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IMMERSION ENERGIES OF ATOMS IN JELLIUM 

1. INTRODUCTION 

A large variety of properties of condensed matter can be understood by inves­

tigating the electronic structure of materials. All electrical, magnetic, optical, and 

chemical phenomena are examples of this. The richness of these phenomena reflects 

the complexity of the equations that govern multi-particle electron systems. On 

the other hand this complexity makes it impossible to solve the equations exactly. 

A number of approximative methods have been suggested and the most commonly 

used are perturbation theory, Hartree-Fock theory, and density functional theory. 

Past experience shows that density functional theory is the most suitable of these 

to describe the electronic structure of atoms, molecules. and solids. 

In this thesis density functional theory is used to calculate the electronic 

properties of atoms immersed in a jellium environment. In the jellitun model there 

is a uniform positive background charge density and an electron cloud with equal 

magnitude of charge but opposite sign. The advantage of this model is that the 

background does not destroy any symmetry of the original system and no addi­

tional complexity is added to the equations. Of course, this model is only applicable 

to systems where the dependence on structure is not critical. The mo( lel, however, 

has been used to successfully study chemisorption on metal surfaces. impurities and 
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vacancies in metals, optical properties of metals. inter-ionic forces in metals, and 

binding energies of atoms to large molecules. 

The context in which our group is interested in this subject is the magnetic 

transition of iron atoms when forming a solid. The electronic structure of a free iron 

atom satisfies Hund's second rule, whereas a single iron atom in a metal does not. 

It is useful to understand the origin of the violation of Hund's second rule in a solid 

in order to understand magnetic anisotropy in iron. 

Hence we approach the problem by focusing on a single iron atom and approximate 

all other iron atoms by a uniform background. Starting with a zero background 

density, which is equivalent to a free iron atom, we increase the background density 

until the actual density of the conduction electrons in a metal is reached. By cal­

culating the electron distribution for a variety of intermediate densities we hope to 

understand the origin of the decrease in orbital angular momentum as seen in the 

violation of Hund's second rule. 

The theoretical background is given in chapter 2 for the general, spin-

dependent, non-spherical case. Chapter 3 describes the computer programs imple­

mented for this thesis for the spin independent, spherical case only. The extension to 

spill dependent and non-spherical systems is in progress. The code was implemented 

in FORTRAN using parts of Sean Fox's and Bob Erickson's previous work. Chapter 

-1 is a guideline of how to use the program and summarizes the data produced with 

the program. A complete set of data was obtained for H. In the case of Fe additional 

work is required. 
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2. THE THEORETICAL METHODS 

2.1. Density Functional Theory 

With density functional theory one can find the ground state energy of an 

interacting many-body system in an external potential. With the Kohn-Sham (KS) 

equations the problem is reduced to calculating single-particle states. In this section 

a rough outline of the foundations of density functional theory is given. 

As appropriate for many-body problems the second quantized notation is used. In 

this notation the Hamiltonian of a system of Coulomb-interacting identical particles 

in a spin dependent external potential is 
h2 

H = E f Tts(71[ V2 + P(17)]klis(F)(1.3F+ 
277i0 

(i7') (12 Ts, (71) 11/ s 77.) d3 FL/ 3 , (2-1) 

where WS(F), klist(F) are the field operators (s is the spin index and rno is 

the mass of the particles). The specific choice of this Hamiltonian is justified in 

Appendix A. Let (I) be a state in Fock-space. Then the energy expectation value of 

this state is 

E =< (1)110 > 

and the spin-density of the particles is given by 

n8(71 =< 43111,1:(71T,(01(13 > 

The Holienberg-Bohn theorem (see [1, p.831 and [2. sec. 2.1]) i states that the 

ground state energy is a functional of the densities only. E = E[aN] (the latter nota­

2Clan is a short for kin 
-4-

in parrirular EfLO = rr for electrons). The 

'see .\ppendix 13 

http:P(17)]klis(F)(1.3F
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idea behind the proof of this theorem is to use the fact that the state(s) correspond­

ing to the ground state density has/have to be the eigenstate(s) corresponding to 

the lowest energy eigenvalue and that all other energy expectation values are larger 

(Ritz-Raleigh principle). One can show by reductio ad absurdum that the external 

potential 178(17) is uniquely (up to an additive constant) determined once the ground 

state density is known or, in other words, that the external potential is a functional 

of the ground state density. Hence one can write E. FHK+ Es f Vs Mils Md3F, 

where the second term is a functional of the density. The fist term is the expec­

tation value of the kinetic energy plus the interaction energy expectation value. It 

turns out to be a unique functional of the density as well. This is easy to see for 

a non-degenerate ground state, since the non-degenerate ground state is already a 

functional of the density and therefore any expectation value is too. But in [2, p. 

9f] it is shown that the same is true for a degenerate ground state. 

The Hohenberg-Kohn theorem leads to a great simplification of the problem, 

because now one does not have to find the ground state energy by looking for 

the ground state in Fock-space but one finds this energy by searching real valued 

functions ,is(F) to minimize the energy-functional. 

The theorem, however, does not state what the form of the energy-functional is. Of 

course, the classical Coulomb-energy 

n(On(i')1 ., 
(I rd. f l's(Ons ( F)d3F 

F71I 
ir'(F) one can easily see thatis a part of this energy-functional. With n(F) := 

the latter expression is a functional of the densities, i.e. is of the desired form. Thus 

one writes the energy functional 

It (F)ti(i' )q rci r I (r ?' (F)(1 r.= L_,9 
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where G[ns] stands for all contributions to the energy functional, that are not in­

cluded in the classical Coulomb energy. Of course. G[ns] still includes the kinetic 

energy of the particles. But the kinetic energy is mainly a single-particle contribu­

tion to the energy functional. If one follows the procedure to reduce the problem to 

find single-particle states, which is done by virtue of the KS equations (see below), 

one expects that most of the kinetic energy is already included in the single-particle 

equations. So one does not have to know the kinetic-energy functional. Until later 

this functional is referred to as T[ns] and left unspecified. Everything that is not 

included in E[ns] so far contains all many- particle contributions besides the clas­

sical Coulomb-energy and is called exchange-correlation energy E[ns]. Several 

approximations are known for E[7- and in a later section we give one explicit
 

approximation for E[771.
 

To summarize, one has G[ns] = T[ns] + Exc[ns] and the energy functional is:
 

3n(iW)
E[ns] = T[ns] + 

1 
F(/` r 

2 J Fl 

E[ris] (r.)(131', (2.2) 
s, 

To find the ground state energy for a fixed number of particles one has to 

minimize E[ with respect to the ns under the constraint of spin and charge 

'' =conservation. f n'(17)(131 = const., i.e. to solve the variational problem 6ET"101dn' 

jig, where the (constant) Lagrange-multiplier /z turns out to be the spin dependent 

chemical potential of the system (see e.g. [1, section 2.2] and [2, section 2.4]. See also 

[2, chapter 2] for the proof that one can extend the definition of all functionals, so 

that the functional derivative is well-defined and the minimum is really the ground 

state energy). 

The reason why this minimization of 2.2 cannot be done directly is as already 

mentioned that the kinetic-energy functional is not known explicitly (except for 



6 

the nearly uniform electron gas in Thomas-Fermi theory, where the kinetic energy 

turns out to be an integral over the density to the power 

So the final step to reduce the problem to single-particle equations is to assume 

1);,sff-representability of the densities 70(11. This means, that one can find trial 

single-particle potentials V.:11(r) so that the solutions of the Sehroedinger equation 

h2 
(2.3)

[ 27no 
(12f (7)]Iti; = Ei i (77) 

give 

(2.4)118(F) ( "2 

where the Oi(f) are single-particle states and the sum in (2.4) is taken over 

the lowest occupied states (degeneracies, esp. spin-degeneracies, have to be taken 

into account here). Physical intuition predicts that well-behaved densities are Vesf (­

representable, because one can think of selecting a particle in the system and calcu­

lating the potential it 'feels' due to all other particles in the system. The states of 

this particle are then solutions to (2.3). It turns out, however, that the mathemat­

ical proof of this is much more complicated and that the assertion is not even true 

for a large set of densities (see [2, section 2.3]). For the remainder of this thesis it is 

assumed that the densities are 12,ff-representable, at least in an approximate sense. 

Next we have to determine 1);',./7(F). In our problem 

n(f) E 
f = Vs 1+ q j (01+ coast., (2)5() q jns 

where cons was introduced to ensure that V' ff goes to zero for 

r To prove the theorem sonic formulas of the calculus of variations are 

required. Here is a list of sonic that are used later. 

A functional derivative is defined bv: 

f SFfn (l . rl 
3 r_F)Orifi7 0F:=

an 
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for any variation 6n,M. This definition can be readily extended to space-dependent 

functionals: 
G()n 171)[n] 

t)6Mr )d-r ){n (5n] 

From these definitions the following properties can be easily derived: 

1. The functional derivative is linear. 

6G*WM-t1 (5G(Fniril (1 1.
 
On \ On
 

6G(F')H
3.	 )1,

672.On 

where is the laplacian with respect to the primed variable. 

f G(F')[nlel3ifi oG(T-.1)(Ji) f )a4. on (F) = on 

f r	 bit )7z1.6.G(FJrnjlf(r=1)(n1 ,iGV)(711 H 0,-7f ) [Id ±(r =On 

6 f n(f1')f(i.-.1')d31
6.	 (r) = I (F F')on 

7. From 6. follows:
 
(5(F4) f 7/(F'')6(f"e"),t"F" (r7.) = S(F fl)
 

S. And from 2. and 5. follows: 

OG(F)Lrrrir.= 6G(1')Ir4 
(C (I7 ilii1)* C; (171)11 IC5G(1*"1 (ii)ort 

.6 f(n(i-'))(13r"
9.	 = (t n 

Now we continue with the proof of the theorem 2.5. which is a simplified 

version of [2. sec. -1.1]. 

For details see /U(. c/. From tin Holienherg-Nolin theorem it follows that V,..ff (T) 

is a functional of the ground state density. as are the t.',.'(7) as solutions of (2.3). So 

one can write (').)): 
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E L 
(r')[i S']) * ( 2)0: + 

2rnoV 
2,S1 

1 2 [ 7/(1.)7(171) 3 
g d rd 

E,,,[118 ] + f Vs" (11715" (f)d3F, (2.6) 

where the kinetic energy is now written in terms of single-particle states. 

Applying the functional derivative with respect to the density at the ground 

state to this equation gives: 

6E[ris'] 
(f)

67is 

j{ (e'or ) [Tis] (71). ( t2) (,-.4)[nsi] 
b re 2m0 

2 

SOis(7-.1)[ns] 11, 

(5.n,s 2m0 ": (r )t1181})t}d3 

+q E vs (1 q2 f 71(77.1) d3i,-/ SE,c[ns] (2.7) 
6113 

I 

after using 1., 5., 6., 7., 3., Green's formula to change the Laplacian in the kinetic 

energy term and the fact that all are varied independently of one another (this 

us
gives the term). Also the chemical potential was introduced to ensure 

charge conservation (see above). With (2.3) one can simplify the first integral in 

(2.7) to 

f (1. )ill'j Mr(Er f(1) h0. 

i.s­

(1. )171 v, (7,))( 7,. 

(11(E, rff I- t (/ I 

0/7s 

And further with S.. and 

s'
45 1 

(11 = 0 
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(because of the normalization conditions 

f 112 (Pr = f 10:" [718' 112(13 = 1) this reduces to 

kl) (7.7 fyils'f f f(r ) (i7)(13 )7 .E q (5.118 

But with E I z [tis']M12 = "n8" (17) and 7. one gets 

f Ei 10((ff)[7i."JI2 
md3F.4veff ) 

s" 

)(13
Ve6 f." f s ,5"(5 

(2.8)-02:ff (O. 

Finally (2.7) turns into: 

s (12 I 01 6 Ex c [ 

+ IF FYI rSn 

This defines Ve'ff(r) up to a constant. If one assumes that V5 is already nor­

malized, i.e. lirS() = 0, and furthermore that all charges are confined within 

a large sphere, which yields limit,f = 0, one gets with the definition 

/1;(.. := limitrsEZi'l;re'l(F) and the fact that j15 is a constant (see above): 

P si
Vx 

So the properly normalized effective potential is: 

(/(F1)/ . 1 5E.re[//8']f (/3/1 (11 tie. (2.9) 
12es, f 1 

I/7. 

which is the required formula. 
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2.2. A First Look at the KS Equations 

Inserting equation (2.9) into (2.3) gives 

Ell - 72 (19 6E. .[71.91 

[ + (11" (11 + (12 f (13 + ;(1') = EN:(F), (2.10)
C

2rn (Srojr
with 70(1 given by (2.4). 

These equations are non-linear integro-differential equations. It is impossible 

to solve them analytically. They are similar to the Hatree-Fock (HF) equations, 

which are derived for single Slater-determinant states in Fock-Space. The only dif­

ference is that the HF equations contain instead of 61';'O_"['1(il a term 17,(?) given,io 

not only in terms of the density, but in terms of wave functions. As a result the KS 

equations are simpler. This term is called the exchange potential. The difference 

in the KS potential and the HF potential is called correlation (and thus includes 

effects that stern from linear combinations of Slater-determinants). 

Figure 2.1 shows how to solve the KS equations iteratively. This procedure 

is called a self-consistent loop. The net effect of each step of the loop is to compute 

the new density from the old density by the steps given in the diagram. Clearly 

each step defines an operator C9 on the set of densities. 

It is commonly assumed that the self-consistent algorithm converges, i.e. one always 

reaches the end of the loop and the result is unique. It turns out that the algorithm 

has to be slightly modified in order to ensure convergence (see below). A point that 

is not always discussed in the literature is to ensure that the operator 0 is well de­

fined. i.e. is independent of which orthonormal basis (ONB) of H,.f1 is used to solve 

the I' equations. It can be easily proven, however. that 0 is indeed well-defined if 

one ignores the technical difficulty that t he scattered .,totes are 10..)t norinalizeable, 
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start with arbitrary densities TOM 

calculate (2.9) 

solve (2.3) 

calculate (2.4) 

Yes eW ny V) ^ old n ? No 

FIGLRE 2.1. Flow dia,,.;rarn for the self-consistency equations 
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Let's assume that all states with energy smaller than /1 are occupied and all other 

states are not. Let Sub(E < it) be the subspace of all occupied states. The Hamilto­

nian Heff can be restricted to Sub(E < p), since Heff(Sub(E < it)) C Sub(E < 

(one can see this by choosing a basis of Hfreigenstates with E < Let {1,4(01 

and {0}(111 be two different ONBs of Hff-eigenstates for Sub(E < All that 

has to be shown is, that these ONBs lead to the same density. 

Since Iti'(17)} and {03(F)} are both complete within Sub(E < /1) one can expand 

tiz (I = Ei ai,f03(il and 03(r.) = Ei b; ../4,(r), where the condition that both t-mhs(f 

and {0}(01 are orthonormal requires 

(.4 from which follows thatEk 61;,kaz,k 6 j,i7 Ek b;kbi,k = b1 i. and b1,1 

El al.kal,i =
 

Calculating the density gives
 

ns (F) = 

ai,k0sk ( 0) ( ai,t()( (F)) 

E(E(fi,kai,l)((,5;c.(0)*(/)(1) 
k,1 z 

5k.1(03kW))* l (17) = E 1 c'fsk(F)12. 
k ,1 

This shows the independence. 

Finally. if the end of the loop is reached the problem is solved, because the 

density to create the effective potential is the same as time density calculated from 

the effective potent 
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2.3. Symmetry of the KS Equations 

The complexity of the NS equations can be reduced by considering their 

symmetry properties. Impurity atoms which have not more than one partially filled 

angular momentum shell, have just one magnetic axis after symmetry breaking. So 

there is a symmetry direction given by this axis. For this reason it is justified to 

focus on axially symmetric starting densities. We use the self-consistency algorithm 

to prove the following theorem:
 

If one starts with a (I)-symmetric density and P(r) = Vs(r,0) (esp. Vs(f') = Vs(r),
 

i.e. the external potential is spherically symmetric), then the density is <h- symmetric 

for each iteration step. 

The proof is by complete induction over the iteration steps. 

For the first iteration step the assertion is satisfied since it was assumed that we 

start with a (1)-symmetric density. 

The next thing is to prove that provided the density is (1)-symmetric for one iteration 

step, it has the same property for the next step. 

Let 
/1 0

L_ 
0(1) 

and 
1 ciE,,[tis'}

90 2 - , f ln_VIT)i 
(01J. 

f /n q SOS 

\ 11(1 r (1 the exchange energy Ere is in most approximations an integral over some 

function of the density. Here it is only important that it does not depend on (1-) if 

the density does not depend on (1). vhich is satisfied fur these models. Since the 

dentilty tqr-) assumed to be +-independent. so is r4 "Together with the(.1 r 

assumption that 1 -'10 is +-independent it follows that also }-{..ff is (I)-independent. 
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or equivalently riiif, Lid = O. As a well-known consequence one can choose eigen­

functions of Reff of the form 

1 

6'i,m(r, 0, (F) = R.) ,m(r, 00) 
/27 

where m is the magnetic quantum number and j is a collection of all other quantum 

numbers (due to the fact that C is well-defined the theorem does not depend on this 

particular choice of eigenfunctions). Calculating the density for the next iteration 

step with these 1/,j,, leads to: 

eini,p12 
.n(r, ©, (I)) = 1.1?j,,(r, 0) I R.,(r, 

V2rn 7 
.7 

This new density does not depend on 4> and thus the proof is complete. 

It follows easily that even limiti,tion(r. 0,4)) does not depend on (I). 

Furthermore if one assumes that this limit, i.e. the solution to the whole problem,
 

does not depend on the starting density one concludes:
 

The density that solves the KS equations is (1)-syminetrie for a spherically symmetric
 

external potential. 

2.4. Bound and Scattered States 

Rewriting (2.3) in the form 

2//10 
= { /1);',/ f (./1

tt­

suggests that for 0/s:if > 0 one gets bound states. because in our case for 

some large enough "R we have f f (f) > 0 for all r > T. Hence one gets a pos­

for all r > T.. As a result behaves like exponentialitive curvature-factor for
 

function, i.e. falls off rapidly for increasing r. (Due gets a bound state indeed.
 



15 

Conversely if 021 f f(x) Eis < O. one obtains by the same reasoning a negative 

curvature-factor for all large enough r. The asymptotic behavior in this case is like 

a sine function, i.e. the solution is not confined to a region around the scatterer. 

One gets scattered states. 

In section 2.1 we already introduced the proper normalization of Vesff, namely 

Ve8ff(oo) = 0. The conditions for having bound and scattered states are in this 

case of course, Eis < 0 and Eis > 0, respectively. 

A more detailed argumentation can be found in the standard literature on Quan­

tum Mechanics. It is also shown there that for Ez < 0 there is a discrete spectrum, 

whereas for Eis > 0 there is a quasi-continuous spectrum or a discrete spectrum 

depending on the boundary conditions. 

Numerical methods to find the discrete eigenvalues E and the corresponding 

states do exist (see below). The scattered states require some extra theoretical con­

sideration. The potential in 3-1, f f shows screening effects after a few iteration steps. 

Consequently, one can assume that the potential behaves like a Yukawa-potential. 

This means it falls of fast enough to be approximated by 12:11(F) 0 for r > 

where P. has to be large enough. Thus the Hamiltonian for the scattered states can 

be approximated by 

II,tt = 74ff for r < R and .11.." = H fr, for r > R. where Hfr, is the free 

particle Hamilonian. This suggests to approximate the energy of the scattered 

particle E E free = h.,2;'; and expand the eigenstates in terms of the spheri­

cal harmonics because I and m are good quantum numbers for since 

[0, = [1, ft This procedure is derived in detail in the next section. 
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2.5. Phase Shifts for Non-Spherical Potentials 

The question of finding the scattered states is reduced to the question of 

finding phase shifts. As proven in section 2.3, it is for the purpose of this thesis 

sufficient to consider potentials of the form Vs(r, 0), i.e. (D-symmetric potentials. 

Following the procedure indicated in section 2.4 one has to solve the following 

Schroedinger-equation in spherical coordinates: 

1i2 2 a 32 1 0 0 1 32 
(sin -) +( + , + 

2rno 7' Or are r2 sin o ao ao r- sin 6 (-9(1)2 

(r, 0))711(r, 0, (I)) = (r, 0, 4)) (2.11) 

for r < R and 

1 52 
1 a 

(sin ) + )tj)(r 6, 4)) = E71)(r, 0, 4))
2rn0(:r + ::2 r2 sin 0 00 r2 sin 0 54)2 

(2.12) 

for r > R, where 4h has to be twice differentiable at r = R. The solutions for r > R 

are as mentioned in the previous section 

,1071(r, ©, 4)) = 4)) (2.13) 

with 
h2 ,2 a a2 + 1) 

= E His ,i,m(r), 
2rno ar 312 7 

where in is the magnetic quantum number, 1 is the angular momentum, s the mag­

netic spin quantum number, and i is a collection of all other quantum numbers. The 

solutions to the last equations are well-known: 

(2.14)R;tri(r) = AL1,J I BL.,"1(1,71.), 
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where j1 and ni are the spherical Bessel functions of the first and second kind re­

spectively and since E > 0 one defines E = 1'22 71`: . (The remaining quantum numbers 

i now turned out to be just k.) To match the solutions at r < R and r > R it is 

(I)) are a complete set of functions) the insidenecessary to expand (since the 

solution 

(2.15)
liVc,/,in(r, 0, (1-) = E Rks',11',TH (9, (1). 

1' 

Note that rn is, as pointed out in sec. 1.3, still a good quantum number and so 

there is no in-sum. Furthermore the subscript I referres to the 1-value of the outside 

solution to which the inside solution is matched, whereas is just a summation 

subscript. 

Inserting this into the Schroedinger equation for r < R gives equations for the 

functions Rks:111772(r): 

h2 2 a 02 1/(l/ 1) 
1) + i's(r, (r)Yr (0, ()EE (r Dr + Dr 2 

I,,

2mo 7.2 

h2k2 
E Rks.'111 ,,(0 , (1)). (2.16) 

2171 0 // "rn 

Multiplying these equations by Yi;`,,,,(0, (1)) sin 0 and integrating fo d0 f02- (1(1. gives 

after using fo" f02- d0d,(I) sin 01.1;`, ,,,i(9, (1))Y-1, ,,(0 (I)) = (5/i,1, 

h2 9 02 l' (I' + s

Rk.m,(79r2 g,P,2m0 r ar ar2 
h2k2 

(2.17)s'7 Rk,1' m(r).s1Ev,( = 
1, 

2mo 

where I'/7(r) = fol" J dod(b sin 01"1;',,(0, (1))17.3 9)1 .1,/,7.(0, (I) ) . The fact that 1' (r, 0) 

does not depend on (I) leads to a simplification of these coefficients and to the 

important fact that they are real. This can he easily seen by using the definitions 
, 

of the /i,, (0 (I)) = 214-1 (1in)! P1 (cos 0)ei""? and fo2"(c"'")*cw".DrI(.5 = 27775,,,, : 

-17 (i-i-m)! 
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rn (1" m (1' )! 
(r) (21" + 1) ). (21' + 1)= 2 \ (1" + in)! \ (1' + in)! 

f a sin 0 PIT (cos 0)Vs (r, 0) PP (cos 0) (2.18) 

From this equation it can be seen that they are indeed real, since 1/8(r, 0) and 

PiNcos 0) are real functions. The fact that these coefficients are real allows us to 

look for real solutions /?;:ii,,,,(r) only. 

The constraint that the overall solution has to be twice differentiable requires that 

the inside and outside solutions match at r = R in the following sense (this can 

easily seen from (2.13) and (2.15)): 

feij,,,n(R) = = 0 for /' 1 and 

= Ask3,7ji(kR) Biso,mni (kR), 

Rk)1,(R) = Ais t mk j;(k + mkn't(kR) for 1' = 1. 

The first two equations impose boundary conditions on (2.17), the latter de­

termine the coefficients A. 17 and B),/,,. 

To solve (2.17) uniquely additional boundary conditions, namely boundary condi­

tions on Rsk',1/,, and .1?;.sil,, are required. This is deferred to a later chapter for the 

spherically symmetric case; the purpose of this section is to define phase shifts. Here 

it is only important to know that (2.17) with the appropriate boundary conditions 

can be solved uniquely. 

As already mentioned, once (2.17) is solved, and B'!, can be determined. 

The fact that Riss.',1/,,,(r), ji(kr), and n i(k r) are real leads to real coefficients 

and 13i;;,,, in (2.11). Thus it is possible to generalize the definition of phase shifts 

(see e.g. [4, eqn. (11.-16)]) to 

13;::.1,rn
tan (5k..1,,,, 
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To make the continuous k-dependence more explicit the phase shift is referred to as 

dism(k) in the following .
 

The origin of the name 'phase shift' can be seen by comparing the radial solution
 

of the free Hamiltonian and the solution of the scattered Hamiltonian for large r:
 

The first one is
 

1 17 
(2.19)ji(kr) sin(kr ),

kr 2 

since ni(kr) is not finite at r = 0, the latter one is 

A ks ,i,,[ji(kr) tan (5 4,(k)n1(kr)] --4 

1 17 1-,T 

Ak8,t,m kr isin(kr ) tan qr,(k) cos (kr 7)] 

17
 
= Asm [cos 64,,m(k) sin(kr sin qr(k) cos (kr -11-)]
 

kr cos 64,(k) ) 2 

As 
k ,1 ,ni= sin(kr 171 + 6 47 (k)), (2.20) 

kr cos 61,,(k) 9 

which shows that for large r the net effect (up to pre-factors) of the scattering center 

is to produce a phase shift qm(k) in the radial function. 

2.6. Density of Induced States 

The density of states of the continuous spectrum tells how many states are 

in an energy interval between E and E + dE (or equivalently between k and k + dk, 

since E = ';221A;12 

Once the phase shift is known the density of the scattered states can be obtained 

by the following reasoning, taken from [3]. Again the point of view is adopted that, 

all charges are confined within a large sphere of radius T. Therefore the boundary 

condition on the extended states is that they vanish at r = 'R. Since the sphere 
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is large, the asymptotic values (2.19) and (2.20) can be used instead of the exact 

states. The boundary condition then becomes 

/7r 
k7Z, 2 = nfree7 

for the free states and 
71 + 6s (k) nscan7r 
2 i m 

for the scattered states (n free and natt are natural numbers, that can be interpreted 

as the number of states between 0 and k). The number of partial states between 

k . . . k + dk is for the first case 

dnfree 
dk = dk 

dk 

and for the second case 

dnscatt dk dk +1 dqm(k) dk
dk
 7T.
 dk 

if k can be approximated as a continuous variable, which is justified for a large TZ. 

Subtracting the last two equations gives the additional states that are produced by 

the presence of a scattering center 

1 (161 ", (k) dk.d(nscatt n free) TL 

dk dk71­

. . k + dk one hasTo obtain the total additional spin states d(AA"(k)) between k . 

to sum 

d(AArs (k)) (k) 
dk (2.21) 

dk dk7 1, 
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2.7. Immersion Energy 

In order to obtain the electronic structure of a system, the methods of the 

previous sections are applied to fermions with charge q = e, mass mo = me and 

spin S = 2. There are two spin-charge densities n+1 (i) and (1. These are 

abbreviated by n±(71 and n-(11, respectively.
 

The immersion energy Eimm of an impurity atom in jellium is defined as the energy
 

of the impurity system Eimp minus the energy of its constituents, i.e. the energy of
 

the pure jellium system Epure plus the energy of the bare impurity atom Eatam:
 

(2.22)Eimp Epure Eatom 

This energy can be calculated with the methods described in the previous 

sections. Some ideas are taken from [10]. It was not a part of this thesis to calculate 

The data were provided by Dr. Jansen. In principle it can be calculated
Eatorn 

by setting the background density no = 0 and sum over the bound states of the 

resulting KS equations. 

The difference Eimp Epure is calculated by separating this expression in 

kinetic energy, classical coulomb energy, and exchange-correlation energy: 

Eimp Epure = AT + AC + L\Eic 

AC: 

Because of symmetry the electron density of the pure system is constant (if the 

system is large enough, when the boundaries can be ignored) and the Coulomb 

energy is zero. 11w Coulomb energy of the impurity system is: 
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2 {710 ner) I {no n(77')} 3 3 _4 ZC 
-1e rd r + no n(7-11d3i, 
2 FI 

where the last term is the potential energy due to the nucleus of the impurity 

atom. The homogeneous positive jelliurn background no is the same. The 

integrals are taken over the volume of the system. One obtains: 

Z
( no r no}d37 (2.23)AC = e2 f I r 

AT:
 

First we consider the difference of the kinetic energy for the bound states.
 

Of course. the pure system has no bound states and again there is no contri­

bution of the pure system.
 

The kinetic energy of the bound states caused by the impurity atom can be
 

calculated from (2.3):
 

E{E7 c I v:H(F)1:(7-ord3o
i; 

f1);,sff(il E 10:(012d3f 
S
1,S 

of V:f f bs oundM(13 

where the sums are taken over all binding energies. 

In the case of the extended states the impurity atom acts as a scattering 

center. It is assumed that, the insertion of the impurity atom into the jellium 

does not change the Fermi-energies E. of the system. what is justified for 

large systems (see below for more detailed argument). Then. of course. the 
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2rtz ,
Fermi-wave-vectors ksp, = do not change either.
 

Thus the it additional kinetic energy caused by the impurity atom is
 

yJ(r2k2d(ANsk dk+eIV:ff(fnscatted(Od30, 
o 2m, dk 

d(,A N' (JO)where dk is the number of states induced by the scatterer between 
dk 

k . . . k dk. But exactly this quantity was written in (2.21) in terms of phase 

shifts. Using this expression gives for the the first term of the kinetic energy 

difference due to the scattered states 

1 k'F 112k2 C1(547(k) 

Jo 2rne dk 

or if the phase is viewed as a function of E due to the relation k = 2771' E 

1 EF 
Edbis ''(E)dE

dEs 1m 

Si (E)dEl= E {E(5;,,i(E)lo'F fo
7r s,l,rn 

E' 
1 EPV,(4) 1 (54m(E)d E,> 
71 s,l,in 

7r s,I,m 0 

since the scattered states occupy the energies 0... E. at T=0 2. Putting the 

contributions of the bound and scattered states together gives: 

AT +Ee f V:f f(F) ts (0 (13 F 
i,s 

E "F. 
1 1 (2.24)

I'-'61',rn(E E (5is m(E)dE 
7 8,1,in 7 ° 

since its (17) = Lund (11 + lis'cuttered ( 

since this equation is derived2This is not a contradiction to Fumi's theorem [9, eqn. 
for impurity ions, not atoms. If one adds Es El,-Zs to Funtls equation to take care of the 

energy required to add the extra Z electrons to the ion system and uses the Friedel stun 
dt_..N.-'(En EL, (5.,,,(E0 one gets exactly the same result. This isrule Z = Jo (1Edlf 

in fact another wav to derive the above expression. 
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z\E: 
It was already discussed that the electron density of the pure system was 

uniform. The same is true for the spin-density states. They are called no and 

7-1-0' respectively. The exchange-correlation energy for the pure system is thus 

= E [no , ntfl 

The exchange energy for the impure system is 

- impure Exc[n,111, 

where now n-(r) and n +(r) have to be calculated from the states, that are 

solutions to the KS equations of the system. 

So 

.AEic = E[7z- , n+) Ex,[726 74]. (2.25) 

Combining (2.23), (2.24), (2.25), and (2.22) leads to 

Eis + E e f V:ff (71 ns (f) c13 FEirn 
s,, 

1 

Esp-Si,n(En j- E fE'F' (5 is (E)d E + 
I, T.- o 

s,1,771. s ,I,In 

C2 i (1 f 11(11) 
il

71° (137-,1 Z )(n(F) no)(13F +I ' 9 I 

Excfri, 7/1 Eirto, rcol E atom (2.26) 

2.8. Exchange-Correlation Energy Models 

Almost all exchange-correlation energy models are based on the local den­

sity approximation (LDA). In this approximation the exchange-correlation energy 

is written 
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E[ns] = f E(nseil)n(ild'F, (2.27) 

where e,( is the exchange-correlation energy density for a gas of uniform density 

ns. 

One might expect that this approximation is only valid for slowly-varying densities. 

It turns out, however, that the LDA is sufficient even for higher density gradients. 

The following is a brief overview of -expressions for the electron gas. 

2.8.1. Spin-Independent Models 

There are two density regimes where analytical equations for exc(n) can be 

obtained by perturbation theory (Feynrnan-graphs), namely for very low densities 

and for very high densities. The first expression is by Wigner 

e2 1 
2 0.458 0.44 

exc(n) = ao 1.105rs rs rs + 7.8), 

where rs = ( 3 )1 1ao 
is the Wigner-Seitz radius. The second by Gell-Mann and 

k 47n 3 

Brueckner 
e2 0.458 1(0.031

e.(n) -= ( ln(rs) 0.0- 17))n. 
ao rs ra 

The other common parameterizations are either interpolations or extrapolations of 

these two cases. These can be written as 

Ts 
Exc(n) = 

e2 (_0.458 C G()), (2.28) 
ao rs A 

where 
.r 1 

G(/) =-- (1 +173) ln(1 + 1 ) 
9 

o 3 

and typical values for .4 and C are: 

A = 11.4 C = 0.03:33 Gunnarsson-Lundquist (see [11]) 

= 21.0 C = 0.0225 Hedin- Lundquist 
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2.8.2. Spin-Dependent Models 

One usually parameterizes in terms of the quantities 

7/(F) n(F) + n+(77) and ((i-') = "+(F)---'1-V)
n ( r=") 

Most parameterizations are based on an interpolation between paramagnetic (un­

polarized; ( = 0) and ferromagnetic (completely polarized; 1(1= 1) systems, i.e. 

(2.29)Eic(17, () = f MEL(r,---°(") + (1 f (n), 

where 
(1 + ()I + (1 ()1 -2 

f (c-) = 
2(27,1-- 1) 

and e(x7°, j=' are of the form (2.28) with the parameters .4, C fitted for the ap­

propriate polarization. So one has for example 

A(=° = 30.0 C(-° = 0.0252 

.4101-1 ------ 75.0 CC1=1 = 0.0127 Gunnarson-Lundquist 

11.4 C(=° = 0.0333 

15.9 C1(1=1 = 0.0203 vonBarth-Hedin. 

The parameterization used in this thesis is the Hedin-Lundquist form. 

2.8.3. Exchange-Correlation Potential 

()lice the parameterization of the exchange-correlation energy is given. the 

exchange-correlation potent ial(s) (71 are easily- calculated by property 9 

in sec. (2.1). The result is 

1 dt- °tic 
) 

±(1 (V1 -(71)1 
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(5E[(rt- ,n+1 1 (2.30)
(F) fn Oc,..' (OF), ("(')) + 00 ) 0( jnn

5o.± c 

For the Spill independent model used in this thesis there is only one exchange cor­

relation potential which is with (2.28): 

1 (5 E,[Iii 
(.'7) = e (-4 (0.458 C log(1 + A )). 

ao 3 r s rsc an 
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3. IMPLEMENTATION OF THE NUMERICS 

In the remainder of tins thesis Rydberg atomic units are used. These are 

defined by h2 1. ate = L and 2in = 1. It follows that e2 = 2 and that the energy 

unit 1 r rnRy is the ionization energy of H (about 13.6eV). 

3.1. Self-Consistency Loop 

This chapter shows how to implement Fig. 2.1 on a computer. One starts 

with a suitable input density. In this thesis a superposition of the atomic density, 

which is calculated by another program, and the uniform background density is 

chosen. Then the initial effective potential is calculated. The Schroedinger equa­

tion is solved for the bound and extended states. The N energetically lowest states 

are populated, where N is the number of electrons in the system. From this the 

new density is calculated and also the final effective potential. So far everything is 

according to Fig. 2.1. But as already mentioned the algorithm has to be altered 

slightly in order to ensure convergence. This change affects the feedback. 

Experience shows that if one takes the final effective potential of the previous it­

eration step as an initial effective potential for the new iteration step, the algo­

rithm does not converge because the response of the system is too strong. One can 

deal with this problem by introducing a mixing ratio a (0 < a < 1) and taking 

11 1 final I (c) (I indicates the iteration step) asVal a = f (0 -1- (1 (01,c.f./ 

a new initial potential. If one takes the mixing ration as low as 0.01 to 0.0:5 the 

however, the slower isalgorithm indeed converges for most systems. The lower 

the convergence. One idea to speed up the convergence is called Pratt 'S SCI1C1110. It 

is based on the idea of introducing an r-dependent mixing ratio. taking the last two 

(r))Iiteration steps and interpolating for each r the points tl.::'71.'±)-1 (r). 
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(vti,fnfazat,, ,r,
) V!,:fr2al'(r)) to the line V,71"1(r) = V/111( r). This procedure leads 

to a mixing ratio of a(r) = V")1""` ''-i(r)+1),f"f" (r)-12,f)f"'1'-1(r)
 

Since this procedure can give quite large or even negative mixing ratios, it is neces­

sary to confine it to a minimum and a maximum value. typically 0 and 1 respectively.
 

Whenever a(r) is smaller than 0, it is set to 0, whenever it is larger than 1, it is set 

to 1. The problem with this procedure is that it can introduce discontinuities in the 

potential, when the mixing ratio suddenly switches from one r to the other from its 

minimum value to its maximum value or the other way around. One way around 

this is to smoothen out the transition by replacing a(r) by (muz+max)a(r)-2.rntnma:r 
2a( r)(7T2111+TWIX) 

where min and max are the minimal and maximal allowed values for the mixing 

respectively, whenever the old a(r) is larger then two; or smaller than min. 

But this procedure leads to some peaks and wiggles in the potential and one often 

has to go back to a straight mixing ratio. 

3.2. Simplifications and Approximations 

The calculations were done spin-independently. i.e. equation (2.28) was used 

for the exchange-correlation energy with the parameter-set of Hedin-Lundquist. The 

extension to spin-dependent calculations is straight-forward and will be done in a 

future thesis. 

Another simplification is to approximate equations (2.17). The problem is 

that, these equations are coupled. But one can see by looking at the definition of 

the factors (r) that they decouple for spherically symmetric potentials sinceI 

if t ' is 0-independent. To ensure a spherically symmetric po­

tential for every iteration step in the self-consistency loop. it is necessary to assume 
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fully occupied 1-shells. If this not the case one has to average over all different in­

states within a shell. This is clearly an approximation if the number of electrons 

If onein the system is such that the outertnost shell is not completely occupied. 

applies this averaging, however, it can be shown by the same means as in section 2.3 

that an initially spherically symmetric potential leads to spherically symmetric den­

sities for all iteration steps. Since the radial equations (2.17) are riot 7n-dependent 

anymore, the idea is to expand the eigenfunction in terms of )"/,,(0, (I)) and sum over 

+1 which says that the average is indeedall rn- values using Elm,__/11"/,,(0, (II)j` °­

spherically symmetric.
 

A further results of spherical symmetry is that the phase shifts are also in-


independent.
 

In the following development only spherically averaged systems are considered.
 

3.3. The Question of Boundary Conditions 

The suitable choice of boundary conditions for a spherically symmetric po­

tential are spherically symmetric boundary conditions. Therefore we use a model in 

which all charges are contained in a sphere of radius R. with the impurity atom at 

the center; the charge density is zero outside. Then the boundary condition on the 

wave-functions are that they have to vanish at r 

The reason for the choice of these boundary conditions is a purely practical one. 

The calculated quantities sinuild not depend On the boundary conditions. To test 

this two different choices for R were Unplemented. They reflect the two extreme 

cases. The first one is to set P. to its minimal possible value, i.e. the cutoff-radius 

beyond which the potential is zero. the second to let "R approach to infinity. The 

results should he about the saint' for hoth cases. 
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noIn case one the number of electrons in the sphere is fixed at the value Z 

by the boundary conditions. In case two the number of available electrons is poten­

tially infinite and so there is no restriction on the number of electrons in a sphere 

of radius R. The system is determined by a fixed Fermi-level E,. = 

The following development in this chapter distinguishes between these different. 

boundary conditions. 

3.4. Bound State Search 

The idea of how to search for the energy eigenvalues is taken from [7, p. 1391. 

The procedure is the following: 

One can characterize the radial function of a bound state uniquely by its angular 

momentum 1 and its number of nodes n,1 since the number of nodes for two 

different bound states with the same 1 has to be different because of orthogonality. 

Instead of using kiriod,, l > as a label one often uses In, l >, where n = nywdes ± / +1 

1.is the principal quantum number. From nod, > 0 it that follows 1 = 0 ... n. 

The bound state search was stopped when there was no bound state found for a 

certain principal quantum number.
 

One knows that the energy of a state ;0,1 > in a pure Coulomb potential is
 TV' 

where Z is the charge of the impurity atom. The potentials we consider here are 

screened Coulomb potentials, so the corresponding energy eigenyalues for a state 

with the same quantum numbers would be higher than for a bare Coulomb poten­

we are dealing withtial. An upper boundary for the energy eigenvalues is 0. simn 

b( mud states. 

"Jo find the bound state emiergie ()II(' guesses an initial energy- eigenvalue for a 

state H./ > within Ry.01. With this energy value one starts to integrate 
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the Schroedinger equation from an inner cut-off radius r close to the origin out­

wards and from the outer cut-off radius /? inwards to a matching point (for which 

we chose the innermost, classical turning point). The limiting values at the origin 

are given by = rl and 1.,/E, 1 
(r) = Ir(1-0 for all potentials that do not diverge 

faster than I at the origin. One can use these limiting values as boundary values for 

the outward integration. The boundary values at the outer cut-off radius depend 

on the radius R. For the first case considered, \here R = R, one simply starts 

the inward integration with (,i(Re) = 0 and an arbitrary value for 1M/?,) (this value 

factors out when one matches the inner and outer solutions, because of the linearity 

of the Schroedinger equation; a suitable value would be the same as for the next 

case). For the second case, where R goes to infinity one can use asymptotic values 

c(- V E)t(r)and '(7E,,i(r) = 

which are valid when potential and centrifugal potential can be neglected, to deter­

mine the boundary values at the outer cut-off radius. (If the energy is very low it is 

sometimes necessary to start the integration from farther inside, in order to prevent 

an underflow. A good criteria for double precision numbers is Er < 36.) Then 

one re-scales the outer solution to match the inner solution at the innermost classical 

turning point for the total potential and energy. For numerical reasons it is the best 

choice to take the innermost classical turning point as a matching point. because 

the other turning points might appear and disappear as the potential changes for 

different iteration steps. The reason for taking a turning point as a matching point 

is that at the turning point the inner solution changes its behavior from oscillatory 

to exponential-like. By integrating beyond the turning point. one would pick up 

solution that blows up exponentially. 

In order to get a solution to the differential equation the first derivatives also have 
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to match at the turning point. This happens only for the correct energy value. So 

the difference in first derivatives of the inward and outward solutions at the turning 

point indicates if the energy guess was too high or too low. Fig. 3.1 is a plot of this 

difference in derivatives multiplied by the sign of the wave functions at the turning 

point for the hydrogen atom with / = 0. One can see that difference is indeed zero 

for the right energy values --4R,y. The large discontinuities in this plot are where 
'Ti­

the number of nodes of the wave function changes. (The small discontinuities are 

caused when the turning point changes.) One can also see that the difference is 

larger than zero if the guessed energy value E leads to the right number of nodes, 

but is too small, and that the difference is negative, if the E is too large. 

To decide if there is a bound state between a certain energy minimum and a certain 

energy maximum one has to check the number of nodes and the difference in first 

derivatives at the turning point. (Sometimes the initial energy guess for the mini­

mum energy was to low to have a turning point. In this case the minimum energy 

was increased by small steps until a turning point was found.) If the number of 

nodes for the minimum energy is greater than the number of the required nodes or 

the number of nodes for the maximum energy is less then the number of required 

nodes there is no 1)01111(1 state within the given interval, since greater energies cor­

respond to a greater number of nodes. Furthermore. if the munber of nodes for the 

minimum energy and the number of nodes for the maximum energy are the same 

and the difference in first derivatives at the turning point is negative for the min­

imum energy or positive for the maximum energy. there is also no bound state in 

the given interval. Otherwise there is a bound state. One can find its energy- to any 

desired precision by implementing a bisection algorithm.
 

Aker the energy and states are found they are normalized to unity within the sphere.
 



34 

1.0 

0.5 

0.0 

0.5 

- 1.0 -0.5 00-1.5 -1.0 

FIGURE 3.1. Difference in derivatives at the classical turning point vs. E 
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3.5. Determination of the Scattered States 

The procedure to find the scattered states is very different for the two kinds 

of boundary conditions. The first case discussed is the one with finite 7?.. 

In this case the procedure is straight forward. The states can also be labeled by 

their number of nodes within the sphere and the angular momentum. One takes a 

mesh in k-space (which is one-dimensional for spherically symmetric potentials) and 

integrates outwards starting from the inner cut-off using the same limiting values 

as for the bound states. If two adjacent k-points give wave functions with different 

signs at the end point r = Rc, there has to be a k-point between them, which gives 

a node of the wave function at the end point. This k-value can be found by a linear 

interpolation of the previous two k-points and gives a state with the right boundary 

conditions '0(/?,) = 0. (The values of the states at R, obtained by this method were 

mostly better than 10(-3).) Again this state can be normalized within the sphere. 

Since the energy is k2, the lower energy states are automatically found first by this 

search algorithm. 

This is illustrated in Fig. 3.2, where the value of the wave-function at the endpoint 

R., versus different, k-values is plotted. Whenever the graph intersects zero. a states 

is found. The very sharp transition for the first state occurs only for 1 = 0 and if 

there are very large oscillations in the effective potential. They are also the reason 

for numerical errors, since the state cannot be determined exactly enough. 

"File scattered state search can be limited 0) a maxiinal /-value of kR,.. where 

/i),. is the ut-off radius for the potential. for the following reason: 

According to eqn. [5. C--18] the states for a potential with cut -off radius and with 

kR,.. are approximately e(fnal to the free statesvl/(/
/-values. that satisfy 
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with the same /-value (since in this case jt is small where the potential is large 

and vice versa; so their product is always small). But one knows from [3, p. 233] 

(it + D or, solving forthat the k-values for the free states are given by k = 

1: 2(kR.-To. Since 71 is larger or equal to 1, the maximal /-value for a given 

k-value is 1 = 2";7?-1). For Ti? = R., an tipper boundary for 1 that satisfies both 

V1(1 + 1) > kRc and / > 2(k Z -1) is for example / = k7Z. Beyond this /-value one 
7r 

can stop the state search. 

In the second case, where 7Z goes to infinity, the situation is completely dif­

ferent than for the bound states and the scattered states for the finite sphere. First 

the number of nodes will be infinite for all states, because of the oscillatory behavior 

and the infinite radius. Furthermore, there is no k-quantization anymore, because 

of the lack of boundary conditions. So all k-values up to the Fermi level are possi­

ble. The Fermi wave vector for a free electron gas can be found in any textbook on 

solid state physics and is given by 14 = 372nd, where no is the (uniform) electron 

density. It is assumed that this relation also holds for the impurity system, if the 

dimension of the system are such larger than the dimensions of the impurity atom. 

The reason is that the Fermi-energy is equal to the chemical potential at T = 0. 

which is the energy required to put an electron into the system. This number does 

not change compared to the uniform gas if the effect of the atomic potential at the 

surface of the system can be neglected.
 

The task is now to calculate the Friedel oscillations. One expands the uniform back­

ground density in terms of the solutions of the free electron system using [8. 10.1.50] 

= 7-110. Multiplying the last two equations71(9/±1)1/(kr) = 1 and fok' k'ilk 

together <mud rearranging some terms gives no = 1, ./QA).` Y'/(21+ 1)k2j,2(kr)(11,.. One 

expands the density of the impurity system by replacing ji(kr) by the radial solutions 
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Rk,1(r) of the Schroedinger equation. The normalization of those have to be such 

that they have the same asymptotic behavior as ji(kr) sin(kr V-). namely 

they have to be fit to j1(kr) cos dl(k) ni(kr) sin (.51(k) kr sin(kr 61(k)) at the 

ji(kr) for r > R,cut-off radius R, (This normalization also implies that T?k,i(r) 

if 61(k) 0). This works for 7Z cc, since the density of states = 
7r 

thdiV 

is approximately uniform in this case, because the phase shift does not depend on 

7Z and thus the last term in the density of states can he neglected compared to the 

first one.
 

So the Friedel oscillations are
 

n(r) no = 
1 

fk (21 + 1)0(Ro(r)2 ji(kr))(ik. (3.1) 
77- JO 

For the same reason as above, namely that the Rk,l(r) are very similar to the ji(kr) 

for / > kR, one can carry out the /-sum in the integral just up to klic. 

3.6. Summary of the Equations used in the Computer Program 

3.6.1. The Case R. = R 

The following equations are used for each iteration step of the self consistency 

loop: 

1 . The initial potential is 1./.c .! 
(r). which comes from the previous iteration 

step for i > 1 or can be calculated from the starting density for i = 1. 

2. tVith the definition ni.:3(r) = r14.-3(r).	 the usage of atomic units. and our 

approximations in this chapter the -3c11roedinger equal Hi (2.1 ,$) turns into: 

1(1 +1).in//nil )to.J;r). 
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This equation is solved numerically for the 1)01111(1 and scattered states. 

The boundary conditions for both the bound and the scattered states are: 

uE,i(r) = 7,(1+1), ziE,i(r) = + Or/ at the inner cut-off radius and 71, 1(r) = 0 

at the outer cut-off radius. The bound and scattered states give discrete 

energy eigenvalues, are automatically orthogonal (because the Hamiltonian is 

Hermitian for all wave-functions with the required boundary conditions), and 

can be normalized to unity. 

r2(r ), for spherically3. Calculating the new density gives	 it(r) = IT E`n111ideg(1) 

averaged systems. deg(1) is equal to 2(21 + 1) (the factor 2 is because spin 

degeneracy and the factor 21 + 1 because of in-degeneracy) except for the 

energetically highest state, in which case it is the total number of electrons in 

the system minus the number of already populated states. This choice forces 

the number of occupied states to be equal to the number of electrons in the 

system. 

4. Then one calculates the output single particle kinetic energy 

all	 1? 

T= (1(71(1)E,i ± 2 -17 I 1.-71(r)L (r)dr, 
r,­

n.1 

and the Coulomb energy from (2.23) using
 

ii(r')
 (I r =
F'lI 

lihrarv-rout Ines to solve differential equat ions theI In order to use the SEA 
to	 the equivivalent first-order systemSchroe(filt)rer equation had to he converted 

/1(	 it T...0) 
/ r)

11 1	 
E u 

E./ ' / 
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7T	 2 ar r
(n(r') no)( < (cos 7))r'2 sin ^/d7d0dr' = 

/0 0 rc r> 

,. ri< 
27r f [E r (n(r ) no) Pi(x)dx]dr' , 

r, I	 T>. 1 1 

where r> = max(r, ri), r< = min(r,r') and Pi(x) are the Legendre polynomi­

als. With Po(x) = 1 and f 11 P(x)Po(x)dx = 2 S1,0 this simplifies to 

47[-
r 

r12(n(?) no)dr' + f
R, 

r'(n(r') no)dr']. 
T	 rc 

So 

C = 471 f r(n(r) no)[47r f Tr2(72,(TI) no)dr') + 
r, 

R, 
47rrf r (n(r1) no)dr' 2 Z]dr. 

Also the exchange correlation energy (2.27) can be obtained from the density, 

which simplifies for the spherical case to E[n] = 47r fr.R: r2e(n(r))n(r)dr. 

Adding these three contributions gives the output energy. 

5. The final effective potential can be simplified by using the same expansion for 

as before. This gives
177 -7-1 

R,1final f .
Vet f (r) = 47{ r` (n(r )no)dr' +I r'(n(ri)no)drl +ii,c(n(r)),

Jr,	 7' 

where /Ix, is the exchange correlation potential. Then this potential is nor-

i, finalinalized so that (Re) = 0, in order to get a continuous transition to theej 

zero potential for r > Re. 

6. The last step is to apply the fluxing described in 3.1 to	 calculate the initial 

potential for the next iteration steps Veiitl
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After a few iteration steps the calculated output energy should not change 

anymore. The obtained value is the energy of the system. Since the k-spectrum 

for the scattered states is discrete, the concept of phase shifts cannot be applied to 

calculate the immersion energy directly. Hence to get the immersion energy one has 

to run the program twice, a second time with the same background density but with 

Z = 0. This gives the energy of the pure system. The difference is the immersion 

energy. 

3.6.2. The Case 1. -300 

The steps 1, 5, 6 are the same as in the previous case. In step 2 the 

Schroedinger equation and the boundary conditions at the inner cut-off radius are 

the sameAt the outer cut-off radius the boundary condition for the bound states are 

uE,i(Rc) = el ---ER-) and u'E = V Ee(-`/-ER). The boundary conditions 

on the scattered states are uE=k2,/(R,) = Rcji(kR,) cos bi(k) Rcni(kR,) sin 61(k), 

which is just a normalization statement. The energy spectrum for E > 0 is contin­

uous. Hence one solves the equation on an entire k-mesh k = 0 ... kF. The phase 

shift defined in section 2.5 are for the spin-independent, spherical case given by 2 

kReii(kRe)Uk,/(Rc) ji (kRc) /Lk,/ Mc) Res .)/ (kRc)ntk,t Mc)
tan 61(k) = 

k Ren;(kR,)lik,i(Rc) + 711(k Rjuk,i(Re) kni(kRc)uk,i(Rc) 

The phase shifts are determined up to an integer times 7T. Since the ni and n; are 

not finite if their argument goes to zero but the j1 and j; are, tan 61(k) goes to zero 

if k goes, to zero. Hence we define Si (0) = 0. Since we also need derivatives of phase 

2 To be precise the phase shifts are given by the of the left hand side of the 
equation. If R is large enough the limit-process can be ignored. The convergence of the 
phase shifts with R was automatically checked by the program by calculating the phase 
shifts for a series of R, and checking if the values were independent on R. 
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shifts with respect to k, we have to define the phase shifts continuous in k. In this 

way the definition 6/(0) = 0 determines all phase shifts with no ambiguity in adding
 

multiples of 7.
 

One can also see that the phase shifts are independent of the normalization of uk,i,
 

so one can indeed define the normalization of u after calculating the phase shifts.
 

A brief discussion of the numerical error in calculating phase shifts is given in Ap­

pendix D. 

From the fact that the scattered states do not approach zero fast enough for large r it 

follows that the Hamiltonian is not really Hermitian for these states. The scattered 

states and bound states are not automatically orthogonal anymore. This can lead 

to the phenomenon of ghost states, i.e. a shallow bound state can also contribute to 

the conduction electron density. This leads to an over-counting of electrons. In our 

calculation this effect was observed, when a bound state was just about to vanish 

for following iteration steps. So one has to check the results to make sure that the 

charge balance of the system is right, by integrating charge densities and comparing 

to the Friedel sum. This is explained in more detail in the next chapter. 

Step 3 is for this case 

1 bound 1u IN (r)
n(r) no = 2(2/ + 1) r' + f >7(2z + 1)k ( u2k

r' ji2(kr))dk. 
1n,1 U 

Note that now there is no restriction on the number of electrons in the sphere and 

hence all bound states are occupied. 

In step 4 one can calculate the immersion energy directly for this case. So one has 

to run the program only once. Equation (2.26) is easily specialized to the present 

case: 
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bound vi,initial
471- r 2Eirnm = E 2(21 ± 1)E,i + 2 e eff r)ri(r)dr 

n,1 

EFL E 2(21 + 1)(51(EF) 2(2/ + 1) EF 6.1(E)dE + 
71 

1 

R, 
471 I r(n(r) no) [47r f r'2(n(r') no)dr') + 

r, 
R, R, 

47rr fr r'(n(r') no)dr' 2 ZJdr + 47r ff r2e(n(r)) (r)dr. (3.3) 
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4. RESULTS AND CONCLUSIONS 

4.1. Convergence of the Algorithm 

Theoretically the convergence of the algorithm should be such that for sub­

sequent iteration steps changes in the calculated immersion energy become smaller 

and smaller and that one can determine this quantity to any desired precision. All 

one has to do is to use a sufficient number of iterations. This is, however, not true 

for real calculations. Because numerical errors accumulate the algorithm has a cer­

tain limit of precision. Also it is likely to happen that the algorithm converges for 

the first few iteration steps and then starts to diverge. Hence to characterize the 

convergence one has to introduce a quantity that indicates how well the algorithm 

is converged. We use the difference in input and output potentials for this quantity. 

in fitial, V, 2 2V.final,i (r)) r dr andFor each iteration step one calculates di = f (Ve ef f 

the immersion energy E4,7. Without numerical errors, di -4 0 and Eilmm 

oc. This never happens for real calculations. The idea how to get rid offor i 

versus di. As shown in fig. 4.1 athis lack of complete convergence is to plot 

linear dependence can be assumed for small di. This also follows from theoretical 

considerations. Next one interpolates Eimrri to d = 0 to get the result Eirn, 

Fig. 4.2 shows how the densities converge. The densities are very large at 

the center. the location of the impurity atom. Then they decrease rapidly and show 
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Friedel oscillations. Analytical calculations predict, (see [3, p. 235f1) that for large 

n(r) no 
1 

(21 +1)(-1)1sin(61(1,7.-)) cos(21,.Er + (5/(kE)). (4.1) 
4721' 

To see the structure of the Friedel oscillations r3(n(r) no) is plotted. The 

dense areas reflect the converged values for the density. 

Fig. 4.3 shows a typical difference of an initial and a final potential. Since 

the potentials diverge like 1 at the origin, r times the potential is plotted. For 

complete convergence the two potentials should be the same. This could, however, 

never be achieved in our calculations. The final potential is the one with the larger 

oscillations. This reflects the strong response of the system, which is the reason for 

divergence if no feedback of the potential is applied. 

4.2. Precision of the Output Data 

When preparing to run the program one is faced with making a choice for 

a large number of input parameters. There are the physical input parameters, the 

charge of the impurity atom Z and the background density no. Then there are the 

input parameters that determine the precision of the numerical calculations, namely 

the mesh in real space, the mesh in k-space for the scattered states, the tolerance 

energy for t he bound states (E,.1). and the tolerance of the states for the differential 

equation solvers for both bound ((&) and scattered states 

.

I Using this forte for large r. it can he shov,-n that the integral -17 j1) 
.) no)(ir 

converges if et t ( ill contrast 0) + I)) can he integrated to inlinirv). Hence-)7. 

it is also postale to ilitroduce an outer cut -off radius Ii,. for the Friedel oscillations. 

http:cos(21,.Er
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To account for the rapid change in potential close to the origin a logarithmic scale 

in real space was chosen from the inner cut-off radius I', to a certain radius rt, where 

the logarithmic scale was changed to a linear scale. The linear scale was from r1 to 

the outer cut-off radius Rc. In k-space a uniform mesh was chosen from 0 to the 

Fermi-wave-vector kF with a step-size of k101.
 

Of course, the final results should only depend on the physical parameters, not on
 

the numerical parameters.
 

One way to check the reliability of the output data is to run the second program
 

for Z = 0. For this case the system is pure and the immersion energy is zero. If the 

output of the program is a value different from zero, this value is a lower boundary 

for the precision of the program. The resulting value was typically about 10-311y. 

Another way to check the reliability of the output data is to produce independent 

For the case with the R. -4 ccdata for which the results are already known.
 

boundary condition this can be a charge balance. Charge neutrality requires that
 

an impurity atom with Z protons has to have Z electrons around it. One can now 

no over the sphere with radius Rc; this gives the extra numberintegrate n(i') 
If theseof extra electrons around the impurity atom and should be equal to Z. 

quantities do not agree, R, was probably to small. In our calculations the error was 

typically around 1%. If Zb is the number of bound states one can compare Z Zb 

Et(2/ 1)(51(k1. ).. Both give the number of electrons in theto the Friedel sum 
The precision for this result was betterconduction band and should be the same.
 

than 1r/c in our calculations. When R was too small the agreement was not good,
 

because the charge integration did not include all important Friedel oscillations and 

If Re was too large thethe phase shifts calculated at R. were not converged vet.
 

numerical error of the differential egilati011 solver was too large when integrating
 

outwards to Br. Hence sometimes it suitable lir has to he found by trial and error. 
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It turned out that in general 8 times the \Vigner -Seitz radius is a good value for H. 

For Fe this value has to be lower. 

The charge balance is automatically satisfied for the Tc = R, boundary conditions. 

Hence charge balance cannot be used as a numerical check. For this case the Fermi­

level can be calculated by the program and he compared to E1 = 97 (no)i. Both 

should be the same. The agreement achieved was, however, not better than 10%. 

A way to check the dependence of the results on the numerical parameters is to run 

the program for a series of different values of the same input parameter. The input 

parameters we used are such that the smaller value of the parameter corresponds 

to a better precision. Hence one can interpolate the results to zero to get the best 

precision for this input parameter. From this one can guess a good value for the 

parameter and the relative error for this value. This is done in Appendix C. It was 

found, however, that the precision depends also on the physical input parameters. 

For example, the larger no is the smaller has to be Es; or the greater Z is the smaller 

has to be Es.
 

Typical input parameters are:
 

An r-mesh with I-, = 10-5, r1 = 2, R., = 8rtv s. 200 points on logarithmic scale
 

and 300 points on linear scale. A k-mesh with about 60 k-points. E101 = 10"
 

eb = es = 10' and about 20 30 iteration steps.
 

4.3. Comparison of the two Cases of Boundary Conditions 

The differences in immersion energies for the two cases are sometimes large. 

the reason is t lie large numerical error for the first case. Since two large energies 

are subt racted to calculate the small immersion energy. the relative error of the 

final results is immense. A way to reduce t his error is to make /1),. smaller for the 
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first program. Then the volume is smaller and so is the number of electrons in the 

system. This gives smaller total energies and thus smaller errors in the immersion 

energy. But if R, is too small other numerical errors (see above) arise. Our general 

conclusion is that the second case is numerically much more appropriate and is pre­

ferred. 

Fig. 4.4 is a plot of three output densities. The first one is the density calculated by 

the second program. The second one is the density calculated by the first program 

for the same physical input parameters, and the third density is also calculated by 

the first program but for the pure system. To see the features, r times the density is 

plotted and the first and third densities are displaced by 0.01 to the top and bottom, 

respectively. One can see that close to the origin, the first and second density agree, 

whereas close to the boundary the second and third density agree. This is very in­

tuitive, since the effect of the boundary condition is strongest at the boundaries and 

gets weaker and weaker farther inside. The difference between the last two densities 

is very similar to the first density. 

We conclude that the effect of boundary conditions for the first case is to 

produce density oscillations close to R, that are much stronger than the Friedel 

oscillations and independent of the impurity atom. The difference in output densities 

for the two cases conic from the boundary conditions. If R, is large enough and 

boundary conditions can be neglected, both programs should produce the same 

Output densities. 
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4.4. Results for H 

Results for H (Z = 1) were calculated for 14 different background densities. 

In Fig. 4.5 we give a plot of the electron densities for all 14 cases. From (4.1) it can 

in real spacebe inferred that r3 times the Friedel oscillations have a periodicity of 

for large r. Hence we plotted the densities versus kpr. Then the Friedel oscillations 

should have a periodicity of 71-, independent of the background charge. This is in 

very good agreement with our results. 

The curves with the higher slopes at the origin and the larger oscillations 

correspond to lower background densities. For larger kFr the electron configuration 

is independent of the background density. 
in 

Fig. 4.6 shows a plot of the effective single particle potentials r Vef
f f al (r) for the 14(r) 

different background densities. 

In Fig. 4.7 a typical phase shift behavior is given. The absolute values of the 

phase shifts increase with k for all /-channels. The higher the /-value, the faster is 

the convergence of the phase shifts to zero for k 0. 

Figs. 4.8 and 4.9 show a plot of Z1 = 1)(5/(kp) versus 1. Zi can be 

interpreted as the number of states induced in the 1-channel. For higher values of n0, 

Zo becomes lower and seems to converge to about 1.3. The opposite effect exists 

in the I = 1-channel. Here Z1 increases with no and seems to converge to about 0.2. 

Overall the values of Z1 oscillate with / for all densities. For I ix. they converge to 

O. This convergence is slower for higher background densities. This means that for 

larger no more and more /-channels are	 required to describe the system completely. 

ti 0 has to hold in order to describeIf /,, is the cut-off for the /-values. then Zi,, 
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FIGURE 4.6. r times effective potentials vs. kFr 
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the system completely. This was always satisfied in our calculations; see the discus­

sion in section 3.5. 

Filially, Fig. 4.10 is a plot of the immersion energy versus background density.
 

One sees a large negative slope at the origin, which corresponds to a stable H- atom.
 

0.0025 for H. where the immersion
The system has an equilibrium density no 
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Forenergy is at minimum. At no ti 0.022 the immersion energy turns positive. 

higher densities the immersion energy increases linearly with the background density. 

Previously reported data points are taken from [10, FIG. 11 and converted 

to atomic units: 

no = 0.0026 Ei,, = 0.13
 

Eimm = 0.12
no = 0.005
 

no 0.01 E i712771 0.07
 

no = 0.015 Ei,rLrn 0.04
 

no = 0.02 Einlm = 0.0
 

no = 0.025 Eimm = 0.05.
 

no = 0.03 Eimm = 0.09.
 

It seems that our results are a little lower by a constant of 0.04Ry. 

4.5. Results for Fe 

For Fe (Z = 26) it was much harder to obtain converged results. The mixing 

Still the convergence was not good. The cut-offratio has to be as small as 0.001.
 

radius has to be reduced to about R., = 13 in order to produce reasonable results
 

for the phase shifts, which makes it hard to run the program for low densities since
 

the range of the Friedel oscillations is too large in those cases. For higher densities
 

the convergence properties are better. In the following table ranges for immersion
 

energies are given: 
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no = 0.001 Eim, = 2 ... 0
 

no = 0.005 Ei,, = 1 ... 1
 

no = 0.01 = 0 . .0.5
 

1.20.02 Eirrun 2.8... 
no = 0.03 Ewan = 1 0
 

no = 0.1 EiTTIM = 8.3.
 

It seams that in the density range below 0.0:3 the immersion energy is about zero. 

This suggests that the interesting density range for Fe might be higher as for H. 

This has to be checked in the future. 

In fig. 4.11 the output densities are plotted for different background densities and 

fig. 4.12 is a plot of the bound states for no = 0.03. 

4.6. Conclusions 

Convergence could be achieved for hydrogen as an impurity atom for a vari­

ety of background densities. After suitable input parameters are found the results 

compare well to the already known results: 

The convergence for iron has to be improved. This could just be a question of find­

ing the right input parameters. but perhaps the program has to modified in order to 

have better convergence properties for large Z and strong effective potentials. These 

could be modifications in the feedback function. One idea is to make the mixing 

dependent on di. so one can systematically search for potential that lowers di. One
 

can also try" to mix densities instead of potentials.
 

In addition we need to investigate the role of partial occupation of the d-shell.
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APPENDIX A. Spin-Dependent Hamiltonian 

The full spin-dependent, non-relativistic Harniltionian is: 

h2 

= E I Tts(o{ 26, si +v"' ciiklisciod37-+2ms,s' 
2 

ts ts, q Ws,(f-4)klis(71d3i'd3i-4. (A1) 
Ir

s's, 

2,u0/3.(7?) 6s s,, where v () isFor spin z particles we have Vs's'(f-') = 17(11(5,,,, 

is the magnetic field, and 6- is the vector ofthe spin-independent potential, 

Pauli-matrices. The density matrix is given by 

ns's/(f) =< cl.ITIVNis,(014) > 

S-coupling is ignored it can beSince the density matrix is Hermitian and L 

diagonalized. The total density is n(F) = Tr{ris's' (F)]. With the assumption that 

B, = By = 0 and 
1 0 

az = 
\0 

one gets for the matrix of the potential 

V+'-(f) = 17-171 = 0, 

1/+(f) := j; +, +(r-) = 1/(1 +1/0B,(71 and 

V-(11 := = 17(0 PoBz(f"). 

This leads exactly to (2.1). All theorems in chapter 2 are valid for this simplified 

potential. They can, however, be extended to the general Hamiltonian if one works 

with the density matrix tr"/V). 

The readier may ask why spin dependent potentials are considered at all in this 

= O. Thethesis at all, because in the case of immersion energies, We have set 

reason is that most exchange energies are parameterized by the diagonal elements 
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of the density matrix. By introducing a spin-dependent potential one naturally 

incorporates these diagonal elements into the notation right from the beginning. 

Another reason is that one can describe spin-polarized systems with the formalism, 

which is, however, not done in this thesis. 

APPENDIX B. Supplement on Proof of HK Theorem 

In the following the only part of the proof in. [2, sec. 2.1] for which general­

ization to spin dependent potentials is not obvious, is extended to these potentials. 

Equation (2.6) in the book states 

(BI)(1.7 -P)1(1. >= (Egs E19,)1(13. >, 

where the generalized potentials are now 

(B2)C71 = E f v's(Tiikis(T1d3f.. 

Egs Eg'From this it can be concluded V 

This can be achieved in the following way: Multiplying eqn. (B1) from the left by 

< x1, , iNisl"."SN =< °RS' (IN)Ws,(Zi) 

(N is the number of particles, < 01 the vacuum state) gives with the definition 

( N)... ) VID >:"."8N =< 

cioid317.. < 00,(i ,N citogitscliT amyl. >,E f[vs(F) 
(Egs E 9f s)11)81"."8 N 1, ...37 N) 

This turns after using the anti-commutation relations
 

Ts(0]+ = 0 and CV)] =
 

< N) times with < 01C(/') = 0 into
(1 < 
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N) =
>[V s` 

(Egs E9s) N) 

From this follows for well-behaved potentials 

1Egs 

and so with (B2) 

E E' 
= 9 

N 
E f Tt, kif ,(1d3F E95 E98. 

APPENDIX C. Discussion of the Error Bars 

In the following the figures (4.13 - 4.16) of the dependency of the immersion 

energy on the typical input parameters are given. Linear regression was used to 

extrapolate the curves to zero. The intersection of the regression at zero was used 

as a basis to estimate the relative errors. 

Including all errors of these four parameters into the error of the immersion 

energy gives a total error of about 5%)2 (9%)2 (1%)2 (7 %)2 ) 12%. The 

error bars for the immersion energy in chapter 4 are based on this value. 

APPENDIX D. Phase Shift Errors 

Fig. 4.17 is a log-log plot of the phase-shifts of 1 = 0 and a zero potential 

versus k. The phase-shifts should be identical to 0. One can see that for log(k) < 0 

this is satisfied to an accuracy of 10("). But for log(;) > 0 the error of log(60(0) 

increases linearly with log (k) with a slope of 6. The same characteristic behavior 
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FIGURE 4.13. El vs. E b. The maximum relative error for the points in this plot 

is about 5%. 
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FIGURE 4.14. Et,, vs. es. The maximum relative error for the points in this plot 

is about 9%. 
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FIGURE 4.15. Ei, vs. Et01. The maximum relative error for the points in this 

plot is about 1%. 
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FIGURE 4.16. El,, vs. kti. The maximum relative error for the points in this 

plot is about 7%. 
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FIGURE 4.17. logS0(k) vs. log(k) 

was found for higher /-terms. This means the error in phase-shifts goes with k6. 

This is the reason for higher errors in the immersion energies if no (and thus the 

Fermi-level) is higher. This error is due to the integration routines. 
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APPENDIX E. Special Functions used in this Thesis 

A lot of this material can be found in [6]. 

The Legendre polynomials are 

1 ( / (21 2m) /-2mxPi(x) = E (-1)m 
21 m=0 

where (b) and [fl is the largest integer smaller than or equal to The 
ab) tqaa- b)! 

Legendre polynomials are orthogonal and P(1) = 1: 

9 
.1Pi(x)Pi, (x)dx = 611' 

1 

-11 21 + 1 

The following expansion is valid: 

1 1-1 

+1 P1(cos7), 
1=0 r> 

where r> = rnax(r, r'), r< = min(r,r'), and ^i is the angle between f: and F 

The spherical harmonics are
 

21 +1 (1 m)
 
P[ (co s 0)enc5= 

47r (/ + rn)! 

for -1 < m < 1, where Pr(x) = (-1)11 x2Yi dd:-4,,Pi(x). The Yi m are a complete, 

orthonormal set of functions on the surface of a sphere. Yi,, is an eigen-function 

and L, of theof the Casimir operators, L2 = [ (sin0 030) + sin120 08022sMO dO 

rotation group with eigen-values 1(1 + 1) and in, respectively. 

The following expansion holds: 

p1(cos7), E 0/)1-,,,(9, 0),
21 + 1 m= -1 

61). Also we have the sum rule:where cos-i = cosOcos01+ sinOsinO'co.,;(6 

21 + 1. 
= 

m=-1 
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The spherical Bessel functions are defined by: 

jt (x) = 

and 

ni(x) = 
22x 

where J, (x) is the Bessel function of the first kind of order v and N, is the Neumann 

function of order v. 

The functions j1(x) and ni(x) are linearly independent solutions of the differential 

equation: 
d2 2 d 1(1 +1) 

[ + +1 ]y(x) = O. 
dx2 xdx x2 

:Mx) is finite at the origin and ni(x) diverges at x = 0. 

The following limiting values are valid for large x: 

1 
ii(x) 17 )

xsin(x 2 

ni(x) 
1 

).
xcos(x 2 




