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Representations and Algorithms for
 
Efficient Inference in Bayesian Networks
 

Chapter 1
 
Introduction
 

Most everyday reasoning and decision making is based on uncertain premises. Most 

of our actions are based on guesses, often requiring explicit weighing of conflicting 

evidence. 

Bayesian networks are used for building intelligent agents that act under un­
certainty. They are a compact representation of agents' probabilistic knowledge. 

Bayesian networks have been built for many applications including monitoring pa­

tients in intensive care [Beinlich et al., 1989], evaluating car insurance risks [Binder 

et al., 1997], and diagnosing lymph-node diseases [Heckerman et al., 1992]. 

Inference in Bayesian networks is very time-consuming. In the general case, 

exact inference in Bayesian networks is known to be NP-hard [Wen, 1990, Cooper, 

1990]. For very large networks, approximation using stochastic simulation is cur­

rently the method of choice. However, the problem of approximating within an 

arbitrary tolerance is itself NP-hard [Russell and Norvig, 1995]. 

For example, none of the existing exact inference systems are able to make 
inference with a Bayesian network called the CPCS network created by Pradhan et al. 
[1994] based on the Computer-based Patient Case Simulation system (CPCS-PM), 

developed by R. Parker and R. Miller [1987]. Development of the CPCS network was 

simplified by exploiting probabilistic structures and extending Bayesian networks to 

represent such structures, but existing inference systems cannot exploit them fully 

in order to make efficient inference. Developing such an efficient Bayesian inference 

system is the topic of this dissertation. 
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1.1 Probabilities 

Uncertainty is inescapable in complex, dynamic, or inaccessible worlds. Therefore, a 

rational person or machine, which we call an agent, in such a world must act under 

uncertainty. 

Probabilities have been used for centuries as the right way to handle uncertain­

ties. Probability theory assigns a numerical degree of belief between 0 and 1 to 

propositional sentences. A probability of 0 for a given sentence corresponds to an 

unequivocal belief that the sentence is false, while a probability of 1 corresponds 

to an unequivocal belief that the sentence is true. Probabilities between 0 and 1 

correspond to intermediate degrees of belief in the truth of the sentence. 

The probability that is assigned to a sentence depends on the prior knowledge 

obtained to date. In discussing uncertain reasoning, we call this evidence (or the 

background state of information). As the agent receives new information, its prob­

ability assessments are updated to reflect the new evidence. Before the evidence 

is obtained, we talk about prior, unconditional, or marginal probability; after the 

evidence is obtained, we talk about posterior or conditional probability. 

We will use the notation P(X = xi) for the prior probability that the random 

variable X takes a value xi. For example, if we are concerned about the random 

variable Weather, we might have 

P(Weather = Sunny) = 0.5 

P(Weather = Rain) = 0.2 

P( Weather = Cloudy) = 0.28 

P( Weather = Snow) = 0.02. 

Each random variable X has a domain of possible values (x1, , that it can take 

on. 

In the case that we want to talk about the probabilities of all possible values of 

a random variable, we will use an expression such as P( Weather), which denotes a 

vector of values for the probabilities of each individual state of the weather. Given 



3 

the preceding values, for example, we would write 

P( Weather) = (0.5, 0.2, 0.28, 0.02). 

This statement defines a probability distribution for the random variable Weather. It 

is sometimes convenient to combine a variable, its domain, and numerical values all 

together to write a probability distribution as follows: 

P( Weather : (Sunny, Rain, Cloudy, Snow), (0.5, 0.2, 0.28, 0.02)). 

We sometimes want to write a density function instead of a numeric vector like this: 

P(Weather : (Sunny, Rain, Cloudy, Snow), (func( Weather))). 

We will also use expressions P(X, Y) to denote the joint probability distribution, 

that is, the probabilities of all combinations of the values of a set of random variables. 

Conditional or posterior probability distributions are written as P(X (Y), which is 

a two-dimensional table giving the values of P(X = = y.i) for each possible 

j. We call X a conditioned variable and Y a conditioning variable. Conditional 

probabilities can be defined in terms of unconditional probabilities. The equation 

P(X, Y)
P(X1Y) 

holds whenever P(Y = yi) > 0. This equation can also be written as 

P(X,Y) = P(X1Y) x P(Y) 

which is called the product rule or chain rule. 

The full joint probability distribution (or "full joint" for short) is the joint prob­

ability distribution of all domain variables. It completely specifies an agent's prob­

ability assignments to all propositions in the problem domain. It is important to 

note that any probabilistic query can be answered based on the. full joint. In general, 

however, it is not practical to define all the 2" entries for the full joint probability 

distribution over n Boolean variables. 
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1.2 Bayesian Networks 

A Bayesian network is a powerful tool for representing and reasoning with uncertain 

knowledge. It is based on the observation that conditional independence relationships 

among variables can both simplify the computation of query results and also greatly 

reduce the number of conditional probabilities that must be specified. 

A Bayesian network [Pearl, 1988] is a directed acyclic graph containing a set of 

nodes, a set of arcs, and a set of numeric probability distributions. A node represents 

a domain variable with mutually exclusive and exhaustive values. Arcs and numeric 

probability distributions describe the probabilistic relationship among nodes. 

Probabilistic inference in a Bayesian network is the task of computing a marginal 

or conditional probability distribution across some subset of the variables in the 

network, given evidence on some subset of the remaining variables. A Bayesian 

network is a concise representation of a full joint probability distribution over the 

n domain variables in the network. The full joint probability distribution can be 

calculated as follows [Pearl, 1988, Shachter, 1988]: 

P(xl, , x) = 11 P(xikri) 

where , x are n variables in the network; 7ri is the set of direct predecessors 

of xi; P(xikri) is the conditional probability for variable xi if 7ri is not the empty set, 

otherwise it is the marginal probability of xi. The product of any two terms of the 

formula is called a conformal product, the number of variables appearing in a con­

formal product is called the dimension of the conformal product, and the maximum 

number of variables in any of the conformal products for a query is called the maxi­

mum dimensionality of the conformal products (or the query), or the dimensionality 

for short. 

An important characteristic of a Bayesian network is that it uniquely defines the 

full joint probability distribution over the variables involved, and that this distribu­

tion can be recovered as described above. Any marginal, conditional, or conjunctive 

query can be answered simply by instantiating all observed variables in the formula, 
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evaluating it, and summing over variables not in the query. The time and space 

complexity of computing the full joint probability distribution of a Bayesian network 

is exponential in the number of nodes of the network. 

1.3 Optimal Factoring Problem 

The computational cost of inference in a Bayesian network can be reduced if vari­

ables can be summed early in the computation, rather than waiting to perform all 

marginalization after computing the full joint. The efficiency of probabilistic infer­

ence in a Bayesian network, then, depends on finding a factoring of the expression 

for the joint over the relevant set of variables which permits early marginalization of 

variables not in the query. 

Figure 1.1. A simple multiply connected Bayesian network. 

For example, given the simple Bayesian network in figure 1.1, the joint proba­

bility of nodes D and E, P(D, E), can be computed in several ways. One factoring 

is given in the formula: 

P(D, E) = [E[E[E[P(EIC) x P (DP, C)] x P (CIA)] x P(BIA)1- x P(A)] 
A 13 C 

which requires 72 multiplications.' The maximum dimensionality of the above factor­

'\Ve assume all variables are binary. 
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ing is 5, so the maximum size of intermediate distributions required by the factoring 

is 25 = 32.2 The factoring below needs only 28 multiplications: 

P(D, E) = [E[P(E1C) x [E P(DIB,C) x [E P(CI A) x [P(130) x P(A)111]] 
11 A 

The dimensionality is also reduced to 3, and the maximum distribution size to 23 = 8. 

From this example, we can see that different factorings yield significantly differ­

ent computational costs. 

Li and D'Arnbrosio [1994] formally defined the optimal factoring problem a 

combinatorial optimization problem to find a factoring of the minimum cost. 

1.4 Independence of Causal Influence 

Conditional independences allow for factoring the full joint probability distribution 

into smaller distributions which are easier to create and use. Independence of causal 

influence' (ICI) among local parent-child or cause-effect relationships allows for fur­

ther factoring. The noisy-or interaction [Pearl, 1988, Srinivas, 1993] is one of the 

best studied and most widely used models of ICI. 

ICI has been utilized to reduce the complexity of knowledge acquisition [Pearl, 

1988, Henrioii, 1987], as well as the complexity of inference [Kim and Pearl, 1983, 

Zhang and Poole, 1994]. The CPCS network has also benefited from ICI; the de­

velopment of the network was simplified by exploiting ICI. As a result, the CPCS 

network contains abundant explicit causal independences. 

1.5 Reinforcement Learning 

Reinforcement learning [Russell and Norvig, 1995] is a technique for a software agent 

to improve its performance without requiring a teacher who provides a correct answer 

in each situation. 

2The maximum size of intermediate distributions required can be reduced to 24 = 16 
by combining the conformal product and rnarginalization in one operation. 

3Also known as causal independence arid intercausal independence. 
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Reinforcement learning algorithms learn policies for state-space problem-solving 

tasks. For each state, the policy specifies what action should be performed. During 

learning, the learning system receives a reinforcement signal (called a "reward") after 

each action. The goal of the learning system is to find a policy that maximizes the 

expected reinforcement over future actions. 

Reinforcement learning techniques have been applied to discover good domain-

specific heuristics automatically. For example, Tesauro's work on TD-gammon [1992] 

showed that a reinforcement learning algorithm, called the temporal difference algo­

rithm T D(A) [Sutton, 1988], can learn an excellent evaluation function for the game 

of backgammon. Zhang and Dietterich [1995] applied T D(A) to job-shop scheduling, 

which is an NP-complete combinatorial optimization problem, and also succeeded in 

obtaining good heuristics. 

1.6 Thesis Objectives 

The goal of this thesis is to develop a Bayesian network inference system that per­

forms well with large Bayesian networks. There are two approaches we employ to 

tackle the problem. The first one relates to representations and the second one relates 

to algorithms. 

First, we exploit independence of causal influence. In order to fully exploit ICI, a 

new representation is called for. That representation should reduce the complexity of 

inference without sacrificing the reduction in the complexity of knowledge acquisition. 

Designing such representation is the first objective of this thesis. 

Finding optimal factoring is, in general, intractable, so efficient heuristics that 

provide good, but not necessarily optimal solutions are needed. However, the process 

of finding and engineering such heuristics by hand is expensive and time consuming. 

Developing good heuristics automatically using reinforcement learning techniques is 

the second objective of this thesis. 



8 

1.7 Outline of the Dissertation 

Chapter 2 reviews some related work. 

Chapter 3 presents a new representation of independence of causal influence. 

Experimental study of the new representation using an existing factoring algo­

rithm is also given in this chapter. 

Chapter 4 studies factoring algorithms. 

Chapter 5 describes our approach to developing factoring heuristics using re­

inforcement learning techniques. We present empirical results comparing the 

performance of our and existing algorithms in this chapter. 

Chapter 6 summarizes the dissertation and presents some directions for further 

research. 
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Chapter 2
 
Related Work
 

This chapter reviews some related work. The first two sections review existing algo­

rithms for exact inference in Bayesian networks. The last section discusses represen­

tation issues for independence of causal influence. 

2.1 Transformational Algorithms 

A number of algorithms have been developed to perform exact probabilistic inference 

in Bayesian networks in recent years. [Lauritzen and Spiegelhalter, 1988, Pearl, 1988, 

Jensen et al., 1990, Shafer and Shenoy, 1990] Many of them first transform Bayesian 

networks into singly-connected networks, also known as polytrees. In such networks, 

there is at most one undirected path between any two nodes in the network. Efficient 

polynomial-time inference algorithms exist for singly-connected Bayesian networks. 

In the general case, exact inference in Bayesian networks is known to be NP-hard 

[Wen, 1990]. 

There are two classes of algorithms for transforming multiply-connected networks 

into polytrees: 

Clustering methods transform the network into a probabilistically equivalent (but 

topologically different) polytree by merging offending nodes. 

Conditioning methods do the transformation by instantiating a cutset of the vari­

ables to definite values, and then evaluating a polytree for each possible in­

stantiation. 
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There are a number of ways to cluster or condition a given multiply-connected net­

work. These algorithms heuristically search for the optimal way to cluster or con­

dition that minimizes the total computational cost. In [Kjwrulff, 1993], Kjwrulff 

developed several new heuristics and compared them with existing ones. 

In some sense, these algorithms can be considered as algorithms that try to 

create one factoring that works for all queries. In most cases, however, the optimal 

factoring varies for each query and evidence. For this reason, these algorithms are 

mainly used for answering multiple queries, such as the "all marginal" query, for 

which the clustering method is popular choice. The direct computation method 

described below could be used when only a small set of queries needs to be answered. 

2.2 Direct Computation Algorithms 

SPI[Shachter et al., 1990] and ElirnBel [Dechter, 1996] are based on direct application 

of the chain rule, rather than transforming networks prior to the computation. 

SPI[Shachter et al., 1990] answers a query by first creating an optimal factoring 

for the query. It tries to find an optimal factoring by using set-factoring heuristics 

[Li arid D'Ambrosio, 1994]. Set factoring heuristics assign a value to each pair (or, in 

general, a set [D'Arnbrosio, 1995]) of probability distributions. That value represents 

some goodness of the combination of those distributions. In each step, a combination 

that has the maximum heuristic value is chosen arid combined. 

The current best heuristic value function is created by simulated annealing. The 

value function is represented by a discrete linear combination of some features of the 

pair. The simulated annealing starts with a set of randomly generated heuristic func­

tions. Then, it evaluates each function by using it for actual probabilistic inferences. 

Better functions are selected and mutated randomly according to a probability pa­

rameter called a temperature which decreases as search proceeds. The temperature 

is used to avoid local optima. This process repeats some predefined number of times, 

and the final best function is output. 

Although the heuristic function currently employed by SPI Works well in many 
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cases, it often fails to find optimal factorings because the locally best combination 

does riot necessarily lead to a globally best factoring. The desirability of an action 

should depend riot only on the pair of distributions to be combined by the action, 

but also on the remaining distributions that are combined later with the result of 

the action. 

Also, the simulated annealing algorithm used for searching the heuristic function 

is very slow, both to compute and to converge. A more efficient learning approach 

is desired. 

2.3 Independence of Causal Influence 

Three different approaches have been proposed to represent ICI and to integrate 

the correspondence models into standard Bayesian network inference. Local ex­

pression languages [D'Ambrosio, 1995] provide a comprehensive approach for inte­

gration of many local structure models, including ICI, into standard Bayesian net­

works. An additive factorization of ICI using the local expression language is pre­

sented in [D'Ambrosio, 1995]. Heterogeneous factorization [Zhang and Poole, 1994, 

Zhang and Poole, 1996] and temporal belief networks [Heckerman and Breese, 1994] 

are two other major approaches which are capable of representing many forms of 

causal independences. 

However, the results obtained by these approaches are not satisfactory, Borujerdi 

et al. [1998] analyze these three approaches and identify their weaknesses. One 

of weaknesses is that they impose unnecessary constraints on factoring, severely 

limiting their ability to find optimal factoring. Zhang [1995] reports experiments 

with heterogeneous factorization on the CPCS network for medical diagnosis, created 

by Pradhan et al. [1994], and shows that the algorithm is unable to answer two out 

of 422 possible zero-observation queries, for example. Zhang and Yan [1997] extend 

a message passing algorithm (clique- tree propagation [Lauritzen and Spiegelhalter, 

1988]) with heterogeneous factorization and show that the resulting algorithm is 

significantly more efficient than that of [Zhang and Poole, 1994, Zhang and Poole, 
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1996], but it is unable to deal with CPCS network because it runs out memory when 

initializing clique trees. 
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Chapter 3
 
Representations of Independence of Causal Influence
 

In this chapter, we study the representations of ICI models. We develop a purely 

multiplicative representation of ICI based on the SPI local expression language. We 

first present the most general form, which requires very large tables. We show how 

that form can be optimized to reduce table size. We then present examples of effi­

cient optimized (specialized) forms such as noisy-or and noisy-max. Unfortunately, 

not all forms can be optimized satisfactorily as shown below. Finally, we compare 

the performance of the new multiplicative representation and an existing additive 

representation using SPI's set-factoring algorithm. 

3.1 Local Expression Languages 

Local expression languages [D'Ambrosio, 1995] provide a comprehensive approach 

for integration of many local structure models, including ICI, into standard Bayesian 

networks. The formal syntax is defined recursively as follows4: 

exp distribution' 

exp x expl 

exp + expl 

exp exp, 

where distribution is defined over some rectangular subspace of the Cartesian product 

of domains of its conditioned and conditioning variables. It is a generalization of the 

standard probability distribution defined in Section 1.1 because it does not have to 

'Our definition is a simplification of the original of [D'Ambrosio, 1995] 
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be normalized and it can contain any numeric values such as negative numbers. Note 

that generalized distributions make subtraction expressions redundant because any 

subtraction can be converted into an addition by negating all numeric values of the 

second distribution. 

The semantics of local expressions are quite simple to specify: 

An expression is equivalent to the distribution obtained by evaluating it 

using the standard rules of algebra for each possible combination of an­

tecedent values, where a distribution contributes 0 when being evaluated 

for a parent case over which it is not defined. 

3.2 Independence of Causal Influence 

We now formalize independence of causal influence, following [Zhang and Poole, 

1996, Zhang and Yan, 1997] with some adaptation. Independence of causal influence 

(ICI) refers to the situation where several causes (variables) c1, c2,..., cm contribute 

independently to an effect (variable) e. 

More precisely, c1i c2, , cm are said to influence e independently if there exist 

random variables GI that have the same domain as e such that 

1. for each i,i probabilistically depends on ci and is conditionally independent 

of all other ci's and all other given ci; and 

2. there exists a commutative and associative binary operator * over the domain 

of e such that e = * * . . . * 

We will refer to as the contribution of ci to e. 

In an ICI model, the conditional probability P(elci,c2,... , cm) can be obtained 

from the conditional probabilities P(Clci) as follows: 

P (c = cjc1, e2, . , cm) = = ai I ci). (3.1) 
al*02**am=a i=1 

In order to get sound results, we require that each row of Mei) adds up to 1, 
as stated in the following requirement. 
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Requirement 3.2.1 E = aiI ci = 13) =1 for each value 3 of any cause ci. 

3.3 Additive Factorization of ICI 

Let fi(c,ci) be the function defined by 

fi(e = a, ci) = alci), (3.2) 

for each possible value a of e. Then, by using the notation, defined in Section 1.1, 

of a distribution with a density function, we can write the conditional probability 

distribution P(cicl, c2,... , c7) in local expression languages as follows: 

771 

= E H P(e = ci))). (3.3) 
a ai*a2*-*am=a 

Note that the notation (fi(ai, ci)) represents the numerical values of each distri­

bution. The correctness of this formula can be shown by symbolic evaluation of 

this formula according to the semantics of local expression languages defined in the 

previous section. 

Now, we have shown that local expression languages are capable of expressing 

any ICI model. Because such representations contain additions, we call them additive 

factorizations of ICI. The above formula can be seen as a generalization of additive 

factorization of the noisy-or models of [D'Ambrosio, 1995]. 

Additive factorization, however, has a difficult problem; the optimal factoring 

problem and associated inference algorithms are only defined on products of probabil­

ity distributions, so they are not readily applicable to additive expressions. In order 

to handle additive expressions efficiently, the inference algorithm must be extended 

so as to find the best sequence of application of the distributivity, associativity, and 

commutativity axioms, interspersed with numeric combination operators. This task 

has been found to be extremely difficult [Borujerdi et al., 1998]. SPI [D'Ambrosio, 

1995] extended the inference algorithm so that it can handle local expressions, but 

it tends to combine expressions too early, rather than to wait for more applications 
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of the distributivity axiom. As a result, it has to carry an unnecessarily large inter­

mediate distribution, which is often too large to fit in memory. 

3.4 Multiplicative Factorization of ICI 

Next we develop a new, multiplicatively factored, local expression language represen­

tation. Multiplicative factorization is desired because it allows for application of the 

optimal factoring problem and its associated algorithms, avoiding the difficult task 

of performing optimal application of the distributivity axiom. Our first development 

will be impractical, but serves as a basis for a more significant factorization presented 

in the following sections. 

The key idea is to introduce an intermediate random variable to each product in 

Equation 3.3, and to eliminate additions by achieving the effects of additions through 

the standard rnarginalization of the intermediate variables. 

First, we introduce intermediate variables ea,a2.,, with domain (V, I) and par­

ents c1, c2, , ci for all al * a2 * * arn = a for each value a of e, where ai is a 

value of ci. Then, define the conditional probability distribution for each intermedi­

ate variable as follows: 

711 

P(eal(12arn I C1, C2/ , CM) = II P(eala2arn I Ci, (fil(eala2.-am ai) CO)), (3.4) 
i=1 

where f2 is a density function needed here to represent actual numerical values. It 

returns 1 if the value of the intermediate variable is I, returns A if it is V: 

{ 1 if ectia2.-am = I.
ai, ci) = (3.5) 

fi ((xi, ci) if eci1Q2.,m = V. 

All intermediate variables created for the variable e become the new parents of it. 

Let S be the set of the new parents. Then, the conditional probability distribution 
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for e is defined as follows: 

1 if ai * a2 * ...* = a 

and eala2...an1(e S) = VP(e = aS) = (3.6) 
and all other parents (S \ {eQic,2...,}) are I 

0 otherwise. 

The correctness of this representation can be shown by the following theorem. 

Theorem 3.4.1 The probability distribution defined as additive factorization of Equa­
tion 3.3 is equivalent to the probability distribution defined as the conformal prod­
ucts of transformed distributions defined by Equation 3.4 and Equation 3.6, after 
marginalizing out all intermediate variables. 

Proof: The conformal products consist of the distribution of Equation 3.6 and 

distributions defined by Equation 3.4 for each intermediate variables: 

P(els) x II p(xicuc2, , cm). 
xES 

For each value a.of e, the first term becomes 1 if ai*a2*...*an, = a and e,,,...,(E 

S) = V and all other parents (S \ {e,2.0,}) are I, and it becomes 0 otherwise. 

Thus, the above expression can be written as 

E E P(e = C11 eaia2.-am = VIC1, C21 'Cr/) X 
a a 1 * (12 *...*Ot = a 

P(e = a, x = c2, , cm)
xesve,,...} 

Using Equation 3.4 and Equation 3.5, the last term can be eliminated because all 

distributions in that term evaluate to 1. Also, the other term can be simplified using 

the same equations, yielding 

171 

E E H P(e = alCi, (Mai, ci.)))
a ai*02**am=a i=1 

This is exactly the same distribution defined by Equation 3.3. 
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3.5 Optimization of Multiplicative Factorization 

We have shown that any ICI model can be represented using purely multiplica­

tive local expressions, but the resulting representations are impractically large; the 

number of intermediate variables introduced is exponential in the number of causes. 

Fortunately, however, this representation can be optimized to yield more efficient 

representations. In particular, this is the case for the popular ICI models, noisy-or, 

noisy-and, noisy-max, and noisy-min. In the following sections, we show how these 

models can be efficiently represented in a multiplicative form. 

3.5.1 Multiplicative Factorization of Noisy-Or 

In the noisy-or models [Good, 1961, Pearl, 1988], the effect variable is Boolean and 

the binary operator is logical or. Let the domain of the effect variable be (F, T). We 

first optimize the representation for two-cause cases as an illustration. 

Using Equation 3.4, we need to create four intermediate variables, each of which 

corresponds to a combination of values, as follows: 

P (e , c2) = P( P(eFF I c2 ( f!( 

P (e FT1C1 c2) = P (e FTICI (f (eET , F, ci))) x P (eFT1c2, f (e FT c2))) 

Kfi(e F F ,F,c1))) x , z \e F F F, c2))) 

(3.7) 
P (eT , c2) = P (eTFIC-1 7 (f (CT T C1))) X P(eTFle2, (f2(eTF, F, e2))) 

P(errIch c2) = P (eTTIci (f (err 7T c1))) x P(e7'dc2, c2))).7 

The distribution for e is derived from Equation 3.6: 

P (el eF F, E'FT, eTF err) =
 

1 if c = F A eFF = V A eFT = I A = I A eTT = I ; Or
 

.C = T A eFF = I A (TT = V A eT , = I A ely = I, or 

c = T A epp = / A (TT = / A en: = V A eTT = I; or 

e = T A eFF = I A err = I A eT F = I A err = V 

0 otherwise. 

In order to optimize the above representation, the following proposition is nec­

essary. 
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Proposition 3.5.1 The contributions from eFF,eFT,e7-F,eTT add up to 1, that is, 
P(eFF = 01, C2 = /32) + P(eFT = VIC1 = 01, c2 = /32) P(eTF = Vlcl = 
131, c2 = 02) + P(er.t. = VIci = 31, c2 = 132) = 1 for each value )3 1. of ci and 02 Of C2. 

Proof: Using Equation 3.7, we can factorize each distribution using the function 

The function f' is defined in Equation 3.5 using f which is in turn defined in 

Equation 3.2. We can simplify the resulting factorization by applying the distribu­

tivity axiom. Thus, we have 

P(eFF = V1e1 = 01, C2 = 02) + P (e FT = V IC1 = 01, C2 = 02)± 

P (CT = lei 01, e2 = 02) + P(eTT = V Ici C2 132) 

f] (V, F, 01) x .112(17, F, 02) + f;(17, F, 01) x 02)+ 

f;(17,T, 01) x f2(17, F, 02) + f;(17,T, 01) x 02) 

Ii(F, 01) x f2(F, 02) + fi(F, 01) x f2(T, 132)+ 

f (T, 01) x h(F, 132) + fl 01) x f2(T 32) 

P(1 = Flei =01) x P(.2 = F1c2 = 02)+ 

P(.1 =Flcl = 13) x P(.2 = T1c2 = 02)+ 

P(1 = 01) x P(2 = Fic2 = 0)+ 
= Tlcl = 01) x P(2 = Tic2 = 02) 

(P(1 = 01) + P(-1 = = 01))x 

(P(2 = Fic2 = 02) + P(2 = Tic2 = 02)) 

Each sum of the final expression acids up to 1 as stated in Requirement 3.2.1. Thus, 

we filially get 1 as expected. 

Because contributions from eFF,cFT,e77,,e7'r add up to 1, the contributions from 

eFT,eTF,e7y to e = T can be computed as 1 minus the contribution from eFF. Thus, 

we can rewrite the above distribution as follows: 

1 if e = F A eFF =- V 

1 if c = T A e F = I 
P(e I (TO = (3.8)1 if = T A eFF = V 

otherwise. 
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The first line corresponds to the contribution from eFF to e = F, the second line 

corresponds to 1, and the third line subtracts the same contribution from 1. This 

optimized representation eliminates all intermediate variables but eFF. 

It is easy to generalize this representation to multiple-cause cases. Even if there 

are m causes, only one intermediate variable, eF., needs to be defined as follows: 
rn 

P(eErn IC1, C2, cm) = H P(eF. lei, (fi (eF. , F, ei))) 

The distribution P(eleF,n) is obtained just by substituting eFF by eFm of P(eleFF) 

in Equation 3.8. 

In this representation, the size of the conditional distribution table of e is always 

4 no matter how many causes there are. 

3.5.2 Multiplicative Factorization of Noisy-Max 

Noisy-max is a generalization of noisy-or. It is used extensively in the CPCS network. 

This section shows how it can be encoded in the multiplicative form. 

In the noisy-max models [Diez, 1993], the binary operator is max. For the sake 

of simplicity of presentation, assume that the size of domain of the effect variable 

is three and the number of causes is two. (We will generalize them later.) Let the 

domain be (L, III, H), in which values are ordered as L < 1ll < H. 

The unoptimized representation requires 32 intermediate variables, of which one 

variable (eLL) contributes to e = L, and three variables (\eLm,emm,emL) contribute 

to e = M. One can reduce intermediate variables by merging some of them. FOr 

example, we can merge cLA1 and emm and create a new intermediate variable, say, 

e(Li M)n1 as follows: 

P(e(,,,A0A, lei, c2) = P(e(L+M)A1 IC1, (./1(e(Li_iti)m, {L, x 

P(e(L+m)mfc2, U2(e(L+M)m, Al, c2))), 

where All returns 1 if the value of the intermediate variable is I, and returns the sum 

of contributions if it is V: 

f"(e' ,D,ei) = 1 if = I. 
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fi"(e', D, = > fi(ct, ci) if e' = V. 
aED 

Now only two variables (e(L +M)M and eML) contribute to e = M. We can further 

reduce variables by noticing that we can merge the above two variables as well as 

the variable required for e = L, which is eLL, to obtain e(L +M)(L +M), and that the 

contribution to e = Al can be computed as the difference between the contribution 

from e(L+A.1)(L+m) and that from eLL. Figure 3.1 illustrates this calculation. 

L M H L Al H L M H 
L 0 L L L M 

M O O M M M M 

H H H 

Figure 3.1. (L + Al) (L + Al) LL = LM + MM + ML. 

Similarly, the contribution to e = H can be computed as the difference between 

the contribution from e(L+Al+m(L+m+H) and that from e(L+m)(L +m) By using the 

same line of reasoning as Proposition 3.5.1, the contribution from ea,+m+HxL-f-m-FH) 

can be shown to be equivalent to 1. Thus, we only need two intermediate variables 

for the noisy-max of three values, defined as follows: 

P(eLLIci , c2) = i2=1 P(eLLI0i, (f'(eLL, L, ci))) 

P(e(L-1-111)(1,1-A1)1C1, c2) = f 1 P(e(L+m)(L+m)Ici, (fin(e(L+m)(L+m), {L, M }, ci))) 
(3.9) 
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The conditional distribution for e is defined as follows: 

1 if e= L A eLL = V A e(L+m)(L+m) = 

1 if e= 1lI A eLL = I A e(L+m)(L+m) = V 

1 if e = 111 n eLL =V A e(L +M)(L +M) = I 
(3.10)P(eleLLI 6(1,-i-111)(G-1-A1) 

1 if e= H n eLL = I A e(L +M)(L +M) = I 

1 if e= H A eLL = I A e(L+m)(L+m) = V 

0 otherwise. 

The size of this table equals 3 x 2 x 2 = 12. 

We now develop a general noisy-max representation. Suppose there are m causes 

(c1 to c,) and n values (al to a where ai < aj if i < j). What we need to do is 

to introduce n 1 intermediate variables, each of which corresponds to a hypercube 

in Cartesian products of values. The ith variable, e(++ _Fai)m, can be defined as 

follows: 

P(e(cti+c,2+...+aoni Ici, e2, , Cm) = 
in 

P( e(a1+02+.--Fai)"' (3.11) 
j=1 

Uji(e(ai -Fa2-1---kai)" {"11"21 'ai}, ci))) 
The conditional distribution for e is then defined using these n 1 intermediate 

variables as follows: 

P(elfe(a1+02+-.-fai)rn 11 5 5- n 1 }) = 

1 if e = ai and = V 

and all other parents are I for some 1 < j < n 1; 

if e and = V 
(3.12) 

and all other parents are I for some 1 < j < n 1; 

1 if e = a and all parents are I; 

otherwise. 

If we let Tri = 2 and n = 2, the above representation instantiates to that of 

the noisy-or defined by Equation 3.7 and 3.8. Also, if we let m = 2 and n = 3, it 
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instantiates to the representation of the simple noisy-max defined by Equation 3.9 

and 3.10. 

This representation of general noisy-max requires 71 1 intermediate variables, 

hence the size of conditional distribution table for e is n2n-1. 

3.5.3 Multiplicative Factorization of Contract Renewal Model 

In this section, we consider a contract renewal example taken from [Zhang and Poole, 

1996]. This example is interesting because it is not an instance of any known causal 

independence models [Zhang and Poole, 1996], and is more complex than the noisy-or 

and the noisy-max models we studied above. 

Suppose that faculty members at a university are evaluated in teaching, research, 

and service for the purpose of contract renewal. A faculty member's contract is not 

renewed, renewed without pay raise, renewed with a pay raise, or renewed with double 

pay raise depending on whether his performance is evaluated to be unacceptable in at 

least one of the three areas, acceptable in all areas, excellent in one area, or excellent 

in at least two areas, respectively. 

Let cl, c2, and c3 be the fractions of time a faculty member spends on teaching, 

research, and service respectively. Let i represent the evaluation he gets in the 

ith area. It can take values 0, 1, and 2 depending on whether the evaluation is 

unacceptable, acceptable, or excellent. The variable depends probabilistically on2 

It is reasonable to assume that j is conditionally independent of other cg's and 

other .j's given 

Let e represent the contract renewal result. The variable can take values 0, 1, 2, 

and 3 depending on whether the contract is not renewed, renewed with no pay raise, 

renewed with a pay raise, or renewed with double pay raise. Then e = i * 6 * 6, 

where the operator * is given in the following table: 
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0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 3 3 

3 0 3 3 3 

Now we develop a multiplicative representation for this example. First we need 

to introduce intermediate variables that represent some rectangular subspaces and 

are combined to define areas for each value of e. Looking at the three-dimensional 

table, shown in Figure 3.2, may help decide what intermediate variables to define. 

0 1 2 3 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 2 3 0 2 3 3 0 3 3 3 

2 0 0 0 0 0 2 3 3 0 3 3 3 0 3 3 3 

3 0 0 0 0 0 3 3 3 0 3 3 3 0 3 3 3 

Figure 3.2. Three dimensional table representing i * 6 * 3. 

There is only a single 1 in the table, at i = 1, 2 = 1, and e3 = 1, so one 

intermediate variable, elm needs to be defined for it. There are three 2's in the 

table, but they do not seem to be combined to form a rectangle, so we introduce 

three intermediate variables, namely, e112, e121, and e211, for those individual 2's. The 

area of 3's could be computed from a cube e(1 +2+3)3 by subtracting the area of l's and 

2's from it. Finally, the area of O's is computed by subtracting the above cube from 

the whole space. Thus, we introduce 5 intermediate variables whose distributions 
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are defined below: 
3
 

c2, c3) = H P(crir Ici, (Meru, 1, ci))) 
i=1 

P(cri2lci, c2, c3) = P(crider, (fi (cii.2, 1, ci))) x
 

P(e1121c2, (f2 (e112, 1, c2))) x
 

P(cridc3, (Meru, 2, c3))).
 

P(e1211ei, e2, e3) = P(ein Ici, (ern, 1, el))) x
 

P(e121 Ice, (Mem, 2, c2))) x
 
(3.13) 

P(e121 (f3(C121, 1, C3))) 

P(C2111C1, e2, e3) = P(C2111C1, (fi(c2ii, 2, ci))) x
 

P(c2ii (f2' (cm, 1, c2))) x
 

P(e2rilc3, (f3(e211 , 1,c3))).
 

P (c(I +2+3)3 lel e2, e3) 
3
 

H P(e(i+2+3)31ci, (fill(e(i+2+3)3, {1, 2, 3 }, ci))). 
i=-1 

Using these intermediate variables, the conditional distribution for e is defined 

as follows: 

P(clerii,eir2,e121,e211,e(r+2+3)3) =
 

1 if e = 0 and all parents are I
 

1 if e = 0 A e(i +2+3)3 = V arid all the other parents are I
 

1 if e = 1 A cm = V and all the other parents are I
 

1 if = 2 A eli2 = V and all the other parents are I
 

1 if e = 2 A Cin = V and all the other parents are I
 

1 if e -= 2 A C211 = V and all the other parents are I ( 3 . 1 4 )
 

1
 if e= 3 A e(i+2+3)3 = V and all the other parents are I 

1
 if e = 3 A em = V and all the other parents are I
 

1 if c = 3 A eli2 = V and all the other parents are I
 

1
 if e = 3 A ei21 = V and all the other parents are I 

1
 if = 3 A e211 = V and all the other parents are I 

otherwise. 
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The size of this table equals 4 x 25 = 128. 

Suppose we want to adapt the above model to a company that makes the renewal 

decision in the same way, but has more evaluation areas, say m areas. We must 

generalize the above representation, using the same domain and the same operator, 

but with rn causes instead of 3. 

Let's imagine we have an m dimensional table this time and create intermediate 

variables in the same way as above. There is still only a single 1 in the table, so one 

intermediate variable, elm, needs to be defined for it. There are now in 2's in the 

table, and they do riot seem to be combined to form a rectangle, so we introduce m 

intermediate variables for those individual 2's. The area of 3's could be computed 

from a hypercube e0+2+3)m by subtracting the area of l's and 2's from it. Finally, the 

area of O's is computed by subtracting the above hypercube from the whole space. 

Thus, we introduce m +2 intermediate variables whose distributions could be defined 

similarly. 

The conditional distribution for e is also similar to the above. Its size now 

becomes 4 x 2In+2 = 21n+4 because e has 4 values and m + 2 parents whose domain 

(V, I) is of size 2. If we did not exploit ICI, the size of conditional probability 

distribution for e would be 4"i+1 = 22"2+2. Thus, the reduction we achieved is 

22nt+2 

=2'22nt+4 

which is exponential in the number of evaluation areas. 

3.6 Summary and Discussion of Multiplicative Representations 

The summary of representations developed so far is shown in Table 3.1. It shows, for 

each representation, the number of causes ( causes), the number of values (#val­

ues), the number of intermediate variables introduced (#i-vars), the size of condi­

tional distribution table for the effect variable (table-size), arid the size of conditional 

distribution table that would be needed when independence of causal influence was 

not exploited (orig-size). 
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#causes #values #i-vars table-size orig-size 

unoptimized m n nm nrm nm+1 

2-cause noisy-or 2 2 1 4 8 

general noisy-or 771 2 1 4 2m+1 

3-value noisy-max 2 3 2 12 27 

general noisy-max m n n 1 n2' nm+1 

3-area renewal 3 4 5 128 256 

general renewal rn 4 In + 2 2m+4 22m+2 

Table 3.1. Summary of multiplicative representations. 

The difference between the sixth column (orig-size) and the fifth column (table-

size) shows the gain we can obtain by exploiting ICI. In the case of the general 

noisy-or, the gain is exponential in the number of causes. In the case of the general 

noisy-max, whether or not there is gain depends upon m and n. However, the table 

size is always smaller than the original size when m > 2 and n > 2, which we suppose 

is always the case. If we consider n as a small constant, the gain is also exponential 

in the number of causes in the case of the general noisy-rnax just like the case of the 

general noisy-or. 

As shown above, the table size can be quite large when there are many values. 

Fortunately, there are ways to handle those large tables as shown below. 

First, because there are many zero's in the table, a sparse representation of 

distribution table could be developed. Because there are only 2(n 1) + 1 non-zero 

entries in the table in the case of the noisy-or and noisy-max models, the savings 

obtained by eliminating zero's could be exponential in the number of values. 

Second, we could encode the table in local expression language using addition 
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and subtraction to eliminate zero's in the table. This representation is different from 

that of additive factorization, shown in Section 3.3. In this case, the factoring decision 

can be done as if the local expression is just a big distribution table without any loss 

of benefits of ICI. In the case of additive factorization, nothing is gained when the 

local expression is considered to be a big distribution, thus requiring difficult search 

of the optimal application of the distributivity axiom. 

Third, we could use the technique of parent divorcing [Olesen et al., 1989] to 

reduce the table size.5 For example, suppose there are seven values. Then, six 

intermediate variables are required, say el to e6, and the table size is 7 x 26 = 448. 

We could create two new variables (say e' and e"), divide six parents into two, 

arid assign each set to those newly created variables. Thus, we now have three 

conditional distribution tables, P (ele' , e"), P(e' , e2, es), and P (e" e5, e6). Both 

e' and e" need to have a domain of size 4, say (V1, V2, V3, I), and their distribution 

tables should encode a deterministic function that relays the value from each parent 

to each output, such as ei's V to 1,71, e2's V to 172, e3's V to V3, so that those values 

reach e. The table size for e' is 4 x 23 = 32, that for e" is the same, and that for e 

is now reduced to 7 x 4 x 4 = 112. The total size is 32 + 32 + 112 = 176 which is 

considerably less than the original table size of 448. 

Computation using multiplicative factorization of noisy-or is easily shown to be 

worst-case exponential in the number of positive findings and linear in the number 

of negative findings and the number of parents. Similarly, computation using mul­

tiplicative factorization of noisy-max can be shown to be worst-case exponential in 

the number of non-minimum findings and linear in the number of minimum findings 

and the number of parents. 

The complexity of knowledge acquisition using ICI can be measured by the 

number of conditional probabilities P which is linear in the number of causes 

(m). 

5Suggested by Anders L. Madsen. 
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3.7 The Limitations of Multiplicative Factorization 

We have shown that noisy-or and noisy-max can be represented efficiently using 

multiplicative factorization. An important question now is what other ICI models 

can be efficiently represented. Unfortunately, there is not much as shown below. 

Here, we consider only a simple case. Suppose there are three values, (0, 1, 2), 

and two causes. In this case, the original distribution size is 32+1 = 27. The table 

size for multiplicative factorization is 3 x 2P where p is the number of intermediate 

variables introduced. It is 6 for p = 1, 12 for p = 2, 24 for p = 3, and 48 for p = 4, 

thus we must not introduce more than three intermediate variables in order to reduce 

the table size from the original. If the number of intermediate variables is less than 

three, we could say the reduction is effective. 

Each intermediate variable represents the contribution from a hyper-rectangular 

subspace of the Cartesian product of m domains. A binary operator divides the whole 

space into subspaces of equivalent classes, each of which must be represented by a 

linear combination of subspaces defined by intermediate variables plus the whole 

space defined by one (the case when all parents are I). If a binary operator can 

be represented using less than three intermediate variables, we can say that it is 

efficiently represented by multiplicative factorization at least for this simple case 

(two causes and three values). 

In this case, there are 39 operators, of which 36 operators are commutative. 

Among those commutative operators, 63 operators are distributive. We have checked 

all 63 operators to see how many intermediate variables are necessary to represent 

them. Table 3.2 shows the results. The first column represents the number of 

intermediate variables, and the second column the number of operators that can be 

represented using the given number of intermediate variables. 

All operators can be represented using 6 intermediate variables or less, which is 

less than the worst case of 32 = 9 variables. Of all 63 operators, 3 + 15 + 21 = 39 

operators (62%) can be efficiently represented, and 2 + 0 + 3 = 5 (8%) operators 

require larger tables than the original (non-ICI) ones. 
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p (#i-vars) #operators 1 output 2 outputs 3 outputs 

0 3 3 

1 15 15 

2 21 15 6 

3 19 19 

4 2 2 

5 0 

6 3 3 

total 63 3 30 30 

Table 3.2. The number of operators classified by the number of intermediate vari­
ables required. 

f (x, y) ---, 1 if xy = 0 then 0 else 2 max(x, y) 

0 1 2 0 1 2 0 1 2 

0 1 1 1 0 0 0 0 0 0 1 2 

1 1 1 1 1 0 2 2 1 1 1 2 

2 1 1 1 2 0 2 2 2 2 2 2 

(a) (b) (c) 

Figure 3.3. Three example operators. 
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Table 3.2 also shows the number of operators classified by the number of different 

outputs of the operators. For example, the operator f (x, y) = 1, which can be defined 

by a table in Figure 3.3 (a), has only one different output, which is 1, and can be 

represented using no intermediate variable, the operator of Figure 3.3 (b) has two 

different outputs and can be defined using one intermediate variable (e(1 +2)(i +2)), and 

the operator max defined by Figure 3.3 (c) has three different outputs and requires 

two intermediate variables, as shown in Section 3.5.1. The third, fourth, and fifth 

columns in Table 3.2 represent the number of operators with one, two, and three 

different outputs, respectively. 

As shown in Table 3.2, all trivial operators (those who have only one or two 

different outputs) can be represented effectively, but only 6 out of 30 non-trivial 

operators can be efficiently represented using multiplicative factorization. Figure 3.4 

shows all those six operators, which include max and min. 

So far, we only considered a simple case with three values and two causes. It is 

difficult to know what will happen if we increase the number of values and/or causes, 

so it remains as an important future work. We conjecture that for three-value cases 

at most the above six operators are the only ones that can be defined effectively 

whatever the number of causes are, because the general cases of m causes are more 

complex than the above simple case and they contain the simple case as a special 

case. 

For many-value cases, we anticipate that there are more operators that can be 

effectively represented in multiplicative factorization. The reason for this is that the 

number of values is the base of exponential with original tables, whereas it is just a 

linear factor with tables of multiplicative representations. For example, in the case of 

the contract renewal example in Section 3.5.3, both the original table and the table 

of multiplicative factorization are of a size exponential in a number that is linear in 

the number of causes. However, the original table is bigger exponentially due to the 

difference in the bases of the exponentials. 
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max(x, y) rnin(x,y) max(xy, 2) 

0 1 2 0 1 2 0 1 2 

0 0 1 2 0 0 0 0 0 0 0 0 

1 1 1 2 1 0 1 1 1 0 1 2 

2 2 2 2 2 0 1 2 2 0 2 2 

if x = y then x if x = y then x if x = y then x 

else 0 else 1 else 2 

0 1 2 0 1 2 0 1 2 

0 0 0 0 0 0 1 1 0 0 2 2 

1 0 1 0 1 1 1 1 1 2 1 2 

2 0 0 2 2 1 1 2 2 2 2 2 

Figure 3.4. Six non-trivial operators that can be efficiently represented. 
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3.8	 Experimental Comparison of Additive and Multiplicative Represen­
tations 

In this section, we experimentally compare two representations of ICI models, namely 

additive and multiplicative representations. We apply them to two large networks, 

that is, QMR-DT and CPCS, and use SPI's factoring algorithm to make actual 

queries to see how the multiplicative representations can improve the factoring of 

those queries. 

To be fair, we specialized both additive and multiplicative representations to 

noisy-or and noisy-max. For the additive representation of noisy-or,- we used the 

representation described in [D'Ambrosio, 1995] that can be considered as a special­

ization (optimization) of the general additive representation of ICI models presented 

in Section 3.3. For the additive representation of noisy-max, we generalized the rep­

resentation of [D'Ambrosio, 1995], so that the resulting representation is also more 

efficient than the general additive representation. 

3.8.1 Experiments using Noisy-Or models 

We used the QMR-DT BN2O network for experiments on the noisy-or models. A 

BN2O network [Henrion and Druzdel, 1990] is a two-level network in which parent 

(disease) interactions at a child (symptom) are modeled using the noisy-or interaction 

model. The QMR-DT network [D'Ambrosio, 1994] is a very large network, with over 

600 diseases, 4000 findings, arid 40,000 disease-findings links. Some findings have 

as many as 150 parents, and a case can have as many as 50 positive findings. We 

used a set of Scientific American cases supplied by the Institute for Decision Systems 

Research. 

The characteristics and results of 16 test cases are shown in Table 3.3. The first 

column represents the case number. There are five columns for each representation. 

The first and second of the five columns represent the number of variables and ex­

pressions (distributions or SPI local expressions) relevant to the query, respectively. 

The difference in the number of variables between the additive and multiplicative 
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additive rep. multiplicative rep. 

case vars exps mults dim time vars exps mults dim time 

0 599 662 1.7e164 537 99 619 3088 1.5e8 20 139 

1 580 1239 1.6e153 505 149 595 2511 1.0e6 14 338 

2 609 2932 1.4e168 558 955 623 4655 2.5e6 14 1790 

3 525 714 2.9e154 505 64 534 1845 9.0e4 10 107 

4 602 2658 6.9e164 547 769 610 4032 1.5e78 258. 1513 

5 623 1330 1.5e171 560 214 639 3447 2.0e7 17 536 

6 623 1745 1.1e164 537 386 642 4981 1.0e8 20 1220 

7 589 967 5.6e160 533 172 598 2608 2.4e5 10 258 

8 610 1240 2.4e153 507 165 626 3162 1.5e7 17 457 

9 588 778 1.2e172 571 75 596 2498 1.3e5 8 162 

10 576 777 1.4e155 512 79 590 2649 9.0e6 15 172 

11 601 1690 1.4e154 507 283 611 3940 7.4e5 11 883 

12 594 1747 2.8e153 506 321 604 3287 2.1e5 11 692­

13 566 1103 3.4e154 505 130 573 2275 3.7e4 8 271
 

14 627 1534 1.3e179 595 316 653 5667 9.0e9 26 1229
 

15 599 1578 3.0e154 505 254 609 2656 5.2e4 10 499 

Table 3.3. The characteristics and results of QMR-DT BN20 test cases. 
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representations comes from the introduction of intermediate variables in the mul­

tiplicative representation. The third column shows the number of multiplications. 

The notation "nem," represents n x 10'. The maximum dimensionality (the maxi­

mum number of variables involved in any conformal products) is shown in the fourth 

column. The maximum (intermediate) table size required for the query is exponen­

tial in the maximum dimensionality. Finally, the last column shows the CPU time 

in seconds measured on Pentium II 300MHz with 128MB of memory. This time 

only includes the time needed for factoring, excluding the time needed for the actual 

numeric computation of conformal products. 

Apparently, in every test cases, the multiplicative factorization performed much 

better than the additive factorization. Although SPI's set-factoring heuristics worked 

well with the multiplicative factoring in most of the cases, there were cases in which 

SPI performed badly. Case 4 (1.5 x 1078 multiplications) and case 14 (9 billion 

multiplications) were particularly bad. 

3.8.2 Experiments using Noisy-Max models 

'We used the CPCS network for experiments on the noisy-max models. The CPCS 

network [Pradhan et al., 1994] is a multi-level, multi-valued network and is one of the 

largest network in use to date. It contains 422 nodes and 867 arcs. Most of the dis­

tributions are specified in the noisy-max interaction models. Some noisy-max node's 

have as many as 17 parents and some nodes contain as many as 5 values. We made 

a marginal query for each individual variable. Table 3.4 shows some representative 

query results with the total figures. 

Generally, the multiplicative factorization performed much better than the ad­

ditive factorization. However, in some cases, SPI failed to find a good factoring with 

the multiplicative representation. The marginal query for "temperature" was partic­

ularly bad; it required 12 trillion multiplications for the multiplicative factorization 

compared to 1.6 trillion for the additive factorization. 



36 

additive rep. multiplicative rep. 

name vars exps mults dim time vars exps mults dim time 
abdomi­
nal pain 77 77 2.9e12 28 0.31 128 394 1.9e8 20 2.1 

appetite 79 79 1.1e16 29 0.43 129 387 2.0e8 20 2.2 

diarrhea 62 62 2.3e7 16 0.65 96 301 4.4e7 15 1.5 
tempe­
rature 87 87 1.6e12 29 0.57 147 516 1.2e13 29 3.2 

total 422 422 1.1e16 2786 47 12K 37K 1.2e13 2572 135 

Table 3.4. The characteristics and results of the CPCS marginal queries. 

3.9 Summary 

In this chapter, we have studied the representations of independence of causal influ­

ence (ICI) models. The important points are as follows: 

Any ICI model can be represented in the SPI local expression language using 

additions. Unfortunately, additions are difficult to handle. 

We have developed a purely multiplicative representation of ICI models using 

the SPI local expression language, and shown the correctness of the represen­

tation. 

The general multiplicative representation is impractically large. Fortunately, 

this representation can be specialized to yield a more compact representation. 

-We have presented examples of efficient, specialized representations of ICI mod­

els, including noisy-or arid noisy-max. 

We have shown that not all ICI models can be optimized effectively using the 
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purely multiplicative representation. 

We have experimentally compared the additive and the multiplicative repre­

sentations of ICI models using the SPI factoring algorithm, and showed that 

the multiplicative representation performed much better. In some cases, the 

SPI factoring algorithm performed badly even with the multiplicative repre­

sentation. 
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Chapter 4
 
Factoring Algorithms
 

The multiplicative factorization of Chapter 3 worked much better than the additive 

factorization with SPI factoring heuristics. However, there were cases when SPI could 

not exploit the benefits of the multiplicative factorization fully. In this chapter, we 

study factoring algorithms and prepare the framework for more efficient factoring 

algorithms developed in the next chapter. 

4.1 Algorithm Template 

This section presents a template that will be used as a basis for developing factoring 

algorithms later. 

In our pseudocode, the following conventions are used. Indentation indicates 

block structure. The looping constructs while and the conditional constructs if, 

then, and else have the same interpretation as in Pascal. Variables (such as t and 

terms) are shown in italic and are local to the given procedure, unless otherwise 

noted. Functions (such as PROD and marginalize) are shown in sans serif. 

Figure 4.1 shows the algorithm template. It returns a probability distribution re­

sulting from the conformal product of a given set of probability distributions (terms), 

marginalizing out all variables not in the target (query) variables (target). The re­

sulting distribution is a marginal joint probability distribution of a set of random 

variables that is the intersection of the target variables and all variables found in the 

given distributions. 

Given a Bayesian network, suppose we want to compute P(x, y). Then, what 

we need to do is to collect all probability distributions relevant to x and y, and give 
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function PROD(terms, target, choose, combine) returns a final distribution 

if terms = {t} then return marginalize(t, target) 

if terms = Iti,t21 then return combinePair( {ti, t21, target) 

while Itermsl > 1 

chosen < choose(terrns, target)
 

newTarget allVariables(terrns\chosen) U target
 

newTerrn +- cornbine(chosen, newTarget)
 

terms < terms \ chosen U {new Term}
 

return t where terms = {t} 

Figure 4.1. Factoring algorithm template. 

that set to the above function with {x, y} as target. A well-known technique, called 

d-separation [Geiger et al., 1989], can be used to find variables (and their associated 

distributions) relevant to a query. If the multiplicative factorization of Chapter 3 is 

used, all products of the multiplicative representations should be expanded so that 

individual distributions are given to terms. 

Let's look at the algorithm template more closely. The function PROD trivially 

computes the result when the number of input distributions is either one or two. 

When the number of given distributions is one, the algorithm uses a function called 

marginalize to marginalize out all variables that are not in target. Otherwise, it calls 

a function called combinePair, which is defined in Figure 4.2. Usually, combinePair is 

done in one operation, that is, the marginalization is done in part of the conformal 

product of a pair of distributions. If the number of given distributions is more 

than two, the algorithm enters a loop. In each step of the loop, it chooses a set 

of distributions and combines them, decreasing the number of distributions. If the 

number of distributions reaches one, the algorithm stops. 

It is the function choose and combine that change the behavior of this template. 
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function corn binePair(terms, target) returns a final distribution
 

return marginalize(t1 x t2, target)
 

where {t1, t2} = terms
 

Figure 4.2. The function combinePair. 

As an illustration, Figure 4.3 shows a simple instantiation of this template, that 

is, a simple random factoring algorithm, called RAND. In this instantiation, choose 

(chooseRandomly) chooses a pair of distributions randomly, and combine computes 

their conformal product by calling combinePair. 

function chooseRandomly(tems, target) returns a pair of distribution 

return a pair chosen randomly from terms 

function RAND(tems, target) returns a final distribution 

return PROD(terrris, target, chooseRandomly, combinePair) 

Figure 4.3. Random factoring algorithm. 

4.2 Optimal Factoring Algorithm 

We can construct an optimal factoring algorithm as an instantiation of the template. 

Figure 4.4 shows that algorithm. 

The function OPTChoose returns a pair that minimizes the total cost, which is 

defined as the sum of immediate cost of combining the pair and the future cost of 

combining all the rest as well as the immediate result. The future cost is found by 

recursively calling the function OPT with a smaller set of distributions. 
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function OPTChoose(terrns, target) returns a pair of distribution
 

return pair C terms that minimizes the total cost.
 

where
 

the total cost is the sum of the immediate cost and 

the future cost; 

the immediate cost is the cost of computing 

result = combinePair(pair, new Target); 

newTarget = allVariables(terms\pair) U target; and 

the future cost is the cost of computing 

OPT (terms \ pair U {result}, target) 

function OPT (terms, target) returns a final distribution
 

return PROD(tenns, target, OPTChoose, combinePair)
 

Figure 4.4. Optimal factoring algorithm. 

The function OPT has an obvious inefficiency, that is, when OPTChoose returns 

a pair, it has already computed the optimal factoring in order to find that pair, so it 

is redundant to call PROD with that pair. This redundancy can be easily avoided by 

modifying the algorithm, but even with that modification OPT is still impractical to 

use because the number of pairs to consider is huge, that is, 

TT" n(n 1) 

2i11=2 

where 72 is the number of distributions. 

Li and D'Ambrosio [1994] developed a more efficient optimal factoring algorithm 

using dynamic programming techniques. Even with dynamic programming, however, 

determining the exact optimal factoring is impractical. 

Because seeking exact optimal factoring is impractical, we need to pursue an 

approximate solution. One way to make the above algorithm practical is to make it to 

compute the future cost using some kind of function approximator that estimates the 
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cost instead of computing the exact cost by calling OPT recursively. Developing such 

function approximator using machine learning techniques is the topic of Chapter 5.­

4.3 SPI Factoring Algorithm 

SPI tries to find an optimal factoring by employing set-factoring heuristics [Li and 

D'Ambrosio, 1994]. Set-factoring heuristics assign a value to each pair (later general­

ized to a set [D'Ambrosio, 1995]) of probability distributions. That value represents 

some goodness of the combination of those distributions. In each step, a combination 

that has the maximum heuristic value is chosen and combined. Figure 4.5 shows an 

instantiation of the template to SPI's factoring algorithm. SPI's factoring algorithm 

is greedy in nature. 

function SPIChoose(terrns, target) returns a pair of distribution 

return a pair chosen from terms that maximizes the heuristic value. 

function SPI(tems, target) returns a final distribution 

return PROD(terrns, target, SPIChoose, combinePair) 

Figure 4.5. SPI factoring algorithm. 

4.4 Variable Elimination 

So far, all algorithms choose a pair and combine them at each step. We call these al­

gorithms pair-combination algorithms. The optimal factoring can be specified by the 

ordering of pair combinations. In other words, the optimal factoring can be specified 

by a binary tree, where the leaves are the given distributions, the intermediate nodes 

represent the result of pair-wise combination of their two children, and the root is 
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the final result. 

Among Bayesian inference systems, systems using pair-combination algorithms 

are exceptional SPI is such a rare system. Most other systems, such as VE [Zhang 

and Poole, 1996] and ci-elirn-bel [Risk and Decker, 1998], use so called variable-

elimination algorithms, which eliminate a non-target (non-query) variable at each 

step, by combining all the probability distributions that contain that variable. 

Typically, variable-elimination algorithms define the cost either as the maximum 

dimensionality or as the maximum size of distributions created during the computa­

tion, and try to minimize such costs. 

Apparently, if we define the cost as the number of multiplications, elimination 

ordering alone is not sufficient to specify an optimal sequence of computation. Mul­

tiple distributions must be combined to eliminate a variable and the cost depends 

upon how these distributions are combined, which is not specified by the variable-

elimination ordering. 

Suppose we combine a variable-elimination algorithm with an optimal combina­

tion algorithm, say OPT, within variable elimination. Then, the question is whether 

the optimal variable-elimination ordering, combined with such an optimal combi­

nation algorithm, is optimal. Unfortunately, it is not the case, as shown by the 

following theorem. 

Theorem 4.4.1 Variable-elimination algorithms are suboptimal in terms of the num­
ber of multiplications. 

Proof: This theorem is actually a corollary of a theorem (Lemma 2 in [Li and 

D'Arnbrosio, 1994]) proven by Zhaoyu Li. Consider a net consisting of node H with 

parents A, B, C, and D, and a marginal query for H. Li showed that the optimal 

sequence is to combine P(A) with P(B), and P(C) with P(D), and then to combine 

either with P(HIA, B, C, D). However, this sequence can not be generated from 

the variable-elimination perspective, since no matter which variable we choose to 

eliminate first, the algorithm would immediately combine the marginal distribution 

for that node with the conditional distribution for H. Thus, it fails to find the 
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optimal factoring. 

Furthermore, the optimal variable-elimination ordering in terms of the number 

of variables involved in a product does not necessarily lead to the optimal number of 

multiplications; it is often the case that the less optimal variable-elimination ordering 

requires fewer multiplications than the optimal variable-elimination ordering. This 

happens, for example, when the domain sizes of variables differ. 

4.5 Greedy Pair-Combination Algorithms 

A non-target variable can be eliminated by multiplying all distributions that contain 

that variable and marginalizing it out. The cost of this operation depends on how 

these distributions are combined. 

We have found that simple greedy pair-combination algorithms work well for 

this purpose. Figure 4.6 and Figure 4.7 show such algorithms. 

function GCMChoose(terrns, target) returns a pair of distribution
 

return pair C terms such that the number of multiplications needed for
 

combinePair(pair, target) is minimal.
 

function GCM(terrns, target) returns a final distribution
 

return PROD(terrns, target, GCMChoose, combinePair)
 

Figure 4.6. Greedy-combination algorithm based on the number of multiplications. 

The difference between these algorithms is the cost they try to minimize. The 

function GCM uses the number of multiplications as a criterion in choosing a pair, 

whereas the function GCD uses dimension as a criterion. 

These simple greedy pair-combination algorithms could be used to combine all 

distributions, not just to eliminate a variable, but their performance is poor for this 
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function GCDChoose(terms, target) returns a pair of distribution 

return pair C terms such that the dimension of pair is minimal. 

function GCD(teryns, target) returns a final distribution 

return PROD(terms, target, GCDChoose, combinePair) 

Figure 4.7. Greedy-combination algorithm based on dimension. 

purpose. They only work well with variable elimination, where the size of distribu­

tions grows monotonically' until the last combination! Because of this monotonicity, 

it is important to minimize the size or dimension of earlier distributions. 

Because of this property, that is, the monotonic increase of distribution size, 

these algorithms may seem optimal for eliminating a variable. Unfortunately, this 

is not the case. It is not hard to construct a counter example, in which choosing a 

smaller distribution does not lead to a minimum total cost. 

'If a proper subset of distributions eliminates another variable, the monotonicity 
does riot hold. However, such cases are riot common. 

7In the last combination, the distribution shrinks due to marginalization. 
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Chapter 5
 
Reinforcement Learning Approach to Factoring
 

In this chapter, we use machine learning techniques to generate a good factoring 

heuristic automatically. 

5.1 Reinforcement Learning 

Reinforcement learning methods [Russell and Norvig, 1995] learn a policy that tells, 

for each state, which actions should be taken in that state. After action a is chosen 

and applied in state s, the problem space shifts to state s' and the learning system 

receives reinforcement, R(s, a, s'). 

To view the optimal factoring problem as a reinforcement learning problem, 

we must describe the problem space and the reinforcement function R. The state 

corresponds to a set of probability distributions and a set of target (query) variables. 

The starting state contains the initial set of probability distributions relevant to 

the given query. For each state, the action is to combine a subset of probability 

distributions chosen from the set of distributions in that state. The cost of the 

action, either the number of multiplications of individual probability values or the 

maximum dimensionality, is given as a negative reinforcement. 

The characteristics of this formulation are given as follows: 

The environment is accessible; the learning agent perceives the exact state of 

the environment, namely, the set of probability distributions and the target 
variables. 

In the case that a pair-combination algorithm is used, the precise length of 

agent's life (n 1, where n is the number of distributions given initially) is 
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known in advance. Even if a variable-elimination algorithm is used, the length 

of the agent's life is bounded (at most n 1). Therefore, the finite-horizon 

model [Kaelbling et al., 1996] can be used as a model of optimality. In finite-

horizon models, the optimal policy is to maximize the expected reward for some 

finite number of steps. 

Whatever policy is followed, every action sequence corresponds to a valid fac­

toring. This means that useful reward information is obtained fairly frequently. 

State transitions are deterministic. As a result, exploration might be necessary 

to visit all states in order to find an optimal policy. Also, this could imply that 

the initial value function is significant. 

State space is very large. Because there is no bound for the number of distri­

butions, the size of the state space is, in fact, infinite. This implies that the 

policy cannot be represented by a simple table-lookup that maps states to opti­

mal actions. Instead, the policy should be represented by some kind of function 

approximator that maps an implicit representation of states to optimal actions. 

The number of actions is large. In each state with n probability distributions, 

there are exactly n(n 1) possible pairs (and 2' subsets) to choose from. 

While developing the actual learning system, we must keep the above characteristics 

in mind. 

5.2 Factoring Algorithms with Future Cost Estimators 

The optimal factoring algorithm, OPT, computes the immediate cost of combining 

the chosen pair and the future cost of combining the rest in order to choose an 

optimal pair. However, that algorithm is not practical because computing the exact 

future cost is very costly. If a good approximator exists for efficiently estimating the 

future costs, we may be able to develop a practical factoring algorithm that -works 

better than greedy factoring algorithms such as SPI. In the next section, we try to 
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develop such approxirnators. In this section, we present factoring algorithms that 

work with various future cost estimators. 

5.2.1 Pair-Combination Algorithms with Estimators 

Figure 5.1 and Figure 5.2 show pair-combination algorithms that work with future 

cost estimators. The former defines the number of multiplications as the cost and 

the latter defines the maximum dimensionality as the cost. 

function PAIR-EST-MULChoose(tenns, target) returns a pair of distribution 

return pair C terms that minimizes the total number of multiplications. 

where 

the total cost is the sum of the immediate cost and 

the future cost; 

the immediate cost is the cost of computing 

result = corn binePair(pair, newTarget); 

newTarget = a IlVaria bles(terms \pair) U target; and 

the future cost is the estimated optimal cost of combining 

the rest: estimateMul (terms\ pair U {result}, target) 

function PAIR-EST-MUL(terms, target) returns a final distribution 

return PROD(terrns, target, PAIR-EST-MULChoose, combinePair) 

Figure 5.1. Pair-combination algorithm with estimators for the number of multi­
plications. 

The difference between these algorithms lies in what estimators are used and 

how the immediate cost arid the estimated future cost are combined. These functions 

are very similar to the optimal pair-combination algorithm, OPT, except that they 
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function PAIR-EST-DIMChoose(terms, target) returns a pair of distribution
 

return pair C terms that minimizes the maximum dimensionality.
 

where
 

the maximum dimensionality is the maximum of the immediate 

dimension and the future dimensionality; 

the immediate dimension is the number of variables involved in 

computing result = combinePair(pair, newTarget); 

newTarget = allVariables(terrns \pair) U target; and 

the future dimensionality is the estimated optimal dimensionality 

in combining the rest: estimateDim (terms \ pair U {result} , target) 

function PAIR-EST-DIM(terres, target) returns a final distribution 

return PROD(terms, target, PAIR-EST-DIMChoose, combinePair) 

Figure 5.2. Pair-combination algorithm with estimators for the maximum dimen­
sionality. 
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estimate the optimal future cost instead of computing the exact cost. 

These algorithms work well with small to modest sized Bayesian networks, but 

they are too costly for large networks such as the CPCS network. This is because the 

number of pairs checked at each iteration is too large, i.e., N(N 1)/2, where N is 

the number of distributions, which is as large as 516 for marginal queries in the CPCS 

network. In addition, the number of iterations, which is the number of distributions, 

is also large compared to that required by variable-elimination algorithms. 

5.2.2 Variable-Elimination Algorithms with Estimators 

Figure 5.3 and Figure 5.4 show variable-elimination algorithms that work with future 

cost estimators. The former defines the number of multiplications as the cost and 

the latter defines the maximum dimensionality as the cost. 

The difference between these algorithms lies in what estimators are used and 

how the immediate cost and the estimated future cost are combined. 

Combination algorithms also differ depending on the cost they try to mini­

mize. VE-EST-MUL uses GCM to minimize the number of multiplications needed 

to eliminate a variable, and VE-EST-DIM uses GCD to minimize the dimensionality 

of combination.' Both GCM and GCD are greedy pair-combination algorithms shown 

in Section 4.5. 

Note that the same estimators are used both for variable-elimination algorithms 

arid pair-combination algorithms shown in the previous subsection. 

Although variable-elimination algorithms are, in general, suboptimal as shown in 

Section 4.4, we have to use them because pair-combination algorithms shown in the 

previous section cannot handle large Bayesian networks. The variable-elimination 

algorithms shown here can handle large networks. The number of sets checked at 

each iteration equals the number of non-target variables, which is at most 147 for 

'Using GCD does not affect the maximum dimensionality, which is the same as 
the final dimension in this case. However, it affects intermediate dimensions that 
matter for overall efficiency. 
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function VE-EST-MULChoose(terms, target) returns a set of distribution 

return set C terms that eliminates some variable(s) and minimizes 

the total number of multiplications. 

where 

the total cost is the sum of the immediate cost and 

the future cost; 

the immediate cost is the cost of computing 

result = GCM(set, newTarget); 

newTarget = allVariables(terms\set) U target; and 

the future cost is the estimated optimal cost of combining 

the rest: estimateMul (terms \ set U {result} , target) 

function VE-EST-MUL(terms, target) returns a final distribution 

return PROD(terms, target, VE-EST-MULChoose, GCM) 

Figure 5.3. Variable-elimination algorithm with estimators for the number of mul­
tiplications. 
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function VE-EST-DIMChoose(terms, target) returns a set of distribution
 

return set c terms that eliminates some variable(s) and minimizes
 

the maximum dimensionality.
 

where 

the maximum dimensionality is the maximum of the immediate 

dimension and the future dimensionality; 

the immediate dimension is the number of variables involved in 

computing result = GCD(set, newTarget); 

newTarget = allVariables(terms\set) U target; and 

the future dimensionality is the estimated optimal dimensionality 

in combining the rest: estimateDim(tenns \ set U {result }, target) 

function VE-EST-DIM (terms, target) returns a final distribution
 

return PROD(tems, target, VE-EST-DIMChoose, GCD)
 

Figure 5.4. Variable-elimination algorithm with estimators for the maximum di­
mensionality. 
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marginal queries in the CPCS network and is much smaller than 516 x (516 1)/2 

of pairs required by the pair-combination algorithms. 

5.3 Future Cost Estimators 

In the previous section, the functions estimateM ul and estimateDim are used to map 

a state (i.e., a set of distributions and a set of target variables) to an estimated 

optimal cost (the number of multiplications or the maximum dimensionality). An 

optimal cost is defined to be the cost that could be obtained by following an optimal 

policy. Thus, given a good heuristic function, the factoring algorithms in the previous 

sections should find a globally optimal factoring. The success of those algorithms 

depends mostly upon the quality of the heuristic function they use. In this section, 

we try to obtain good heuristic functions by using machine learning techniques. 

The future cost estimators we develop consist of a state encoder, which maps 

a state (i.e., a set of distributions and a set of target variables) to a vector of real 

numbers, and a function approximator, which learns a function from those vectors 

to a real number that approximates the optimal cost starting from the given state. 

Optionally, we use a cost encoder that maps from a cost to a real that is easier to 

handle than handling the cost directly. 

We will measure the benefit of learning by comparing the performance of estima­

tors with that of zero-estimator. Zero-estimator always returns zero regardless of its 

inputs. Factoring algorithms combined with zero-estimator implements simple greedy 

heuristics. In particular, VE-EST-DIM combined with zero-estimator is very similar 

to popular heuristics known as the minimum size heuristic and the minimum weight 

heuristics [Kjrulff, 1993]. The minimum size heuristic and the minimum weight 

heuristic choose the next variable to be eliminated as the one which produces the 

smallest clique, or the clique with the least weight (the base 2 logarithm of the clique 

size), respectively. Rose [1973] described the minimum size heuristic under the name 

minimum degree algorithm and referred to other papers [Sato and Tinney, 1963, 

Tinney and Walker, 1967] in which it is assumed that this algorithm produces near 
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optimal elimination orderings. 

5.3.1 Function Approxirnators 

We use artificial neural networks [Haykin, 1994] as a function approximator. Neural 

networks are a universal approximator in the sense that they can approximate any 

continuous multivariate function to any desired degree of accuracy, provided that 

sufficiently many hidden neurons are available [ Haykin, 1994]. In practice, however, 

developing a good approximator is still a challenge. It is rather an art, not science. 

Ad hoc procedures have been used for developing application-specific networks. 

In the following sections, we attempt to build a good approximator using two 

alternative neural networks: multilayer perceptrons (feed forward multilayer neural 

networks) and radial-basis function networks, and compare their performances. 

Multi layer Perceptrons 

A multilayer perceptron has layers of neurons. Each neuron receives inputs from all 

neurons in the previous layer and sends its output to all neurons in the next layer. 

The output of a neuron (ai), given the set of output values (ad's) from the previous 

layer, is computed as follows: 

ai g(E wiia ), 

where wji is the weight associated with the link between ai and ai. Different neuron 

models are obtained by using different mathematical functions for g. We use a 
monopolar sigmoidal function, 

1 

g(x) 1 + e-x' 

for hidden layers (layers between the input layer and the output layer), and a linear 

function, 
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for the output layer. A linear function for the output layer allows neural networks 

to output numbers of any range. 

Training Multi layer Perceptrons Using Temporal Difference 

We need to train the neural network in order to create a good heuristic function. An 

important constraint on such function is the following equation: 

estimateMul(si) = min(R(a) + estimateMul(si+0) 

That is, the estimated optimal cost of the state is the minimum sum of the immediate 

cost of action a and the estimated optimal cost of the next state. 

Each time a state transition occurs, we compute the error of the neural network's 

output as follows: 

error < rnin(R(a) + estimateMul(si+i)) estimateMul(si). (5.15) 

Because this statement uses the difference in estimates between successive states, it 

is often called the temporal- difference equation. 

As a learning rule of multilayer perceptrons, we tried both back-propagation 

(BP) [Haykin, 1994] and TD(A) [Sutton, 1988] which is a generalization of BP. Both 

the BP and TD(A) propagate the above temporal error through the neural network 

and update the weights of links between neurons. Updating the weights using this 

error should cause the neural network to reach the desired equilibrium constraint 

given above. 

The difference between BP and TD(A) is that BP assigns the error only to the 

current decision, whereas TD(A) also assigns the error to the previous decisions. The 

amount of the error assigned to the previous decisions decreases exponentially and 

is controlled by the parameter A. 

Radial-Basis Function Networks 

A radial-basis function network (RBFN) has only one hidden layer and units in this 

layer represent radial-basis functions described below. In the standard RBFN, the 
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output from the network is computed as follows: 

N 

f (x) = wigi(lix xili), 

where x E RP is an input vector of length p, gi(1Ix xill) is a set of N arbitrary 

(generally nonlinear) functions, known as radial-basis functions, and 11 11 denotes a 

norm that is usually taken to be Euclidean. The known data points xi E RP, i = 

1, 2, ... , N are taken to be the centers of the radial-basis functions. 

In order to cover the huge state space of our future cost estimators by using a 

practical number of centers, we use a variant of RBFN called the normalized radial-

basis function network (NRBF) [Kretchmar and Anderson, 1997] which normalizes 

the activations by the sum of all radial-basis function activations, and we use an 

inverse square function for g. Thus, in our adapted RBFN, the output from the 

network is computed as follows: 

N 
1/1Ix xi 112f (x) z (5.16) 

=1 1/1Ix 

Training RBFN 

We developed two alternative algorithms for training RBFN. Because the state space 

is huge, choosing good centers is crucial to the success in this problem domain. Both 

algorithms choose centers based on the given data points, attempting to cover the 

most important space. 

The first algorithm, called the contribution-based center selection, is shown in 

Figure 5.5 and Figure 5.6. The procedure ContribBasedCenterSelection learns the 

center locations, and the function RBFN-Cont computes the estimate based on the 

learned centers. ContribBasedCenterSelection remembers all data points as centers 

until the number of centers exceeds the predefined limit N. In that case, it removes 

one center with the least contribution to the computation of estimates. RBFN-

Cant computes the estimate just as described in Equation 5.16 while calculating and 

storing contributions from each center. 
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parameter N : the maximum size of centers.
 

global-variable centers : a set of triples (center, weight, contrib), initialized to 0.
 

procedure ContribBasedCenterSelection(dataPt, value)
 

if centers N then
 

Remove a triple with minimum contrib from centers.
 

Add a triple (dataPt, value, 1) to centers.
 

Figure 5.5. Contribution-based center selection. 

function RBFN-Cont(dataPt) returns an estimate 

totalContrib 4 0 

forall 1 < i < centers 
1contrib 

11dataPt-center(centersi)112
 
totalContrib 4 totalContrib + contribi
 

estimate 4 0
 

forall 1 < i < ( centers
t I 

normalizedContribi contribi totalContrib 

estimate 4 estimate + weight(centersi) x normalizedContribi 

contrib(eentersi) 

contrib(centersi) x 0.99 + normalizedContribi
 

return estimate
 

Figure 5.6. RBFN with the contribution-based center selection. 
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The above algorithm places centers on heavily used areas, so it might happen 

that only a small areas are approximated. The second algorithm below tries to place 

centers in a more balanced manner so as to cover larger areas. 

The second training algorithm, called the clustering-based center selection, is 

shown in Figure 5.7 and Figure 5.8. The procedure ClusteringBasedCenterSelection 

learns the center locations, and the function RBFN-Clus computes the estimate based 

on the learned centers. ClusteringBasedCenterSelection classifies data points and val­

ues into N clusters using an unsupervised learning technique, and regards means 

of each cluster as centers. RBFN-Clus computes the estimate just as described in 

Equation 5.16. 

parameter N : the maximum size of centers. 

parameter M : the maximum size of data points. 

global-variable centers : an array of pairs (center, weight) of length N. 

global-variable dataPoints : an array of pairs (center, weight) of length M. 

global-variable nurnDataPt : the number of points in dataPoints, initialized to 0. 

procedure ClusteringBasedCenterSelection(dataPt, value) 

dataPoints[nurnDataPt mod M] (dataPt, value) 

nurnDataPt nurnDataPt + 1 

Classify dataPoints into at most N clusters and 

store means of them into centers. 

Figure 5.7. Clustering-based center selection. 

As the unsupervised learning method, we used the maximum-neuron-based [Take­

fuji et al., 1992] self-organization classification algorithm [Oka et al., 1996]. This 

algorithm converges faster than the more conventional Kohonen's self-organization 
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function RBFN-Clus(dataPt) returns an estimate 

totalContrib 0 

forall 1 < i < I centers' 

contribi 
IldataPtcenter(centersi)112 

totalContrib + totalContrib + contribi 

estimate 0 

forall 1 < i < I centers 

norynalizedContribi contribiltotalContrib 

estimate estimate + weight(centersi) x normalizedContribi 

return estimate 

Figure 5.8. RBFN with the clustering-based center selection. 

map [Kohonen, 1993]. 

There are some omissions in these algorithms. First, if a data point given to 

RBFN-Cont or RBFN-Clus is found among the learned centers, the function simply 

returns the associated weight as the estimate. Second, in the actual implementation, 

ContribBasedCenterSelection and ClusteringBasedCenterSelection will not remember 

those data points that are estimated from the current centers with 99% of accuracy. 

This prevents adding large number of redundant centers. 

5.3.2 State Encoding 

The neural network can accept only a fixed vector of values describing each state 

(i.e., distributions and targets). Distributions and targets, on the other hand, are 

variable-length. Hence, it is necessary to define a mapping from variable-length 

objects to a fixed vector. 

We developed three kinds of mappings. The first one extracts some fixed set of 

features from the original inputs. The second one uses a fixed, but enormous matrix 



60 

to represent the original inputs. The last one tries to capture the most important, 

fixed-length subportion of the inputs. 

Feature Set 

A feature extracts an important aspect of the original input that the neural network 

can use to predict the value of the state. We have tested a number of features 

including the following: 

1. The number of variables. 

2. The number of non-target variables. 

3. The number of expressions. 

4. The worst case cost of the state. 

5. The maximum depth of the Bayesian network defined only by the remaining 

distributions of the state. 

6. The total, mean, standard deviation, minimum, and maximum of distribution 

sizes. 

7. The total, mean, standard deviation, minimum, and maximum of distribution 

dimensions. 

8. The total, mean, standard deviation, minimum, and maximum of the number 

of variables needed to eliminate each non-target variable. 

Of these features, we chose (1), (2), (3), (7), and (8) for estimateDim and (1), 

(3), (4), (6), and (7) for estimateMul. From our limited experiments, adding more 

features to those estimators did riot improve their performances. 

Zhang and Dietterich [1995] reported that normalization of feature values worked 

because reinforcement learning is easier if the reinforcement function is independent 

of the difficulty of the problem. In order to check to see if normalization works for 
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our problem domain, we used normalized feature sets in addition to unnormalized 

ones. 

In order to normalize the cost, we compute initialMaxCost, which is the worst 

case cost of the given problem. It is computed as follows: 

initialMaxCost E- (NUM,DiStS 1) x 11 domainSize(v), 
vE Vars 

where NurnDists is the number of distributions and Vars is the set of domain vari­

ables. The normalized cost is then given by cost I initialMaxCost. 

Matrix Representation 

We developed a matrix representation of the state, i.e., distributions and targets. 

Each row of a matrix represents a distribution, and each column represents a variable. 

An entry (i, j) of a matrix is 1 if the ith distribution contains jth variable and is 0 

otherwise. In order to encode target variables, we use the first row and say that an 

entry (0, j) of a matrix is 1 if the jth variable is a target. 

In the case of estimateMul, we also need to encode the domain size of each 

variable. We use the row number 1 for this purpose so that an entry (-1, j) 
contains the domain size of the variable j. 

For example, the state that consists of the distributions 

{P(.41/3, C), P(BID), P(CID), P(D)} 

and the targets {A} can be represented by the matrix below. 

ABC D 

target 1 0 0 0 

P (.41B , C) 1 1 1 0 

P(B1D) 0 1 0 1 

P(CID) 0 0 1 1 

P(D) 0 0 0 1 
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Although this representation contains all necessary information for the predic­

tion, there is a problem if we want to use the matrix representation as the input to 

the neural network. That is, the size of the matrix varies depending on state. 

In order to handle matrices varying in size, we allocate a huge array and use a 

subportion of it for the matrix representation. The array must be large enough for 

the problems under consideration. For the marginal queries in the CPCS network, 

we allocated an array for 516 distributions and 147 variables. For the Scientific 

American queries in the QMR-DT BN2O network, an array for 5,667 distributions 

and 653 variables is necessary. 

Feature Set v.s. Matrix Representation 

The pros and cons of using the feature set versus the matrix representation can be 

summarized as follows. 

The feature set summarizes the state, throwing away some information, so it is 

very difficult to develop a good feature set that preserves necessary information 

for the prediction. On the other hand, the matrix representation preserves 

every piece of information, so all necessary information is kept. 

The feature set extracts information that the developer thinks is useful, which 

might help the learner. In contrast, the learner must extract useful information 

by itself when given the matrix representation. 

The feature set is of fixed length and is usually small, whereas the matrix 

representation can be very large when one wants to handle large Bayesian 

networks. Large inputs make the neural network learn slowly and consume 

huge memory. 

Computing a feature set may he expensive depending on what features are 

computed, whereas the cost of computing the matrix is minimum. 

The feature set can be designed so that the learned heuristic generalizes well 
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to Bayesian networks other than those used for training. On the other hand, 

it is difficult for the neural network to learn a generalizable heuristic using a 

matrix because different Bayesian networks use different portions of the input 

matrix and because the input matrix has many forms of symmetry. 

Significant Subportion Representation 

As described in the previous subsection, the feature set and the matrix representa­

tion are opposite extremes. In this section, we develop a compromised representation, 

called the significant subportion representation, that is intended to combine strong 

points from both extremes. This representation inherits generalizability from the fea­

ture set by representing each variable by its features, and preserves some topological 

information by extracting the most important subportion of the matrix. 

In this representation, each variable is represented by the following features called 

the variable features: 

Whether or not the variable is among the target variables; 

The number of relevant variables; 

The number of expressions that contain this variable; 

where relevant variables are those variables that share an expression. In the case of 

estimateMul, the following two features are also considered: 

The required table size that is the product of the number of values of all the 

relevant variables; 

The number of values in the domain of this variable. 

In order to extract most significant subportion of a Bayesian network, we define 

a total ordering of significantness among variable features as follows: 

1. A target variable is more significant than a non-target variable; 

2. If a variable has greater number of relevant variables, it is more significant; 
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3. The variable with larger table size is more significant; 

4. The variable with more values is more significant; 

5. The variable that appears in more expressions is more significant. 

In order to make a fixed vector, we choose N most significant variables and for 

each variable we pick Al most significant relevant variables, where -N and M are 

fixed parameters. Thus we give the total of N(M + 1) variable features to the neural 

network. In the following experiments, we let N = 20 and M = 4. 

5.3.3 Cost Encoding 

The output from the neural network is either the maximum dimensionality (in the 

case of estimateDim) or the number of numerical multiplications (in the case of es­

timateM ul). Learning the maximum dimensionality might be easier than learning 

the number of multiplications because the maximum dimensionality is very much 

related to the number of variables of each distribution, which is given as an input. 

The number of multiplications is generally exponential in the number of variables of 

each distribution, requiring the neural network to learn such an exponential function. 

This exponential function could be avoided if we make the neural network learn the 

logarithm of the number of multiplications instead of the number of multiplications. 

We will test both cases in the experiments below. 

5.4 Experimental Results 

In this section, we present experimental results obtained using the factoring algo­

rithms developed so far based on variable elimination combined with the multiplica­

tive factorization of ICI. Subsection 5.4.1 evaluates various estimators by training 

each of them using a fixed policy. This test shows the basic ability of each estima­

tor, that is, the ability to approximate a particular cost function. Subsection 5.4.2 

compares various estimators by training them on-line. Finally, we will see the gen­

eralizability of the learned heuristic function in Subsection 5.4.3 by applying the 
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heuristic function to other kinds of Bayesian networks. We will also compare the 

results with those obtained by other methods. 

5.4.1 Training Estimators Using a Fixed Policy 

In this section, we see if each of various estimators can approximate a particular 

policy. First, we created data, that is, we collected all state-reward pairs, each of 

which corresponded to a decision the algorithm made, by running the above factoring 

algorithms with zero-estimator, which is considered as near-optimal. Then, we trained 

each estimator providing these pairs, and measured errors. 

As the error, we computed the average square of absolute error normalized by the 

error given by zero-estimator. The absolute error is the difference between an estimate 

and a true cost, in contrast to the tune difference error defined in Equation 5.15. 

Figure 5.9 and Figure 5.10 show the results of various configurations of estimate-

Dim and estimateMul, respectively. 

110 
FEA-RAD-DIM 

100 FEA-PER-DIM 

90 
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40 
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Figure 5.9. The evaluation of various configuration of estimateDim. 
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Figure 5.10. The evaluation of various configuration of estimateMul. 

In these figures, the vertical axis shows the normalized absolute error shown 

in percent. The normalized error of 100% corresponds to the error that would be 

obtained without learning. The horizontal axis corresponds to iterations. In each 

iteration, the estimator was trained by an epoch, that is, a sequence of state-reward 

pairs obtained through a sequence of actions. In these experiments, one epoch cor­

responded to one marginal query randomly chosen from the CPCS network. Each 

iteration contained at most 147 decisions, the average being 40. We ran 1000 itera­

tions, but only showed a small portion of them because the lines became flat (or the 

similar zigzag-curve) beyond that portion. 

For estimateDim, each configuration consists of a choice of function approxima­

tor (the rnultilayer perceptron with 100 hidden units or the radial-basis functions 

with 250 centers), a choice of training rule (BP or TD(A) for perceptron, and the 

contribution-based or clustering-based center selection for RBFN), and a choice of 

state encoding (the feature set, the matrix, or the significant subportion). Esti­
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mateMul has more choices, that is, a choice of whether to normalize, and a choice of 

whether to encode cost using logarithm. 

In order to simplify the presentation, these figures only show the representative 

configurations. Figure 5.9 shows four lines. The line named FEA-RAD-DIM cor­

responds to the result obtained by RBFN with the contribution-based training and 

the feature set. The results given by RBFNs with the feature set or the significant 

subportion encodings were all similar to this plot, no matter which training rule 

was used. The line named FEA - PER -DIM corresponds to the result obtained by 

perceptron with TD(A) arid the feature set. The perceptron with the feature set or 

the significant subportion encodings were all similar to this plot, no matter which 

training rule was used. The lines labeled MAT-RAD-DIM and MAT-PER-DIM were 

obtained with the matrix representation by RBFN with the contribution-based train­

ing and perceptron with TD(A), respectively. Other training rules combined with 

the matrix representation gave similar plots to the respective lines. 

Figure 5.10 shows five lines, of which the four lines labeled LOG were obtained 

using the logarithm to encode costs and look very similar to their counterpart lines 

in Figure 5.9. They also represent the same variants as their counterparts do. 

The line labeled FEA-PER-MUL was obtained using perceptron with the feature 

set without using the logarithm to encode costs, and converged to about 80% of the 

normalized error which was very poor. Those configurations that used bare costs 

without using the logarithm encoder and those configurations that used the cost 

normalization were all similar to this line, meaning that they failed to learn. 

There are four points to note for these results: 

RBFNs with the feature set or the significant subportion representation con­

verged fast and estimated well. 

Perceptrons were able to make good estimates only with the matrix represen­

tation. 

The cost encoding using logarithm was a must for estimateMul. 
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The normalization of costs using the worst case cost did not work. 

5.4.2 On-line Training of Estimators 

In this section, we train various estimators on-line and see if they can create a better 

policy than the policy defined by zero-estimator which is known to be near-optimal. 

In order to avoid the danger of overfitting, that is, of memorizing the training 

data and failing to generalize well to new data points, we use the technique known as 

early stopping [Lang et al., 1990]. Early stopping works as follows. Suppose we have 

a total of N data points available for training. We randomly set aside a subset of Nh 

of these points to form the halting set. The remaining N\ Nh points are given to the 

learning algorithm. After each training, the current predictive accuracy is measured 

on the halting set. If the result is better than any previous results, the current state 

is saved. Training is conducted until some termination condition is met. The saved 

state is employed to make future predictions. 

All of the learning algorithms described in this paper have several parameters 

(such as the number of centers, the choice of state encoders, and the way to train 

the neural network) that must be specified by the user. To set these parameters 

in a principled fashion, we employed the cross-validation methodology [Lang et al., 

1990]. This method further divides the training set (N \ Nh) into a subtraining set 

and a cross-validation set. Alternative configurations of learning algorithms are then 

tried while training on the subtraining set and testing on the cross-validation set. 

The best-performing configurations are then employed to train on the full training 

set. In this methodology, no information from the test set is used to determine any 

parameters during training. 

In our experiments, the data sets consist of marginal queries in the CPCS net­

work. In order to make data sets uniform with respect to their difficulties, we created 

them as follows. First, we classified 290 non-trivial marginal queries in the CPCS 

network into eight clusters using the number of relevant variables and the number of 

relevant expressions as their features. The classification was done by the maximum­
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neuron-based [Takefuji et al., 1992] self-organization classification algorithm [Oka et 

al., 1996]. Then, we randomly picked eight queries each from a different cluster to 

make a data set. We created the total of four such data sets each of which was mutu­

ally exclusive. We used one of them as the subtraining set of eight queries, another 

as the cross-validation set of eight queries, and the remaining two as the halting set 

of 16 queries. The subtraining set and the cross-validation set constitute the (full) 

training set of 16 queries. 

The training proceeded as follows. 

1. Initialize the neural network.	 (In the case of perceptrons, the weights were 

initialized randomly. In the case of RBFNs, the centers were initially empty.) 

2. Pick one query from the training (or subtraining) set. 

3. Evaluate the query using the current network as the estimator. 

4. Train the network by the epoch (the sequence of state-reward pairs) obtained 

through that evaluation. 

5. Test the resulting network on the halting (or cross-validation) set by evaluating 

all queries in the set using this network as the estimator. If the result is better 

than any previous results, save the network. 

6. If the test result is worse than any of the previous N results, stop, where N is 

16 for the cross-validation and 32 for the full training. 

7. Repeat from Step 2. 

There are two omissions in the above training procedure. First, we used a 

technique called experience replay developed by Lin [1992, 1993] to ensure that the 

network does not forget good experiences from previous training episodes. This 

technique works as follows. For each query, we keep track of the epoch of the best 

factoring found so far. After every four iterations., we replay these "best" epochs to 

train the network. 
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The second omission is a random exploration we introduced in order to avoid 

a local optimum. Let /(3 be a parameter between 0 and 1. During the evaluation 

of a query in Step 3 in the above procedure, we chose an action at random with 

probability 13 instead of using the one-step lookahead search defined in Figure 5.3 

and Figure 5.4. Each epoch recorded which decision was made at random, and 

random decisions would not be used in training in Step 4 and experience replay. 

Non-random decisions were always used in training even if they belong to an epoch 

with a random decision. 

We explored the following configurations: 

(Dim,Mul) The maximum dimensionality as costs or the logarithm of the num­

ber of multiplications as costs. 

(Fea,Mat,Sig) Three choices of state encoders, that is, the feature set, the 

matrix, or the significant subportion. 

(BP,TD,Cont,Clus) Four choices of training algorithms and network architec­

tures, namely, BP with rnultilayer perceptron, TD(A) with multilayer percep­

tron, the contribution-based center selection with RBFN, and the clustering-

based center selection with RBFN. 

(0,1,5) The exploration parameter Q = 0, 0.01, or 0.05. 

(250,2500) The maximum number of centers in RBFNs be 250 or 2500. 

Table 5.1 shows the results of the experiment. It lists all configurations that 

performed better on the halting set than estimateMul with zero-estimator does, sorted 

by the number of multiplications required for answering all queries in the halting set. 

This table also shows the performance of estimateMul with zero-estimator (Mul-Zero), 

of estimateDim with zero-estimator (Dim-Zero), and of SPI. The column titled dim 

shows the total dimensionalities required for answering all queries in the halting set. 

There are six points to note for this table. 
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name mults dim 
Mul-Fea-Clus-5-2500 502181 178
 

Mul-Sig-Clus-5-2500 417224 163
 
Mul-Mat-Cont-5-250 505393 158
 

Mul-Fea-Clus-1-250 422596 152
 
Mul-Sig-Cont-5-250 508742 148
 

Mul-Fea-Clus-5-250 432382 165
 
Mul-Sig-Cont-5-2500 508742 148
 

Mul-Sig-Cont-0-2500 438858 165
 
Dim-Zero 511659 144
 

Mul-Sig-Cont-0-250 443450 166
 
Mul-Mat-Cont-5-2500 512686 173
 

Mul-Sig-Cont-1-2500 457112 166
 
Mul-Fea-Clus-0-250 519368 155
 

Mul-Sig-Clus-0-250 460317 166
 
Dim-Sig-TD-1 534820 145
 

Mul-Sig-Clus-0-2500 460447 162
 
Mul-Mat-Cont-0-2500 542256 165
 

Mul-Sig-Clus-1-2500 465350 162
 
Mul-Mat-Cont-1-2500 551031 166
 

Mul-Sig-Clus-1-250 465494 170
 
Mul-Fea-Clus-0-2500 654148 197
 

Mul-Sig-Cont-1-250 477578 164
 
Mul -Zero 686766 155
 

Mul-Sig-Clus-5-250 480130 142
 
SPI 2.3e8 181
 

Mul-Mat-Cont-1-250 499721 157
 

Table 5.1. The results of on-line training of estimators. 
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Some configurations of estimators actually succeeded in learning a policy that 

performed quite well. The best configuration, Mul-Sig-Clus-5-2500, needed 

417224 multiplications on the halting set, which was 39% less than that of the 

greedy factoring algorithm labeled Mul-Zero, and was 99.8% less than that of 

SPI. 

No configurations with the dimensionality as costs (Dim) succeeded in learning 

a better policy than that of the greedy counterpart Dim-Zero with respect to 

either the dimensionality or the number of multiplications. 

All estimators based on multilayer perceptrons (marked BP or TD) failed to 

achieve improvement over the greedy heuristics. 

Exploration (marked 1 or 5) worked for the clustering-based center selection 

(Clus), but not for the contribution-based center selection (Cont). 

The clustering-based center selection worked with the feature set (Fea) or the 

significant proportion (Sig), but the contribution-based center selection did not 

work with Fea, whereas it worked well with Sig. 

No apparent improvements were achieved by increasing the number of centers 

from 250 to 2500. 

5.4.3 Generalizability 

In this section, we test the predictive accuracy of learned heuristics. 

The Prediction Test Using The CPCS Network 

The first test evaluates the generalizability of the five best heuristics learned in the 

previous subsection. The evaluation is done by making marginal queries for four 

variables that are among the most difficult ones found in the CPCS network. These 

variables were riot used in the training set or in the test set, except "appetite" that 

was used in the test set. 
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configuration abdomi­ appetite ' diarrhea tempo- total time 

nal pain rature 

Mul-Sig-Cont-0-250 94(12) 141(12) 77(11) 507(13) 820(48) 767 

Mul-Sig-Cont-0-2500 130(14) 141(12) 82(11) 507(13) 861(50) 766 

Mul- Fca- Clus -5 -250 126(14) 330(14) 268(14) 606(15) 1330(57) 156 

Mul-Fea-Clus-1-250 126(14) 330(14) 268(14) 606(15) 1330(57) 158 

Mul-Zero 126(14) 330(14) 268(14) 606(15) 1330(57) 80 

Mul-Sig-Clus-5-2500 126(14) 330(14) 268(14) 606(15) 1330(57) 241 

Table 5.2. The prediction test using four most difficult queries in the CPCS network. 

Table 5.2 shows the results obtained by the five learned heuristics along with 

that obtained by the non-learning Mul-Zero heuristic. The first column shows the 

configuration from which the heuristics were obtained, followed by four columns 

each of which shows the number of multiplications in thousands and the maximum 

dimensionality required for the marginal query of the variable shown in the first row. 

The next column shows the total figures. Finally, the last column shows the CPU 

time in seconds measured on Pentium II 300MHz with 128MB of memory. This 

time only includes the time needed for factoring, excluding the time needed for the 

actual numeric computation of conformal products. The rows are sorted by the total 

number of multiplications. 

Compared to the results shown in Table 3.4 in Chapter 3 obtained by SPI with 

the same marginal queries, the performance gain is tremendous. For example, the 

number of multiplications required for "temperature" by SPI using the multiplicative 

representation was 12 trillion, whereas Mul-Sig-Cont-0-250 requires only five hundred 

thousand multiplications. 
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The clustering-based heuristics (those marked with Clus) performed as well as 

the non-learning heuristic Mul-Zero. This is rather unsatisfactory. However, the 

contribution-based heuristics (those marked with Cont) performed quite well. The 

best heuristic Mul-Sig-Cont-0-250 achieved about 40% improvement over Mul-Zero. 

The results shown in this subsection imply that we finally succeeded in comput­

ing marginal queries in the CPCS network. 

The Prediction Test Using The QMR-DT Network 

The QMR-DT BN2O network described in Subsection 3.8.1 is a very different and 

larger network compared to the CPCS network. In this subsection, we see how a 

heuristic trained by the CPCS network performed with the QMR-DT network. 

It turned out that the QMR-DT network is too large to make queries by using 

the factoring algorithms described in this chapter. This is because at each state 

an algorithm must generate and evaluate all of the possible successor states. This 

becomes quite costly in search space with large branching factors, which is about 

600 variables in the case of the QMR-DT network as shown in Table 3.3. 

An alternative is a procedure called random sample greedy search (RSGS) [Zhang 

arid Dietterich, submitted], which generates a random subset of the possible actions 

and evaluates their resulting states. The best of these actions is then chosen. The size 

of the random sample is determined incrementally. An initial sample of 10 operators 

is chosen.9 Based on the resulting computed values, a permitted amount of error E, 

and desired confidence 1 6, we can compute the probability that the value of the 

best sampled action is within E of the best possible action. We continue sampling 

possible actions until this probability exceeds 1 6. We set e = 0.1 and 6 = 0.1. 

Table 5.3 shows the results of the Scientific American cases employing the heuris­

tic learned by the configuration Mul-Fea-Clus-5-250 of Subsection 5.4.2. The first 

four columns show the case number, the number of multiplications in thousands, the 

9Zhang and Dietterich [submitted] used an initial sample of 4 instead of 10. For us, 
4 was not reliable, so we increased it to 10. 
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Mul-Fea-Clus-5-250 Quickscore SPI[D'Ambrosio, 1995] 

case Inuits (K) dim time (min) mults (K) mults (K) 

0 175 14 120 (>2000) (>2000) 

1 18 8 47 (>2000) 148 

2 91 12 97 (>2000) 321 

3 11 7 43 289 11 

4 20 6 74 167 17 

5 115 13 113 (>2000) (>2000) 

6 3434 17 242 (>2000) (>2000) 

7 26 8 95 343 38 

8 81 12 95 (>2000) 1252 

9 25 6 73 191 36 

10 50 11 65
 

11 84 10 133
 

12 48 10 66
 

13 13 7 48
 

14 53-146 22 450
 

15 11 5 54
 

Table 5.3. The prediction test using Scientific American cases in the QMR-DT 
network. 
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dimensionality, and CPU-time in minutes. 

Compared to the results shown in Table 3.3 of SPI with the multiplicative rep­

resentation, our algorithm performed much better in every case. For example, the 

worst cases of SPI, that is, Case 4 with 1.5 x 1078 multiplications (258 dimensional­

ity) and Case 14 with 9.0 billion multiplications (26 dimensionality) were reduced to 

20160 multiplications (6 dimensionality) and 53 million multiplications (22 dimen­

sionality), respectively. 

Table 5.3 also shows the results taken from [D'Ambrosio, 1995]. In [D'Ambrosio, 

1995], D'Ambrosio compared two methods: Quickscore [Heckerman, 1989] and SPI. 

This version of SPI used the additive representation of noisy-or, and its heuristic 

value function was different from the one used in the current SPI. The fifth and sixth 

columns in Table 5.3 show the number of multiplications in thousands required by 

Quickscore and SPI, respectively. Those entries marked with (>2000) indicate that 

the computation aborted because the number of multiplication exceeded a predefined 

limit of two million multiplications. D'Ambrosio used only the first 10 cases.10 Note 

that he ignored all negative evidences in his experiments, but the effects of ignoring 

them was negligible. Comparison with these results clearly shows the superiority of 

our method. 

5.5 Summary 

In this chapter, we tried to develop a good factoring heuristic automatically using the 

reinforcement learning techniques. First, we viewed the optimal factoring problem 

as a reinforcement learning problem and developed factoring algorithms that worked 

with future cost estimators. We used two neural network architectures (multilayer 

perceptrons and radial-basis function networks) to implement future cost estimators. 

In order to use neural networks, we developed three state-encodings and a cost-

encoding. For training radial-basis function networks, we developed two algorithms 

roiin [ D'Ambrosio, 1995], those cases are named from 1 to 10. 

http:cases.10
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for selecting centers. Empirical studies demonstrated that (1) some configurations of 

estimators could actually approximate a future cost function of this problem domain, 

(2) certain configurations of estimators could be trained on-line to acquire a policy 

that surpasses the existing heuristics, and (3) learned heuristics generalized well to 

unknown situations. 
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Chapter 6
 
Conclusion
 

In this chapter, we summarize the contribution of our research and list some of the 

anticipated future directions. 

We began this thesis by studying the representations of independence of causal 

influence (ICI) models. We developed new multiplicative representations of ICI mod­

els. They are easy to use because any standard inference algorithm can work with 

them. Also, they allow for exploiting ICI fully because they do not impose any con­

straints on inference algorithms. We showed the correctness of the representations, 

and demonstrated how to specialize the general representation for specific ICI models 

in order to gain representational efficiency. 

We then studied factoring algorithms. We developed a methodology for applying 

the reinforcement learning techniques to the optimal factoring problem, and devel­

oped factoring algorithms that can work with heuristics, automatically generated by 

the reinforcement learning techniques. 

Finally, we empirically demonstrated that the combination of the new represen­

tation and the new factoring algorithm was more efficient and allowed for inference 

in larger Bayesian networks than existing methods. 

The following lists some future directions for our research. 

In chapter 3, we demonstrated how to optimize multiplicative representations. 

Optimization is currently performed by humans, but this task could be auto­

mated. An automatic representation optimizer will not only help one to apply 

the multiplicative representation to a new ICI model, but could also facilitate 

better understanding of the multiplicative representations through its develop­

ment. 
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In chapter 5, we developed future cost estimators using two architectures of 

neural networks and four training methods. This is not at all a comprehensive 

list of function approxirnators that can implement the future cost estimators. 

We would like to experiment with other function approximators such as CMAC 

[Miller et al., 1990] and other training methods such as the supervised center 

selection for radial-basic function networks [Wettschereck and Dietterich, 1992, 

Haykin, 1994]. 

Comparing the results obtained by using SPI with those of our algorithms 

suggests that there is a trade-off between the time spent on factoring and the 

quality of factoring. Usually the quality of factoring matters more than the 

time spent on factoring because the quality of factoring is directly related to 

memory, and memory is the bottleneck. Our algorithms are based on this 

idea and spent as much time as needed on factoring. However, in order for 

the algorithms to be more practical, we need to reduce as much CPU time as 

possible. One way to reduce the time is to combine SPI and our algorithms in 

a way that use SPI as long as memory is sufficient and switch to our algorithm 

only if the quality of factoring SPI generated was too bad. Another interesting 

way to reduce the runtime CPU requirement is to precompute the variable-

elimination ordering given a Bayesian network. 
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