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IMMERSION ENERGIES OF ATOMS IN JELLIUM

1. INTRODUCTION

A large variety of properties of condensed matter can be understood by inves-
tigating the electronic structure of materials. All electrical, magnetic, optical, and
chemical phenomena are examples of this. The richness of these phenomena reflects
the complexity of the equations that govern multi-particle electron systems. On
the other hand this complexity makes it impossible to solve the equations exactly.
A number of approximative methods have been suggested and the most commonly
used are perturbation theory, Hartree-Fock theory, and density functional theory.
Past experience shows that density functional theory is the most suitable of these

to describe the electronic structure of atoms, molecules. and solids.

In this thesis density functional theory is used to calculate the electronic
properties of atoms immersed in a jellium environment. In the jellium model there
is a uniform positive background charge density and an electron cloud with equal
magnitude of charge but opposite sign. The advantage of this model is that the
background does not destroy any symmetry of the original system and no addi-
tional complexity is added to the equations. Of course, this model is only applicable
to svstems \\'h(‘rnltho dependence on structure is not critical. The model, however,

has been used to successfully study chemisorption on metal surfaces. impurities and




vacancies in metals, optical properties of metals. inter-ionic forces in metals, and

binding energies of atoms to large molecules.

The context in which our group is interested in this subject is the magnetic
transition of iron atoms when forming a solid. The electronic structure of a free iron
atom satisfies Hund’s second rule, whereas a single iron atom in a metal does not.
It is useful to understand the origin of the violation of Hund’s second rule in a solid
in order to understand magnetic anisotropy in irom.

Hence we approach the problem by focusing on a single iron atom and approximate
all other iron atoms by a uniform background. Starting with a zero background
density, which is equivalent to a free iron atom, we increase the background density
until the actual density of the conduction electrons in a metal is reached. By cal-
culating the electron distribution for a variety of intermediate densities we hope to
understand the origin of the decrease in orbital angular momentum as scen in the

violation of Hund’s second rule.

The theoretical background is given in chapter 2 for the general, spin-
dependent, non-spherical case. Chapter 3 describes the computer programs imple-
mented for this thesis for the spin independent, spherical case only. The extension to
spin dependent and non-spherical systems 1s in progress. The code was implemented
in FORTRAN using parts of Sean Fox's and Bob Erickson’s previous work. Chapter
1 is a guideline of how to use the program and summarizes the data produced with
the program. A complete set of data was obtained for H. In the case of Fe additional

work is required.




2. THE THEORETICAL METHODS

2.1. Density Functional Theory

With density functional theory one can find the ground state energy of an
interacting many-body system in an external potential. With the Kohn-Sham (KS5)
equations the problem is reduced to calculating single-particle states. In this section
a rough outline of thé foundations of density functional theory is given.

As appropriate for many-body problems the second quantized notation is used. In
this notation the Hamiltonian of a system of Coulomb-interacting identical particles
in a spin dependent external potential is
H= > / \DT(f)[—ﬁ—@Q + V()W (P T+
S ° 2my

> [ RG G E M G NGl (2.1)

7]
where W, (), UI(7) are the field operators (s is the spin index and my is
the mass of the particles). The specific choice of this Hamiltonian is justified in
Appendix A. Let @ be a state in Fock-space. Then the energy expectation value of
this state is
E=<®H|® >
and the spin-density of the particles is given by

R (F) =< ®|IHAT(F)|P > .

The Hohenbere-Kohn theorem (see [1. p.83] and [2. sec. 2.1 b states that the
¢ P.o)

crotnd stare enerey is a functional of the densities only. £ = E{n*] (the latter nota-

N1 N1

. . . - _ L RN . _ 1
tion is a short for Fln= =7 ..on” 70 Ui particnlar Efn =30

! .
L

2 for eleetrons). The

Lsee Appendix B
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idea behind the proof of this theorem is to use the fact that the state(s) correspond-
ing to the ground state density has/have to be the eigenstate(s) corresponding to
the lowest energy eigenvalue and that all other energy expectation values are larger
(Ritz-Raleigh principle). One can show by reductio ad absurdum that the external
potential 7*(7) is uniquely (up to an additive constant) determined once the ground
state density is known or, in other words, that the external potential is a functional
of the ground state density. Hence one can write £ = Fiyx + S, V(PR (F)dPT,
where the second term is a functional of the density. The fist term is the expec-
tation value of the kinetic energy plus the interaction energy expectation value. It
turns out to be a unique functional of the density as well. This Is easy to see for
a non-degenerate ground state, since the non-degenerate ground state is already a
functional of the density and therefore any expectation value is too. But in 2, p.

of] it is shown that the same is true for a degenerate ground state.

The Hohenberg-Kohn theorem leads to a great simplification of the problem,
because now one does not have to find the ground state energy by looking for
the ground state in Fock-space but one finds this energy by searching real valued
functions n*(F) to minimize the energy-functional.

The theorem, however. does not state what the form of the energv-functional is. Of

course, the classical Coulomb-energy

//n f)_ll_’I BRBF +q2/‘ (F)yn® (F)d*F

is a part of this energyv-functional. With n(r) = ¥, 13 (1) one can easily see that
the latter expression is a functional of the densities. i.e. is of the desired form. Thus

one writes the energy funetional

" VR :
Ll =G+ gu° / /M—(—)(l Pt —»q\ /\ (I (A

=
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where G[n*] stands for all contributions to the energy functional, that are not in-
cluded in the classical Coulomb energy. Of course, G[n®} still includes the kinetic
energy of the particles. But the kinetic energy is mainly a single-particle contribu-
tion to the energy functional. If one follows the procedure to reduce the problem to
find single-particle states, which is done by virtue of the KS equations (see below),
one expects that most of the kinetic energy is already included in the single-particle
equations. So one does not have to know the kinetic-energy functional. Until later
this functional is referred to as T[n®] and left unspecified. Everything that is not
included in E[n®] so far contains all manv-particle contributions besides the clas-
sical Coulomb-energy and is called exchange-correlation energy E.[n]. Several
approximations are known for E.c[n®] and in a later section we give one explicit
approximation for Erc[n"'].

To summarize, one has G[n®] = T[n°] + Ez[n°] and the energy functional is:

1
ER’l =T + + 50 //n (F)n(” Prd®*v +

Ir—fl

Elw]+0 Y [V (0907 (77, (

o
o
pa—

To find the ground state energy for a fixed number of particles one has to
minimize E[n®] with respect to the n® under the constraint of spin and charge
conservation, [ n*(F)d*7 = const.. i.e. to solve the variational problem 1; - (*) =
15, where the (constant) Lagrange-multiplier g7 turns out to be the spin dependent
chemical potential of the system (see e.g. [1. section 2.2] and [2. section 2.4]. See also
[2. chapter 2] for the proof that one can extend the definition of all functionals, so
that the functional derivative is well-defined and the minimum is really the ground
state l‘m‘rg’}').

The reason why this minimization of 2.2 cannot be done direetly 1s —as already

mentioned - that the kinetic-energy funetional is not known explicitly (except for
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the nearly uniform electron gas in Thomas-Fermi theory, where the kinetic energy
turns out to be an integral over the density to the power -;)

So the final step to reduce the problem to single-particle equations 1s to assume

—A

V), j-representability of the densities n°(7). This means, that one can find trial

single-particle potentials V7, () so that the solutions of the Schroedinger equation

B -, o
[ g ¥+ Vi (N = ELU ) (2.3)

give
n () = Y P, (2.4)
1
where the ¢#(F) are single-particle states and the sum in (2.4) is taken over
the lowest occupied states (degeneracies, esp. spin-degeneracies, have to be taken
into account here). Physical intuition predicts that well-behaved densities are V7, -
representable, because one can think of sclecting a particle in the system and calcu-
lating the potential it ‘feels’ due to all other particles in the system. The states of
this particle are then solutions to (2.3). It turns out, however, that the mathemat-
ical proof of this is much more complicated and that the assertion is not even true
for a large set of densities (see [2. section 2.3}). For the remainder of this thesis it is
assumed that the densities are V‘f”-represont;11)1(3, at least in an approximate sense.
Next we have to determine V(7). In our problem

16E.[n]
q on®

(8]
it
it

TZ(“F,L! (F) + const.. (

Vi (F) = 15(F) +q/~——[f L P
where const. was introdiced to ensure that Vi, goes to zero for
r — . To prove the theorem some formmlas of the calenlus of variations are
required. Here is a list of some that are used later.
A functional derivarive is defined by:

v

CoF R o L d .
/ : ‘(i’):\,n(/')(/';/' = /—1‘ [+ eonit g

an il




7
for any variation dn(7). This definition can be readily extended to space-dependent

functionals:

/56( ol ](7)()11(;)(13 = ;]IEG(F)[”T'E(S””FO

on

From these definitions the following properties can be easily derived:

1. The functional derivative is linear.
o Gl p  r8GF) oAy e
2. () = {7 ()}

3. SN (7 = L 59),

—

1y . . . . .
where V2 is the laplacian with respect to the primed variable.

) G( 31:4 Vil —y
1 (7) = J EER ()

5. §G{F) rsnl[(r )[n] (—o) (56 [n] (f')f[( )[ll] + G(]j)[n]zi}{(df;)hz‘(ﬂ

6. LTI IR y = ()

an

From 6. follows:

zSnr)~') «an o =r")

orn an

437

-
I
<,
—~
~
I
=
S’

8. And from 2. and 5. follows:

¢5i(?(ﬁ)[rtil3<,7) — JG(‘;)"”} (f)(G(F){Il})' + G(}-j)[”](:)‘(}(‘;)m"« (F))*

on

9. 8 [ fin(FNd*F _,) _L(” I—'))

an dqn
Now we continte with the proof of the theorem 250 which is a simplified
version of [20 see. 110

-~

For details see loe. eit. From the Hohenberg-Kohu theorem it follows that Vg (1)

is a functional of the ground state density, as are the ¢ (7)) as solutions of (2.3). 5o

one can write (2.2):
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1= 5 o g § e 0+

//n!r”)n PR 4
]__

S [t 6o

where the kinetic energy is now written in terms of single-particle states.

Applyving the functional derivative with respect to the density at the ground

state to this equation gives:

s SE[n®] L
ST (1) =
(O—L’DSII('TT’)[TLSI} _ le =20 N 1
WO TP iy (- V) ? 14
S [ ) gy Pl
(5(,"}-3”(7_‘1)[17,5’] fLQ = ra § 3 ¢
i Al \vat
s (") e Jup (M) D 1
. My SE . [n°
143 G VIR + & |11(7;|‘1'3’F+‘(§gd(ﬂ (2.7)

after using 1., 5., 6., 7., 3., Green’s formula to change the Laplacian in the kinetic
energy term and the fact that all n® are varied independently of one another (this
gives the &, — term). Also the chemical potential y° was introduced to ensure

charge conservation (see above). With (2.3) one can simplifv the first integral in

(2.7) to
3 ,(SLJ':” 7_1 “.j, « \_u " _( s = 5
Z/{(-—((;T}L—](F)) (£ NTIG N G
ol " F’){”S o " y § oy
( ( — ](f’)(]fl Lfff(l'))(Ll (FY " b
an’

And frther with .. 4 and
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| (because of the normalization conditions

[he" (P + on¥ 2P = [ e (F)[n® %37 = 1) this reduces to

()Z ] 2 -
—Zq/VkU v ()1(15)[ §l (Fyd’7.

But with 3, [ [0 ](R)]? = n*" () and 7. one gets

DN ICHUEES D0 e

ons

- Zq/ V! ()3, (7 = )P =

G (2.3)
Finally (2.7) turns into:

s _ () 3R L §E..[n’ ]
1= =gV () + 7)+(1/r_ @+ (7).

This defines V., () up to a constant. If one assumes that 17 is already nor-
malized, i.e. V*(oc) = 0, and furthermore that all charges are confined within

a large sphere, which yields lmity e | [;—{%d:‘f’ = (), one gets with the definition
I

!
S i SErn®] | = bt S e o e A hace)-
11, 1= limit, o =50 (7) and the fact that ;° 15 a constant (see above):
5 N
V3 Hre = H
S o=
q

So the properly normalized effective potential is:

10E:[n"] ]
g on®

3

V:ff(ld) = \’5(1—“) + (// %—,—,—l“({l _.) — _/Lf: (29)

which is the required formula.
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2.2. A First Look at the KS Equations

Inserting equation (2.9) into (2.3) gives

SRR f)M/}n—f) 3’_'('%5%{,—{“]('7—“”]Wm Fr. )

2m

with n*(7) given by (2.4).

These equations are non-linear integro-differential equations. It is impossible
to solve them analvtically, They are similar to the Hatree-Fock (HF) equations.
which are derived for single Slater-determinant states in Fock-Space. The only dif-
ference is that the HF equations contain instead of é’—o;u(f) a term V. (5) given,
not only in terms of the density, but in terms of wave functions. As a result the kS
equations are simpler. This term is called the exchange potential. The difference
in the KS potential and the HF potential is called correlation (and thus includes

effects that stem from linear combinations of Slater-determinants).

Figure 2.1 shows how to solve the KS equations iteratively. This procedure
is called a self-consistent loop. The net effect of cach step of the loop is to compute
the new density from the old density by the steps given in the diagram. Clearly
cach step defines an operator O on the set of densities.

It is commonly assumed that the self-consistent algorithm converges, i.e. one always
reaches the end of the loop and the result is unique. It turns ont that the algoritiun
has to be slightly modified in order to ensure convergence (see below}). A point that
is not always discussed in the literature is to ensure that the operatar O is well de-
fned. e i independent of which orthonormal basis (ONB) of H, gy is used ro solve
the KS equations. It can be easily proven, however. that O is indeed well-detined if

one ignores the rechimical difficnlty that the seattered states are not normalizeabie,




start with arbitrarv densities n*()

calcula

solve

(2.3)

caleula

te (2.4)

end

FIGURE 2.1. Flow diagram for the self-consistency eqnations

Yes ' new n*(7) =~ old n’(

11
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Let's assume that all states with energy smaller than j are occupied and all other
states are not. Let Sub(E < p1) be the subspace of all occupied states. The Hamilto-
nian H,.s; can be restricted to Sub(E < ), since Hosp(Sub{E < p)) C Sub{E < p)
(one can see this by choosing a basis of H.jp-cigenstates with £ < ). Let {¢3()}
and {¢5(7)} be two different ONBs of H,ss-eigenstates for Sub(E < p). All that
has to be shown is, that these ONBs lead to the same density.
Since {v$(7)} and {&}(7)} are both complete within Sub{E < p) one can expand
V() = 1 ai 03(F) and o5(F) = ;0,50 *(7), where the condition that both {¥?(7)}

and {@3(r)} arc orthonormal requires

Sk U gk = Ojiis 2k b]'kab,-‘k = 0;;. and b;; = a}; from which follows that

21 af,kaz,i = 5l,i-

Calculating the density gives

w7 = 0
:Z Z(Mok (M) Zazl“[ (7))

- Z Z(zlkal, (Gr(7) (7
= ;(sk.l(o’i NAGE };m .

This shows the independence.

Finally. if the end of the loop is reached the problem is solved. because rhe

density to create the effective porential is the same as the density caleulated from

the effective potential,
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2.3. Symmetry of the KS Equations

The complexity of the KS equations can be reduced by considering their
symmetry properties. Impurity atoms which have not more than one partially filled
angular momentum shell, have just one magnetic axis after symmetry breaking. So
there is a symmetry direction given by this axis. For this reason it is justified to
focus on axially svmmetric starting densities. We use the self-consistency algorithm
to prove the following theorem:

If one starts with a ®-symmetric density and V() = V*(r,8) (esp. 17(7) = 17(r),
i.e. the external potential is spherically symmetric), then the density is d-svmmetric

for each iteration step.

The proof is by complete induction over the iteration steps.
For the first iteration step the assertion is satisfied since it was assumed that we
start with a ®-symmetric density.
The next thing is to prove that provided the density is d-symmetric for one iteration

step. it has the same property for the next step.

Let
h O
L.=——
B APL
and
1 h> e ) 4 / n(r') P 1oL, [n ](_,)1
= N =gV g | e d T ()]
i 2my A |7~ 7| q on’ Tl

where the exchange energy Ey,. is in most approximations an infegral over some
function of the density. Here it is only important that it does not depend on @ if
the density does not depend on . which is satistied for these £, models. Since the
density (/) is assumed to be d-independent. sois g [ %;4({“?. Together with the

asstmption thar VA is D-independent it follows that also H,. gy is d-independent.
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or equivalently {H.ss, L:] = 0. As a well-known consequence one can choose eigen-

functions of H.ys of the form

1
Uj,m(l', 0, (I)) = Rj,m(", 0) L pim b’

27
where m is the magnetic quantum nuniber and j is a collection of all other quantum
numbers (due to the fact that O is well-defined the theorem does not depend on this
particular choice of cigenfunctions). Calculating the density for the next iteration

step with these v; ,,, leads to:

”(7' Z IR] m \/,—)'()lm(b 2 Z QR] m\T, 6”

2 7.m

This new density does not depend on ® and thus the proof is complete.

It follows ecasily that even limitierations—oc 2 (1 0, @) does not depend on .
Furthermore if one assumes that this limit, i.e. the solution to the whole problem,
does not depend on the starting density one concludes:

The density that solves the KS equations is ®-symmetric for a spherically symmetric

external potential.

2.4. Bound and Scattered States

Rewriting (2.3) in the form

]”0

R = S Vi () = B

sugaests that for ¢V (x) — L7 > 0 one gets bound states. because in our case for
some large enough R we have ¢V (7)) = £7 >0 for all » > R. Henee one gets a pos-
itive curvature-factor for o for all 1 > R As avesul o7 behaves like a exponential

function. Lo, falls off rapidly for increasing r. One gets a bound state indeed,
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Conversely if (1V,j’f/('x) — E? < 0. one obtains by the same reasoning a negative
curvature-factor for all large enough r. The asyvmptotic behavior in this case is like
a sine function, i.e. the solution is not confined to a region around the scatterer.
One gets scattered states.
In section 2.1 we already introduced the proper normalization of V;,, namely
Jr;(00) = 0. The conditions for having bound and scattered states are in this
case of course, E? < 0 and E? > 0, respectively.
A more detailed argumentation can be found in the standard literature on Quan-
tum Mechanics. It is also shown there that for Ef < 0 there is a discrete spectrum,

whereas for EF > 0 there is a quasi-continuous spectrum or a discrete spectrum

depending on the boundary conditions.

Numerical methods to find the discrete eigenvalues E7 and the corresponding
states do exist (see below). The scattered states require some extra theoretical con-
sideration. The potential in H.;; shows screening effects after a few iteration steps.
Consequently, one can assume that the potential behaves like a Yukawa-potential.
This means it falls of fast enough to be approximated by Vi (F) =~ 0 for r > R,
where R has to be large enough. Thus the Hamiltonian for the scattered states can
be approximated by
Hiutr = Hepyp for r < R and Hyarr = Hyre for r > R, where Hy,, is the frec
particle Hamilonian. This suggests to approximate the energy of the scarttered

particle £~ L = ",;’i" and expand the eigenstates in terms of the spheri-

cal harmonics 17,,. becanse [ and m are good quantum numbers for Hypoo sinee

[

]

2 Hppe) = (L. Hyr) = 0. This procedure i derived in deratl in the next section,

P
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2.5. Phase Shifts for Non-Spherical Potentials

The question of finding the scattered states is reduced to the question of
finding phase shifts. As proven in section 2.3, it is for the purpose of this thesis
sufficient to consider potentials of the form V*(r, 6), i.e. ®-symmetric potentials.
Following the procedure indicated in section 2.4 one has to solve the following

Schroedinger-equation in spherical coordinates:

[——7—12— 22+£+ ! a(smﬁa + - ~a—2—)+
2mg 7 Or  Or? 72sin 6 0 (9) r2sin 6 0P?
Ve(r,)]ib(r, 0, d) = Ev(r,0, ®) (2.11)

for r < R and

20 & 1 0 0 1 &

AN Sai i W —
2mg "1 Or + or? + r2 sm939(3m989) + r2 sinOO(I)?)z’J(T’ 6,%) = Ey(r,6,9)

(2.12)

for r > R, where ¢ has to be twice differentiable at 7 = R. The solutions for r > R

are as mentioned in the previous section

(r,8,9) = R} . (r)Yim(0, D) (2.13)

zlm

with
ht 20 N 9% (l+1)
2mg T Ir  Or? r2

VR u(r) = ERGy (),

where m is the magnetic quantum number, [ is the angular momentum, s the mag-

netic spin quantum number, and i is a collection of all other quantum numbers. The

solutions to the last equations are well-known:

Rz.l.m(") = A;l,m-jl(’i"r) + B;.[Jnnl(/‘tr)‘ (2}4)
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where j; and n; are the spherical Bessel functions of the first and second kind re-

spectively and since E' > 0 one defines E' = ",;’;2. (The remaining quantum numbers
i now turned out to be just £.) To match the solutions at 7 < R and 7 > R it is

necessary to expand (since the Y ,(d, @) are a complete set of functions) the inside

solution

2%y

Uljz ! m(r’ 9’ (I)) = Z Rk v, m( )yl’,m(gy (I)) (215)
ll

Note that m is, as pointed out in sec. 1.3, still a good quantum number and so
there is no m-sum. Furthermore the subscript [ referres to the [-value of the outside

solution to which the inside solution is matched, whereas !’ is just a summation

subscript.

Inserting this into the Schroedinger equation for r < R gives equations for the
functions RZ’,lz',m(r)3

29 9 U(I'+1)

oG tam T Y O R (7)o (8, ®)
R k2 .
= e ZRA b () Yem (6, ©). (2.16)

Multiplying these equations by Yji (8, ®)sin6 and integrating [T do 7T d® gives
after using [T [27 d0d® sin Y} (6, P)Yo (8, D) = Oy 1

R o290 9 U({l'+1)
LN GO A )
QmO(r or + Oor? * r? )] kol '"( )+

Z ‘l’sly”’l R}t ll“ 711(7) -

"

where V00 (r) = [ 27 40dD sin 01,0, @)V (1, 0)Yiw (0. @) The fact that V(r.0)

does not depend on @ leads to a simplification of these coefficients and to the

important fact that they are real. This can be casily seen by using the definitions

- - ! V! p 2 O
of the ¥,,(0,®) = )“’1 :H:z P (cos@)e™ and 57 (¢! IOV IO Iy = DS,
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B | =

Vom(r) = \J v+ 1)\l =) \} v+ pll=mt

(1" + m)! (I +m)!

/ " d6'sin O P (cos B)V? (r, 0) Py (cos 6) (2.18)
0

From this equation it can be seen that they are indeed real, since V*(r,8) and
P (cos8) are real functions. The fact that these coefficients are real allows us to
look for real solutions Ry} ,(r) only.

The constraint that the overall solution has to be twice differentiable requires that
the inside and outside solutions match at 7 = R in the following sense (this can
easily seen from (2.13) and (2.15)):

Ry L(R) = Rgy ,(R) =0 for I' # I and

Ry o(R) = ALy mit(KR) + B} mru(kR),

REE(R) = Af kit (kR) + By mkni(kR) for I' = 1.

The first two equations impose boundary conditions on (2.17), the latter de-
termine the coefficients A7, . and Bg, ..
To solve (2.17) uniquely additional boundary conditions, namely boundary condi-
tions on RZ”l,‘m and R;‘_s’}l’m, are required. This is deferred to a later chapter for the
spherically symmetric case; the purpose of this section is to define phase shifts. Here
it is only important to know that (2.17) with the appropriate boundary conditions
can be solved uniquely.
As already mentioned, once (2.17) is solved, Aj;,, and By, can be determined.
The fact that BZ‘VII,‘”L(I'). Ji(kr), and ny(kr) are real leads to real coeflicients Az,
and B}, in (2.14). Thus it is possible to generalize the definition of phase shifts
(sce e.g. [4, equ. (11.46)]) to

B

Lo

tanog, , =

s
‘.ik.[«m
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To make the continuous k-dependence more explicit the phase shift is referred to as

6} m(k) in the following .

The origin of the name ‘phase shift’ can be seen by comparing the radial solution
of the free Hamiltonian and the solution of the scattered Hamiltonian for large 7
The first one is

. 1 . I
Jilkr) — Esm(kr - —2—), (2.19)

since ny(kr) is not finite at r = 0, the latter one is

k) = tan &, (k) (kr)] -

s L. Im s Im

) ky,’mﬁ[sm(k‘r — -2—) — tan 6,,,,1(/1;) cos(kr — ?)]

et [cos &7, (k) sin(kr Ty sindy, (k) cos(h al )]
= —— 1 o ) — ) ¢ o —
kr cos 67, (k) % Om 2 Lm 2

£ iscl m . lm
= — kr — — c(k 2.2
k7 cOS 5an(k) SlIl( r 2 + l,m( ))’ ( 0)

which shows that for large 7 the net effect (up to pre-factors) of the scattering center

is to produce a phase shift 6f,,(k) in the radial function.

2.6. Density of Induced States

The density of states of the continuous spectrum tells how many states are

in an energy interval between E and E +dE (or equivalently between & and &+ dk,

since E = LA,

2m
Once the phase shift is known the density of the scattered states can be obtained
by the following reasoning. taken from 13]. Again the point of view is adopted that
all charges are confined within a large sphere of radius ‘K. Therefore the boundary

condition on the extended states is that they vanish at r = R. Since the sphere
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is large, the asymptotic values (2.19) and (2.20) can be used instead of the exact

states. The boundary condition then becomes

[
kR — g = TlfreeT

for the free states and

l
kR — —;r‘ + (S[ m(k) = NseattT

for the scattered states (nsree and nycare are natural numbers, that can be interpreted
as the number of states between 0 and k). The number of partial states between
k...k+ dk is for the first case

dnf.ree R
“ree g = Zdk
dk T

and for the second case

k= —dk —————dk
d T + dk ’

dnsmu R 1 (]5 (k)
dk

if k can be approximated as a continuous variable, which is justified for a large R.

Subtracting the last two equations gives the additional states that are produced by
the presence of a scattering center

d(nscatt - nfree) dk = _1_d61 m(k’)

T dk.
dk T dk

To obtain the total additional spin states d(AN*(k)) between k... &k + dk one has

to sum

o
[ EN]
—

—

dAN ) 1 dotn(k)
i

dk o dk




2.7. Immersion Energy

In order to obtain the electronic structure of a system, the methods of the

previous sections are applied to fermions with charge ¢ = —e, mass mg = m, and

spin S = 1. There are two spin-charge densities n*3(7) and n=1 (7). These are
abbreviated by n*(7) and n™ (), respectively.
The immersion energy Eiyn, of an impurity atom in jellium is defined as the energy

of the impurity system Ej,, minus the energy of its constituents, i.e. the energy of

the pure jellium system FEpqr. plus the energy of the bare impurity atom Egeom:
Eimm = Eimp - Epure — Eqtomn. (222)

This energy can be calculated with the methods described in the previous
sections. Some ideas are taken from [10]. It was not a part of this thesis to calculate
E.om- The data were provided by Dr. Jansen. In principle it can be calculated

by setting the background density ng = 0 and sum over the bound states of the

resulting KS equations.

The difference Einp — Epure 18 calculated by separating this expression in

kinetic energy. classical coulomb energy, and exchanee-correlation energy:
[o BB J)

Eimp - Epure = AT + AC + AET{‘

o ACH
Because of svinmetry the electron density of the pure system is constant (if the
svstem is large enough, when the boundaries can be ignored) and the Coulomb

energy is zero. The Coulomb energy of the impurity system is:
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/ {no = n(7)}{ro — n(7)} Srd +/~—e{ng — n(7)}d’F,

7= 7
where the last term is the potential energy due to the nucleus of the impurity
atom. The homogeneous positive jelliumn background ng is the same. The

integrals are taken over the volume of the system. One obtains:

AC = ¢ /(2/ (l?—?od“~——){n(r“)—no}d3“ (2.23)

AT:

First we consider the difference of the kinetic energy for the bound states.
Of course, the pure system has no bound states and again there is no contri-

bution of the pure system.

The kinetic energy of the bound states caused by the impurity atom can be

calculated from (2.3):

SUE +e [ Vi (A RPdT)
=Y B+ Y [ Vi () Sl ()l

= ZEIS + Z13/V:ff(7_")7220“,1‘1(7:)(137_",
1,8 5

where the sums are taken over all binding energies.

In the case of the extended states the impurity atom acts as a scattering
center. It is assumed that the insertion of the impurity atom into the jellium
does not change the Fermi-energies Ej: of the system. what is justified for

laree svstems (see below for more detailed arcument). Then. of course. the
o . o
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. 2m.
Fermi-wave-vectors ki = 35,1: do not change either.

Thus the it additional kinetic energy caused by the impurity atom is

b 122 d(AN(K) o 3
Z / 2m, dk dk + e/ eff(f)7lscaztcred(ﬂd ),

where ﬂé‘gk—f—)ldk is the number of states induced by the scatterer between

k ...k +dk. But exactly this quantity was written in (2.21) in terms of phase

shifts. Using this expression gives for the the first term of the kinetic energy

difference due to the scattered states

61 m(k)
- 2 Ak
Z/ Qme o dk ’
2m. E

or if the phase is viewed as a function of £ due to the relation k = ¥}

By d6},(E)
Z/ Pt dE

s,,m 0

= Z{Edlm /0 o[ (E dE}

s,l,m

1 .
Ly B e -1 X [ SlE)E,

T
s,l,m s,l,m

-~

since the scattered states occupy the energies 0... Eg at T=0 2. Putting the

contributions of the bound and scattered states together gives:
AT = Y Ef+ e [ Vi (' (' +
1,8 s

1 1 Ep
— Z E ()l m. ) - Z (Sl m(E)dE'r (224)
s ln

s 0
s,lim

since ”5(’—.‘) = 71;0“1“1(7"') + ’zicatlc'r(’ri(m'

“This is not a contradiction to Fumi’s th(‘ort m [9, equ. ()] since this equation is derivec ]
for impurity ions. not atoms. If one adds 32, E- Z* to Fumi's equation to take care of the
CHery Te qlmo d to <1<1d the v\tm Z clectrons to the ion syvstem and uses the Friedel sum
rule 20 = Jn SEUER A\ CUEVE = - Zl,m 8) W (Ej) one gets exac tlv the siame result. This is

in fact another \\(1_\ to derive the above expression.
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o AE .
It was already discussed that the electron density of the pure system was
uniform. The same is true for the spin-density states. They are called ng and
5 tively. Tl «cl -correlati for the stemn is thus
ng respectively. The exchange-correlation energy for the pure system is thus
pure - +
ENT = Eylng,ng .
The exchange energy for the impure system is

impure __ - .+
Emmere = B n”, ',

where now n~(7) and n*(r) have to be calculated from the states, that are
solutions to the KS equations of the system.

So

AE,, = E .[n",n%] — Ex[ng,ngl (2.25)

Combining (2.23), (2.24), (2.25), and (2.22) leads to
zmm‘—ZEs / T (7 d*F —
% Z Lo - % > / (E)dE +
ENE Nosd
¢ /(%/%)—;"—O(ﬂ, - %)(n(?) — ng) P +

E..[n7,n*] = Eqlng,nd] = Eatom (2.26)

2.8. Exchange-Correlation Energy Models

Almost all exchange-correlation energy models are based on the local den-
sity approximation (LDA). In this approximation the exchange-correlation energy

1S written



Eoln’] = / ere(n* ()T, (2.27)

where e.c(n?) is the exchange-correlation energy density for a gas of uniform density

ns

One might expect that this approximation is only valid for slowly-varying densities.
It turns out, however, that the LDA is sufficient even for higher density gradients.

The following is a brief overview of e,.-expressions for the electron gas.

2.8.1. Spin-Independent Models

There are two density regimes where analytical equations for €;.(n) can be
obtained by perturbation theory (Feynman-graphs), namely for very low densities

and for very high densities. The first expression is by Wigner

(n) 2 1 2 0.458 0.44
€zc = T\ TTAz'S T - ,
ap 1105 5 rg re+7.8"

where rg = (;—:E)%i is the Wigner-Seitz radius. The second by Gell-Mann and
Brueckner
e 0458 1

€c(n) = - (0.0311n(rs) — 0.047))n.
ag r's T

The other common parameterizations are either interpolations or extrapolations of

these two cases. These can be written as

e’ 0.438
€rc(n) = (—1;(— o

—C-G(%S)), (2.28)

where

G(r)=(1+2°)In(1+ %) -

and typical values for A and C are:

4 =11.4 C = 0.0333 Gunnarsson-Lundquist (see [11])

4 =210 C = 0.0225 Hedin-Lundquist




2.8.2. Spin-Dependent Models

One usually parameterizes in terms of the quantities
(7 = = (F (7 . N Lt Rt )
n(r) =n"(7)+n* () and (7)) = —F-

Most parameterizations are based on an interpolation between paramagnetic (un-

polarized; ¢ = 0) and ferromagnetic (completely polarized; |¢] = 1) systems, lLe.

€re(n, C) = FIOES0(n) + (1= FIQ))eli™ (). (2.29)

where
(1+QF +(1—¢) -2
2(25 — 1)

f(Q) =
and €679, €lXI=1 are of the form (2.28) with the parameters A, C fitted for the ap-

propriate polarization. So one has for example

A0 =300 €70 =0.0252

4/4=1 = 750 C¥=! = 0.0127 Gunnarson-Lundquist
A0 =114 €70 =0.0333

A= = 15,9 4= = 0.0203 vonBarth-Hedin.

The parameterization used in this thesis is the Hedin-Lundquist form.

2.8.3. Erchange-Correlation Potential

Once the parameterization of the exchange-correlation energy is given. the

SE.nTonThy . )
Lol D N0 are easily caleudated by property 9

v an’

exchange-correlation potential{s)
in sec. (2.1). The result is

VoEn=on™l L Do o O
—;-fj—";fl'):—{-‘c‘*‘(”(/"}-&(m)”f(]"\(m) ——(nQ
€ an e dn )




SE..[n",n" OF 1o . . Jepe i ,
LIl ] gy Ly Py ) - (0 D SE ) GO 230

¢ an* C
For the spin independent model used in this thesis there is only one exchange cor-

relation potential which is with (2.28):

~

13E . [n] - e 4,045
e (7) = ‘ :
e on ay 3 TS

A
—C-log(l+ —)).
rs
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3. IMPLEMENTATION OF THE NUMERICS

In the remainder of this thesis Rydberg atomic units are used. These are
N 2 <
defined by A% = 1. ag = 1, and 2m, = 1. It follows that €2 = 2 and that the energy

unit 1 rmRy is the lonization energy of H (abont 13.6eV).

3.1. Self-Consistency Loop

This chapter shows how to implement Fig. 2.1 on a computer. One starts
with a suitable input density. In this thesis a superposition of the atomic density,
which is calculated by another program, and the uniform background density is
chosen. Then the initial effective potential is calculated. The Schroedinger equa-
tion is solved for the bound and extended states. The 2V energetically lowest states
are populated, where IV is the number of electrons in the system. From this the
new density is calculated and also the final effective potential. So far everything is
according to Fig. 2.1. But as already mentioned the algorithm has to be altered
slightly in order to ensure convergence, This change affects the feedback.
Experience shows that if one takes the final effective potential of the previous 1t-
eration step as an initial effective potential for the new iteration step, the algo-
rithm does not converge because the response of the system is too strong. One can
deal with this problem by introducing a mixing ratio a (0 < a < 1) and taking
Vl':'f”f'“ll‘i“*l(r) = rz)’t,f};”l‘i(r) + (1 - 11))‘,{y}"“ll'i(/') (i indicates the iteration step) as
a new initial potential. If one rakes the mixing ration as low as 0.01 to 0.05 the
algorithm indeed converges for most syvstems. The lower o is. however, the slower 1s
the converzence. One idea to speed up the convergence is called Pratt’s scheme. Tt

i< hased on the idei of introducing an r=dependent mixing ratio. taking the last two

. I.Vl R -/' :‘.7 A
anetaela (/‘)-1‘,“}?“1 1(,_))

iteration steps and interpolating for cacl r the poines (V)
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and (Ymbab ey Yl ) o the line Vi) = ,{;?(Ll(l'). This procedure leads

eff eff
Vux}tul[,x—l(r)_vuntlul,z(r)

~f -ff
JJrreals cintteal,e tnal.— .
(r)+1/»{/f (r)_'\“,.f/" ' (r)_v.{f/ l(r)

to a mixing ratio of a{r) = ST
“ff
Since this procedure can give quite large or even negative mixing ratios, it is neces-
sary to confine it to a minimum and a maximum value, typically 0 and 1 respectively.
Whenever a(r) is smaller than 0, 1t 1s set to 0, whenever it is larger than 1, 1t 1s set
to 1. The problem with this procedure is that it can introduce discontinuities in the
potential, when the mixing ratio suddenly switches from one r to the other from its
minimum value to its maximum value or the other way around. One way around

(min+rmaz)a(r)=2-nun-mazx

this is to smoothen out the transition by replacing a(r) by = .
v - 20{r)—(min+rmar)

where min and maz are the minimal and maximal allowed values for the mixing
respectively, whenever the old a(r) is larger then max or smaller than min.
But this procedure leads to some peaks and wiggles in the potential and one often

has to go back to a straight mixing ratio.

3.2. Simplifications and Approximations

The calculations were done spin-independently. i.e. equation (2.28) was used
for the exchange-correlation energy with the parameter-set of Hedin-Lundquist. The
extension to spin-dependent calculations 1s straight-forward and will be done In a

future thesis.

Another simplification is to approximate equations (2.17). The problem is
that these equations are coupled. Bnt one can see by looking at the definition of
the factors V27 (r) that they decouple for spherically svmumetric potentials since
V) = V) e 137 is feindependenr. To ensure a spherically svinmetrie po-

rential for overy iteration step in the self-consistency Toop. U Is necessary to assume
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fully occupied [-shells. If this not the case one has to average over all different m-
states within a shell. This is clearly an approximation if the number of electrons
in the system is such that the outermost shell is not completely occupied. If one
applies this averaging, however, it can be shown by the same means as in section 2.3
that an initially spherically symmetric potential leads to spherically symmetric den-
sities for all iteration steps. Since the radial equations (2.17) are not m-dependent
anvmmore, the idea is to expand the eigenfunction in terms of Y, (8, @) and sum over
all m-values using ¥°0 _ 1¥7,.(6, P = ’—’g—‘, which savs that the average is indeed
spherically svmmetric.
A further results of spherical symmetry is that the phase shifts are also m-
independent.

In the following development only spherically averaged systems are considered.

3.3. The Question of Boundary Conditions

The suitable choice of boundary conditions for a spherically symmetric po-
tential are spherically svmmetric boundary conditions. Therefore we use a model in
which all charges are contained in a sphere of radius R with the impurity atom at
the center: the charge density is zero outside. Then the boundary condition on the
wave-functions are that they have to vanish at r =R,

The reason for the choice of these boundary conditions is a purely practical one.
The caleulated quantities should not depend on the boundary conditions. To test
this two ditferent choices for R were tmplemented. They reflect the two extrenie
cases. The first one is to set R to its minimal possible value, oo the cutoff-radius
R. bevond which the potential is zevo. the second to et R approach to infinity. The

rosults should be about the same for both cases.
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In case one the nurber of electrons in the sphere is fixed at the value Z +ny - ‘—3’1]?2
by the boundary conditions. In case two the number of available electrons 1s poten-
tially infinite and so there is no restriction on the munber of electrons in a sphere
of radius R.. The system is determined by a fixed Fermi-level £p = O3 - né.

The following development in this chapter distinguishes between these different

boundary conditions.

3.4. Bound State Search

The idea of how to scarch for the energy eigenvalues is taken from [7, p. 139].
The procedure is the following:
One can characterize the radial function of a bound state uniquely by its angular
momentumn ! and its number of nodes nyeges since the number of nodes for two
different bound states with the same [ has to be different because of orthogonality.
Instead of using |rnedes, [ > as a label one often uses In, 1 >, where n = nypqes +1+1
is the principal quantum number. From nygs > 0 it that follows [ =0...n — 1.
The bound state search was stopped when there was no bound state found for a
certain principal quantum number.
One knows that the energy of a state [n.l > in a pure Coulomb potential is -}/TR‘
where Z is the charge of the bnpurity atom. The potentials we consider here are
sereened Coulomb potentials. so the corresponding energy cigenvalues for a state
with the same quantum numbers would be higher than for a bare Coulomb poten-
tial. An upper boundary for the energy eigenvalies is 0. sinee we are dealing with
bound states.
To find the bound state energies one guesses an inidal energy cleenvalue for a

. . i e e .- . .
state [nol > within [—%= Ry 0 With this eneray value one starts to integrate
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the Schroedinger equation from an inner cut-off radius 7, close to the origin out-
wards and from the outer ent-off radius R, inwards to a matching point (for which
we chose the innermost classical turning point). The limiting values at the origin
are given by vg(r) = rfand v (1) = [r=1 for all potentials that do not diverge
faster than % at the origin. One can use these limiting values as boundary values for
the outward integration. The boundary values at the outer cnt-off radius depend
on the radius R. For the first case considered, where R = I, one simply starts
the inward integration with ¢3(R.) = 0 and an arbitrary value for v (R.) (this value
factors out when one matches the inner and outer solutions, because of the linearity
of the Schroedinger equation; a suitable value would be the same as for the next

case). For the second case, where R goes to infinity one can use asvimptotic values

(_\/:Tr) _ _E (—\/:Er)
e o vV—-Ee =
Upa(r) = ——— and U, (r) = ‘ —el=vV-E),

r l

which are valid when potential and centrifugal potential can be neglected, to deter-
mine the boundary values at the outer cut-off radius. (If the energy is very low it is
sometimes necessary to start the integration from farther inside, in order to prevent
an underflow. A good criteria for double precision numbers is v—Er < 36.) Then
one re-scales the outer solution to match the inner solution at the innermost classical
turning point for the total potential and energy. For numerical reasons it is the best
choice to take the innermost classical turning point as a matching point. because
the other turning points might appear and disappear as the potential changes for
different ireration steps. The reason for taking a turning point as a marching point
is that ar the turning point the inner solution changes its hehavior from oscillarory
to exponential-like, By integrating bevond the tirning point. one would pick up a

solution that blows up exponentially.

In order to oot a solution to the ditferential equation the first dertvatives also have
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to match at the turning point. This happens only for the correct energy valie. So
the difference in first derivatives of the inward and outward solutions at the turning
point indicates if the energy guess was too high or too low. Fig. 3.1 is a plot of this
difference in derivatives multiplied by the sign of the wave functions at the turning
point for the hydrogen atom with [ = 0. One can see that difference is indeed zero
for the right energy values —ni._,Ry. The large discontinuities in this plot are where
the number of nodes of the wave function changes. (The small discontinuities are
caused when the turning point changes.) One can also see that the difference is
larger than zero if the guessed energy value E leads to the right uumber of nodes.
but is too small, and that the difference is negative, if the £ is too large.

To decide if there is a bound state between a certain energy minimum and a certain
energy maximum one has to check the number of nodes and the difference in first
derivatives at the turning point. (Sometimes the initial energy guess for the mini-
mum energy was to low to have a turning point. In this case the minimum cnergy
was increased by small steps until a turning point was found.) If the number of
nodes for the minimum energy is greater than the number of the required nodes or
the number of nodes for the maximum energy is less then the number of required
nodes there is no bound state within the given interval, since greater energles cor-
respond to a greater number of nodes. Furthermore. if the number of nodes for the
minimum energy and the number of nodes for the maximum energy are the same
and the difference in first derivatives at the turning point is negative for the min-
i energy or positive for the maximum energy. there is also no bound srate n
the given interval. Otherwise there is a bound state, One can find its energy to any

desired precision by implementing a biseetion algorithn.

After the energy and states are found theyare normalized to unity within the sphere.
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FIGURE 3.1. Difference in derivatives at the classical turning point vs. £




3.5. Determination of the Scattered States

The procedure to find the scattered states is very different for the two kinds
of boundary conditions. The first case discussed is the one with finite R.
In this case the procedure is straight forward. The states can also be labeled by
their number of nodes within the sphere and the angular momentum. One takes a
mesh in k-space (which is one-dimensional for spherically symmetric potentials) and
integrates outwards starting from the inner cut-off using the same limiting values
as for the bound states. If two adjacent k-points give wave functions with different
signs at the end point r = I2,, there has to be a k-point between theni, which gives
a4 node of the wave function at the end point. This k-value can be found by a linear
interpolation of the previous two A-points and gives a state with the right boundary
conditions ¥'(Re) = 0. (The values of the states at [2; obtained by this method were
mostly better than 1007*.) Again this state can be normalized within the sphere.
Since the energy is A%, the lower energy states are automatically found first by this
search algorithm.
This is illustrated in Fig. 3.2, where the value of the wave-function at the endpoint
R, versus different k-values is plotted. Whenever the graph intersects zero, a states
is found. The very sharp transition for the first state occurs only for [ = 0 and if
there are very large oscillations in the effective potential. They are also the reason

for numerical orrors. since the state cannot be determined exactly enough.

The scattered state search can be limited to a maximal l-value of A7 where
R is the cut-off radius for the potential. for the following reason:

According to eqn. [5. C-48] the states for a potential with o cnt-oft vadius and with

[-values. that satisty \x"/(l = 1) > AR are approximately equal to the free stares
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with the same l-value (since in this case j is small where the potential is large

and vice versa; so their product is always small). But one knows from (3, p. 233]

that the k-values for the free states are given by A = =(n + é) or, solving for
L 2kR-n) ‘e - Al te ; v
. | = 26R=n)  ginee p s larger or equal to 1, the maximal [-value for a given

k-value is | = 2—“—%’—1—) For R = R, an upper boundary for | that satisfies both
I(l+1) > kR, and [ > 2—(52::3 is for example [ = kR. Beyond this l-value one

7

can stop the state search.

In the second case, where R goes to infinity, the situation is completely dif-
ferent than for the bound states and the scattered states for the finite sphere. First
the number of nodes will be infinite for all states, because of the oscillatory behavior
and the inﬁnité radius. Furthermore, there is no k-quantization anymore, because
of the lack of boundary conditions. So all k-values up to the Fermi level are possi-
ble. The Fermi wave vector for a free electron gas can be found in any textbook on
solid state physies and is given by k3 = 37%ny. where ng is the (uniform) electron
density. It is assumed that this relation also holds for the impurity svstem, if the
dimension of the system are much larger than the diniensions of the impurity atom.
The reason is that the Fermi-energy is equal to the chemical potential at T = 0.
which is the energy required to put an electron into the svstem. This number does
not change compared to the uniform gas if the effect of the atomic potential at the
surface of the system can be neglected.

The task is now to calculate the Friedel oscillations. One expands the uniform back-
oround density in terms of the solutions of the free electron svstem using [3. 10.1.50)]
S0+ yftkr) = Land }‘,” h2dbk = %/\f = 77n,. Mulriplving the last two equations
roserher and rearranging some terms gives ny = TI /l)k‘ S (20 DR (b )k One

expands the density of the impurity system by veplacing j;(Ar) by the radial solutions
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Ri.(r) of the Schroedinger equation. The normalization of those have to be such

i £if

that they have the same asymptotic behavior as Jilkr) — fzsin(kr — ). namely
they have to be fit to j,(kr) cos &, (k) —ny(k7) sin & (k) — & sin(kr — %+6,(k)) at the

cut-off radius R, (This normalization also implies that Ry ((r) — ji(kr) for r > R,
if §,(k) — 0). This works for R — oo, since the density of states @ o= R ‘—%%l
is approximately uniform in this case, because the phase shift does not depend on

R and thus the last term in the density of states can be neglected compared to the

first one.
So the Friedel oscillations are
1 ke 2 9 0
n(r) —ne = —; S o2+ DR (Ri(r)” — 3 (kr))dk. (3.1)
72 Jo
!
For the same reason as above, namely that the Ry (r) are very similar to the ji(kr)
for [ > kR, one can carry out the [-sum in the integral just up to kR,
3.6. Summary of the Equations used in the Computer Program |
3.6.1. The Case R = I},
The following equations are used for cach iteration step of the self consistency

1. The initial potential is lxt',}';l “C(r). which comes from the previous iteration
/

step for i > 1 or can be calenlated from the starting density for 7 = 1.

loop:
i 2 With the definition wp(r) = rRue (r). the usage of atoniie units. and our
|

approximations in this chaprer the Schroedinger eqnation (2.17) turns mro:

i I+ 1]
" (}_\ — (2\/‘,‘”““”[(\1'> + ,< )

Wy A1 off — gt

3]

;2
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This equation is solved numerically for the bound and scattered states.
The boundary conditions for both the bound and the scattered states are:

wp(r) = v ug(r) = (L+ 1)t at the inner cut-off radius and ug,(r) =0
at the outer cut-off radius. The bound and scattered states give discrete
energy eigenvalues, are antomatically orthogonal (because the Hamiltonian is
Hermitian for all wave-functions with the required boundary conditions), and

can be normalized to unity.

nz(

3. Calculating the new density gives n(r) = Z“” deg(!) . for spherically

averaged systems. deg(l) is equal to 2(20 + 1) (the factor 2 is because spin
degeneracy and the factor 20 + 1 because of m-degeneracy) except for the
energetically highest state, in which case it is the total number of electrons in

the system minus the number of already populated states. This choice forces

the number of occupied states to be equal to the number of electrons in the

svstem.

1 Then one calculates the output single particle kinetic energy

all R
T=> deg(NEw +2- -1,7/ 7o r )fo”f“h”l rydr,
r

-

n.l

and the Coulomb energy from (2.23) using

/%);7,1—)9(137 =
h 1

I order o nse the SLATEC librarv-routines to solve ditferential equations the
Sehroedinger equation had 1o be converted to the  equivivalent first-order svstem

2 / 7
wpe ) 0 | wpalr)
= N 2. .'/.'41 Y [’</'7|\ ~ 3
W i) I R el ) /

’JJ
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T or2n R, ,,.l
/ / / (n(r') = no)(3_ 5y Pilcos))r" sinydydedr' =
0 0 Te ! T

>

7.l

Re S
or [“ 13 (') = o) 5 / P(x)dadr,
Te >
where 75 = maz(r, '), r« = min(r,’) and P(z) are the Legendre polynomi-

als. With Py(z) =1 and f_ll Pi(z)Py(z)dz = 2 - &9 this simplifies to
1 fr Re

47r[—/ r(n(r') - no)d'r'-i-/ ' (n(r') — no)dr'].

So

Re
C:47r/ r(n(r) — no)| 477/ " (n(r') — no)dr') +

4"rr/r r'(n{r') — ng)dr’ — 2 - Z]dr.

Also the exchange correlation energy (2.27) can be obtained from the density,
which simplifies for the spherical case to Eg[n] = 47 fRC r2ezc(n(r))n(r)dr.

Adding these three contributions gives the output energy.

. The final effective potential can be simplified by using the same expansion for

IF 57 as before. This gives

si, fina 1 9Z
el/e}ff l(r) = 47‘([’— '/rc ( no di +/ no)dr]———q\—’um n(r))

where jiz is the exchange correlation potential. Then this potential is nor-

i . . ..
malized so that V’ fl"a (R.) = 0, in order to get a continuous transition to the

zero potential for r > I2..

. The last step is to apply the mixing described in 3.1 to calculate the initial

. . . - 1. tial
potential for the next iteration steps VL+ matial .y
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After a few iteration steps the calculated output energy should not change
anymore. The obtained value is the energy of the system. Since the k-spectrum
for the scattered states is discrete, the concept of phase shifts cannot be applied to
calculate the immersion energy directly. Hence to get the immersion energy one has
to run the program twice, a second time with the same background density but with

Z = 0. This gives the energy of the pure system. The difference is the immersion

energy.

3.6.2. The Case R — ¢

The steps 1, 5, 6 are the same as in the previous case. In step 2 the
Schroedinger equation and the boundary conditions at the inner cut-off radius are
the same. At the outer cut-off radius the boundary condition for the bound states are
ug(Re) = e-V=FR) and v (R,) = —/ZEe=Y=ER)  The boundary conditions
on the scattered states are ug_y2;(R.) = Reji(kR.) cosd(k) — Reny(kR.) sin &;(k),
which is just a normalization statement. The energy spectrum for £ > 0 is contin-
uous. Hence one solves the equation on an entire k-mesh k& = 0...kp. The phase
shift defined in section 2.5 are for the spin-independent, spherical case given by 2

ARLJ[I(ARC)UIC’[(R(:) +jl(ch)lLk’[(Rc) — ch[(ch)U;c‘[(Rc)

= 3.2
}LRCTL;(/&RL)U/C[(RC) + m(ch)uk,l(RC) - R(;/IL[(kRC)LL;CJ(RC) ( )

tan &; (k)

The phase shifts are determined up to an integer times 7. Since the n; and n; are
not finite if their argument goes to zero but the j; and j; are, tan d;(k) goes to zero

if & goes to zero. Hence we define 6;(0) = 0. Since we also need derivatives of phase

‘) . . . . . ~ .
2To be precise the phase shifts are given by the limitg - of the left hand side of the
equation. If R, is large enough the limit-process can be ignored. The convergence of the
phase shifts with R, was automatically checked by the program by calculating the phase

shifts for a series of R, and checking if the values were independent on R,.
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shifts with respect to k, we have to define the phase shifts continuous in k. In this
way the definition 6;(0) = 0 determines all phase shifts with no ambiguity in adding
multiples of 7.

One can also see that the phase shifts are independent of the normalization of u,
so one can indeed define the normalization of u after calculating the phase shifts.
A brief discussion of the numerical error in calculating phase shifts is given in Ap-
pendix D.

From the fact that the scattered states do not approach zero fast enough for large r it
follows that the Hamiltonian is not really Hermitian for these states. The scattered
states and bound states are not automatically orthogonal anymore. This can lead
to the phenomenon of ghost states, i.e. a shallow bound state can also contribute to
the conduction electron density. This leads to an over-counting of electrons. In our
calculation this effect was observed, when a bound state was just about to vanish
for following iteration steps. So one has to check the results to make sure that the
charge balance of the system is right, by integrating charge densities and comparing
to the Friedel sum. This is explained in more detail in the next chapter.

Step 3 is for this case

1 bound

n(r) = no = Z 220 + 1) "‘ —/ Z ’(T) — j3(kr))dk.

Note that now there is no restriction on the number of electrons in the sphere and

hence all bound states are occupied.

In step 4 one can calculate the immersion energy directly for this case. So one has
to run the program only once. Equation (2.26) is easily specialized to the present

case:




i,initial

bound R
Eipnm = Z 220+ 1)Ey + 2 47r/r 7‘26V6H (r)n(r)dr —
n,l ¢

E

LS o0 D) [ aEME +

T 0

1
Er— > 2(20 + 1)a(Er)
Yo

r

47 /rCRC r(n{r) — no)[dr /T r?(n(r') — ne)dr') +

R. R,
47rr/ r'(n(r') — no)dr' — 2- Z]dr + 47r/ rlese(n(r))n(r)dr.
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(3.3)
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4. RESULTS AND CONCLUSIONS

4.1. Convergence of the Algorithm

Theoretically the convergence of the algorithm should be such that for sub-
sequent iteration steps changes in the calculated immersion energy become smaller
and smaller and that one can determine this quantity to any desired precision. All
one has to do is to use a sufficient number of iterations. This is, however, not true
for real calculations. Because numerical errors accumulate the algorithm has a cer-
tain limit of precision. Also it is likely to happen that the algorithm converges for
the first few iteration steps and then starts to diverge. Hence to characterize the
convergence one has to introduce a quantity that indicates how well the algorithm
is converged. We use the difference in input and output potentials for this quantity.
For each iteration step one calculates d; = 47 f(Vé?}”“['i(r) - Veffi?“[’i(r))Qerr and
the immersion energy Ef . Without numerical errors, d; = 0 and ! — Einm
for i — oc. This never happens for real calculations. The idea how to get rid of
this lack of complete convergence is to plot Ei  versus d;. As shown in fig. 4.1 a
linear dependence can be assumed for small d;. This also follows from theoretical

considerations. Next one interpolates EX - to d = 0 to get the result Ejppn.

Fig. 4.2 shows how the densities converge. The densities are very large at

the conter. the location of the impurity atom. Then they decrease rapidly and show
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Friedel oscillations. Analvtical calculations predict (sce (3, p. 2351]) that for large

r, !

(20 + 1) (=) sin(0(kp)) - cos(2kpr + di(kr)). (4.1)

n(r)

{

To see the structure of the Friedel oscillations r*(n(r) — ng) is plotted. The

dense areas reflect the converged values for the density.

Fig. 4.3 shows a typical difference of an initial and a final potential. Since
the potentials diverge like % at the origin. r times the potential is plotted. For
complete convergence the two potentials should be the same. This could, however,
never be achieved in our calculations. The final potential is the one with the larger
oscillations. This reflects the strong response of the system. which is the reason for

divergence if no feedback of the potential is applied.

Precision of the Output Data

When preparing to run the program one is faced with making a choice for
a large number of input parameters. There are the physical input parameters, the
charge of the impurity atom Z and the background density ny. Then there are the
input parameters that determine the precision of the numerical calculations. namely
the mesh in real space, the mesh in A-space for the scattered states, the tolerance
energy for the bound states (Epy). and the tolerance of the states for the differential

cauation sobvers for bath bound (€,) and scattered states {€).
| sy

.. . . - . . o9 L
FUsine this form for laee roit can be shown that the integral Az [ nir) = ngddr

converges it g -+ 20 {In contrast to yl %(-n,\-wr = 0y can be integrated to infinieyv). Henee

it ix also possible to introduce an outer cut-off radins I for the Friedel oseillations.
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To account for the rapid change in potential close to the origin a logarithmic scale
in real space was chosen from the inner cut-off radius 7. to a certain radius 7, where
the logarithmic scale was changed to a linear scale. The linear scale was from r; to
the outer cut-off radius R,. In k-space a uniform mesh was chosen from 0 to the
Fermi-wave-vector kp with a step-size of k-
Of course, the final results should only depend on the physical parameters, not on
the numerical parameters.
One way to check the reliability of the output data is to run the second program
for 7 — 0. For this case the system is pure and the immersion energy is zero. If the
output of the program is a value different from zero, this value is a lower boundary
for the precision of the program. The resulting value was typically about 1073 Ry.
Another way to check the reliability of the output data is to produce independent
data for which the results are already known. For the case with the R — oc
boundary condition this can be a charge balance. Charge neutrality requires that
an impurity atom with Z protons has to have Z electrons around it. One can now
integrate n(F) — ng over the sphere with radius R.; this gives the extra number
of extra electrons around the impurity atom and should be equal to Z. If these
quantities do not agree, . was probably to small. In our calculations the error was
tvpically around 1%. If Z, is the number of bound states one can compare Z — Zp

5, (20 + 1) (kg). Both give the number of electrons in the

3 e

to the Friedel sum

conduction band and should be the same. The precision for this result was better
than 1% in our calculations. When [7. was too small the agreement was not good,
because the charge integration did not include all important Friedel oscillations and
the phase shifts caleulated at I were not converged vet. If R was too large the

numerical error of the differential equation solver was too large when integrating

outwards to .. Henee sometimes a suitable B has to he found by triad and error.
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It turned out that in general 8 times the Wigner-Seitz radins is a good value for H.
For Fe this value has to be lower.
The charge balance is automatically satisfied for the ® = R, boundary conditions.
Hence charge balance cannot be used as a munerical check. For this case the Fermi-
level can be calculated by the program and be compared to Ep = 973 - (no)g. Both
should be the same. The agreement achieved was, however, not better than 10%.
A way to check the dependence of the results on the numerical parameters is to run
the program for a series of different values of the same input parameter. The input
parameters we used are such that the smaller value of the parameter corresponds
to a better precision. Hence one can interpolate the results to zero to get the best
precision for this input parameter. From this one can guess a good value for the
parameter and the relative error for this value. This is done in Appendix C. It was
found, however, that the precision depends also on the physical input parameters.
For example, the larger ng is the smaller has to be €;; or the greater Z is the smaller
has to be ¢,.
Typical input parameters are:
An r-mesh with r. = 1072, r; = 2, R, = 8rys, 200 points on logarithmic scale
and 300 points on lincar scale. A A-mesh with abour 60 k-points. E,y = 107°

€y = €, = 107" and about 20 — 30 iteration steps.

4.3. Comparison of the two Cases of Boundary Counditions

The differences in immersion energies for the two cases are sometimes large.
The reason is the largd numerical error for the fivst case. Sinee two large energies
are subtracted to caleulate the small immersion energy. the relative error of the

final results is immense. A wav to reduce this error is to make I smaller for the
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first program. Then the volume is smaller and so is the number of electrons in the
system. This gives smaller total energies and thus smaller errors in the immersion
energy. But if R, is too small other numerical errors (see above) arise. Our general
conclusion is that the second case is numerically much more appropriate and is pre-
ferred.

Fig. 4.4 is a plot of three output densities. The first one is the density calculated by
the second program. The second one is the density calculated by the first program
for the same physical input parameters, and the third density is also calculated by
the first program but for the pure system. To sce the features, r times the density is
plotted and the first and third densities are displaced by 0.01 to the top and bottom,
respectively. One can see that close to the origin, the first and second density agree,
whereas close to the boundaryv the second and third density agree. This is very in-
tuitive, since the effect of the boundary condition is strongest at the boundaries and
gets weaker and weaker farther inside. The difference between the last two densities

is very similar to the first density.

We conclude that the effect of boundary conditions for the first case is to
produce density oscillations close to . that are much stronger than the Friedel
oscillations and independent of the impurity atom. The difference in output densities
for the two cases come from the boundary conditions. If R. is large enough and

boundary conditions can be neglected, both programs should produce the same

ourput densities.
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4.4. Results for H

Results for H (Z = 1) were calenlated for 14 different background densities.
In Fig. 4.5 we give a plot of the electron densities for all 14 cases. From (4.1) it can
be inferred that r* times the Friedel oscillations have a periodicity of & in real space
for large r. Hence we plotted the densities versus krr. Then the Friedel oscillations
should have a periodicity of 7, independent of the background charge. This 1s in

very good agreement with our results.

The curves with the higher slopes at the origin and the larger oscillations
correspond to lower background densities. For larger kpr the electron configuration
is independent of the background density.

Fig. 4.6 shows a plot of the effective single particle potentials 7‘Veffi’fl“l(r) for the 14

different background densities.

In Fig. 4.7 a typical phase shift behavior is given. The absolute values of the
phase shifts increase with & for all {-channels. The higher the [-value, the faster is
the convergence of the phase shifts to zero for k— 0.

Figs. 4.8 and 4.9 show a plot of Z; = %('21 + 1) (k) versus I. Z; can be
interpreted as the number of states induced in the [-channel. For higher values of ny,
7y becomes lower and seems to converge to about —1.3. The opposite effect exists
in the [ = l-channel. Here Z; increases with ng and seems to converge to abonut 0.2.
Overall the vadnes of Z; oscillate with 7 for all densities. For [ — o¢ they converge to
(. This convergence is slower for higher background densities. This means that for
larger iy more and more /-channels ave required to describe the system complerely.

[f 1,0e 15 the cut-off for the /-values. then 7. =~ 0 has to hold in order to describe
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the system completely. This was always satisfied in our calculations; see the discus-

sion in section 3.5.

Finally, Fig. 4.10is a plot of the immersion energy versus background density.
One sees a large negative slope at the origin, which corresponds to a stable H™ atom.

The system has an equilibrium density ng = 0.0025 for H. where the immersion
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energy is at minimum. At ng = 0.022 the immersion energy turns positive. For
higher densities the immersion encrgy increases linearly with the background density.

Previously reported data points are taken from (10, FIG. 1.] and converted

to atomic units:

ng = 0.0026 Ejppm = —0.13
ne = 0.005 Ejpm = —0.12
ng = 0.01  Ejpm = —0.07
ng = 0.013 Ejnm = —0.04
no = 0.02  Eppm =00
ne = 0.025 Ejnm = 0.05.

ng — 0.03 Eimm = 0.09.

It seems that our results are a little lower by a constant of 0.04Ry.

4.5. Results for Fe

For Fe (Z = 26) it was much harder to obtain converged results. The mixing
ratio has to be as small as 0.001. Still the convergence was not good. The cut-off
radius has to be reduced to about R, = 15 in order to produce reasonable results
for the phase shifts, which makes it hard to run the program for low densities since
the range of the Friedel oscillations is too large in those cases. For higher densities
the convergence properties are better. In the following table ranges for immersion

CHOTZIeS Are gIvel:
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ng = 0.001 Eyppy = —2...0

no = 0.005 Epp = —1... 1

ng=0.01 E um=20...05
Eimm

no=0.03 Eyum=-1...0
Eim = 8.3.

It seams that in the density range below 0.03 the immersion energy is about zero.
This suggests that the interesting density range for Fe might be higher as for H.
This has to be checked in the future.

In fig. 4.11 the output densities are plotted for different background densities and

fig. 4.12 is a plot of the bound states for ng = 0.03.

4.6. Conclusions

Convergence could be achieved for hydrogen as an impurity atom for a vari-

ety of background densities. After suitable input parameters are found the results
compare well to the already known results.
The convergence for iron has to be improved. This could just be a question of find-
ing the right input parameters, but perhaps the program has to modified in order to
have better convergence properties for large Z and strong effective potentials. These
could be modifications in the feedback function. One idea is to make the mixing
dependent on d,. so one can systematically search for potential that lowers ;. One
can also tryv to mix densities instead of potentials.

Tn addition we need to investigate the role of partial occupation of the d-shell.
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APPENDIX A. Spin-Dependent Hamiltonian

The full spin-dependent, non-relativistic Hamiltionian is:

= B :
A=Y [ g Vb + V> ()T +

LS [ [ RO e (R T (A1)

|7 =7

For spin j particles we have Ves'(7) = V(7)dss — %uog(f') - 35 g1, where V(7) is
the spin-independent potential, g(f') is the magnetic field, and & is the vector of

Pauli-matrices. The density matrix is given by
n® (7) =< S|TH(A) Uy (7)| @ > .

Since the density matrix is Hermitian and L — S-coupling is ignored it can be
diagonalized. The total density is n(r) = Tr[n®* (). With the assumption that

B, = B, =0 and

O, —

0 -1
one gets for the matrix of the potential
VEr(F) = V() =0,
V() = V() = V(F) + o B:(7) and
V() = V() = V() - moBa().
This leads exactly to (2.1). All theorems in chapter 2 are valid for this simplified
potential. They can, however, be extended to the general Hamiltonian if one works
with the density matrix n® (7).
The reader may ask why spin dependent potentials are considered at all in this
thesis at all. because in the case of immersion energies, we have set B.(7) = 0. The

reason is that most exchange energies are parameterized by the diagonal elements
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of the density matrix. By introducing a spin-dependent potential one naturally
incorporates these diagonal elements into the notation right from the beginning.
Another reason is that one can describe spin-polarized systems with the formalism,

which is, however, not done in this thesis.

APPENDIX B. Supplement on Proof of HK Theorem

In the following the only part of the proof in [2, sec. 2.1} for which general-
ization to spin dependent potentials is not obvious, is extended to these potentials.

Equation (2.6) in the book states
(V= V)@ >= (Ey — E})|® >, (B1)
where the generalized potentials are now
V-7 =Y [V - VOO (B2)

From this it can be concluded V — V' = Ey, — Ey.

This can be achieved in the following way: Multiplying eqn. (B1) from the left by
< T ey BT =< 0| Wy, (En)- Ty (T1)

(N is the number of particles, < 0| the vacuum state) gives with the definition
WSSy (T, L Ey) =< 0| (En)- Wsy (T1)| D >

> / [13(F) = V(A7 < 014, (Fx) . Uy (31) TLF) T (7)| @ >=

S

(Egs = Ep )05 (F1, . 8)

This turns after using the anti-commutation relations
[0, (7). Us(P)]+ = 0 and [¥, (3)), UHM)s = 0,.5,0(Fi = T)

(1 < i< N) LV times with < 0jwi() =0 into
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From this follows for well-behaved potentials

E95 - E;S

Vi) = ViR = =5

and so with (B2)

~ ~,  E,—-E, . ,
V-Vi= _"g_N_“g_g/\I’E(F)‘I’S(F)dS = Egs — By,

APPENDIX C. Discussion of the Error Bars

In the following the figures (4.13 - 4.16) of the dependency of the immersion
energy on the typical input parameters are given. Linear regression was used to
extrapolate the curves to zero. The intersection of the regression at zero was used

as a basis to estimate the relative errors.

Including all errors of these four parameters into the error of the immersion

energy gives a total error of about \/(5%)2 +(9%)2 + (1%)2 + (7%)? = 12%. The

error bars for the immersion energy in chapter 4 are based on this value.

APPENDIX D. Phase Shift Errors

Fig. 4.17 is a log-log plot of the phase-shifts of [ = 0 and a zero potential
versus k. The phase-shifts should be identical to 0. One can see that for log(k) <0
this is satisfied to an accuracy of 1009, But for log(k) > 0 the crror of log(d(k))

increases linearly with log(k) with a slope of 6. The same characteristic behavior
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FIGURE 4.13. E! . vs. &. The maximum relative error for the points in this plot
is about 5%.
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FIGURE 4.15. Ei,, vs. Eju. The maximum relative error for the points in this
plot is about 1%.
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FIGURE 4.16. E!  vs. k. The maximum relative error for the points in this
plot is about 7%.
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FIGURE 4.17. logdy(k) vs. log(k)

was found for higher [-terms. This means the error in phase-shifts goes with A°.
This is the reason for higher errors in the immersion energies if no (and thus the

Fermi-level) is higher. This error is due to the integration routines.
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APPENDIX E. Special Functions used in this Thesis

A lot of this material can be found in [6].

The Legendre polynomials are

=5 50 (o)(

-2
! | m>xl—2m’

where (‘;) = E'—(;—lb)—' and [£] is the largest integer smaller than or equal to £. The

Legendre polynomials are orthogonal and P(1) =

1:

&

1
/;1 H(.’IJ)B/(.’L‘)d.’E = méu'.

The following expansion is valid:
| 7’ iy

where 5 = maz(r,r’), T« = min(r, r’), and v is

The spherical harmonics are

4 (I +m)!

I —m)!
yz’m:\JQI.*-]‘( m) Bnl

oy m
2

for = < m < I, where P™(z) = (-1)"(1 —2%)7 §

Py(cosy),

the angle between 7 and 7.

(cosf)e™?

(z). The Y, are a complete,

orthonormal set of functions on the surface of a sphere. ¥, is an eigen-function

of the Casimir operators, L? = —[n;o%

o(ainﬁ%)
rotation group with eigen-values [(l + 1) and m,

The following expansion holds:

Py(cosy)

m——l

where cosy = cosfeostf + sinfsintl'cos(é — ¢').

1 2
smoa(:)]andl’ 0¢,0fthe

respectively.

01 ’ }lm( r(:))e

Also we have the sum rule:

21’7-1

Z “[,” 0 (')

m=—1
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The spherical Bessel functions are defined by:

. T
(@) = 5Dy (@)

and
T
n(z) = /5Ny (@),

where J,(z) is the Bessel function of the first kind of order v and N, is the Neumann

function of order v.

The functions ji(z) and n(z) are linearly independent solutions of the differential

equation:

£ 2d I +1)
Gttt e MOl

ji(z) is finite at the origin and ny(z) diverges at z = 0.

The following limiting values are valid for large z:

. 1 . I
Ji(z) — ;sm(z — _é_)’
1 !
ny(z) — ——cos(z — —7—r).

T 2






