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MEASURE-EQUIVALENCE OF QUADRATIC FORMS

1. Introduction

This paper investigates the probability, .13,11, that a degree d random polyno-

mial has k distinct roots, over a variety of fields and using a variety of probability

measures Historically, much work has gone into finding the asymptotic value of

this probability, or the expected number of roots, but not much has been done to

find exact probabilities We are interested in the exact probabilites

We started by using elementary methods to determine the probability for

low-degree polynomials with common fields and probability measures In the p-adic

numbers, these methods led to an investigation of p-adic analysis, as well as the

properties of p-adic integer random variables, and proved the following theorem

Theorem: Let A, B, and C be independent uniformly-distributed ran-

dom variables on the p-adic integers (where p is odd) Then, the probability that

Ax2 + Bx + C has two distinct roots is 1/2

The simplicity of this value, and the fact that the probability is the same for

all odd p, led us to investigate the reason that the values are the same Also, it led to

a search for a simpler method for finding the probability, which might be generalized

to higher-degree polynomials Attempting to find a reason for the probabilities being

the same for different fields led to the construction of the measure Witt ring The
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measure Witt ring is a modification of the canonical Witt ring, which allows an

equivalence of the theory of quadratic forms over different fields

This paper finds the probabilities ./1 for the field of real numbers for both

the uniform probability measure on the interval [-1, 1] and the standard normal

probability distribution, and for the uniform distribution on the p-adic integers with

p odd In the process, the implicit function theorem for p-adic numbers is presented

The measure Witt ring is constructed, and its relation to the canonical Witt ring is

shown Examples are also presented for Lebesgue and standard Gaussian measure

on the real numbers, and for uniform measure on finite fields and the p-adic numbers

Some information on the measure Witt ring for the uniform probability measure on

the interval [-1, 1] in the real numbers is also found In the process, the following

properties were found

Theorem: For Lebesgue measure on the real numbers, Haar measure on the

p-adic numbers with p odd, and uniform measure on finite fields, the measure Witt

ring is isomorphic to the canonical Witt ring

Theorem: For a field with Haar measure ti with the property that

p(A x B) = p(cA x c-1B)

for all non-zero field elements c and all measurable sets A and B in the field, the

measure Witt ring is isomorphic to the canonical Witt ring

Theorem: For the standard normal measure on the real numbers, the mea-

sure Witt ring is not isomorphic to the canonical Witt ring

The probability PI for p-adic random quadratic polynomials, and numerical

evidence for higher degree polynomials, suggests the following
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Conjecture: The probability that a degree d random polynomial with

uniformly-distributed p-adic integer coefficients has k roots is the same as the prob-

ability that a random d-permutation has k fixed points



2. The P-adic Implicit Function Theorem

For a proof in the next chapter of this thesis, the implicit function theorem

is used The real-number version can be stated as follows

Theorem: The Implicit Function Theorem Let i be a continuously differ-

entiable map from an open set E C Rn±m into Rn, such that Ret,b) = 6 for some

point (c7,6) E E Let A --= D.Rc1,6.) Split A into Ax and Ay by Ax(±) = A(, d)

for g E lIcri, and Ay(g) = A(6 ,g) for g E Rm Further assume that Ax is invertible

Then there exists open sets U c lEr±m and W c Rn with (d, b.) E U and g E W,

having the following property

To every g E W there corresponds a unique i such that (g,g) E U and

.R-i,g)=o

If this i is defined to be g(g), then j* is a continuously differentiable map of

W into R7, §(b) = et, Aff(g),g). d (g E W), and DA = (Ax)_lAy

This statement of the implicit function theorem appears in [10] as Theorem

9 28 The implicit function theorem also applies in situations other than the real

numbers, for instance, an implicit function theorem for real closed fields and semi-

algebraic functions appears in [2, §2 9]

This section of the thesis proves the implicit function theorem for the p-adic

numbers It follows the proof given in [10] almost exactly

2.1 P-adic Numbers

Let p be an odd prime Define an absolute value on the integers by letting

In ly = pk for every integer n, if n = pka, where a and p are relatively prime

Extend this to the rational numbers by letting In-lip = in 1;1 The p-adic numbers,

symbolized by Qp, are the topological completion of the rational numbers with this

4
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absolute value The closed unit ball around 0, that is, the set of p-adic numbers with

absolute value less than or equal to 1, is called the p-adic integers, and symbolized

by Zp

Zp can also be seen as an inverse limit

ZiplZ < Zip27L 4 Z/p3Z ÷-

is a sequence of groups, with the arrow from Z/pnZ to Z/pn-1Z indicates the function

which takes [k], an element of Z/pnZ, to [k (mod pn-1)] in Z/pn-1Z Zp is the inverse

limit of this sequence Later, this will lead to a definition of a measure on the p-adic

integers

Any p-adic number 0 can be uniquely written as 0 = pka, where a is a p-adic

unit, that is, a p-adic integer relatively prime to p c = 1, so 101p = Also, 0

can be written uniquely as

where each bz is in the set {0, 1, p 1}, and bk is not zero If 0 is a p-adic integer,

then k > 0, and 0 can be written as E,"=0 bar, where bo can now be zero Under the

inverse limit model, this /3 gets mapped to Eznfol bzpi in Z/pnZ

A p-adic number 0 = pka is a square if and only if a is a square and k

even Since p is odd, Hensel's Lemma (See [7, p 16]) shows that a unit a is a square

if and only if a is a square modulo p

2.2 P-adic Norms and Linear Functions

Let = (x1 xn) E Q7, Define a norm= norm,1- Maxi<2<n lp

in fact, satisfies the strong triangle inequality



IS + 9'1 = max lx2 + Y2 lpi<z<n

<ma<nx
(max{ Ix, lp, lYzip})

1<z

= max( max lx,, max lyz lp)
1<z<n1<z<n

= MaX(ISI,

Note that IA is always of the form pn for some integer n In particular, statements

like JI make sense, since the value of the norm is rational

Let A be a linear function from Q71 to Q," Define the norm HAM to be the
P P

supremum of all numbers All where I ranges over all vectors in 14 with Ii < 1,

or Note that All < 112111 III for all x, if there is some I which is an exception,

the unit vector-il = III would give a vector of norm 1 with lAll < IA91

This norm on the set of linear functions from to Qr, , denoted L(Q71),W),

gives a topology, so that terms such as "open set" and "continuous" make sense on

this set Denote the set of linear functions from (27, to itself as L(W)

Lemma: If A E L(Q77;, qpn), then HAM <

Proof: Let {6 en} be the standard basis for Q;;1. and suppose I = Eczez

with ill < 1, so that lcdp < 1 for all i Then

= lc2Aei < E EiAël< oo

for all I Thus, IlAll _< EIAe <00 0

Theorem: Let C2 be the set of all invertible linear functions in L(%) Then,

if A E 1, B E L(%), and IIB All < 1, then B E SI Also, S2 is open in

L(Q;), and the map A * A' is continuous on S2

Proof: Define a so that IIA-111 = 1/a, and let fi = iiB All Then < a

Let I be any vector in Cr, Then

6



alil = alA-lAil

5_ allA-111 'MI

= 'Ail

I (A B)YI + 'BY'

- . Mil + l-Bil,

so that (a 0)1±.1 < lBil for all i

Since a 0 > 0, IB-i'l = 0 only if 14 . 0 Thus, B is one-to-one, so B is

invertible Since this is true for all B with lIB All < a, S./ is open

Since B is invertible, _a-1i E QV for all 9., so that

(a 0)1B-1yi _< IB(B-10 = Ii

for all Thus, 11/3-111 < (a i3)-1 For any two linear transformations C and D,

I(DCril = JD(C)1 _< IIDII ICJ _<_ IIDII 11c111±1,

so that lIDC11 < IlDll HQ Also, for any two linear transformations C and D,

D-1 C-1 = (D-1)(C D)(C-1),

so that for A and B,

1113-1 All IIB-11111A - Bll IIA-111 a(a13 0)

As B A, 0 0, so that II/3-1 A-111 --4 0 Thus, the inverse map is continuous

El

2.3 P-adic Differentiation

One can, as usual, define the derivative of a p-adic function if f Qp --> Qp

and x E Qp, then

7



f (x + h) f (x)
f' (x) = Urn

h-40 h

Y E E Then there is an open subset U ofE such that

1.r(g) r(a)1 Allg al

for all de u,r)EU

Proof: By differentiability, RY + FL) f(i) = DRi)71 + fo.,) , with

--+ 0 as 71, ---> 0 Thus, there exists some 6 > 0 such that Iril < 8 im-

plies Ir(ii) I < MI/1 Choose some point ii E E and let U be the intersection of

E with the open ball around oi with radius 8 Then, for any points d, g E U,

Kg c-01 < mig di

Let ±* = d and it = g d , so that the above becomes Ri;) f(s) = D if(d)(g

d) + iqg d) Take norms of both sides of the inequality to get

8

if the limit exists Thus, f (x + h) 1(x) = f' (x)h + r(h), where the remainder r(h)

is 'small', that is, limh0 r(h)/h = 0

Similarly, a multi-variable derivative can be defined if f Cli; Q7 and

Y E Q and there exists a linear transformation A from q; to QT, such that

lim if(+)j()Ail
,

FL_>0 iiti

then f is differentiable at Y , and D RY) = A

If a function f is differentiable at a point i, the above limit can be rewritten

as f(i + it) .r(i) = D f(Y)it + qit), where 1im1017A11)iiiiii = 0 Note here that

DRY) is a linear transformation, so that DJ() means the linear tranformation

DJ() applied to the vector Ft, and not multiplication

Theorem A: Let E be open and non-empty in (4, and let / E QT, be

differentiable in E such that there is a real number M with IlDr(±111 _< M for all



if nal I = IDRal(g d) + T a) I

5_ max(IDnd)(g c-)i , kV' (7)1)

< max(Pf(d)(g ei)I, Mlb. eil)

_< max(11DI(c7)11 Ig al, MIg al)

5_ 14 ell 0

(Note in the real numbers, [10] uses concavity of E to get this result This theorem

is the only difference between the p-adic proof of the implicit function theorem and

the real version )

The function f is said to be continuously differentiable in an open set E if Dr

is a continuous mapping of E into L(%, QYpn) More specifically, f is continuously

differentiable if for every i E E and c > 0 there exists a 6 > 0 such that if # E E

and IY 91 <5, then II.D.T(Y) Dr(#)11 <

The contraction principle will also be used in the proof of the implicit function

theorem The contraction principle says that if X is a complete metric space, and

if 0 is a contraction of X into X, then there exists one and only one x E X such

that o(x) = x (A contraction is a map 0 from X to X such that, for some c < 1,

d(0(x), 0(y)) 5_ c d(x, y) for all x, y E X) This theorem is proven as Theorem 9 23

in [10], and since it applies to all (topologically) complete metric spaces, it applies

in particular to the p-adic numbers

2.4 The P-adic Inverse Function Theorem

Theorem: The Inverse Function Theorem Suppose f is continuously dif-

ferentiable from an open set E C Q27; to Q7, , DJ() is invertible for some c7 E E, and

g = f(a.) Then there exist open sets U and V in W such that a' E U, g E V, f is

9
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one-to-one on U, and T(U) = V Furthermore, if .-g. is the inverse of f, defined in V

by Tg(f()) = i', then :g' is continuously differentiable

Proof: Let A = D nil) , and choose c such that 2cIIA-111 = 1 Since D f is

continuous at d, there is an open ball D C E, with center (I, such that IlDim All <

c for i E D This means that for all ±" E D, HDTV) All 11A-111 <c = <1
Thus, by a previous theorem (in Section 2 1), DRY) is invertible for all i E D

For every g E (4, associate a function Qi:y defined on Y E E by

4(g) = + A-1(g i(g))

Note that f(i) = g if and only if 4(i) = i Taking the derivative of 4 gives

Dc4(±) = I il- ID Ri) = A-1(A DRY))

So,

iip -0;()1 11A-111 liA DRY)11 < lc = 1
2c 2

for all i E B Hence,

1(7)y(ii) C-by(Y2) I 5_ .1±.1 i21

for all 2i,i2 in some open subset U of D, by Theorem A

If i' and A are fixed points of . ..y in U, then

1

li iol = Vi;y(Y)

which implies that IY id = 0, or Y = fo Thus, for any g, there is at most one

i' E U such that f(i) = g Thus, 7 is one-to-one in U

Define V = Au), and choose go E V Then go= Rio) for some io E U by

definition of V Let B be an open ball with center at go and radius r > 0, so small

that the ball's closure lies in U



Fix g such that ig gol < cr Then, using the definition of 4,

1(-k.y(i0) 41=1A-1(gg0)1 < 11A-111cr = -;

If i is in the closure of B, then

14(i) Yol 5_ 1(-k.y(Y) -4(go)1+1 ;(4) YO I < 1 i - YO 1 ± ; 5_ r

Thus, -4 ( i) E B, and 4 is a contraction of the closure of B to itself

Since the closure of B is closed, it is complete The contraction principle

says that ,4 has a fixed point ±* in the closure of B For this Z, I'M = g Thus,

g E V In particular, every vector in the open ball centered at go with radius cr is

in V Hence, V is open

Recall that § V -- U is the inverse of I on U Choose g E V, g+ 1-c. E V

Then there exists i E U, i+ ii E U such that g= fm, g + k = J(+ it) With 4

defined as above,

4(i + h.) -ctiy(i) = ii. + A-1 [fp) + ii)] = ii: A-lic*

Since WyVi) 5_ Iiii g21, I ii: A-lic.j< llid Thus,

iiii = lit. A-irc + < -11711+ iA-lic.1

so that 1A-1-kl > -.1iti, and

Iiil 211A-111 Ircl= c-lIrcl

Since i E D, Df(i) has an inverse Call this inverse T

W+ lc) g(g) Tk = l'i TI= T[f(i + rt) _ fm_ Dimi3j,

and Ikl > cliil, which gives

11



1§'W + fc) - gw) - Tk'l 11Th ITV + ii) f(i) D TV)Fil

licl
c

1711

111 < c-ilk.1 also shows that as ic -4 6, ii., -4 d as well Thus, as k --> 6, the

right hand side of the inequality goes to 0, so that the left hand side does as well

Therefore, D(y) = T, so is differentiable for all g E V Since T is the inverse

of DT() = D TO(il)), .D.q(g) = pforg)11-1 Since :g., D I, and inverting lin-

ear transformations are all continuous functions, Dg(g) is continuous, so that § is

continuously differentiable El

2.5 The P-adic Implicit Function Theorem

Let i = (x1 xii) e (IZ and 7= (yi yni) E Q7 Denote the vector

(xi, , Xn7 M., , ym) E gr- as(Y, -0 Let A E L(Q7,±7 71, (4) A can be split

into two linear transformations Az and Ay as follows

Ax(K) = A(13), Ay(k) = A(6, k)

for any it E QV, k E 47; Then, Az E L(%), Ay E L(Q7pn, Q), and

A(ii,k) = AzE, + Ayk.

The implicit function theorem for linear transformations is as follows

Lemma: If A E L(Qrn

12

to every k E(C27; a unique Ii E Q;:, such that A(ii, ic) = 0 This 12', can be computed

by ft = (Az)-lAylc.

Proof: Since A(K, ic) = Axii+ Aylc, A(11,k) = 0 if and only if Azii+Aylc = 0,

or, when Az is invertible, ii, = (Ax)-lAylc El

Theorem: The Implicit Function Theorem Let f be a continuously differ-

entiable map from an open set E C (4,±ni to % such that f(a,b) = d for some

(.1, g) E E Let A = DRci,g) and assume that Az is invertible

II ), and if Az is invertible, then there corresponds
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Then there exist open sets U C (141±n and W C (7, with (d, -g) E U and

.gE W, such that for every g E W there exists a unique such that (g , E U and

Rg, =

If this is defined to be §W), then §* is a continuously differentiable map

from W to %, -§(g) = Et, TOW), = O' for all g E W, and D.-or)) (Ax)-1Ay

Proof: Define P by P(g, = (T( , 9*) for (Y, if)c E Then P is contin-

uously differentiable, and maps E to (D7p2+m Since Ra,g) = 0,

Ra. +k) = A(K,k)+7-Aiz",k),

where is the remainder term in the definition of DRE*, b) Since

P(ci +1.1,1; + P(et,g) = + k)

= (A(71, k),

DP(, g) is the linear transformation on (217,±m that maps to (A(ii, k) If

this image vector is 6, then k =6' and A()'i,k) =, or Axil:. A(K,C) =6' Since Ax

is invertible, this implies that fi, = o Thus, the linear transformation DP(, g)

one-to-one, so is invertible

Therefore, the inverse function theorem applies to P That means there are

open sets U and V in Wm with E U, (6, E V, such that P is a one-to-one

mapping of U onto V

Let W be the set of all E Q7,1 such that (15, E V Note that g E W Since

V is open, W is open If g E W, then (CI, = P , 0 for some E U By

definition of P, fv,0 = O' for this Suppose that, with the same g, , E U

and f(, if= 6 Then

PV 1,0 = crw,0,0= (6,0 = cf(40,0 =Pcg,0
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Since P is one-to-one in U, it = i, so this i is unique

Define gw), for # E W, so that (w), g) e U and f((, g) = 6 Then

P ow), g) = (6, g) for all g Let 6' be the mapping of V onto U which inverts P O

is continuously differentiable by the inverse function theorem, and

(W)) = do, o

Thus, § is continuously differentiable

Let $.(0 = a(6, 0 = COM, g) Then mr)(0-k. (D-§(0-c.,1-;) for all g E W,

97 RCM) = fo(),g) = 6 for g E W by definition of :g' The chain rule then

gives

Di(t). (o)D4;(g) =0

(This 0 is the zero linear transformation) When g = 6', 4*(il) = (et, g) and

DR.$(0) = A Thus, AD() = 0 So,

A,Dff(b)ic. + Ayic. = A(D§(5)-k, rc) = ADC-6V = 6

for all ic' E (27; Therefore, A,D#(6)+ Ay = 0, or Dif(g) = (Ax)-lAy 0



3. Roots of Random Polynomials

A random polynomial of degree d is a polynomial of the form
Adxd ± Ad_ixd-1 ± + A2x2 ± AiX ± Ao, where each A, is a random variable over

some field F For this thesis, each A, will be independent and usually identically

distributed over F In addition, the probability that A, is x will be zero for all x

in F (Later in the thesis, finite fields will be considered, but not in conjunction

with random polynomials ) With this condition, Ad is almost never zero, so that

the random polynomial is almost always of degree d Denote the probability of this

degree d random polynomial having k distinct roots in F as PS This thesis will

concentrate on F = IR or F = Qp, with their appropriate norms, but much of this

can be extended to other fields

In order to prove that this polynomial will almost never have multiple roots,

other work must be done first

Lemma: Let F be either R or Qp Let il be a measure on F such that the

measure of a ball of radius E goes to zero as e goes to zero, and compact sets have

finite measure Let f Fri * F be continuous The graph G = {(i, f()) i Erl
has measure zero

Proof: For every positive integer m, let Km be the closed ball of radius m

centered at 0 Each Km is compact, and for all m, Km C Km±i and lim Km =

F71 Choose some positive integer m Since f is continuous, f restricted to Km is

uniformly continuous So, choose an > 0 Then there exists 6 > 0 such that, for

all i, y E Fri, 1Y -ill < 6 implies If(i) f (-)j < There is a finite collection of

open balls B1 Bk of radius at most 6 which covers all of Km The graph of f

on Km is the union of the graphs of f on all B, On each B,, f(B2) is contained in

an open ball of radius E So, the measure of the graph of f on the union of B, is at

15
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most the measure of Km times the max of the measures of B which goes to zero

as e goes to zero Since Km has finite measure, and E was chosen arbitrarily, this

means that the measure of the graph of f on Km is zero Since lim Km = F, the

measure of the graph on all of F is zero 0

Theorem: Let f be a polynomial from IP to F, with F and a measure on F

defined as in the lemma The set Z(f) = { E r If() = 0} has measure zero

Proof: Induct on n if n = 1, then f is a single variable polynomial Then

Z(f) is a finite set, and finite sets have measure zero Otherwise, assume the theorem

is true for polynomials with less than n variables

Single out one of the variables, and look at f as a function from F x Fn-1 to

F Denote that variable as y, and the derivative of the function f with respect to

that variable as fy Z(f) = {(Y, Y)If (Y , i) = 0} Let

Z1(f) = {(Y , Y)If (Y 7 ) = 0/ fy(Y, ) 0 0}

Let Z2(f) = Z(f)\Z1(f) Let d be the degree of y in the polynomial f, so that

f (Y , Y) = f(x)yd + + n(i)Y + fo(g) Note that Z2(f) C 2.(4) By the Implicit

Function Theorem, for every point in Z1 (f) there are open sets U, W, and a function

g such that f(y,i) = 0 and (y,i) E U if and only if g(i) = y Z1 (f) is the union

of the graphs of all such g in all such U The collection of all U has a countable

subcover, so that the set Z1 (f) is composed of a countable collection of graphs of

functions Each graph has measure zero, so the union must have measure zero, so

Z1(f) has measure zero

Induct on d if d = 1, then f --= fi(i)y + fo(i) and fy = fi(Y) fy has

less than n variables, so by the inductive hypothesis, Z(f) has measure zero, so

that Z2(f), a subset of Z(fy), has measure zero Since both Z1(f) and Z2(f) have

measure zero, so does Z(f)
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Assume that the theorem is true for polynomials with the degree of y less

than d The derivative fy has a y-degree of less than d, so Z(f) has measure zero

Again, since Z2(f) is a subset of Z(fy), Z2(f) also has measure zero Since both

(f) and Z2( f) have measure zero, Z(f) has measure zero

Therefore, by induction, Z(f) has measure zero CI

Theorem: Let F be R or Op Let Ao, A1, Ad be independent random

variables on the field F such that for all z, the probability that A, is in a ball

of radius e approaches zero as E approaches zero Then the random polynomial

Adxd + Ad_ixd-1 + + A2x2 + Aix + Ao almost always has distinct roots

Proof: (The first paragraph of this proof is adapted from parts of [3, §14 6] )

The discriminant D of a polynomial with roots al, a2, , ad in an algebraic closure

of F is

D= H (a, a3)2

1<2<3<d

which is zero if and only if two of the roots are the same The coefficients of the

polynomial a (x a ) (x a2) (x ad) are determined by the elementary symmetric

functions of the roots, that is, if

S1 E
z=i

S2 E aza,
i<z<3<d

Sd = IIa3
3.1

then a(x ai)(x a2) (x ad) = a(xd sx11 s2xd-2 (_1)d sd) The

discriminant D can be written as a polynomial in sz, that is, a polynomial in the

coefficients of the original polynomial
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The original polynomial has multiple roots if and only if the discriminant is

zero The set of zeroes of a polynomial has measure zero, so the probability that

the discriminant is zero is zero, so that the probability that the original polynomial

has multiple roots is zero 0

The probability PI/ that a random degree d polynomial over the field IF has

k distinct roots in F will be found for some specific fields and random distributions

For this part of the thesis, quadratic polynomials are considered, so d = 2

Three independent random variables A, B, and C, all of them almost never

zero, are used to create the random polynomial r(x) = Ax2 + Bx + C = A(x2 +

BlAx+CIA) Since this polynomial will almost never have a multiple root, only

P need be found, then 11 = 1 n The polynomial has two distinct roots if and

only if the discriminant D is a square in F [3, pp 524-526] Call the two roots ai

and a2

D = (a1 a2)2

2 2= ai 2a1a2 + o2

= (a1 + a2)2 4a1a2

= (si)2 4s2

= (B/A)2 4(C/A)

= (B2 4AC)/A2

This is a square in F if and only if B2 4AC is a square in IF So, Ax2 + Bx + C

has two distinct roots if and only if B2 4AC has a (non-zero) square root in F



3.1 Real Numbers

In the real numbers, B2 4AC has a square root if and only if B2 4AC is

positive So, PI = P(B2 4AC > 0) = P(B2 4AC > 0) This probability will be

found for two probability distributions

3 1 1 Uniform Distribution

Let A, B, and C be independent random variables, uniformly distributed

over the interval [-1, 1], the unit disc in the real numbers This distribution is

proportional to the standard Lebesgue measure on the reals, so the probability

P(B2 4AC > 0) can be found by integration

Bf 2-4Ac>oP(B2 4AC > 0) = ,
i(A,B,c)E[--1,i]3 irl.

Let B range over the whole interval [4,1] If the determinant is zero, then

C = B2/4A If A is positive, and C < B2/4A, then the discriminant is positive If

A is negative, and C > B2/4A, then the discriminant is also positive So, A can

range over any value in [4,1], and C ranges over [-1,min{1, B2/4A}] if A is positive,

and [max{B2/4A, 1},1] if A is negative If lAl < B2/4, then use either 1 or -1 as

the bound for C Otherwise, use B2/4A

Symmetry can simplify this region B2 = (B)2, so by doubling the result, B

need only range over [0, 1] Also, the range [-1,min{ 1, B2/4,4}1 has the same length

as [max{B2/ 4A, 1},1] Thus, by doubling the result again, A also need only range

over [0, 1] This gives

19



fB2-4AC>0 di.F' =
f(A,B,c)e[-1,1p di

4 folf682/4fli dCdAdB + 4 f0132/4f Bi2/4A dCdAdB

8

(10110B214 2 dAdB + fo'fB1214-z-AB2 + 1 dAdB)

2
2 f

4 B2/4
dB)1 ( 'B2

= dB + f1 A +
B21nA 1

1

(=7- s2

1 ri (B2 B2 in (B2/4))
6 Jo 4 4

dB)

11 1 i
= 7 G + i fo 4 - B2 - B2 ln (B2/4) dB)

2
11 1 1

= 7 G + 71 f0 4 - B2 - B2 21n (B/2) dB)
2
11 1 f 1

= 7 ( ± 71 4 - B2 - B2 2 (ln B - In 2) dB)
2
1 1 1 1

-6=72( + i fo 4 (21n 2 - 1) B2 - 2B2 In BdB)

_-
2

1 (1 1.
6 4

(4B + (2 In 2 - 1) B3
3

2(B31nB B93 )) 1)

3

1 (1 1" 21n2 - 12(0+ 1)))
2 4 3 9 n
1 /1 1

--
-2 ---6

+ (36 + 61n 2 - 3 ± 2))

1
= u (6 + (35 + 6 In 2))

41 + 61n 2
= ;.---, 0 6272

72

=

1

- 2

=

3 1 2 Gaussian Distribution

An analysis similar to the above for the Gaussian distribution on the real

numbers is possible, but previous work done with Gaussian distributions makes it

unnecessary The Kac formula is a well-known formula for finding E, the expected

number of roots of a real random polynomial with Gaussian coefficients See [4] for

20
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one way of finding the Kac formula For quadratics, E = 2 /1+1 .1:1 +0 PT = 2 n

since these random polynomials almost never have a double root So, n . E/2

and /1 = 1

The Kac formula gives us an integral for E for a degree d polynomial

4E = f1
7r io \

which evaluates numerically, for d = 2, to E c:_-1 1 2970 Thus, the probability that

a random quadratic polynomial with Gaussian coefficients has two disinct roots is

0 6485

3.2 P-adic Random Variables

On every locally compact group, there is a unique (up to a constant) measure

which is translation-invariant, or 'uniform', called the Haar measure [5, §57-60[

As in the case with the real numbers, this uniform measure cannot be used as a

probability measure on all of Qp, so a suitable subset will be chosen The subset

used here is the unit disk in Qp the p-adic integers

There is an alternate way of looking at this probability measure Every p-adic

integer can be written in its canonical sum form

00

EanPn
n=0

where an is in the set {0, 1, 2, p 1} Now, create a random variable by let-

ting each an be an independent random variable uniformly distributed over the set

{0, 1, 2, p 1} This random variable is translation-invariant, as seen below, and

the total measure of Zp is 1, so this must be the probability Haar measure on Zp

Lemma: For all non-negative integers n, let An be an independent random

variable uniformly distributed over the set {0, 1 p-1} Define a random variable

1 (d + 1)2t2d

(1 t2)2 (1 t2d+2)2
dt



A over the p-adic integers as

00

A = E AkPk
k=0

The random variable A is uniformly distributed on the p-adic integers, that is, it

is translation-invariant (P(A E E) P(A E n + E) for Borel sets E and p-adic

integers n) and every open set has positive probability This determines a Haar

measure on the p-adic integers Cu(E) = P(A E E))

Proof: A basic open set in the p-adic integers looks like a + pnZp, where

Zp is the set of p-adic integers, n is a non-negative (rational) integer, and a is

some p-adic integer The elements A = ckx 0 Akpk will be in this set if and only

if A a-- a (mod pn) Write a = ET_o akpk Then A is in a + pnZp if and only if

Er_o Akpk Er_o akpk (mod pn), or E71:-:(1. Akpk akpk, or Ak = ak for all

k E {0, 1, n 1} P(Ak ak) = lip for all k, so P(A E a + pnZp) = l/pn

Thus, every basic open set has positive probability, so all open sets have positive

probability Also, the probability of the basic open set a +pnZp is independent of a,

so the probability is translation-invariant for open sets, and thus for all Borel sets

0

This uniform measure on Zp is also the limit of the uniform probability

measures on Z/pnZ, which can be seen as follows

Proposition: Let S be a measurable set in the p-adic integers, and let the

set ST, be the image of S in Z/pnZ under the functions defined by the inverse limit,

that is, if s = Er_.0 skpk is in S, then E7k1...1 skpk is in Sn Let p, be the uniform

probability measure on the p-adic integers, and let tin be the uniform probability

measure on Z/pnZ Then, p(S).11m,,,i-In(Sn)

Proof: Let S be a basic open set in Zp Then S = a +PkZp for some p-adic

integer a and some non-negative integer k ti(a+pkZp) = p-k If n < k, then the set
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Sn is just a single element a E ZipnZ out of a possible pn elements, so ,u(S) =

If n> k, then

Sn = a (mod pn) ± pk (ZipnZ),

which has pn-k elements, so that tin(5n) pn-k ipn p- k Therefore, for basic mea-

surable sets, p(S) = limn-4c0 P(S) Since it holds for basic sets, it must hold for

all measurable sets 0

This random variable has some properties which may seem surprising from

the point of view of real random variables These properties, however, are based on

properties of the uniform random variable on Z/nZ

Lemma: Let X be a uniform random variable on 7L/n7, Y be any random

variable on Z/nZ, and Z be any random variable on the units of Z/nZ, with X, Y,

and Z independent Then P(Y + ZX = k) = P(X = k) for all k in Z/nZ

Proof:

n-1
P(Y + ZX = k) = E P(Y = 3)P(ZX = k 3)

3=0

n-1 n-1
= E P(Y = 3) E P(Z = z)P(X = k 7;

3)
3=0 z=0

n-1 n-1
1

= E P(Y =3) E P(Z = 2).-ri
3=0 z=0

1 n-1
= .L. E P(Y = 3) E P(Z = z)

n 3=,n z=0

= 1 1
n

= P(X = k)

Note that in the above equations, if z is not a unit, then P(Z = z) = 0 Looking at

this lemma on Z/pnZ, and letting n go to infinity, gives the following corollary
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Corollary: Let X be a uniform random variable on Zp, Y be any random

variable on Zp, and Z be any random variable on the units of Zp with X, Y, and Z

independent Then P(Y + ZX E S) = P(X E S) for all measurable sets S in Zp

The uniform random variable on the p-adic integers can also be split into two

independent pieces, one involving the units, and the other involving the power of p

which exactly divides the p-adic integer

Lemma: Let A be a random variable uniformly distributed over the p-adic

integer Let A be a random variable uniformly distributed over the p-adic units,

that is,

00

A = E AkPk 1

lc=0

where Ao is uniformly distributed over the set {1, 2 p 1} and for all positive

integers k, Ak is uniformly distributed over the set {0, 1p 1} Let J be a

random variable, independent from A, distributed over the non-negative (rational)

integers such that

PV = .7)=p 113-3
P

Then A = p-1 A, that is, P(A E E)= P(pJ A E E)

Proof: Without loss of generality, the lemma need only be proven for basic

open sets So, if P(pJA E a + pnZp) = P(A E a + pnZp) = 1/pa, then the lemma is

true a is a p-adic integer, so a = pnia for some non-negative integer m and some

p-adic integer unit a If m > n, then p.1 A E pma+ pnZp if and only if J > n



P(J > 77,) = 1 P(J < n)
a-lp_i

= 1

=p-n

Let m < n Then pi A E /ince + pn; if and only if J = m and A -=- . a

(mod p') Recall that P(J = m) = RP 1)113} - pm Let a = ,3=0 akPk

Then A-_ - a (mod Pnm) if and only if Ak = ak for all k E {0, 1 n m 1}

P(A0 = ao) = 1/(p 1) P(Ak = ak) = llp for all k E {1, 2n m 1} So,

P(A-:÷: a (mod pn-m)) = 1/(p 1) (1/p)n-m-1 Thus,

P(Pj A E pma + /3'4) = P 1

3=0 P

=1 l'
P 3=0

p 11 p - n=1
p 1 p-'

= 1 (p 1)
1 -np

p
= 1 (1 /3-71)

P
rn 1 (..._1rm-1 pn

P p 'pi

So, in every case, P(19-I A E a +pnZp) = 1/pn = P(A E a + pnZp) Therefore,

A = p-/ A 0

The previous properties can be used to find probabilities for uniformly-

distributed p-adic random variables, and the related quadratic random polynomials

Recall that p is an odd prime

Lemma: Let A be a uniformly distributed random variable over the p-adic

integers Then

PP(A is a square) = 2(p + 1)

Proof: A is a square if and only if A = pi. A, where J and A are distributed

as in the last lemma in the previous section, and J is even and A is a unit square

25
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So,

p p2 1

p+1

1 p
P(A is a square) =

2 p + 1

Proposition: Let A be any random variable over the units in Zp, B be any

random variable over Zr,, and C be uniformly distributed over Z7, with A, B, and C

independent Then

P(Ax2 + Bx + C has two distinct roots) = P(C is a square) = 20) 1)

Proof: Ax2 + Bx +C has two distinct roots if and only if B2 4AC is a non-

zero square A is a unit in Zp, and, since p is odd, so is -4 Thus, B2 4AC has the

same distribution as C In particular, the probability that B2 4AC is a non-zero

square is the same as the probability that C is a non-zero square P(C 0) = 0,

so P(C is a non-zero square) = pl[2(p+ 1)] 0

26

Since A is uniformly distributed over the units in Zp, and A is a square if and only

if it is a square modulo p (due to Hensel's Lemma), and half of the units modulo p

are square, P(A is a square) = 1/2

P(J is even) = E P(J =1)
3 even

E P(J = 23)
3=0

1 p= y
3-17 do P23 P

19 t (P-2)377
3=0

p 1

p 1 p-2
p 1 p2
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Corollary: Let B and C be independent, uniformly distributed random

variables over the p-adic integers Then, the probability that the monic polynomial

x2 + Bx + C has two distinct roots is pl[2(p+ 1)]

Proof: The random variable A with P(A= 1) = 1 is a random variable over

the units in the p-adic integers, so the above proposition applies El

The same technique, however, cannot be applied to random polynomials

where the first coefficient is not a unit

Theorem: Let A, B, and C be independent, uniformly distributed random

variables over the p-adic integers Then, the probability that B2 4AC is a non-

zero p-adic square is 1/2 Therefore, the probability that the quadratic polynomial

Ax2 + Bx + C has two distinct roots is also 1/2

Proof: By the second lemma, the three independent random variables A, B,

and C can be rewritten as six independent random variables A, E, 0, J, K, and L,

where A = pA, B = E, and C = pLO So, the probability that B2 4AC is a

square is the same as the probability that p2K E2 Lipj+L AO is a square Split this

into three cases, depending on J, K, and L

Case 1: 2K < J + L

If 2K < J + L, then p2K 13- 2 4pJ+L p2K (.1j 2 0.1-1-1,-2K AO\) This

will be a p-adic square if and only if 2K is even, and E2 -

modulo p Since E2 0.7-1-L-2KAO E2 (mod p) E2 413J-I-L-2KAO is always a

square modulo p Clearly, 2K is even

Case 2: 2K J + L

If 2K = J + L, then p2xE2 47)../-1-LAO p2x(E2 LIAO\) This will be a

p-adic square if and only if 2K is even and 13'2 -4A6f is a p-adic square (B2 4A0

may not be a p-adic unit ) 2K is always even Let

Pi = P(E2 4A0 is a non-zero square)

47P-L-2KAO is a square
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Case 3: 2K > J + L

If 2K> J + L, then p2K 132 4pJ 1-L AO pJ +I, (p2K -J -L .132 4A0) This

will be a p-adic square if and only if J+L is even and2p K-J-LE 2 4A0 is a square

modulo p The latter is true if and only if AO is a square modulo p

Since A and O are units, their product can never be 0 modulo p Also,

half of the numbers in {1, p 1} are squares modulo p A E A0 (mod p) and

O- -- Co (mod p), with Ao and Co uniformly distributed over the above set There

are (p 1)2 possible choices for Ao and Co (together) Let s be one of the (p 1)/2

squares modulo p If AoCo = s, then Co = s/Ao So, for any particular choice of

Ao, there are (p 1)/2 choices for Co (namely, s/Ao) which make AoCo equal to a

square modulo p Thus, out of the (p 1)2 choices for Ao and Co, (p 1)2/2 of them

result in the product being a square, so P(AO is a square) = 1/2

Let qi be the probability that 2K < J + L, q2 be the probability that

2K = J + L, and q3 be the probability that 2K> J + L and J + L is even Then,

P(B2 4AC is a square) = qi 1 + q2 pi + q3 1/2

If K = 0, J = 0, and L = 0, then 2K = J + L If K = 0 and at least one of

J and L is positive, then 2K < J + L Let K > 0 If J > 2K, or if J = 2K and L

is positive, then 2K < J+L If J= 2K and L = 0, then 2K = J+L Let J <2K

2K = J + L if L =2K J If L <2K J, then 2K> J + L If L> 2K J, then

2K < J + L

The following table separates the possible values of J, K, and L into nine

categories In each category, either 2K < J + L, 2K = J + L, or 2K> J + L



q2 = P(2K = J + L) = R1+ R5 ± R7

qi = P(2K < J + L) = R2 ± R3 ± R8 ± R8 + R9 = 1 q2 R4

q3 uses the values for J, K, and L in R4, but further requires that J + L be even

Finding Ri, R5, and R7 will determine q2 Then, finding R4 will determine q1

Finding q3 will be similar to finding R4

The following sums give the above values

Ri = P(K =0) P(J =0) P(L =0)
oo 2k-1

R5 = EE [1=2k 3]P(K = k) P(J = 3) P(L =1)
k=1 3=0

oo

R7 = ED = 21c1[1 = O]P(K = k) P(J = 3) P(L =1)
k=1
oo 2k-1 2k-3-1

R4 =EE E P(K = k) P(J = 3) P(L =1)
k=1 3=0 1=0

oo 2k-1 2k-3-1
q3 =EE E P(K = k) P(J = 3) P(L =1) 13+1 even

k=1 3=0 1=0

29

K = 0 J = 0 L = 0

L = 1 oo

R1

R2

J = 1 oo L = 0 oo R3

K=1 ooJ=0 2K-1 L=0 2KJ 1
L =2K J

L.2KJ+1 00

R4

R5

R6

J =2K L = 0

L = 1 oo

R7

R8

J = 2K+1 ooL=0 oo Rg
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where 13+1 even is 1 if 3 +1 is even, and 0 if I + 1 is odd

The geometric series will be used often in the following computations, as will

a similar series (here, a < 1)

0.
1E ak =

1 a
k=0

00

E ak =
1 a

1

k=1
a=

1 a
0.0 cc

E kak = E kak

k=1 k=0
oo

= E kak-1a
k=0

oo

= a E kak-1

k=0

,--,c° d k

= a
k=0 da

d ""
= E ak

da k=0

d 1
=
ada 1 - a

1
=a

(1 a)2

In particular, for a = p- n ,



p3 (P3 ___ 1)2

--,- 2 P 1(p2 ±p + 1)2

1,

1

Pn
k 0°

Ek 0,-11) z"-- Ek (p-n)k
kz--1 k=0

1

(1 -p72)2

P
__n

z.-..-

(pn 1)2

Ri = P(11- = 0) - P(J ----..- 0) P(L ,---- 0)

_p-1 0 pI 0 0

------PP
P

P P
(p_1)31)3

P3

00 2k-1
R5 === EE [1 ---- 2k-- - AP(K::---- k) P(J.=---- 1) P(L-,--- 0

kz--1 1=0

co 2k-1

_-_--EDI:-_-- 2k il pk P 1

(p, / 0 00 2k-1

EE p-kp-117-(2k-1)
k=1 2:---0

(91 ___ 1)3 Co 2k-1
-. \z- / EP-3k

P3 k--7--1 1=0

0) --- 1)3 "
P3

E 2k (p-3)
k

kz.---1

..--- 2 (13 1)3 73

1

ic=1 2_,O P P-1 P-1P P

,
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0 0

R 7 = E [3 = 21c][1 = O]P(K = k) P(J = 3) P(L = 1)
k = 1

= E
p 1 k p 1 _2k p 1 0

P P P
k=1 r

n
P P

(p c°=
E (73-3)kP3 k=1

(p 1)3 1=
p3 p3 1

(p 1)2=
p3(p2 + p + 1)

The probability q2 can now be computed

03 1)3 p 1 (p 1)2
q2= 3 +

P
2 (7)2 ± p + 1)2 ±p3 (132 + p + 1)

(p 1)3(732 ± p + 1)2 ± 2(p 43 + (p 1)2(p2 + p + 1)=
p3 (112 + p + 1)2

03 143 1)2 ± 2(p 1)p3 ± (p 1)(p3 1)=
p3(p2 +p + 1)2

03 1)0,6 2p3 + 1 +2p3 +p3 1)=
P3(P2 + P + 1)2

_ (p 1)(p6 + P3)
p3(p2 + p + 1)2

= (p 1)(p3 + 1)
(p2 + p + 1)2
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oo 2k-12k-3-1
R4 =EE E P(K = k) P(J = 3) P(L =1)

k=1 3=0 1=0

oo 2k-1 2k-3-1

=EE E P-
P k p 1 p 1 _1

pJ
k=1 3=0 1=0 P

(13 1)3
,n3

t' k=1 1 p-1=0

p(2k-3)

3

(13 1)3 N0()
2/k-1

-,

co 2k-1
(13 1)3 -1- k V"` 2k\)=_ z_, P

I
P )

133 13-1 k=1 3=0
1)3 ri 00 11 p-2k

E Pp3 p 1 k=i 1 p-1
2kp-2k)

1)2 v`c° Pk p-3k) 2k (P-3)k
2

P k=i P

(p-k 3k \ (P 1)2 / 3 \ k

P2

(.73 1)2 x--.cc P 2k v3.-P )
P2 k=i P k=1

k 3k \ 2(P 1)2 cE3 k (p-3)k
P )

P2 k=1P k=1

k=13=0 1=0

E .1:r 3 E (p-1(p k
2k-1 ( 2k-3 1

(p2 +p+ 1)2
1 _2p +p+1)-2p

+ p + 1)2

)))

(13 1) P P3 2(P 1)2 P3

p p-1 p3 P2 (p3-1)2
P2=1 2

p2 + p + 1
(p2 +p+ 1)2

(132

p3 + 2p + 1
(p2 + p + 1)2

The probability qi can now be computed
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and

ql = 1 q2 R4

1(p 1)(p3 + 1) p3 + 2p2 + 1
=

=

(p2 + p + 1) 2 (p2 ± p ± 1)2

(p2 + p + 1)2 (p 1)(p3 + 1) (p3 +2p2 + 1)

(p2 + p + 1)2

p4 + 2p3 + 3p2 + 2p + 1 (p4 p3 + p 1) (p3 + 2p2 + 1)=
(p2 + p + 1)2

2p3+p2+p+1
= (732 + p + 1)2

oo 2k-1 2k-3-1
q3 =EE E P(K = k) P(J = 3) P(L = 1) 1-3+/ even

k=1 3=0 1=0

oo 2k-1 2k-3-1
=EE E P(K = k) P(J = 3) P(L = 1) 13,1 even

k=1 3=0 1=0

co 2k-1 2k-3-1

+EE E P(K = k) P(J = 3) P(11 = 1) 1 odd
k=1 3=0 1=0

Split this into two different sums

oo 2k-1 2k-3-1
a3 =EE E P(K = k) P(J = 3) P(L = 1) 13,1 even

k=1 3=0 1=0

oo 2k-1 2k-3-1
b3 =EE E P(K = k) P(J = 3) P(L =1) 13,1 odd

k=1 3=0 1=0

SO that q3 = a3 + b3

co 2k-1 2k-3-1
a3 =EE E P(K = k) P(J = 3) P(L = 1) 13,1 even

k=1 3=0 1=0

Since 3 must be even, it runs from 0 to 2k 2 Similarly, 1 runs from 0 to 2k -j - 2

Let 3 = 23' and 1 = 21' to get

00 k-1 k-3' 1
a3 =EE E P(K = k) P(J = 23') P(L = 21')

k=13'=0 11=0

and then get rid of the primes to solve for a3
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00 k-ik-3---1

a3 =EE E P(K = k) P(J = 23) P(L = 21)
k=1. 3=0 1=0

00 k-1 k-3-1 (

k=1 3=0 1=0

(P 1)3= E pk
P3 k=1

(1 ) 1)3 w k= E P-
P3 k=1

=

=

1)3
' I

P-kP-23 P-2/3

(k 1
Ep-23 (lc ti p-21))
3=0 1=0

(k 1 - p-2(k-3)Ep_23

3=0
i_._ p-2

Ep-k (E 29-23 p.21C)

k=1 3=0

2 00 k-1(p 1)3 p

( , 1)2 co
= kl''

1 EP k
k,n-2k)

P(P + 1) k=1 1 P-2 l'

(p 1)2 f 00 p- k p-3k co

= E kp-3k
P(P ± 1) L=1 1

)

(P - 1)2 ( P2 7°° (19 k v ) P3
\

AP ± 1) .1)2 1 ktdlk ' 3ki
(733 1)2)

= kli'

( 1)2 ( p2 ( 1
1 p3 )

p(p + 1) p2 p 1 p3 1) (p3 1)2

p(p 1) ( 132 + p + 1 1 ) P2=
(P + 1)2 P3 1 P3 ) (P + 1)(p2 + P + 1)2

P(P 1) P2 + P P2=
(p + 1)2 p3 l (p + 1)(p2 +p+ 1)2

P2 P2=
(p + 1)(p2 + p + 1) (p + 1)(p2 + p + 1)2

p2 (p2 ± p ± 1)
P2

(P + 1)(p2 +P + 1)2 (P + 1)(p2 +P + 1)2
p2 (p2 + p)

=
(P + 1)(p2 + P +1)2

P3=
(p2 ± p ± 1)2

00 2k-1 2k-3-1

b3 =EE E P(K = k) P(J = 3) P(L =1)
k=1 3=0 1=0

134 odd

35



36

Since j and 1 must be odd, j must be between 1 and 2k 1, and 1 must be between

1 and 2k 2 Let 3 = 23' + 1 and 1 = 21' ± 1 to find that 3' is between 0 and

k 1, and l' is between 0 and k 3' 2 Dropping primes gives

00 k-1 k-3 2
b3 =EE E P (K = k) P (J = 23 + 1) P (L = 21 + 1)

k=13=0 1=0
00 k-1 k-3-2 2 ( k=EE E P WP P P

k=13=0 i=o P3

=
(p 1)3 CC (lc 1 k 2 )

P5
E P k EP-3(E P-

)

k=1 3=0 1=0

1 (p 1)3 c° k
k-1 (k 3-1

= P

_21) )

E EP E
P2 P3 k=1 3 =0 /=0

=
-.P2

1 (1) - 1)3 CC'

E P- k
P2 p _31
1

(a3
0, 1)

P k=1

Ep-k(Ep-23 (p-2(k-3 ))) )
3=0

3 c° k-1

1 p3 (TP 1)3 Cc k (k 1= 2k-I-2) )
7,3 EP EPp2 0,2 ± p + 1)2 r k=1 3=0

(k 1
E 13-23 ([1 = k 3 1]P-21))
3 =0

(P 1)3 c° k C-1 2k)
P3

EP EP
z- k=1 3 =0

(p 31)3 Ecc pk ( kp-2k)
P k=1

(13 1)3 Cc 3kE
P3 k=1

(p i)31)3 p3

P3 (P3 1)2
p

(7,2 + p + 1)2

-

P3 1 p3 + 1
q3 = a3 + b3 =

(P2 + P + 1)
+

(P2 + P + 1)2
=

(P2 ± P + 1)2

P= (732 + p + 1)2

P= (7,2 + p + 1)2

P=
(p2 + p + 1)2

P=
(732 + p + 1)2

P= (p2 + p + 1)2

1=
(p2 + p + 1)2

Thus,
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Pi = P(132 4A0 is a non-zero square) Denote the unit p-adic integers by

Zp Let f (A, B ,C) = B2 4AC Then,

Pi = kt({(A, B,C)1A, B , C E Zp and f (A, B,C) is a non-zero square)),

or pi = ii((zp)3 n I-1(s)), where S is the set of non-zero p-adic integer squares

Since S is open, and f is continuous, and Zp is open, pi is the measure of an open

set In particular,

P1 = lim P(i3 2 4A6' is a non-zero square modulo pn)
n-+oo

And, since open sets are measurable, the limit has to exist, so

-pi = lim P(B2 LIAO is a non-zero square modulo p2n)
n>oo

Let A, E, and O be units in Z/p2nZ Let Si be the set of unit squares in

Z/p2nZ, and let 52 be the set of non-unit non-zero squares in Z/p2nZ

P2 = P(i32 4A0 is a square modulo p2n)

. E p(E2 - LIAO . k)
kESiUS2

. E p(n2 - LIAO . k) + E P(E2 - LIAO = k)
kES1 kES2

E (a E2 lc)

kESj 4A )±
E (a E2 k)

kES2 \ 4A )

Given k, A, and E, there is at most one choice for a Since 4A is a unit, the

only way there can be no choices for 6 is if E2 k has a factor of p, since O

must be a unit If k is divisible by p, E2 k will not be, and t can be any unit

Suppose k is not divisible by p There is some 3 such that k = 32 = (_3)2, or

E2 k :_____ E2 _2 (b +3)(E 1) p divides E2 k if and only if p divides at least

one of E + 3 or B - j So, p divides B2 k if and only if B ±3 (mod p)



38

An element of Z/p2nZ is a unit if and only if it is not divisible by p, so there

are p2n-1 units in Zip2nZ, or (p 1)p2n-1 non-units in Z/p2nZ For 0 = 41.2-71-c to be
4A

valid, A can be any of these units and 0 can only be one of these units If k is not

a unit, then b can be any unit, but if k is a unit, then 13' 0 ±3 (mod p), so E can

only be one of (p )3p2n-1 is°I the units So, the probability becomes

P2 E24A k)= k;E1 P a z---( E24A k) ± kES2 P a =
= E (p 1)292n-1 (p 3)732n-1 1

kES1 03 1)/921 (1)- 1)P271-1 (1)- 1)/92n-1
(p 1)p2n-1 (p 1)p2n-1 1+ E

kE S2 (P
1)132n-1 (p 1)p2n-1 (p 1)p2'

= kEEs1 (n P - 3 ± E1 )2p2n-1
kES2 (19 1)P271-1

1

= IS1 I P - 3 + IS21
1

(p 1)2p2n-1 (p 1),p2n-i

where IS21 is the cardinality of the set S, For k to be a unit square, it must be a

square modulo p Thus, half of the units are squares, and ISi I = (P

k is a non-unit square, it must be divisible by an even power of p In addition, if

k is divisible by p23, then k = p23 a, where a is a unit square modulo p2n-23 There

are (p 1)732n-23- 1 /2 possibilities for a So, the number of non-unit squares is
n-1 (p 1)p271. 23 . .. 1

15121 = E 23=1

p - 1n-1= E 032)n-3
2p 3.1

p - 1 n-1 (p2)2
2p z=1

p 1 (p2n 1 1)

2p p2 - 1
=

1)p2n-1/2 If

p 1 p2n p2

2p p2 - 1

= '
2(p + 1)

=



Thus,

P2 = 1,911 P 3 + 1,521
1

1)2p2n-1 (p 1)p2n-1

(p 1)p2n-1 p 3
P2n-1 P 1

Therefore,

p 3 1 p2-271

Pi = ni-400 2(p 1) ± 2(p2 1)

(1) 3)(P + 1) 1 P2= urn
n>oo 2(p2 1) ±2(732 _ 1) 2(p2 1 )p2n

p2 2p 3 + 1 P2 1= lim
n-4°° 2(p2 1) 2 (p2 1) p2n

p2 2p 2 p2 1
lim

2(p2 1) n>w 2(p2 1) p2n

p2 2p 2

2(p2 1)

Finally,

2 (p 1)2p2n-1 2(p + 1) (p 1)p2'
3 1

1)

±
2(p2P 1)
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P(B2 4AC is a square) = qi 1 + q2 pi + q3 1/2

2p3 + p2 + p + 1=
(p2 + p + 1)2

=

=

(p 1) (293 + 1) p2 2p 2
+ (p2 ± p + 1)2 2 (7)2 _ . _ l)

+
p3 + 1

2(p2 + p + 1)2
2(p + 1)(2p3 + p2 + p + 1)

2(p + 1)(p2 + p + 1)2
(p3 + 1) (p2 2p 2)

+2(p + 1)(p2 + p + 1)2
(p + 143 + 1)

+
2(p + 1)(p2 + p + 1)2

4p4 + 6p3 + 4p2 + 4p + 2
2(p + 1)(p2 + p + 1)2
p5 2p4 2p3 + p2 2p 2

+
2(p + 1)(p2 + p + 1)2

+ P4+P3+P+1
2(p + 1)(p2 + p + 1)2

p5 + 3p4 + 5p3 + 5p2 + 3p + 1=
2(p + 1)(p4 + 2p3 + 3p2 + 2p + 1)

p5 + 3p4 + 5p3 + 5p2 + 3p + 1=
2(p5 + 3p4 + 5p3 + 52 + 3p + 1)
1=
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4. The Measure Witt Ring

The previous section found the probability that a random quadratic form has

two distinct roots for various fields and measures In the p-adic case, that probability

was 1/2, no matter what odd prime p is chosen There may be a way to explain

why these probabilities are the same, and perhaps to determine how probabilites

for other fields might compare With all of the fields and measures in question, the

key is the probability that the quadratic form b2 4ac is a square in the field The

Witt ring is a mathematical object which tells when, in some sense, the theory of

quadratic forms is the same over two different fields A version of this, the measure

Witt ring, may help explain when two fields with measures have, in some sense, the

same theory of measure and quadratic forms together

4.1 Equivalence of Quadratic Forms

Two quadratic forms q and r over a field F are said to be equivalent if there

is a linear transformation T such that q(Y) = r(T) A similar definition can be

used for measure equivalence

Definition: Let F be a field Let q and r be quadratic forms from Fn to F, and

let ti be a measure on F Call the resulting product measures pm Then q and r

are equivalent with respect to p, or A-equivalent, if q(i) = r(Ti) for some

invertible linear transformation T which preserves 11, that is, p(A) = pii(T-1(A))

for all measurable sets A When the measure is understood, q and r are called

measure equivalent

This definition gives
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1.1(q-1(A)) = pn((r 0 T)-1 (A))

= ptn,((T-1 o r-1)(A))

= iln(T-1 (r-1 (A)))

= pn(r-1 (A))

provided q' (A) and r-1(A) are measurable This matches with the definition of

measure equivalence for general functions However, with some measures it is pos-

sible that pn(q-1(A)) = pn(r-1(A)), but there is no invertible linear transformation

T such that q(i) = r(T i) For instance, if q is a real two-dimensional hyperbolic

quadratic form (that is, q = ax2 +bxy + cy2 and b2 4ac > 0), and A is an interval,

then I.L2(q-1 (A)) is always infinite, where p is Lebesgue measure If q and r are real

two-dimensional hyperbolic quadratic forms whose matrices have different determi-

nants, then any linear transformation T which makes the two equivalent must have

a determinant other than 1 or -1 However, as will be seen later, the only Lebesgue

measure-preserving linear transformations are the ones with determinant 1 or -1

Thus, even though q-1(A) and r-1(A) are always the same (infinite), there is no

measure-preserving linear transformation T such that q(i) = r(Ti)

4.2 The Witt Ring

The Witt ring is a mathematical object which determines when the theory

of quadratic forms is the same for two different fields More precisely, if two fields

have isomorphic Witt rings (with operations symbolized by + and ), then there

is a function cb from the quadratic forms of one field to another, such that, given

quadratic forms q, r, and s, then q = r + s implies q5(q) = (1)(r) + O(s) and q = r s

implies 0(q) = OH O(s) [6, p 58]
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The measure Witt ring is a slight modification of the Witt ring The measure

Witt ring uses measure-preserving linear transformations where the Witt ring any

invertible linear transformations to define equivalence classes Since all invertible

linear transformations are measure preserving if the measure is the zero measure,

the canonical Witt ring is a special case of the measure Witt ring

4.3 Measure-Preserving Linear Transformations

In the construction of the measure Witt ring, it is useful to know which

invertible linear transformations are measure preserving Given a measure p on the

field F, the measure on Irl is determined by the product measure The identity linear

transformation / is always measure preserving, for a measurable set U,I'(U)=U,

so p(I'(U)) = p(U) If an invertible linear transformation T is measure preserving,

then its inverse will also be measure preserving, p((T')-1(U)) = p(T(U)), and since

T is measure preserving, p(T(U)) = p(T'(T(U)) = p(U) Also, since the measure

on IP is the product measure, a linear transformation which switches coordinates

of a vector (for example, T(x, y, z) = (y, x, z)) with respect to the standard basis

is also measure preserving Note that if p is the zero measure, all invertible linear

transformations are measure-preserving

4 3 1 Real Measures

The relation between Lebesgue measure and integration leads to a relatively

simple determination of whether or not a linear transformation is measure preserving

for some measures on the real numbers Let p be Lebesgue measure on the real

numbers Suppose that v is a real measure such that v(A) = fA f (x)dp, where f is

a continuous function If v is a finite signed measure which is absolutely continuous
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with respect to ii, then the Radon-Nikodym theorem allows us to find an f with If I

integrable [1, p 238]

A linear transformation is v-preserving if, for all measurable sets A,

v(A) = v(T-1(A)) (Here, A and v also represent their product measures in IV )

Equivalently, fA f (i)dit = fT-1(A) f (4c1P, = fA f (T-1 (4)1 J (T-1) Idp, where J(T')

is the Jacobian of the linear transformation T-1, which is the determinant of T-1

Let A be the determinant of T Then, T is a v-preserving linear transformation if

and only if fA f (i)dp = 1/I AlfA f (T-1(1))dp for all measurable A By the Fun-

damental Theorem of Calculus, this requires that f() = 111AI f (T'(Z)) for all

vectors ±* Therefore, T is v-preserving if and only if f() = 1/IA If (T'(i)) for all

vectors Y

4 3 2 Haar Measures

If p is a Haar measure, then A is translation-invariant (that is,

p(A) = ii,(x + A) for all x E F and measurable A) This lets us narrow down

which linear transformations are measure-preserving The following transformation

is measure preserving for Haar measures

Theorem: Suppose T is a transformation from X x Y into itself, with X

and Y one-dimensional vector spaces over F, such that T(x, y) = (x, y + kx), with

k some fixed scalar in F Let p be a Haar measure on F Then, T is p-preserving

Proof: (This proof is based on one given in [5, p 258] ) By definition of

T, T-1(x, y) = (x, y kx) Let E be a measurable subset of X x Y For any set

A in X x Y, and x E X, define Ax to be the set of all y E Y such that (x, y) E A

Let y E (T-1(E))x, that is, (x, y) E (T-1(E)) Then, (x, y + kx) must be in E,

or, y E Ex kx Similarly, if y E Ex - kx, then y+ kx is in E, or (x, y + kx) is
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in E, so that (x,y + kx - kx) = (x,y) E T-1(E), or y E (T-1(E))x Therefore,

(T-1(E))x = Ex - kx

Then,

(it x 1.1)(T-1(E)) . I ii((T-1(E))x)clii = fA(Ex - kx)dp = f ii(Ex)clii = ii(E)

So, T is A-preserving 0

Thus, if a matrix (representing a linear transformation) is measure preserv-

ing, then we can rearrange rows, and add rows to one another, to find another

measure preserving matrix Similarly, we can multiply any invertible matrix by

measure-preserving matrices to get a diagonal matrix Either both the diagonal

matrix and the original matrix are measure preserving, or neither are

4.4 Construction of the Measure Witt Ring

The following construction is adapted from the construction of the Witt ring

in [8]

Let F be a field, and it be a measure on that field Use the product measure

as a measure on Fn Each quadratic form f on F maps Fn to itself for some integer

n The integer n is the dimension of the form f, and f is called an n-dimensional

form Each quadratic form f can be represented uniquely by a symmetric matrix

M1,, such that f() = (i)t Mf I, where the symbol t represents transposition A

quadratic form f is regular if Mf is invertible Then, two quadratic forms f and g

are equivalent if and only if f() = g(T) for some invertible linear transformation

T, or, Mf = Tt Mg T This is an equivalence relation on the set of regular quadratic

forms Call this set of equivalence classes M(F, p)

Definition: The orthogonal sum of two quadratic forms q Fa ---÷ F and

r Fm -+ F is q ED r IP x b -- F, where (q 6) r)(i, 0 = q(Y) + r (0 in F



This operation is well-defined, if q1 (Y) = q(T4, then

(qi e r) (±-* , 0 . qi () + r(g) = q(T)+r(g) = (q eOVA 0= (ger) ( (17 e i)(i ,0

Also, the orthogonal sum is commutative here, (q e r)(i, 0 = (r e q)(il,i), and the

linear function which switches coordinates is measure preserving

Definition: The tensor product of two quadratic forms q Fn > F and

r bv" ---> F is q 0 r Pm > F, where (q 0 r)(Y 0 0 = q(i) r(g) in F The

matrix of q (8) r will be the Kronecker product of the matrices of q and r This holds

in equivalence classes also

Under the operations e and 0, M(F, p) is a semi-ring Cancellation holds

in a semi-group if q e q1 = q e q2 implies q1 = q2 If cancellation does not hold in

M (F, p), then combine equivalence classes so that q1 is equivalent to q2 if q ED q1 =

q e q2 for some quadratic form q, cancellation then does hold

The following Grothendieck construction generates a group from a cancella-

tion semi-group Define a relation on M(F, p) x M(F, p) by

(x, y) '- (x', y') <=;- x ED y' = x' ey E M (F)

Since x ED y = x ED y, (x,y) ' -' (x, y) And if (x, y)'- .'. (x' , y'), then x ED y' = x' ED y,

or x' ey=xe y', or (x', y') - -' (x, y) If (x, y) = (x', y') and (x', y') = (x", y"), then

x ED y' = x' ED y and x' e y" = x" ED y' Since the operation ED is commutative,

xEDy"ey'=xey'ey"=x'eyey"=yex'ey"=yEDx"ey'

By cancellation, x ED y" = xi' ED y, and the relation is transitive Therefore, this

is an equivalence relation Let Groth(M(F, p)) be the set of equivalence classes of

M (F, 12) x M(F, p) under this relation Addition and multiplication on M(F, p)

induce addition and multiplication on Groth(M(F, p)), making this a ring This is

46
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called the Witt-Grothendieck ring, and is denoted by W(F, p) Since x ED 0 = 0 e x,

(x, x) (0, 0), so that (x , 0) + (0, x) = (0, 0), or (0, x) = (x, 0) The element (x, 0)

is often denoted x

The hyperbolic quadratic form, H(x, y) = x2 y2, is equivalent to the sum of

a quadratic form with matrix [1] and a quadratic form with matrix [-1] If [1] e[-1]

is made equivalent to 0 by taking the quotient by the ideal generated by H, then

[1] = [-1], and an element (x, y) in W (F, it) is equivalent to (x, 0) + (0, y) =

(x, 0) (y, 0) = x y This brings the equivalence class representatives back into

M (F, p,) Taking the quotient of W(F, p) by the ideal in W(F, p) generated by H

gives ViT(F, p)/ < H > This is the measure Witt ring of F and p, and is denoted

W (F, p)

In order to find Witt rings, it is useful to use diagonalization Every symmet-

ric matrix is equivalent to some diagonal matrix, that is, if M is symmetric, there is

some invertible matrix T such that r MT is diagonal There is no guarantee, how-

ever, that T will be measure preserving If a matrix is measure equivalent to some

diagonal matrix, that matrix is equivalent to a sum of one-dimensional matrices

Then, the corresponding quadratic form is equivalent to the sum of one-dimensional

quadratic forms Also, the Kroenecker product of diagonal matrices is simple to

find

4.5 Examples

Using the zero measure po, every invertible linear transformation is a

measure-preserving linear transformation Thus, the measure Witt ring W(F, po )

will be the same as the canonical Witt ring, symbolized W (F) In the canonical

Witt ring, cancellation holds if the characteristic of the field is not 2 See Theorem
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1 6 in [6], attributed to Witt Also, the ideal generated by H is simply Z H in the

canonical Witt ring

4 5 1 Real, Zero Measure

Lemma: Every one-dimensional real quadratic form is equivalent to a one-

dimensional form whose matrix is either [I], [1], or [0]

Proof: Let [a] be the matrix for the one-dimensional form If a = 0, then

[a] is equivalent to [0] So, suppose a 0 Then [1/M is an invertible linear

transformation (its inverse is [FL]) which is its own transpose So, [a] is equivalent

to [1/M] [a] [1/F21] = [a/14 = [sign a] El

Since only regular forms are used in the construction of the Witt ring, the

[0] term will never appear, if a quadratic form had a [0] term, its resulting matrix

would not be invertible So, every regular quadratic form is equivalent to the sum

of [1] and [-1] terms Finding the Witt-Grothendieck ring gives additional possible

terms of the form [1] and [-1] Taking the quotient gives [I] = [-1] (and

[-1] = [1]), so all terms are again of the form [1] and [-1], and [I] e [-1] = 0

Everything in 147(I11), therefore, is the sum of terms of the form [1] and [-1]

Any such sum can be reduced to a sum of all [1] terms, or all [-1] terms, or a sum

of no terms W(R) is isomorphic to Z, which can be seen by sending the sum of n

[1] terms to the integer n, the sum of n [-1] terms to the integer n, and the sum

of no terms to zero

4 5 2 Finite Field, Zero Measure

Let F = Fq, the finite field of q = pm elements, with p odd Let F* denote the

units in F, that is, all non-zero elements of F Half of the elements of F* are squares
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So, we can work in a way similar to the real numbers, in that all forms are (still)

diagonalizable, and, by the argument in the lemma, every one-dimensional form is

equivalent to a form whose matrix is either [1] or [s], where s is some representative

non-square in F* Again, since the matrix for each form is invertible, no zero terms

will appear So, the only possible non-equivalent two-dimensional forms are [1] ED [1],

[1] ED [s], and [s] ED [s] There are two possible cases either -1 is a square, or it is not

If -1 is a square (that is, if p - -. 1 (mod 4)), then the form [-1] is equivalent

to the form [1] In particular, [1] ED [1] = [1] e [-1] = 0 and [s] e [s] = [s] e [-s] = 0

So, the only possible form with two terms not equivalent to 0 is [1] e [s] If we

add any one-dimensional form to this, we get cancellation, and so we can never get

a form with three terms The only (non-equivalent) forms in the ring are 0, [1],

[s], and [1] ED [s] This is ring-isomorphic to the group algebra Z2[Z2], where here

Z2 = Z/2Z

Suppose -1 is not a square Then [s] is equivalent to [-1], so that

[1] e [s] = [1] e [-iii = o

Look at the sets (F*)2 and 1 + (F*)2 These two sets have the same cardinality, and

are not equal, since 1 is not in 1+ (F*)2 So, there is some element in 1+ (F*)2 which

is not in (F*)2 This element cannot be 0, since 0 = 1 -I- -1 is not in 1 + (F12 Let

this non-square element be s, so that s is the sum of two squares, that is, s = 1+ k2

for some k E F* The following matrix multiplication

1 k 1 0 1 k= =
1 k 1 k 1 +

=
k2 0 [s 01

1

k 1 0 1 k 1 k 1 k 1 0 1 + (k)2 0 s

says that [1] ED [1 is equivalent to [s] ED [s] In particular, [1] ED [1] is equivalent to

[I]e [-1], or that [1] ED [1] ED [1] ED [1] = 0 in the Witt ring Thus, in the Witt ring, at

most three [1] terms can be added together [-1] is equivalent to [1] ED NED [11, so any
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[-1] terms can be converted to [1] terms Therefore, the only non-equivalent forms

in the Witt ring are 0, [1], 2[1], and 3[1], which makes the Witt ring isomorphic to

the ring Z/4Z

.4 5 3 P-adic, Zero Measure

Let p be an odd prime All quadratic forms are still equivalent to diagonal

forms Also, as in the other cases, [a] is equivalent to [c2 a] for all non-zero c

Every element in Qp, can be written as prna, where M is some integer, and

a is a p-adic unit Since [p2 a] is equivalent to [a], every one-dimensional form

[pm a] is equivalent to [pea], where e is either 0 or 1, depending on whether m is

even or odd Set up two functions as follows di(a) = a, di(pa) = 0, d2(a) = 0,

d2(pa) = a, where a is a p-adic unit, and a is the first p-adic 'digit' of a, that is,

if a = En_,) anpn, then a = a() These di are homomorphisms from the equivalence

classes of one-dimensional forms on Qp to the equivalence classes of one-dimensional

forms on Fp The two functions induce an isomorphism from W(F) ED W(1F) to

W(Q) Therefore, if p -a- 1 mod 4, then W(Q) is isomorphic to Z2[Z2] ED Z2[Z21,

and if p a 3 mod 4, then W(Q) is isomorphic to Z/4Z e Z/4Z

4 5 4 Finite Field, Uniform Measure

The measure Witt ring of finite fields with a uniform measure is easy to find

Theorem: Let F be a finite field, and ti the uniform probability measure

on F, that is, p({al) = 1/IFI for all a E F, where I1F1 is the cardinality of F Then

W(F, tt) = W(F)

Proof: In order to determine the measure Witt ring, the invertible measure-

preserving linear transformations must be found The measure of a set S in F is
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equal to ISI/IFI, that is, it is based solely on the number of elements in the set

S If T is any invertible linear transformation, then T is one-to-one and onto, so

that IA I = IT(A)I = IT-1(A) I Therefore, all invertible linear transformations are

measure preserving This means the set of equivalent quadratic forms in the measure

Witt ring and the canonical Witt ring are the same, and the resulting rings must

be the same 0

Every uniform measure is proportional to the uniform probability measure,

so the same linear transformations are measure preserving Thus, the measure

Witt rings will be the same Therefore, for all uniform measures on finite fields,

W(F, p) = W(F)

4 5 5 Real, Lebesgue Measure

Let pi, be Lebesgue measure on the real numbers The relationship between

(standard) integration and Lebesgue measure is very useful here PL(A) = fA cri

So, in this case, the density function for the measure is just the function f(g) = 1,

and we get that T is measure-preserving if and only if f(i) = 1/IA I f (T-1(g)),

or in this case 1 = 1/IA I 1, or 1,6,1 = 1 Thus, any linear transformation whose

determinant is ±1 preserves Lebesgue measure

Or, we can look at Lebesgue measure as a Haar measure In this case,

not only do we have that each matrix (representing a linear transformation) is

measure-equivalent to a diagonal matrix, but Lebesgue measure has the property

that p(c A) = IcIp(A) for c a constant, which lets us multiply one row of the matrix

by c, and another by 1/c, and keep the measure the same By multiplying rows of the

diagonal matrix by appropriate values, we can make any matrix measure-equivalent

to a diagonal matrix with ones on the diagonal, except for the determinant (modulo
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sign) in (say) the first diagonal entry This matrix is only measure preserving if all

of the entries are ±1, that is, if the determinant of the matrix is ±1

The standard quadratic form theory tells us that, given the matrix M of a

quadratic form, there exists some invertible matrix T such that TtMT is diagonal

Define the matrix R to be the same as T, but with the entries in the first row

divided by the determinant of T Then R is measure preserving, and RtMR is

also a diagonal matrix Thus, every matrix is still equivalent to the sum of one-

dimensional matrices

Lemma: (Lebesgue Cancellation) Let q, (in and q2 be real quadratic forms,

with corresponding matrices M, M1, and M2, respectively If q eql is Lebesgue

measure-equivalent to q 6 q2, then qi is measure-equivalent to q2

Proof: Since qeq1 is equivalent to qeq2, we know that there is some matrix

T with determinant ±1 such that

MO 1 MO 1
Tt T=

0 M1 0 M2

Since T is an invertible matrix, q eqi and q 6 q2 are equivalent in the non-

measure-preserving case, so there is some matrix S such that St MIS = M2 Thus,

or

Tt
0 1[M T=I ./. 01 [M 0 1 L 01

0 Mi St 0 M1 0 S0

10 MO / 0 M 0
ost

[

o mi

[

os o A/2



Taking determinants of both sides gives

(det T)2 det M det MI = (det S)2 det M det M1,

or (det T)2 = (det S)2 Since det T = ±1, det S must be ±1, so that S is measure

preserving, and q1 and q2 are equivalent under the measure 0

Theorem: W(R, p,L) = W(R) = Z

Proof: By the above lemma, cancellation holds, and the semi-ring of equiv-

alence classes can be made into a ring by the Grothendieck construction Then, in

order to get the measure Witt ring for the reals and Lebesgue measure, take the

quotient of this ring by the ideal generated by the hyperbolic form Since

[] [1

01 [a 0
a®

1

0-1 0a
this ideal contains sums of matrices of the form [a] e [-a] However, in the measure

Witt ring, the following computation holds

[1+2a+a2(1-2a+a2)
4

0

[a 0

01-2a+a2(1+2a+a2)41

0 a
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1+a

(1+a)

a u2 ,,

0 1

(1+a)2

1+a 1a

(1+a)(1

1+a 1a a(l+a) a(1a)
=2a 2

1a 1+a

[
2a 2a

1+a1-a

2a 2

1+a

2 2

a-1 (1+a)
2a 2

[

2 2

(1-02

2a 2

a) (1+a)(1a)

2 2

=4

(1a)
4

(1+a)(1 a)

4 4

(1-02 (1+a)2
4 4 4 4



IThe matrix 2a
2a

1+a
2 2

_

has determinant

(1 + a)2/4a (1 a)2/4a = ((1 + 2a + a2) (1 2a a2))/4a = 4a/4a = 1,

so it is measure preserving Thus, the matrix [a2] ED [-1] is equivalent to [a] e

[a], which is in the ideal generated by the hyperbolic form Thus, in the measure

Witt ring, [a2] ED [-1] = 0, or [a2] = [1] So, all one-dimensional regular quadratic

forms are equivalent to [1] or [-1], and the same cancellations occur as in the

regular real number case Therefore, the measure Witt ring for Lebesgue measure

on the real numbers is the same as the regular Witt ring for the real numbers, or

MR, AL) = W(R) = Z E

4 5 6 Real, Gaussian Measure

Let tiG be the Gaussian measure on the real numbers There is a relationship

between Gaussian measure and Lebesgue measure, namely, that

PG(A) . I PG = fA(27)-7//2e-14124L,

where n is the dimension of the space, and IA is the standard norm of a vector

in real space The distribution function of the measure is f(l) = (270n/2e-14/2

The linear transformation T is measure preserving if and only if f() = f (T-1())

for all i, Or, (270-2i2CIA/2 = (27)-n12e-IT-1(Y)1/2 for all i, or lil = IT- 1(i) I for

all i These are exactly the orthogonal matrices, so orthogonal matrices are the

measure-preserving matrices for Gaussian measure

If M is a symmetric matrix, then there is some orthogonal matrix T such

that TtlifT is diagonal, so all quadratic forms in this setting are equivalent to a

54
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form with a diagonal matrix The entries on the diagonal of this matrix are the

eigenvalues of the matrix M with appropriate multiplicity

Let the symbol stand for 'orthogonal equivalence', that is, matrices A E

B if there is some orthogonal matrix T such that rAT = T-1AT = B Let

quadratic forms q r if their corresponding matrices are equivalent This is the

same as equivalence under standard Gaussian measure In particular, for symmetric

matrices, A B if and only if A and B have the same eigenvalues with the same

multiplicity, since they can be diagonalized to the same diagonal matrix

Lemma: (Orthogonal Cancellation) Let q, q, and q2 be real quadratic forms

such that q@qi q eq2, where -a is the above orthogonal equivalence Then q1 q2

Proof: Let M, MI, and M2 be the symmetric matrices for the quadratic

forms q, ql, and q2, respectively These forms are equivalent to diagonal forms d, d1,

and d2 with corresponding diagonal matrices D, Di, and D2 The entries in D are

the eigenvalues of M, and similarly for D, and M, (z E {1, 2}) d dia-- q q1

q ED q2 d ED d2 In terms of matrices, we get that D ED DI D ED D2, where

AB= O1

0 B

In particular, D ED Di has the same eigenvalues as D D2, but the eigenvalues of

a diagonal matrix are its diagonal entries, so it must be that Di and D2 have the

same eigenvalues By the following proposition, D1 a D2, which means d1 d2, or

q2

Proposition: Two diagonal matrices are orthogonally equivalent if and only

if their diagonal entries are the same, including multiplicity

Proof: The diagonal entries in a diagonal matrix are the eigenvalues of the

matrix If the eigenvalues of two matrices are different, then the matrices cannot
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be equivalent So, in order for two diagonal matrices to be equivalent, their entries

must be the same, including multiplicity

Given a diagonal matrix, its entries can be rearranged freely using orthogonal

matrices, as follows let D be a diagonal n by n matrix Let ei be the zth standard

basis element for the real numbers, that is, the vector with a one in the zth position,

and zeros in all other positions Let a- be the permutation of the entries in the

diagonal matrix that is desired, that is, if the first entry in D is to become the

fourth, then let 0-(1)= 4 Construct the orthogonal matrix T where the zth row of

T is e,-.1(2) The resulting matrix rDT will be the diagonal matrix appropriately

arranged So, if two matrices have the same entries, including multiplicity, then the

matrices are equivalent D

Theorem: W(R, tz G) is isomorphic to the group ring Z[R+], where R+ is

the multiplicative group of positive real numbers

Proof: From what has already been done, all matrices are equivalent to di-

agonal matrices, and cancellation applies The Grothendieck construction can again

be used to form a ring The only other equivalences obtained in the construction

of the measure Witt ring are those found by setting all multiples of the hyper-

bolic form to zero This allows additive inverses to cancel, that is, [x] e [x] = 0,

or [x] = [x], for all real numbers x Treating diagonal matrices as sums of

one-dimensional matrices, each non-zero element of the measure Witt ring can be

written as

m

E En [rn],
n=1

where rn E R+ and en is ±1, and m is some positive integer The only sums

equivalent to a given sum are those found by commuting the elements (due to the

proposition), and cancelling additive inverses (by the measure Witt ring construc-



tion) Thus, every element can be written as

3

Ekn[rn],
n=1

where kr, E Z is the number of instances of [rn] in the original sum, minus the

number of instances of [rn], and 3 is the appropriate integer Each of these is

unique, that is, two of these sums are equivalent if and only if one is a reordering of

the terms of another So, as a set, W(R, JIG) can be written as the set of all formal

sums as above, with kn E Z and rn E R+ This set is the same as the set of elements

in the group ring Z[J]

Addition of two of these formal sums is componentwise, that is,

ki [r] + k2 [7] + k3[s] = (k1+ k2) [1] + k3[s],

which matches the addition in the group ring

Multiplication in W (R, tiG) comes from the tensor product, where

[r] 0 [s] = [rs] and ar] + [s]) 0 [t] = [rt] + [st] This gives

m n m n
m[r] 0 n[s] = EH 0 E [s] = E E [r s] = (mn)[rs]

z=1 3=1 2=13=1

which matches the multiplication in the group ring

Therefore, W(R, itG) is isomorphic to the group ring Z[R] 0

4 5 7 Real, Uniform Measure on [-1, 1]

With this measure, the linear transformation T Rn . Rn is measure pre-

serving if and only if f() =1/jAlf(T-1(i)) for all vectors i, where A is the deter-

minant of T, and f is the function which is 1 on the square [-1, l]n and 0 everywhere

else If Y is sufficiently small, then both i and T-1(Y) are in the [I, 1] square, so

that IA I must be 1 Thus, for T to be measure preserving, AY) = f(T'(Y)) must
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be true for all E In other words, every vector in the square must stay in the square,

and every vector outside the square must stay outside the square

The only invertible linear transformations which fit these criteria are the

symmetries of the square In particular, in 11/2, there are only eight such linear

transformations Checking all of these linear transformations against the quadratic

[1 11
form with matrix shows that the above quadratic form is not diagonalizable

10
The above quadratic form was not chosen with any special property, most quadratic

forms won't be diagonalizable This makes the resulting measure Witt ring very

difficult to find

4 5 8 P-achc, Haar Measure

Let pH be the measure previously used on the p-adic numbers, that is, the

Haar measure with pH(7L) = 1 Following the same procedure as in the real

Lebesgue case, every quadratic form is equivalent to a diagonal form However,

the measure on the p-adic numbers has the property that pH(aA) = pH(A) if a is a

p-adic unit Also, pH (pn A) = p-n pH (A) So, if c = p' 'y is a non-zero p-adic number,

where 7 is a unit and n is the appropriate power of p, then pH(cA) pH(c-1B) =

I ,B, = H sA, HAll(Pn 7 A) A H(13-717-1 B) -= rn pH (A)I (A) pnicH( ) u ( ) 1.1 (B) In other words,

multiplying by [c] ED [c-1] is measure preserving Thus, every diagonal matrix is

measure-equivalent to a matrix with all ones on the diagonal, except for the deter-

minant of the matrix in the first entry Thus, if multiplication by the determinant

is measure-preserving, then the entire matrix is measure-preserving In particular,

if the determinant is a p-adic integer unit, then the matrix is measure-preserving

Theorem: W(Qp, pH) = W(Q)
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Proof: The matrix used in the real Lebesgue case is still measure preserving,

since it has determinant 1, and the same argument used there can be used here to

get that, in this measure Witt ring, [a2] = [1] This is the same property that the

canonical p-adic Witt ring has, so this measure Witt ring is constructed in the same

way as the canonical p-adic Witt ring Therefore, the measure Witt ring for the

p-adic numbers and the Haar measure is the same as that for the canonical Witt

ring, or W(Qp, pH) = W(Qp ) El

In both the case of the real numbers with Lebesgue measure, and the p-adic

numbers with Haar measure, the measure Witt ring is the same as the canonical Witt

ring In these measure Witt rings [a2] is equivalent to [1], so it has the same structure

as the canonical Witt ring That equivalence came from p(A x B) = p(cA x c-1B),

and that all matrices of quadratic forms were equivalent to diagonal matrices If

these hold true for some measure on some field, then that measure Witt ring will be

the same as the canonical Witt ring for that field In particular, for Haar measure,

the diagonalization property already holds This gives the following theorem

Theorem: If a field F has a Haar measure /2 such that

p(A x B) = p(cA x c-1B)

for all measurable sets A and B in F, and c E F, then W (F, p) = W(F)

4.6 Abstract Witt Rings

According to [6, p 30], for an abehan group G with exponent 2, "[a] Wztt

ring for G is a ring R 0 0 together with an isomorphism Z[G]/K > R, where the

ideal K fulfils the following condition

X(K) = 0 or x(K) = 2n(x)z with n(x) > 0
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for every character x of G All these rings R are called abstract Wztt rings"

In most of the examples computed above, the measure Witt ring is identical

to the canonical Witt ring, and therefore is an abstract Witt ring In the case of

W(11, MG), the measure Witt ring is not an abstract Witt ring, but it has the form

of one if you allow G = 118+ and K = 0 The case of the uniform measure on the

interval [-1,1] in the reals was too complicated to find, it is unclear whether or not

it is an abstract Witt ring However, due to the gaussian case, not all measure Witt

rings are abstract Witt rings by the above definition

4.7 Measure Witt Rings and Probability

Unfortunately, the measure Witt ring, by itself, doesn't completely determine

when the probability of two random quadratic polynomials having two roots will

be the same for two different fields and measures While the measure Witt rings

, ) were the same with p and v the respective Haar measures,

and with p and q equivalent modulo 4, they are not the same if the two primes

are different modulo 4 Thus, even if two isomorphic measure Witt rings implied

that the corresponding probabilites would be the same, it wouldn't explain why the

probabilities are the same when the primes are different modulo 4 Something else

is necessary to link all of the p-adic fields together



5. Conclusion

5.1 What Has Been Done

The concept of a measure Witt ring has been defined It gives a connection

between the quadratic forms of a field and a measure on that field It has been

determined that the canonical Witt ring and this measure Witt ring are the same

for several fields with translation-invariant measure For Haar measure, if inverse

elements affect the measure appropriately (that is, if p(A x B) = p(cA x c1B)),

then the two rings will always be the same

It has also been shown that the measure Witt ring is not always the same

as the canonical Witt ring, the measure Witt ring of the real numbers with the

standard Gaussian distribution is an example of that The probability of certain

events regarding quadratic forms does not determine the measure Witt ring, two

events can have the same probability, but the measure Witt rings may be different,

as was seen in the p-adic case

With regard to the probability of an n-degree polynomial having k distinct

roots, some answers have been found For real numbers and Lebesgue measure,

with n < 4, these probabilities can be found by integrating, perhaps numerically

The integral for n = 3 is difficult to resolve, it is perhaps easier to use Monte Carlo

methods to determine the probability Using this method 131 has been estimated

at 0 2178, and since real cubic polynomials must have at least one root, this gives

PI Pi 0 7822 With Gaussian measure, using the Kac formula and the fact that all

cubic reals have at least one root gives 131 ::::. 0 246380 and PI :----- 0 753620

For n = 4, the integral method is even more difficult, as another condition

(other than sign of the determinant) is needed to distinguish a polynomial with

4 roots from one with 0 roots This has been attempted, with different random
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These results suggest that the probability a random cubic polynomial has

no roots is 1/3, the probability that it has one root is 1/2, the probability that it

has two roots is zero, and the probability it has 3 roots is 1/6 This is the same

as the proportion of a permutation in S3 has zero, one, two, or three fixed points,

respectively

It may be that, as p get larger, these probabilities approach the exact ratio-

nal values, but are not exactly equal to them However, the rational value of the

quadratic case, and the result giving 3-adic cubics with two roots (which happens

with probability zero), suggests that imprecision in the numerical method can also

explain the difference between the numeric results and the conjecture, so that the

values are exact Extending this conjecture to higher-degree polynomials gives

p 0 roots 1 root 2 roots 3 roots

3 6539 14120 9 3332

5 6869 13660 0 3471

7 7136 13249 0 3615
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variables for coefficients, in [9], which uses momc polynomials and non-uniform

distributions for the coefficients Since polynomials with degree greater than 4 are

not solvable algebraically, this method cannot be extended to higher degrees

In the p-adic numbers, numerical evidence suggests that a similarly simple

probability holds true for polynomials For each of the primes 3, 5, and 7, 24,000

cubic p-adic polynomials were generated, where the coefficients were uniformly dis-

tributed in Z/nZ, with n = 7)1° The number of roots of each polynomial was found

Below is a table with the results
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Conjecture: The probability that a degree d random polynomial with

uniformly-distributed p-adic integer coefficients has k roots is the same as the prob-

ability that a random d-permutation has k fixed points

5.2 Future Work

More work needs to be done on the relationships between measure Witt rings

If two measure Witt rings are isomorphic, there should be some sort of relationship

between the measures While it isn't true that equal probabilities implies isomor-

phic measure Witt rings, the converse may be true It may be that if W (Fi, it)

and W (F2, v) are isomorphic, then appropriate probabilities are equal Or, certain

properties of the measures may be the same Comparing two measure Wats rings

generated using the same field but different measures may be more likely to lead to

these results

Similar to the above, it may be true that a measure it has a certain property

if the measure Witt ring has some appropriate ring property That way, information

about the measure may be found by examining the measure Witt ring For instance,

one theorem which may come out of this work is the following if the measure

Witt ring is isomorphic to the canonical Witt ring, then the measure is translation-

invariant This seems likely, and is supported by the examples computed so far

Another question to be examined is whether or not the measure Witt ring

with Haar measure is always equivalent to the canonical Witt ring This depends

on what happens with the measure under 'multiplication by inverse elements' that

is, it requires that p(cA x c- 1 B) = p(A x B) for all non-zero c in the field It seems

somewhat unlikely that this holds for all fields with Haar measure, but which fields

have this property is a question which should be explored
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The work on measure Witt rings led to a study of measure-preserving linear

transformations In writing this thesis, very few references were found regarding the

general question of which linear transformations perserved which measures This is

another field of study which I feel requires more attention

Regarding the question of the probability that a random polynomial has a

certain number of roots, no general answer was found The simple answer found

for p-adic quadratic polynomials, and the simple answer suggested by numerical

methods for higher degree polynomals, suggests that there is a simpler proof than

what was used here

Work on the probability question was done for two measures on the real

numbers, but the answers found only went up to degree 3, and the method could only

be used for low-degree polynomials Some way to find more exact probabilities may

be able to be found for higher degree polynomials In particular, it may be possible

to use the method outlined at the beginning of [4] to find not only the expected

number of real zeroes of a real random polynomial, but the exact probabilities for

the different number of roots as well

As was commented on before, not all of the measure Witt rings found were

abstract Witt rings However, all had the same general form as an abstract Witt

ring The definition of the measure Witt ring can be extended to include any

equivalence class of linear transformations, not only the equivalence class of measure-

preserving linear transformations Probably all these "Witt rings" are of the same

general form as abstract Witt rings, and that should be explored Also, it should

be determined whether all abstract Witt rings can be obtained using measure Witt

rings

Only the real numbers and the p-adic numbers were studied in this thesis

Other fields, and other measures on the given fields, deserve more study Also, as
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more probabilities over more fields and measures are found, a clearer picture of the

general problem may develop, and a more general theory may be found



BIBLIOGRAPHY

Charalambos Aliprantis and Owen Burkinshaw, Principles of Real Analysis,
Academic Press, Inc , San Diego, CA 1990

Jacek Bochnak, Michel Coste, and Marie-Francoise Roy, Real Algebraic Geom-
etry, Springer-Verlag, Berlin 1998

David S Dummit and Richard M Foote, Abstract Algebra, Prentice Hall, En-
glewood Cliffs, NJ 1991

Alan Edelman and Eric Kostlan, "How many zeros of a random polynomial are
real?", Bulletin (New Series) of the American Mathematical Society, vol 32,
no 1, pp 1-37, January 1995

Paul R Halmos, Measure Theory, Springer-Verlag Graduate Texts in Mathe-
matics 18, New York, NY, 1974

Manfred Knebusch and Manfred Kolster, "Wittringe", Der Regensburger
Trzchter, vol 14, 1971-1972

Neal Koblitz, p-adic Numbers, p-adzc Analysis, and Zeta-Functions, Second
Edition, Springer-Verlag Graduate Texts in Mathematics 58, New York, NY,
1984

T Y Lam, The Algebraic Theory of Quadratic Forms, W A Benjamin, Inc ,

Reading, MS, 1973

Hung C Li, "The exact probability that the roots of quadratic, cubic, and
quartic equations are all real if the equation coefficients are random", Commu-
nications in Statistics Theory and Methods, vol 17, no 2, pp 395-409, 1988

Walter Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc , New
York, NY, 1976

66


