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Acting intelligently to efficiently solve sequential decision problems requires the ability

to extract hierarchical structure from the underlying domain dynamics, exploit it for

optimal or near-optimal decision-making, and transfer it to related problems instead of

solving every problem in isolation. This dissertation makes three contributions toward

this goal.

The first contribution is the introduction of two frameworks for the transfer of hi-

erarchical structure in sequential decision problems. The MASH framework facilitates

transfer among multiple agents coordinating within a domain. The VRHRL framework

allows an agent to transfer its knowledge across a family of domains that share the same

transition dynamics but have differing reward dynamics. Both MASH and VRHRL are

validated empirically in large domains and the results demonstrate significant speedup

in the solutions due to transfer.

The second contribution is a new approach to the discovery of hierarchical structure

in sequential decision problems. HI-MAT leverages action models to analyze the relevant

dependencies in a hierarchically-generated trajectory and it discovers hierarchical struc-

ture that transfers to all problems whose actions share the same relevant dependencies as

the single source problem. HierGen advances HI-MAT by learning simple action models,

leveraging these models to analyze non-hierarchically-generated trajectories from mul-

tiple source problems in a robust causal fashion, and discovering hierarchical structure

that transfers to all problems whose actions share the same causal dependencies as those

in the source problems. Empirical evaluations in multiple domains demonstrate that



the discovered hierarchical structures are comparable to manually-designed structures in

quality and performance.

Action models are essential to hierarchical structure discovery and other aspects

of intelligent behavior. The third contribution of this dissertation is the introduction

of two general frameworks for learning action models in sequential decision problems.

In the MBP framework, learning is user-driven; in the PLEX framework, the learner

generates its own problems. The frameworks are formally analyzed and reduced to

concept learning with one-sided error. A general action-modeling language is shown to

be efficiently learnable in both frameworks.
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Chapter 1: Introduction

Sequential decision problems are ubiquitous in the lives of people and range from the

mundane (scratching an itch) to the sophisticated (curing disease through genetic engi-

neering). These are problems in which decisions need to be made in response to sensing

an environment to accomplish a goal. Every decision entails choosing an action from

a predefined set that affects the state of the environment. If every action has a fixed

outcome, then the environment is deterministic; if an action has a range of outcomes

distributed according to a probability distribution, then the environment is stochastic.

These action outcomes can either be known a priori or unknown. Because the outcomes

could be stochastic and the environment might only be sensed partially by the agent,

a fixed sequence of actions might not always reach the intended goal. Thus, the solu-

tion to a sequential decision problem is a behavioral policy that defines an action (or

a distribution over actions) for every possible state of the environment. A plethora of

problems from playing a game to acquiring a doctorate can be framed as sequential

decision problems.

Reinforcement learning (RL) is a subfield of Machine Learning that studies how an

agent can learn to optimize its behavioral policy in the process of interacting with an

unknown, stochastic environment (Sutton and Barto, 1998). A Markov Decision Process

(MDP) is a theoretical discrete-time formalism that is able to model sequential decision

problems and is employed across a spectrum of paradigms from RL through decision-

theoretic planning to classical planning. Despite this convenience, MDPs suffer from the

curse of dimensionality, that is, their explicit state and action spaces grow exponentially

with the number of state variables and action effectors respectively (Bellman, 1957).

Thus, classical dynamic programming algorithms that exhibit polynomial-time complex-

ity with respect to the size of the state space are actually intractable with respect to the

number of state variables. Consequently, there has been a lot of work on developing more

efficient algorithms to curb this state- and action-space combinatorial explosion. Some of

these approaches strive for exact solutions while others attempt approximate ones, but

both essentially leverage some of the structure (redundancies and symmetries) within
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domains to expedite learning. However, the degree to which the domain structure can

be leveraged in RL is limited and the difficulty in sequential decision-making increases

(at worst, exponentially) as a function of the distance to the goal and the number of

relevant features.

In the spirit of the divide-and-conquer strategy to problem-solving, hierarchical re-

inforcement learning (HRL) is analogous to the way human beings tackle tasks — we

normally look to break down the overall problem into its constituent parts in some in-

tuitive way (that is normally based on achieving subgoals), solve the more manageable

parts, and recombine them to produce the overall solution. HRL leverages hierarchical

structure within the MDP to expedite the solutions by facilitating acting, learning, and

planning at multiple levels of temporal abstraction. For instance, HRL could allow a

robot to structure its low-level noisy sensors (camera, accelerometer, etc.) and parame-

terized effectors (joint actuators, grippers, etc.) to analyze and act at levels of temporal

abstraction that correspond to the spectrum of tasks at hand, ranging from moving an

arm to a certain angle to reconnoitering a planet. It would be just as frustrating for

this robot to learn and plan for high-level functionality (for instance, helping a disabled

person) based solely on its primitive state and action representations as it would be to

formulate this entire dissertation in binary. The performance of HRL given well-designed

hierarchical structure can be orders of magnitudes superior to that of non-hierarchical

(flat) RL.

Models of the action dynamics are essential for many RL and HRL methods. The

quality of a model depends on how accurately it can answer the key questions about the

process being represented, especially answers that facilitate prediction of the process. For

complex real-world domains, these models could either be impossible to describe exactly

in the modeling language or the law of diminishing returns renders the computational

investment required to plan with increased complexity not worthwhile. For example, to

describe the precise workings of the universe would require a descriptive model the size

of the universe. This unsettling proposition can be worked around via the mechanisms of

abstraction and approximation. For example, the Newtonian laws of physics comprise a

simpler model of motion that has since been superseded by the more accurate but more

complicated models of the general theory of relativity. Despite the fact that the latter is

more accurate in situations where the former fails, Newtonian laws still provide sound

and efficient models at most levels of detail. Similarly, physical simulation engines use
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extremely deficient models for collisions with deformations, because not only are all the

electrostatic forces acting within and between the objects extremely complex to model,

but processing all this information would probably make the simulation computationally

intractable. In many cases, stochasticity can provide a fuzzy blanket to cover up the

excruciating details.

1.1 Motivation

People seldom learn in isolation — knowledge and skills are transferred across generations

and peers. Traditionally, reinforcement learning has focused on learning in the context

of a single problem or task at hand. Instead, transfer learning seeks to exploit the

similarities between different tasks and transfer the knowledge gained from solving source

problems to expedite learning in a target problem, with the cost of learning in the source

problems being amortized over several target problems. Sequential decision problems

provide plenty of opportunities for transfer because of the multitude of parameters that

define these problems. For instance, RL might take a long time to discover long sequences

of actions that achieve intermediate subgoals required for the successful solution to a

problem, but structural knowledge transferred from smaller versions of a problem that

share the same fundamental structure can significantly expedite learning in the original

problem.

The biggest detraction from the impressive performance of HRL over RL is that,

within most current state-of-the-art HRL systems, an expert must provide the hierar-

chical structure as prior knowledge to the agent. Ignoring the paradox that this expert

needs to have an intimate understanding of the unknown MDP being solved, there is

considerable cognitive burden to get the structure right, because providing the agent

with inferior or faulty knowledge could lead to performance that is worse than flat RL!

The dearth of methods for automating the discovery of good hierarchical structure is a

serious lacuna in HRL.

Action models help reveal the underlying structure of a problem and the related-

ness of two problems for the purposes of transfer. For example, the separate processes

of electricity and magnetism were successfully combined into the unified field of electro-

magnetism after the initially distinct models were discovered to be deeply correlated and

to share strong causal dependencies; this lead to a huge transfer of ideas. However, just
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as with hierarchical structure for most HRL systems, many methods that utilize action

models assume that exact models are available a priori. It is important to analyze how

these models can be learned autonomously and to study the trade-off between the model

complexity and the sample and computational complexity required to learn them.

1.2 Contributions

My research contributions, described in this dissertation, are as follows:

• I analyze the transfer of predefined hierarchical structure in two settings: across

multiple agents functioning within the same environment and across a family of

environments that share the same transition dynamics but differing reward dy-

namics. For the multi-agent setting, I introduce the Multi-Agent Shared-Hierarchy

(MASH) framework that improves and generalizes a previous HRL framework to

allow knowledge sharing and decomposition among multiple agents. Empirical re-

sults show that not only does transfer across the cooperating agents mitigate the

combinatorial explosion of the joint state and actions spaces, but MASH actually

does much better than a single agent because of the parallel exploration of the

larger space. In the setting of differing reward dynamics, I introduce an online

algorithm, Variable-Reward HRL (VRHRL), that compactly stores the optimal

value functions for several MDPs and uses them to optimally initialize the value

function for a new MDP. Empirical results demonstrate the significant speedup in

learning due to transfer.

• I introduce the HI-MAT approach for discovering hierarchical structure that trans-

fers across a family of environments whose dynamics share the same qualitative

causal dependencies. Under appropriate assumptions, HI-MAT induces hierarchies

that are consistent with the single input domain, have compact space requirements

without any approximations, and compare favorably to manually-designed hierar-

chical structure in learning performance in the target domains. I also introduce

the HierGen approach that advances and generalizes HI-MAT in several ways in-

cluding learning simpler action models and discovering structure that generalizes

across multiple source domains. Both approaches are empirically validated in mul-

tiple domains.
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• Because action models are an integral component of hierarchical structure discov-

ery, I introduce and analyze two new frameworks for learning action models through

interaction with an environment. I describe a new notion of approximation for ac-

tion models in which the models are much simpler than the true models but are

sufficiently exact for planning. In the mistake-bounded planning framework, the

learner has access to a planner, an environment, and a goal generator and aims to

learn with at most a polynomial number of faulty plans. The planned exploration

framework is more demanding because the learner does not have access to a goal

generator and must design its own goals, solve for them, and converge with at most

a polynomial number of planning attempts.

1.3 Outline

This dissertation is hierarchically structured as follows:

• Chapter 2 introduces various fundamental formalisms and notation that will be

employed throughout the manuscript.

• Chapter 3 introduces and describes the MASH framework that allows knowledge

sharing among multiple agents. Moreover, the agents pool their experiences in

parallel while coordinating at different levels of the hierarchical structure. The

chapter describes a model-based average-reward reinforcement learning algorithm

for the MASH framework and presents empirical results in a simplified real-time

strategy game that show that the MASH framework is much more scalable than

previous approaches to multi-agent learning.

• Chapter 4 considers transfer learning in the context of related RL problems that

are derived from MDPs that share the same transition dynamics, but have dif-

ferent reward functions. Transfer is especially effective in the hierarchical setting

because the overall policy is decomposed into sub-policies that are more likely to

be amenable to transfer across different MDPs.

• Chapter 5 describes the HI-MAT framework that discovers hierarchical structure

in a source domain by exploiting the relevant dependencies of actions and trans-

fers that structure to speed up learning in a related target domain with the same
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underlying relevant dependencies. The chapter demonstrates that relevantly mo-

tivated hierarchical structure transfers more robustly than other kinds of detailed

knowledge that depend on the idiosyncrasies of the source domain and are hence

less transferable.

• Chapter 6 describes the HierGen approach that significantly advances HI-MAT

in several directions. A more robust annotation scheme, based on simple learned

action models, facilitates the parsing of trajectories from multiple source domains

simultaneously. Instead of relying on rich action models to provide the termina-

tion conditions, HierGen generalizes across the trajectories given a termination

language and produces hierarchical structure with explicit parameterization that

is comparable to manually-designed hierarchies.

• Chapter 7 introduces the mistake-bounded planning (MBP) and planned explo-

ration (PLEX) frameworks for learning sufficiently exact action models for plan-

ning. In the MBP framework, the learner aims to learn the models with at most a

polynomial number of faulty plans. In the PLEX framework, the learner must learn

the models with at most a polynomial number of planning attempts. The chapter

reduces learning in these frameworks to concept learning with one-sided error and

also exhibits that a concrete family of hypothesis spaces for action modeling is

efficiently learnable in both frameworks.
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Chapter 2: Background

This chapter describes the Markov decision process (MDP) formalism, the hierarchical

reinforcement learning (HRL) paradigm, and the relevant notation that will be employed

throughout this dissertation.

2.1 Markov Decision Process

An MDP formally models any sequential stochastic process that progresses from one

state to another depending on actions taken by an agent (at discrete time intervals)

(Bellman, 1957). It is defined as M = (S,A,P,R), where S is a finite set of states (the

state space), A is a finite set of actions (the action space), P : S ×A× S 7→ [0, 1] =

Pr(s′ ∈ S|s ∈ S, a ∈ A) is the Markovian transition function specifying the probability

of transitioning to state s′ when action a is executed in state s, and R : S ×A× S 7→ R
is the reward function where R(s, a, s′) specifies the immediate utility of executing action

a in state s and transitioning to state s′. The expected reward function is denoted as

R : S ×A 7→ R = Es′ [R(s, a, s′)]. The Markov assumption asserts that

Pr(st+1|s0, . . . , st, at) = Pr(st+1|st, at),

that is, the state at time t + 1 is independent of all previous states and actions given

the state and action at time t. This assumption is not restrictive, because any non-

Markovian model of a system can be converted to an equivalent, albeit larger, MDP by

including all the relevant information in the state. The other common assumption is

that the transition dynamics are stationary or time-invariant, that is, the distribution

over next states is independent of the time when the action is executed.

An MDP is deterministic if ∀(s ∈ S)∀(a ∈ A)∃(s′ ∈ S) Pr(s′|s, a) = 1; it is

stochastic otherwise. Let S ⊂ S. If ∀(s ∈ S)∀(a ∈ A)∀(s′ /∈ S) Pr(s′|s, a) = 0 then S

is a closed set of states. If no proper subset of S has this property, then S is a proper

closed set or a recurrent class of states. A state s is transient if it does not belong

in a recurrence class and s is absorbing if s is the only state in a recurrent class and
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∀(a ∈ A) ∀(s′ ∈ S) R(s, a, s′) = 0.

A generative or strong simulator model of an MDP is a randomized algorithm that

takes a state-action pair (s, a) as input and outputs the next state s′ ∼ Pr(·|s, a) and

the immediate reward R(s, a, s′). An online or weak simulation model is a randomized

algorithm with internal state s that takes an action a as input, transitions internally to

s′ ∼ Pr(·|s, a), and outputs s′ and R(s, a, s′); the agent has no recourse to resets (a jump

to a state governed by an initial state distribution) of the simulation. The online MDP

model is assumed throughout this dissertation.

2.1.1 Policy and Value Function

A stationary deterministic policy is a function π : S 7→ A defining the action a ∈ A
taken in any state s ∈ S. A stationary stochastic policy is a function π : S × A 7→
[0, 1] = Pr(a ∈ A|s ∈ S), denoted as π(a|s), defining the probability distribution over

actions conditional on the state. An MDP is recurrent or ergodic if every policy induces

a Markov chain with a single recurrent class, and it is unichain if every policy induces

a single recurrent class with some possible transient states. An MDP is communicating

if there is a non-zero probability of getting from a state to any other state under some

stationary policy.

A trajectory of length l is a sequence τ = (s0, a0, r0, . . . , sl−1, al−1, rl−1, sl), where

st ∈ S, at ∈ A, and rt ∈ R(st, at, st+1), denote the state, action, and reward, at time t.

The probability of a trajectory τ being generated by a policy π is

Pr(τ |π) =

l−1∏
t=0

π(at|st) Pr(st+1|st, at).

A subtrajectory τi going from state sj to state sk is the subsequence (sj , aj , rj , . . . , sk),

and Actions(τi) = {at : (st, at, rt, st+1) ∈ τi ∧ j ≤ t ≤ k} represents the set of actions in

the subtrajectory.

Given an MDP, the objective is to construct a policy that maximizes the expected

long-term utility. The policy-based value function V π : S 7→ R assigns to every state the

true expected utility achievable from that state by following the policy π. A Markov de-

cision problem (also ambiguously abbreviated MDP) is an MDP along with an objective
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criterion or performance metric that assigns a value function to any given policy. These

criteria are as follows.

Expected total reward: The value of a state is defined as the sum of the rewards

obtained by starting at that state and following policy π until an absorbing state

is reached, that is,

V π(s) = E(s0,a0,r0...,sh)∼Pr(·|π,s0=s)

[ ∞∑
t=0

rt

]
.

The total-reward criterion is the most direct, but can only be applied when every

policy is guaranteed to eventually reach an absorbing state.

Expected cumulative discounted reward: The value of a state is defined as the

discounted sum of the rewards obtained by starting at that state and following

policy π from then on, that is,

V π(s) = lim
h→∞

E(s0,a0,r0,...,sh)∼Pr(·|π,s0=s)

[
h∑
t=0

γtrt

]
.

Future rewards are discounted or diminished geometrically by a discount factor

γ ∈ [0, 1). Discounting is convenient because it is an analytically tractable method

of keeping the value function bounded in an infinite-horizon setting. The parameter

γ could be interpreted as the probability of surviving the next time-step. When

γ = 1, this setting is equivalent to the total reward criterion.

Expected average reward: The value of a state is defined as the expected average

sum of the rewards obtained by starting at that state and following policy π there-

after, that is,

V π(s) = lim
h→∞

1

h
E(s0,a0,r0,...,sh)∼Pr(·|π,s0=s)

[
h−1∑
t=0

rt

]
.

However, as the states in the recurrent class will be visited forever, the average

reward will be identical across these states; also, the transient states can at most

see a finite expected cumulative reward (before a recurrent state is visited), which
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vanishes under the limit. To address this issue, the value of a state is instead

defined as the expected average-adjusted sum of the rewards obtained by starting

at that state and following policy π thereafter, that is,

V π(s) = lim
h→∞

E(s0,a0,r0,...,sh)∼Pr(·|π,s0=s)

[
h∑
t=0

(
rt − ρπ

)]
,

where

ρπ = lim
h→∞

1

h
E(s0,a0,r0,...,sh)∼Pr(·|π,s0=s)

[
h−1∑
t=0

rt

]
is the average expected reward or gain for a policy π. The value of a state represents

the expected excess reward over what is expected in the duration of the action based

on the current average reward and is also called the relativized bias of the state.

The average-reward criterion is best suited for nonterminating processes that need

to maintain a certain rate of efficiency.

The discounted value function of a policy π (or total reward when γ = 1) satisfies the

Bellman equation

V π(s) = Es′∼Pr(·|s,π(s))

[
R(s, π(s), s′) + γV π(s′)

]
.

The unique value function for all optimal policies is V ∗(s) = supπ V
π(s), and it satisfies

the Bellman equation

V ∗(s) = max
a∈A

(
Es′∼Pr(·|s,a)

[
R(s, a, s′) + γV ∗(s′)

])
.

The state-action value function Qπ : S ×A 7→ R defines the expected utility received

by taking an action a ∈ A in state s ∈ S and following policy π thereafter. In the

discounted case, the state-action value function is related to the value function as

Qπ(s, a) = Es′∼Pr(·|s,a)

[
R(s, a, s′) + γV π(s′)

]
V π(s) = Qπ(s, π(s)).

The unique state-action value function for all optimal policies is Q∗(s, a) = supπ Q
π(s, a),
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and it satisfies the Bellman equation

Q∗(s, a) = Es′∼Pr(·|s,a)

[
R(s, a, s′) + γV ∗(s′)

]
, where V ∗(s) = max

a∈A
Q∗(s, a).

Q-learning is a model-free, off-policy learning algorithm that is a direct implementation

of this Bellman equation (Watkins, 1989). After taking action a in the current state s

and observing reward r and next state s′, the Q value is updated as

Q(s, a)← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
,

where α is a scalar that controls the rate of learning. Such a scaled update can also be

denoted more compactly as

Q(s, a)
α← r + γmax

a′
Q(s′, a′).

If the learning rate α is initialized to 1 and updated as α← α/(1 + α), then the scaled

update becomes an exponential moving average of the quantity on the right-hand side.

For any MDP that is either unichain or communicating, there exists a scalar ρ such

that the average-reward value function for a policy π satisfies the Bellman equation

V ∗(s) = max
a∈A

(
Es′∼Pr(·|s,a)

[
R(s, a, s′) + V ∗(s′)

]
− ρ
)
.

The policy that selects actions to maximize the right-hand side of this equation attains

the optimal gain ρ∗ ≥ ρπ for all policies π. H-learning is a model-based, off-policy

learning algorithm that implements this Bellman equation (Tadepalli and Ok, 1998).

After taking action a in the current state s and observing reward r and next state s′, V

and ρ are updated as

V (s)← max
b

(
R(s, b) +

∑
s′

Pr(s′|s, b)V (s′)

)
− ρ

ρ
α← R(s, a) + V (s′)− V (s) when a is chosen greedily.

The reward model R(s, a) and the transition model Pr(s′|s, a) have to be learned simul-

taneously along with the value function and average reward. For the average reward
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update, the immediate reward is adjusted by the difference in the values of s′ and s to

neutralize the effect of exploratory actions on the states visited by the agent and give an

unbiased sample of average reward of a single action of the SMDP.

2.1.2 Semi-Markov Decision Process

MDPs are discrete time models and an action executed in the current time-step affects

the state and the reward at the following time-step. The Semi-Markov decision process

(SMDP), a generalization of the MDP, allows for temporally extended actions, that is,

actions that might take variable periods of time instead of always taking a single time

step. Action selections are made at distinct epochs in time at the controlled states,

while the state of the system may continue changing during the action through multiple

uncontrolled states. Any SMDP with uncontrolled and controlled states can be reduced

to an SMDP with only controlled states such that the optimal policy is invariant to the

reduction (Parr, 1998a).

For an SMDP, the probabilistic transition function is P : S ×A× S × N 7→ [0, 1] =

Pr(s′ ∈ S, d ∈ N|s ∈ S, a ∈ A), where d is a random variable that denotes the action

duration. Further, the reward function is R : S ×A× S × N 7→ R. Consequently, a

trajectory is generalized to the sequence τ = (s0, a0, r0, d0, . . . , sl−1, al−1, rl−1, dl−1, sl),

where st ∈ S, at ∈ A, rt ∈ R(st, at, dt, st+1), and dt ∈ N, denote the state, action, reward,

and action duration at time t.

For SMDPs, the discounted reward criterion is generalized to

V π(s) = lim
h→∞

E(s0,a0,r0,d0,...,sh)∼Pr(·|π,s0=s)

[
h∑
t=0

γdtrt

]
.

The average reward criterion is generalized to

V π(s) = lim
h→∞

E(s0,a0,r0,d0,...,sh,dh)∼Pr(·|π,s0=s)

[
h∑
t=0

(
rt − ρπdt

)]
,
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where

ρπ = lim
h→∞

E(s0,a0,r0,d0,...,sh)∼Pr(·|π,s0=s)

[
h−1∑
t=0

rt

]

E(s0,a0,r0,d0,...,sh)∼Pr(·|π,s0=s)

[
h−1∑
t=0

dt

] .
These equations simplify to those for MDPs when ∀t, dt = 1. Consequently, the general-

ized Bellman equations for the optimal value functions in SMDPs are

V ∗(s) = max
a∈A

(
Es′,d∼Pr(·,·|s,a)

[
R(s, a, s′, d) + γd V ∗(s′)

])
for discounted reward and

V ∗(s) = max
a∈A

(
Es′,d∼Pr(·,·|s,a)

[
R(s, a, s′, d) + V ∗(s′)− ρ d

])
for average reward.

Q-learning can be extended to SMDPs by generalizing the update after executing

action a in state s and observing reward r, action duration d, and the next state s′, to

Q(s, a)
α← r + γd max

a′
Q(s′, a′).

Here, the discount factor is exponentiated by the observed duration d of action a. Simi-

larly, H-learning can be extended to SMDPs as

V (s)← max
b

(
R(s, b)− ρD(s, b) +

∑
s′

Pr(s′|s, b)V (s′)

)
ρ← ρr/ρt,

where

ρr
α← R(s, a) + V (s′)− V (s)

is a measure of the average reward acquired during the execution of a temporally ex-

tended primitive action and

ρt
α← d

is a measure of the average duration of a primitive action. Both these quantities are
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updated only when a is chosen greedily. Here, a model of the action durations D(s, a)

also needs to be learned along with the models for rewards and transitions.

In the remainder of the manuscript, the notation for SMDPs is simplified by letting

Pr(s′|s, a) =
∑

d Pr(s′, d|s, a) and R(s, a) = Es′,d[R(s, a, s′, d)].

2.1.3 Factored Markov Decision Process

As defined originally, MDPs have explicit or extensional state spaces, that is, every state

s ∈ S is an atomic entity. However, the state spaces of most domains exhibit internal

structure, and it is helpful to describe states or sets of states in terms of their properties.

An exponential degree of compactness can be achieved when a domain’s state space can

be represented by a set of state variables X = {x1, . . . , xn} where each state variable

xi takes on values from its corresponding domain D(xi). When the state space of the

MDP is made implicit in such a way, it is called a factored MDP, and it can often be

specified more concisely than a regular MDP because of regularities and localities in

the reward and transition functions. This implicit state space over a set of variables X
is S = D(X ) = ×x∈XD(x) and a particular state s = x ∈ D(X ) is an assignment of

values to every variable in X . For example, if the state space S is the set of n-bit binary

numbers, then X could be the set of n bits (a variable could also represent more than a

single bit), where D(xi) = {0, 1}.
For the sake of clarity, this dissertation sometimes uses the object-oriented notation

〈name〉.〈attribute〉 for variable names. Factoring and temporally-extended actions are

orthogonal extensions of MDPs, and together they result in a factored SMDP. We do

not specifically qualify an MDP whenever the generic term can be used unambiguously.

2.1.4 State Abstraction

A partition of a set S is a set of sets Z = {Zi}ni=1 such that ∀i, j, Zi ∩ Zj = ∅ and⋃
i Zi = S. For any s ∈ S, [s]Z denotes the block of states Zi ∈ Z to which s be-

longs. For any s, t ∈ S, s ≡Z t ⇐⇒ [s]Z = [t]Z , where ≡Z is an equivalence re-

lation. A function f : S 7→ W , where W is some arbitrary set, induces a partition

of S where ∀s1, s2 ∈ S, s1 ≡f s2 ⇐⇒ f(s1) = f(s2). Given two partitions Y and

Z, Y is a refinement of Z, denoted by Y � Z, if ∀x, y ∈ S, x ≡Y y =⇒ x ≡Z y;
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equivalently, Z is coarser than Y . The � relation is a partial order on the set of

partitions of S. For example, if S = {x1, x2, . . . , x9} and f = {(xi, i mod 2) : xi ∈
X}, then f induces the partition {{x1, x3, . . . , x9}, {x2, x4, . . . , x8}} and the partition

{{x1}, {x3, . . . , x9}, {x2, x4, . . . , x8}} is a refinement of that induced by f .

Given an MDP M = (S,A,P,R), S is the ground or world state space. Let S be

related to S via the surjection φ : S 7→ S. Here, S is the abstract state space and

every state s in the abstract state space defines an aggregate or an equivalence class over

multiple ground states φ−1(s).

We can extend the state abstraction theory developed for MDPs to a factored state

representation. We first define the generic vector function Φ : Rn 7→ Rm such that

Φ(x ∈ Rn) =
(
φ1(x), . . . , φm(x)

)
, where φi : Rn 7→ R.

In the context of an FMDP M = (X ,A,P,R), the generic state-space projection is

defined as Φ : D(X ) 7→ SΦ where SΦ is some arbitrary abstract state space. Every

projection Φ induces a partition of D(X ) where ∀x1,x2 ∈ D(X ), x1 ≡Φ x2 ⇐⇒ Φ(x1) =

Φ(x2). As a special case, if each φi simply picks out a unique component of x, then SΦ =

D(XΦ) where XΦ = {xk : ∃i φi(x) = xk} ⊂ X . For example, if X = {x1, x2, . . . , x9} and

Φ = (φ1(x) = x1, φ2(x) = x2), then XΦ = {x1, x2}. This subset projection is the most

common form of state abstraction used in factored MDPs.

2.2 Hierarchical Reinforcement Learning

Reinforcement learning (RL) approaches to solving MDPs mitigate the state space ex-

plosion by leveraging the factored structure and reachability of the state space. However,

they do not leverage structural constraints in the policy space. Hierarchical reinforce-

ment learning (HRL) is a subfield of RL that combats the curse of dimensionality via

hierarchical decomposition within the policy space of the problem. Not only does the

decomposition allow the overall problem to be divided into smaller subproblems, it also

facilitates faster learning through the reuse of solutions to shared subproblems and en-

ables effective problem-specific state abstraction and aggregation. HRL applies temporal

abstraction to the problem: decision-making should not be required at every step but in-

stead temporally extended activities or macro-operators or behaviors or subtasks (which
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might have their own internal policies) can be selected to achieve subgoals. State ab-

straction is another powerful weapon in HRL’s arsenal — the policy or value function of

a certain subproblem only depend on the subset of state variables that actually affect the

solution of that subproblem. Because they could depend on the agent’s internal state as

well, HRL policies could be non-Markovian with respect to the world state.

The three principal HRL frameworks are options (Sutton et al., 1999), HAMs/ALisp

(Parr, 1998a; Andre and Russell, 2002), and MAXQ (Dietterich, 2000).

2.2.1 Options

Options lay down the minimal extension to RL allowing for a general treatment of

temporally extended actions. An option is a closed-loop policy that operates over a

period of time. It is defined by the tuple 〈I, π, β〉, where π is its policy, I ⊆ S is the

initiation set of states, and β(s) is the probability of termination in state s. The original

MDP actions are also considered options that last exactly one time step. The original

MDP along with a fixed set of options is an SMDP.

An option itself can select from any of the other available options as part of its internal

policy. If the set of admissible options always contains the set of admissible actions,

then the optimality of the policy over options in the core MDP remains unchanged; the

absence of these actions could lead to suboptimal policies. In the original version of this

framework, the internal policies of the options themselves were fixed a priori. However,

this makes the agent’s learning system depend heavily on expert knowledge and is brittle

to changes. Intra-option learning methods were later introduced to analyze the inner

workings of the options and learn their internal policies. Within the options framework,

the agent’s action set is augmented rather than simplified by the options, and could

potentially lead to a blowup in action space. However, well-designed options prevent

long-term random exploration within the domain.

2.2.2 Hierarchies of Abstract Machines and ALisp

The Hierarchies of Abstract Machines (HAMs) approach to reducing the number of de-

cisions is by partially representing the policy in the form of finite state machines (FSMs)

with nondeterministic choice points. HAMs also exploit the theory of SMDPs, but the
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emphasis is on restricting the policy space rather than augmenting the action space.

A HAM policy is defined by a set of stochastic FSMs with internal states, stochastic

transition functions, and a set of input states equal to that of the core MDP. A HAM

has 4 types of states: 1© action executes an action of the core MDP based on the state of

both the core MDP and the HAM itself; 2© call transfers control to an FSM within the

HAM; 3© choice defines a set of FSM transitions from which the learned policy selects

one; 4© stop terminates execution of the current FSM and returns control back to the

FSM that called it. The composition of a HAM H and the core MDP M yields an

SMDP H ◦M. SMDP-Q-learning need only be applied at the choice states comprising

the reduced SMDP. Just like options, these HAMs have to be expertly designed because

they place strict restrictions on the final policy possible for the core MDP.

ALisp greatly generalizes the idea of HAMs to arbitrary Lisp programs with macro

extensions to provide a platform for rich procedural prior knowledge with the ability

to specify choice points that need to be determined through learning (Andre and Rus-

sell, 2002). This adds immense expressiveness in the form of interrupts, aborts, local

state variables, parameter binding, and other generic programming language concepts

for designing solutions to MDPs.

2.2.3 MAXQ

In the MAXQ framework, the temporally-extended actions or subtasks are organized in

a task hierarchy H = {Ti : 0 ≤ i < m}, which is represented as a directed acyclic task

graph that defines the task-subtask relationships (Dietterich, 2000). Unlike options and

ALisp, the MAXQ framework does not reduce the entire original MDP into one SMDP.

Instead, the original MDPM is replaced by induced sub-SMDPs, where each sub-SMDP

Mi corresponds to a composite or primitive subtask Ti. Solving the root MDP M0

solves M, and these sub-SMDPs can be solved simultaneously. The composite subtasks

are primarily designed around subgoals (states or regions of the state space) such that

achieving them facilitates the solution of the original MDP. Consequently, these sub-

MDPs (with the possible exception of the root MDP) are episodic, that is, they have at

least one absorbing or goal state. (The dynamics of an absorbing state s ensures that

∀π, V π(s) = 0.)

A MAXQ task is defined as Ti = (Φi, Gi, Ci), where Φi is the state-space projection
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Root 

Get Put 

Pickup Dropoff Goto(l) 

North South East West 

l = p a s s : d e s t l = p a s s : l o c 

Figure 2.1: A manually-designed task hierarchy for the Taxi domain. The explicit bind-
ing for Goto’s argument l to either the passenger’s location (pass.loc) or destination
(pass.dest) is part of the structural knowledge.

that induces a state space SΦi , Gi is the goal or termination condition that determines

when Ti has achieved its goal and is no longer applicable, and Ci is the set of child

tasks. With slight abuse of notation, Gi is also used to denote the set of states {s ∈
SΦi : Gi(s) = true}. For notational convenience, Xi denotes the subset of state variables

when Φi is a subset projection and Si = SΦi −Gi denotes the set of nonterminal states.

For a primitive task, Ci = {a ∈ A} and control always returns immediately back to the

calling task after a is executed; as Gi is moot here, we define it to be empty. The order

in which the children are represented in the task graph is arbitrary — it is the local

policy πTi : Si 7→ Ci within each subtask Ti that determines the selection of child tasks.

(These local policies are normally represented and learned through Q functions.) A task

hierarchy for the Taxi domain (Dietterich, 2000) is shown in Figure 2.1.

A hierarchical policy π for the overall hierarchy is an assignment of a local policy πi

to each sub-MDPMi. Any hierarchical policy with the highest possible utility is said to

be hierarchical optimal. In order to maximize the modularity and reuse of context-free

local policies, a recursively optimal policy is defined to be a hierarchical policy such

that πTi is optimal for every Ti given the policies {πc : c ∈ Ci}. The utility of such a

policy could be suboptimal to that of a hierarchically optimal one, which could in turn

be suboptimal to that of the optimal non-hierarchical policy.

Applying SMDP Q-learning to the MAXQ task hierarchy results in an algorithm

called Hierarchical Semi-Markov Q (HSMQ) learning. Here, every task learns a lo-
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cal Q function simultaneously but independently, losing opportunities for sharing and

compactness in the representation of the value function. The MAXQ value function de-

composition rectifies this issue very elegantly. The Bellman equation for the decomposed

action-value function at task Ti in the hierarchy is

Qπi (s, a) = V π
a (s) +

∑
s′,d

Prπi (s′, d|s, a)γdQπi (s′, π(s′)),

where V π
a (s) is the expected discounted sum of rewards for executing the child task a

starting in state s until it terminates. If the completion function is defined as

Cπi (s, a) =
∑
s′,d

Prπi (s′, d|s, a)γdQπi (s′, π(s′)),

then the Q function can be expressed recursively as

Qπi (s, a) = V π
a (s) + Cπi (s, a),

where

V π
i (s) =

Qπi (s, πi(s)) if Ti is composite∑
s′ Pr(s′|s, i)R(s, i, s′) if Ti is primitive.

The corresponding learning algorithm is called MAXQ-0. Additionally, the MAXQ-Q

algorithm can deal with pseudo rewards (not provided in the core MDP) designed by the

expert to guide the learning of the individual subtasks, much like shaping rewards. The

value function decomposition shown above extends beyond the MAXQ framework and

has been modified by other researchers to ensure hierarchical optimality (Marthi et al.,

2006) and safe abstraction in the face of discounting (Hengst, 2003).
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Chapter 3: Multi-Agent Shared-Hierarchy Reinforcement Learning

This chapter introduces a multi-agent hierarchical reinforcement learning framework

called Multi-Agent Shared-Hierarchy (MASH) framework. The central property of this

framework is that it allows sharing of value functions between agents, facilitating faster

learning. Sharing value functions across multiple agents was found to be effective in

a non-hierarchical setting when the agents were homogeneous (Tan, 1993). However,

a monolithic value function is not necessarily sharable across non-homogeneous agents

as each agent may have a different reward function. Hierarchies divide the task into

smaller subtasks, which makes them more amenable to sharing — the rewards within

a subtask are more likely to be the same across different agents. Thus, if a robot

has learned some useful navigational knowledge, a map for a region for example, it is

much cheaper to communicate it to other robots, rather than having all robots learn it

independently. Hierarchies make it possible to share the maps across different robots

without also sharing the lower level controls or higher level task knowledge such as

delivering mail. The packaging of scientific knowledge in short modular research papers

has a similar underlying reason, namely high reusability of such knowledge and the low

cost of its communication compared to its discovery.

This chapter has three principal parts. It introduces the multi-agent shared hier-

archy (MASH) framework which facilitates selective sharing of subtask value functions

across agents. It then describes how a previously published model-based hierarchical RL

algorithm can be improved and generalized to the MASH framework. Finally, it presents

empirical results in multiple versions of a simplified multi-agent real-time strategy (RTS)

domain. The results show that, with suitable coordination information, the new MASH

algorithm is more scalable with respect to multiple agents and outperforms previous

approaches.
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Figure 3.1: The multi-agent Taxi domain. The square boxes represent taxis, the dots
represent passengers, and the numbers are the passenger pickup and drop-off sites.

3.1 Preliminaries

This section describes the multi-agent domains employed in this chapter and outlines

the hierarchical average-reward learning (HARL) framework.

3.1.1 Multi-Agent Taxi Domain

The multi-agent version of the Taxi domain is a grid world, shown in Figure 3.1, where

the agents are taxis (the squares located on the grid cells) that shuttle passengers (solid

circles) from one of four marked cells (labeled 1, 2, 3, and 4) to their intended destinations

(again, one of the four marked cells). At any time, there can be at most one passenger

waiting at each of these special sites. The generation of passengers can be controlled in

different ways, including those based on arrival probabilities. The passengers may also

depart stochastically from the sites without being transported.

A full state description of this domain for n agents has 25n values to indicate the

taxi locations, 5n values indicating the statuses of all the taxis (empty or an onboard

passenger with a particular destination), and similarly 54 values indicating the statuses

of the special sites. Hence, the size of the state space |S| = 25n × 5n × 54 = 53n+4. The

primitive actions available to each agent are moving one cell to the North, South, East,

and West, Pickup a passenger, Dropoff the passenger, and Idle (no-op). The Idle action

allows the agent to idle when there are no passengers currently waiting to be transported.
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l = p a s s : d e s t l = p 

Idle 

PPickup(p) 

Figure 3.2: The task hierarchy for the multi-agent Taxi domain.

The task hierarchy for the multi-agent Taxi domain is shown in Figure 3.2. Get

is parameterized by the passenger selected to be serviced, and the parameter binding

needs to be learned by Root. Get(p) is terminated when either p is picked up by a taxi

or p disappears from the grid. In turn, Get passes its intention (parameter binding)

down to PPickup whose sole purpose is to ensure that no other passenger is picked up

inadvertently, which can happen if the Pickup action could be executed at an occupied

site before navigating to the selected passenger’s site. It does this by being terminated

in all states in which the taxi is not at the selected passenger’s location.

3.1.2 Multi-Agent Real-Time Strategy Domain

We consider a simplified RTS domain shown in Figure 3.3. It is a grid world that

contains peasants, the peasants’ home base, resource locations (forests and goldmines)

where the peasants can harvest wood or gold, and an enemy base that can be attacked.

The primitive actions available to a peasant are moving one cell to the North, South,

East, and West, Pick a resource, Put a resource, Strike the enemy base, and Idle (noop).

The resources get regenerated stochastically. The enemy also appears stochastically and

stays till it has been destroyed.

The task hierarchy for the RTS domain (Figure 3.4) is composed of the follow-

ing tasks: Harvest(l) represents the subtask of going to a resource location l (gold-

mines/forests) and picking up the resource; Deposit represents the subtask of dropping

off a harvested resource at the home base; Attack represents the subtask of suppressing
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Figure 3.3: A simplified RTS domain with two resources, a home base, and an enemy.

the enemy whenever it appears; Goto(k) represents the subtask of going to location k on

the grid.

3.1.3 HARL Framework

SMDP H-learning can be directly extended to task hierarchies in a couple of ways: one

scheme is to employ SMDP H-learning only at the infinite-horizon root task and employ

total-reward learning at all the other finite-horizon subtasks; the other scheme, in the

spirit of HSMQ-learning, is to employ SMDP H-learning at every subtask (Ghavamzadeh

and Mahadevan, 2001). While these schemes allow the subtask value functions to be

context-independent and hence more reusable, they fail to find the hierarchically optimal

policy even in very simple SMDPs.

The HARL framework is an adaptation of the MAXQ framework to the average-

reward criterion (Seri and Tadepalli, 2002). Here, a hierarchical policy π is recursively

gain-optimal if the local policy πi at each subtask Ti maximizes its total expected average-

adjusted reward with respect to the gain of the overall hierarchical policy, given fixed

policies for Ti’s descendants. The result distribution invariance (RDI) property holds for

a task hierarchy if the probability distribution of termination states for any subtask is

independent of the hierarchical policy used during that subtask. (A sufficient condition
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Strike

Idle

Figure 3.4: The task hierarchy for the RTS domain.

for RDI is when every subtask has a unique terminal state.) The recursively gain-optimal

policy is also guaranteed to be optimal among all hierarchical policies when RDI holds.

The associated hierarchical H-learning (HH) algorithm leverages value-function de-

composition by learning the value function of a task based on the value functions of the

children. However, the value function at every task caches the values of the child tasks

instead of computing them recursively as done in MAXQ’s value decomposition. The

global average reward ρ is computed at the leaves of the hierarchy, and the relativized

bias values percolate up through the hierarchy.

3.2 Modified HARL Framework

The advantage of defining ρ globally with respect to the hierarchy in the HARL frame-

work is that the recursively gain-optimal policy is also guaranteed to be optimal among all

hierarchical policies when RDI holds. However, the tasks lose their context-independence

and transferability, because every task’s value function is affected by ρ and consequently

depends on the global hierarchical policy. Moreover, as the update for ρ is not adjusted

based on the overall value function as is done in SMDP H-learning, the value function

at the root has been observed to diverge for non-episodic domains.

To facilitate reusability while guaranteeing hierarchical optimality when RDI holds,

we follow a different strategy. Instead of storing the bias values for each task, we only

store the expected total-reward function Vi(s) and the expected total-duration function

Di(s) for each task Ti. Given these two functions and an estimate of the global gain ρ,
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we can easily compute the bias for task Ti and state s as Vi(s)−ρDi(s). As the expected

total reward and time do not depend on ρ, these functions are context-independent and

reusable as long as the local policy does not change; at the same time, the bias values

are computable from them with respect to any ρ. We compute the global average reward

at the root and utilize it for the bias and when choosing an action. Hence, the value

function decomposition for a recursively gain-optimal policy satisfies the following set of

Bellman equations for the non-root nodes

Vi(s) =


R(s, a) if Ti is the primitive action a

0 if s is a terminal state for Ti

Vg(s) +
∑

s′∈S Pr(s′|s, g)Vi(s
′) otherwise

Di(s) =


D(s, a) if Ti is the primitive action a

0 if s is a terminal state for Ti

Dg(s) +
∑

s′∈S Pr(s′|s, g)Di(s
′) otherwise,

where

g = argmax
a

(
Va(s)− ρDa(s) + Pr(s′|s, a)

(
Vi(s

′)− ρDi(s
′)
))

is the greedy subtask that maximizes the sum of the relativized bias of a child task and

the bias of the task Ti from the resulting state. Because the total reward is unbounded

at the root task and no parent tasks exist, we compute the biased value function as

Vroot(s) = max
a

(
Va(s)− ρDa(s) +

∑
s′∈S

Pr(s′|s, a)Vroot(s
′)

)
.

3.3 MASH Framework

Multi-agent RL is more challenging than single-agent RL because of two complemen-

tary reasons. Treating the multiple agents as a single agent increases the state and

action spaces exponentially. On the other hand, treating the other agents as part of the

environment makes it nonstationary and non-Markovian (Mataric, 1997).

We define the execution semantics of the multi-agent task hierarchy as follows. (The

multi-agent semantics can be seen as a special case of the execution semantics of con-
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current ALisp (Marthi et al., 2005).) The global Markov state of the system is defined

by the world state w and the set of parameterized task stacks G of all the agents in the

system. At every decision epoch, each agent at an internal task node is assigned to a

child subtask. The agents at the leaf nodes wait until all agents are at their leaf nodes

and then simultaneously execute their primitive actions, which affect the world state.

The set of all global Markov states and the cross product of all the action assignments

form a task-management MDP. Because the task-management MDP is well-defined, it

has a joint gain-optimal policy. However, solving for this joint gain-optimal policy is

computationally difficult, because it involves the global state and the joint action space.

In previous work, it has been found that decomposing a joint MDP into weakly interact-

ing sub-MDPs, solving them offline, and combining the solutions online yields effective

solutions (Meuleau et al., 1998). We instead explore a completely on-line multi-agent

approach described next.

3.3.1 Multi-agent HH

We factor the world state w into several agent-centric states sz (e.g., an agent’s location)

for agent z, and a global state q (e.g., the availability of the resources), which is indepen-

dent of all agents. We similarly decompose the reward into agent-centric rewards and

learn the total expected reward of each agent z for each task a as a function of the com-

bined state information sz and q, appropriately abstracted for task a. The total reward

for task Ti in the Markov state s when all agents are following a current joint policy π is

given by Vi(s) =
∑

z V
z
i (sz, q), where V z

i is the total expected reward of agent z for task

Ti in the context of the joint policy π. Each agent z now learns a separate value function

V z and average reward, and has a separate task stack. V z is z’s value function in the

context of the joint policy π, which is in turn determined by each agent choosing the

actions greedily with respect to their own value functions. It is not guaranteed to be a

globally optimal joint policy because the policies of the agents are not truly independent

and the environment is no longer stationary due to all agents learning simultaneously.

Although there is no explicit coordination here, implicit coordination emerges because

the learned models within each agent’s hierarchy reflect the effects of the other agents

on the global state variables. For instance, keeping track of the probabilities of wood

disappearing from the forest allows an agent to detect the effects of the other agents.
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3.3.2 Coordinated HH

A more sophisticated extension to the method described above is to include some kind

of explicit coordination information (Makar et al., 2001). One approach to coordinating

is to make a large part of the world state w a part of the global state q. More generally,

we allow each task node to define appropriate coordination variables that specify the

state and task variables of the other agents which are relevant for making decisions for

the current agent. We call this approach Coordinated HH. For example, in the RTS

game domain, the top-level tasks of the agents make good coordination variables. If

c represents the coordination variables at task Ti for agent z, we have the following

Bellman backup at any task Ti:

V z
i (sz, q, c)← max

a

(
V z
a (sz, q, c) +

∑
s′z ,q

′,c′

Pri(s
′
z, q
′, c′|sz, q, c, a)V z

i (s′z, q
′, c′)

)
.

The V z values here are with respect to a current joint policy of all agents, which is

determined by each agent choosing its greedy action with respect to the equation above.

This entails that each agent takes into account the coordination information of the other

agents. To do this efficiently, we process the agents in a fixed order, where each agent

uses the coordination information of the previous agents who already chose their actions.

Given an order of the agents, we call a joint policy serially optimal if each agent’s action

is optimal given the choices of the previous agents. The goal of the Coordinated HH is

to converge to a serially optimal policy.

Further optimization in Coordinated HH is obtained by anonymizing the other agents

referred to in the coordination variables. For example, one would expect that the state

in which agent 1 is collecting wood and agent 2 is collecting gold has the same value for

agent 3 as the state in which agent 1 is collecting gold and agent 2 is collecting wood. It

suffices to know that an agent is collecting gold and another is collecting wood. Thus,

we reduce the state space of the coordination variables by anonymizing the agents. In

particular, if we have n agents, the root task has m subtasks, and the root’s subtasks

selected by the agents are the coordination variables, then the root task’s state space

would grow by a factor of (m + 1)n−1. However, anonymizing the agents reduces this

factor to
(

(n−1)+(m+1)−1
n−1

)
.
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3.3.3 Shared Value Functions

The final optimization we make is to share the value functions across agents.1 The

compelling justification for sharing is that all agents are interacting with the same en-

vironment and every agent sees an isomorphic view of the world involving its own state

variables sz, the global variables q, and the coordination information c from the other

agents. This perspective allows for subtask sharing across agents. MASH extends Coor-

dinated HH by recombining the separate agent value functions into one.

Although the value functions are shared among the agents, every agent has its own

independent task stack, and keeps track of its own average reward (global across all

tasks) within the system. The agents pool their experiences together to more efficiently

learn the value function of every subtask. For instance, the more agents we have moving

around, the quicker the Goto(k) task is learned. The state abstraction and termination

conditions within the task hierarchy are parameterized by the agents’ identities and the

subtask parameters. For example, Harvest(l) subtask’s abstraction involves only looking

at the resource available at location l and the agent’s location.

Sharing the value functions precludes implicit coordination (as in Multi-agent HH),

because each agent uses exactly the same value function. For example, all agents would

rush to kill the enemy if the enemy appears. Hence, the MASH framework needs the

explicit coordination scheme described in the previous section. In the experiments, the

coordination information is in terms of the top-level subtasks of the other agents.

3.3.4 MASH Algorithm

Algorithm 3.1 is the pseudo-code for the MASH learning algorithm. The code is

presented from one agent’s standpoint. Every agent in the domain executes this code

concurrently and only needs to synchronize with the other agents at two points within

the algorithm (lines 3, 11). The actual execution is a little more complicated than the

standard stack-based recursive execution shown here. The algorithm always scans the

entire stack for terminated subtasks, starting at the root level. When the first terminated

subtask is found, it is popped off along with all of its descendants.

In this algorithm, we use s to denote the state (sz, q, c) which includes the agent-

1Although the MASH framework allows for the selective sharing of tasks across agents, this chapter
only considers the case where the entire hierarchy is shared.
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Algorithm 3.1 Mash

Input: Task Ti, agent-centric state sz, agent-independent state q
Output: Resultant state s′

1: s← (sz, q, c) // c← coordination information
2: if Ti is primitive then
3: Wait for all agents to select their primitive actions
4: Execute primitive action
5: Observe reward rz, elapsed time dz, next state s′z
6: Update transition, reward, and duration models
7: else
8: while not Terminated(Ti, s) do
9: a← exploratory or greedy subtask according to Equation 3.1

10: s′ ←Mash(a, sz, q)
11: Synchronize and gather coordination info in c′

12: s′ ← (s′z, q
′, c′)

13: Update transition probability model Pri(s
′|s, a)

14: if Ti 6= Root task then
15: Update the time model Di(s) according to Equation 3.2
16: Update Vi(s) according to Equation 3.3
17: else
18: if a was greedily selected then
19: Update ρz according to Equations 3.4, 3.5, 3.6
20: Update Vroot(s) according to Equation 3.7
21: s← s′

22: Vi(s) = 0
23: return s′

centric variables sz, global variables q, and the coordination variables c (line 1). In lines

4–6, the primitive subtask updates its reward and time models after the primitive action

has been executed. The transition model is updated by keeping counts of the occur-

rences of (s, a) and (s, a, s′); the reward and duration models are updated via moving

averages. In line 9, the composite subtasks use an ε-greedy exploration strategy, that

is an exploratory action is chosen with a fixed probability (8% in all our experiments),

otherwise the average-adjusted greedy action is chosen according to

g ← argmax
a∈Ci(s)

(
Va(s)− ρzDa(s) +

∑
s′∈Si

Pri(s
′|s, a)

(
Vi(s

′)− ρzDi(s
′)
))

. (3.1)
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This algorithm is called recursively for the selected subtask a, and the resulting state

s′ (when the control returns to the calling task) is observed (line 10). After the agents

synchronize, the appropriately abstracted next state is computed (lines 11–12). The

composite subtask then updates its transition probability model (line 13).

If the composite task being executed is not the root task, we update the time model

with respect to the greedy action g in the current state (line 15).

Di(s)← Dg(s) +
∑
s′∈Si

Pri(s
′|s, g)Di(s

′) (3.2)

We update the value of s to reflect the expected total reward obtained by selecting

child task g in s, and following the task’s policy thereafter until completion (line 16).

Vi(s)← Vg(s) +
∑
s′∈Si

Pri(s
′|s, g)Vi(s

′) (3.3)

If the task being currently executed is the root task, and the child task a was selected

greedily, we update ρz (lines 18–20).

avg-rewardz
αz← Va(s) + Vroot(s

′)− Vroot(s) (3.4)

avg-timez
αz← Da(s) (3.5)

ρz ← avg-rewardz/avg-timez (3.6)

The expression Vroot(s
′) − Vroot(s) in eqn. 3.4 nullifies the effects of the exploratory

actions. Next, we update the root’s average-adjusted value function (line 21).

Vroot(s)← max
a∈Croot

(
Va(s)− ρzDa(s) +

∑
s′∈S

Pr(s′|s, a)Vroot(s
′)

)
(3.7)

The current task continues until a termination state is reached. The value of all

termination states = 0 (line 25).
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Figure 3.5: Performance in the 5× 5 3-agent Taxi domain.

3.4 Empirical Evaluation

In the multi-agent Taxi domain described in Section 3.1.1, stochastic passenger gen-

eration does not require a lot of coordination between agents because even when two

agents try to pick up a passenger from one site, the unsuccessful agent just has to wait

a few time steps till the next passenger is generated. To necessitate coordination, the

passenger generation is as follows: a destination site is picked and passengers headed to

that destination are generated; no new passengers are generated until all passengers have

been dropped off, after which a new destination site is selected, and so on. Every action

has a 95% probability of success; it has no effect otherwise. There is a default reward of

−0.1 for every action to allow the total-reward subtasks to optimize their policies, and

a reward of +100 for a successful drop-off. All results shown here are averaged across 30

independent runs.

Figure 3.5 shows the performance of the algorithms in the 5×5 3-agent Taxi domain.

The MASH algorithm learns the fastest and converges to the optimal policy, while the
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Figure 3.6: Performance in the 10× 10 3-agent Taxi domain.

version without coordination converges to a sub-optimal policy. The Coordinated HH

algorithm, slowed down by the sheer volume of values it must learn, improves very

gradually, but does reach the performance of MASH without coordination. The Multi-

agent HH algorithm does better than MASH without coordination, but converges to a

slightly suboptimal policy. Figure 3.6 shows the performance of the algorithms in the

10 × 10 version of the 3-agent Taxi domain, demonstrating that the MASH framework

scales well with the size of the domain. Coordinated HH cannot be run here because of

its exorbitant demand for memory.

Figure 3.7 shows the performance of the algorithms in the 15×15 2-agent RTS domain

described in Section 3.1.2. Again, the MASH algorithm learns the fastest and converges

to the best policy. Both HH & Coordinated HH improve very gradually. Figure 3.8

shows the performance of the algorithms in the 25 × 25 version of the 4-agent RTS

domain, demonstrating that the MASH framework scales very well with the size of the

domain, but Coordinated HH requires too much space to even run. The larger number
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Figure 3.7: Performance in the 15× 15 2-agent RTS domain.

of agents necessitates more coordination as evidenced by the fact that MASH without

coordination does much worse than HH.

3.5 Conclusion

This chapter has presented a multi-agent HRL framework called the MASH framework.

This framework allows agents coordinating in a domain to share their hierarchical value

functions to be able to learn more effectively. With suitable coordination information,

this framework can greatly boost learning in multi-agent domains as shown by the re-

sults in the multi-agent RTS domain. Moreover, the framework is extensible to sharing

only portions of the task hierarchy (certain subtasks) across multiple agents with the

constraint that if a task is shared, then all its descendants must be shared as well; this

is required to ensure a consistent value function decomposition.

MASH does not consider the cost of communication between agents. Ghavamzadeh
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Figure 3.8: Performance in the 25× 25 4-agent RTS domain.

and Mahadevan (2004) present an approach that treats communication of coordination

information as explicit decisions to be made by the agents. However, unlike the co-

ordination information, communicating the value function is not time-sensitive — all

agents can record their experience tuples and update the shared value function at a later

time. Intuitively, the cost of offline communication of value functions seems negligible

compared to the reduction in training time achieved due to sharing.
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Chapter 4: Variable-Reward Hierarchical Reinforcement Learning

Most work in transfer learning is in the supervised setting where the goal is to improve

classification performance by exploiting inter-class regularities. This chapter considers

transfer learning in the context of RL, that is, learning to improve performance over a

family of semi-Markov decision processes (SMDPs) that share some structure. In partic-

ular, it introduces the variable-reward transfer learning problem where the objective is to

speed up learning in a new SMDP by transferring experience from previous MDPs that

share the same dynamics but have different rewards. More specifically, reward functions

are weighted linear combinations of reward features, and only the reward weights vary

across different SMDPs. This problem is formalized as converging to a set of policies

which can solve any SMDP drawn from a fixed distribution in close to optimal fashion

after experiencing only a finite sample of SMDPs.

SMDPs that share the same dynamics but have different reward structures arise

in many contexts. For example, while driving, different agents might have different

preferences although they are all constrained by the same physics (Abbeel and Ng,

2004). Even when the reward function can be defined objectively (e.g., winning as many

games as possible in chess), usually the experimenter needs to provide other shaping

rewards (such as the value of capturing a pawn) to facilitate efficient exploration. Any

such shaping reward function can be viewed as defining a different SMDP in the same

family. Reward functions can also be seen as goal specifications for agents such as

robots and Internet search engines. Alternatively, different reward functions may arise

externally based on difficult-to-predict changes in the world, e.g., rising gas prices or

declining interest rates that warrant lifestyle changes. There is a large literature on

multi-criteria decision problems where each criterion corresponds to an individual reward

signal, and one of the standard ways of approaching this problem is to solve these decision

problems with respect to a linear combination reward signal. An example of such a

reward decomposition would be in a logistics domain where there are trade-offs between

fuel consumption, delivery time, and number of drivers. Different companies might

have different coefficients for these items and would require different solutions. Another
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example is that of trading where the prices of different commodities might change from

day to day but the actions involved in trading them all have the same dynamics.

While this chapter focuses on the average-reward learning criterion, the general ap-

proach can be easily adapted to both the discounted and the total-reward settings. The

key insight behind the work is that the value function of a fixed policy is a linear func-

tion of the reward weights. Variable-Reward Reinforcement Learning (VRRL) takes

advantage of this fact by representing the value function as a vector function whose

components represent the expectations of the corresponding reward features that occur

during the execution of the policy. Given a new set of reward weights and the vectored

value function of a policy stored in a cache (value function repository), it is easy to com-

pute the value function and average reward of that policy for the new weights. VRRL

initializes the value function for the new weights by comparing the average rewards of

the stored policies and choosing the best among them; it then uses a vectorized version of

an average-reward learning algorithm to further improve the policy for the new weights.

If the average reward of the policy is improved by more than a satisfaction constant γ

via learning, then the new value function is stored permanently in the cache. We derive

an upper bound for the number of policies that will be stored in the worst case for a

given γ and the maximum values of different reward weights.

This chapter extends VRRL to the MAXQ framework where a single task hierarchy

is used for all SMDPs. Vectored value functions are stored in the tasks and represent the

task policies. Given a new weight vector, our method initializes the value functions for

each task by comparing the overall average rewards for the stored value functions and

choosing the best. If the average reward improves during learning, then every task whose

value function changes significantly is cached. In this hierarchical version, we expect the

task policies to be optimal across a wide spectrum of weights, because the number of

reward components affecting a particular task’s value function is normally less than that

affecting the non-hierarchical value function, and this results in significant transfer.

The approach is demonstrated empirically in a simplified real-time strategy (RTS)

game domain. In this domain, a peasant must accumulate various resources (wood,

gold, etc.) from various locations (forests, gold mines, etc.), quell any enemies that

appear inside its territory, and avoid colliding with other peasants. The reward features

are associated with bringing in the resources, damaging the enemy, and collisions. The

actual value of these features to the agent is determined by the feature weights, which
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are different in each SMDP. The goal is to learn to optimize the average reward per time

step. We show that there is significant transfer in both flat and hierarchical settings. The

transfer is much more prominent in the hierarchical case, mainly because the overall task

is decomposed into smaller subtasks which are optimal across a wide range of weights.

To cope with the huge state space (up to 3.7× 1016 states), value-function approxi-

mation is employed within the hierarchical structure. Not only does the combination of

hierarchical task decomposition and value function approximation allow our method to

be applicable to a broad class of problems, but features for linear function approxima-

tion are easier to design for a decomposed value function than for a non-hierarchical one.

Finally, this chapter also shows that standard perceptron-style learning can be used to

induce the weight vector from a scalar reward function and the reward features.

4.1 Variable-Reward Transfer Learning

This section introduces the variable-reward transfer learning problem and presents an

approach to solve it in a non-hierarchical setting.

4.1.1 Variable-Reward Transfer Learning Problem

A family of variable-reward SMDPs is defined as (S,A,P, f), where S,A,P are the

same as before, but f is an n-dimensional vector of binary reward feature components

〈f1, . . . , fn〉. A weight vector w = 〈w1, . . . , wn〉 specifies a particular SMDP (S,A,P,R)

in the family where R = w · f . Hence, n denotes the size of the minimal specification of

any SMDP in the family, and is called the dimension of the SMDP family. The binary

feature vector1 indicates whether or not a particular component is active for (s, a); the

weight vector’s components are arbitrary real numbers that indicate the importance of

the corresponding feature components. All the SMDPs in the variable reward family

share the same states, actions, state transition function, and the expected execution

times of actions, but may have different reward functions based on the particular weight

vector. The basic transfer protocol is that the agent sees a stream of SMDPs from the

family of variable-reward SMDPs; for every new SMDP, it is provided the associated

1The restriction to binary vectors is for explanatory purposes only; in practice, this could be an
arbitrary real-valued vector.
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weight vector and the agent is allowed to learn until convergence.

We now proceed with a formal definition of Variable Reward Transfer Learning,

beginning with some preliminary definitions.

Definition 4.1. A variable-reward transfer learning problem is a pair (F , E), where F
is a variable-reward SMDP family and E is an unknown distribution over weight vectors.

E defines a distribution over SMDPs in the family. The goal of the transfer learner

is to quickly find an optimal policy for SMDPs drawn from the family (based on the

weight vectors) given an opportunity to interact with it by taking actions and receiving

rewards. A simple strategy would be to treat each SMDP independently and apply some

reinforcement learning algorithm to solve it. While this approach cannot be improved

upon if we need to solve only one SMDP in the family, it is inefficient when we are

interested in solving a sequence of SMDPs drawn from the distribution over the SMDP

family.

After solving a sequence of SMDPs drawn from the distribution, it would seem that

we should be able to transfer the accumulated experience to a new SMDP drawn from

the same distribution. Because all the SMDPs in the family share the same P and D,

an obvious improvement over solving each SMDP separately is to learn models for the

state-transition function P and the action-duration function D (collectively called the

action models) and share them across different SMDPs. In the next section, we will see

that even more efficient approaches are possible.

Definition 4.2. A γ-optimal policy is any policy π whose gain is at most γ less than

that of the optimal policy, that is, ρπ ≥ ρ∗ − γ.

Definition 4.3. An ε, γ-approximate cover for a variable-reward transfer learning prob-

lem (F , E) is a set of policies C such that, given an SMDP M chosen from F according

to E , C contains a γ-optimal policy for M with probability at least 1− ε.

We refer to an ε, γ-approximate cover as an ε, γ-cover for short. This is an approxima-

tion in two senses. First, the policies in the cover might be up to γ worse than optimal.

Second, there is some probability ε that the cover does not contain a γ-optimal policy

for an SMDP in the family F . Ideally, we would like a variable-reward transfer learner

to produce an ε, γ-cover for any problem (F , E) after learning from a small number of
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training SMDPs drawn according to E . However, as the training SMDPs are randomly

chosen, we allow the learner to fail with a small probability δ. This is similar to the

probably approximately correct (PAC) framework, where we only guarantee to find an

approximately correct hypothesis with high probability.

Definition 4.4. A learner L is a finite-sample transfer learner if, for any variable-reward

transfer learning problem (F , E) of dimension n and any set of parameters ε, γ and δ,

there exists a finite bound F (ε, δ, γ, n) such that, with probability at least 1− δ, L finds

an ε, γ-cover for (F , E) after learning from F (ε, δ, γ, n) SMDPs drawn according to E .

In this case, we say that the learner has sample complexity F (ε, δ, γ, n). Further, if

F (ε, δ, γ, n) is polynomial in n, 1
γ , 1

ε , and 1
δ , then L is a sample-efficient transfer learner.

If the run-time of L is polynomial in n, 1
γ , 1

ε ,
1
δ , and the sample size F (ε, δ, γ, n), then L

is a time-efficient transfer learner.

The above definition can be generalized to a variety of SMDP families that share

different types of properties. This chapter is restricted to the variable-reward family.

4.1.2 Variable-Reward Reinforcement Learning

Our approach to variable-reward reinforcement learning (VRRL) exploits the structure

of the variable-reward SMDP family by caching value functions and reusing them. We

begin with the following theorem which states that the value function for any fixed policy

is linear in its reward weights.

Theorem 4.1. Let M = (S,A,P,R) be an SMDP in the variable-reward SMDP family

with a reward weight vector w and π be a policy. The gain ρπ is w · ρπ, and the bias of

any state s is hπ(s) = w · hπ(s), where the ith components of ρπ and hπ(s) are the gain

and bias respectively with respect to the ith reward feature for the policy π.

Proof. The result follows directly from the fact that the immediate rewards for the SMDP

are linear in the reward weights, and the bias and the average rewards are based on the

sums of the immediate rewards.

Policies can be represented indirectly as a set of parameters of these linear functions,

that is, the gain and the bias functions are learned in their vector forms, where the

components correspond to the expected value of reward features when all the weight
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Figure 4.1: Policy plot for a 1-component weight vector. Every line in the above plot
represents a single policy whose gain varies linearly with the reward weights. The dark
lines represent the gain of the optimal policy as a function of weight.

components are 1. In the following section, we show that the set of optimal policies for

different weights forms convex and piecewise linear gain and bias functions. If a single

policy is optimal for different sets of weights, it suffices to store one set of parameters

representing this policy.

4.1.2.1 Algorithm Description

To understand the intuition behind our approach, consider a gain vector ρ for a par-

ticular policy. Plotting w · ρ with respect to the weight components of w would result

in a hyperplane. Every policy generates one such hyperplane in the weight space as

demonstrated in Figure 4.1 for the case of a single-component weight vector.

The bold piecewise linear and convex function in the figure represents the best

weighted gain for each possible weight. Extended to multiple dimensions, this becomes

a convex piecewise planar surface2. Thus, when a new weight is considered, the learner

might start off with the policy that registers the highest weighted average-reward, repre-

2The reasoning here is exactly the same as in the POMDPs, where the value function is a convex
piecewise linear function over the belief states (Kaelbling et al., 1998).
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sented by a point in the highlighted convex function in Figure 4.1. Initializing the value

function with that of the dominant policy for the current weight vector will assure that

the agent would learn a policy that is at least as good.

Let C represent the set of all optimal policies which are currently stored. Given a

new weight vector wnew, we might expect the policy πinit = argmaxπ∈C(wnew · ρπ) to

provide a good starting point for learning. Our transfer learning algorithm works by

initializing the bias and gain vectors to those of πinit and then further optimizing them

via average-reward reinforcement learning.

After convergence, the newly learned bias and gain vectors are only stored in C if

the gain of the new policy with respect to wnew improves by more than a satisfaction

threshold γ. With this approach, if the optimal policies are the same or similar for many

weight vectors, only a small number of policies are stored, and significant transfer can

be achieved. The algorithm for Variable-reward Reinforcement Learning is presented in

Algorithm 4.1. The counters i and c in the algorithm are primarily for the purposes of

theoretical analysis. In practice, we keep looping through the algorithm and adding to

the cache when necessary as long as new weight vectors are experienced.

We could use any vector-based average reward reinforcement learning algorithm in

step 11 of the algorithm. In this work, we employ the vectorized version of H-learning

algorithm (Tadepalli and Ok, 1998). In H-learning, action models are learned and em-

ployed to update the h-value of a state. In the vectorized version, the h-values, the

reward models (the binary feature values f(s, a)), and the gain ρ are all vectors. The

greedy action a is now defined as

a← argmax
b

(
w ·
(
f(s, b)− ρD(s, b) +

∑
s′

Pr(s′|s, b)h(s′)
))
.

After the execution of a, the value of the state is updated as

h(s)← max
b

(
f(s, b)− ρD(s, b) +

∑
s′

Pr(s′|s, b)h(s′)
)
.

For the gain ρ, the only change from the non-vectorized version is in the update for the

average reward ρπr , which is done as

ρπr
α← f(s, a) + h(s′)− h(s).
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Algorithm 4.1 VRRL Protocol

Output: Set of optimal policies C.
1: i← 1
2: c← 0
3: C ← ∅
4: πinit ← ∅
5: repeat
6: Obtain the current weight vector w
7: if C 6= ∅ then
8: πinit ← argmaxπ∈C(w · ρπ)
9: Initialize the value function vectors

10: Initialize the gain to ρπinit

11: Learn the new policy π′ through vector-based RL
12: if (C = ∅) or (w · ρπ′ −w · ρπinit > γ) then
13: C ← C ∪ π′
14: c← 0
15: i← i+ 1
16: else
17: c← c+ 1
18: until c ≥ 1

ε ln (i+1)2

δ
19: return C

We can also apply this vectorizing trick to R-learning, the model-free average-reward

reinforcement learning algorithm (Schwartz, 1993). Some experimental results based on

this are presented in Natarajan and Tadepalli (2005).

Though we expound on the application of the variable-reward concepts to the average-

reward criterion, these ideas could easily be extended to the weighted total reward for

the total-reward criterion or the weighted discounted reward for the discounted-reward

criterion. For both these criteria, the value function of any fixed policy is a linear function

of the reward weights. Hence, we could store the value function in a vectorized form just

as in the average-reward case. In the average-reward setting, the gain vector provides

a convenient way to find the best policy in the cache for a given set of reward weights.

In the total-reward and the discounted-reward settings, we need to keep track of the

expected returns for the start state distribution to serve a similar purpose; this will have

a vectorized form whose dimension is the number of the reward components. Its inner

product with the reward weights gives the expected returns of any policy, and it can be
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Figure 4.2: Two policies π1 and π2 learned for weights w1 and w2 respectively.

used to determine the initial policy as in step 8.

The algorithm presented here transfers seamlessly to any representation of policies,

including value-function approximation, as long as the representation is the same dur-

ing retrieval (step 8) and caching (step 13). This is because the algorithm caches the

parameters of the representation as a proxy for the policy itself.

4.1.2.2 Theoretical Analysis

We now derive an upper bound on the number of policies stored by the VRRL algorithm

and use it to derive the sample complexity.

Theorem 4.2. Assuming that the vector-based RL algorithm finds optimal policies for

each weight, the number of policies learned by VRRL is upper-bounded by O

((
Wn
γ

)n)
,

where n is the number of components of the weight vector, W is the maximum range of

the weight components, and γ is the satisfaction parameter.

Proof. Let π1 and π2 be any two policies learned by our algorithm. Recall that the

average rewards of the policies are linear functions of the reward weights as shown in

Figure 4.2). Let the gain vectors of the two policies be ρπ1 and ρπ2 respectively. Let
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w1 and w2 be the weights at which the policies π1 and π2 were learned. Because π1 and

π2 are optimal for w1 and w2, we know that

w1 · ρπ1 −w1 · ρπ2 ≥ 0

w2 · ρπ2 −w2 · ρπ1 ≥ 0.

If π1 was learned before π2 then π2 must have been judged better than π1 at w2 by

our algorithm or else it would not have been stored. Hence,

w2 · ρπ2 −w2 · ρπ1 > γ. (4.1)

Similarly, if π1 was learned after π2, we will have

w1 · ρπ1 −w1 · ρπ2 > γ. (4.2)

Because at least one of equations 4.1 and 4.2 is true, adding the two left-hand sides

gives us

(w2 −w1) · (ρπ2 − ρπ1) > γ

=⇒ |w2 −w1| |ρπ2 − ρπ1 | > γ

=⇒ |w2 −w1| >
γ

|ρπ2 − ρπ1 |

=⇒ |w2 −w1| >
γ

maxi,j(|ρπj − ρπi |)
>

γ√
n
.

The above equation implies that the weight vectors for which distinct policies are

stored should be at least at a distance of γ√
n

from each other3. Let the maximum range

of the weight space, that is, the difference between the highest and the lowest weight

for any reward component be W . Hence, the maximum number of stored policies N is

bounded by the number of points that can be packed in a hypercube of side W , where

the distance between any two points is ≥ γ√
n

.

We estimate an upper bound on this quantity as follows: Suppose there are N such

points in the hypercube. We fill the volume of the hypercube by surrounding each point

3Every component (dimension) of ρ is between 0 and 1 because it represents a feature expectation.
The maximum distance between two such n-dimensional points is

√
n.
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by a hypersphere of radius γ
2
√
n

. No two such hyperspheres will overlap, because the

centers of the hyperspheres are at least at a distance of γ√
n

from each other. Hence, the

volume of the hypercube divided by the volume of the hypersphere will upper-bound the

number of hyperspheres. As the volume of hypersphere of radius r is rnπbn2 c

bn
2
c! (Weeks,

1985),

N ≤
Wn bn2 c!(
γ

2
√
n

)n
πb

n
2
c
≤ O

((
Wn

γ

)n)
.

Corollary 4.3. The sample complexity of the VRRL algorithm is bounded by O
(
N
ε ln N

δ

)
,

where N is the upper-bound in the previous theorem.

Proof. Algorithm 4.1 is a rough sketch of the VRRL algorithm. Notice that for the

learner to terminate in stage i, it should have passed through mi = 1
ε (2 ln(i+ 1) + ln 1

δ )

randomly chosen test weight vectors without learning a new policy. We first bound the

probability of the learner terminating with a non-ε, γ-cover in stage i. A new policy is

not learned only when the current policy cache produces a γ-optimal policy. A non-

ε, γ-cover produces a γ-optimal policy on a random SMDP with probability at most

1 − ε. The probability that all mi weight vectors lead to γ-optimal policies is at most

(1− ε)mi < e−εmi = e
ln δ

(i+1)2 = δ
(i+1)2 . The probability that the learner terminates with

some non-ε, γ-cover in some stage is therefore bounded by

∞∑
i=1

δ

(i+ 1)2
<

∫ ∞
i=0

δ

(i+ 1)2
di < δ.

From Theorem 4.2, we know that the learner learns at most N policies. The value of i

is upper-bounded by N . Each time i is incremented, mi = O
(

1
ε ln (N+1)2

δ

)
SMDPs are

tested. Thus, we have a sample complexity of O
(
N
ε ln N

δ

)
.

VRRL is not sample-efficient, because N is exponential in the natural parameter

of the SMDP family n. However, it is easy to see that VRRL runs in time linear

in the sample size and polynomial in n (not counting the cost of solving the SMDPs,

and assuming that the policy cache is indexed efficiently for a constant-time retrieval).

Thus, according to Definition 4.4, VRRL is a time-efficient transfer learner. This worst-

case sample complexity bound suggests that the algorithm scales poorly in the number
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of reward components. While we may be able to improve our bounds with a tighter

analysis, we argue that in many practical domains the number of reward components

is small. VRRL is highly effective in such domains in transferring knowledge across

different SMDPs. We provide empirical evidence for these claims in the later sections.

In light of this worst-case result, it is interesting to consider whether the algorithm

can achieve better sample complexity for problems (F , E) when there exists a small set of

policies that are sufficient to cover the problem. It turns out that even if a problem (F , E)

has a small ε, γ-cover, the algorithm may require an arbitrarily large number of samples

to find such a cover. To see this, consider a distribution E that places a probability mass

of 1−ε−ε′ on weight vector w1, a probability mass of ε′ on w2, and spreads the remaining

probability mass ε uniformly over the K weight vectors w′1, . . . ,w
′
K . It is possible to

construct a variable-reward SMDP family F such that, for a pair of weight vectors

generated according to E , the optimal policy for one weight vector is not γ-optimal for

the other. Hence, the ε, γ-cover of such a problem (F , E) consists of the optimal policies

for w1 and w2 (all the remaining weight vectors together have a probability mass of ε)

and is of size 2. However, making ε′ arbitrarily small and K arbitrarily large will cause

the algorithm to require arbitrarily many samples to generate an ε, γ-cover for (F , E).

The above example shows that a small cover does not necessarily guarantee a small

sample complexity. This result does not seem to be specific to our algorithm but is

a consequence of the fact that certain problem distributions are not exploitable in a

transfer context. In the above example, there are many inherently different MDPs, each

generated with a very small probability — this is a pathological scenario for any transfer

learner.

If we place additional constraints on a policy cover, it is possible to show that our

algorithm is efficient when there exists a small cover.

Definition 4.5. An ε, γ-cover for (F , E) is p-constrained if for each policy in the cover,

with at least probability p, it is γ-optimal for a randomly drawn weight vector from E .

With this definition in hand, we can show the following result.

Theorem 4.4. Let (F , E) be a variable-reward transfer learning problem. If there exists

a p-constrained ε, γ/2-cover for (F , E) with M policies, then with probability at least 1−δ,

the above algorithm will store an ε, γ-cover after at most 1
p ln M

δ samples.
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Proof. Let C be the ε, γ/2-cover assumed in the theorem. Consider a policy π in the

cover and a weight vector w for which π is γ/2-optimal. If π′ is the optimal policy for w,

it follows that π′ is γ-optimal for any weight vector for which π is γ/2-optimal. Thus, if

we can guarantee that for each π in the cover, we sample a weight vector for which it is

γ/2-optimal then the set of policies stored for those weights will effectively cover all of

the weight vectors that C covers. Hence the set of learned policies will be an ε, γ cover

for (F , E).

It remains to bound the number of samples required to guarantee that, with high

probability, we get a set of weights such that each policy in C is γ/2-optimal for at least

one weight. Given m samples, the probability that a single policy is not γ/2-optimal for

any of the m samples is no more than (1− p)m. Using the union bound, the probability

that at least one policy is not γ/2-optimal for any sample is bounded by M(1−p)m. We

want this probability to be less than δ, that is, M(1− p)m ≤ δ. Solving for m gives the

bound of the theorem.

Although this bound may look like it is only logarithmic in M , it will in fact at least

scale as M lnM . To see this, note that we must have pM < 1 which means that 1/p

is at least as large as M . This result shows that if there is a small cover such that the

probability of each policy being optimal for a problem is not too small, then we can

obtain efficient sample complexity. This agrees with the intuition that transfer learning

is most useful in situations with a small number of inherently distinct SMDP types, each

of which is not too unlikely to be experienced.

4.1.3 Empirical Evaluation

We present results of the performance of the VRRL system within the simplified RTS

domain shown in Figure 4.3. It is a map with a fixed number of peasants, the peasants’

home base, multiple resource sites where the peasants can harvest resources, and an

enemy base which can be attacked when it appears. Only one peasant can occupy a grid

cell. Although there are multiple peasants in the world, there is only a single learning

peasant; all other peasants execute fixed policies. The state variables in this domain are

the locations of the peasants, what they are currently carrying (gold, wood, ..., nothing),

the availability of resources at each of the resource locations, and the enemy’s status
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Figure 4.3: The simplified RTS domain with 5 peasants, multiple resources (W, G, ...),
a home base H, and an enemy base E.

(present or absent). The peasants can move one cell to the North, South, East, and West,

Pick a resource from a resource site, Put a resource at the home base, Strike the enemy

base, and Idle (no-op); the probability of failure for an action is 0.05. Every resource is

stochastically generated at its designated site with a probability of 0.5. The probability

of the appearance of an enemy base is 10−4, and it persists until it is attacked. Due to

the lack of scalability of non-hierarchical learning, these performance curves are based

on a 25× 25 RTS map with 1 peasant, 5 fixed resource sites (2 resources), a home base,

and an enemy base. The rate of ε−greedy exploration is 0.1.

The reward feature vector has components associated with dropping off each of the

resources, enemy elimination, and a time-step penalty that provides shaping to the flat

learner. Theoretically, each of the weight components wi ∈ (−∞,∞). Empirically, we

defined a set of seed values that we shuffle to generate the training and testing weights.

These seed values are chosen to make one component dominate, and this is consequently

reflected in the policies learned. For a concrete illustration of how the reward feature

and weight vectors generate the scalar reward, consider that the peasant is at its home

base carrying gold (state s1), it is executing put, and the immediate reward feature
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Figure 4.4: Performance of VRRL on a test weight after seeing 0, 1, and 10 training
weight vectors (averaged across 10 trials).

vector f(s1, put) = (0, 1, 0, 1). If the current weight vector w = (10, 50, 30,−10), then

the immediate scalar reward R(s1, put) = w · f(s1, put) = 40.

Figure 4.4 shows the learning curves for the VRRL learner. All curves are averaged

across 10 trials. The experiments are designed to show the performance of the learner

on a particular test weight after having seen 0 through 10 training weights. Curve i

represents the performance on the test weight having already seen i training weights; for

the sake of clarity, the plots only show the learning curves for i = 0, 1, 10. As the variable-

reward framework is designed principally to deal with dynamically changing weights, we

evaluate the performance on the test weight vector by incrementally introducing training

weight vectors. Curve 0 measures the performance of the algorithm on the test weight,

given no prior experience. Next, one training weight is introduced, and the optimal
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policy for this weight is learned and cached. Curve 1 now measures the performance

on the test weight vector given the single training weight. When the second training

weight is introduced, a cached policy is retrieved for initialization, and a new policy is

learned; this new policy is cached if it is substantially better than the initializing policy.

Importantly, none of the learning done during performance evaluation (on the test weight

vector) spills over into the training phases — the policy learned for the test weight is

never cached.

From the results, we can observe that the learning curve for the test weight given

no prior training weights (i.e., an empty policy cache) is the slowest to converge in both

figures. However, after accumulating the 10 training weight vectors, the VRRL agent

demonstrates a high jump-start4 and quicker convergence for the test weight. With

only one training weight vector, VRRL exhibits some negative transfer, that is, the

initialization to the policy learned for the first training weight hurts the convergence for

the test weight. This is unsurprising given that currently we always attempt to transfer

past experience even when the experience is limited.

Because the MDPs have the same dynamics, the flat learner does not need to relearn

the transition model from scratch when the reward weights change. Figure 4.5 shows

the results of repeating the VRRL experimental setup with one crucial difference — no

policy is ever cached. Instead, the only transfer here is due to the transfer of transition

models. In this case, we do observe a slight speed-up in convergence but no jump-start.

4.2 Variable-Reward Hierarchical Reinforcement Learning

VRRL exploits the decomposition of reward into reward components, whereas HRL is

based on the idea of decomposing the tasks into subtasks. In this section, we explicate

the variable-reward hierarchical reinforcement learning (VRHRL) algorithm that syner-

gistically combines the two ideas. We seek to incorporate the variable-reward transfer

mechanism into a hierarchical framework to benefit from value-function decomposition.

The task hierarchy for the RTS domain is the same as that shown in Figure 3.4, the

principal difference being that the Harvest task has more bindings (resources) here. As

the Root task solves the entire SMDP, it sees the entire world state. The Harvest task

see an abstract state space based on the location of the peasant, what it is carrying, and

4Jump-start is defined as the immediate benefit via transfer without any learning in the new setting.
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Figure 4.5: Performance of VRRL without the policy-caching mechanism on a test weight
after seeing 0, 1, and 10 training weight vectors (averaged across 10 trials).

the resource present at the resource locations. The Deposit task only sees the location of

the peasant and what it is carrying. The Attack task keeps track of the location of the

peasant and the status of the enemy. The Goto task only see the location of the peasant.

The primitive movement actions, Pick and Idle, only store one value each. Put needs

to keep track of the location and the resource being toted. Finally, Strike looks at the

location of the peasant. We have designed the task hierarchy to include a parameterized

Harvest task. Because the set of terminal states of this task depends solely on the binding

value of the parameter, RDI holds, and this task can be called optimally based on the

external context. On the other hand, the terminal states of an unparameterized Harvest

task depend on the local policy, and RDI no longer holds.

In non-hierarchical learning, the optimal policy is represented by a monolithic value
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function. This means that changes in the reward function will often result in non-local

changes to this value function. Storing a new value function for every new weight would

consequently result in a large policy cache. Moreover, besides taking a longer time to

converge, a monolithic value function is also more prone to lead to negative transfer

especially when only a small number of policies are stored. Instead, a hierarchical value

function is less prone to negative transfer especially when the hierarchical decomposition

is closely aligned with the reward decomposition. Every task has a local value function,

and local changes in rewards can be better managed. For instance, if none of the reward

variations affect navigation, the Goto task only needs to learn its local value function once;

perfect transfer is achievable for this task across the family of MDPs (and consequently

every task below it in the task hierarchy). In the case of the RTS domain with multiple

colliding peasants, the Goto task is only affected by the collision component of the reward,

and it transfers over perfectly to all MDPs for which the corresponding reward weight

is identical. Thus, negative transfer can be significantly reduced with better design of

hierarchical structure.

4.2.1 Bellman Equations for VRHRL

The vectorized value function Vi(s) for a non-root task Ti represents the vector of total

expected reward components during task Ti starting from state s following a recursively

optimal policy π. Hence, the value function decomposition for a non-root task satisfies

the following equations:

Vi(s) =


f(s, i) if Ti is a primitive task (4.3a)

0 if s is a terminal state for Ti (4.3b)

Vg(s) +
∑
s′∈S

Pr(s′|s, g) ·Vi(s
′) otherwise, (4.3c)

where the recursively optimal child task

g = argmax
a

(
w ·
(

ha(s) +
∑
s′∈S

Pr(s′|s, a) hi(s
′)

))
(4.4)
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maximizes the weighted bias (the objective of action selection is to maximize the weighted

gain, i.e., the dot product of the weight vector with the gain vector), and the bias vector

is computed as

hi(s) = Vi(s)− ρDi(s).

Storing the bias vector indirectly in a form that is independent of the gain gives a

limited form of reusability in that the value function for a subtree of the task hierar-

chy may be transferred across MDPs with different global gain vectors as long as the

optimal policy for the subtree remains the same. Storing the value functions as vectors

facilitates transfer across different MDPs in the variable-reward family just as in the

non-hierarchical variable-reward RL. The Bellman equations for the task durations Di

remain the same as before. Because the root task is recurrent and has no parent tasks,

we keep track of the bias values of the root task directly as

hroot(s) = max
a

(
ha(s) +

∑
s′∈S

Pr(s′|s, a) · hroot(s
′)

)
.

4.2.2 Transfer Mechanism in VRHRL

The VRHRL agent has three components: the task hierarchy with the current task value

functions and the associated global gain, the task stack, and a cache of previously learned

optimal policies C that comprise the convex piecewise function. The policies in the cache

are indirectly represented by the task value and duration functions and the global gain.

The policy cache C is specific to the hierarchical transfer mechanism, while the other

components are part of a basic hierarchical agent.

Initially, the agent starts out with an empty policy cache. The agent proceeds to

learn a recursively optimal policy π1 for the first weight w1. When the agent receives a

new weight w2, it first caches π1 (the task functions and the global gain achieved for w1)

in the policy cache C. Next, it determines πinit = argmaxπ∈C(w2 ·ρπ), which in this case

is π1, and initializes its task functions and global gain based on πinit. It then improves

the value functions using the vectorized version of model-based hierarchical RL, which

works as follows.

At any level of the task hierarchy, the algorithm either chooses an exploratory child

task, based on ε-greedy exploration, or a greedy one according to Equation 4.4. It esti-
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mates the transition model Pr(s′|s, a) for each task by counting the number of resulting

states for each state-subtask pair to estimate the transition probabilities. In doing so,

the states are abstracted using the abstraction function defined at that task, so that

the transition probabilities can be represented compactly. Every time a task terminates

in state s′, equations 4.3a–4.3c are applied to update the total expected reward vector

Vi(s) of task Ti, and scalar equations are used to update the scalar duration function

Di(s). The global gain is computed as

ρπr
α← Va(s) + hroot(s

′)− hroot(s),

where α is the learning rate, and s and s′ are the states before and after executing the

highest level subtask a of the root task; the update for ρπt can be used unchanged. The

updates for ρπr and ρπt are performed only when a is selected greedily and ρπ ← ρπr / ρ
π
t .

On sensing a new weight w3, the agent only caches the learned hierarchical policy

π2 for w2 if w2 · (ρπ2 − ρπinit) > γ. If this condition is not satisfied, then the newly

learned policy is not sufficiently better than the cached version. When adding π2 to the

policy cache, we could just store the value function of every task in the task hierarchy.

However, although the hierarchical policy has changed, many of the local task policies

could still be the same. To leverage this fact, for every task being stored, we check the

policy cache to see if any of the previously-stored versions of the task are similar to the

current one; if so, then we need only store a reference to that previously-stored version.

Two versions of a task are similar if none of the values for the vector components of the

value and duration functions for any state differ by more than a similarity constant σ.

Once caching is complete, the policy that maximizes the weighted gain with respect to

w3 is chosen from the policy cache for initialization. This process is repeated for every

new weight encountered by the system. Thus, every weight change is accompanied by

the internal process of caching and value function initialization for the agent.

VRHRL is also applicable when employing value-function approximation. In the

experiments described in the next section, we employ a linear value function over a set

of predefined features for every task in the hierarchy. Instead of updating the value

function for each possible value of the abstracted feature vector, the weights of the linear

value function are updated in proportion to the gradient of the temporal difference error.

Representationally, linear function approximation benefits greatly from the nonlinearity
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of value function decomposition, because it facilitates the contextual activation of the

features within tasks. For example, only the feature that encodes the distance to a

particular site bound to the parameter of Goto is made active within that task. This

contextual activation in the non-hierarchical setting requires knowing the policy that is

yet to be learned.

4.2.3 Empirical Evaluation

The performance results for the hierarchical agent are based on a 25 × 25 RTS map

(discussed in Section 4.1.3) with 5 peasants, 5 fixed resource sites (5 resource types),

a home base, and an enemy base. As this is a huge state space, in addition to the

hierarchical decomposition, we also employ linear value-function approximation. For

a vectored value function, this entails maintaining a set of parameters for each vector

component; for a hierarchical value function, we maintain such a set of parameters for

each task. The state features used are distances to sites, indicators for what the peasant

is carrying, indicators for what resource is present at the sites, and an indicator for the

appearance of the enemy base. The learning rate for updating the weights of the linear

function approximation is 10−4. The rate of ε−greedy exploration is set to 0.1. The

reward feature vector has 7 components that are associated with 5 resources, peasant

collisions, and enemy elimination.

The experiments are designed exactly as in Section 4.1.3. Two important param-

eters that govern the learning behavior of the VRHRL algorithm are the satisfaction

constant γ = 0.01 and the similarity constant σ = 0.01; these parameters are fixed for

all experiments. Just as the learning rate and the rate of exploration are key parameters

in regular RL, the satisfaction and similarity constants trade-off speedup in learning

against the size of the policy cache. For instance, the smaller the satisfaction, the larger

the number of policies stored in the cache. When a new weight is detected, the algorithm

is more likely to find a policy that is very close to optimal from this heavily-filled cache.

The smaller the similarity, the more new task data is stored by the algorithm instead of

maintaining references to previously stored task information.

Figure 4.6 shows the learning curves for VRHRL. The learning curve for the test

weight given no prior training weights (i.e., an empty policy cache) is the slowest to

converge. However, the jump-start and speed of convergence for the test weight improve
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Figure 4.6: Performance of VRHRL on a test weight after seeing 0, 1, and 10 training
weight vectors (averaged across 10 trials).

as more training weight vectors are experienced.

We have previously noted that the flat learner does not need to relearn the transition

model from scratch when the reward weights change. In the hierarchical learner, the

state-transition models at the composite and primitive tasks do not need to be relearned

when RDI holds, because then the distribution of the termination states at every task is

invariant to the changes in the policies of the child tasks. Figure 4.7 shows the results of

repeating the VRHRL experiment without the policy-caching mechanism. Here, reusing

the learned models is only slightly beneficial to the hierarchical learner, leading to a small

initial speed-up in learning but without any jump-start or faster convergence. A complete

trial of the VRHRL experiment (10 training weights, 1 test weight) takes 7266.1 secs on

average, while that of the experiment without caching takes 7204.3 secs on average —
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Figure 4.7: Performance of VRHRL without the policy-caching mechanism (averaged
across 10 trials).

the caching mechanism adds an overhead of only 0.85% to the overall running time of

the experiment.

We have mentioned that VRHRL benefits from having certain tasks like Goto transfer

successfully because they are affected by only a small number of reward components.

Figure 4.8 demonstrates that with caching only the Goto task (and reinitializing all

other tasks to zero), the learner sees a jump-start that is smaller than that for complete

policy caching, but the performance is still better than when not caching at all.

We have also conducted experiments in which the weight vector w is induced from

the scalar reward signal R using perceptron-style incremental learning:

w← w + α(R−w · f)f ,
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Figure 4.8: Performance of VRHRL when caching only the Goto task (averaged across
10 trials).

where f is the reward feature vector. The agent is allowed to take random actions for

a certain number of steps in order to sense the scalar reward and the corresponding

reward features. The number of steps can be tailored to allow the agent to get a good

estimate of the true weight vector — the less likely it is for the agent to experience a

certain reward component, the more time it needs in order to estimate the weight for

that component accurately. In our experiments, we allow the agent to learn an extremely

good estimate of the weight vector. The resulting learning curves look exactly like the

plots shown for VRRL and VRHRL except that they are shifted to the right by the

number of reward-learning steps.
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4.3 Related Work

Taylor et al. (2005) propose a value-function mapping approach for transfer between

source and target reinforcement learning tasks. In their approach, hand-coded similarity

functions guide the transfer of the Q-value functions. These functions are applied to

specify similar state spaces, action spaces, and representation mappings between the

source and target tasks. Liu and Stone (2006) have extended this work to automate

the determination of the similarity mappings by employing expertly-designed qualitative

dynamic Bayesian nets (QDBNs) to represent the structural information about the source

and target tasks. Based on the structure mapping, an algorithm discovers the similarities

between the QDBNs of the source and target tasks to facilitate the transfer of value

functions. As our work is restricted to assuming that the dynamics are exactly the same

in the source and target tasks, it would be interesting to combine the two methods to

handle both varying dynamics and reward functions.

Torrey et al. (2007) apply inductive logic programming (ILP) to learn macros that

transfer Q-functions across different problems. Their method (applied to the m-on-n

Breakaway domain within RoboCup soccer) proceeds as follows: the learner collects

training examples while playing a few source games; relational macros that describe a

successful strategy (policy) in the source task are learned through ILP; these macros

are then employed as default policies in the target task for a fixed number of iterations;

finally, a better policy is learned via Q-learning. In effect, the relational macros serve

as exploration devices in the target domain. While their approach generalizes over

several source games to learn the ILP rules, we consider each source task independently

for caching. This greedy approach could result in a larger policy cache, and it could

increase negative transfer in the pathological case where successive weights are radically

different from one another.

Guestrin et al. (2003) employ linear programming techniques to solve relational

MDPs and compute a set of value functions that can be applied across the grounded

MDP instances. Mausam and Weld (2003) take the approach of converting the relational

MDPs into several propositional MDPs and solving the propositional MDPs; here, the

value functions are represented by first-order regression trees. In both these methods,

the relational structure is exploited for learning the value functions for similar classes of

MDPs. Price and Boutilier (2003) have looked at the problem of transferring knowledge
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from one learner to another as imitation. Our goal is chiefly to facilitate transfer in the

presence of time-varying rewards.

Our approach to variable-reward transfer learning borrows ideas from multi-criteria

reinforcement learning (Gabor et al., 1998). These ideas are related to earlier work

on solving multi-criteria MDPs, where weights indicate the importance of different re-

ward components. For example, White (1982) employs vector-based generalizations of

successive approximation techniques to solve MDPs and Feinberg and Schwartz (1995)

formulate the problem as optimizing a weighted sum of the total discounted rewards for

the different components of the reward function. Russell and Zimdars (2003) consider

the additive decomposition of rewards for solving MDPs, while Guestrin et al. (2001)

apply reward decomposition to make multi-agent coordination tractable. Parr (1998b)

decomposes the problem of solving a big MDP into one of solving smaller weakly-coupled

sub-MDPs. The fact that the value function of a fixed policy over the sub-MDP is linear

in the values of its exit states is effectively exploited to speed up the solution of the

overall MDP.

4.4 Conclusion

This chapter has shown that vector-based value function learning and caching of policies

can lead to effective variable-reward transfer learning. It has also demonstrates that

hierarchical reinforcement learning can accelerate transfer across variable-reward MDPs

more effectively than is possible with non-hierarchical methods. Our results are in the

model-based setting and have the added advantage that the models need not be relearned

from scratch when the rewards change; it is easy to learn them from non-decomposed

scalar rewards, because the scalar reward is linear in the reward weights.

Possible future directions include sharing tasks across multiple agents as in the MASH

framework and transferring across MDP families that share only part of the reward

dynamics. In RTS games, we could consider MDPs that contain different objects such

as peasants, footmen, and archers in different proportions and locations. Although the

dynamics of local interaction for each peasant may be the same, the changes in the

peasants’ locations and their numbers mean that, technically, the different MDPs have

different dynamics. Nevertheless, people seem to be able to effectively transfer their

strategies from one such scenario to another. Duplicating this ability in machines would
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be a big advance for the field of machine learning.

So far in this dissertation, we have discussed the transfer of hierarchical structure

while finessing the issue of its design. The next chapter addresses this issue by describes

a framework that discovers hierarchical structure and analyzes its scope of transfer.
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Chapter 5: Hierarchical Structure Discovery

Scaling up reinforcement learning (RL) to large domains requires leveraging the structure

in these domains. Hierarchical reinforcement learning (HRL) and its close cousin, hierar-

chical planning (Nau et al., 2003), provide mechanisms through which domain structure

can be exploited to constrain the value function and policy space of the learner, and lead

to faster learning and efficient planning. In the MAXQ framework, a task hierarchy is

defined (along with relevant state variables) for representing the value function of the

overall task. This allows for decomposed subtask-specific value functions that are easier

to learn than the global value function.

Large sequential decision tasks such as trip planning and real-time strategy games

also offer special challenges and opportunities for studying transfer learning. These

domains are complex, and good performance requires selecting long chains of actions to

achieve subgoals needed for ultimate success. Reinforcement learning in these domains,

because it involves a process of exploratory trial-and-error, can take a very long time

to discover these long action chains. Fortunately, it is often possible to study smaller

versions of these domains that share the same fundamental structure, but that involve

fewer objects and smaller state spaces. Reinforcement learning on these smaller domains

is much faster. If it can discover the shared structure and transfer it to the large scale

domains, then this provides a much more efficient way of achieving good performance.

The automated discovery of task hierarchies is compelling for at least two reasons.

First, it avoids the significant human effort and expertise in programming the task-

subtask structural decomposition, along with the associated state abstractions and sub-

task goals. Second, if the same hierarchy is useful in multiple domains, it leads to signif-

icant transfer of learned structural knowledge from one domain to the other. The cost

of learning can be amortized over several domains. Several researchers have focused on

the problem of automatically inducing temporally extended actions and task hierarchies

(Thrun and Schwartz, 1995; Reddy and Tadepalli, 1997; McGovern and Barto, 2001;

Menache et al., 2001; Pickett and Barto, 2002; Hengst, 2002; Şimşek and Barto, 2004;

Jonsson and Barto, 2006; Langley and Choi, 2006; Hogg et al., 2009). Because tasks are
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like subroutines, automatically learning tasks addresses the question of what constitutes

a good subroutine, a long-standing fundamental question in computer science.

This work builds on previous research and automatically induces task hierarchies

based on two key claims: first, it is possible to uncover the hierarchical task structure in a

domain by analyzing the relevant relationships between actions in successful trajectories;

second, the hierarchical task structure is more robustly transferable across domains than

other kinds of knowledge such as the utilities of being in different states (the value

function) or the utilities of executing different actions (the action-value function).

The Hierarchy Induction via Models and Trajectories (HI-MAT) approach is based

on the claim that the key to transfer learning is to discover and represent deep forms of

knowledge that are invariant across multiple domains. Consider the problem of driving

to work. There are surface aspects, such as the amount of time it takes to get from home

to the office or the selection of the best route, that may be highly regular, but they are

unlikely to transfer when you move to a new city. On the other hand, the task structure

involved in driving, such as starting the car, driving, obeying traffic laws, parking, de-

pends only on the relevant structure of the actions involved, and hence transfers more

successfully from one city to another. We are interested in transferring task knowledge

between source and target domains that share the same relevant structure, that is, the

actions in both domains depend upon and influence the same state variables. This is

weaker than assuming that the behavior of actions is exactly identical in two domains.

For instance, although two different cars may have very different engines that accelerate

at different rates, they both speed up when you press the accelerator and slow down

when you hit the brakes.

The high-level schema of the HI-MAT approach is shown in Figure 5.1. We focus on

the asymmetric knowledge transfer setting where we are given access to solved source

RL problems. The action models and a successful trajectory are extracted from a source

task and analyzed to identify the relevant relationships between the actions in the trajec-

tory. Our hierarchy discovery algorithm, HI-MAT (Hierarchy Induction via Models and

Trajectories), leverages this relevantly annotated trajectory to discover a coherent task

hierarchy that minimizes the number of inter-task relevant links. This task hierarchy is

transferable for faster learning to all target tasks that share the relevant structure of the

source task.

This chapter shows how a task hierarchy can be efficiently discovered from a sin-
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Figure 5.1: The architecture of the HI-MAT system. Action models and a single tra-
jectory from the source task are analyzed to produce a relevantly annotated trajectory
(RAT). The RAT and the action models are then provided to the HI-MAT algorithm,
which discovers a task hierarchy. The structure of this task hierarchy facilitates faster
learning in a range of target tasks that share the relevant structure of the source task.

gle source trajectory by exploiting the knowledge of the domain dynamics instead of a

search-based approach (Appendix A sketches out the huge size of the search space). This

work resembles explanation-based learning (EBL), which generates explanations of suc-

cessful trajectories to deduce sound knowledge (Minton, 1988; Tadepalli and Dietterich,

1997; Nejati et al., 2006). However, unlike the EBL paradigm, which relies on complete

knowledge of the actions to learn sound control rules, HI-MAT only learns based on the

qualitative relevant structure of actions, which is more readily available for domains and

yields more widely-transferable knowledge. The transferred knowledge is the hierarchical

task structure, which can be further specialized to learn detailed action policies in the

target task through further experience.

We analyze HI-MAT both theoretically and empirically. Our theoretical results show

that, under appropriate conditions, the task hierarchies induced by HI-MAT are con-

sistent with the observed trajectory and possess compact value-function tables that are

safe with respect to state abstraction. Empirically, we show that 1© using a success-

ful trajectory can result in more compact task decompositions than when using only

action models in the form of dynamic probabilistic networks (DPNs), 2© the induced

hierarchies are comparable to manually-engineered hierarchies on target RL tasks, and

MAXQ-learning converges significantly faster than flat Q-learning on those tasks, and

3© transferring hierarchical structure from a source task can speed up learning in target

RL tasks when transferring value functions cannot.



65

Peasant

Townhall

Region of sight

Tree
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(a) Wargus map.

Variable Description

p.l or p.x, p.y Peasant’s location
p.r Peasant’s resource (gold/wood)
r.g, r.w, r.t Indicators for goldmine, forest, or townhall regions
q.g, q.w Quota indicators for gold and wood.

(b) State variables.

Figure 5.2: The Wargus Resource-Gathering domain.

5.1 Preliminaries

This section introduces the Wargus resource-gathering domain and describes the action

model representation.

5.1.1 Wargus Resource-Gathering Domain

Wargus is a real-time strategy game. Two players inhabit a world that contains entities

such as peasants, goldmines, and townhalls, and resources such as gold and wood. To

win, a player must collect resources, build various kinds of units (e.g., townhalls, lumber

mills, footmen, dragons), and then deploy those units to defeat the enemy in battle.

We focus on the resource-gathering aspect of Wargus, where our agent needs to collect
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a specified quota of gold and wood as quickly as possible given an arbitrary map as

shown in Figure 5.2a. To achieve the resource goal, the agent must command peasants

to collect gold from goldmines and harvest wood from forests and deposit those resources

at townhalls. The game state is described through the following variables: p.l represents

the coordinate location of peasant p; p.r indicates if the peasant is empty-handed (empty)

or carrying a resource (gold or wood); the binary variables r.g, r.w, and r.t indicate if

there is a goldmine, forest, or townhall respectively in the peasant’s immediate vicinity;

the binary variables q.g and q.w indicate whether the required quotas of gold and wood

have been met.

The actions available to the agent are MineGold, ChopWood, Deposit, Goto(l), for

mining gold when in the vicinity of a gold mine, chopping wood when in the vicinity of

a forest, and navigating to a location l on the map (this uses the internal path-finding

routine of the game). If MineGold is executed when an empty peasant p is in the vicinity

(within the effective range) of a goldmine, then this will change p.r to gold; otherwise,

this action will have no effect (the game state does not change). Similarly, a successful

ChopWood will change p.r from empty to wood. A successful Deposit will deposit the

peasant’s resource at the townhall, set p.r to empty, and provide a positive reward to

the agent. The overall goal of achieving the requisite quotas q.g = 1 ∧ q.w = 1 is at-

tained by having peasants repeatedly collect gold and wood from goldmines and forests,

and deposit these resources at townhalls. Even though the actions have deterministic

outcomes, they appear to behave nondeterministically due to the partial observability

of the true state through the defined variables. Employing Boolean variables to repre-

sent the map’s topography and the resource quotas actually results in non-Markovian

system dynamics and is approximated with probability distributions within the MDP.

For example, transitioning from an unmet quota to meeting it actually depends upon

the number of deposits, but this is approximated by the distribution seen at the leaf

for q.g′ in Figure 5.4. The primitive Goto actions are themselves temporally extended

and the parameter l can be bound to a location on the map. To limit the number of

Goto actions, we divide the map into regions whose radii are the effective range of the

peasants and restrict l to be bound only to the centroids of these regions.

The Wargus resource-gathering domain is too complex for a non-hierarchical solu-

tion, because the larger the map, the larger the state space and the larger the number

of navigation actions available at each state. However, the task hierarchy shown in Fig-
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Figure 5.3: A task hierarchy for the Wargus resource-gathering domain.

ure 5.3 decomposes the overall problem into simpler subproblems. The Root task tries

to learn a policy for meeting the overall resource quota in the original MDP by solving

and combining the solutions of three subtasks: a GetGold task that moves a peasant to

the vicinity of a goldmine and then mines for gold, a GetWood task that does the same

for wood, and a GWDeposit task that brings a peasant carrying either gold or wood back

to the townhall to deposit the resource. GetGold and GetWood are terminated when

the peasant is carrying something (p.r 6= empty) and GWDeposit is terminated when

the peasant is not carrying anything (p.r = empty). Because GetGold is not involved

in getting wood or depositing anything, it does not need to know anything about the

townhall (r.t) and wood (r.w) regions. Similarly, GWDeposit does not need to know

about mining gold or chopping wood and is active only when the peasant is carrying

something. Thus, each of these subtasks describes a sub-MDP with fewer state variables

and actions than the original problem. This particular hierarchy was expertly designed

(by me!) to emphasize subtask sharing, where the GWDeposit task deposits a resource

regardless of its type.

5.1.2 Action Models

An action model represents the effect that executing an action has on the state variables.

For instance, depositing gold at a townhall changes the peasant’s resource variable p.r

from gold to empty. The factored state space allows for system dynamics to be specified

using a more natural and intuitive representation instead of an |S| × |S| × |A| matrix

for transitions and a |S| × |A| matrix for rewards. A 2-stage dynamic probabilistic
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Figure 5.4: The dynamic probabilistic network model for the Deposit action in the War-
gus domain. The left and right columns of elliptical nodes represent the state variables
before and after the action is executed. The diamond node labeled R represents the
immediate reward received after the action is executed. The peasant resource p.r′ and
the gold quota q.g′ nodes have been expanded to show the decision tree representation
of their conditional probability distributions. The internal nodes of the tree check condi-
tions involving the state variables, such as the peasant being near a townhall (r.t = 1?),
and the leaves contain the distributions over resultant values, such as executing Deposit
near a townhall when carrying gold results in the peasant’s resource being empty (p.r′ ←
empty) with probability 1, or that the gold quota is met with probability 0.2 if all the
conditions are satisfied.
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network (DPN) model for action a is a directed acyclic bipartite graph µa = (X ∪X ′, Ea)
where X is the set of vertices in the first stage and X ′ = {x′1, . . . , x′n, R} is the set of

vertices in the second stage. The two stages represent the values of the (random) state

variables at times t and t+1 when a is executed at time t. A DPN for the Deposit action

in Wargus is shown in Figure 5.4. The reward function is also represented within the

action-based DPNs by incorporating a special (diamond-shaped) reward vertex R in the

second stage.

Every edge (u, v) ∈ Ea represents a direct probabilistic dependency of v on u when

a is executed (Dean and Kanazawa, 1990). Let Parentsµa(v) = {u : (u, v) ∈ Ea}.
For a set of variables X, Parentsµa(X) =

⋃
x∈X Parentsµa(x). Diachronic edges are

directed from variables at time t to variables at time t+ 1; synchronic edges are directed

between vertices in the same time-step. A simple DPN lacks synchronic edges, that is,

∀(u, v) ∈ Ea, u ∈ X ∧ v ∈ X ′; the associated graph is bipartite, and ∀x, Parentsµa(x) ⊆
X .1 Events that cause state transitions but are considered beyond the control of the

agent are called exogenous events. Such events are not the effect of any particular

action, but implicit-event models merge exogenous events together with the transition

dynamics of the actions (Boutilier et al., 1999). The system dynamics of a set of actions

A is defined as µA =
⋃
a∈A µa =

(
X ∪ X ′,

⋃
a∈AEa

)
. Thus, the complete transition

dynamics can be captured by a single DPN with an additional decision node representing

the action choice. While this has certain advantages such as exploiting regularities

across actions and succinctly representing exogenous effects, it normally introduces many

unwanted dependencies between the variables because the individual DPN edges are

unioned together.

5.1.2.1 Structured Conditional Probability Distribution

A conditional probability distribution (CPD), Pr(x′|Parentsµa(x′), a), is associated with

each node x′ in the second stage. As the Markov property renders prior history irrelevant,

the two stages suffice to capture the complete transition probabilities succinctly, and the

variables do not influence each other within the same time stage (no synchronic effects).

1A generic DPN can be made simple by agglomerating the synchronically related variables into com-
pound variables.
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The transition function is now calculated as

P(x, a,x′) = Pr(x′|x, a) =
∏
x′∈x′

Pr(x′|Parentsµa(x′), a).

The HI-MAT approach to discovering task hierarchies relies on compact, inspectable

action models. We assume that this conditional probability distribution is represented

as a decision tree that captures context-specific independence. The internal choice nodes

of the decision tree at DPN node x′ test the values of the Parents(x′) and the leaf nodes

specify a probability distribution over the values of x′ in the resulting state. The tree

structure for p.r′ represents the fact that it remains unchanged if the peasant is not

near a townhall or when it is not carrying gold or wood; otherwise, the variable changes

(with high probability) to reflect the fact that the Deposit succeeds and p.r becomes

empty. This captures the fact that the probability distribution over p.r′ depends on

the context — it is more compact than representing the probability distribution as a

table that enumerates all possible combinations of values of the parents (Boutilier et al.,

1996). Similarly, a conditional reward tree is associated with the reward node R and

Parentsµa(R) is the set of the state variables that are tested at R. Technically, DPNs

with reward (and decision) nodes are called influence diagrams or decision networks

(Russell and Norvig, 2003), but we refer to these models of the system (transition and

reward) dynamics as DPNs when the usage is unambiguous.

5.1.2.2 Variable Closure

State abstraction is an integral part of hierarchical decomposition. When discovering

and tackling subproblems, it is the ability to suitably abstract the state information that

actually expedites the solution to the overall problem. In fact, defining subproblems

without state abstraction normally results in a decomposition that is harder to solve

than the original undecomposed problem. The structural information of a DPN model

can be analyzed to determine the state abstraction for a task; this analysis hinges on the

concept of closure.

Definition 5.1. The ith-stage closure of variable x with respect to the DPN model µa

for action a is defined as χiµa(x) = Parentsµa(χi−1
µa (x)′) ∪ {x}, where χ0

µa(x) = {x}.
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According to this definition, the set χiµa(x) keeps growing strictly monotonically with

respect to i until it converges for some i ≤ |X |, because ∀i, χiµa(x) ⊂ X . This maximal

set, denoted as χ∗µa(x), is simply called the closure of x with respect to µa.

The closure of a variable x with respect to a set of actions A is denoted as χ∗µA(x),

where µA =
⋃
a∈A µa. If A ⊇ B, then χ∗µA(x) ⊇ χ∗µB (x), because an edge exists in µA

if it exists in µB. The following example illustrates that χ∗µA(x) 6=
⋃
a∈A χ

∗
µa(x). Let

X = {x1, x2, x3}, A = {a1, a2}, µa1 = (X∪X ′, {(x1, x
′
2)}), and µa2 = (X∪X ′, {(x2, x

′
3)}).

Thus, χ∗µa1
(x3) = {x3} and χ∗µa2

(x3) = {x2, x3}. Now, µA = (V, {(x1, x
′
2), (x2, x

′
3)}), and

χ∗µA(x3) = {x1, x2, x3}. Therefore, χ∗µA(x3) 6=
⋃
a∈A χ

∗
µa(x3).

For a set of variables X, the i-th stage closure with respect to the DPN model µa

for action a is χiµa(X) = Parentsµa(χi−1
µa (X)′) ∪ X, where χ0

µa(x) = X; χ∗µa(X) is the

corresponding maximal set.

Lemma 5.1. Given a set of variables X and a set of actions A, χ∗µA(X) =
⋃
x∈X χ

∗
µA

(x).

Proof. We first show inductively that ∀i,
⋃
x∈X χ

i
µA

(x) = χiµA(X).

• Base step: ⋃
x∈X

χ0
µA

(x) =
⋃
x∈X
{x} = X = χ0

µA
(X).

• Inductive step: Assume that χnµA(X) =
⋃
x∈X χ

n
µA

(x).

∴
⋃
x∈X

χn+1
µA

(x) =
⋃
x∈X

(
ParentsµA

(
χnµA(x)′

)
∪ {x}

)
=
⋃
x∈X

ParentsµA
(
χnµA(x)′

)
∪
⋃
x∈X
{x}

= ParentsµA

(⋃
x∈X χ

n
µA

(x)′
)
∪X

= ParentsµA
(
χnµA(X)′

)
∪X = χn+1

µA
(X).

As every variable’s ith-stage closure converges by at most |X | stages,

χ∗µA(X) = χ|X |µA
(X) =

⋃
x∈X

χ|X |µA
(x) =

⋃
x∈X

χ∗µA(x).
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As the immediate reward node R is also included in the DPNs, the above definition

of closure extends to R, barring the minor change that the closure excludes R itself. For

a goal condition G, χ∗µA(G) denotes the closure of the set of variables in G.

Lemma 5.2. For two action models µA = (V,EA) and µB = (V,EB), χ∗µA(·) = χ∗µB (·)
if EA = EB.

Proof. This follows directly from the definition of closure.

5.1.2.3 Variable Properties

Based on the action model µa for action a, a state variable x ∈ X can have the following

properties.

Definition 5.2. x persists through a iff ∀x ∈ D(x), Pr(x′ = x|x = x, a) = 1, that is, x

stays unchanged every time a is executed. Otherwise, x is changed by a.

Definition 5.3. x is checked by a iff x ∈ Parentsµa(R) or there exists y ∈ X such that

y does not persist through a and x ∈ Parentsµa(y′).

Although an edge exists from x to x′ in µa, x is not checked by a if it is the parent of

only x′ and it persists through a. In the action model for the Deposit action in Figure 5.4,

r.t persists through Deposit and all the state variables are checked by Deposit.

If the CPDs in µa are tree-structured, then state s induces a path from the root to

a leaf in every CPD. The contextual DPN is denoted as µa(s) and Parentsµa(s)(·) is the

contextual equivalent of Parentsµa(·).

Definition 5.4. x context-persists through a in s iff Pr(x′ = x|x = x, s, a) = 1, where x

is the value of x in s. Otherwise, x is context-changed by a in s.

Definition 5.5. x is context-checked by a in s iff x ∈ Parentsµa(s)(R) or there exists

y ∈ X that does not context-persist through a in s and x ∈ Parentsµa(s)(y
′).

When the Deposit action is executed in any state s in which the peasant is carrying

wood, q.g context-persists through Deposit in s and all state variables except q.g are

context-checked by Deposit in s.
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Figure 5.5: A relevantly annotated trajectory (RAT) for the Wargus domain. Variables:
p.l = peasant location; p.r = peasant resource; r.g, r.w, r.t = regions; q.g, q.w = quotas.
Actions: Goto, MG = MineGold, CW = ChopWood, Dep = Deposit; the trajectory is
prepended with Start which sources all the variables, and appended with End which
sinks all the variables. An edge goes from one action to another (later in the trajectory)
when a variable is relevant to both, but to no intervening action; edges are labeled with
the associated variables. For succinctness, p.∗ = {p.l, p.r}, and r.∗ = {r.g, r.w, r.t}.

5.2 The HI-MAT Approach

We consider MDPs where the agent is solving a known conjunctive goal. This is a

subset of the class of stochastic shortest-path MDPs. In such MDPs, there is a goal

state (or a set of goal states), and the optimal policy for the agent is to reach such a

state as quickly as possible. We assume that we are given factored DPN models for

the source MDP, where the conditional probability distributions are represented as trees

(CPTs). Further, we are given a successful trajectory that reaches the goal in the source

MDP. With this in hand, the objective is to automatically induce a MAXQ hierarchy

that can suitably constrain the policy space when solving a related target problem, and

therefore transfer to achieve faster convergence in the target problem. This is achieved

via recursive partitioning of the given trajectory into subtasks using a top-down parse

guided by backward chaining from the goal. We use the DPNs along with the trajectory

to define the termination predicate, the set of subtasks, and the relevant abstraction for

each MAXQ subtask.

5.2.1 Relevance Annotation

The input trajectory is a sequence of actions that achieves the overall goal in the source

problem. A trajectory in the Wargus domain is a sequence of Goto, MineGold, ChopWood,

and Deposit actions that together achieves the requisite quota of gold and wood. The
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trajectory is first annotated with relevant information using the DPN models before it is

fed to the HI-MAT algorithm. The intent of this annotation is to identify how executing

actions affects the state variables that are relevant to future actions and, ultimately, the

goal of the overall task. For example, the annotation must indicate that the MineGold

and ChopWood actions enable the subsequent Deposit action by setting the peasant’s

resource p.r to something other than empty, which is required for Deposit to succeed.

The trajectory annotation is based on the relevance of variables to actions which is

gleaned from the DPNs.

Definition 5.6. A variable v is relevant to an action a in state s if v is either context-

checked or context-changed by a in s; it is irrelevant otherwise.

In Figure 5.4, the peasant being near a townhall (r.t) is always relevant to Deposit,

because it is in the root node of the tree, but the peasant’s resource (p.r) is only relevant

when the peasant is near a townhall.

Definition 5.7. A relevant edge a
v−→ b connects a to another action b (b following a in

the trajectory) iff v is relevant to both a and b and irrelevant to all actions in between.

A relevantly annotated trajectory (RAT) is the original trajectory annotated with all the

relevant edges, sandwiched between dummy Start and End actions for which all variables

are defined to be relevant.

Given a
v−→ b, the literal on a relevant edge refers to a formula of the form v = v,

where v is the value taken by v in the state before b is executed. The RAT is preprocessed

to remove any cycles present in the original trajectory (this includes failed actions, such

as an unsuccessful Deposit when the peasant is not near a townhall). A sample RAT for

the Wargus domain is shown in Figure 5.5.

5.2.2 The HI-MAT Algorithm

Given a RAT, the DPN models, and the MDP’s goal (or recursively, the current

subtask’s goal) as input, the HI-MAT algorithm discovers hierarchical structure by re-

cursively partitioning the RAT. Each partition corresponds to a candidate subtask. This

partitioning process works backward from the goals of the task. It regresses each goal

through the action models to discover preconditions and employs a heuristic procedure



75

Algorithm 5.1 HI-MAT

Input: Action models {µa}, RAT Ω, Goal predicate G.
Output: Task (X,G,C).

1: n← number of actions in Ω excluding Start and End
2: if SameActionFamily({µa},Ω) then
3: A← set of actions in Ω
4: return (RelevantVariables(µA, G), G,A)
5: Ψ← ∅ // Set of trajectory segments
6: U ← Literals(G)
7: while U 6= ∅ do
8: Pick u ∈ U
9: j ← index of the action in Ω that achieves u

10: i← RAT-Scan(Ω, j)
11: if i = 1 ∧ j = n then
12: Ψ← Ψ ∪ {(1, n− 1, v) : v ∈ Precondition(an)}
13: Ψ← Ψ ∪ {(n, n,∅)}
14: else if j > 0 then // Last segment action 6= Start
15: Ψ← Ψ ∪ {(i, j, u)}
16: U ← U ∪ {v : ∃k < i ∃l ak

v−→ al ∈ Ω, i ≤ l ≤ j}
17: U ← U − {u}
18: while ∃(i, j, u1), (i, j, u2) ∈ Ψ do
19: Ψ← (Ψ− {(i, j, u1), (i, j, u2)}) ∪ {(i, j, u1 ∧ u2)}
20: X ← ∅
21: C ← ∅
22: for t ∈ Ψ do
23: (Xt, Gt, Ct)← HI-MAT(Extract(Ω, ti, tj), tu)
24: X ← X ∪Xt

25: C ← C ∪ {(Xt, Gt, Ct)}
26: A← set of the primitive descendants of T
27: return (X ∪RelevantVariables(µA, G), G,C)
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(a) The entire RAT is associated with the root task of collecting gold and wood. The root task
terminates when the requisite amount of gold and wood have been collected.
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(b) The segment corresponding to collecting the requisite amount of gold (q.g = 1) is extracted
yielding the associated subtask.
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(c) The segment corresponding to collecting the requisite amount of wood (q.w = 1) is extracted.
Other literals entering this segment result in segments that are merged together with the q.g = 1
segment (merged goal condition not shown for clarity).
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(d) The resultant task hierarchy after an entire parse of the RAT. The multiple invocations of the
task that gets the peasant to the townhall (r.t = 1) within the RAT are merged into one unique
task. However, the tasks that empty the peasant’s resource (p.r = 0) are not merged because,
while GDep and WDep are proxies for the Deposit action, the former’s abstraction includes q.g
while that of the latter includes q.w instead. The primitive Goto(loc) action is wrapped by tasks
that get the agent to particular types of regions.

Figure 5.6: Illustrating the HI-MAT algorithm for the Wargus domain. The left-hand
side shows the RAT scanning process, while the right-hand side shows the task hierarchy
as it is being built.
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to determine small RAT segments responsible for achieving the goal. For example, to

achieve the overall goal in the Wargus domain, a Deposit action must be executed. By

analyzing the DPN for Deposit and considering the conditions that allow q.g to be set

to 1, the subgoal of p.r = gold is identified, which then leads to the discovery of the

subsequence of Goto and MineGold actions that achieve this new subgoal, and so on.

The HI-MAT algorithm is outlined in Algorithm 5.1 and illustrated in Figure 5.6.

HI-MAT first checks if the base criteria is satisfied (line 2), that is, the trajectory

only contains actions from the same family (e.g., the Goto actions). This limits the

decomposition in order to reduce the number of parameters that need to be learned

and to facilitate the transfer of the hierarchical structure. Otherwise, it first initializes

the set of unprocessed goals to the set of literals in the goal conjunction (line 6). It

then selects any unprocessed goal u, and extracts the corresponding segment (line 10).

In Figure 5.6c, the segment associated with collecting the wood quota (q.w = 1) has

two incoming edges: one for the peasant’s resource p.r, and the other for the peasant’s

location p.l. Consequently, HI-MAT extracts two segments associated with these literals.

However, both these segments overlap with the segment that collects the gold quota

(q.g = 1). (Extracted segments can only overlap fully when their shared ultimate action

achieves the literals of all these segments.) HI-MAT merges the overlapping segments by

replacing them with one that is assigned a conjunction of the subgoal literals (line 19).

Thus, the merged goal condition is q.g = 1 ∧ p.r = empty ∧ p.l = townhall, but the

second and third literals are always true when the first is true; we leave them out to

reduce clutter.

RAT-Scan returns the index i of the first action in the RAT segment that achieves

the literal under consideration. If this RAT segment is nontrivial (neither just the initial

state nor the whole trajectory), it is stored (line 15), and the literals on relevant edges

that enter it (from earlier in the trajectory) are added to the unprocessed goals (line 16).

This ensures that the algorithm parses the entire trajectory barring redundant actions.

If the trajectory segment is equal to the entire trajectory, this implies that the trajectory

achieves only the literal u after the ultimate action. In this case, the trajectory is split

into two segments: one segment contains the prefix of the ultimate action an with the

preconditions of an forming the goal literals for this segment (line 12); the other segment

contains only the ultimate action an (line 13). For example, the RAT associated with

collecting gold cannot be split further based on the annotation so it is forcibly split
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Figure 5.7: The HI-MAT hierarchy for the Wargus domain. The task names have been
assigned intuitively based on the termination conditions.

into two segments: one containing only the ultimate Dep action and another containing

all actions prior to Dep within the RAT whose goal is to achieve the goal of getting the

peasant back to the townhall with some gold. RAT scanning is repeated until all subgoal

literals are accounted for.

The HI-MAT algorithm partitions the RAT into unique segments, each achieving a

single literal or a conjunction of literals due to merging. It is called recursively on each

element of the partition (line 23). Figure 5.7 shows the final task hierarchy induced by

HI-MAT in the Wargus domain with intuitive names for the subtasks based on their

termination conditions. The TGoto(townhall) subtasks have been merged by HI-MAT,

because discovered subtasks with identical termination conditions and identical child

tasks (recursively) are recognized as multiple calls to a unique subtask.

5.2.2.1 Subtask Discovery

Given a literal, a subtask is determined by finding the set of temporally contiguous

actions that are closed with respect to the relevant edges in the RAT such that the final

action achieves the literal. The idea is to group all actions that contribute to achieving

the specific literal being considered. Given an action index, Algorithm 5.2 extracts the

longest segment in the RAT such that no other actions within the segment have any
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Algorithm 5.2 RAT-Scan

Input: RAT Ω, end index j.
Output: Start index i.

1: i← j − 1
2: while i > 0 and ∀v ∃k ai

v−→ ak =⇒ k ≤ j do
3: i← i− 1
4: return i+ 1

causal influences outside it. Because of the way the RAT is constructed, a segment

will never include an action whose set of relevant variables is not a subset of the set

of variables relevant to the final action in the segment. The temporal contiguity of the

segment that we assign to a task is required by the subroutine semantics of a hierarchical

policy — a hierarchical MAXQ policy cannot interrupt an unterminated subtask, start

executing a sibling subtask, and then return to executing the interrupted subtask. In

Figure 5.6b, HI-MAT extracts the segment responsible for collecting the gold quota

(achieving q.g = 1), and discovers the subtask associated with the segment as a child of

the root task. Figure 5.6c shows how HI-MAT extracts the segment for collecting the

wood quota (achieving q.w = 1) by stopping the head of the segment at the action after

the Dep action that achieves q.g = 1. The causal annotation allows HI-MAT to correctly

incorporate any extra Goto actions that might be present in either of these segments.

5.2.2.2 Child Tasks and Termination

To define a task, we must specify the set of child tasks that it can invoke and the

termination predicate. The child tasks are those tasks that are associated with any

of the trajectory segments at the next recursive level of the HI-MAT algorithm. The

termination predicate is computed by taking the literal that was achieved by the segment

and generalizing it subject to the conditions that appear in the DPNs; we consider the

relational test(s) tu in the action and reward DPNs involving the variable u on the

relevant edge leaving the subtask (line 23 of Algorithm 5.1). For example, although

the specific condition for getting the peasant to a townhall involves both the peasant’s

location p.l and the townhall indicator r.t. = 1, the DPN only checks the latter and

consequently only r.t = 1 is the termination condition. Moreover, if the DPNs also

provide the primary effects of the actions, then further decomposition is possible. For
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instance, the Put Gold and Put Wood tasks are discovered because the DPN for Deposit

specifies that the primary effect of the action besides satisfying the requisite quotas is

to empty the peasant’s resource. The root task is associated with the entire RAT and

its termination condition is equal to the MDP’s goal predicate.

5.2.2.3 State Abstraction

Every task’s local policy in the hierarchy is dependent only on a subset of the state

variables. For instance, the agent can be oblivious to the location of forests when ex-

ecuting the task for collecting gold. HI-MAT tries to assign the smallest set of rele-

vant state variables to every task in its induced hierarchy to help expedite the learn-

ing of the local task policies. The state abstraction for a primitive task a is χ1
µa(R)

if the reward is not stochastic and it is χ2
µa(R) otherwise (line 4). For a composite

task, HI-MAT first constructs the merged DPN µA for the set of actions A in the seg-

ment associated with the task. The state abstraction for a task T = (XT , G,C) is

XT = χ∗µA(R) ∪ χ∗µA(G) if the primitive actions all have the same relevance (line 4) and

XT = χ∗µA(R) ∪ χ∗µA(G) ∪
⋃
c∈C Xc otherwise (lines 24 and 27). The next section on the

theoretical analysis of HI-MAT justifies these choices for state abstraction.

Adding the variables that do not change within a task to its state abstraction has

the effect of creating a task with these added variables as the formal parameters or

arguments. In HI-MAT, this parameterization is implicit in the termination conditions

rather than being explicit as in Dietterich (2000).

Computing the relevant variables is similar to explanation-based reinforcement learn-

ing (Tadepalli and Dietterich, 1997) except that here we care only about the set of rele-

vant variables and not their values. Moreover, the relevant variables are computed over

a set rather than a sequence of actions.

5.2.2.4 Generalizing the Task Hierarchy

Because the RAT is based on a single successful trajectory in the source problem, not all

primitive actions might be observed. Incorporating only the observed actions might limit

the scope of transfer. To make the task hierarchy more generally applicable, HI-MAT

checks if there are unobserved primitive actions that can be incorporated into a task
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T with primitive child tasks without adding more state variables to T ’s current state

abstraction (not shown in Algorithm 5.1). It does this by incorporating an unobserved

action if its DPN is a subgraph of µA where A is the set of primitive children of T . The

rationale here is to add unobserved actions that have the same causal effects as those

of the child actions. For example, the given trajectory might only involve a few of the

Goto actions, but all unobserved Goto actions are added to the induced task hierarchy,

because they all affect the same set of variables. However, if one of the Goto actions

affects a different variable, then it will not be incorporated even if it might turn out to

be useful in a target task.

5.3 Theoretical Analysis

This section establishes certain theoretical properties of the hierarchies induced by the

HI-MAT algorithm. A task hierarchy H is a directed acyclic graph in which the nodes

are tasks and the edges represents the task-subtask relationships. We begin by analyzing

the consistency of the HI-MAT hierarchy with respect to the trajectory.

Definition 5.8. A trajectory (s1, a1, . . . , sn, an, sn+1) is non-redundant if no subsequence

of the action sequence in the trajectory can be removed such that the remaining sequence

still achieves the goal starting from s1.

Definition 5.9. H is consistent with a trajectory-task pair 〈τ, Ti〉, where τ = (s1, a1, . . . ,

sn, an, sn+1) and Ti = (Xi, Gi, Ci), if Ti ∈ H and

1. Ti is the primitive task a1 and n = 1

2. Ti is not primitive, {s1, . . . , sn} ∩ Gi = ∅, sn+1 ∈ Gi, and there exists a set of

trajectory-task pairs {〈τj , Tj〉 : 1 ≤ j ≤ p} consistent with H such that τ is a

concatenation of τ1, . . . , τp and T1, . . . , Tp ∈ Ci.

H is consistent with a trajectory τ if H is consistent with 〈τ, T0〉 and T0 is the root task

in H.

Theorem 5.1. If a trajectory τ is non-redundant, then HI-MAT produces a hierarchy

H that is consistent with τ .
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Proof. Let τ = (s1, a1, . . . , sn, an, sn+1) be the trajectory. The algorithm extracts the

conjunction of literals that are true in sn+1 (and not before), and assigns it to the goal, Gi.

Such literals must exist — otherwise, some suffix of the trajectory can be removed while

the rest still achieves the goal, violating the property of non-redundancy. Whenever

the trajectory is partitioned into a sequence of subtrajectories, each subtrajectory is

associated with a conjunction of goal literals achieved by that subtrajectory and the

above argument applies recursively to each such subtrajectory.

We now analyze the state abstraction of the HI-MAT hierarchy. For a set of variables

X, let X = X −X and let x denote the values taken by the variables in X. Let VT (s)

represent the total expected reward received during a task T starting in state s.

Definition 5.10. If X and Y partition the set of state variables X and π is a hierarchical

policy, then Y is irrelevant to the value function V π
T of task T if, for any pair of states

s1 = (x,y1) and s2 = (x,y2), V π
T (s1) = V π

T (s2).

The leaf-irrelevance lemma (Lemma 5) in Dietterich (2000) states that if, for all pairs

of states s = (x,y) and s′ = (x′,y′),

R(s, a, s′) = R(x, a,x′) and Pr(x′,y′|x,y, a) = Pr(x′|x, a) Pr(y′|x,y, a) (5.1)

at a primitive task a, then Y is irrelevant to Va. The notation R(s, a, s′) = R(x, a,x′) is

shorthand for representing the fact that R depends only on the values of the variables

in X in states s and s′. The following lemma relates leaf irrelevance to the closure of

the reward node χ∗µa(R) in the action model µa of a.

Lemma 5.3. X is irrelevant to Va if X = χ∗µa(R).

Proof. If X = χ∗µa(R) and Y = X, then for all pairs of states s = (x,y) and s′ = (x′,y′),

R(s, a, s′) = R(x, a,x′), because the reward depends on Parentsµa(R), which is a subset

of χ∗µa(R) by definition. Moreover, Pr(x′,y′|x,y, a) = Pr(x′|x, a) Pr(y′|x,y, a), because

an arc cannot exist from Y (outside the closure) to X (within the closure) by definition.

Consequently, the leaf-irrelevance lemma applies.

We improve on the leaf-irrelevance result by showing that a potentially larger set of

variables is irrelevant to Va.
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Lemma 5.4. Let Z ⊆ X be a set of variables. If R(s, a, s′) = R(z, a, z′) and X =

Z ∪ Parentsµa(Z ′), then X is irrelevant to Va.

Proof. The value of state s for the primitive task a is

Va(s) =
∑
s′

Pr(s′|s, a)R(s, a, s′)

=
∑
z′,z̄′

Pr(z′, z̄′|z, z̄, a)R(z, a, z′)

=
∑
z′,z̄′

Pr(z′|z, z̄, a) Pr(z̄′|z, z̄, a)R(z, a, z′).

The distribution factors because there is no synchronic arc from Z̄ to Z. If an arc does

exist, then R(s, a, s′) 6= R(z, a, z′) as the reward would depend on Z̄ as well.

∴ Va(s) =
∑
z̄′

Pr(z̄′|z, z̄, a)
∑
z′

Pr(z′|Parentsµa(z′), a)R(z, a, z′)

=
∑
z′

Pr(z′|Parentsµa(z′), a)R(z, a, z′).

Hence, Va depends only on the variables in X = Z ∪Parentsµa(Z ′) = χ2
µa(R) and not on

those in X.

This lemma proves that X −χ2
µa(R) is irrelevant to Va, which is an improvement over

showing that X − χ∗µa(R) is irrelevant (Lemma 5.3), because χ2
µa(R) ⊆ χ∗µa(R).

Lemma 6 in Dietterich (2000) states that if R(s, a, s′) is constant, then X is irrelevant

to Va. We generalize this result to show that X is irrelevant to Va if the reward depends

only on the values that the variables in X take in the current state.

Lemma 5.5. X is irrelevant to Va if R(s, a, s′) = R(x, a), that is, the reward only

depends on the values that the variables in X take in state s.

Proof. The value of state s for the primitive task a is

Va(s) =
∑
s′

Pr(s′|s, a)R(s, a, s′) =
∑
x′,x̄′

Pr(x′, x̄′|x, x̄, a)R(x, a) = R(x, a).



84

Hence, Va depends only on the variables in X = Parentsµa(R) = χ1
µa(R) and not on

those in X.

Lemma 5.6. For an MDP M = (X ,A,P,R), X is irrelevant to the value function V

of M if X ⊇ χ∗µA(R).

Proof. If X ⊇ χ∗µA(R), then no path can exist from a variable v ∈ X to a reward

node in any probabilistic network that results from unrolling µA. If such a path exists,

then v ∈ χ∗µA(R) by definition. This implies that v ∈ X, which is a contradiction.

Consequently, no variable in X has any influence on the reward received any time in the

future and X is irrelevant to V .

To make a stronger claim, we identify a property of the DPNs.

Definition 5.11. A DPN model µa is maximally sparse if the following two conditions

are satisfied:

1. If x ∈ X , y ∈ Parentsµa(x′), and Z = Parentsµa(x′)− {y}, then

∃y1, y2 ∈ D(y), Pr(x′|y1, z) 6= Pr(x′|y2, z).

2. If y ∈ Parentsµa(R) and Z = Parentsµa(R)− {y}, then

∃y1, y2 ∈ D(y), R(y1, z) 6= R(y2, z).

Maximal sparseness implies that the parents of a variable or reward node have non-

trivial influences on it — no parent can be removed without affecting the next-state

distribution or the reward. For the maximal sparse DPN to be unique, all state variables

must be non-redundant, that is, no two state variables should be identical in all states.

Lemma 5.7. Assuming that µA is maximally sparse for an MDP M = (X ,A,P,R), X

is irrelevant to the value function V of M if and only if X ⊇ χ∗µA(R).

Proof. (If) Lemma 5.6 applies.

(Only If) If X 6⊇ χ∗µA(R), then ∀v ∈ χ∗µA(R)−X, there exists an unrolled probabilistic

network such that v is on a path to a reward node. Because µA is maximally sparse, V

must depend on v. Thus, X is not irrelevant to V .
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By the application of Lemma 5.2, X − χ∗µA(R) is irrelevant to the value function V ′

of any MDP M′ = (X ,A′,P ′,R′) whose µA′ has the same structure as µA. Further,

χ∗µA(R) is the smallest set of variables that is relevant to V ′ if µA′ is also maximally

sparse. From the transfer perspective, specifying only the edges of a DPN defines an

abstract DPN that represents a family of domains. A particular domain is manifested

by a specific instantiation of the parameters that satisfy the structural constraints, that

is, no node x′ in the instantiated DPN is affected by any node that is not a parent of

x′ in the abstract DPN. Consequently, the set of irrelevant variables computed from the

abstract DPN is irrelevant to the value function of every member of this family. Further,

if the maximally sparse DPN of a particular domain is structurally identical to that of

the abstract DPN, then the set of relevant variables computed from the abstract DPN

is also the smallest set of relevant variables for the particular domain.

We now determine the relevant variables for the value function of a composite task

with primitive children.

Lemma 5.8. If a task T = (X,G,C) has only primitive children, then X is irrelevant

to the value function of T if X = χ∗µC (R) ∪ χ∗µC (G).

Proof. LetM′ = (X , C ′,P ′,R′) be the MDP induced by overlaying the terminating task

T on the original MDP M = (X , C,P,R). If we can show that χ∗µC′ (R) = χ∗µC (R) ∪
χ∗µC (G), then Lemma 5.6 applies and the proof is complete.

M′ is an episodic MDP, that is, any state s that satisfies G is an absorbing state. As

µC′ must specify that R′(s, a, s′) = 0 and Pr(s′ = s|s, a) = 1 in an absorbing state s of

M′, there must exist arcs from the variables of G to every node in the second stage of

µC′ . Besides these arcs, µC′ has the same structure as µC . Therefore, in order to simulate

the closure with respect to µC′ , we must explicitly add the variables in G at the first

stage of the closure with respect to µC ; equivalently, χ∗µC′ (R) = χ∗µC (R) ∪ χ∗µC (G).

Finally, we determine the relevant variables for the value function of any task in

the hierarchy. For this, we rely on Lemma 3 in Dietterich (2000): assuming X and Y

partition X , Y is irrelevant to the value function of task T if 1© Equation 5.1 holds for

every primitive descendant of T and 2© for each composite task b that is equal to T or

a descendant of T , Gb(x,y) is true iff Gb(x) is true, that is, the terminal condition of b

only depends on X.
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Lemma 5.9. If AT is the set of primitive descendants of a task T = (XT , GT , CT ) and

BT is the set of composite descendants of T , then XT is irrelevant to VT if

XT = χ∗µAT
(R) ∪ χ∗µAT (GT ) ∪

⋃
b∈BT

χ∗µAb
(Gb).

Proof. If XT = χ∗µAT
(R)∪χ∗µAT (GT )∪

⋃
b∈BT χ

∗
µAb

(Gb), then it satisfies both conditions

of Lemma 3 in Dietterich (2000). Consequently, XT is irrelevant to VT .

A simple example shows that
⋃
a∈A χ

∗
µa(R) cannot be substituted in for χ∗µA(R). Let

A = {a1, a2} be the set of actions. Let χ∗µa1
(R) = ∅ and ∀x′ ∈ X ′,Parentsµa1

(x′) = X .

Let χ∗µa2
(R) = {x1} and ∀x′ ∈ X ′,Parentsµa2

(x′) = ∅. Now, X =
⋃
a∈A χ

∗
µa(R) = {x1}

and Pr(x′,y′|x,y, a1) 6= Pr(x′|x, a1) Pr(y′|x,y, a1).

Definition 5.12. A hierarchy H is safe with respect to µA if, for any task T =

(XT , GT , CT ) in H, XT is irrelevant to VT .

The above definition says that the state variables in each task are sufficient to capture

the value of any trajectory consistent with the sub-hierarchy rooted at that task node.

Theorem 5.2. If the procedure HI-MAT produces a task hierarchy H from τ and µA,

then H is safe with respect to µA.

Proof. HI-MAT computes the state abstraction for a task T = (XT , GT , CT ) as

XT =


χ∗µAT

(R) ∪ χ∗µAT (GT ) ∪
⋃
c∈CT Xc if T is composite

χ1
µAT

(R) if T is primitive and R(s, a, s′) = R(x, a)

χ2
µAT

(R) otherwise,

where AT is the set of primitive descendants of T . For a composite task T ,

XT = χ∗µAT
(R) ∪ χ∗µAT (GT ) ∪

⋃
c∈CT

Xc

= χ∗µAT
(R) ∪ χ∗µAT (GT ) ∪

⋃
c∈CT

(
χ∗µAc (R) ∪ χ∗µAc (Gc) ∪

⋃
b∈Cc

Xb

)
,

where BT is the set of composite descendants of T . From the structural definition of a

hierarchy, AT ⊇
⋃
c∈CT Ac, that is, the set of primitive descendants at a task must be
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a superset of the union of the primitive descendants of all its children. Consequently,

χ∗µAT
(R) ⊇

⋃
c∈CT χ

∗
µAc

(R).

∴ XT = χ∗µAT
(R) ∪ χ∗µAT (GT ) ∪

⋃
c∈CT

(
χ∗µAc (Gc) ∪

⋃
b∈Cc

Xb

)
= χ∗µAT

(R) ∪ χ∗µAT (GT ) ∪
⋃
c∈CT

(
χ∗µAc (Gc) ∪

⋃
b∈Cc

χ∗µAb
(Gb) ∪ . . .

)
= χ∗µAT

(R) ∪ χ∗µAT (GT ) ∪
⋃
b∈BT

χ∗µAb
(Gb).

Thus, XT is irrelevant to VT according to Lemmas 5.4, 5.5, and 5.9.

All of the analysis regarding the state abstraction have been based on the variables

that are irrelevant to the value function and not the MAXQ completion function. In

the MAXQ value decomposition, the value at a task is determined by combining the

value computed at the child (recursively) with the completion value for the child. Con-

sequently, a set of variables Y is irrelevant to all completion functions at T if Y is

irrelevant to the value function at T . Because a task need only store the completion

functions for its children, there are more opportunities for state abstraction. However,

the following lemma shows that the savings are limited, because the completion function

is simply the delayed value function — it represents the full value of the resulting state

after the particular subtask is executed.

Lemma 5.10. Let T = (X,G,A) be a task such that every child can be executed after

some subtask a ∈ A. A set of variables X is relevant to the completion function of T for

a if X is relevant to VT .

Proof. For any hierarchical policy π, the completion function of T for a in state s is

defined as

CπT (s, a) =
∑
s′,d

PrπT (s′, d|s, a)γdV π
T (s′).

Thus, CπT (s, a) depends on the variables that V π
T (s′) depends on. If every subtask in A

can be executed in state s′, then V π
T (s′) must depend on the variables that are relevant

to VT .
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For example, the completion function of a task T with primitive children will have

fewer opportunities for further abstraction, because T is likely to execute every one of

its children multiple times.

The analysis presented in this section does not address state abstraction arising from

the funneling property of tasks, where many starting states are funneled to a small

number of terminal states. Funnel abstractions permit a task to ignore variables that,

while relevant inside a subtask, do not affect the termination distribution of the subtask.

Nevertheless, the analysis captures some of the key properties of HI-MAT and sheds

some light on its effectiveness.

5.4 Empirical Evaluation

We test three hypotheses: 1© employing a successful trajectory along with the action

models will allow the HI-MAT algorithm to induce task hierarchies that are much more

compact than (or at least as compact as) just using the action models; 2© the hierarchies

induced by HI-MAT will speed up convergence to the optimal policy in related target

problems; 3© the HI-MAT hierarchies will be applicable to and speed up learning in target

RL problems even when value functions from the source problems either are impossible

to transfer or result in poor transfer.

In all experiments, the DPNs are implemented procedurally through an application

programmer interface (API). Given an action in a domain, the API provides the relevant

variables (for annotation), the closure variables (for state abstraction), the preconditions

and primary effects (for task terminations), and the entire set of actions related to a given

action (for hierarchy generalization).

5.4.1 Contribution of the Trajectory

For this experiment, we compare HI-MAT’s induced hierarchies to the exit-option hier-

archies generated autonomously by the VISA system (Jonsson and Barto, 2006). Exit-

option hierarchies are similar to MAXQ hierarchies, but every subtask has an associated

exit condition (instead of a termination condition) and an exit option that is always

called when the exit condition is true. VISA analyzes the influence of state variables on

one another by constructing a causal graph, where the nodes are the variables; an edge,
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Root

2n-3 exit options

Parity(b0,…,bn-2) ∧ bn-2 = 1

Flip(n-2)Flip(0) Flip(n-1)

(a) VISA hierarchy. Task labels are the exit con-
ditions; dash-dot arrows indicate exit options.

Root 

Flip(0) 

Flip(n-1) b0 … bn-2 = 1 

Flip(n-2) 
b0 = 1 

(b) HI-MAT hierarchy. Task labels
are the termination conditions.

Figure 5.8: Task hierarchies for the ModBitFlip domain.

labeled by action a, exists from variable v1 to variable v2 in the causal graph if the DPN

for a has an arc from v1 to v′2. Strongly-connected components in the causal graph are

grouped into variable factors and there is an acyclic influence relationship between these

factors. Factors correspond to exit options and the influence relationships correspond to

task-supertask relationships in the exit-option hierarchy. A key difference between VISA

and HI-MAT is that the latter analyzes a successful trajectory in addition to analyzing

the DPNs.

To highlight our first hypothesis, a modified version of the Bitflip domain (Diuk et al.,

2006) that we call ModBitflip is designed as follows. The state was represented by n

bits, b0, b1, . . . , bn−1. There are n actions denoted by Flip(i). For 0 ≤ i < n − 1, Flip(i)

toggles bi if b0, . . . , bi−1 are set; if not, it resets the bits b0, . . . , bi. Flip(n − 1) toggles

bn−1 if both bn−2 is set and the parity across bits b0, . . . , bn−2 is even (odd) when n is

odd (even); if not, it resets all the bits. All bits are reset at the initial state and the goal

is to set all bits.

The resulting hierarchies for this domain with n = 7 are shown in Figure 5.8. We

observe that VISA constructs an exponentially sized hierarchy even with subtask merging

activated within VISA. There are two reasons for this. First, VISA relies on the full

action set to construct its causal graph, and does not take advantage of any context-

specific independence among its variables that may arise when the agent acts according

to certain policies. Specifically, for this domain, the causal graph constructed from
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Figure 5.9: Performance of Q, VISA, and HI-MAT in the 7-bit ModBitFlip domain
(averaged across 20 runs).

DPN analysis has only two strongly connected components (SCCs): one component

contains {bn−1}, and the other contains {b0, . . . , bn−2}. The second SCC cannot be

further decomposed using only information from the DPNs. Second, VISA creates exit

options for all strongly connected components that transitively influence the reward

function, whereas only a few of these may actually be necessary to solve the problem.

Specifically, for this problem, VISA creates an exit condition for any instantiation that

satisfies Parity(b0, . . . , bn−2) ∧ bn−2 = 1, resulting in exponential number of subtasks as

shown in Figure 5.8a. The successful trajectory provided to HI-MAT achieves the goal by

setting the bits going from left to right and results in the hierarchy in Figure 5.8b. Access

to a successful trajectory focuses structure discovery on fruitful parts of the state and

action spaces resulting in significantly more compact hierarchies than when analyzing

only the global action models.

The performance results are shown in Figure 5.9. VISA’s hierarchy converges even
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slower than the basic Q learner, because the root has O(2n) children as opposed to

O(n). The ModBitFlip domain has been engineered to highlight the case where access

to a successful trajectory allows for significantly more compact hierarchies than with-

out. Nonetheless, we expect that access to a solved instance will usually improve the

compactness of the resulting hierarchy.

5.4.2 Transfer of the Hierarchy

We test the transfer performance of task hierarchies within the Wargus domain. We

consider target problems whose specifications—number of peasants, goldmines, forests,

and the size of the map—are scaled up from those of the source problems. This scaling

along with the random placement of the entities in the source and target problems ensures

that, although the probability parameters of the transition dynamics differ between the

two, they are structurally the same. For instance, although the townhall is in a different

location in the target map, depositing wood in its vicinity employs the same relevant

relationships as in the source map. As coordination does not affect the policy significantly

in this domain, we learn a hierarchical policy for the peasants using the MASH framework

without coordination.

The following learners are contrasted: 1© non-hierarchical Q-learning (Q), 2© the

VISA algorithm (VISA), 3©MAXQ-0 applied to a manually-designed hierarchy (Manual),

and 4© MAXQ-0 applied to the HI-MAT induced hierarchy (HI-MAT). The HI-MAT

algorithm first solves the source problem using flat Q-learning and generates a successful

trajectory from it. Figure 5.10 shows the total duration of an episode as a function of

the number of episodes experienced, averaged across 10 runs.

HI-MAT’s hierarchy is faster to converge than the manually-designed one because,

by analyzing the solved source problem, it is able to find a more refined task hierarchy

with stricter termination conditions for each subtask than our hand-designed hierarchy.

Consequently, the reduced policy space in the target problem yields a greater speedup

in learning than reducing the number of value parameters via subtask sharing as in

the manually-designed hierarchy. The improved rate of convergence is in spite of the

fact that HI-MAT does not merge different invocations of the same explicitly parame-

terized subtask, so there is room for further improvement. VISA’s performance suffers

initially due to a large branching factor at the root option (which directly includes all
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Figure 5.10: Performance in a target Wargus problem (averaged across 10 runs). Source
problem: 25 × 25 grid, 1 peasant, 2 goldmines, 2 forests, 1 townhall, 100 units of gold,
100 units of wood; target problem: 50 × 50 grid, 3 peasants, 3 goldmines, 3 forests, 1
townhall, 300 units of gold, 300 units of wood. Learning algorithms: Q-learning (Q), the
VISA algorithm (VISA), MAXQ-0 applied to the manually-designed hierarchy (Manual),
and MAXQ-0 applied to the HI-MAT induced hierarchy (HI-MAT). The HI-MAT learning
curve looks flat, because of the scale of the vertical axis required to show the learning
curves of the much slower learners.

the navigation actions).

This experiment reveals the spectrum of performance based on the structure of the

task hierarchy transferred across problems. The performance of Q is equivalent to that

of transferring the shallowest task hierarchy (where all the primitive actions are children

of the root task). Although such a hierarchy is applicable to a broader range of target

problems, no knowledge is transferred from the source problem and the net effect is

identical to learning in the target from scratch. The manually-designed task hierarchy

is slightly more constrained than the shallowest hierarchy, and consequently Manual

performs better in the target problem, but it has a more limited scope of transfer than
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(b) Target problem.

Figure 5.11: Source and target problems in the Taxi domain. In this domain, a taxi
needs to get a passenger from one numbered location to another on the grid. Source and
target problems differ only in the configuration of the grid walls.

Q. Although the HI-MAT hierarchy is even more constrained and consequently HI-MAT

performs the best, it still has the same transferability as the manually-designed hierarchy,

because the additional policy constraints are only made at the level of the relevant

relationships in the transition dynamics and not at the parameter level.

5.4.3 Transfer of Structure over Value

To test whether hierarchical structure transfers better than value functions, we design

source and target problems in the Taxi domain (Dietterich, 2000), where a taxi transports

a passenger from a source location to a destination within a grid world. The source and

target problems differ only in their wall configurations, while the passenger sources and

destinations stay the same as shown in Figure 5.11. This setup is specifically engineered

so that a value function from the source domain is a syntactically legal value function in

the target domain (i.e., the state and action spaces are identical). However, the differing

wall configurations affect the transition dynamics in the two problems. The difference

between the source and target problems in the Wargus domain renders this kind of direct

value-function transfer impossible.

Figure 2.1 shows a manually-designed task hierarchy for the Taxi domain. The

decomposition uses the knowledge that the destination of the passenger is irrelevant

when the taxi first goes to pick up the passenger, that the source is irrelevant once the
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Figure 5.12: Performance in the target problem of the Taxi domain (averaged across
20 runs). Source and target problems differ only in the configuration of the grid walls.
Learning algorithms: the non-hierarchical RL algorithm Q-learning (Q), the hierarchical
RL algorithm MAXQ-0 applied to the manually-designed hierarchy (Manual), MAXQ-0
applied to the HI-MAT induced hierarchy (HI-MAT), and their variants in which the
optimal value function in the source is also transferred along with the structure, denoted
by the phrase “with value”.

taxi has picked up the passenger, and that the location of the passenger is irrelevant

when the taxi is navigating to a preselected location. The HI-MAT induced hierarchy

is exactly the same except that it has two navigation tasks for picking up and dropping

off the passenger instead of the single parameterized Goto(l) task. Both task hierarchies

encode strong policy constraints, such as hard-coding the goal for navigation based on

the passenger’s information, and facilitate quicker convergence to the optimal policy.

Figure 5.12 shows the performance of the three learners, Q, Manual, HI-MAT, in the

Taxi domain along with their variants (suffixed with the phrase “with value”) in which

the value functions are initialized with optimal value functions learned in the source
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problem. The performance of the HI-MAT induced hierarchy converges to the optimal

policy at a rate comparable to that of the manually-designed hierarchy. Although the

source-target problem pairs in the Taxi domain allow value-function transfer to occur, the

target problems are still different enough that the agent has to “unlearn” the old policy

through epsilon-greedy exploration. Transferring either the flat or the hierarchical value

functions lead to worse rates of convergence to the optimal policy than transferring just

the hierarchy structure with uninitialized policies (zeroed value functions) or even flat

learning from scratch. For instance, transferring the navigation policies from the source

problem initially causes the agent to keep running into walls in the target problem.

Thus, transferring structural knowledge can be superior to transferring value functions,

especially when the target problem differs significantly in terms of its optimal policy.

An explanation for the result is that an optimal policy is tuned to a particular

instance of a domain. It will remain optimal in a very small set of related instances,

because it depends intimately on the transition probabilities and the immediate reward

values of the instances. Consequently, the corresponding optimal value function has very

limited transferability. On the other hand, a task hierarchy embodies domain knowledge

at a more abstract level than the value function and is more broadly applicable across

instances of the domain. Given a transferred task hierarchy, the hierarchical policy can

then be optimized individually for the target problems.

5.5 Related Work

This section discusses related work in the fields of autonomous hierarchical decomposition

and transfer learning.

5.5.1 Autonomous Hierarchical Decomposition

Several researchers have tackled the problem of automatically inducing temporally ex-

tended actions and task hierarchies employing the various mechanisms. The SKILLS

algorithm counterbalances compaction in subtask policy representation versus loss in

optimality using minimum description length principles (Thrun and Schwartz, 1995).

The PolicyBlocks algorithm creates subtasks by identifying commonalities in policies for

related problems (Pickett and Barto, 2002). Bottleneck states or access states are states
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that connect two or more strongly-connected regions, and methods to discovering such

subgoal states include applying the diverse density algorithm to trajectories deemed suc-

cessful in a multiple-instance learning setting (McGovern and Barto, 2001), applying the

relative-novelty metric that is based on visitation frequencies (Şimşek and Barto, 2004),

or by taking a graph-theoretic approach of applying the max-flow/min-cut algorithm to

the transition dynamics graph (Menache et al., 2001).

Similar to bottleneck states, exit states are states that satisfy the preconditions of

actions. The HEXQ algorithm (Hengst, 2002) employs a heuristic based on the frequency

of change in the state variables to determine exit states and partition the state space

into exit-option subtasks — the most frequently-changing variable is associated with

the lowest-level subtask, and the least frequently-changing variable is associated with

the root. Plans that have been formulated for a domain can be partially generalized via

appropriate annotation to be applicable in a related domain (Kambhampati and Hendler,

1989). Heuristics like perfect causality (Yamada and Tsuji, 1989) and static/dynamic

filtering (Iba, 1989) have been applied to selectively learn new macros, because unchecked

macro creation can result in performance that is worse than using no macros at all. Some

hybrid methods use planning to automatically construct task hierarchies with high-level

operators and then apply RL to flesh out these behaviors or to learn the choices for

ambiguous plans (Ryan, 2002). VISA can also be considered a hybrid method, because

it analyzes the action models to find policies that achieve preconditions for the actions

(exit options) but binds them to the root option based on the (known) reward function.

5.5.2 Transfer Learning

Various elements in reinforcement learning are amenable to knowledge transfer includ-

ing value functions, policies, models of system dynamics, and task hierarchies (as we

have considered in this dissertation). These elements lie along the spectrum going from

transferring detailed knowledge with a narrow scope to more abstract knowledge with a

broader scope of transfer. Transferring detailed knowledge, when possible, leads to huge

speedup, but transferring more abstract knowledge has a broader scope of transfer.

Value functions or policies transfer to a new task only when the target task is almost

identical to the source task in terms of the action dynamics and rewards. For instance,

1© the value function can be transferred as an auxiliary reward signal for reward shaping
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when part of the state space is identical (Konidaris and Barto, 2006), 2© compact policy

constraints (such as when the agent should pass versus shoot in soccer-like games) can

be employed for advice in the target task (Torrey et al., 2007; Taylor and Stone, 2009),

or 3© previously learned policies can be leveraged as macro actions when exploring in a

new task (Fernández and Veloso, 2006).

Task hierarchies are transferable to target tasks that are different from the source

in terms of action dynamics or rewards, as long as the qualitative relevant structure

and variable dependencies of actions are preserved. Extracting relevant structure from

the trajectories to discover the dependencies is common to the EBL approach adopted

by other systems (Tadepalli and Dietterich, 1997; Nejati et al., 2006). However, by

relying on only the qualitative structure of the domain dynamics and abstracting away

the detailed quantitative model, our approach learns more widely transferable knowledge

than these other approaches. Due to the generality of the transferred knowledge, the

learner does require further experience in the target task to perform optimally. Besides

being transferred as structural knowledge, task hierarchies also facilitate modular value-

function transfer between two dissimilar RL problems that share common subtasks even

though the overall flat value function may not transfer as seen in Chapter 4.

All of the transfer methods discussed above require some correspondence between

the state representations of the source and target tasks. As in the MASH framework,

Konidaris and Barto (2006) also transfer knowledge based on an agent-centric represen-

tation that is common across all the tasks. In our work, an agent-centric representation

allows for the scaling of the domains of the state variables from the source to the target

task, because the state abstractions of the subtasks only specify which variables are in-

volved and the hierarchical value function can be relearned for different variable domains.

Alternatively, Taylor and Stone (2009) provide/learn an explicit mapping between state

variables of the source and target problems. In contrast, relational reinforcement learning

addresses transfer via a higher-order generalization of the state space. Here, the world is

represented as a first-order MDP, where the states are represented via predicates in first-

order logic. The relational value function or policy generalizes to all grounded instances

of the first-order MDP (Wang et al., 2008).
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5.6 Conclusion

This chapter presented an approach to automatically induce task hierarchies from source

problems and transfer these hierarchies to related target problems that share the causal

dependencies of the system dynamics. Given action models, HI-MAT analyzes the causal

and temporal relationships among the actions in a successful trajectory and partitions

the trajectory recursively into a task hierarchy. We have shown that the learned hi-

erarchies are consistent, safe, and have compact value-function tables. The empirical

results indicate that leveraging the observed trajectory allows HI-MAT to learn struc-

turally compact hierarchies. In a transfer setting, these hierarchies perform comparably

to manually-designed hierarchies and provide more effective transfer than the direct

transfer of the value function.

In spite of its success, HI-MAT’s abilities are severely limited for the following rea-

sons. 1© It only analyzes a single successful trajectory, which it assumes is the execution

trace of a hierarchical policy. In some domains, there are many good policies, only some

of which will exhibit hierarchical structure (e.g., Kaelbling (1993)), so a trajectory ex-

tracted from a learned policy is unlikely to possess this structure. 2© It relies heavily on

expert-designed action models to construct generalized termination conditions for the

subtasks. 3© It fuses the concepts of relevance and causality into a compact annotation

scheme, which could lead to poor subtask discovery as shown in detail in the next chap-

ter. Also, parsing based on the sequential ordering of the original trajectory could lead

to the discovery of many fragmented subtasks. 4© It does not explicitly parameterize

the subtasks, whereas hand-designed hierarchies exploit parameterization in the task hi-

erarchy to encode non-Markovian intentions which can greatly improve the compactness

of the policies. 5© HI-MAT has a rudimentary method of identifying similar subtasks

and, along with the lack of explicit parameterization, this causes it to miss many more

opportunities for subtask unification. The next chapter describes the advanced HierGen

framework that addresses all of these issues.
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Chapter 6: Advances in Hierarchical Structure Discovery

This chapter presents the HierGen approach to hierarchical structure discovery. It sig-

nificantly advances HI-MAT that was presented in the previous chapter. The high-level

schema of HierGen is outlined in Figure 6.1.

6.1 Overview

HierGen’s principal advances over HI-MAT are 1© learning and employing simple action

models, 2© a robust trajectory annotation and parsing mechanism, 3© the ability to

generalize over multiple trajectories, and 4© increased subtask sharing through explicit

parameterization. This section motivates and describes the first three advances.

6.1.1 Action Models

In most real-world domains, it is almost impossible to procure perfect models and we

would like HierGen to utilize simple models so that they can be learned directly from the

trajectories. We settle on utilizing simple decision trees (in which every internal node

tests the value of a variable and every leaf contains a single value) within the DPN action

models. We employ the J48 classification algorithm in Weka (v3.6.5) to learn such trees

(Hall et al., 2009). To learn the tree for a variable v within the model for action a, a

training instance is the factored state that a is executed in and the value of the variable

v in the next state (class label); for the reward tree, a training instance is the factored

state that a is executed in and the immediate reward (class label). The decision trees

modeling the passenger’s x-coordinate and the reward for the Dropoff action in the Taxi

domain are shown in Figure 6.2.

Although these models are only capable of representing deterministic functions (the

trees do not contain probability distributions at the leaves), they are sufficient for causal

annotation of trajectories from stochastic domains. This is because the variable-checking

information comes from the internal variables in the trees, while the variable-changing
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Figure 6.1: The HierGen architecture. Trajectories from multiple source tasks and the
learned action models are analyzed to produce causally annotated trajectories (CATs).
The CATs, along with the action models, are provided to the HierGen algorithm, which
discovers hierarchical structure that can transfer across all target tasks whose actions
share the same causal dependencies as those of the source tasks.

information can be gleaned directly from the trajectories. The ability to exploit simple

deterministic models allows us to employ Weka even though it is unable to learn distri-

butions at the leaves (the leaf values are simply the majority class labels). Moreover,

we assume that the reward function is deterministic, that is, R(s, a, s′) = R(s, a). We

considered employing the discrete mixture trees developed by Wynkoop and Dietterich

(2008), but preliminary empirical tests showed that they were less stable than Weka’s

J48 trees, especially when learning from fewer input trajectories.

6.1.2 Trajectory Analysis

HI-MAT assumes that the trajectory is generated by a hierarchical policy, but this

is a stringent requirement and structure discovery should be able to deal with non-

hierarchically generated trajectories. Trajectory parsing in HI-MAT involves creating

the RAT to assist in the scanning process. However, as HI-MAT builds subtasks based

on contiguous action subsequences, subtask discovery is governed by the sequential order-

ing of actions in the original trajectory. While the successful trajectory is preprocessed

(cycles are eliminated) to avoid discovering redundant structure, even optimal trajec-

tories based on non-hierarchical policies could cause HI-MAT to discover extraneous

subtasks. To illustrate, we concoct the Increment domain in which action a1 increments

x1 if x3 = 1, a2 increments x2 if x3 = 1, and the goal is (x1 = 3 ∧ x2 = 4). As only

{x1, x3} is relevant to a1, and only {x2, x3} is relevant to a2, no dependencies exist
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Figure 6.2: Simple decision trees for the pass.loc.y variable and the reward within the
action model for Dropoff learned from 25 random trajectories in the Taxi domain.
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(b) Hierarchical juxtaposition.

Figure 6.3: Relevant annotation for two trajectories in the Increment domain. The
dashed ellipses indicate the subtask segments discovered by HI-MAT.

between a1 and a2. Consequently, these actions might be randomly juxtaposed in an

optimal trajectory; two such juxtapositions are shown in Figure 6.3.

HI-MAT’s parsing mechanism will discover one subtask per action in the fragmented

trajectory as opposed to the two subtasks it discovers in the trajectory with hierarchical

juxtaposition. Although the trajectories are certainly different, they are two possible

totally-ordered linearizations of the underlying causal ordering of actions. In this view,

the causal annotation process performs inverse partial-order planning, that is, it discovers

the partial ordering from the linearizations.1 This line of reasoning begs the question:

can the trajectory be annotated and parsed directly based on the partial order it specifies

instead of the sequential order of a particular trajectory? Relevance annotation combines

the concepts of relevance and causality for succinctness. As long as all actions check and

change all the variables, these two concepts overlap. However, introducing actions that

only check or only change variables results in relevant edges that are not causal and vice

versa, precluding the possibility of causality-based parsing. In the Increment domain,

following the arc for x3 back from the goal leads to the last a2 even though none of the

domain’s actions actually affect x3.

1Partial-order planning satisfies open preconditions individually by working in the space of partial-
order plans. Here, a causal link a

p−→ b goes from action a to action b if a achieves the precondition p
for b, and an temporal-ordering link a 99K b exists if either the effects of a clobber an effect of b that is
required for another action or the effects of b clobber a precondition for a (Russell and Norvig, 2003).
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(b) Causal dependencies.

Figure 6.4: Causal annotation of the fragmented trajectory from the Increment domain.
To reduce clutter, causal arcs for x3 that go from Start to every action in the CATs have
been suppressed.

6.1.2.1 Causal Annotation

The causal annotation for a trajectory is defined as follows.

Definition 6.1. A causal arrow a
x−→ b connects action a to an action b (that comes

after a in the trajectory) iff a changes x, b checks x, and x is not changed by any action

in between. A causally annotated trajectory (CAT) is the original trajectory annotated

with all the causal arcs, sandwiched between dummy Start and End actions for which all

variables are defined to be changed and checked respectively.

The trajectory is preprocessed to remove any cycles; this includes unsuccessful actions

that do not alter the state. The CAT is postprocessed to remove actions that do not

have outgoing arcs, because these actions have no effect within the CAT. This is only

done for convenience — we will see that the parsing mechanism ignores such actions even

if they are left in the CAT.

The CAT for the fragmented trajectory from the Increment domain is shown in

Figure 6.4a. In contrast to the RATs in Figure 6.3, there are no arcs going between a1

and a2, because the causal arcs for x3 (suppressed for clarity) all emanate from Start.

Tracing x3 back from End leads appropriately to Start and not to an action that does not
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affect x3 as in the RAT. Figure 6.4b shows that the underlying dependencies in the CAT

define the same two subtasks that are extracted from the RAT shown in Figure 6.3b. In

fact, any CAT for this domain has this property.

6.1.2.2 Parsing Mechanism

The overall objective of the HierGen algorithm is to transform a set of CATs into a

task graph. This is done by way of the precedence graph (PG), in which every node

corresponds to a set of valid sub-CATs (at most one from every CAT).

Definition 6.2. A sub-CAT is valid if 1© there is at most one outgoing arc for every

variable, 2© there could be multiple incoming arcs for a variable, but they should all

emanate from the same action in the CAT, and 3© every member action, besides the

ones from which the outgoing arcs emanate, must have at least one outgoing arc and

every outgoing arc should be to another member action.

The PG has a unique leaf node and it corresponds to the sub-CATs (one from every

CAT) with only the End action. An edge from node p to q in the PG indicates that p

satisfies a precondition of q and corresponds to one or more causal arcs in the CATs.

The restriction on the incoming arcs of a valid sub-CAT ensures that every variable’s

precondition is achieved by a unique node in the PG. Because a CAT is a directed acyclic

graph, so is the PG.

The PG can be transformed into a (directed acyclic) task graph by converting every

node to a task and flipping the causal arcs, that is, if node p is a parent of q in the PG,

then task p is the child of task q in the task graph. Thus, the unique leaf node of the PG

transforms to the root of the task graph. Besides this root task, any task corresponding

to a node p in the PG also has children corresponding to the hierarchical decomposition

of the sub-CATs at p. This scheme hardcodes the precedence of the subtrajectories

into the hierarchical structure as opposed to HI-MAT’s alternative — making the two

subtasks siblings — which requires that the parent task learn the correct precedence of

the subtasks. Having at most one outgoing arc per variable in a valid sub-CAT ensures

that a valid termination condition can be constructed for every task.

HI-MAT’s parsing mechanism keeps absorbing temporally continuous actions in the

RAT as long as the set of checked variables does not increase; this is equivalent to ab-
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sorbing contiguous actions as long no relevant arc affects something beyond the ultimate

action. Transferring this mechanism over to CATs would preclude the benefits of causal

annotation and only parse the particular linearization of the CAT. To extract the under-

lying partial order, the new parsing mechanism works in the causal space by following

causal arcs to assimilate the sourcing actions into subtrajectories. In Figure 6.4a, this

entails independently following the xi arcs to collect the same sequence of ai as shown

in Figure 6.3b.

Even in the causal space, the extraction of a sub-CAT p stops when an action that

has an outgoing arc to another action outside p is encountered. Obviously, this action

achieves a precondition that is checked by at least two sub-CATs. If this action is

incorporated into p, then the termination condition of the corresponding task must

include the condition on the outgoing arc to ensure that it is achieved by the task.

However, this results in a larger or more specific termination condition. Instead, biasing

the termination condition to have fewer variables (making it more general) facilitates

better subtask reuse and leads to more compact state abstraction and more shielding for

the subtasks.

6.1.3 Multi-CAT Analysis

Multiple trajectories provide a more complete picture of the system dynamics and the

useful state and policy spaces than just one successful trajectory. Given multiple tra-

jectories, we can first learn the simple action models from the (s, a, r, s′) tuples in the

trajectories. As these simple models do not provide the general conditions for termi-

nation, we instead parse the trajectories in parallel and generalize the conditions using

the goal language. In this work, the termination language is the conjunction of literals,

where every literal is either a variable equal to a constant or a variable equal to another

variable. The trajectories also give us only a sample of the primitive actions required

to achieve the goal condition from arbitrary initial states. Unlike HI-MAT’s hierarchical

structure which has to be explicitly generalized by tacking on the actions unobserved in

the single provided trajectory to the final hierarchy, the structure here need only consist

of the observed actions.

For illustrative purposes, we concoct a domain where X = {x1, x2, x3}, and the goal

condition for the task is x1 = x1∧(x2 = x2∨x3 = x3). Figure 6.5 shows three hypothetical
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Figure 6.5: Simultaneous parsing of multiple CATs. aji represents the ith action (more
generally, subtrajectory) in the jth trajectory. For clarity, the trajectories are only
partially annotated.

(partially) annotated trajectories from this domain, where aji represents the ith action

(more generally, the ith subtrajectory) in the jth trajectory. The goal condition can

be inferred by generalizing the state information along the cut P0 according to the

termination language. Next, if the variable x1 is picked, then tracing the arcs labeled

x1 in reverse from End leads to the actions a1
5, a

2
3, a

3
4; in turn, following the arcs labeled

x1 in reverse from a1
5, a

2
3, a

3
4 leads to a1

2, Start, a3
1. Just as is done for the goal condition,

it is possible to discover generalized conditions for x1 along both P1 and P2. The states

collected from the trajectories for generalization are those that occur immediately after

the actions at the tails of the cut causal arcs.

The cuts can also be utilized to determine admissibility conditions for the tasks by

generalizing across the states that immediately precede the actions at the head of the cut

causal arcs. An admissibility condition C can be incorporated into a task T = (X,G,C)

by making the new termination condition G′ = C ∨ G. However, this could possibly

increase the state abstraction of the task and also precludes opportunities for sharing

among subtasks that have the same termination conditions but differing admissibility

conditions. Now, a primitive task does not have an associated termination condition
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in the hierarchy and can always be executed by its parent in any state. To shield

it from being executed unsuccessfully, it can be wrapped in a composite task whose

termination condition is the negation of the admissibility condition for the primitive

action. Preliminary experiments demonstrate that these shielding tasks can enhance the

performance of the hierarchy. Obviously, the difference in performance of the hierarchies

with and without shielding tasks increases with higher costs for executing actions illegally.

Besides providing the generalized conditions, the technique of simultaneously parsing

also guides the generalization of the hierarchy being constructed. If at any stage, the

preconditions cannot be unified across the trajectories, then this behooves the creation

of variable factors that consist of sets of variables. In the limit, all the variables are in

one factor and no decomposition is possible. This concept will be made more concrete

in the next section that discusses the details of the HierGen approach.

6.2 The HierGen Approach

We assume that we are only given a set of random trajectories that all achieve the

goal. With this, the objective is to automatically induce a task hierarchy that can

suitably constrain the policy space when solving a target problem whose actions share

the same causal dependencies as those in the source problems. This is achieved via

the simultaneous parsing of the CATs into tasks using a top-down recursive procedure,

guided by backward chaining from the goal in the causal space at every level. HierGen

parses the CATs to determine the termination conditions and the set of child tasks, and

employs the action models to determine the state abstraction for the hierarchy. We use

the Taxi domain to explicate the details of the HierGen approach. A sample CAT for

the Taxi domain is shown in Figure 6.6.

The hierarchy discovery algorithm is outlined in the mutually-recursive procedures

Algorithms 6.1 and 6.2. HierGen first determines a goal condition G, based on the

termination language (a conjunction of literals that are either “vi = vj” or “vi = v”,

where vi, vj ∈ X and v ∈ D(vi)), that generalizes across the final state of every CAT

in Ω. Next, if there is at least one CAT in Ω with multiple actions, then HierGen

passes Ω and G to HierBuilder, which returns a set of tasks. If the set is empty,

HierGen splits up Ω into two sets of sub-CATs: one with the sub-CATs (based on ψ)

that contain the ultimate actions in the CATs and the other with the sub-CATs (based
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Algorithm 6.1 HierGen

Input: Set of action models {µa}, set of CATs Ω.
Output: Task (X,G,C).

1: G← GoalCondition(Ω)
2: if MultipleActions(Ω) then
3: C ← HierBuilder({µa},Ω)
4: if C 6= ∅ then
5: A← set of primitive descendants in C
6: X ←

⋃
c∈C Xc ∪RelevantVariables(µA, G) // Xc = abstraction of task c

7: return (X,G,C)
8: ψ ← ExtractUltimateActions(Ω) // ψ = set of action indices
9: Q← HierBuilder({µa},Extract(Ω, ψ)) // ψ = everything but ψ

10: if Q 6= ∅ then
11: (X,G,C)← HierGen({µa},Extract(Ω, ψ))
12: C ← C ∪Q // Add the tasks in Q to the set of children C
13: A← set of primitive descendants in C
14: X ← X ∪RelevantVariables(µA, G) ∪

⋃
q∈QXq

15: return (X,G,C)
16: C ← set of actions in Ω
17: X ← RelevantVariables(µC , G)
18: return (X,G,C)
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Algorithm 6.2 HierBuilder

Input: Set of action models {µa}, set of CATs Ω.
Output: Set of tasks {(X,G,C)}.

1: G← GoalCondition(Ω)
2: if G = false then // No goal condition generalizes the final states in Ω
3: return ∅
4: Ψ← ∅ // Set of sets of sub-CATs
5: for v ∈ Variables(G) do
6: ψ ← CAT-Scan(Ω, {v})
7: Ψ← Ψ ∪ {ψ}
8: H ← ∅
9: Ψ̂← Unify(Ψ) // Unify the partition of goal variables across trajectories

10: if Ψ̂ 6= ∅ then
11: Ψ← Ψ̂
12: for ψ ∈ Ψ̂ do
13: Q← HierBuilder({µa},Extract(Ω, ψ)) // ψ = everything preceding ψ
14: if Q 6= ∅ then
15: (X,G,C)← HierGen({µa},Extract(Ω, ψ))
16: C ← C ∪Q
17: A← set of primitive actions in C
18: X ← X ∪RelevantVariables(µA, G) ∪

⋃
q∈QXq

19: H ← H ∪ {(X,G,C)}
20: Ψ← Ψ− {ψ}
21: if Ψ 6= ∅ then
22: ψ ←Merge(Ψ) // Merge unsuccessful sets of sub-CATs into one set
23: if ψ = ∅ then
24: return ∅
25: else
26: Q← HierBuilder({µa},Extract(Ω, ψ))
27: if Q = ∅ then
28: return ∅
29: else
30: (X,G,C)← HierGen({µa},Extract(Ω, ψ))
31: C ← C ∪Q
32: A← set of primitive actions in C
33: X ← X ∪RelevantVariables(µA, G) ∪

⋃
q∈QXq

34: H ← H ∪ {(X,G,C)}
35: return H
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on ψ) that contain the remaining actions. HierGen then calls HierBuilder with the

second set of sub-CATs. If a set of tasks Q is returned, then HierGen returns a task

corresponding to the sub-CATs based on ψ that also includes the tasks in Q as children.

If no decomposition is possible, then HierGen simply returns a task with the set of

primitive actions in Ω as children.

HierBuilder first checks if any goal condition G can generalize across the final

states of Ω. If not, it returns immediately; otherwise, CAT-Scan extracts sub-CATs

from Ω that affect the goal variables. As each sub-CAT can affect more than a single

variable, Unify merges the sub-CATs so that the affected variables are partitioned

within Ψ. For example, let the variables in G be {v1, v2, v3}. One CAT in Ω might one

sub-CAT affect {v1, v2} and the other affect {v3}; another CAT might have one sub-CAT

affect {v1} and the other affect {v2, v3}. In order to have a global partition of the state

variables that satisfies all the CATs, the two sub-CATs in each CAT have to be merged

to produce a single sub-CAT that affects {v1, v2, v3}. If such a partitioning is possible,

then HierBuilder calls itself recursively on the CATs extracted according to ψ. If it

returns with a set of tasks Q, then Q is added to the children of the task corresponding

to ψ. If Q is empty, then ψ is not removed from Ψ. Merge tries to coalesce the elements

remaining in Ψ (|Ψ| > 1) into one by extracting sub-CATs that affect the variables in Ψ

(this is equivalent to building factors of variables); Merge calls CAT-Scan internally

to accomplish this. If the merging is successful, then HierBuilder is called on the

sub-CATs that precede the merged sub-CATs. If either Merge or HierBuilder return

empty, then this emptiness is propagated to the calling procedure. Otherwise, the task

that corresponds to the merged sub-CATs is augmented with children that correspond

to the preceding tasks.

The pseudo-code for Algorithms 6.1 and 6.2 has been kept simple for explanatory

purposes. Instead of recursing, HierBuilder actually constructs a matrix of sub-CATs

— each row corresponds to a CAT and each column corresponds to a node in the PG.

Processing the matrix results in more efficient space and computational complexity than

recursion, because multiple causal arcs can emanate from an action and the matrix

prevents duplication of the effort of extracting a sub-CAT for an action seed that has

already been processed (memoization).

While the generation of the PG is implicit in the pseudo-code, a detail completely

omitted from the pseudo-code is the manipulation of the PG before the hierarchical
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nected to nodes 0 and 1, be-
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to pass.dest.y in some trajecto-
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duction.
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(c) Final PG after combin-
ing node 0 with its single
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Figure 6.7: Processing the precedence graph produced at HierGen’s first level of recur-
sion based on 25 random trajectories from the Taxi domain. Every node in this graph
corresponds to a composite task in the final hierarchy: 0 = Root, 1 = dropping off the
passenger, 2 = picking up the passenger, 3 = navigating to the passenger’s destination,
4 = navigating to the passenger’s source.

structure is finalized. Recall that the PG is the result of the simultaneous graph trans-

formation of all the CATs by HierGen. The initial PG for the Taxi domain is shown in

Figure 6.7a.

Two refinement operations can be performed on the PG to produce a more compact

task graph after transformation:

• The PG is transitively reduced to get rid of extraneous linkages between tasks. If

node a precedes both b and c, and b precedes c, then c will be a parent of b and

b will be a parent of a in the task graph. The trajectories demonstrate that the

effects of b do not clobber the effects of a that are checked by c; otherwise, the

link would not exist from a and c. Thus, a direct link from a to c is redundant in
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Algorithm 6.3 CAT-Scan

Input: Set of CATs Ω, set of variables V .
Output: A set ψ of sets of action indices in Ω

1: for ω ∈ Ω do
2: for v ∈ V do
3: ψω ← {i : (ai

v−→ End) ∈ ω} // Seed action indices
4: repeat
5: I ←

{
i :
(
∃j ∈ ψω, ∃u, (ai

u−→ aj) ∈ ω
)
∧
(
∀k /∈ ψω, ∀u, (ai

u−→ ak) /∈ ω
)}

6: ψω ← ψω ∪ I
7: until no more action indices can be added to ψω
8: ψω ← UniquePrecondition(ψω)
9: if V 6⊆ ψω then

10: return ∅
11: return ψ

the PG. As the original PG is a directed acyclic graph, the transitive reduction is

known to be unique. The transitively reduced PG is shown in Figure 6.7b.

• If the unique leaf node r of the PG (corresponding to the root task) has a single

parent p, then p and r are merged. This operation prevents the root task from

having only a single child in the task graph. The final PG after this operation

and transitive reduction is shown in Figure 6.7c. Besides r, a node p with a single

parent in the PG will not convert to a task with a single child, because the task

will have at least one other child corresponding to the hierarchical decomposition

of the sub-CATs at p.

6.2.1 Sub-CAT Extraction

The procedure to extract sub-CATs is shown in Algorithm 6.3. For a particular

CAT, a sub-CAT is determined by searching for causally linked actions, starting with

the actions that affect the given set of variables. An action is incorporated into the sub-

CAT only if all outgoing arcs land within the sub-CAT. Once no more actions can be

incorporated, the remaining incoming arcs correspond to preconditions of the sub-CAT.

As the preconditions of the sub-CAT must be unique, UniquePrecondition enforces

that all the incoming arcs labeled with a particular variable v come from the same causal
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action in the CAT; if this condition is violated, then the sub-CAT is truncated at the

action with the highest temporal index that has an incoming arc for v. It is possible

that no valid sub-CAT exists for a given set of variables and a set of CATs.

We explain this procedure by the example of tracing the variable v7 back from End in

Figure 6.6. This leads to the seed action Dropoff, from which v0 leads to West. However,

as West has an outgoing arc for v0 to End, it is not incorporated into the current sub-

CAT. From Dropoff, v1 is traced back to North, which also has an outgoing arc to End

and cannot be incorporated. v3, v4, v5, and v6 all lead to Start which can be ignored. v7

traces back to Pickup, which is added to the current sub-CAT. No further actions can be

incorporated. Now, both Pickup and Dropoff have an incoming arc for v0 that does not

emanate from the same action in the CAT. Thus, Pickup with the lower temporal index

is pruned and the sub-CAT returned only has Dropoff. When the set {v0, v1} is traced

back from Dropoff by Merge, then both the final North and West are seed actions and

the extracted sub-CAT is the entire navigation segment between Pickup and Dropoff.

6.2.2 State Abstraction

Just as in HI-MAT, HierGen computes the state abstraction for a primitive task a as

χ1
µa(R) if the reward is not stochastic and it is computed as χ2

µa(R) otherwise. For a

composite task, HierGen first constructs the merged DPN µA for the set of actions A in

the segment associated with the task. The state abstraction for a task T = (XT , G,C)

is XT = χ∗µA(R) ∪ χ∗µA(G) if the task has only primitive actions and XT = χ∗µA(R) ∪
χ∗µA(G) ∪

⋃
c∈C Xc otherwise.

6.2.3 Task Parameterization

All the variables in the termination condition are relevant to the value function. HI-MAT

includes these termination variables in the task’s state abstraction. The variables that are

not modified within the task become implicit parameters to the task. HierGen converts

these variables to formal parameters and passes the parameter binding to the parent.

This explicit task parameterization facilitates more subtask sharing across the hierarchy.

For example, consider tasks T1 with termination v1 = v2 and T2 with termination v1 = v3;

both T1 and T2 only affect v1. With explicit parameterization, T1 and T2 can be coalesced,
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because their termination conditions can be unified by the parameterized form v1 = x1,

and x1/v2 for the parents of T1 and x1/v3 for those of T2.

6.2.4 Task Coalescence

When the task hierarchy is being constructed, HierGen merges tasks that have the same

termination condition (exact for the state variables, but parameters might be permuted)

by coalescing their children. With the exception of parent-child tasks, tasks along a

path from the root to a leaf are not merged to avoid loops (recursive relationships) in

the hierarchy.

6.3 Theoretical Analysis

We prove that HierGen produces hierarchies that are safe with respect to the employed

action models.

Theorem 6.1. If the procedure HierGen produces a task hierarchy H from a set of

trajectories and µA, then H is safe with respect to µA.

Proof. As HierGen uses the same technique as HI-MAT to compute the state abstraction

for every task in H, the proof of Theorem 5.2 applies here as well.

6.4 Empirical Evaluation

The experimental setup is to provide HierGen with randomly generated trajectories

from a number of source tasks and then test the performance of the discovered task

hierarchy in a target task. Every trial is a succession of episodes; every episode is a

target task. Hierarchies with degenerate or overly-specific termination conditions could

fail to complete an episode, because either a task with an unreachable condition spins

endlessly or all subtasks are inadmissible (terminated). As soon as a threshold number

of time steps is reached for an episode, the entire trial is deemed a failure. We evaluate

HierGen on the same domain families as we did HI-MAT: Taxi, ModBitflip, and Wargus.
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Figure 6.8: Performance of HierGen in the Taxi domain (across 100 trials).
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Root
(v7  = 0 & av0  = v3  & av0  = v5  & av1  = v4  & av1  = v6)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Dropoff
{av0 ,av1 ,v5 ,v6 ,v7}

Task7
v7  = 1

{av0 ,av1 ,v3 ,v4 ,v7}

Task5(x0 ,x1)
(av1  = x1  & av0  = x0)

{av0 ,av1}

v5 ,v6

v3 ,v4

Pickup
{av0 ,av1 ,v3 ,v4 ,v7}

North
{}

South
{}

East
{}

West
{}

Figure 6.9: HierGen’s hierarchy based on 25 trajectories from the Taxi domain. Every
composite task is rectangular and is labeled with the task name (uniquely numbered),
the termination condition, and the state abstraction; every primitive task is elliptical and
is labeled with the name of the corresponding primitive action and the state abstraction.
avi denotes an agent-centric variable for MASHing.

6.4.1 Taxi Domains

In the Taxi domain, the source tasks are random configurations of the taxi and the pas-

senger’s location/destination, and every episode in a trial is also a random configuration

of the domain. The performance of HierGen’s hierarchies contrasted against that of the

HI-MAT and the manually-designed hierarchies is shown in Figure 6.8. Given no input

trajectories, HierGen outputs the shallowest hierarchy — the root task with only the

primitive tasks as children — and the performance of this hierarchy is equivalent to that

of Q-learning. Obviously, this hierarchy has no policy constraints and can solve all of the

target configurations. When providing HierGen with 25 trajectories, the discovered hier-

archy (Figure 6.9) also achieves a 100% success rate, but with a performance that is only

slightly worse than that of the manually-designed hierarchy. The principal reason that

this hierarchy performs better than that of HI-MAT is explicit task parameterization —
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HI-MAT’s hierarchy cannot coalesce the navigation tasks and has to consequently learn

many more parameters. Figure 6.10 shows that this issue is exaggerated when the target

task is scaled up to the 25 × 25 version of the domain. As expected, the success rate

of the discovered structure drops off as fewer trajectories are provided to HierGen. The

hierarchy discovered from a single random trajectory (Figure 6.11) is consistent with

just that trajectory and fails in some episode in every trial.

Figure 6.12 shows HierGen’s hierarchy with the admissibility-based shielding tasks

that prevent their primitive children from being executed unsuccessfully. For instance,

Task1 prevents Dropoff from being executed if either the taxi is not at the destination

or the passenger has not been picked up. Figure 6.8b shows that the performance of this

hierarchy in the Taxi domain is slightly better than that of HierGen’s regular hierarchy

(Figure 6.9) and comparable to that of the manually-designed hierarchy.

We initially represented the fact of the passenger being in the taxi by setting the



119

Root
(av0  = 4 & av1  = 4 & v3  = 4 & v4  = 4 & v5  = 4 & v6  = 4 & v7  = 0)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Dropoff
{av0 ,av1 ,v7}

Task18
av0  = 4

{av0 ,av1}

Task19
av1  = 4
{av1}

Task21
v7  = 1

{av0 ,av1 ,v7}

Task17
av1  = 2
{av1}

Task16
av0  = 2

{av0 ,av1}

East
{}

Task9
av0  = 3
{av0}

North
{}

Task2
av1  = 3
{av1}

Task12
av0  = 0

{av0 ,av1}

Task5
av1  = 0
{av1}

Pickup
{av0 ,av1 ,v7}

Task10
av0  = 2

{av0 ,av1}

Task3
av1  = 2
{av1}

West
{}

Task11
av0  = 1
{av0}

Task4
av1  = 1
{av1}

South
{}

Task15
av1  = 0
{av1}

Task14
av0  = 1

{av0 ,av1}

Task7
av1  = 2
{av1}

Figure 6.11: HierGen’s hierarchy based on a single trajectory from the Taxi domain.

passenger’s location to a coordinate beyond the reachable grid area (e.g., (5, 5) in the

5×5 Taxi domain), but this affected the causal dependencies and the hierarchy was unable

to transfer to any target configuration in which the chosen coordinate was different (e.g.,

(26, 26) in the 25 × 25 version of the domain). Further complications arose due to the

termination conditions being unreachable if the out-of-grid coordinate was bound to the

navigation task in the discovered structure. Another motivation to change to the current

state representation was developing a variant of the Taxi domain that we discuss next.

In the moving-passenger Taxi domain, the passenger moves with the taxi after being

picked up, instead of the location variable being stuck at the original spot. The discov-

ered hierarchical structure is shown in Figure 6.13. Here, the navigation tasks cannot be

coalesced, because the termination conditions are different despite the explicit parame-
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Root
(v7  = 0 & av0  = v3  & av0  = v5  & av1  = v4  & av1  = v6)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Task1
(v7  != 1 | v0  != v5  | v1  != v6)

{av0 ,av1 ,v5 ,v6 ,v7}

Task9
v7  = 1

{av0 ,av1 ,v3 ,v4 ,v7}

Task6(x0 ,x1)
(av1  = x1  & av0  = x0)

{av0 ,av1}

v5 ,v6

Dropoff
{av0 ,av1 ,v5 ,v6 ,v7}

v3 ,v4

Task8
(v0  != v3  | v1  != v4  | v7  = 1)

{av0 ,av1 ,v3 ,v4 ,v7}

North
{}

South
{}

East
{}

West
{}

Pickup
{av0 ,av1 ,v3 ,v4 ,v7}

Figure 6.12: HierGen’s hierarchy with admissibility-based shielding tasks based on 25
trajectories from the Taxi domain. The only purpose of a shielding task is to prevent its
primitive child from being executed unsuccessfully.

terization. In another variant of the Taxi domain in which the passenger can be dropped

off at any location (not just its intended destination), HierGen only discovers the shal-

lowest hierarchy, because the random trajectories have redundant pickups/drop-offs and

it is unable to generalize across them.

We also test the efficacy of HierGen in the stochastic Taxi domain, where all actions

fail (no-op) with probability 0.4. Here, the unpruned trees of the learned action models

introduce many redundant dependencies resulting in dense CATs. Consequently, this

domain allows us to focus on how the pruning of the learned action models affects the

hierarchical structure discovery. Weka accepts a confidence factor for pruning — smaller

values imply heavier pruning. Figure 6.14 shows the performance of HierGen’s hierarchies

given various values of this confidence factor.

With no pruning, the resulting hierarchy (Figure 6.15) only succeeds in 14% of the

trials, because if the taxi navigates to the destination without picking up the passenger,

then Task8 is terminated and the taxi can no longer pick up the passenger. HierGen

discovers this structure because the annotation incorrectly states that the navigation

actions check the passenger’s status variable v7 = pass.in-taxi, resulting in a spurious

dependence of Task8 on Task7. This implies that Task8 can only terminate when the
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Root
(v7  = 0 & av0  = v3  & av0  = v5  & av1  = v4  & av1  = v6)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Dropoff
{av0 ,av1 ,v5 ,v6 ,v7}

Task8(x0 ,x1)
(av0  = v3  & av0  = x0  & av1  = v4  & av1  = x1)

{av0 ,av1 ,v3 ,v4 ,v7}

v5 ,v6

Task7
v7  = 1

{av0 ,av1 ,v3 ,v4 ,v7}

North
{}

South
{}

East
{}

West
{}

Task5(x0 ,x1)
(av1  = x1  & av0  = x0)

{av0 ,av1}

v3 ,v4

Pickup
{av0 ,av1 ,v3 ,v4 ,v7}

Figure 6.13: HierGen’s hierarchy based on 25 trajectories from the moving-passenger
Taxi domain.

passenger is in the taxi, which is not true. If the precedence graph is not transitively

reduced, then this situation is avoided because the dependence of Root on Task7 is

preserved as a subtask link and the taxi is able to pick up the passenger even after first

navigating to the passenger’s destination.

When the learned action models are maximally pruned (confidence = 1e-6), Pickup

does not even appear in the CATs. This is because no action model checks pass.in-

taxi, resulting in Pickup having no outgoing arcs and being removed. All the navigation

actions are absorbed into the single task that culminates with the taxi at the destination

and the resulting hierarchy is shown in Figure 6.16. Without Pickup, this hierarchy fails

in the first episode of every trial.

The success rate of HierGen’s hierarchies peaks at a confidence factor of 0.35 for

model learning, because most of these hierarchies are equivalent to the structure of the
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Figure 6.14: Performance of HierGen (given 50 trajectories) in the stochastic Taxi do-
main (across 100 trials).

hierarchy shown in Figure 6.9, except that Pickup and Dropoff have all the variables in

their abstraction. A slightly lower confidence factor (= more pruning) results in Pickup

having no variables in its abstraction. When provided with hand-designed action models,

the HierGen hierarchy for this domain is identical to the one shown in Figure 6.9.

In a variant of the stochastic Taxi domain, the motion is perpendicular to the intended

direction (uniformly randomly on either side) when the navigation actions fail. For

example, when North is executed (it fails with probability 0.4), the taxi moves East with

probability 0.2 and West with probability 0.2. HierGen’s performance in this domain is

similar to that in the stochastic Taxi domain.
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Root
(v7  = 0 & av0  = v3  & av0  = v5  & av1  = v4  & av1  = v6)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Dropoff
{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Task8(x0 ,x1)
(av0  = x0  & av1  = x1)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

v5 ,v6

Task7
v7  = 1

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

North
{}

South
{}

East
{}

West
{}

Task5(x0 ,x1)
(av0  = x0  & av1  = x1)

{av0 ,av1}

v3 ,v4

Pickup
{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Figure 6.15: HierGen’s hierarchy based on 50 trajectories and unpruned action models
from the stochastic Taxi domain.

6.4.2 ModBitflip Domain

In this domain, a single CAT (Figure 6.17a) is sufficient to build the complete hierar-

chy (Figure 6.17b), because the termination conditions do not generalize further across

multiple trajectories. The learning curves are identical to those in Figure 5.9 as Hier-

Gen’s hierarchy is identical to that of HI-MAT (despite the CAT being different from

the RAT). Interestingly, HI-MAT’s RAT-Scan fails to decompose the RAT, because

the relevance of an action is always a superset of the action preceding it and the entire

trajectory is absorbed into a single task; it is the recursive extraction of the ultimate

action that leads to the discovered structure. Instead, HierGen directly parses the CATs

into the resulting hierarchy without resorting to this extraction process.
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Root
(v7  = 0 & av0  = v3  & av0  = v5  & av1  = v4  & av1  = v6)

{av0 ,av1 ,v3 ,v4 ,v5 ,v6 ,v7}

Task1
v7  = 0

{v3 ,v4 ,v7}

Task6(x0 ,x1)
(av0  = x0  & av1  = x1)

{av0 ,av1}

v5 ,v6

Dropoff
{}

North
{}

South
{}

East
{}

West
{}

Figure 6.16: HierGen’s hierarchy based on 50 trajectories and maximally-pruned action
models from the stochastic Taxi domain.

6.4.3 Wargus Domain

A random map generator is applied to construct two sets of 100 source and 100 target

maps. The source maps are 20× 20 square units in size with 1 peasant, and the target

maps are scaled up in every dimension (number of peasants, resource quotas, etc.) but

the size. This is because an increase in size entails new map regions, which in turn

necessitates an increase in the number of primitive Goto actions. HI-MAT is able to use

the supplied action models to match these new actions to the primitive actions already

in its constructed hierarchy and supplement the hierarchy. HierGen does not assume

action models a priori and has no facility to append the new primitive Goto actions to

the hierarchy constructed from the source trajectories.

This domain presents significant challenges for HierGen to discover and transfer its

hierarchies. The first challenge is that the peasant’s coordinates do not generalize across

the source maps, because the entities are placed randomly in every map. To address

this, the annotation is restricted to only the variables that do transfer. Interestingly,

neglecting the coordinate variables is not an issue when employing Goto actions as it

is when employing single-step navigational actions; in the latter case, the navigation
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Start Flip_0
v0

Flip_1

v1

Flip_2

v2

Flip_3

v3

Flip_4

v4

v0

v0

v0
v0

End

v0

v1

v1

v1

v1

v2

v2
v2

v3

v3

v4

(a) A CAT.

Root
(v0  = 1 & v1  = 1 & v2  = 1 & v3  = 1 & v4  = 1)

{v0 ,v1 ,v2 ,v3 ,v4}

Flip_4
{}

Task8
v3  = 1

{v0 ,v1 ,v2 ,v3}

Task6
v2  = 1

{v0 ,v1 ,v2}

Flip_3
{}

Task4
v1  = 1

{v0 ,v1}

Flip_2
{}

Task2
v0  = 1
{v0}

Flip_1
{}

Flip_0
{}

(b) HierGen’s hierarchy based on a single ran-
dom trajectory.

Figure 6.17: A CAT and the HierGen hierarchy for the 5-bit ModBitflip domain. Variable
vi corresponds to bit i.

tasks in the discovered hierarchy do not have the correct abstraction, because neither

the reward nor goal closures include the coordinate variables. The second challenge

is that the final Deposit action affects {p.r, q.g} in some trajectories and {p.r, q.w} in

others, which prevents unification of the termination conditions across the trajectories.

To rectify this, the goal variables q.g and q.w are the only variables incident on End in the

annotation; the goal conditions are still learned from the trajectories. The third challenge

is that, with randomly generated source maps, exiting a gold mine can fortuitously place

the peasant within reach of the townhall and a forest in one map but not another, again

hindering unification across the trajectories. To circumvent this issue, the source maps

are constrained to have their townhalls far enough away from the remaining map entities.
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(a) Annotation based on learned action models.
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(b) Annotation based on learned action models that are maximally pruned.
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(c) Annotation based on hand-designed action models.

Figure 6.18: Causal annotations for a trajectory based on different action models from
the Wargus domain. Variables: v−2 = q.w, v−1 = q.g, v0 = p.x, v1 = p.y, v2 = p.r,
v3 = r.g, v4 = r.f , v5 = r.t. The agent-centric variables have positive indices, while
global variables have negative indices.
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Finally, this domain is partially observable, because the topography of the map is only

revealed through a limited set of location and indicator variables. Treating the domain as

fully observable makes the actions appear very stochastic, which causes the learned action

models (even with maximal pruning) to introduce redundant causal dependencies. To

facilitate unification across trajectories, HierGen is provided with hand-designed models.

For contrast, the annotations of a trajectory based on unpruned action models, models

that are maximally pruned (pruning confidence = 1e-6), and manually-designed models,

are shown in Figure 6.18. Just as with HI-MAT, all source trajectories are restricted to

fetching every resource exactly once.

To generate a source trajectory, a source map is picked at random and a random pol-

icy executed therein. For the learning curves, one target map is picked at random for the

entire trial to allow the value function (that is dependent on the peasants’ coordinates)

to converge. The performance of the HierGen hierarchies contrasted against that of the

HI-MAT hierarchy is shown in Figure 6.19. Providing HierGen with fewer input trajec-

tories results in either missing links between the navigation tasks and the Goto actions

or missing Goto actions in the discovered hierarchy, which causes the hierarchy to fail in

some trials. By 20 trajectories, the hierarchy (Figure 6.20) can successfully complete all

trials. Figure 6.19b shows that the performance of this hierarchy is slightly worse than

that of HI-MAT. This is because HI-MAT uses the information on the primary effects

of the actions provided by the action model API to create additional constraints on the

hierarchical policy, such as discovering the Put Gold and Put Wood tasks (Figure 5.7).

HierGen is not afforded this luxury as it has to utilize declarative action models.

6.5 Conclusion

This chapter has described the HierGen framework that advances the HI-MAT framework

in several dimensions including being able to deal with simpler models, a more robust

annotation and parsing mechanism, and the simultaneous parsing of multiple trajectories.

While HierGen handles multiple trajectories, it makes strict assumptions about the

nature of these trajectories. Complex real-world domains present a strong motivation for

autonomous structure discovery and transfer, but the trajectories from these domains

could be stochastic, suboptimal, or even unsuccessful; they could also show alternative

ways of achieving the goals or involve the behaviors of multiple effectors acting in parallel.
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Figure 6.19: Performance of HierGen in the Wargus domain (across 100 trials).
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Loosening HierGen’s assumptions in the following ways is an important direction for

future work:

Disjunctive subgoals: Many real-world domains exhibit disjunctive goals. Consider

a simpler example of a grid-world with two goal locations g1 and g2; some trajec-

tories will end at g1 and the others at g2, and a simple conjunctive unification is

impossible. Instead, the parsing algorithm will have to recognize the disjunctive

nature of the goal condition in this domain. Further, these disjunctive conditions

could occur anywhere within the trajectories. For instance, if the agent starts off

in a room with two doors, then two possible room exits will be demonstrated by

the trajectories. The framework has to be able to cope with the vagaries of the

real world and cannot assume that all the trajectories can be fully unified. Instead,

it might need to cluster the trajectories based on their overall objectives before it

tries to extract and generalize the essential behaviors in them. The extent of clus-

tering will have to be balanced against generalization of the hierarchical structure

based either on theoretical principles, empirical cross-validation, or an objective

scoring function.

Failure conditions: Given access to only successful trajectories precludes the ability

to analyze failure conditions with a domain. For instance, termination due to lack

of fuel in the Fuel-Taxi domain (Dietterich, 2000) will never occur in the successful

trajectory, and the agent will remain oblivious to the prevention of this failure.

By analyzing both successful and unsuccessful trajectories, the parsing mechanism

will have the opportunity to witness a mix of successes and failures, and assess the

failure conditions. These failure conditions could then be incorporated into the

termination conditions of the subtasks.

Goal maintenance: Real-world domains encompass both task-oriented and process-

oriented problems (Boutilier et al., 1999). In previous chapters, we have seen that

the MDP formalism is equally applicable to the problems of goal maintenance as it

is to the problems of goal satisfaction. For example, situating the Wargus resource-

collecting agent within the full-fledged game might require it to maintain a certain

rate of resource production. In this case, the root task of this sub-hierarchy should

never terminate, and the sub-hierarchy should operate in parallel with the decision-

making of the overall agent. While a single trajectory certainly seems incapable of
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imparting goal maintenance information, it is not immediately clear how this can

be learned via multiple finite-length trajectories.

Suboptimality: Although the robust parsing mechanism allows HierGen to deal with

non-hierarchically generated trajectories, its decomposition algorithm is still sus-

ceptible to the suboptimality therein. For instance, when the taxi is allowed to

drop the passenger off anywhere, HierGen fails to decompose because it is unable

to unify termination conditions across the multiple trajectories. Being able to rec-

ognize and correct for the observed suboptimal behavior in the input trajectories

is crucial to discovering more compact hierarchical structure.

Exogenous events: In this chapter, the action-model representation assumes that ev-

ery change in the environment is due to some action. However, some domains

have exogenous events that occur independent of the actions. For instance, in the

multi-agent Taxi domain from Chapter 3, the appearance/disappearance of a pas-

senger occurs stochastically, regardless of the actions that the agents are executing.

Recognizing these exogenous events will result in more compact action models that

more accurately capture the causal dependencies among the actions.

Multiple agents: The presence of multiple agents or effectors within a domain is a

compelling reason to be able to parse multiple trajectories. Although the trajec-

tories could be based in the joint state and actions spaces of the agents, this will

preclude opportunities for discovering and consequently leveraging agent-centric

task descriptions such as in the MASH framework. Instead, each agent might

provide trajectories based on the agent-centric state and action spaces, and these

trajectories have to be unified across agents.

Partial observability: Real-world domains might have state spaces that are not fully

observable. For instance, a robot cannot know what objects exist in the next

room until it actually navigates there. Such domains can be theoretically mod-

eled as partially observable MDPs (POMDPs) (Kaelbling et al., 1998). However, a

task hierarchy could solve a POMDP exactly if the state abstraction at a subtask

matches up exactly with the set of observable state variables while that subtask is

being executed. Leveraging this would be a significant boon of discovering hierar-

chical structure in partially observable domains.
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The HierGen algorithm is essentially a batch procedure wherein the models are

learned and then the trajectories are parsed. An effective agent should incrementally

refine its action models as it gains more experience within a domain and use these im-

proving action models, along with its experience so far, to refine the hierarchical struc-

ture. This would allow the agent to cope with learning and planning within a much

larger domain where procuring complete trajectories might be infeasible. For instance,

consider the full-blown game of Wargus. Initially, the agent has very poor knowledge

of the domain and might only be able to construct the shallowest hierarchy (primitive

tasks directly under the root). It could learn the action models incrementally as it gains

more experience within the domain and simultaneously employ these models to refine

the hierarchical structure. Arguably, learning a non-hierarchical policy could be less ef-

ficient than discovering structure and then learning the corresponding policy because of

the possibility of reapplying hierarchical substructures elsewhere in the domain. Online

structure discovery would delve into the following issues: 1© actively learning the models

required for analyzing partial trajectories; 2© determining how changes in the models

affect the hierarchical structure, that is, the gradient of the hierarchical structure with

respect to the action models; 3© constructing higher-level state representations in parallel

with structure refinement; 4© reusing the learned knowledge within a structure for future

refinements of that structure; 5© analyzing the exploration/exploitation trade-off in the

hierarchical structure space with the possible extension of existing Bayesian approaches

to non-hierarchical spaces.

HierGen has dealt with the near-transfer setting where the source and target prob-

lems share the causal dependencies in their domain dynamics. Although we cannot

expect positive transfer between arbitrary pairs of unrelated domains, people are able

to effectively transfer between much more disparate domains than what computers are

able to do at present. To be able to transfer between increasingly disparate domain

pairs, the search for an effective mapping between the state variables and actions of the

pair must be suitably constrained, by using analogical reasoning (Hinrichs and Forbus,

2007) for example. Moreover, transferring the entire structure of the hierarchy without

alteration is less likely to be successful for disparate target tasks. Various adaptations

might be necessary before the hierarchy is plugged into the target problem. For instance,

the termination conditions or state abstraction might need to be changed, or the linkage

structure might need some tweaking. We could even try transferring parts of the induced



133

task hierarchy when the entire hierarchy fails to transfer. The online agent discussed

earlier would conceivably broaden the scope of transfer beyond the qualitatively similar

domains of HierGen by actively adapting the hierarchical structure to new situations

and environments.

Just as Chapters 3 and 4 finessed the issue of hierarchy design, Chapter 5 finessed

the issue of where the action models come from. This chapter partially addressed the

latter issue by learning simple action models in batch from the trajectories. However,

learning the action models incrementally while solving externally-provided problems or

through directed exploration is still a seminal problem. Because exact action models

are often difficult to learn and represent, learning approximate action models that are

amenable to efficient planning also becomes necessary. The next chapter analyzes the

autonomous learning of such action models in two general frameworks.



134

Chapter 7: Action Model Learning

Planning research typically assumes that the planning system is provided complete and

correct models of the actions. However, truly autonomous agents must learn these mod-

els. Moreover, model learning, planning, and plan execution must be interleaved, because

agents need to plan long before perfect models are learned. This chapter formulates and

analyzes the learning of deterministic action models used in planning for goal achieve-

ment. The deterministic setting lets us impose stronger criteria for success, namely, a

polynomial number of faulty plans or planning attempts before model convergence in

the worst case. It has been shown that deterministic STRIPS actions with a constant

number of preconditions can be learned from raw experience with at most a polynomial

number of plan prediction mistakes (Walsh and Littman, 2008). In spite of this positive

result, compact action models in fully observable, deterministic action models are not

always efficiently learnable. For example, action models represented as arbitrary Boolean

functions are not efficiently learnable under standard cryptographic assumptions such as

the hardness of factoring (Kearns and Valiant, 1989).

Learning action models for planning is different from learning an arbitrary function

from states and actions to next states, because one can ignore modeling the effects of

some actions in certain contexts. For example, most people who drive do not ever learn

a complete model of the dynamics of their vehicles; while they might accurately know

the stopping distance or turning radius, they could be oblivious to many aspects that

an expert auto mechanic is comfortable with. To capture this intuition, this chapter

introduces the concept of an adequate model, that is, a model that is sound and suf-

ficiently complete for planning for a given class of goals. When navigating a city, any

spanning tree of the transportation network connecting the places of interest would be

an adequate model.

This chapter defines two distinct frameworks for learning adequate models for plan-

ning and then characterizes sufficient conditions for success in these frameworks. In

the mistake-bounded planning (MBP) framework, the goal is to continually solve user-

generated planning problems while learning action models and guarantee at most a poly-
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nomial number of faulty plans or mistakes. While a polynomial number of mistakes is

not always reasonable, when flying real helicopters to learn their dynamics for example,

the idea here is to characterize the minimal structure that lends itself to autonomous

learning when mistakes are relatively cheap. We assume that in addition to the problem

generator, the learner has access to a sound and complete planner and a simulator (or

the real world). This chapter also introduces a more demanding planned exploration

(PLEX) framework, where the learner needs to generate its own problems to refine its

action model. This requirement translates to an experiment-design problem, where the

learner needs to design problems in a goal language to refine the action models.

The MBP and PLEX frameworks can be reduced to over-general query learning, con-

cept learning with strictly one-sided error, where the learner is only allowed to make one

kind of mistake (Natarajan, 1987). This is ideally suited for the autonomous learning

setting in which there is no oracle who can provide positive examples of plans or demon-

strations, but negative examples are observed when the agent’s plans fail to achieve

their goals. This chapter introduces mistake-bounded and exact learning versions of this

learning framework and shows that they are strictly more powerful than the recently

introduced KWIK framework (Li et al., 2008). It views an action model as a set of

state-action-state transitions and ensures that the learner always maintains a hypothesis

which includes all transitions in some adequate model. Thus, a sound plan is always in

the learner’s search space, while it may not always be generated. As the learner gains

more experience in generating plans, executing them on the simulator, and receiving ob-

servations, the hypothesis is incrementally refined until an adequate model is discovered.

To ground the analysis, this chapter considers a general family of hypothesis spaces,

each of which is learnable in polynomial time in the two frameworks for appropriate goal

languages. This family includes a generalization of propositional STRIPS operators with

conditional effects.

7.1 Over-General Query Learning

This section introduces a variant of a concept-learning framework that serves as formal

underpinning of our model-learning frameworks. This variant is motivated by the prin-

ciple of “optimism under uncertainty”, which is at the root of several related algorithms

in reinforcement learning (Brafman and Tennenholtz, 2002; Li, 2009).



136

Definition 7.1. A concept is a set of instances. An hypothesis space H is a set of strings

or hypotheses, each of which represents a concept.

The size of the concept is the length of the smallest hypothesis that represents it.

Without loss of generality, H can be structured as a generalization graph, where the

nodes correspond to sets of equivalent hypotheses representing a concept and there is a

directed edge from node n1 to node n2 if and only if the concept at n1 is strictly more

general than (a strict superset of) that at n2.

Definition 7.2. The height of H is a function of n and is the length of the longest path

from a root node to any node representing concepts of size n in the generalization graph

of H.

Definition 7.3. A hypothesis h is consistent with a set of negative examples Z if

h ∩ Z = ∅. Given a set of negative examples Z consistent with a target hypothesis h,

the version space is the subset of all hypotheses in H that are consistent with Z and is

denoted as V(Z).

Definition 7.4. H is well-structured if, for any negative example set Z which has a

consistent target hypothesis in H, the version space V(Z) contains a most general hy-

pothesis mgh(Z). Further, H is efficiently well-structured if there exists an algorithm

that can compute mgh(Z ∪ {z}) from mgh(Z) and a new example z in time polynomial

in the size of mgh(Z) and z.

Definition 7.5. A hypothesis space H is closed under union if h1, h2 ∈ H implies that

h1 ∪ h2 ∈ H.

If H is closed under union, then its generalization graph has a unique root node which

corresponds to the most general hypothesis of H.

Lemma 7.1. Any finite hypothesis space H is well-structured if and only if it is closed

under union.

Proof. (If) Let Z be a set of negative examples and let H0 =
⋃
h∈V(Z) h represent the

unique union of all concepts represented by hypotheses in V(Z). Because H is closed

under union and finite, H0 must be in H. If ∃z ∈ H0 ∩ Z, then z ∈ h ∩ Z for some h ∈
V(Z). This is a contradiction, because all h ∈ V(Z) are consistent with Z. Consequently,
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H0 is consistent with Z, and is in V(Z). It is more general than (is a superset of) every

other hypothesis in V(Z) because it is their union.

(Only if) Let h1, h2 be any two hypotheses in H and Z be the set of all instances not

included in either h1 and h2. Both h1 and h2 are consistent with examples in Z. As H
is well-structured, mgh(Z) must also be in the version space V(Z), and consequently in

H. However, mgh(Z) = h1 ∪ h2 because it cannot include any element without h1 ∪ h2

and must include all elements within. Hence, h1 ∪ h2 is in H, which implies that H is

closed under union.

In the over-general query (OGQ) framework, the teacher selects a target concept

c ∈ H. The learner outputs a query in the form of a hypothesis h ∈ H, where h must be

at least as general as c. The teacher responds with yes if h ≡ c and the episode ends;

otherwise, the teacher gives a counterexample x ∈ h − c. The learner then outputs a

new query, and the cycle repeats.

Definition 7.6. A hypothesis space is OGQ-learnable if there exists a learning algorithm

for the OGQ framework that identifies the target c with the number of queries and total

running time that is polynomial in the size of c and the size of the largest counterexample.

Theorem 7.1. H is learnable in the OGQ framework if and only if H is efficiently

well-structured and its height is a polynomial function.

Proof. (If) If H is efficiently well-structured, then the OGQ learner can always output

the mgh, guaranteed to be more general than the target concept, in polynomial time.

Because the maximum number of hypothesis refinements is bounded by the polynomial

height of H, it is learnable in the OGQ framework.

(Only if) If H is not well-structured, then ∃h1, h2 ∈ H, h1 ∪ h2 /∈ H. The teacher can

delay picking its target concept, but always provide counterexamples from outside both

h1 and h2. At some point, these counterexamples will force the learner to choose between

h1 or h2, because their union is not in the hypothesis space. Once the learner makes its

choice, the teacher can choose the other hypothesis as its target concept c, resulting in the

learner’s hypothesis not being more general than c. If H is not efficiently well-structured,

then there exists Z and z such that computing mgh(Z ∪ {z}) from mgh(Z) and a new

example z cannot be done in polynomial time. If the teacher picks mgh(Z ∪ {z}) as the

target concept and only provides counterexamples from Z ∪{z}, then the learner cannot
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have polynomial running time. Finally, the teacher can always provide counterexamples

that forces the learner to take the longest path in H’s generalization graph. Thus, if H
does not have polynomial height, then the number of queries will not be polynomial.

7.1.1 Over-General Mistake-Bounded Learning

In order to facilitate a comparison of the OGQ framework to other learning frameworks,

we first define the over-general mistake-bounded (OGMB) learning framework, in which

the teacher selects a target concept c from H and presents an arbitrary instance x from

the instance space to the learner for a prediction. An inclusion mistake is made when

the learner predicts x ∈ c although x /∈ c; an exclusion mistake is made when the learner

predicts x /∈ c although x ∈ c. The teacher presents the true label to the learner if a

mistake is made, and then presents the next instance to the learner, and so on.

Definition 7.7. A hypothesis space is OGMB-learnable if there exists a learning algo-

rithm for the OGMB framework that never makes any exclusion mistakes and its number

of inclusion mistakes and the running time on each instance are both bounded by poly-

nomial functions of the size of the target concept and the size of the largest instance

seen by the learner.

Theorem 7.2. OGQ ( OGMB.

Proof. We can construct an OGMB learner from the OGQ learner as follows. When the

OGQ learner makes a query h, we use h to make predictions for the OGMB learner. As

h is guaranteed to be over-general, it never makes an exclusion mistake. Any instance

x on which it makes an inclusion mistake must be in h − c and this is returned to the

OGQ learner. The cycle repeats with the OGQ learner providing a new query. Because

the OGQ learner makes only a polynomial number of queries and takes polynomial time

for query generation, the simulated OGMB learner makes only a polynomial number of

mistakes and runs in at most polynomial time per instance. The converse does not hold

in general because the queries of the OGQ learner are restricted to be “proper”, that is,

they must belong to the given hypothesis space. While the OGMB learner can maintain

the version space of all consistent hypotheses of a polynomially-sized hypothesis space,

the OGQ learner can only query with a single hypothesis and there may not be any

hypothesis that is guaranteed to be more general than the target concept.
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If the learner is allowed to ask queries outside H, such as queries of the form

h1 ∪ · · · ∪ hn for all hi in the version space, then over-general learning is possible. In

general, if the learner is allowed to ask about any polynomially-sized, polynomial-time

computable hypothesis, then it is as powerful as OGMB, because it can encode the com-

putation of the OGMB learner inside a polynomial-sized circuit and query with that as

the hypothesis. We call this the OGQ+ framework and claim the following theorem (the

proof is straightforward).

Theorem 7.3. OGQ+ = OGMB.

7.1.2 A Comparison of Learning Frameworks

The Knows-What-It-Knows (KWIK) learning framework (Li et al., 2008) is similar to

the OGMB framework with one key difference: it does not allow the learner to make

any prediction when it does not know the correct answer. In other words, the learner

either makes a correct prediction or simply abstains from making a prediction and gets

the true label from the teacher. The number of abstentions is bounded by a poly-

nomial in the target size and the largest instance size. The set of hypothesis spaces

learnable in the mistake-bound (MB) framework is a strict subset of that learnable in

the probably-approximately-correct (PAC) framework (Littlestone, 1989) leading to the

following result.

Theorem 7.4. KWIK ( OGMB ( MB ( PAC.

Proof. OGMB ( MB: Every hypothesis space that is OGMB-learnable is MB-learnable

because the OGMB learner is additionally constrained to not make an exclusion mistake.

However, every MB-learnable hypothesis space is not OGMB-learnable. Consider the

hypothesis space of conjunctions of n Boolean literals (positive or negative). A single

exclusion mistake is sufficient for an MB learner to learn this hypothesis space. In

contrast, after making an inclusion mistake, the OGMB learner can only exclude that

example from the candidate set. As there is exactly one positive example, this could

force the OGMB learner to make an exponential number of mistakes (similar to guessing

an unknown password).

KWIK ( OGMB: If a concept class is KWIK-learnable, it is also OGMB-learnable

— when the KWIK learner does not know the true label, the OGMB learner simply
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predicts that the instance is positive and gets corrected if it is wrong. However, every

OGMB-learnable hypothesis space is not KWIK-learnable. Consider the hypothesis

space of disjunctions of n Boolean literals. The OGMB learner begins with a disjunction

over all possible literals (both positive and negative) and hence predicts all instances

as positive. A single inclusion mistake is sufficient for the OGMB learner to learn this

hypothesis space. On the other hand, the teacher can supply the KWIK learner with an

exponential number of positive examples, because the KWIK learner cannot ever know

that the target does not include all possible instances; this implies that the number of

abstentions is not polynomially bounded.

This theorem demonstrates that KWIK is too conservative a framework for model

learning — any prediction that might be a mistake is disallowed. This makes it impossible

to learn even simple concept classes such as pure disjunctions.

7.2 Planning Components

A factored planning domain P is the tuple (X , A, T ), where X = {v1, . . . , vn} is the set

of state variables and A is the set of actions. S = ×iD(vi) represents the state space and

T ⊂ S ×A× S is the transition relation, where (s, a, s′) ∈ T signifies that taking action

a in state s results in state s′. As we only consider learning deterministic action models,

the transition relation is in fact a function, although the learner’s hypothesis space may

include nondeterministic models. The domain parameters, |A|, n, and d = maxi |D(vi)|,
characterize the size of P and are implicit in all claims of complexity in the remainder

of this chapter.

Definition 7.8. An action model is a relation M ⊆ S ×A× S.

Definition 7.9. A planning problem is a pair (s0, g), where s0 ∈ S and the goal condition

g is an expression chosen from a goal language G and represents a set of states in which

it evaluates to true. A state s satisfies a goal g if and only if g is true in s.

Definition 7.10. Given a planning problem (s0, g), a plan is a sequence of states and

actions s0, a1, . . . , ap, sp, where the state sp satisfies the goal g. The plan is sound with

respect to (M, g) if (si−1, ai, si) ∈M for 1 ≤ i ≤ p.
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Definition 7.11. A planner for the hypothesis-goal space (H,G) is an algorithm that

takes M ∈ H and (s0, g ∈ G) as inputs and outputs a plan or signals failure. It is sound

with respect to (H,G) if, given any M and (s0, g), it produces a sound plan with respect

to (M, g) or signals failure. It is complete with respect to (H,G) if, given any M and

(s0, g), it produces a sound plan whenever one exists with respect to (M, g).

We generalize the definition of soundness from its standard usage in the literature in

order to apply to nondeterministic action models, where the nondeterminism is “angelic”

— the planner can control the outcome of actions when multiple outcomes are possible

according to its model (Marthi et al., 2007). One way to implement such a planner is

to do forward search through all possible action and outcome sequences and return an

action sequence if it leads to a goal under some outcome choices. Our analysis is agnostic

to plan quality or plan length and applies equally well to suboptimal planners. This is

motivated by the fact that optimal planning is hard for most domains, but suboptimal

planning such as hierarchical planning can be quite efficient and practical.

Definition 7.12. A planning mistake occurs if either the planner signals failure when a

sound plan exists with respect to the transition function T or when the plan output by

the planner is not sound with respect to T .

We now describe the concept of an adequate action model for a class of goals.

Definition 7.13. Let P be a planning domain and G be a goal language. An action

model M is adequate for G in P if M ⊆ T and the existence of a sound plan with respect

to (T, g ∈ G) implies the existence of a sound plan with respect to (M, g). H is adequate

for G if ∃M ∈ H such that M is adequate for G.

An adequate model may be partial or incomplete in that it may not include every

possible transition in the transition function T . However, the model is sufficient to

produce a sound plan with respect to (T, g) for every goal g in the desired language.

Thus, the more limited the goal language, the more incomplete the adequate model can

be. In the example of a city map, if the goal language excludes certain locations, then

the spanning tree would be able to exclude them as well, although not necessarily so.

Definition 7.14. A simulator of the domain is always situated in the current state s.

It takes an action a as input, transitions to the state s′ resulting from executing a in s,

and returns the current state s′.
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Definition 7.15. Given a goal language G, a problem generator generates an arbitrary

problem (s0, g ∈ G) and sets the state of the simulator to s0.

7.3 Mistake-Bounded Planning Framework

This section constructs the MBP framework that allows learning and planning to be

interleaved for user-generated problems. It actualizes the teacher of the OGQ framework

by a combination of a problem generator, a planner, and a simulator, and interfaces with

the OGQ learner to learn action models as hypotheses over the space of possible state

transitions for each action. It turns out that the one-sided mistake property is needed

for autonomous learning because the learner can only learn by generating plans and

observing the results; if the learner ever makes an exclusion error, there is no guarantee

of finding a sound plan even when one exists and the learner cannot recover from such

mistakes.

Definition 7.16. Let G be a goal language such that H is adequate for it. H is learnable

in the MBP framework if there exists an algorithm L that interacts with a problem

generator over G, a sound and complete planner with respect to (H,G), and a simulator

of the planning domain P, and outputs a plan or signals failure for each planning problem

while guaranteeing at most a polynomial number of planning mistakes. Further, L must

respond in time polynomial in the domain parameters and the length of the longest plan

generated by the planner, assuming that a call to the planner, simulator, or problem

generator takes O(1) time.

The goal language is picked such that the hypothesis space is adequate for it. We

cannot bound the time for the convergence of L, because there is no limit on when the

mistakes are made.

Theorem 7.5. H is learnable in the MBP framework if H is OGQ-learnable.

Proof. Algorithm 7.1 is a general schema for action model learning in the MBP frame-

work. The model M begins with the initial query from OGQ-Learner. Problem-

Generator provides a planning problem and initializes the current state of Simula-

tor. Given M and the planning problem, Planner always outputs a plan if one exists

because H is adequate for G (it contains a “target” adequate model) and M is at least



143

Algorithm 7.1 MBP Learning Schema

Input: Goal language G
1: M ← OGQ-Learner() // Initial query
2: loop
3: (s, g)← ProblemGenerator(G)
4: plan ← Planner(M, (s, g))
5: if plan 6= false then
6: for (ŝ, a, ŝ′) in plan do
7: s′ ← Simulator(a)
8: if s′ 6= ŝ′ then
9: M ← OGQ-Learner((s, a, ŝ′))

10: print mistake
11: break
12: s← s′

13: if no mistake then
14: print plan

as general as every adequate model. If Planner signals failure, then there is no plan

for it. Otherwise, the plan is executed through Simulator until an observed transition

conflicts with the predicted transition. If such a transition is found, it is supplied to

OGQ-Learner and M is updated with the next query; otherwise, the plan is output.

If H is OGQ-learnable, then OGQ-Learner will only be called a polynomial number of

times, every call taking polynomial time. As the number of planning mistakes is polyno-

mial and every response of Algorithm 7.1 is polynomial in the runtime of OGQ-Learner

and the length of the longest plan, H is learnable in the MBP framework.

The above result generalizes the work on learning STRIPS operator models from raw

experience (without a teacher) in (Walsh and Littman, 2008) to arbitrary hypotheses

spaces by identifying sufficiency conditions. (A family of hypothesis spaces considered

later in this chapter subsumes propositional STRIPS by capturing conditional effects.) It

also clarifies the notion of an adequate model, which can be much simpler than the true

transition model, and the influence of the goal language on the complexity of learning

action models.
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7.4 Planned Exploration Framework

The MBP framework is appropriate when mistakes are permissible on user-given prob-

lems as long as their total number is limited and not for cases where no mistakes are

permitted after the training period. In the planned exploration (PLEX) framework, the

agent seeks to learn an action model for the domain without an external problem gen-

erator by generating planning problems for itself. The key issue here is to generate a

reasonably small number of planning problems such that solving them would identify a

deterministic action model. Learning a model in the PLEX framework involves knowing

where it is deficient and then planning to reach states that are informative, which entails

formulating planning problems in a goal language. This framework provides a polyno-

mial sample convergence guarantee which is stronger than a polynomial mistake bound

of the MBP framework. Without a problem generator that can change the simulator’s

state, it is impossible for the simulator to transition freely between strongly connected

components (SCCs) of the transition graph. Hence, we make the assumption that the

transition graph is a disconnected union of SCCs and require only that the agent learn

the model for a single SCC that contains the initial state of the simulator.

Definition 7.17. Let P be a planning domain whose transition graph is a union of

SCCs. (H,G) is learnable in the PLEX framework if there exists an algorithm L that

interacts with a sound and complete planner with respect to (H,G) and the simulator

for P and outputs a model M ∈ H that is adequate for G within the SCC that contains

the initial state s0 of the simulator after a polynomial number of planning attempts.

Further, L must run in polynomial time in the domain parameters and the length of

the longest plan output by the planner, assuming that every call to the planner and the

simulator takes O(1) time.

A key step in planned exploration is designing appropriate planning problems. We

call these experiments because the goal of solving these problems is to disambiguate

nondeterministic action models. In particular, the agent tries to reach an informative

state where the current model is nondeterministic.

Definition 7.18. Given a model M , the set of informative states is I(M) = {s : (s, a, s′),

(s, a, s′′) ∈M ∧ s′ 6= s′′}, where a is said to be informative in s.
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Definition 7.19. A set of goals G is a cover of a set of states R if⋃
g∈G
{s : s satisfies g} = R.

Given the goal language G and a model M , the problem of experiment design is to

find a set of goals G ⊆ G such that the sets of states that satisfy the goals in G collectively

cover all informative states I(M). If it is possible to plan to achieve one of these goals,

then either the plan passes through a state where the model is nondeterministic or

it executes successfully and the agent reaches the final goal state; in either case, an

informative action can be executed and the observed transition is used to refine the

model. If none of the goals in G can be successfully planned for, then no informative

states for that action are reachable. We formalize these intuitions below.

Definition 7.20. The width of (H,G) is defined as

max
M∈H

min
G⊆G:G is a cover of I(M)

|G|,

where minG |G| =∞ if there is no G ⊆ G to cover a nonempty I(M).

Definition 7.21. (H,G) permits efficient experiment design if, for any M ∈ H, 1© there

exists an algorithm (ExperimentDesign) that takes M and G as input and outputs

a polynomial-sized cover of I(M) in polynomial time and 2© there exists an algorithm

(InfoActionStates) that takes M and a state s as input and outputs an informative

action and two (distinct) predicted next states according to M in polynomial time.

If (H,G) permits efficient experiment design, then it has polynomial width because

no algorithm can always guarantee to output a polynomial-sized cover otherwise.

Theorem 7.6. (H,G) is learnable in the PLEX framework if it permits efficient exper-

iment design, and H is adequate for G and is OGQ-learnable.

Proof. Algorithm 7.2 is a general schema for action model learning in the PLEX frame-

work. The model M begins with the initial query from OGQ-Learner. Given M

and G, ExperimentDesign computes a polynomial-sized cover G. If G is empty, then

the model cannot be refined further; otherwise, given M and a goal g ∈ G, Planner
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Algorithm 7.2 PLEX Learning Schema

Input: Initial state s, goal language G
Output: Model M

1: M ← OGQ-Learner() // Initial query
2: loop
3: G← ExperimentDesign(M,G)
4: if G = ∅ then
5: return M
6: for g ∈ G do
7: plan ← Planner(M, (s, g))
8: if plan 6= false then
9: break

10: if plan = false then
11: return M
12: for (ŝ, a, ŝ′) in plan do
13: s′ ← Simulator(a)
14: s← s′

15: if s′ 6= ŝ′ then
16: M ← OGQ-Learner((s, a, ŝ′))
17: break
18: if M has not been updated then
19: (a, Ŝ′)← InfoActionStates(M, s)
20: s′ ← Simulator(a)
21: M ← OGQ-Learner((s, a, ŝ′ ∈ Ŝ′ − {s′}))
22: s← s′

23: return M

may signal failure if either no state satisfies g or states satisfying g are not reachable

from the current state of the simulator. If Planner signals failure on all of the goals,

then none of the informative states are reachable and M cannot be refined further. If

Planner does output a plan, then the plan is executed through Simulator until an

observed transition conflicts with the predicted transition. If such a transition is found,

it is supplied to OGQ-Learner and M is updated with the next query. If the plan

executes successfully, then InfoActionStates provides an informative action with the

corresponding set of two resultant states according to M ; OGQ-Learner is supplied

with the transition of the goal state, the informative action, and the incorrectly predicted

next state, and M is updated with the new query. A new cover is computed every time
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Table 7.1: The principal differences between the MBP and PLEX frameworks.

MBP PLEX

Planning problems Externally generated Internally designed
Sample complexity Poly. number of mistakes Poly. number of planning attempts
Computational complexity Polynomial per response Polynomial overall

M is updated, and the process continues until all experiments are exhausted. If (H,G)

permits efficient experiment design, then every cover can be computed in polynomial

time and InfoActionStates is efficient. If H is OGQ-learnable, then OGQ-Learner

will only be called a polynomial number of times and it can output a new query in poly-

nomial time. As the number of failures per successful plan is bounded by a polynomial

in the width w of (H,G), the total number of calls to Planner is polynomial. Further,

as the innermost loop of Algorithm 7.2 is bounded by the longest length l of a plan, its

running time is a polynomial in the domain parameters and l. Thus, (H,G) is learnable

in the PLEX framework.

The key differences between the MBP and PLEX frameworks are highlighted in

Table 7.1.

7.5 A Hypothesis Family for Action Modeling

This section describes a family of hypothesis spaces for action modeling and proves its

learnability in the MBP and PLEX frameworks. Let U = {u1, u2, . . .} be a polynomial-

sized set of polynomially computable basis hypotheses (polynomial in the relevant pa-

rameters), where ui represents a deterministic set of transition tuples. Let Power(U) =

{
⋃
u∈H u : H ⊆ U} and Pairs(U) = {u1 ∪ u2 : u1, u2 ∈ U}.

Lemma 7.2. Power(U) is OGQ-learnable.

Proof. Power(U) is efficiently well-structured, because it is closed under union by defini-

tion and the new mgh can be computed by removing any basis hypotheses that are not

consistent with the counterexample; this takes polynomial time as U is of polynomial

size. At the root of the generalization graph of Power(U) is the hypothesis
⋃
u∈U u and

at the leaf is the empty hypothesis. Because U is of polynomial size and the longest path

from the root to the leaf involves removing a single component at a time, the height of

Power(U) is polynomial.
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Lemma 7.3. Power(U) is learnable in the MBP framework.

Proof. This follows from Lemma 7.2 and Theorem 7.5.

Lemma 7.4. For any goal language G, (Power(U), G) permits efficient experiment de-

sign if (Pairs(U), G) permits efficient experiment design.

Proof. Any informative state for a hypothesis in Power(U) is an informative state for

some hypothesis in Pairs(U), and vice versa. Hence, a cover for (Pairs(U), G) would be

a cover for (Power(U),G). Consequently, if (Pairs(U), G) permits efficient experiment

design, then the associated efficient algorithms ExperimentDesign and InfoAction-

States are directly applicable to (Power(U), G).

Lemma 7.5. For any goal language G, (Power(U), G) is learnable in the PLEX frame-

work if (Pairs(U), G) permits efficient experiment design and Power(U) is adequate for

G.

Proof. This follows from Lemmas 7.2 and 7.4, and Theorem 7.6.

7.5.1 Sets of Action Productions

We now define a hypothesis space that is a concrete member of the family. Let an

action production r be defined as “act : pre → post”, where act(r) is an action and

the precondition pre(r) and postcondition post(r) are conjunctions of “variable = value”

literals.

Definition 7.22. A production r is triggered by a transition (s, a, s′) if s satisfies the

precondition pre(r) and a = act(r). A production r is consistent with (s, a, s′) if either

1© r is not triggered by (s, a, s′) or 2© s′ satisfies the post(r) and all variables not

mentioned in post(r) have the same values in both s and s′.

A production represents the set of all consistent transitions that trigger it. All

the variables in pre(r) must take their specified values in a state to trigger r; when

r is triggered, post(r) defines the values in the next state. An example of an action

production is “Do : v1 = 0, v2 = 1 → v1 = 2, v3 = 1”. It is triggered only when the Do

action is executed in a state in which v1 = 0 and v2 = 1, and defines the value of v1 to

be 2 and v3 to be 1 in the next state, with all other variables staying unchanged.



149

Let k-SAP be the hypothesis space of models represented by a set of action produc-

tions (SAP) with no more than k variables per production. If U is the set of productions,

then |U| = O
(
|A|
∑k

i=1

(
n
i

)
(d+ 1)2i

)
= O(|A|nkd2k), because a production can have one

of |A| actions, up to k relevant variables figuring on either side of the production, and

each variable set to a value in its domain. As U is of polynomial size, k-SAP is an

instance of the family of basis action models. Moreover, if Conj is the goal language con-

sisting of all goals that can be expressed as conjunctions of “variable = value” literals,

then (Pairs(k-SAP), Conj) permits efficient experiment design.

Lemma 7.6. (k-SAP, Conj) is learnable in the PLEX framework if k-SAP is adequate

for Conj.

7.6 Conclusion

The first contribution of this chapter is the identification of adequate models for char-

acterizing the complexity of learning. The second contribution is the development of

the MBP and PLEX frameworks. This chapter clarifies the relationship between the

expressiveness of the goal language and the complexity of learning the action models.

The third contribution is the results on learning a family of hypothesis spaces that is, in

some ways, more general than standard action modeling languages. For example, unlike

propositional STRIPS operators, k-SAP captures the conditional effects of actions.

While STRIPS-like languages served us well in planning research by creating a com-

mon useful platform, they are not designed from the point of view of learnability or

planning efficiency. Many domains such as robotics and real-time strategy games are

not amenable to such clean and simple action specification languages. This suggests

an approach in which the learner considers increasingly complex models as dictated by

its planning needs. For example, the model learner might start with small values of k

in k-SAP and then incrementally increase k until a value is found that is adequate for

the goals encountered. In general, this motivates a more comprehensive framework in

which planning and learning are tightly integrated, which is the premise of this chap-

ter. Another direction is to investigate better exploration methods that go beyond using

optimistic models to include Bayesian and utility-guided optimal exploration.



150

Chapter 8: Conclusion

This dissertation has analyzed the autonomous discovery and transfer of hierarchical

structure in sequential decision problems. This chapter summarizes the contributions of

this body of work and looks ahead to the future.

8.1 Summary of the Dissertation

The contributions of the dissertation can be summarized as follows:

• Chapter 3 develops the MASH framework that facilitates the transfer of knowledge

across multiple cooperating agents in an environment. This framework allows

agents coordinating in a domain to share their hierarchical value functions to be

able to learn more effectively. With coordination, this framework can speed up

learning in multi-agent domains as demonstrated by the empirical results.

• Chapter 4 describes the VRHRL framework in which vectorized value-function

learning and the caching of hierarchical task policies leads to effective and ac-

celerated transfer across variable-reward MDPs. In the model-based setting, this

framework has the added advantage that the transition models need not be re-

learned from scratch when only the rewards change.

• Chapter 5 presents the HI-MAT approach to discovering hierarchical structure in a

source problem and transferring it to target problems that share the same relevant

structure of the system dynamics. Given action models and a single successful

trajectory, HI-MAT analyzes the relevant dependencies among the actions to au-

tonomously discover a compact and safe task hierarchy that is consistent with the

trajectory. Empirical results validate that leveraging the observed trajectory al-

lows HI-MAT to learn more compact hierarchies than algorithms that employ only

action models. Further, in a transfer setting, HI-MAT hierarchies perform com-

parably to manually-designed hierarchies and provide more effective transfer than

direct transfer of the value function.
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• Chapter 6 develops the HierGen approach that advances HI-MAT in several signif-

icant ways, including employing simple action models that can be learned easily,

a more robust trajectory parsing mechanism that facilitates generalization across

multiple trajectories, and increased subtask sharing through explicit parameteri-

zation. In this work, the structure of the task hierarchy transfers in its entirety to

target domains in which the actions share the same causal dependencies.

• Chapter 7 introduces a new notion of action model approximation, adequacy, and

characterizes the complexity of learning such models in two new frameworks. In

doing so, it clarifies the relationship between the expressivity of the model rep-

resentation and that of the goal language. It also provides results for learning a

concrete family of hypothesis spaces that is more general than common action-

modeling representations.

While this dissertation has focused on hierarchical structure discovery and transfer in

sequential decision problems, the broader implications of the research are extensive. In

more grandiose terms, this research aims to analyze the analysis of problems — it tries

to get at the heart of the divide-and-conquer strategy for problem-solving, an invaluable

tool of human analysis and comprehension. It could be taking the first baby steps toward

automated computer programming.

8.2 Future Work

I outline two general directions for future work.

8.2.1 Richer Hierarchical Structure

In order to function in real-world domains, the hierarchical structures must have the rep-

resentational capacity to deal with the complexity within these domains. Two strategies

to make hierarchical structure more expressive are as follows.

State abstraction is crucial to hierarchical structure. HierGen autonomously discov-

ers the appropriate state abstraction for the hierarchical structure assuming that the

discrete state variables and actions are designed with the potential for structure — poor

representation will severely hamper its abilities to discover structure. For instance, do-
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mains using a factored state space and actions that affect as few factors as possible are

most conducive to structure discovery. However, this assumption is a luxury in real-

world domains where the state features are rudimentary sensor inputs and the actions

are primitive actuators. Higher-level reasoning requires synthesizing richer and deeper

state representations from the more primitive ones, culminating in a representational

type hierarchy. The recent developments in deep learning and value function approxi-

mation (regularized approximate linear programming for instance) will be very relevant

in serving this need. Moreover, autonomous hierarchical structure discovery can decom-

pose a partially observable problem into a set of fully observable ones if it is possible

to develop state representation for the subproblems such that only the set of observable

variables are relevant during the task currently being executed. For instance, the exact

situation in the room adjacent to the robot’s location is unknown, but only becomes

a part of the abstraction when the robot navigates there and assesses it. A related is-

sue is evaluating the trade-off of the learning performance of deficient or inexact state

abstraction versus the reduction in space and computational complexity.

The goal specification language is a succinct representation of the purpose of a task

within the hierarchical structure and a richer language can express richer task function-

ality. While the language of conjunctions of equalities might suffice for simple discrete

variables, those in real-world domains are likely to be thresholded (inequalities) or com-

bined functionally and relationally. For instance, a robot might need to leverage deictic

references for objects it does not model explicitly or it might have to regulate its speed

as a function of the terrain. In such domains with continuous actions and variables

and functional goals, parameterization will be essential because the size of the structure

without parameterization could be potentially infinite. More expressive goal languages

will enable new opportunities such as intention propagation for state abstraction, where

a decision can be passed down the hierarchical structure via parameterization, obviating

the need for any of the descendants to reassess those variables.

8.2.2 Increased Scope of Transfer

The transfer or generalization of knowledge begs the question: how related are the source

and target domains? Through this dissertation, the assumptions about the relatedness

of the domains for knowledge transfer has been weakened. The MASH framework begins
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with assuming that the agents are in exactly the same domain. The VRHRL framework

progresses to domains that share the transition but not the reward dynamics. The HI-

MAT and HierGen systems have assumed only that the system dynamics share the same

qualitative dependencies.

Further loosening the assumptions for transfer presents an interesting avenue for

future work. For instance, the domains could belong to a family in which the variables

and actions map bijectively from one to another. This mapping could be relaxed to be

injective or surjective. The mappings could also be partial, where elements of the domains

might be undefined. In more ambitious transfer scenarios, various adaptations such as

transferring only specific subtasks of the induced hierarchy might become necessary.

Such transfer scenarios will also necessitate richer hierarchical structure.
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Appendix A: Space of Hierarchical Structures

The discovery of hierarchical structure can be framed as a search problem in the space

of hierarchical structures. A loose upper bound for the size of a task hierarchy H =

{Ti : 0 ≤ i < m} is O(|H|) =
∑m

i=1 |SΦi −Gi||Ci|, where SΦi is the state space induced

by the projection function Φi, Gi is the set of goal states, and Ci is the set of child

tasks of Ti. This bound is based on the total number of Q values within H, which

impacts the sample complexity during learning. |H| can also be quantified based on the

size of the induced space of hierarchical policies ΠH that has a loose upper bound of

O(|ΠH |) =
∏m
i=1 |Ci|

|SΦi
−Gi|. If H0 represents the shallowest hierarchy, and π∗H0

∈ ΠH0

is the optimal policy, then the objective of hierarchical structure discovery is to induce

the most compact hierarchy H such that |H| = mini |Hi| and π∗H0
∈ ΠH . Finding this

global minimum exhaustively will be intractable, because an infinite number of possible

composite tasks can be constructed (the termination condition is an arbitrary logical

expression) and the space of unconstrained hierarchical structures is infinite. Instead,

we seek to map out the space of constrained hierarchical structure.

The depth of a hierarchy is the length of the longest path from the root to a primitive

leaf. The most elementary hierarchical structure is the composite root task with one

primitive child, and has a depth of 1. We assume that if a composite task has a single

child, then the child must be primitive; otherwise, the two composite tasks can be merged

into one without changing the semantics of the hierarchy. Also, if a task T has a set

of child tasks C, where |C| > 1, then every primitive task ci ∈ C can be wrapped

by inserting a composite task Ti between T and ci, allowing the hierarchy to impose

admissibility conditions on primitive actions.

A.1 Tree-Structured Hierarchies

The number of non-empty partitions of a set of size n is Bn =
∑n−1

k=0

(
n−1
k

)
Bk where

B0 = 1. This Bell number is equal to the number of tree-structured hierarchies of

depth ≤ 2 incorporating exactly n actions and ignoring all wrapping permutations. The
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number of tree-structured hierarchies of unconstrained depth, incorporating exactly n

actions, and inclusive of all wrapping permutations is

Hn = 2
n−2∑
k=1

(
n− 1

k

)
HkHn−k + 4Hn−1, where H1 = 1, H2 = 4.

As a hierarchy could incorporate 1 through n actions, the total number of hierarchies

for n actions is

H∗n =

n∑
k=1

(
n

k

)
Hk.

A.2 Restricted-Termination Hierarchies

An arbitrary task hierarchy is a directed acyclic graph (DAG). However, the number

of nodes of this graph could be infinite. If the termination condition of the composite

tasks, excluding the root, is restricted to a single literal of the form x�D(x), where x is

a state variable, � ∈ {=, 6=, <,≤, >,≥}, and D(x) is the domain of x, then the number

of composite tasks is n = 6
∑

x∈X |D(x)|+1+ |A|. The number of hierarchical structures

of n composite tasks is upper-bounded by the number of labeled DAGs on n nodes,

Gn =

n∑
k=1

(−1)k−1

(
n

k

)
2k(n−k)Gn−k, where G0 = 1.

This is a loose upper bound, because not all DAGs represent legal hierarchies, including

ones in which 1© there is an incoming edge at the root, 2© there is an outgoing edge at

a primitive task, 3© there is no directed path from the root to any primitive task, and

4© a composite task connected to the root either has no children or a single composite

child. Also, all permutations of subgraphs unreachable from the root can be ignored.

A.3 Trajectory-Consistent Hierarchies

A trajectory τ of length l can be split into 2l−1 contiguous subtrajectories, because a

split either does or does not exist between any two actions. Every subtrajectory can

then be recursively split further. The number of hierarchies of unconstrained depth that
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include all wrapping permutations and are consistent with τ is

Jl = 2

l−2∑
k=1

JkJl−k + 4Jl−1, where J1 = 1, J2 = 4.

This is similar to the number of tree-structured hierarchies except that the order of the

primitive actions is constrained by the trajectory.
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