at the coast). These conventions de-
fine a consistent treatment of boundary conditions both
for the wave equation, and for the computation of vol-
ume transport. Note also that the specia treatment of
boundary nodes also defines [through the discrete ad-
joint (19)] the correct adjoint boundary conditions for
the representer calculation.

APPENDIX B

Global Grids

For a global grid that is cyclic in longitude the co-
efficient matrix for the wave equation is not exactly
banded anymore. To allow for this case, we partition
the coefficient matrix into four submatrices, where the

(Uij + Ui+1j + Uij—l + Ui+1j—1)
DM+ MY+ MY+ MY )

largest is banded. In general for any matrix A and vec-
tors b, x, partitioned as

All A12
A21 A22

X1
X2

b,

A =
b,

, X = , b= , (B

the solution to Ax = b satisfies
(D x, = (Ap — ALARAL) Hb, — A,ALD,), (B2)
(2 x, = Ant(by — ApX,). (B3)

Let n be the number of longitude divisions, or col-
umns in the grid, and m be the number of latitude di-
visions, or rows in the grid. First we can partition the
coefficient matrix for the wave equation A into n rows
and n columns as in (B1), where
m, 1m, o - 0
l_121 sz st 0

0 Il Iy - I

0 © 1§ P
1_-[1n

0

=, ., @

ml

0

1_[nfln
Ay =l O
A22 = |Hnn|'

0 Hnn—ll'
(B4)

The largest matrix A,; corresponds to the full coef-
ficient matrix A, except all columns and rows involving
the rightmost column of the grid. Here A,; has the usual
banded structure and can be factored as in section 3.
The matrix A,, consists of m columns «,, kK = 1, m.

Thus to solve the wave equation for the global case,
we do the following.

() Solve A,;y = b, fory and Az, = @, for z,, k
= 1, musing the factorization of A,, (the factorization
need be done only once). Collect z,, k = 1, minto the
matrix Z = |z, Z,y -+ - Zy|-
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(b) Computew = b, — A,y and the square m X m
matrix E = A,, — A,,Z.

(c) Solve the full m X m system Ex, = w.

(d) Computeu = b — AX,.

(e) Solve A, x, = u, again using the factorization of
A,

APPENDIX C

Linear Algebra and Data Reduction

We first consider the initial reduction of the time
domain data. We rewrite (31) explicitly in terms of real
and imaginary parts

Rez,

d, = [ReA, — Imz
K

ImA,] +e=Az +¢& (Cl

where the overbars are used to denote real versions of
complex matrices and vectors. Assuming T, = 2N, we
next compute the QR decomposition of the real matrix
A, = 0QB,. Here Q is of size T, X 2N, with
orthonormal columns and B , is an upper-triangular real
matrix of size 2N. X 2N.. Multiplying both sides of
(C1) by QT reduces the data vector to 2N, components

d, = Q'd, = Ekzk +Q7¢, = ReB,z] + &. (C2)

In the last step we have converted the real matrix B,
back to complex viaB, = B,, — iB,,, where B, =
[B .y Byl is partitioned into two real submatrices, each
with N, columns. With the transformation of (C2) we
have reduced the data vector to 2N, components, dis-
carding the part of the data that cannot be fit by any N,
constituent tidal model. Using the usual least squares
(LS) theory, we estimate the data error variance from
the mean-square residual magnitude 62 = ||d, — d, ||/
(T« — 2N.). Assuming that the original data errors g,
are uncorrelated with variance o, the transformed error
vector &, will have the same simple covariance, since
multiplication by QT corresponds to a rotation in the
data space. We make this simplifying assumption in
OTIS, and use 2 to estimate the error variance for the
2N, elements of d,. For each datalocation x, thisinitial
data reduction procedure yields a reduced data vector
d,, temporal sampling structure matrix B,, and data er-
ror variance 2. These can then be used along with the
calculated representers to solve simultaneously for all
N. constituents as outlined in section 4. Note that if the
time series at x; is shorter than 2N,, there is no need
for thisinitial reduction of the data vector, and the matrix
A, can be used in place of B,. However in this case an
independent estimate of the data error variance o3 is
required.

For long enough time series constituents can be sep-
arated at each location, allowing the more efficient sin-
gle constituent inversion approach to be used. To com-
plete harmonic analysis of the time series d,, we can
simply solve the triangular system d, = BZ,. The result
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will be the usual LS estimate of the real and imaginary
parts of the N, tidal harmonic constants. Error variances
for the elements of z, are obtained in the usual way for
the LS estimates from the diagonal elements of
oBIB,) 1. These estimates of error variances for each
constituent are then used to define the diagonal data
error covariance 2.

Next, we consider further details on matrix manip-
ulations required for the multiple constituent inversion.
Let B, = |bi bZ---Db}| denote the N, columns of the
complex matrices defined above. Define the large sparse
blocked matrix

bt 0 - O bl 0 0|0
0 b -~ 0 0 bx -~ 0 ]
B=g¢,. . : : : . : B
0 0 - b 0 0 b|

(C3)

With B so defined, it is then straightforward to check
that (34) holds.

Finally we consider computation of the SVD of the
potentially very large matrix % ;*F, where F is defined
in (34). First note we can reduce the number of columns
in each of the matrices E' by keeping only the eigen-
vectors of R' associated with the largest N eigenvalues.
Typicaly N; can be approximately half of K with little
effect on the final approximate inverse solution. With
this reduction X% SF is M X 2N_.N;. Since M can be as
large as 10%, this matrix can still be too large to allow
direct computation of the SVD in core. For OTIS we
use a two-stage procedure. In the first stage we compute
a QR decomposition X 'F = W Qq, where Q; is an
upper-triangular matrix of size 2N_N; X 2N_N;. Com-
putation of Q. and W d can be accomplished efficiently
with a blocked out-of-core algorithm (e.g., Golub and
Van Loan 1989). Note that this scheme does not directly
compute or store the large orthogonal matrix We. In the
second stage we compute the SVD of Q. = W,SQT.
Then X *F = (WW,)SQ™ = WSQT is the SVD of the
large matrix X.'F. Note that the product W'd =
WIWid [required for computation of the representer co-
efficientsusing (35)] iseasily computed without actually
storing W. It is useful to compute and store this large
orthogonal matrix for the posterior error calculation
only. This last matrix multiplication to compute W can
also be easily accomplished with an out-of-core algo-
rithm.
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