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MEASURE-EQUIVALENCE OF QUADRATIC FORMS

1. Introduction

This paper 1nvestigates the probability, P¥, that a degree d random polyno-
mial has k distinct roots, over a variety of fields and using a variety of probability
measures Historically, much work has gone into finding the asymptotic value of
this probability, or the expected number of roots, but not much has been done to
find exact probabilities We are interested 1in the exact probabilites

We started by using elementary methods to determine the probability for
low-degree polynomials with common fields and probability measures In the p-adic
numbers, these methods led to an investigation of p-adic analysis, as well as the
properties of p-adic integer random variables, and proved the following theorem

Theorem: Let A, B, and C be independent uniformly-distributed ran-
dom variables on the p-adic integers (where p 1s odd) Then, the probability that
Az? + Bz + C has two distinct roots 15 1/2

The simphicity of this value, and the fact that the probability 1s the same for
all odd p, led us to investigate the reason that the values are the same Also, 1t led to
a search for a simpler method for finding the probability, which might be generalized
to higher-degree polynomials Attempting to find a reason for the probabilities being

the same for different fields led to the construction of the measure Witt ring The
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measure Witt ring 1s a modification of the canonical Witt ring, which allows an
equivalence of the theory of quadratic forms over different fields

This paper finds the probabilities P¥ for the field of real numbers for both
the umform probability measure on the interval [—1,1] and the standard normal
probability distribution, and for the umiform distribution on the p-adic integers with
podd In the process, the implcit function theorem for p-adic numbers 1s presented
The measure Witt ring 1s constructed, and 1ts relation to the canonical Witt ring 1s
shown Examples are also presented for Lebesgue and standard Gaussian measure
on the real numbers, and for uniform measure on finite fields and the p-adic numbers
Some 1nformation on the measure Witt ring for the uniform probability measure on
the interval [—1,1] m the real numbers 1s also found In the process, the following
properties were found

Theorem: For Lebesgue measure on the real numbers, Haar measure on the
p-adic numbers with p odd, and umform measure on finite fields, the measure Witt
ring 1s 1somorphic to the canonical Witt ring

Theorem: For a field with Haar measure g with the property that
u(A x B) = p(cA x ¢! B)

for all non-zero field elements ¢ and all measurable sets A and B 1n the field, the
measure Witt ring 1s 1somorphic to the canonical Witt ring

Theorem: For the standard normal measure on the real numbers, the mea-
sure Witt ring 1s not 1somorphic to the canonmcal Witt ring

The probability P2 for p-adic random quadratic polynomials, and numerical

evidence for higher degree polynomuals, suggests the following
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Conjecture: The probability that a degree d random polynomial with
umformly-distributed p-adic integer coefficients has k roots 1s the same as the prob-

ability that a random d-permutation has k fixed points



2. The P-adic Implicit Function Theorem

For a proof in the next chapter of this thesis, the imphcit function theorem
1s used The real-number version can be stated as follows

Theorem: The Implicit Function Theorem Let f be a continuously differ-
entiable map from an open set E C R**™ mto R”, such that f{ (a, 5) = 0 for some
pomt (@,5) € E Let A = Df(@b) Spht A mto A, and A, by A,(Z) = A(Z,0)
for £ € R*, and A,(§) = A(0,) for ¥ € R™ Further assume that A4, 1s nvertible
Then there exists open sets U C R**™ and W C R* with (@, 5) c€eUandbeW,
having the following property

To every ¥ € W there corresponds a umque Z such that (Z,%) € U and

-

fZ,9 =0

If this £ 1s defined to be (%), then § 1s a continuously differentiable map of
W mto R*, §(5) = @, f(§(@),7) =0 (7 € W), and DF(b) = —(4.) "' 4y

This statement of the implicit function theorem appears m [10] as Theorem
9 28 The imphat function theorem also applies 1n situations other than the real

numbers, for instance, an imphcit function theorem for real closed fields and semi-

algebraic functions appears 1n {2, §2 9]

This section of the thesis proves the implicit function theorem for the p-adic

numbers It follows the proof given 1n [10] almost exactly

2.1 P-adic Numbers

Let p be an odd prime Define an absolute value on the integers by letting
In|, = p~* for every integer n, if n = pFa, where a and p are relatively prime
Extend this to the rational numbers by letting [n~!|, = |n|;! The p-adic numbers,

symbolized by Q,, are the topological completion of the rational numbers with this
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absolute value The closed umit ball around 0, that 1s, the set of p-adic numbers with
absolute value less than or equal to 1, 1s called the p-adic integers, and symbolized
by Z,

Z, can also be seen as an nverse hmit
Z/p'Z <+ Z/p*Z <+ Z/p°Z <

15 a sequence of groups, with the arrow from Z/p"Z to Z /p™'Z indicates the function
which takes [k], an element of Z/p"Z, to [k (mod p*~1)]mm Z/p"~'Z Z,1s the inverse
limit of this sequence Later, this will lead to a definition of a measure on the p-adic
1ntegers

Any p-adic number § can be umquely written as § = p*a, where « 1s a p-adic
umt, that 1s, a p-adic integer relatively prime to p |a|, =1, so ||, = p~* Also, 8

can be written umquely as
oo
/3 = Z bzpz
=k

where each b, 15 1n the set {0,1, p—1}, and by 1s not zero If §1s a p-adic integer,
then k£ > 0, and (3 can be written as > 2, b,p* where by can now be zero Under the
mnverse limit model, this 8 gets mapped to "=} b,p* 1n Z/p"Z

A p-adic number 8 = p*a 1s a square 1if and only if « 15 a square and k 1s
even Since p1s odd, Hensel’s Lemma (See [7, p 16]) shows that a unit o 1s a square

if and only if & 1s a square modulo p

2.2 P-adic Norms and Linear Functions

Let £ = (21, ,zn) € Q) Define a norm |7| = maxi<,<n |7/ This norm,

1n fact, satisfies the strong triangle inequality




lx'*‘?ﬂ = 112%}; |$z+yz|p

< @%(max{lmzlpa lyzlp})
= ma,x(@aé); EAM joax |%:1)
= max(|Z}, |§])

Note that |Z| 1s always of the form p” for some integer n In particular, statements
like |Z|Z make sense, since the value of the norm 1s rational

Let A be a linear function from Qf to Q¢ Define the norm [|A]| to be the
supremum of all numbers |AZ| where Z ranges over all vectors in Q) with |7] < 1,
or Z, Note that |AZ| < ||A|| || for all z, 1f there 15 some Z which 15 an exception,
the umt vector § = |Z|Z would give a vector of norm 1 with || Aj| < | A7)

This norm on the set of linear functions from @ to Q, denoted L(Q}, QF'),
gives a topology, so that terms such as “open set” and “continuous” make sense on
this set Denote the set of linear functions from @ to 1itself as L(Q})

Lemma: If A € L(Q},Q), then || Al < oo

Proof: Let {€;, ,é€,} be the standard basis for Q; and suppose Z = ¥ ¢,€,

with |Z| < 1, so that |¢,|, < 1 for all+ Then
|AZ] = | > Ag| < 3 lalplAg] < 3 |A6| <o

for all £ Thus, ||A|l < ¥ |A4¢| <0 O

Theorem: Let 2 be the set of all invertible linear functions in L(Q}) Then,
if A€ Q, Be L(Q}), and ||B— Al ||[A7!]| <1, then B € @ Also,  1s open 1n
L(Q}), and the map A — A~ 1s continuous on

Proof: Define a so that ||[A™!|| =1/, and let 8 = ||B— A|| Then 8 < «

Let 7 be any vector in QF Then




a|Z| = a| AT Az
< a4 |AZ]
= |AZ]
< |(A - B)i] + | BZ|
< B|Z| + | Bz,
so that (a — 8)|Z| < |BZ| for all £
Since « — § > 0, |BZ] = 0 only if |£] = 0 Thus, B 1s one-to-one, so B 1s

mvertible Since this 1s true for all B with ||B — A|| < a,  1s open

Since B 1s mvertible, B! € QF for all 7, so that
(a—B)IB~'§l < |B(B~'9)| = 7]
for all § Thus, ||B7!|| < (¢ — 8)"! For any two linear transformations C and D,
(DC)z| = |D(CZ)| < ||D|| |Cz| < [|ID]| [|C]] 121,
so that ||DC|| < ||D]| ||C|| Also, for any two linear transformations C and D,
D' - C™' = (D™)(C - D)(C™),

so that for A and B,

1B - 471 < 1B 1A - Bl 1A < ——2—

ala—f)

As B— A, 8 — 0, so that ||B™! — A7!|| = 0 Thus, the inverse map 1s continuous

O

2.3 P-adic Differentiation

One can, as usual, define the derivative of a p-adic function if f Q, - Q,

and T € Q,, then




o) =y LETN 1)
if the limit exists Thus, f(z + k) — f(z) = f'(z)h+ r(h), where the remainder r(h)
1s ‘small’, that 1s, limy_,or(h)/h =0

Similarly, a multi-variable denivative can be defined 1if f Q@ — Q@ and

% € QF, and there exists a linear transformation A from Q7 to Q' such that

220710 =48

R—=o0 Ih

=0,

then f 1s differentiable at Z, and Df(Z) =

If a function f 1s differentiable at a pont £, the above limit can be rewritten
as f(Z + k) — f(&) = Df(@)k + 7(h), where im;_,|7(h)|/|h| = 0 Note here that

-

Df(Z) 1s a hnear transformation, so that Df f(£)k means the linear tranformation
D q(f) applied to the vector h, and not multiplication

Theorem A: Let E be open and non-empty in @, and let f E — Q7 be
differentiable 1n E such that there 1s a real number M with ||Df(Z)|| < M for all

Z € E Then there 1s an open subset U of E such that

foralléeU,beU

Proof: By differentiability, f(Z + k) — f(&) = Df(@)h + 7(k), with
I7(R)|/|h] = 0 as h — 0 Thus, there exists some § > 0 such that |k| < § -
ples |7(R)] < M|h| Choose some pomt @ € E and let U be the mtersection of
E with the open ball around @ with radius 6 Then, for any points &',5 e U,

76 — &) < M|b—a

Let £ = @ and h = b— @, so that the above becomes f(b) — f(a@) = Df(a@)(b—

-
-,

@) + 7(b — @) Take norms of both sides of the inequality to get



(Note 1n the real numbers, [10] uses concavity of E to get this result This theorem
1s the only difference between the p-adic proof of the impheit function theorem and
the real version )

The function f 1s said to be continuously differentiable 1n an open set E 1if D f
1s a continuous mapping of E mnto L(Q}, Q') More specifically, f 1s continuously
differentiable if for every £ € F and € > 0 there exists a § > 0 such that if y € F
and |Z — 7] < 6, then |Df(Z) — D (@)]| < e

The contraction principle will also be used 1n the proof of the imphcit function
theorem The contraction principle says that if X 1s a complete metric space, and
if ¢ 15 a contraction of X mnto X, then there exists one and only one z € X such
that ¢(z) = = (A contraction 1s a map ¢ from X to X such that, for some ¢ < 1,
d(é(z), ¢(y)) < cd(z,y) for all z,y € X ) This theorem 1s proven as Theorem 9 23
1n [10], and since 1t apphes to all (topologically) complete metric spaces, 1t applies

1n particular to the p-adic numbers

2.4 The P-adic Inverse Function Theorem

Theorem: The Inverse Function Theorem Suppose f 1s continuously dif-

-

ferentiable from an open set E C Q} to Qp, Df (@) 1s 1nvertible for some @ € F, and

-

b= f(@) Then there exist open sets U and V 1 Q; such that @ € U, beV, fis
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-

one-to-one on U, and f(U) =V Furthermore, if § 1s the inverse of f, defined n V

-

by §(f(Z)) = Z, then § 1s continuously differentiable

Proof: Let A = Df(@), and choose ¢ such that 2¢|A™}|| = 1 Since Df 1s
continuous at @, there 1s an open ball D C E, with center @, such that || D F@-A| <
cfor £ € D This means that for all Z € D, ||Df(Z) — 4] |47 <c 2+ =1<1

Thus, by a previous theorem (in Section 2 1), Df(Z) 1s invertible for all T € D

For every i € (O, associate a function 59 defined on 7 € E by

- -

¢y(T) =2+ AN (7 - f(2))

Note that f| (Z) = ¢ 1f and only 1f d-;y(f) =7 Taking the denvative of d-;y gives

- -

D¢,(&) =1 - A™'Df(z) = A™'(A - Df(2))
So,

-, _ o 1 1
1Dy (B)|| < |A™Y IIA = DF@)| < e =5
2c 2

for all £ € B Hence,

-

|6y(Z1) — @y(Z2)| <

-

|Z) — T2

N =

for all Z;, > 1n some open subset U of D, by Theorem A

If £ and & are fixed points of d-;y in U, then

-

I, - - 1, .
|Z — Zo| = [¢y(Z) — dy(Z0)| < §|33 — Zo|,

which 1mplies that |Z — Zy| = 0, or £ = Ty Thus, for any ¥, there 1s at most one
Z € U such that f| (Z) =¢ Thus, f 15 one-to-one mm U

Define V = f(U), and choose 7o € V' Then ¢ = f(fo) for some T, € U by
definmition of V' Let B be an open ball with center at T, and radius r > 0, so small

that the ball’s closure lies in U
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Fix ¢ such that |§ — go| < ¢r Then, using the definition of qu,
16,(E0) = ol = |47 (T = )| < |47 ler = 5
If £ 1s 1n the closure of B, then
18,(@) — Tl < 18,(8) — 3@ +18,(E0) ~ Tl < 5lE— ol + 5 <7

Thus, qu(f) € B, and $y 15 a contraction of the closure of B to 1itself

Since the closure of B 1s closed, 1t 1s complete The contraction principle
says that qu has a fixed pomnt Z 1n the closure of B For this Z, f () = ¢ Thus,
7 € V In particular, every vector in the open ball centered at 3, with radius cr 1s

in V' Hence, V 1s open

-

Recall that § V — U 1s the inverse of f on U Choose 7 € V, § + keV

- — -

Then there exists £ € U, £+ k € U such that § = f(Z), 7+ k = f(£+ R) With qu

defined as above,

so that |A™'k| > 1|R], and

bl < 2|47 [ = ¢7[k]

-

Since Z € D, Df(Z) has an inverse Call this inverse T

- -

3@+ k) — 3@ — Tk = h— Tk = ~T[f(Z + k) — f(&) - Df(Z)A],

and || > c|k|, which gives
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GG +F) - 3@) - TR _ T |f(Z+F) - f(2) - DF@AI
z e A

k| < ¢7!|k| also shows that as k — O, h — 0 as well Thus, as k — 0, the

night hand side of the inequality goes to 0, so that the left hand side does as well
Therefore, DG(i) = T, so g 1s differentiable for all ¥ € V' Since T 1s the inverse
of Df() = Df(3(®)), D3@) = {Df(§@)}~* Smnce g, Df, and mverting lin-
ear transformations are all continuous functions, Dg(%) 1s continuous, so that g 1s

continuously differentiable O

2.5 The P-adic Implicit Function Theorem

Let £ = (1, ,%2) € @ and§=(y1, ,ym) € QF Denote the vector
(Z1, %Y1, HYm) € Q7™ as (Z,7) Let A € L(Q)*™,Q}) A can be spht

1nto two linear transformations A; and A, as follows
for any k € Q;,E € Q" Then, 4; € L(Q}), 4y € L(Q,Q}), and
A(h, k) = Agh + Ak
The 1mplicit function theorem for linear transformations 1s as follows
Lemma: If A € L(Q*™,Q}), and if A, 15 1nvertible, then there corresponds
to every k € Q' a unique he Q; such that A(h,k) =0 This h can be computed
by b = —(A;)TA K
Proof: Since A(h, k) = A h+ Ak, A(h, k) = 01f and only 1f A,h+ Ak = 0,
or, when A, 1s mvertible, & = —(Ax)‘lAyE O
Theorem: The Implicit Function Theorem Let f be a continuously differ-

entiable map from an open set E C Q*™ to @} such that Fi (@, 5) = 0 for some

@b € E Let A= Df(@,b) and assume that A, 1s mvertible
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-,

Then there exist open sets U C QF*" and W C @, with (@,b) € U and
b € W, such that for every § € W there exists a unique Z such that (Z,7) € U and
fz,9) =0

If this 7 15 defined to be §(#), then g 1s a continuously differentiable map
from W to @2, §(b) = & f(§(§),7) = 0 for all 7 € W, and D§(5) = —(4z) "4,

Proof: Define F by F(Z,%) = (f(Z,%),7) for (Z,7) € E Then F' 1s contin-

uously differentiable, and maps E to Q3*™ Since fla, I-;) =0,

@+ R, b+ k) = A(h, k) + 7(h, k),

- -

where 7 1s the remainder term 1n the defimition of Df(d,b) Since

- -

F@+h,b+k)— F@,b) = (f(

St
Lyt
N’

+R,b+ k),

31

)+ (7(h, k),0),

Eyl!

= (A(R, k),

RN
~
=
Eay}
N’
oy
N’
—
Lo s

DF\(@,b) 1s the lmear transformation on Q™ that maps (h, k) to (
this 1mage vector 1s 0, then k=0 and A(I-{, 1-5) =0, or Azh = A(l-i, 0)=0
1s 1nvertible, this implies that h =0 Thus, the linear transformation Dﬁ(d’, ) 1S
one-to-one, so 1s 1nvertible

Therefore, the inverse function theorem apples to F That means there are
open sets U and V 1 Q5*™ with (g, 5) eU, (O, b) € V, such that F 15 a one-to-one
mapping of U onto V

Let W be the set of all 7 € QF such that (0,7) € V Note that be W Since
V 1s open, W 1s open If ¥ € W, then 0,7) = f(i",gj) for some (Z,%) € U By
definition of F, f(i",if) = 0 for this £ Suppose that, with the same ¥, (&',§) € U

and f(Z,7) =0 Then

ﬁ(f,ﬂ) = (f(f',?f),?f) = (67?7) = (f(f,?f),ﬂ) =F(f,@



14

Since F 1s one-to-one 1 U, # = Z, so this Z 1s umque
Define §(§), for 7 € W, so that (§(#),7) € U and f(§(7),7) = 0 Then
F@G@),7) = (0,7) for all § Let G be the mapping of V onto U which 1nverts F G

1s continuously differentiable by the inverse function theorem, and

(§@),9 = G0,9)

Thus, § 1s continuously differentiable

Let 3(7) = G(0,%) = (§@),7) Then DSk = (DF({)k, k) for all F € W,

-

ke Q F(3@)) = f(§(#),7) = 0 for F € W by defimtion of § The chain rule then
gives

-

Df(®(#)D3(#H) =0

(This 0 1s the zero Lnear transformation) When § = b, (%) = (&b) and

- -

Df(®()) = A Thus, AD®() =0 So,

-,

A DF(B)E + Ak = A(DG(b)k, k) = ADE(b)k = 0

- -

for all k € Q¢ Therefore, A,D§(b) + A, = 0, or Dg(6) = —(4.)"*4, O



15

3. Roots of Random Polynomials

A random polynomial of degree d 1s a polynomial of the form
Agr® + Ag_12% P+ 4 A,2® + Ajxz + Ao, where each A, 1s a random variable over
some field I For this thesis, each A, will be independent and usually 1dentically
distributed over F In addition, the probability that A, 1s £ will be zero for all =
mm F (Later in the thesis, fimte fields will be considered, but not in conjunction
with random polynomials ) With this condition, A, 1s almost never zero, so that
the random polynomal 1s almost always of degree d Denote the probability of this
degree d random polynomial having k distinct roots in F as Pf This thesis will
concentrate on F = R or F = Q,, with their appropriate norms, but much of this
can be extended to other fields

In order to prove that this polynomial will almost never have multiple roots,
other work must be done first

Lemma: Let F be either R or Q, Let p be a measure on F such that the
measure of a ball of radius € goes to zero as e goes to zero, and compact sets have
finite measure Let f F" — F be continuous The graph G = {(Z, f(£)) Z € F*}
has measure zero

Proof: For every positive integer m, let K,,, be the closed ball of radius m
centered at 0 Each K,, 1s compact, and for all m, K,, C K41 and hm K,,, =
F* Choose some positive integer m Since f 1s continuous, f restricted to K,, 1s
uniformly continuous So, choose an € > 0 Then there exists § > 0 such that, for
all £, € F*, |Z — 4] < 0 imples |f(Z) — f(§)| < € There 1s a fimte collection of
open balls B;, ,Bj of radius at most § which covers all of K,,, The graph of f
on K,, 1s the umon of the graphs of f on all B, On each B,, f(B,) 1s contained 1n

an open ball of radius ¢ So, the measure of the graph of f on the umon of B, 1s at
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most the measure of K, times the max of the measures of B,, which goes to zero
as € goes to zero Since K, has fimite measure, and ¢ was chosen arbitranly, this
means that the measure of the graph of f on K,, 1s zero Since lim K,,, = F, the
measure of the graph on all of F 1s zero [

Theorem: Let f be a polynomial from F* to F, with F and a measure on F
defined as 1n the lemma The set Z(f) = {Z € F*|f(Z) = 0} has measure zero

Proof: Induct on n 1if n =1, then f 1s a single vanable polynomial Then
Z(f) 1s a fimite set, and finite sets have measure zero Otherwise, assume the theorem
15 true for polynomials with less than n variables

Single out one of the variables, and look at f as a function from F x F*~! to
F Denote that variable as y, and the derivative of the function f with respect to

that vanable as f, Z(f) = {(y,Z)|f(y,Z) =0} Let
Z\(f) ={(y, D) f (v, %) = 0, £, (y,Z) # 0}

Let Z2(f) = Z(f)\Z1(f) Let d be the degree of y 1n the polynomial f, so that
fly, D) = fa@y*+ + H(E@)y+ fo(T) Note that Z>(f) € Z(f,) By the Impheit
Function Theorem, for every pownt 1n Z;( f) there are open sets U, W, and a function
g such that f(y,Z) = 0 and (y,Z) € U 1f and only if g(Z) =y Z1(f) 1s the union
of the graphs of all such g 1n all such U The collection of all U has a countable
subcover, so that the set Z),(f) 1s composed of a countable collection of graphs of
functions Each graph has measure zero, so the union must have measure zero, so
Z1(f) has measure zero

Induct on d if d = 1, then f = fi(@)y + fo() and f, = fi(¥) f, has
less than n vanables, so by the inductive hypothesis, Z(f,) has measure zero, so
that Z,(f), a subset of Z(f,), has measure zero Since both Z,(f) and Z(f) have

measure zero, so does Z(f)
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Assume that the theorem 1s true for polynomials with the degree of y less
than d The derivative f, has a y-degree of less than d, so Z(f,) has measure zero
Again, since Zo(f) 1s a subset of Z(f,), Z»(f) also has measure zero Since both
Z1(f) and Z5(f) have measure zero, Z(f) has measure zero

Therefore, by induction, Z(f) has measure zero [

Theorem: Let F be R or Q, Let Ag,4;, ,A; be independent random
variables on the field F such that for all z, the probabihity that A, 1s 1n a ball
of radius € approaches zero as € approaches zero Then the random polynomial
Agzt + Ag12® '+ + Ax2® + Ayz + Ay almost always has distinct roots

Proof: (The first paragraph of this proof 1s adapted from parts of [3, §14 6] )

The discriminant D of a polynomial with roots oy, @2, , @4 1n an algebraic closure
of F1s
D= H (o aJ)2
1<i<y<d

which 1s zero 1if and only if two of the roots are the same The coefficients of the
polynomial a(z—a; )(z—0a2)  (z—ay) are determined by the elementary symmetric

functions of the roots, that 1s, 1f

d
S = Za,
1=1
Sg = Z a, ¢y

1<1<3<d

d
Sq = H Qy,
1=1

then a(z — o) (z — a2)  (z — ag) = a(z® — 51797 + 522972+ 4+ (—1)%s4) The
discriminant D can be wnitten as a polynomial 1n s,, that 1s, a polynomial 1n the

coefficients of the original polynomial
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The onginal polynomial has multiple roots 1f and only if the discriminant 1s
zero The set of zeroes of a polynomial has measure zero, so the probability that
the discriminant 1s zero 1s zero, so that the probability that the original polynomial
has multiple roots 1s zero
The probability P¥ that a random degree d polynomal over the field F has
k distinct roots 1n F will be found for some specific fields and random distributions
For this part of the thesis, quadratic polynomials are considered, so d = 2
Three independent random vanables A, B, and C, all of them almost never
zero, are used to create the random polynomal r(z) = Az? + Bz + C = A(z® +
B/Az + C/A) Since this polynomial will almost never have a multiple root, only
P2 need be found, then P{ =1 — P? The polynomial has two distinct roots 1f and
only 1if the discriminant D 1s a square in F [3, pp 524-526] Call the two roots oy

and as

D = (oq — ay)?
= af — 2oy + ag
= (a; + a3)? — 40q07
= (81)% — 45
= (=B/A)* —4(C/A)

= (B2 — 4AC)/A?

This 1s a square 1n F 1if and only 1f B2 — 44C 1s a square m F So, Az> + Bz + C

has two distinct roots if and only 1f B2 — 4AC has a (non-zero) square root in F
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3.1 Real Numbers

In the real numbers, B2 — 4AC has a square root 1f and only if B2 — 4AC 1s
positive So, P2 = P(B?2 —4AC > 0) = P(B?—-4AC > 0) This probabihty will be

found for two probability distributions

3 1 1 Unaform Distribution

Let A, B, and C be independent random variables, umformly distnibuted
over the interval [—1,1], the umt disc in the real numbers This distribution 1s
proportional to the standard Lebesgue measure on the reals, so the probabihity

P(B? — 4AC > 0) can be found by integration

fBz —4AC>0 df
".(/4,3,6')6[_1,1]:3 df

P(B?—4AC > 0) =

Let B range over the whole interval [-1,1] If the determinant 1s zero, then
C = B?/4A If A 1s positive, and C < B2?/4A, then the discriminant 1s positive If
A 15 negative, and C > B2/4A, then the disciminant 1s also positive So, A can
range over any value mn [-1,1], and C ranges over [-1,min{1, B2/4A}] if A 1s positive,
and [max{B?/4A,-1},1] if A 1s negative If |[A| < B?/4, then use either 1 or -1 as
the bound for C Otherwise, use B%/4A

Symmetry can simphfy this region B2 = (—B)?, so by doubling the result, B
need only range over [0,1] Also, the range [-1,min{1, B2/4A}] has the same length
as [max{B?%/4A,-1},1] Thus, by doubhng the result again, A also need only range

over [0,1] This gives
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P2 — f32—4Aczo dz
f(A B,C)e[-1,1]3 dz
_ 46l B4 dCdAdB + 4 fo he 5/ dCdAdB

1 B*/4
- 2 dAdB // Z_11dAdB
2(// B+ B/44A+ )
1 R2 2
=1y BdB+/A BhAl
2 0 4 32/4
1/1 B? B?In(B?/4)
il et ] —p =2 A 77
2(6+/ (4+ 4 )dB
___l l - _ 2__ 2 2 )
_2(6 4/04 B* - B*In (B*/4)dB
11 170 ., )
_lr 1t g B
2<6 /04 B’ - B 2In(B/2)d
1
=%<% 1/4—32—32 2(lnB—ln2)dB)
1/1 1 s o )
_1m 1 —1)B? — 2B%In BdB
2<6 : 4+(21n2 1) B? — 2B%In Bd
1(1 1 B* BB B[
=24+ (4B+m2-1)2T 2 -z
2(6+4(4 +(2in2 )3 ( 3 9)>0)
1/1 1 2In2 — 1 1
Y N L LAl 1 (
(51 (1 25— -20-9))
1/1 1
—i(z4= 2-3+2
2<6+36(36+61n 3+ ))
1

= = (6+ (35 +61n2))

_ 41 +6In2

P~ 272
72 0627

3 1 2 Gausswan Distribution

An analysis sitmilar to the above for the Gaussian distribution on the real
numbers 15 possible, but previous work done with Gaussian distributions makes 1t
unnecessary The Kac formula 1s a well-known formula for finding F, the expected

number of roots of a real random polynomial with Gaussian coefficients See [4] for
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one way of finding the Kac formula For quadratics, E = 2 P2+1 P}+0 P) =2 P}
since these random polynomals almost never have a double root So, P? = E/2
and P =1 — P?

The Kac formula gives us an integral for F for a degree d polynomal

Ezé/old( 1 @+

1—12)2 - (1 — t2d+2)2

which evaluates numernically, for d = 2, to £ = 1 2970 Thus, the probability that
a random quadratic polynomial with Gaussian coefficients has two disinct roots 1s

06485

3.2 P-adic Random Variables

On every locally compact group, there 1s a unique (up to a constant) measure
which 1s translation-invanant, or ‘umform’, called the Haar measure [5, §57-60]
As 1n the case with the real numbers, this uniform measure cannot be used as a
probability measure on all of @,, so a suitable subset will be chosen The subset
used here 1s the umt disk 1n Q, the p-adic integers

There 1s an alternate way of looking at this probability measure Every p-adic
integer can be written 1n 1ts canonical sum form

oo
> a.p”

n=0
where a, 1s 1n the set {0,1,2, p—1} Now, create a random vanable by let-
ting each a, be an independent random variable umformly distributed over the set
{0,1,2, p-—1} This random varnable 1s translation-invariant, as seen below, and
the total measure of Z, 1s 1, so this must be the probability Haar measure on Z,
Lemma: For all non-negative integers n, let A, be an independent random

variable uniformly distributed over the set {0,1, ,p—1} Define a random variable
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A over the p-adic integers as
0
A= Ayt
k=0

The random vaniable A 1s umformly distributed on the p-adic integers, that 1s, 1t
15 translation-invanant (P(A € E) = P(A € n + FE) for Borel sets £ and p-adic
integers n) and every open set has positive probability This determines a Haar
measure on the p-adic integers (u(E) = P(A € E))

Proof: A basic open set in the p-adic integers looks like a + p"Z,, where
Z, 1s the set of p-adic integers, n 1s a non-negative (rational) integer, and a 1s
some p-adic mteger The elements A = 332, Axp® will be 1n this set if and only
if A = a (mod p?) Wnte a = Y2 ,axp* Then A 1s 1 a + p"Z, 1of and only if
T2 Ap* = TR0 axp® (mod p?), or 23 AxpF = Trco arp®, or Ap = ax for all
ke {0,1, n—-1} P(A; = ax) = 1/p for all k, so P(A € a+p"Z,) = 1/p"
Thus, every basic open set has positive probability, so all open sets have positive
probability Also, the probability of the basic open set a+ p”Z, 1s independent of a,
so the probability 1s translation-invarnant for open sets, and thus for all Borel sets
O

This umform measure on Z, 1s also the limmt of the umform probabihity
measures on Z/p"Z, which can be seen as follows

Proposition: Let S be a measurable set 1n the p-adic integers, and let the
set S, be the 1image of S 1n Z/p"Z under the functions defined by the inverse limit,
that 15, if s = Y%, 5:p" 15 1n S, then Y7y skp* 1s 1 S, Let p be the umform
probability measure on the p-adic integers, and let u, be the umform probability
measure on Z/p"Z Then, u(S) = im0 pn(Sn)

Proof: Let S be a basic open set 1n Z, Then S = a + p*Z, for some p-adic

nteger a and some non-negative integer k p(a+p*Z,) = p~* If n < k, then the set
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S, 15 just a single element a € Z/p"Z out of a possible p elements, s0 i, (S,) = p™"

If n > k, then
S» = a (mod p*) + p*(Z/p"Z),

which has p™~* elements, so that p,(S,) = p"*/p™ = p~* Therefore, for basic mea-
surable sets, £(S) = limp—00 #n(Sz) Since 1t holds for basic sets, 1t must hold for
all measurable sets [

This random variable has some properties which may seem surprising from
the pont of view of real random variables These properties, however, are based on
properties of the uniform random variable on Z/nZ

Lemma: Let X be a umiform random vanable on Z/nZ, Y be any random
vanable on Z/nZ, and Z be any random varnable on the umts of Z/nZ, with X, Y,
and Z mndependent Then P(Y +ZX =k)=P(X =k) forall k n Z/nZ

Proof:

P(Y +ZX =k) =7§P(Y=])P(ZX=1€—J)
7=0

=2P(Y:])2P(Z=z)P(X=k;])
=§P(Y=J>§P<Z=z)-f;
=%2P(Y=J)2P(Z=Z) |

- -
— P(X = k)

Note that 1n the above equations, if 2 1s not a umt, then P(Z =1) =0 Looking at

this lemma on Z/p"Z, and letting n go to wnfinity, gives the following corollary
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Corollary: Let X be a umiform random variable on Z,, ¥ be any random
variable on Z,, and Z be any random variable on the umits of Z, with X, Y, and Z
independent Then P(Y + ZX € S) = P(X € S) for all measurable sets S 1n Z,
The uniform random variable on the p-adic integers can also be split into two
independent pieces, one 1mvolving the umits, and the other 1nvolving the power of p
which exactly divides the p-adic integer
Lemma: Let A be a random variable umiformly distributed over the p-adic
integer Let A be a random variable umformly distributed over the p-adic umits,

that 1s,
N 00
A= Z Akpka
k=0

where Ag 1s umformly distributed over the set {1,2, ,p— 1} and for all positive
ntegers k, Ay 1s umformly distributed over the set {0,1, ,p—1} Let J be a
random variable, independent from A, distributed over the non-negative (rational)

integers such that

Then A = p’ A, that 1s, P(A € E) = P(p’ A € E)

Proof: Without loss of generality, the lemma need only be proven for basic
open sets So, 1f P(pin € a+p'Z,) = P(A € a+p"Z,) = 1/p", then the lemma 15
true a 1s a p-adic 1nteger, so a = p™a for some non-negative integer m and some

p-adic integer umit o If m > n, then p’Aepra+ p"Z,f and only if J > n
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P(J>n)=1-P(J <n)
n-1
p—1 _
_—.l—z-——pj
=0 P
__171.-1
:1—p———zp—‘7
3=0
p—11—-p™
=1-=—" —
p 1-p
_p—n
=1—-(p-1
(p=1)——
=1-(1-p")
:p—n

Let m < n Then p’A € p™a + p"Z, 1f and only f J = m and 4 = «
(mod p”™) Recall that P(J = m) = [(p — 1)/p] - p™ Let a = Tz, axp”
Then A = a (mod p*~™) if and only if 4; = o for all k € {0,1, ,n—-m—1}
PAp=ag)=1/(p—1) P(Ar=ax)=1/pforallk e {1,2, ,n—m—1} So,

P(A=a (mod p»™))=1/(p—1) (1/p)"™" Thus,

. p—1 _ 1 ) -
PpJAEpma+p"Z — pm ~\n—m =pn
( el e i

So, 1n every case, P(pJfl € a+p"Z,) =1/p" = P(A € a+p"Z,) Therefore,
A=p’A O

The previous properties can be used to find probabihities for umformly-
distributed p-adic random variables, and the related quadratic random polynomals
Recall that p 1s an odd prime

Lemma: Let A be a uniformly distributed random variable over the p-adic
integers Then

D
2(p +1)

P(A 1s a square) =

Proof: A 1s a square 1f and only if A = p’ A, where J and A are distributed

as 1n the last lemma 1n the previous section, and J 1s even and A 1s a unit square
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Since A 1s uniformly distributed over the umts 1n Z,, and Asa square 1f and only
if 1t 15 a square modulo p (due to Hensel’s Lemma), and half of the units modulo p

are square, P(A 1s a square) = 1/2

So,

P(A 1s a square) = 571

Proposition: Let A be any random varnable over the units 1n Z,, B be any
random variable over Z,, and C be umformly distributed over Z, with A, B,and C

independent Then

P(Az® + Bz + C has two distinct roots) = P (C 15 a square) = 2(1711 1)

Proof: Az?+ Bz +C has two distinct roots 1f and only 1f B2 —4AC 1s a non-
zero square A 1s a unit 1n Z,, and, since p 1s odd, so 1s -4 Thus, B? — 4AC has the
same distribution as C In particular, the probability that B? — 4AC 1s a non-zero
square 1s the same as the probabihity that C 1s a non-zero square P(C = 0) =0,

so P(C 1s a non-zero square) = p/[2(p+1)] O
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Corollary: Let B and C be independent, uniformly distributed random
variables over the p-adic integers Then, the probability that the monic polynomal
12 4+ Bz + C has two distinct roots 1s p/[2(p + 1)]

Proof: The random vanable A with P(A = 1) = 11s a random vanable over
the units 1n the p-adic integers, so the above proposition apphes O

The same technmique, however, cannot be applied to random polynomals
where the first coeflicient 1s not a umt

Theorem: Let A, B, and C be independent, uniformly distributed random
variables over the p-adic integers Then, the probability that B?> — 4AC 1s a non-
zero p-adic square 1s 1/2 Therefore, the probability that the quadratic polynomial
Az? + Bz + C has two distinct roots 1s also 1/2

Proof: By the second lemma, the three independent random varnables A, B,
and C can be rewntten as six independent random variables A B C,J K, and L,
where A = p’ A, B = pXB, and C = p*C So, the probability that B2 — 4AC 15 a
square 1s the same as the probability that p?% B2 — 4p’+LAC 1s a square Split this
mnto three cases, depending on J, K, and L ’
Case 1: 2K < J+ L

If 2K < J + L, then p?kKB? — 4p’*LAC = p?¥ (B? — 4p’*L-2KAC) This
will be a p-adic square 1f and only 1f 2K 1s even, and B2 — 4p’+L-2K AC 15 a square
modulo p Since B? — 4p’+L2K AC = B? (mod p), B? — 4p’tL2K AC 1s always a
square modulo p Clearly, 2K 1s even
Case 2: 2K =J+ L

If 2K = J + L, then p?K B2 — 4p’+LAC = p?X(B? — 4AC) This will be a
p-adic square if and only if 2K 15 even and B2 —4AC 1s a p-adic square (B? — 4AC

may not be a p-adic umit ) 2K 1s always even Let

p1 = P(B2 — 4AC 1s a non-zero square)
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Case 3: 2K > J+L

If 2K > J + L, then p?X B2 — 4p? L AC = p/+L(p?K~T-LB2 — 4AC) This
will be a p-adic square 1f and only if J + L 1s even and p?%X~/ -LB2_ 4AC 1s a square
modulo p The latter 1s true if and only 1if —AC 1s a square modulo p

Since A and C are umts, their product can never be 0 modulo p Also,
half of the numbers in {1, p — 1} are squares modulo p —A = Ay (mod p) and
C=0C, (mod p), with Ay and Cy umformly distributed over the above set There
are (p — 1)2 possible choices for Ay and Cy (together) Let s be one of the (p —1)/2
squares modulo p If 4;Cy = s, then Cy = s/A4y So, for any particular choice of
Ay, there are (p — 1)/2 choices for Cy (namely, s/Ao) which make AoCy equal to a
square modulo p Thus, out of the (p— 1)2 choices for Ay and Cy, (p—1)2/2 of them
result 1 the product being a square, so P(—AC 1s a square) = 1/2

Let q; be the probability that 2K < J + L, g be the probability that
2K = J + L, and g3 be the probability that 2K > J+ L and J + L 1s even Then,
P(B®-4ACsasquare)=q l+¢ p1+gs 1/2

IfK=0J=0,and L =0, then 2K = J + L If K =0 and at least one of
J and L 1s positive, then 2K < J+L Let K >0 If J >2K,orif J=2K and L
1s positive, then 2K < J+L If J=2K and L =0, then 2K = J+L Let J <2K
2K=J+LfL=2K—-J IfL<2K—-J,then2K >J+L If L>2K —J, then
2K<J+1L

The following table separates the possible values of J, K, and L 1nto nine

categories In each category, either 2K < J+L,2K=J+L,or 2K > J+ L



K=0 J=0 L=0 R,
L=1 oo R,

J=1 o0 L=0 oo R,

K=1 oJ=0 2K-1|L=0 2K-J-1|R,
L=2K-J Rs

L=2K-J+1 oo|Rs

J =2K L=0 Ry

L=1 oo Rg

J=2K+1 oo|L=0 o0 Ryg

g2=P2K=J+L)=Ri+Rs+R;

@ =PR2K<J+L)=Ry+R3+Rs+Rg+Ro=1—-gq2— Ry
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g3 uses the values for J, K, and L in Ry, but further requires that J + L be even

Finding R;, Rs, and R; will determine ¢ Then, finding R, will determine ¢,

Finding g; will be similar to finding Ry

The following sums give the above values

Ry=P(K=0) P(J=0) P(L=0)
Ry = ,izij[z —%k—P(K=k) P(J=3) P(L=1)

R, = ,ib; oK)l = 0)P(K =k) P(J=3) P(L=1)

g z’g 2k§_l P(K=k) P(J=j) P(L=I)

S S PK=F) PU=3) P(L=1) L even

k=1 3=0 =0

R,

gs
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where 1,.; even 15 1 1if 3 + 115 even, and 01f 7 + [ 1s odd

The geometric series will be used often 1n the following computations, as will

a similar series (here, a < 1)

In particular, for a = p™",
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=0)-P(J=0) P(L=0)
o P—1

P(

R,

pO

p—1

o P—1

5p—1

=k) P(J=3) P(L=1)
-1 ., p-—-1

— D

= 2k — 5]

1 3=0
oo 2k—1
[l
J

k
k

Ry=> Y [l=2—-JP(K

-~
-
_ ! 2
& —
o

TR TR
— — <} L]
8T 8T =
= =] = %
L] —t ) pn_l
! _ _PP ],
& & S -




Rr= 3 =2kl =0)P(K =) P(J=3) P(L=1)

P2 +p+1)

The probability g, can now be computed

(p—1)° p—1 (p—1)?
p® (P*+p+1)?% p(P>+p+1)
(-1 +p+ 1) +2(0 -1+ (p— 1) +p+1)
N PP +p+1)°
(-1 -12+200-1)p°+ (p=1)(p° = 1)
B p3(p® +p + 1)2
(P-1)(P°—2p° +1+2p° +p° - 1)
N p3(p? +p+1)?
_ (-1 +7%
(PP +p+1)?
_-1)E*+1)
T (PP+p+1)2

gz =
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7) P(L=1)

k) P(J =

0

l

0o 2k=12k—3-1
Ry=3 > > Pl
k=1 3=0

TN ]
e e o
q q _
Q, N
L
| o 52
7 g
TLAS 'a| =& %_o
-~
N AR | Q,
s al=
Q SN——— -
- |
PN ~—
F a3 47
7 < Q|
—_ | & — &
| & | -
4 e 8
— — _
o o N
& & ||
& & &

fO3
VammN
T
&
-5 £
™ - o
s ! —
= AN
_2pMw .m._u./
(DL\ nucl 12
) PN Y &
_pp ~ _
— ~ —
IR N )
i ™~ |
Q, | + 4+
_ T RS g
— — o
N
e R
— | _ Y oy
all = _ +
I — —_ ||
8 I — Q —
3 kz.u_h(2pnﬂ;+ ?HT
= Iy o 3N
LI Flo+
& & &) & R
~— — ~—r

(p* +p+1)?

The probability ¢; can now be computed



34

q=1—q— R4
p-1)(E°+1) P +2p*+1
C @+p+1)? P +p+1)?
P +p+ 1) = (-1 +1) - (P +2p° +1)
- (P> +p+1)?
pPr+208+3pP+2p+1-(p* —pP+p—1)— (p® + 2p* + 1)
(p2+p+1)?

2 +pP+p+1
(p* +p+1)?

oo 2k—12k—3—1
93 = ZZ Z P(K=k) P(J=y) P(L=1) 1,41 even
k=1 3=0 =0
2k—12k—3-1

=§: > PK=k) P(J=)) P(L=1) 1,;even

FSY Y P(K=k PU=j3) PL=1) 1,044

az = f: > PK=k) P(J=3) P(L=1) 1,;even

and

b=3Y 3 P(K=k P(J=3) PL=1) 1,44

=3 S P(K=k) P(J=j) P(L=1) 1, even

Since 7 must be even, 1t runs from 0 to 2k —2 Similarly, / runs from 0 to 2k —jy —2

Let 7 = 27" and [ = 2I' to get
oo k=1k—3'-
=3y Z Z )y P(J=23") P(L=2l)
IC= _.—. =

and then get rid of the primes to solve for a3



oo k—-1k—3-1
az =Y P(K =k) P(J=25) P(L=2l)
k=13=0 =0
oo k—1k-3-1 —1)3
=Z Z(p3)pkp2]p2l
k=15=0 1=0 P
_1 3 o© k—1 _ k—]—l _
___(Pp3 ) ZP"“(ZP 2](2 p 2
k=1 1= =0
B (p—1)3 x k—1 —2]1_p—2(k—1)
P ,;p ];p 1—p2
(p— 1 pP & —k = 2 —2k
= p p—p
P p2—1,§1 ];J
_ (p—1)? ip—k ( -p* _ —2k>
p(p+ 1) k=1 1 _p_2
(p—1)° (°° pF-p¥* = —3k>
p(p+ 1) :‘/;jl 1-p2 :":2
(p_1)2( p2 > —k —3k p3 )
pr-p
p(p+1) p2—1,§‘1( ) (p® —1)2
_ (=1 ( P 1 1 )_ P )
Cpp+ ) \pP-1\p-1 p-1) (p®-1)?
_pe-1) (PP+p+1 1 \ P’
T (p+12\ -1 pP-1) (@+1)@E*+p+1)?
_plp-1)p’+p _ P’
(p+1)2p*—-1 (p+1)(P*+p+1)?
p? p?
T +D)@+p+1) (p+ 1)@ +p+1)
__pP@+p+l) P’
(p+1)@*+p+1)> (@P+1)(pP*+p+1)2
__ pr*+p
(p+1)(p*+p+1)*
(P +p+1)?
oo 2k—12k—3-1
by=Y > P(K=k) P(J=3) P(L=1) 1,044

35
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Since 7 and ! must be odd, ) must be between 1 and 2k — 1, and / must be between
1and 2k —7—2 Let ) =2y’ + 1 and ! = 2l'+1 to find that 5’ 15 between 0 and

k —1, and I’ 1s between 0 and & — 7' — 2 Dropping primes gives

k—1k—3—2

> P(K=k) PJ=29+1) P(L=2l+1)
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D = P(B2 —4AC 1s a non-zero square) Denote the umt p-adic integers by

Z, Let f(A,B,C) = B®>—4AC Then,
m = u({(4,B,C)|A,B,C € Z, and f(A, B,C) 1s a non-zero square}),

or p; = u((Z,)® N f~1(S)), where S 1s the set of non-zero p-adic integer squares
Since S 1s open, and f 1s continuous, and Z, 1s open, p; 1s the measure of an open

set In particular,

P = nll)rgo P(B2 — 4AC 1s a non-zero square modulo ™)

And, since open sets are measurable, the limit has to exist, so

P = nlggo P(B? — 4AC 1s a non-zero square modulo p*"*)

Let A, B, and C be umts 1n Z/p*Z Let S; be the set of unit squares

Z/p*™Z, and let S, be the set of non-unit non-zero squares 1 Z/ "7

po = P(B? — 4AC 15 a square modulo p*")

= Y P(B*-4AC=k)

keS1USy
=S P(B*-4AC =k)+ Y P(B*-4AC =k)
keS k€S>
. B2—k . B?—k
=ZP(C= A>+ZP(C= )
k€S 44 k€S, 4A

Given k, A, and B, there 1s at most one choice for C  Since 44 1s a umt, the
only way there can be no choices for C 1s if B2 — k has a factor of p, since ¢
must be a umt If £ 1s divisible by p, B? — k will not be, and B can be any umt
Suppose k 1s not divisible by p There 1s some j such that k = 3% = (—3)?, or
B?—k=B2-32=(B+))(B-j) pdivides B2 —k if and only if p divides at least
one of B + 7 or B- 7 So, p divides B? — k1f and only if B = +) (mod p)
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An element of Z/p?"Z 1s a unit 1f and only 1f 1t 15 not divisible by p, so there

are p?~! umits m Z/p?"Z, or (p— 1)p*™~! non-umts m Z/p**Z For C = %ﬁ to be

vahd, A can be any of these umts and C can only be one of these umts If k 1s not

a unit, then B can be any umt, but if k 1s a unit, then B # £7 (mod p), so B can
only be one of (p — 3)p?"~! of the umts So, the probability becomes

. B?- . B2_
pz=ZP(C=B Ak>+ZP(C=B4Ak)

k€S, 4A keSS
-y (p-1)p" ' (p-3)p" " 1
ves, (0= 1)p¥~1 (p — 1)p?r=1 (p — 1)p*-!
_ 1 2n—1 _ 1 2n—1 1
+ Z (p )p2n—1 (p )p2n—1 2n—1
(p—1p>t(p-1)p(p—1)p

k€S,
p—3 1
= — + 57
k:‘;l (p—1)2p?n1 k:‘; (p —1)p*-!
p—3 1
=S —————+15 ——
|51 (p — 1)2p?-1 + 152 (p — 1)p2!

where |S,| 1s the cardinality of the set S, For k to be a umt square, 1t must be a
square modulo p Thus, half of the umts are squares, and |S| = (p — 1)p**"!/2 If
k 1s a non-umt square, 1t must be divisible by an even power of p In addition, if
k 1s divisible by p¥, then k = p*a, where a 15 a umt square modulo p>*~% There

are (p — 1)p*»~%-1/2 possibilities for @ So, the number of non-unit squares 1s

n—1

So| =Y o= 1)12)

2n—23~1

=1
1 n—1

% 50




Thus,
p—3 1
=18 —E S |8y ————
p2 = |51 (p — 1)2p?n-1 + 15| (p — 1)p2n-1
_=Dp p=3 P -p 1
2 (-1 2(p+1) (p—1)p>-!
a p— 3 N 1 — p‘Z—‘Zn
2(p-1) 2(*-1)
Therefore,
B p— 3 1 — p‘Z—‘Zn
T T
g P30+ L
nsee  2(p? —1) 2(p*-1) 2(p*-1)p™
Y ek Ak R S SR S
n—00 2(p2 - 1) 2(p2 - 1)p2"
=p___2—2p—2_hm__p2 >
2(p? —1)  n=o02(p? 1) p™
_p-2p-2
2(p* - 1)

Finally,
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P(B*-4AC sasquare)=¢q l14+¢, p1+gs 1/2
2 +p’+p+1
- (P+p+1)?
p-1DE*+1) pP-2p-2
@ +p+1)2  2(p*-1)
L PPl
2(p? +p+1)?
2(p+1)(2p° + p® +p+ 1)
20+ 1)(@P* +p+1)?
P +1)(p* —2p-2)
20+ 1)(P? +p+1)?
P+ +1)
2(p+ 1)(p® +p+ 1)
_4pt+6p°+4p° +4p+2
2+ 1) +p+1)2
p°—2p*—2p°+p* —2p -2
2(p+ 1)(p® +p+ 1)
pt+pd+p+1
20+ 1)(p* +p+ 1)
p° +3pt+5p° +5p2 +3p+ 1

~2(p+1)(* +2p° +3p? + 2p +1)

PP +3pt+5pP+5p" +3p+1

"~ 2(p5 + 3p* +5p° +5p2 +3p+ 1)
1

2
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4. The Measure Witt Ring

The previous section found the probability that a random quadratic form has
two distinct roots for various fields and measures In the p-adic case, that probability
was 1/2, no matter what odd prime p 1s chosen There may be a way to explan
why these probabilities are the same, and perhaps to determine how probabilites
for other fields might compare With all of the fields and measures 1n question, the
key 1s the probability that the quadratic form b* — 4ac 1s a square 1n the field The
Witt ring 1s a mathematical object which tells when, 1n some sense, the theory of
quadratic forms 1s the same over two different fields A version of this, the measure
Witt ring, may help explain when two fields with measures have, 1n some sense, the

same theory of measure and quadratic forms together

4.1 Equivalence of Quadratic Forms

Two quadratic forms q and r over a field F are said to be equivalent if there
1s a linear transformation T such that ¢(Z) = r(TZ) A sumlar defimtion can be
used for measure equivalence
Definition: Let F be a field Let g and 7 be quadratic forms from F* to F, and
let 4 be a measure on F  Call the resulting product measures p, Then g and r
are equivalent with respect to u, or u-equivalent, if ¢(Z) = r(TZ) for some
invertible linear transformation T which preserves p, that 1s, pn(A4) = pn(T71(A))
for all measurable sets A When the measure 1s understood, ¢ and r are called
measure equivalent

This defimtion gives
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provided ¢7*(A) and 7~!(A) are measurable This matches with the definition of
measure equivalence for general functions However, with some measures 1t 1s pos-
sible that p,(g71(A)) = p.(r~1(A)), but there 1s no 1nvertible linear transformation
T such that ¢(Z) = r(TZ) For instance, if ¢ 1s a real two-dimensional hyperbolic
quadratic form (that 1s, ¢ = az? +bzy + cy? and b* — 4ac > 0), and A 1s an 1nterval,
then po(g~1(A)) 15 always 1nfinite, where p 1s Lebesgue measure If ¢ and r are real
two-dimensional hyperbolic quadratic forms whose matrices have different determu-
nants, then any linear transformation T which makes the two equivalent must have
a determinant other than 1 or -1 However, as will be seen later, the only Lebesgue
measure-preserving linear transformations are the ones with determinant 1 or -1

Thus, even though ¢~'(A) and r~!(A4) are always the same (infimite), there 1s no

measure-preserving hnear transformation T such that ¢(Z) = r(T%)

4.2 The Witt Ring

The Witt ring 1s a mathematical object which determines when the theory
of quadratic forms 1s the same for two different fields More precisely, 1f two fields
have 1somorphic Witt rings (with operations symbolized by + and ), then there
1s a function ¢ from the quadratic forms of one field to another, such that, given
quadratic forms ¢, r, and s, then ¢ = r + s implies ¢(q) = ¢(r) + ¢(s) and g =71 s
imphes ¢(q) = 4(r) ¢(s) [6,p 58]
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The measure Witt ring 1s a shght modification of the Witt ring The measure

Witt ring uses measure-preserving linear transformations where the Witt ring any
invertible hinear transformations to define equivalence classes Since all invertible
linear transformations are measure preserving 1if the measure 1s the zero measure,

the canonical Witt ring 1s a special case of the measure Witt rning

4.3 Measure-Preserving Linear Transformations

In the construction of the measure Witt ring, 1t 1s useful to know which
invertible linear transformations are measure preserving Given a measure y on the
field F, the measure on F™ 1s determined by the product measure The 1dentity linear
transformation I 1s always measure preserving, for a measurable set U, I™*(U) = U,
so u(I=1(U)) = p(U) If an invertible hinear transformation T' 1s measure preserving,
then 1ts inverse will also be measure preserving, u((T!)"!(U)) = u(T(U)), and since
T 1s measure preserving, u(T(U)) = w(T~(T(U)) = p(U) Also, since the measure
on F" 1s the product measure, a hnear transformation which switches coordinates
of a vector (for example, T'(z,y,2) = (y,,z)) with respect to the standard basis
1s also measure preserving Note that 1f 4 1s the zero measure, all invertible hnear

transformations are measure-preserving

4 8 1 Real Measures

The relation between Lebesgue measure and 1ntegration leads to a relatively
simple determination of whether or not a hnear transformation 1s measure preserving
for some measures on the real numbers Let p be Lebesgue measure on the real
numbers Suppose that v 1s a real measure such that v(A4) = [, f(z)dp, where f 1s

a continuous function If v 1s a finmite signed measure which 1s absolutely continuous
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with respect to p, then the Radon-Nikodym theorem allows us to find an f with |f]
integrable [1, p 238]

A hnear transformation 1s v-preserving 1if, for all measurable sets A,
v(A) = v(T~1(A4)) (Here, p and v also represent their product measures in R" )
Bquvalently, [ f(£)du = fp-1(0) F(@)dp = [4 f(T-@)|(T)ldp, where J(T7)
1s the Jacobian of the linear transformation 7!, which 1s the determinant of 7!
Let A be the determinant of T Then, T 1s a v-preserving linear transformation if
and only if [, f(Z)dp = 1/|A| [4 f(T7(Z))dp for all measurable A By the Fun-
damental Theorem of Calculus, this requires that f(Z) = 1/|A|f(T71(Z)) for all
vectors £ Therefore, T 1s v-preserving 1f and only if f(Z) = 1/|A|f(T~(Z)) for all

vectors T

4 8 2 Haar Measures

If © 15 a Haar measure, then g 1s translation-invaniant (that 1s,
pu(A) = p(z + A) for all z € F and measurable A) This lets us narrow down
which linear transformations are measure-preserving The following transformation
1s measure preserving for Haar measures

Theorem: Suppose T 1s a transformation from X x Y into 1tself, with X
and Y one-dimensional vector spaces over F, such that T'(z,y) = (z,y + kz), with
k some fixed scalar in F' Let u be a Haar measure on F' Then, T 1s u-preserving

Proof: (This proof 1s based on one given 1 [5, p 258] ) By defimtion of
T, T Y(z,y) = (z,y — kx) Let E be a measurable subset of X x Y For any set
Am X xY, and z € X, define A; to be the set of all y € Y such that (z,y) € A
Let y € (T7Y(E)),, that 1s, (z,y) € (T"*(E)) Then, (z,y + kz) must be n E,

or,y € E, — kx Smmilarly, f y € E, — kxz, then y + kz 1s m E, or (z,y + kz) 15
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i E, so that (z,y + kz — kz) = (z,y) € T"YE), or y € (T"}(E)), Therefore,
(T~HE)): = Bz ~ kx
Then,

(b x p)(T /# 2)dp = /# » — kz)dp = /# z)dp = p(E)

So, T 1s p-preserving [J

Thus, if a matnx (representing a hinear transformation) 1s measure preserv-
g, then we can rearrange rows, and add rows to one another, to find another
measure preserving matrix Similarly, we can multiply any 1nvertible matrix by
measure-preserving matrices to get a diagonal matrix Either both the diagonal

matrix and the original matrix are measure preserving, or neither are

4.4 Construction of the Measure Witt Ring

The following construction 1s adapted from the construction of the Witt ring
n [8]

Let I be a field, and p be a measure on that field Use the product measure
as a measure on F* Each quadratic form f on F maps F” to 1itself for some integer
n The integer n 1s the dimension of the form f, and f 1s called an n-dimensional
form Each quadratic form f can be represented uniquely by a symmetric matrix
My, such that f(Z) = () M; £, where the symbol ¢ represents transposition A
quadratic form f 1s regular‘lf My 1s mvertible Then, two quadratic forms f and g
are equivalent 1if and only if f(£) = g(TZ) for some nvertible linear transformation
T,or, My =T* M, T This1s an equivalence relation on the set of regular quadratic
forms Call this set of equivalence classes M (F, p)

Definition: The orthogonal sum of two quadratic forms ¢ F* — F and

r " 5F1sq®r F* xF* > F, where (g®7)(Z,7) =¢() +r(H) m F
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This operation 1s well-defined, if ¢, (Z) = ¢(T'Z), then
(@ ®7)(E,9) = a1(&) +7(§) = ¢(TD)+7() = (¢@7)(TZ,9) = (¢@r)(T S I)(Z, %))

Also, the orthogonal sum 1s commutative here, (¢ ® 7)(Z, %) = (r ® ¢)(¥, %), and the
linear function which switches coordinates 1s measure preserving
Definition: The tensor product of two quadratic forms ¢ [F* — [F and
r P 5Fisq®r F™ — F, where (¢®7)(Z® %) = q(Z) r(@ m F The
matnx of ¢ ® r will be the Kronecker product of the matrices of ¢ and » This holds
1n equivalence classes also

Under the operations & and ®, M (F, 1) 1s a semi-ring Cancellation holds
m a semi-group if ¢ ® ¢, = ¢ ® g2 1mphes ¢, = ¢ If cancellation does not hold 1n
M(F, 1), then combine equivalence classes so that ¢; 1s equvalent to g2 f gD g1 =
q ® qo for some quadratic form ¢, cancellation then does hold

The following Grothendieck construction generates a group from a cancella-

tion semi-group Define a relation on M(F, ) x M (F, 1) by
(z,9) = (@,y) = z0y =7 @y € M(F)

Smecez®y=z@y, (z,9) ~ (z,y) And if (z,y) = (z',¥), then z @y = 2’ Dy,
orz’ ®y=z®y,or (z,y) = (z,y) If (z,y) = («',y) and (2',y’) =~ (z",y"), then

@y =’ @yand 2’ ®y" =z" &y’ Since the operation & 1s commutative,
:L‘@y"@y,:l‘@y’@y"———:I:,@y@y"=y@m’@y"=y@l‘"@y’

By cancellation, z & " = z” @ y, and the relation 1s transitive Therefore, this
1s an equivalence relation Let Groth(M(F, i) be the set of equivalence classes of
M(F, p) x M(F, u) under this relation Addition and multiphication on M(F, u)

induce addition and multiplication on Groth(M (F, 1)), making this a ring This 1s
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called the Witt-Grothendieck ring, and 1s denoted by W (F, u) Since 260 =0 z,
(z,z) = (0,0), so that (z,0)+ (0,z) = (0,0), or (0,7) = —(z,0) The element (z,0)
1s often denoted z

The hyperbolic quadratic form, H(z,y) = z? —y?, 1s equivalent to the sum of
a quadratic form with matrix [1] and a quadratic form with matrix [—1] If [1]@[-1]
1s made equivalent to 0 by taking the quotient by the 1deal generated by H, then
—[1] = [~1], and an element (z,y) 1 W (F,u) 1s equvalent to (z,0) + (0,y) =
(7,0) — (y,0) = z —y Ths brings the equivalence class representatives back into
M(F,p) Taking the quotient of W (F, 1) by the 1deal mn W (F, 1) generated by H
gives W(F, u)/ < H> Ths 1s the measure Witt ring of F and y, and 1s denoted
W (F, )

In order to find Witt rings, 1t 1s useful to use diagonahzation Every symmet-
ric matrix 1s equivalent to some diagonal matrix, that 1s, 1f M 1s symmetric, there 1s
some 1nvertible matrix T such that T*MT 1s diagonal There 1s no guarantee, how-
ever, that T will be measure preserving If a matrix 1s measure equivalent to some
diagonal matrix, that matrix 1s equivalent to a sum of one-dimensional matrices
Then, the corresponding quadratic form 1s equivalent to the sum of one-dimensional
quadratic forms Also, the Kroenecker product of diagonal matrices 1s simple to

find

4.5 Examples

Using the zero measure pg, every invertible linear transformation 1s a
measure-preserving hinear transformation Thus, the measure Witt ring W (F, po)
will be the same as the canomical Witt ring, symbolized W(F) In the canonical

Witt ring, cancellation holds if the characteristic of the field 1s not 2 See Theorem
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16 1n [6], attributed to Witt Also, the 1deal generated by H 1s ssmply Z H 1n the

canonical Witt ring

4 51 Real, Zero Measure

Lemma: Every one-dimensional real quadratic form 1s equivalent to a one-
dimensional form whose matrix 1s either [—1], [1], or [0]

Proof: Let [a] be the matnx for the one-dimensional form If a = 0, then
[a] 1s equivalent to [0] So, suppose a # 0 Then [1/ \/|_a—|] 1s an 1nvertible linear
transformation (1ts inverse 1s [\/H]) which 1s 1ts own transpose So, [a] 1s equivalent
w0 [1/y/lal] (] [1/y/lel] = a/lal) = [sgn a] O

Since only regular forms are used 1n the construction of the Witt ring, the
[0] term will never appear, 1if a quadratic form had a [0] term, 1ts resulting matrix
would not be invertible So, every regular quadratic form 1s equivalent to the sum
of [1] and [-1] terms Finding the Witt-Grothendieck ring gives additional possible
terms of the form —[1] and —[-1] Taking the quotient gives —[1] = [~1] (and
—[-1] = [1]), so all terms are again of the form [1] and [-1], and [1]® [-1] =0

Everything in W (R), therefore, 1s the sum of terms of the form [1] and [—1]
Any such sum can be reduced to a sum of all [1] terms, or all [-1] terms, or a sum
of no terms W/(R) 1s 1somorphic to Z, which can be seen by sending the sum of n
[1] terms to the integer n, the sum of n [—1] terms to the integer —n, and the sum

of no terms to zero

4 5 2 Finite Field, Zero Measure

Let F' = IF,, the fimte field of ¢ = p™ elements, with p odd Let F* denote the

umts n F', that 1s, all non-zero elements of F' Half of the elements of F™* are squares
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So, we can work 1n a way similar to the real numbers, 1n that all forms are (still)
diagonalizable, and, by the argument 1n the lemma, every one-dimensional form 1s
equivalent to a form whose matrix 1s either [1] or [s], where s 1s some representative
non-square 1n F* Again, since the matrix for each form 1s invertible, no zero terms
will appear So, the only possible non-equivalent two-dimensional forms are [1]& (1],
[1]®[s], and [s]&®[s] There are two possible cases either -1 1s a square, or 1t 1s not
If -1 15 a square (that 1s,1f p = 1 (mod 4)), then the form [—1] 1s equivalent
to the form [1] In particular, [1]®[1] = [1]@®[-1] =0and [s]D[s] =[s]®[-s] =0
So, the only possible form with two terms not equivalent to 0 1s [1] & [s] If we
add any one-dimensional form to this, we get cancellation, and so we can never get
a form with three terms The only (non-equivalent) forms in the ring are 0, [1],
[s], and {1] & [s] This 1s ring-1somorphic to the group algebra Z,[Z,], where here
Z,=17/2Z

Suppose -1 1s not a square Then [s] 1s equivalent to [—1], so that
el =11 =0

Look at the sets (F*)? and 1+ (F*)? These two sets have the same cardinality, and
are not equal, since 11s not 1n 1+ (F*)? So, there 1s some element 1n 1+ (F*)? which
15 not 1n (F*)? This element cannot be 0, since 0 = 1 + -11s not 1 1+ (F*)? Let
this non-square element be s, so that s 1s the sum of two squares, that 1s, s = 1 + k?

for some k € F* The following matrix multiphication

1 k| (10| (1 —k 1 k 1 —k 1+ k? 0 s 0
-k 1| (01| |k 1 -k 1| (k1 0 1+ (—k)? 0s

says that [1] @ [1] 1s equivalent to [s] @ [s] In particular, [1] & [1] 1s equivalent to
[-1]®[-1], or that [1]®[1]®[1]®[1] = 0 1n the Witt ring Thus, 1n the Witt ring, at

most three [1] terms can be added together [—1]1s equivalent to [1]&[1]&[1], so any
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[—1] terms can be converted to [1] terms Therefore, the only non-equivalent forms
in the Witt ring are 0, [1], 2[1], and 3[1], which makes the Witt ring 1somorphic to

the ring Z/4Z

4 5 8 P-adic, Zero Measure

Let p be an odd prime All quadratic forms are still equivalent to diagonal
forms Also, as 1n the other cases, [a] 1s equivalent to [¢® a] for all non-zero ¢

Every element 1n @Q,, can be written as p™a, where m 1s some 1nteger, and
a 1s a p-adic umt Since [p? a] 1s equivalent to [a], every one-dimensional form
[p™a] 1s equivalent to [p‘a], where € 1s exther 0 or 1, depending on whether m 1s
even or odd Set up two functions as follows d)(a) = a, di(pa) = 0, da(a) = 0,
dy(pa) = a, where o 1s a p-adic unit, and a 1s the first p-adic ‘digit’ of e, that 1s,
if o = Y% ,a,p", then a = ap These d, are homomorphisms from the equivalence
classes of one-dimensional forms on @Q, to the equivalence classes of one-dimensional
forms on F, The two functions induce an 1somorphism from W (F,) @ W (F,) to
W(Q,) Therefore, 1f p=1 mod 4, then W(Q,) 1s 1somorphic to Z2[Z;] & Z,[Z),
and if p =3 mod 4, then W(Q,) 1s 1somorphic to Z/4Z & Z/4Z

4 5 4 Finite Field, Uniform Measure

The measure Witt ring of finite fields with a uniform measure 1s easy to find

Theorem: Let F be a fimite field, and u the uniform probability measure
on F, that 1s, u({a}) = 1/|F| for all a € F, where |F| 1s the cardinahty of F Then
W (F, ) = W(F)

Proof: In order to determine the measure Witt ring, the invertible measure-

preserving linear transformations must be found The measure of a set S in F 1s
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equal to |S|/|F|, that 1s, 1t 1s based solely on the number of elements in the set
S If T 1s any invertible hinear transformation, then 7 1s one-to-one and onto, so
that |A| = |T(A)| = |T-!(A)| Therefore, all invertible linear transformations are
measure preserving This means the set of equivalent quadratic forms 1n the measure
Witt ring and the canonical Witt ring are the same, and the resulting rings must
be the same O

Every umiform measure 1s proportional to the uniform probability measure,
so the same linear transformations are measure preserving Thus, the measure

Witt rings will be the same Therefore, for all uniform measures on finite fields,

W(F, p) = W(F)

4 5 5 Real, Lebesgue Measure

Let u; be Lebesgue measure on the real numbers The relationship between
(standard) integration and Lebesgue measure 1s very useful here pp(A4) = [,d%
So, 1n this case, the density function for the measure 1s just the function f(Z) =1,
and we get that T 1s measure-preserving 1f and only if f(Z) = 1/|A|f(T~1Z)),
or n this case 1 = 1/|A| 1, or |A] =1 Thus, any linear transformation whose
determinant 1s 1 preserves Lebesgue measure

Or, we can look at Lebesgue measure as a Haar measure In this case,
not only do we have that each matrix (representing a linear trgnsformatlon) 1S
measure-equivalent to a diagonal matrix, but Lebesgue measure has the property
that u(c A) = |c|u(A) for c a constant, which lets us multiply one row of the matrix
by ¢, and another by 1/c, and keep the measure the same By multiplying rows of the
diagonal matrnx by appropriate values, we can make any matrix measure-equivalent

to a diagonal matrix with ones on the diagonal, except for the determinant (modulo
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sign) 1n (say) the first diagonal entry This matrix 1s only measure preserving if all
of the entries are £1, that 1s, if the determinant of the matnx 1s £1

The standard quadratic form theory tells us that, given the matrix M of a
quadratic form, there exists some invertible matnx T such that T*MT 1s diagonal
Define the matrnx R to be the same as T, but with the entries in the first row
divided by the determinant of T Then R 1s measure preserving, and R:MR 1s
also a diagonal matnix Thus, every matrnx 1s still equivalent to the sum of one-

dimensional matrices

Lemma: (Lebesgue Cancellation) Let ¢, ¢1, and g, be real quadratic forms,
with corresponding matrices M, M,, and M,, respectively If ¢ @ q; 1s Lebesgue
measure-equivalent to g @ ¢o, then ¢, 1s measure-equivalent to g

Proof: Since ¢®q; 1s equivalent to g gqo, we know that there 1s some matrix

T with determinant +1 such that

M 0 M 0
T T=
0 M1 0 M2

Since T 1s an 1nvertible matrix, ¢ ® ¢; and g @ g2 are equivalent 1n the non-

measure-preserving case, so there 1s some matrix S such that S*M,S = M, Thus,

10 M 0 10 M 0
0 St 0 M 0S 0 M,

or

MOT 10 M 0 10
0 M, 0 St 0 M, 0S
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Taking determinants of both sides gives
(det T')* det M det M; = (det S)*>det M det M;,

or (det T)% = (det S)? Since detT = £1, det.S must be £1, so that S 1s measure
preserving, and ¢; and ¢, are equivalent under the measure O
Theorem: W (R, u) = W(R) = Z
Proof: By the above lemma, cancellation holds, and the semi-ring of equiv-
alence classes can be made 1nto a ring by the Grothendieck construction Then, in
order to get the measure Witt ring for the reals and Lebesgue measure, take the
quotient of this ring by the 1deal generated by the hyperbolic form Since
10 a O
[a] ® = ,
0 -1 0 —a
this 1deal contains sums of matrices of the form [a] @ [—a] However, in the measure

Witt ring, the following computation holds

e l-af | 2 | [1te l=e lta 1-a| fa(lte) a(l-e)
2a 2 2¢ 22 | _ | 2a 2 2 2 _
1-a 14a 0 —1 l1-a 1l4a l1-a 1l+4+a a—1 —(1+a)
2a 2 2 2 2a 2 2 2
(1+e)? _ (1-a) (1+e)(1-e) _ (1+e)(1-a)
4 4 4 4 _
(ta)(1-a) _ (+a)1-a)  (1-a) _ (i+a)?
4 4 4 4
1+2a+a2—(1—2a+a?) 0
4 —
1-2a+a2—(142a+a?)
0 4
a 0

0 —a
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1+a
2a

The matnx has determinant

l—a
2a
l-a 1l4a
2 2

(14a)?/4a— (1 —a)?/da = ((1 + 2a +a®) — (1 — 2a — a?))/4a = 4a/4a = 1,

s0 1t 1s measure preserving Thus, the matnx [a%] ® [—1] 15 equivalent to [a] &
[—a], which 1s 1n the 1deal generated by the hyperbolic form Thus, 1n the measure
Witt ring, [a?] @ [-1] = 0, or [a?] = [1] So, all one-dimensional regular quadratic
forms are equivalent to [1] or [—1], and the same cancellations occur as in the
regular real number case Therefore, the measure Witt ring for Lebesgue measure
on the real numbers 1s the same as the regular Witt ring for the real numbers, or

WRp)=WR) =2 O

4 5 6 Real, Gaussian Measure

Let ug be the Gaussian measure on the real numbers There 1s a relationship

between Gaussian measure and Lebesgue measure, namely, that

)U'G(A) = /;4#0 = A(zﬁ)_"/2e—|il/2d#L,

where n 1s the dimension of the space, and |Z] 1s the standard norm of a vector
n real space The distribution function of the measure 15 f(Z) = (2m)"/2¢~12l/2
The hnear transformation T 1s measure preserving if and only if f(Z) = f(T~}(%))
for all £, or, (2m)~"/2e~1#1/2 = (21)~"/2e~ T @I/2 for all Z, or |Z| = |T~}(&)| for
all £ These are exactly the orthogonal matrices, so orthogonal matrices are the
measure-preserving matrices for Gaussian measure

If M 1s a symmetric matrx, then there 1s some orthogonal matrix T such

that T*MT 1s diagonal, so all quadratic forms 1n this setting are equivalent to a
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form with a diagonal matrnix The entries on the diagonal of this matnx are the
eigenvalues of the matrix M with appropriate multiphcaty

Let the symbol = stand for ‘orthogonal equivalence’, that 1s, matrices A =
B if there 1s some orthogonal matrnix T such that T*AT = T AT = B Let
quadratic forms ¢ = r 1if their corresponding matrices are equivalent This 1s the
same as equivalence under standard Gaussian measure In particular, for symmetric
matrices, A = B 1if and only if A and B have the same eigenvalues with the same
multiphcity, since they can be diagonalized to the same diagonal matrnix

Lemma: (Orthogonal Cancellation) Let g, ¢1, and g» be real quadratic forms
such that ¢®¢q) = ¢®qo, where = 1s the above orthogonal equivalence Then ¢; = ¢,

Proof: Let M, M,, and M, be the symmetric matrices for the quadratic
forms g, ¢1, and ¢, respectively These forms are equivalent to diagonal forms d, d,
and dy with corresponding diagonal matrices D, Dy, and D, The entries in D are
the eigenvalues of M, and similarly for D, and M, (2 € {1,2}) d®d1=q¢d q =

g® g =d®dy In terms of matrices, we get that D & Dy = D & D,, where

AO
A@®B=

0 B

In particular, D & D, has the same eigenvalues as D & D,, but the eigenvalues of
a diagonal matrix are 1ts diagonal entries, so 1t must be that D; and D, have the
same eigenvalues By the following proposition, D, = D,, which means d; = d,, or
an=¢ O

Proposition: Two diagonal matrices are orthogonally equivalent 1if and only
if their diagonal entries are the same, including multiphicity

Proof: The diagonal entries 1n a diagonal matrix are the eigenvalues of the

matrix If the eigenvalues of two matrices are different, then the matrices cannot
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be equivalent So, 1n order for two diagonal matrices to be equivalent, their entries
must be the same, including multiphcity

Given a diagonal matrix, 1ts entries can be rearranged freely using orthogonal
matrices, as follows let D be a diagonal n by n matrix Let e, be the 1th standard
basis element for the real numbers, that 1s, the vector with a one 1n the :th position,
and zeros 1n all other positions Let o be the permutation of the entries in the
diagonal matrix that 1s desired, that 1s, if the first entry in D 1s to become the
fourth, then let (1) =4 Construct the orthogonal matrix 7" where the sth row of
T 18 e;-1(;) The resulting matrix T*DT will be the diagonal matrix approprately
arranged So, if two matrices have the same entries, including multiphcity, then the
matrices are equivalent [J

Theorem: W (R, ug) 1s 1somorphic to the group ring Z[R*], where Rt 1s
the multiplicative group of positive real numbers

Proof: From what has already been done, all matrices are equivalent to di-
agonal matrices, and cancellation applies The Grothendieck construction can again
be used to form a ring The only other equivalences obtained in the construction
of the measure Witt ring are those found by setting all multiples of the hyper-
bolic form to zero This allows additive inverses to cancel, that 1s, [z] @ [—z] = 0,
or [—z] = —[z], for all real numbers z Treating diagonal matrices as sums of
one-dimensional matrices, each non-zero element of the measure Witt ring can be

written as

m
Z €n [Tn]a
n=1
where 7, € R* and ¢, 1s £1, and m 1s some positive integer The only sums

equivalent to a given sum are those found by commuting the elements (due to the

proposition), and cancelling additive inverses (by the measure Witt ring construc-
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tion) Thus, every element can be wntten as

il kalral,

where k., € Z 1s the number of instances of [r,] 1n the oniginal sum, minus the
number of instances of —[r,], and 7 1s the appropriate integer Each of these 1s
unique, that 1s, two of these sums are equivalent if and only if one 1s a reordering of
the terms of another So, as a set, W(R, ug) can be written as the set of all formal
sums as above, with k, € Z and r, € R* This set 1s the same as the set of elements
n the group ring Z[R*]

Addition of two of these formal sums 1s componentwise, that 1s,
kl [7'] + k2[7‘] + ks[S] = (kl + kz)[T] + k3[3],

which matches the addition 1n the group ring
Multiphication 1n W(R, pc) comes from the tensor product, where
[r] ® [s] = [rs] and ([r] + [s]) ® [t] = [rt] + [st] This gives
mlr]®@n[s] =D [r]®@ D [s] = [rs] = (mn)[rs]
=1 1=1 =1 y3=1
which matches the multiplication 1n the group ring

Therefore, W (R, u¢) 15 1somorphic to the group ring Z[R*] O

4 5 7 Real, Uniform Measure on [—1,1]

With this measure, the linear transformation T R™ — R”™ 1s measure pre-
serving 1if and only if f(Z) = 1/|A|f(T~(Z)) for all vectors Z, where A 1s the deter-
minant of T, and f 1s the function which 1s 1 on the square [—1,1]" and 0 everywhere
else If £ 1s sufficiently small, then both Z and T!(Z) are 1n the [—1, 1] square, so

-

that |A| must be 1 Thus, for T to be measure preserving, f(Z) = f(T~(Z£)) must
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be true for all Z In other words, every vector in the square must stay in the square,
and every vector outside the square must stay outside the square

The only invertible hinear transformations which fit these criteria are the
symmetries of the square In particular, in R?, there are only eight such linear

transformations Checking all of these linear transformations against the quadratic

form with matrix shows that the above quadratic form 1s not diagonalizable
10
The above quadratic form was not chosen with any special property, most quadratic

forms won’t be diagonalizable This makes the resulting measure Witt ring very

difficult to find

4 5 8 P-adic, Haar Measure

Let ug be the measure previously used on the p-adic numbers, that 1s, the
Haar measure with ug(Z,) = 1 Following the same procedure as in the real
Lebesgue case, every quadratic form 1s equivalent to a diagonal form However,
the measure on the p-adic numbers has the property that py(aA) = pg(A) f a1s a
p-adic unit  Also, pg(p™A) = p~ug(A) So,1f ¢ = p™v1s a non-zero p-adic number,
where v 1s a umit and n 15 the appropnate power of p, then ug(cA) pgp(c™'B) =
pr(P"YA) pa(py'B) =p"un(A) p"pa(B) = pup(A) pp(B) In other words,
multiplying by [c] @ [¢}] 1s measure preserving Thus, every diagonal matrix 1s
measure-equivalent to a matrix with all ones on the diagonal, except for the deter-
minant of the matrix in the first entry Thus, if multiplication by the determinant
1s measure-preserving, then the entire matrix 1s measure-preserving In particular,
if the determinant 1s a p-adic integer umt, then the matrix 1s measure-preserving

Theorem: W(Q,, ug) = W(Qy)
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Proof: The matrix used 1n the real Lebesgue case 1s still measure preserving,
since 1t has determinant 1, and the same argument used there can be used here to
get that, in this measure Witt ring, [@®] = [1] This 1s the same property that the
canonical p-adic Witt ring has, so this measure Witt ring 1s constructed 1n the same
way as the canonical p-adic Witt ring Therefore, the measure Witt ring for the
p-adic numbers and the Haar measure 1s the same as that for the canonical Witt
ring, or W(Qy, ua) = W(Q,) O
In both the case of the real numbers with Lebesgue measure, and the p-adic
numbers with Haar measure, the measure Witt ring 1s the same as the canonical Witt
ring In these measure Witt rings [a?] 1s equivalent to [1], so 1t has the same structure
as the canomical Witt ring That equivalence came from u(A X B) = p(cA x ¢! B),
and that all matrices of quadratic forms were equivalent to diagonal matrices If
these hold true for some measure on some field, then that measure Witt ring will be
the same as the canonical Witt ring for that field In particular, for Haar measure,
the diagonalization property already holds This gives the following theorem

Theorem: If a field F has a Haar measure x such that
u(A x B) = p(cA x ¢ 'B)

for all measurable sets A and B in F, and ¢ € F, then W(F, u) = W (F)

4.6 Abstract Witt Rings

According to [6, p 30], for an abehan group G with exponent 2, “la] Watt
ring for G 1s a ning R # 0 together with an 1somorphism Z[G]/K — R, where the

1deal K fulfils the following condition

x(K) =0 or x(K) = 2"0Z with n(x) > 0
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for every character xy of G All these rings R are called abstract Witt rings”

In most of the examples computed above, the measure Witt ring 1s identical
to the canonical Witt ring, and therefore 1s an abstract Witt ring In the case of
W (R, ug), the measure Witt ring 1s not an abstract Witt ring, but 1t has the form
of one if you allow G = Rt and K = 0 The case of the umiform measure on the
interval [-1,1] 1 the reals was too comphcated to find, 1t 1s unclear whether or not
1t 1s an abstract Witt ring However, due to the gaussian case, not all measure Witt

rings are abstract Witt rings by the above defimtion

4.7 Measure Witt Rings and Probability

Unfortunately, the measure Witt ring, by 1tself, doesn’t completely determine
when the probability of two random quadratic polynomials having two roots will
be the same for two different fields and measures While the measure Witt rings
W(Q,, ) and W(Q,, v) were the same with p and v the respective Haar measures,
and with p and g equivalent modulo 4, they are not the same 1if the two primes
are dlfferént modulo 4 Thus, even 1if two 1somorphic measure Witt rings implhed
that the corresponding probabilites would be the same, 1t wouldn’t explain why the
probabilities are the same when the primes are different modulo 4 Something else

18 necessary to link all of the p-adic fields together
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5. Conclusion

5.1 What Has Been Done

The concept of a measure Witt ring has been defined It gives a connection
between the quadratic forms of a field and a measure on that field It has been
determined that the canomcal Witt ring and this measure Witt ring are the same
for several fields with translation-invariant measure For Haar measure, if inverse
elements affect the measure appropniately (that 1s, if u(A x B) = u(cA x ¢"!B)),
then the two rings will always be the same

It has also been shown that the measure Witt ring 1s not always the same
as the canonical Witt ring, the measure Witt ring of the real numbers with the
standard Gaussian distribution 1s an example of that The probability of certain
events regarding quadratic forms does not determine the measure Witt ring, two
events can have the same probability, but the measure Witt rings may be different,
as was seen 1n the p-adic case

With regard to the probability of an n-degree polynomal having & distinct
roots, some answers have been found For real numbers and Lebesgue measure,
with n < 4, these probabilities can be found by integrating, perhaps numerically
The 1ntegral for n = 3 1s difficult to resolve, 1t 1s perhaps easier to use Monte Carlo
methods to determine the probability Using this method P has been estimated
at 02178, and since real cubic polynomials must have at least one root, this gives
P} ~ 07822 With Gaussian measure, using the Kac formula and the fact that all
cubic reals have at least one root gives P7 &~ 0246380 and P} = 0 753620

For n = 4, the integral method 1s even more difficult, as another condition
(other than sign of the determinant) 1s needed to distinguish a polynomial with

4 roots from one with 0 roots This has been attempted, with different random
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vanables for coefficients, i [9], which uses monic polynomials and non-umform
distributions for the coefficients Since polynomials with degree greater than 4 are
not solvable algebraically, this method cannot be extended to higher degrees

In the p-adic numbers, numerical evidence suggests that a similarly simple
probability holds true for polynomials For each of the primes 3, 5, and 7, 24,000
cubic p-adic polynomials were generated, where the coefficients were umformly dis-
tributed 1n Z/nZ, with n = p!® The number of roots of each polynomial was found

Below 1s a table with the results

p|0 roots|1 root|2 roots|3 roots
3

6539 |14120| 9 3332

5| 6869 |13660| O 3471

7| 7136 [13249; O 3615

These results suggest that the probability a random cubic polynomial has
no roots 1s 1/3, the probability that 1t has one root 1s 1/2, the probability that 1t
has two roots 1s zero, and the probability 1t has 3 roots 1s 1/6 This 1s the same
as the proportion of a permutation 1n S; has zero, one, two, or three fixed points,
respectively

It may be that, as p get larger, these probabilities approach the exact ratio-
nal values, but are not exactly equal to them However, the rational value of the
quadratic case, and the result giving 3-adic cubics with two roots (which happens
with probability zero), suggests that imprecision 1n the numerical method can also
explain the difference between the numeric results and the conjecture, so that the

values are exact Extending this conjecture to higher-degree polynomials gives
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Conjecture: The probability that a degree d random polynomial with
uniformly-distributed p-adic integer coefficients has & roots 1s the same as the prob-

ability that a random d-permutation has k fixed points

5.2 Future Work

More work needs to be done on the relationships between measure Witt rings
If two measure Witt rings are 1somorphic, there should be some sort of relationship
between the measures While 1t 1sn’t true that equal probabilities implies 1somor-
phic measure Witt rings, the converse may be true It may be that if W(Fy, )
and W (F3,v) are 1somorphic, then appropriate probabilities are equal Or, certain
properties of the measures may be the same Comparnng two measure Witts rings
generated using the same field but different measures may be more likely to lead to
these results

Similar to the above, 1t may be true that a measure y has a certain property
if the measure Witt ring has some appropriate ring property That way, information
about the measure may be found by examinming the measure Witt ring For instance,
one theorem which may come out of this work 1s the following 1if the measure
Witt ring 1s 1somorphic to the canonical Witt ring, then the measure 1s translation-
mvariant This seems likely, and 1s supported by the examples computed so far

Another question to be examined 1s whether or not the measure Witt ring
with Haar measure 1s always equivalent to the canomcal Witt ing This depends
on what happens with the measure under ‘multiplication by inverse elements’ that
15, 1t requures that p(cA x ¢! B) = u(A x B) for all non-zero ¢ 1n the field It seems
somewhat unlikely that this holds for all fields with Haar measure, but which fields

have this property 1s a question which should be explored
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The work on measure Witt rings led to a study of measure-preserving linear
transformations In writing this thesis, very few references were found regarding the
general question of which linear transformations perserved which measures This 1s
another field of study which I feel requires more attention

Regarding the question of the probability that a random polynomial has a
certain number of roots, no general answer was found The simple answer found
for p-adic quadratic polynomials, and the simple answer suggested by numerical
methods for higher degree polynomals, suggests that there 1s a simpler proof than
what was used here

Work on the probability question was done for two measures on the real
numbers, but the answers found only went up to degree 3, and the method could only
be used for low-degree polynomials Some way to find more exact probabilities may
be able to be found for higher degree polynomials In particular, 1t may be possible
to use the method outhned at the beginning of [4] to find not only the expected
number of real zeroes of a real random polynomial, but the exact probabilities for
the different number of roots as well

As was commented on before, not all of the measure Witt rings found were
abstract Witt rings However, all had the same general form as an abstract Watt
ring The definition of the measure Witt ring can be extended to include any
equivalence class of linear transformations, not only the equivalence class of measure-
preserving linear transformations Probably all these “Witt rings” are of the same
general form as abstract Witt rings, and that should be explored Also, 1t should
be determined whether all abstract Witt rings can be obtained using measure Witt
rings

Only the real numbers and the p-adic numbers were studied in this thesis

Other fields, and other measures on the given fields, deserve more study Also, as
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more probabilities over more fields and measures are found, a clearer picture of the

general problem may develop, and a more general theory may be found
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