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ter. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced ura
bearing species, has been demonstrated to limit themobility of uraniumat the laboratory sc
field-scale investigations are lacking. In this study, the mobility of uranium in the prese
nitrate oxidant was investigated in a shallow groundwater system after establishing con
conducive to uranium reduction and the formation of reduced sulfur-bearing species. A
of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with e
(40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate mic
mediated reduction of uranium and the formation of reduced sulfur-bearing species. Si
neous push‐pull tests were then conducted in triplicate well clusters to investigate themob
U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with e
(30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakth
curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reductio
predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed
reoxidation of U(IV), under all three conditions for the duration of the 36-day test
amount of sulfate, but not U(VI), recovered during the push‐pull tests was substantially mo
injected, relative to bromide tracer, under all three conditions and further suggested that re
sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. Ho
some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the abse
detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may
fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid
oxidants. The results of this field study confirmed those of previous laboratory studies
suggested that reoxidation of uranium under nitrate-reducing conditions can be substa
limited by preferential oxidation of reduced sulfur-bearing species.
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1. Introduction 2012). This is likely due, in part, to preferential oxidation
of common reduced sulfur-bearing minerals such as pyrite
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Uranium-contaminated groundwater is a human and (FeS2), mackinawite (FeS0.9) and alabandite (Mn
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environmental health concern due to releases asso
with the mining, milling and processing of uranium
well as those from natural sources (Brugge et al., 2005
mobility of uranium in groundwater is highly depende
groundwater pH, redox potential and the mineralogy
solid-phase subsurface media. In circumneutral pH gr
water, uranium primarily exists as soluble U(VI)-be
species under oxidizing conditions or as less soluble U
bearing species under reducing conditions (Goodwin,
Grenthe et al., 1992; O'Loughlin et al., 2011). Under oxi
conditions and circumneutral pH, U(VI)-bearing species c
immobilized by adsorption to iron-bearing minerals (L
Kaplan, 2012). Under reducing conditions, U(VI) can be re
to immobile U(IV) chemically by reduced iron- or sulfur-b
species (Chakraborty et al., 2010; Hyun et al., 2012, 2014
et al., 2005) and/or biologically by native anaerobic mic
communities (Wall and Krumholz, 2006). Microbial-me
uranium reduction in particular, has been the predom
mechanism utilized for enhancing in situ uranium im
lization (Newsome et al., 2014). However, reoxidat
previously reduced uranium in the presence of disso
and/or solid-phase oxidants can result in remobilizat
uranium, which poses a significant challenge for remed
uranium-contaminated groundwater (Singh et al., 2014)

Microbial-mediated reduction of uraniumcan be stim
by the in situ addition of an electron donor such as et
glucose, acetate, lactate, formate, or emulsified vegetab
(Senko et al., 2002; Anderson et al., 2003; Istok et al.,
Vrionis et al., 2005; Wu et al., 2006, 2007, 2010; Dullies
2010; Campbell et al., 2011; Sharp et al., 2011; Watson
2013). In the presence of an added electron donor, ur
reduction can proceed following depletion of higher e
yielding terminal electron acceptors (TEAs) such as ox
nitrate, manganese, and concurrent with ferric-iron r
tion (Newsome et al., 2014) which may result i
production of insoluble minerals such as uraninite
(Wall and Krumholz, 2006). However, natural recha
dissolved-phase oxidants such as oxygen and nitrat
previously reduced groundwater zones can result in
dation and subsequent remobilization of uranium (Wu
2007, 2010; Watson et al., 2013). Although the prese
solid-phase oxidants such as Mn(IV)-oxides and/or F
oxides can also result in reoxidation of uranium, their abun
is likely limited following uranium-reducing conditions (V
et al., 2005). In order to actively maintain uranium-red
conditions, the continuous or periodic addition
electron donor can effectively prevent uranium reoxid
(Wu et al., 2007, 2010; Watson et al., 2013). However,
remediation systems can also be expensive to design,
and operate. Therefore, creating groundwater cond
which can sustain uranium-reducing conditions after i
electron donor addition has been terminated and deple
of critical interest to remediation practitioners.

The importance of reduced sulfur-bearing minerals, fo
by sulfate-reducing bacteria, has been recognized as a pre
inant factor contributing to maintaining uranium-red
conditions in natural uranium-rich groundwater sy
(Iwatsuki et al., 2004; Arthur et al., 2006; Noseck
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oxygen and nitrate, which are thermodynamically favo
reductants when compared to uraninite (Dean, 1999)
suggests that creating in situ groundwater condition
are conducive to the formation of reduced sulfur-be
minerals following uranium reduction may lead to g
stability of immobilized uranium in the presence of oxi
The importance of preferential oxidation of reduced s
bearing minerals following uranium reduction has
demonstrated experimentally in numerous laboratory s
(Abdelouas et al., 1999, 2000; Moon et al., 2009; N'Gu
et al., 2010; Bi et al., 2013; Bi and Hayes, 2014a, 2
Carpenter et al., 2015; Luan et al., 2015). For example, in a
through sediment column study, Moon et al. (2009) de
strated that microbial-mediated uranium reduction fol
by enhanced sulfate reduction resulted in the formation o
sulfides which limited the extent of uranium reoxidati
oxygen and nitrate when compared to a previous study
uranium reduction was not followed by sulfate red
(Moon et al., 2007). However, in both laboratory studie
rate and extent of uranium reoxidation were greater
nitrate, as opposed to oxygen, was the oxidant. The re
importance of nitrate as a predominant oxidant for i
uranium reoxidation has also been recognized at num
uranium-contaminated sites where nitrate is a commo
contaminant due to activities associated with the process
uranium ore (Spain and Krumholz, 2011; Lloyd and Ren
2005; Smith et al., 2015). Although nitrate alone doe
abiotically oxidize U(IV) to an appreciable extent, dissimi
nitrate reduction intermediates, such as nitrite, nitric oxid
nitrous oxide, as well as microbial-mediated nitrate-depe
U(IV) oxidation, have been shown to reoxidize uraniu
numerous laboratory and in situ studies (Singh et al., 201

Despite the importance of nitrate as an oxidant
field conditions and sulfide-bearing minerals as redu
under laboratory conditions, relatively few studies to
have investigated uranium reoxidation by nitrate follo
sulfate-reducing conditions in the field. Therefore, a
stantial knowledge gap currently exists as to the i
feasibility of such an approach in terms of limiting the e
of uranium reoxidation. The objective of this study w
test the in situ mobility of uranium in the presence of n
following uranium- and sulfate-reducing conditions.
on the results of previous studies and thermodynami
hypothesized that preferential oxidation of reduced s
bearing species, as opposed to reduced uranium-be
species, can substantially limit the extent of uranium m
zation in the presence of nitrate.

2. Materials and methods

2.1. Study site

The study site is located in Area 2 of the Oak
Integrated Field Research Challenge (OR-IFRC) site i
Ridge, Tennessee. A typical geologic profile of Area 2 w
consist of approximately 6meters of reworked fill and sap
at the surface underlain by 2 meters of intact saprolite
weathered bedrock below the saprolite (Watson et al., 2



The study site contains ten shallow groundwater monitoring
wells (FW218 through FW227) constructed of ¾-inch inside
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diameter schedule 80 polyvinyl chloride (PVC) pipe
monitoring wells were installed by direct push an
screened from 3.5 to 6 meters below ground surface (m
The shallow groundwater aquifer is unconfined and de
groundwater is approximately 3.5 mbgs. The groundwat
sediments within Area 2 are contaminated with nitrat
uranium from the former S-3 Ponds which contained
waste derived from the processing of uranium ore (Spai
Krumholz, 2011). The pH of groundwater at Area 2 tends
between 6 and 7 with concentrations of uranium ranging
3.8 to 7.1 μM (Moon et al., 2006) and concentrations of n
ranging from 1 to 4 mM (Spain and Krumholz, 2011
average groundwater redox potential is 170 mV and r
tion of equilibrium-predicted U(VI)-bearing sp
(UO2CO3, UO2(CO3)22−, UO2SO4, UO2(SO4)22−, Ca2UO2(C
CaUO2(CO3)2−) is not energetically favorable in the ab
of an added electron donor (Moon et al., 2006; Watson
2013). The saprolite contains significant quantities o
oxides and, to a lesser extent, manganese oxides which
a high capacity for U(VI) adsorption at circumneutr
(Barnett et al., 2002). Concentrations of uranium (nitri
extractable) in saprolite from Area 2 range from 0.293 t
mg/kg (Moon et al., 2006). Microbial-mediated ura
reduction has been demonstrated in numerous labo
studies utilizing Area 2 groundwater and/or sediments b
addition of a range of electron donors (Spain and Krum
2011) and under in situ conditions by the addition of et
(Fang et al., 2006) and emulsified vegetable oil (Watson
2013). However, concurrent reoxidation of reduced s
bearing species and U(IV) by nitrate following deplet
emulsified vegetable oil has also been observed in A
(Watson et al., 2013). This suggests that the geochemis
Area 2 is conducive to forming reduced sulfur-bearing s
but that nitrate has the oxidative strength to remo
uranium to background levels. The wells utilized in this
were not part of any previous studies and are likely not af
by previous or ongoing activities within Area 2.
Table 1
Summary of biostimulation and reoxidation test methodology.

Test # Test type Method

1 Biostimulation Injection only
2 Biostimulation Injection only
3 Biostimulation Injection only
4 Reoxidation Injection & periodic extraction

4 Reoxidation Injection & periodic extraction

4 Reoxidation Injection & periodic extraction

4 Reoxidation Injection & periodic extraction

EtOH = ethanol.
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A series of four tests were conducted in wells F
through FW227. Three biostimulation tests (tests 1, 2
3) were conducted in order to reduce and immobilize ura
and to precipitate sulfides (Table 1).

The reoxidation test (test 4) was conducted in ord
investigate the mobility of uranium in the presence of n
(Table 1). Groundwater samples for all tests were collecte
filtered (0.2 μm) in the field and stored at 4 °C until ana
Groundwater used for test injectate was collected from n
well GW835 which contained relatively low pre-test
centrations of nitrate (1 mM), U(VI) (5 μM) and sulf
mM), and a circumneutral pH (6.5) (Table 2). The test
contained roughly similar pre-test concentrations of n
(0.1 to 12.9 mM), U(VI) (0.1 to 3.9 μM) and sulfate (0.1
mM) and a circumneutral pH (6.6 to 8.0) (Table 2). Pr
concentrations of ethanol were below the method det
limit from injectatewell GW835 and test wells FW218 th
FW227 (data not shown).

The biostimulation tests were conducted by injectin
liters of ethanol- and sulfate-amended injectate in all ten
(Table 1). Immediately prior to injection, the injectat
amended with 40 mM ethanol (C2H6O) and 20 mM s
(Na2SO4) and thenmixedwith compressed 80%N2:20%CO
The injectate was then injected into each well using a s
and was completed within a 24-hour time frame. Five sa
of the injectate were collected during injection for analy
amended ethanol and sulfate (data not shown) and
similar to the target concentrations (Table 1). Ground
concentrations of ethanol and sulfate in test wells immed
prior to subsequent biostimulation tests (data not sh
were similar to pre-test concentrations (Table 2).

The reoxidation test was conducted using the singl
push‐pull test method according to the methodology o
et al. (2004). The reoxidation test was conducted under
different conditions in triplicate well clusters: 1) high n
(cluster 1), 2) high nitrate with ethanol (cluster 2), and 3
nitrate with ethanol (cluster 3) (Table 1). A push‐pull te
Day(s) Treatment ID Well Amendments

0 – All wells 40 mM EtOH, 20 mM SO4
2−

47 – All wells 40 mM EtOH, 20 mM SO4
2−

84 – All wells 40 mM EtOH, 20 mM SO4
2−

139–176 Control FW224 30 mM EtOH, 20 mM SO4
2−

139–176 Cluster 1
FW219

120 mM NO3
−FW220

FW225

139–176 Cluster 2
FW218

30 mM EtOH, 120 mM NO3
−FW226

FW227

139–176 Cluster 3
FW221

30 mM EtOH, 2 mM NO3
−FW222

FW223



conducted in a single well (FW224) under similar ethanol- an
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Table 2
Pre-test nitrate, U(VI), and sulfate concentrations and pH in source well
(GW835) used for test injectate and in wells used for push‐pull tests (FW21
through FW227).

Well NO3
− U(VI) SO4

2− pH

(mM) (μM) (mM)

GW835 1.0 5.0 1.0 6.5
FW218 12.9 0.1 0.4 7.0
FW219 0.4 3.9 0.6 7.4
FW220 0.2 0.1 0.1 7.7
FW221 1.2 0.1 0.2 7.5
FW222 0.1 0.1 0.1 7.8
FW223 0.1 0.1 0.1 8.0
FW224 0.1 0.1 0.1 7.7
FW225 0.7 0.2 0.1 7.5
FW226 1.2 0.2 1.9 7.2
FW227 0.3 0.1 0.5 6.6

58 C.J. Paradis et al. / Journal of Contaminant Hydrology 187 (2016) 55–64
serve as a control (Table 1). Immediately prior to inje
the injectate was amended with 10 mM sodium bicarb
(NaHCO3) buffer, 1.3 mM bromide tracer (KBr), and et
(C2H6O), sulfate (Na2SO4) or nitrate (KNO3), dependi
the test condition (Table 1). The reoxidation test inj
volume, mixing and injection methodology, and inj
time frame were identical to the biostimulation tests
samples of the injectate were collected during the inj
phase. Post-injection groundwater samples were col
by periodic extraction of the test wells for 36 day
analyzed for bromide, ethanol, nitrate, nitrite, U(VI)
sulfate.

2.3. Laboratory analysis

Bromide, nitrate, nitrite, and sulfate were measured
chromatography (Dionex, model DX-120). U(VI) was
sured by a kinetic phosphorescence analyzer (Chem
KPA-11). pHwasmeasured by glass electrode (Accumet,
25). Ethanol was measured by gas chromatography (He
Packard, model 5880) with flame ionization detection.
Fig. 1. Dilution-adjusted concentrations of ethanol, sulfate, and U(
Dilution-adjusted concentrations were compute
dividing the measured concentration of the reactive
(ethanol, nitrate, nitrite, U(VI), and sulfate) by the re
concentration of the non-reactive tracer (bromide) (
2013). Recovery factors of reactive tracers were com
by dividing the mass extracted from the well by the
injected into the well which was then divided b
corresponding recovery factor of bromide (Senko et al., 2
Recovery factors greater than one indicated that more re
tracer was recovered relative to bromide. Recovery facto
than one indicated that less reactive tracer was reco
relative to bromide.

3. Results and discussion
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3.1. Push–pull tests: uranium and sulfate reduction in contr

Complete removal of ethanol occurred within 24
after injection and ethanol concentrations remained
the method detection limit for the duration of the 3
test (Fig. 1). U(VI) concentrations remained below inj
levels (5 μM) for the first 13 days of the test (Fi
Complete removal of sulfate occurred within 3 days
injection and sulfate concentrations remained below
test levels (0.1 mM) for the first 15 days of the test (F
Nitrate and nitrite concentrations and pH remained a
test levels for the duration of the 36-day test (dat
shown). The observed removal of ethanol and sequ
removal of U(VI) and sulfate suggested that micr
mediated U(VI) and sulfate reduction occurred in the c
well for the first 15 days of the test. Although ferrou
was not measured, it is likely that ferric-iron reductio
occurred based on previous studies in Area 2 wher
classic sequence of TEAs were observed in ethanol-am
tests with nitrate reduction, ferric-iron reduction, s
reduction, and methanogenesis proceeding in seq
(Mohanty et al., 2008; Fang et al., 2006). These r
suggested that groundwater conditions conducive to
reduction/immobilization and precipitation of reduced s
bearing species were likely established in the first
VI) in control well FW224 amended with 30 mM ethanol and 20 mM sulfate.



biostimulation tests (Table 2). Although the valence state and
chemical speciation of uranium and sulfur in sediments were
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not determined, it is likely that U(VI) was reduced to U(
the form of uraninite and/or as U(IV) adsorbed to F
minerals and that sulfate was reduced to S2− in the fo
ferrous sulfide (FeS), based on previous ethanol-amended
at the OR-IFRC site (Kelly et al., 2008, 2010).

Sulfate and U(VI) concentrations increased steadily af
days and approached or slightly exceeded injection levels
mM and 5 μM, respectively, by the end of the 36-day tes
1). The increase of sulfate and U(VI) levels suggested
reoxidation of reduced sulfur-bearing species and U(IV) a
desorption of sulfate and U(VI) may have occurred. Alth
sulfate-reducing conditionswere clearly established duri
first 15 days of the test and nitrate and nitrite concentr
remained at pre-test levels, it is possible that solid-
oxidants such as Fe(III)-oxides and/or Mn(IV)-oxides
present due to incomplete reduction and were responsib
reoxidation of reduced sulfur-bearing species and U(IV
example, in a flow-through sediment column study ut
sediment from Area 2,Wan et al. (2005) provided severa
of evidence which suggested that despite constant ele
donor (lactate) addition and strongly methanogenic c
tions, Fe(III) and possibly Mn(IV) persisted as oxi
responsible for U(IV) reoxidation. Thermodynamicall
oxidant of U(IV) would be expected to oxidize su
preferentially and complete oxidation of FeS and Fe
sulfate by MnO2 has been observed in marine sedim
(Aller and Rude, 1988; Schippers and Jorgensen, 2
Although there is slight or no evidence for complete F
FeS2 oxidation by Fe(III)-oxides (Aller and Rude,
Schippers and Jorgensen, 2001, 2002), intermediate o
tion products such as elemental sulfur (S0) and thios
(S2O3

2−) can be completely oxidized to sulfate by mic
which utilize Fe(III)-oxides as TEAs (Finster et al.,
Thamdrup et al., 1993). Although desorption of sulfate
or U(VI) may have also occurred after 15 days it is un
due to relatively little change in pH (data not sh
(Barnett et al., 2002; Rose and Ghazi, 1997).

Recovery factors for U(VI) and sulfate were compu
order to quantify the extent of U(VI) and sulfate immo
tion/mobilization for duration of the 36-day tests (Tab
Recovery factors for U(VI) and sulfate were 0.2 an
respectively, for the control-well test (Table 3). Although
immobilization (0 to 15 days) andmobilization (15 to 36
Table 3
Recovery factors forU(VI) and sulfate for control (FW224) and testwell triplica
for triplicate test wells.

Treatment ID Well Amendments

Control FW224 30 mM EtOH, 20 mM SO4
2−

Cluster 1
FW219

120 mM NO3
−FW220

FW225

Cluster 2
FW218

30 mM EtOH, 120 mM NO3
−FW226

FW227

Cluster 3
FW221

30 mM EtOH, 2 mM NO3
−FW222

FW223

NA = not applicable, EtOH = ethanol.
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U(VI) and sulfate from groundwater occurred over th
duration of the test (Table 3). Therefore, it is likely that
removal of U(VI) and sulfate from groundwater by micr
mediated reduction also occurred during the first
biostimulation tests (Table 1).

3.2. Push–pull tests: uranium mobility in the presence o
nitrate

Complete removal of high nitrate (170 mM) in the ab
of ethanol was concurrent with a steady increase in s
concentrations above injection levels (up to 25 mM)
transient increase in nitrite concentrations (up to 2 m
well FW220 (Fig. 2). U(VI) concentrations remained
injection levels (5 μM) for the first 28 days of the test and
increased to 20 μM by the end of the 36-day test (Fig. 2
increase in U(VI) concentrations above injection leve
curred in the absence of detectable nitrate or nitrite (Fig. 2
pH in well FW220 remained at pre-test levels for the du
of the test (data not shown). Similar results were obser
replicate wells FW219 and FW225 (Supporting Inform
(SI) Fig. S1) which suggested that despite the high le
aquifer heterogeneity in Area 2 (Watson et al., 2004
biogeochemical processes were not spatially-biased und
conditions. These results suggested that nitrate redu
was predominantly coupled to reduced sulfur oxidatio
that U(IV) oxidation was negligible during this pr
These results were expected because preferential oxid
of common reduced sulfur-bearing species such as p
mackinawite, alabandite and elemental sulfur by nitr
nitrite are thermodynamically favorable when compa
uraninite (Dean, 1999). Although we did not determin
extent at which this process was either abiotic or micr
mediated, it is important to note that the microbial sp
Thiobacillus denitrificans has been shown to perform n
reduction coupled to reduced sulfur oxidation (Kell
Wood, 2000) and that the Thiobacillus genus has
broadly detected at the OR-IFRC site in both ground
and sediments (Spain and Krumholz, 2011). However,
results also suggested that solid-phase oxidants su
Fe(III)-oxides and/or Mn(IV)-oxides may have been re
sible for reoxidation of reduced sulfur-bearing specie
U(IV) during the later stages of the tests when nitrat
tes duringpush‐pull test 4. Average recovery factors±one standarddeviation are shown

U(VI) SO4
2− Avg. U(VI) ± 1 S.D. Avg. SO4

2− ± 1 S.D.

0.2 0.5 NA NA
1.0 14.4

1.3 ± 0.3 12 ± 31.5 8.6
1.5 13.0
0.9 9.8

1.3 ± 0.4 14 ± 51.8 13.2
1.2 20.2
0.5 4.2

0.7 ± 0.5 5.5 ± 1.31.3 5.6
0.4 6.8



nitrite concentrations were below the method detection
limit (Figs. 2 and S1). Similar results were observed in the
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Fig. 2. Dilution-adjusted concentrations of nitrate and nitrite (a) and sulfate and U(VI) (b) in well FW220 amended with 120 mM nitrate.
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controlwell (Fig. 1) andwere discussed in the previous se
Average recovery factors, plus or minus one sta

deviation, for U(VI) and sulfate in the triplicate well clu
were 1.3± 0.3 and 12± 3, respectively (Table 3). These r
demonstrated that substantially more sulfate, but not
was recovered relative to bromide. The calculated rec
factors for sulfate and U(VI) (Table 3) and the observed n
removal and concurrent sulfate production (Figs. 2 an
strongly suggested that reoxidation of uranium under n
reducing conditions was substantially limited by prefer
oxidation of reduced sulfur-bearing species.
Fig. 3. Dilution-adjusted concentrations of nitrate and nitrite (a) and sulfate and U(VI) (b) in well FW226 amended with 30 mM ethanol and 120 mM n
o

.
d
1
s
,
y
e
)
-
l

Removal of high nitrate (140 mM) and ethanol (30
was concurrent with a sharp increase in nitrite concentr
(up to 4 mM) in well FW226 for the first 7 days of th
(Fig. 3). During this time, sulfate concentrations incr
steadily (up to 10 mM) while U(VI) concentrations v
but were relatively close to injection levels (5 μM) (Fi

The results for the first 7 days suggested that n
reduction was coupled to both ethanol and sulfur oxid
and that U(IV) oxidation was negligible during this pr
Sulfur oxidation by nitrate was expected because nitrat
itrate.



added in excess (≈1.5-fold) of the stoichiometric demand
for ethanol oxidation (Table 1). After day 7, concentrations of
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sulfate remained well above injection levels (up to 18
while U(VI) concentrations were only slightly above inj
levels (up to 10 μM) until day 28 (Fig. 3). During this
concentrations of nitrate and nitrite were relatively lo
detectable (Fig. 3). The results between days 7 and 28 sugg
that a substantial amount of reduced sulfur-bearing s
were oxidized to sulfate under nitrate-reducing condition
that reoxidation of U(IV) was negligible. The concentrati
nitrate and nitrite between days 28 and 36 decreased to
the method detection limit, during which time, concentr
of sulfate and U(VI) also decreased (Fig. 3). These r
suggested that oxidation of reduced sulfur-bearing specie
U(IV) was nitrate dependent. The pH in well FW226 rem
at pre-test levels for the duration of the test (data not sh
Similar results were observed in replicate wells FW21
FW227 (Fig. S1).

Average recovery factors, plus or minus one sta
deviation, for U(VI) and sulfate in the triplicate well clu
were 1.3 ± 0.4 and 14 ± 5, respectively (Table 3).
results demonstrated that substantially more sulfate, b
U(VI), was recovered relative to bromide. However,
results also suggested that adding ethanol had a negl
effect on limiting the oxidation of sulfur and/or U(I
high nitrate as made evident by the similar recovery f
for sulfate and U(VI) in the high nitrate (cluster 1) and
nitrate with ethanol (cluster 2) treatments (Table 3). N
theless, the calculated recovery factors for sulfate and
(Table 3) and the observed nitrate removal and concu
sulfate production (Figs. 3 and S1) strongly suggested
reoxidation of uranium under nitrate-reducing cond
was substantially limited by preferential oxidation of re
sulfur-bearing species.
Fig. 4. Dilution-adjusted concentrations of nitrate and nitrite (a) and sul
)
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Removal of low nitrate (2 mM) and ethanol (30 mM
concurrent with a sharp increase in nitrite concentration
to 2 mM) in well FW222 for the first 3 days of the test (F
During this time, sulfate and U(VI) concentrations incr
sharply (up to 30 mM and 30 μM, respectively) (Fig. 4).
results suggested that nitrate reductionwas coupled to et
sulfur and U(IV) oxidation. Sulfur and U(IV) oxidati
nitrate was not expected because ethanol was add
excess (40-fold) of the stoichiometric demand for n
reduction (Table 1). After day 3, nitrate, nitrite, sulfat
U(VI) concentrations decreased sharply and remaine
until day 26 (Fig. 4). After day 26, sulfate concentr
increased sharply (up to 35mM) in the presence of rela
low nitrate and nitrite while U(VI) concentrations rem
near injection levels (5 μM) (Fig. 4).

These results suggested that preferential reoxidati
reduced sulfur-bearing species, as opposed to reoxidat
U(IV), occurred after day 26 in well FW222. However, s
and U(VI) concentrations increased to levels which g
exceeded injection concentrations in the presence of rela
low nitrate and nitrite during later stages of the test
replicate wells FW221 and FW223 (Fig. S1). These r
suggested that concurrent reoxidation of reduced s
bearing species and U(IV) occurred after day 26 wells F
and FW223 and indicated that an oxidant in addition to n
and nitrite may be have been present. The pH in well clu
remained at pre-test levels for the duration of the tests
not shown).

Average recovery factors, plus or minus one sta
deviation, for U(VI) and sulfate in the triplicate well clu
were 0.7 ± 0.5 and 5.5 ± 1.3, respectively (Table 3).
fate and U(VI) (b) in well FW222 amended with 30 mM ethanol and 2 mM nitrate.



results demonstrated that substantially more sulfate, but not
U(VI), was recovered relative to bromide. These results also
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Table 4
Standard-state (25 °C, 1 atm, and unit molality) Gibbs free energies of uraninite (UO2) and various reduced sulfur-bearing species (S0, FeS, FeS2, MnS)
reoxidized by nitrate (NO3

−) and nitrite (NO2
−). Free energy values for the formation of reactants and products were obtained from Dean (1999).

Reaction # Reaction stoichiometry ΔGr
o (kJ)

Nitrate as oxidant
1 UO2 + 0.4NO3

− + 2.4H+ → UO2
2+ + 0.2N2 + 1.2H2O −162

2 S0 + 1.2NO3
− + 0.4H2O → SO4

2− + 0.6N2 + 0.8H+ −516
3 FeS + 1.6NO3

− + 1.6H+ → SO4
2− + 0.8N2 + Fe2+ + 0.8H2O −735

4 FeS2 + 2.8NO3
− + 0.8H+ → 2SO4

2− + 1.4N2 + Fe2+ + 0.4H2O −1184
5 MnS + 1.6NO3

− + 1.6H+ → SO4
2− + 0.8N2 + Mn2+ + 0.8H2O −766

Nitrite as oxidant
6 UO2 + 0.7NO2

− + 2.7H+ → UO2
2+ + 0.3N2 + 1.3H2O −216

7 S0 + 2NO2
− → SO4

2− + N2 −680
8 FeS + 2.7NO2

− + 2.8H+ → SO4
2− + 1.35N2 + Fe2+ + 1.4H2O −968

9 FeS2 + 4.7NO2
− + 2.8H+ → 2SO4

2−2.35N2 + Fe2+ + 1.4H2O −1582
10 MnS + 2.7NO2

− + 2.8H+ → SO4
2− + 1.35N2 + Mn2+ + 1.4H2O −999
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suggested that low nitrate had a noticeable effect on lim
the oxidation of sulfur and/or U(IV) as evident by the h
recovery factors for sulfate and U(VI) in the high n
(cluster 1) and high nitrate with ethanol (cluster 2) treat
(Table 3).

3.5. Thermodynamics

The standard-state Gibbs free energies of several s
redox reactions that may have occurred during the reoxi
tests were computed (Table 4) in order to compare
experimental data from the reoxidation tests. It is import
recognize that standard-state conditions (25 °C, 1 atm, an
molality) may yield Gibbs free energies that are differen
those calculated under system-specific conditions. The
getics of nitrate oxidation of reduced sulfur-bearing s
thatwere likely formed during the biostimulation tests (S
FeS2, MnS,) were substantially more favorable than f
oxidation of uraninite (Table 4). Similar energetics
calculated for nitrite as the oxidant (Table 4). The ener
of the predicted reoxidation reactions were compara
the computed recovery factors for sulfate and U(VI)
nitrate-reducing conditions as evident by substantially
sulfate recovered when compared to U(VI) during all
reoxidation tests (Table 3). This comparison further
gested that preferential oxidation of reduced sulfur-be
species by nitrate and/or nitrite, as predicted thermody
cally, was also observed in this study under in situ cond
However, the in situ data also suggested that conc
reoxidation of reduced sulfur-bearing species and U(IV
occur under both nitrate-reducing conditions and conditi
whichnitrate and/or nitrite concentrationswere not dete
(Figs. 2, 3, and 4); although to a much lesser extent for
(Table 3), which does not fully agree with the ener
(Table 4). This suggested that the system-specific cond
may yield different energetics and/or that we did not id
all of the predominant redox reactions (Table 4).

4. Conclusions

The results of this study suggested that the in situ m
of uranium under nitrate-reducing conditions ca
g
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addition of ethanol can result in less reoxidation of ur
by nitrate if added in substantial excess of the stoichiom
demand of nitrate as an electron acceptor. The thermody
ics of the predicted reoxidation reactions were support
the in situ data and suggested that thermodynam
favorable oxidation of common reduced sulfur-bearing
erals by nitrate and/or nitrite, as opposed to oxidat
uraninite, likely occurred. However, concurrent oxidat
reduced sulfur-bearing species and to a much lesser e
U(IV), was also observed under nitrate-reducing cond
and in the absence of detectable nitrate and/or nitrite
suggested that reduced sulfur-bearing species were no
effective at limiting the mobility of uranium in the prese
dissolved and/or solid-phase oxidants. Therefore, future
studies designed to test the effectiveness and long
sustainability of this approach under natural-gradient
tions and to elucidate the predominant redox reaction
needed. Nevertheless, this in situ study confirmed the res
previous laboratory studies and demonstrated that establ
sulfate-reducing conditions following U(VI) reductio
substantially limit the extent of uranium mobility i
presence of nitrate oxidant.

Supplementary data to this article can be found on
http://dx.doi.org/10.1016/j.jconhyd.2016.02.002.
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