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A Comparative Study of Nodal Coarse-Mesh Methods for

Pressurized Water Reactors

1.0 INTRODUCTION

The two major concerns in the study of nuclear reactor

core analysis are (1) calculating flux distribution and

(2) determining criticality. Neutron diffusion theory is by

far the most widely used method of treatment. Fine-mesh

finite difference diffusion theory calculations have been

relied on heavily by reactor designers and analysts, but

when one considers the two and three dimensional geometries

it becomes expensive.

In this study various coarse-mesh methods were

examined. A common theme that binds all the various forms

of the nodal and coarse mesh methods is that they can be

reduced to a finite difference equations. This means that

they can be solved by existing finite difference codes with

some form of modifications. The SHUFFLE computer code

developed by Stout[5] was modified. The major issue

concerning the use of nodal methods is to find a simple but

accurate relationship between the average flux in a node

and the current on the node surfaces.

Borresen's method[2] of averaging the fluxes to obtain
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the nodal fluxes was used, together with a modified

scheme[3,4]. The node averaged fluxes were calculated by

the use of finite difference coefficients that used the

fluxes and diffusion coefficients of neighboring nodes. The

modified Borresen's method[3,4] introduces nonlinearity to

the flux calculations.

The Discontinuity factor method[6,7,8,9,13]; a method

based on the continuity of current across nodal boundaries

was also studied. Both a face-dependent and a node-averaged

discontinuity factors were calculated, and used to generate

the nodal fluxes and power distribution. The method allows

for the discontinuity of the fluxes at the node boundaries

but maintains the continuity of the currents. The results

obtained closely agrees with the 2DB calculations[10].

Chapter 2 discussed the general formulation of the

diffusion equations and the development of the finite

difference scheme together with the boundary conditions

used. In chapter 3 the Borresen's and the modified

Borresen's methods were discussed. The discontinuity factor

methods were considered in chapter 4. The results and

conclusions were addressed in chapters 5 and 6

respectively.
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2.0 FORMULATION AND DERIVATION OF THE COARSE-MESH

DIFFUSION EQUATIONS

Satisfactory calculation of power distribution of

a reactor core model is necessary in any reactor analysis.

In this chapter, formulation of modified 1-group and the

2-group diffusion theory is presented. The Borresen Scheme

and a modified form of the Borresen method was used to

obtain node-averaged fluxes. These fluxes were then used in

the power calculations. Initially, point dependent fluxes

were obtained from the five-point difference scheme and it

was from these that the node averaged fluxes were

calculated.

2.1 Two-Group Diffusion Equations

The 2-group diffusion equations in x,y geometry

are

D1V2c111(x,y) + ERi (x,y) (1)1(x, y) = Si (x, y) (2-1)

D2 V2$2 (X, 31) + Eat (X, 37) 02 (x, y) = E (x, y) Oi(x, y)

(2 2)

where
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s1(x,Y) = [vEli (x,y) (1)1(x, y) + v E (x,y) 02 (X, ,

0(x,y) = Fast flux at x,y ,

0(x,y) = Thermal flux at x,y ,

D1 = Fast diffusion coefficient ,

D2 = Thermal diffusion coefficient

vEfi(x,y) = fast fission source cross-section at x,y

vEf2(X,Y) = thermal fission source cross-section at x,y

2,9/ (x,Y) = group transfer scattering
cross-section at x,y , and

EIR1(x,y) = removal cross-section at x,y .

For a large thermal reactor, we can simplify the 2-group

diffusion equations by neglecting the thermal leakage. The

diffusion equation for the thermal group, Eq(2-2), becomes

4)2
a2

(2-3)

In solving the equations the reactor core was divided into

a number of identical nodes. A mesh grid was constructed

with mesh points located at the center of each node and

difference equations were developed for the diffusion

equations. Figure 2-1 shows a five-point difference scheme

representation, where the center mesh point (i,j) can be

represented by the node numbered 0.
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Figure 2.1 Five-point difference scheme for the
(1/2-group) models.

x
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Integrating over the volume (unit) from (x - Ax/2) to

(x + Ax/2) and from (y - Ay/2) to (y + Ay/2) yields the

spatial difference equation associated with each point.

Using Green's theorem[14], the volume integral of the

leakage term transformed into a surface integral

iD7 Co dV = f D V4) . dA (2-4)
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Equations (2-1) and (2-2) become:

fDVOidA + f ER,(DidV = f i+ff (vEfick + vBf24:02) dV , (2-5)

and

IDW:02.dA + f Ea24:02dV = f Esi,<DidV (2 -6 )

Substituting for the thermal flux using the expression in

eq(2-3) into eq(2-5) results in the following:

f LARD lclA + f ER1cidV f (vE + yE f2) lcIV , (2-7)

The node interface boundary condition correspond to

the continuity of current density across the interface.

Consider the case where the nodes i and it's adjacent node

i+1 separated by a distance, h, and equidistant from a mesh

line separating the two regions. The continuity of the

neutron current density of the node interface gives the

following:

411' 1/2 -11).i -1:131i+1/2Di + i+i h/2 (2-8)

1)1., , and Iii+1 are the fluxes at the mid-point of node

i, the interface, and the mid-point of node i+1,

respectively. The flux at the node interface is given as:

Di' 1 + D1414'1 +1

Di + Di+1
(2-9)

Using the above expression the flux gradient can be written

as:



V 1.1 i
)C, ( (

4:I)

D + D i+1 h/2
(I) (2-10)

7

The five-point difference scheme applied to equations (2-1)

and (2-2) would result in the following:

4 DikA

hk
01k 010) ZRio n v

o
+snv

o
=0

k=1.

where

V0 = volume associated with mesh 0 ,

411k = fast flux of node k ( at mesh point k ) ,

hk = distance between mesh point k and mesh point 0 ,

Ak = area of the boundary separating mesh point k
and mesh point 0 , and

D10Dlk (ARO + ARk)
k D AR + D ARk 11c 0

(2-11)

(2-12)

is the effective diffusion coefficient and

R represents either x or y, depending on

whether k is 1,2 or 3,4 , respectively.

Solving for we get:

4)10

where

4

S10 V0 + E Clk4)1k
k=1

C15
(2-1:
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0 _ D1 kAk
s--1k hk

4

C15 = Elei0V-0+EC1k
k=1

2.2 Thermal Group Calculations

2.2.1 1.5-Group Approximation

From the assumption leading to Eq(2-3), the thermal

flux can easily be determined from the fast flux

calculation:

4)2
0E5,/, 1

z a2

2.2.2 2-Group Approximation

For the full 2-group case, the integration of

Eq(2-2) yields:

4 -7-)

hk

(44
z

-21(4-2k
,-- 2k 4)20) Ba2()20V0

k=1

+ Es110010 0V- = 0

The thermal flux becomes:

4120

where

4

Es110170(1)10 +E C2k4)2k
k = 1

C25

(2-14)

(2-15)

Inner iterations were performed on the fast and
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4

C25 = / a2 VO + E C2k i
k=1

C2k
D

2 kA k
hk

thermal fluxes until the desired convergence criterion was

met. When the inner iteration converges, the eigenvalue was

corrected and the new eigenvalue was then used for another

iteration (outer),

Keff(n) = Keff( n-1) (total fission)n
(total fission) n-1

An over-relaxation technique was used for faster

convergence of the fluxes. To calculate the power produced

in each node, node-averaged fluxes are needed. The

averaging techniques used are discussed in the next

chapter.

2.3 Boundary Conditions

The center line for a quarter core of the Oconee

Nuclear Reactor[12] bisects the fuel assemblies(nodes) in

both the x and y direction. Thus the boundary condition

applied to the two (inner-most) sides was the zero flux

gradient due to symmetry. This is accomplished by setting

the coefficients multiplying this term at these points to

zero. The other two sides were the reflector boundary and

the flux can be assumed to be zero at some extrapolated

distance from the boundary surface. For this boundary, the
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coefficient becomes:

DgkAk DgkAk
hk 58Rin . iltr

where RIn is the last mesh interval, and the denominator

represents the extrapolated distance.

4- Boundary

x

Figure 2.2 A representation of the boundary condition
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3.0 BORRESEN METHODS OF NODE-AVERAGING

Now that the fast and thermal point-wise fluxes have

been determined, nodal power can be calculated using the

cross-section data supplied. The point fluxes, when used in

the power calculation, will yield a significantly large

error. This is due to the fluxes in the neighboring

bundles. Therefore, a node-averaged flux was used in the

determination of nodal power.

In this chapter, methods of averaging the point fluxes

to obtain node-averaged fluxes were discussed. First, the

use of the Borresen method was discussed, followed by the

modified form of the Borresen scheme.

3.1 Derivation of the Equations

where

The fast flux diffusion equation is:

V D1V01 = (3-1)

= 7,1 (vEf
1

+ vEf2.7.4) EaiEs12
-L.-eft

A volume integration is performed over Eq(3-1),

(3-2)



-f BDl (cht1)1-n) dB = f
V

(111 dV ,

where

12

(3-3)

B = nodal surface area,

v = nodal volume, and

n = nodal surface unit vector.

The right hand side of Eq(3-3) can be written as:

J SiOidV= ,

1 Es
(vEf + vEf -Ea, --E,i2

keff 1 2 z

(3-4)

(3-5)

if 2F- (3-6)

(3-7)

(3 -8 )

(3-9)

ID2 , a s

with

(T2 = ±(1) dV
WrIT 2

_ zsi2
ID 2,as

z 1a2

151= dV ,
V .i 1

where F; the actual to asymptotic node average flux ratio,

is initially taken as unity.

A five-point finite difference scheme was

formulated for the left hand side of Eq(3-3), with mesh

points at the node centers. The continuity of current and
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flux densities across the interface (i+k), see figure

(3.1), resulted in the expression below

-Di (Ilii-lh (I)i (I)i+i (1).i+1/2-Di+i (3-10)h/2

from the definition of the net fast group current density

41 "I +1 (bi
4-Ti+1/2 = --'-'n 1 h/2

where

I (3-11)

Di = fast diffusion coefficient for node i,

(Di = mid-point flux value for node i,

l'i+1/2
= flux value on interface between node i and

i+1, and

h = mesh width.

From above, the flux at the interface becomes

Dicpi+Di+14)i+1
4)1+1/2 Di+ D.

and

, (3-12)

((Di Oi+i)4...Ti.oh 3.

(Di + Di+1) (3-12)

Similarly or the interface between node i-1 and node i:

2DiDi_j_

ji-1/2 h (Di + Di1) (3-14)
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-' (i-k,j)

h

Figure 3.1 A planar diagram showing the notations used for
nodes and interfaces
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The left hand side of Eq(3-3) can be expressed as :

D(N24:0n) dB Ji+1,2 (3-15

A two-dimensional finite-difference form of Eq(3-3) with

an approximation of

)1.

1/2 07;
Di + Di

The above approximation is used to eliminate the use of the

coefficient on the left hand side of the equation, which

would otherwise occupy computer memory during the

computation, with minimal error. Expressing the

node-averaged fast (and thermal) flux as a weighted average

of the mid-point flux in that node and the fluxes on the

four adjacent interfaces,

0:T:0 = 13,4:0 + 2 CEllj
4j

where

b 3a
3a + 2 (1 a)

C=1

and

a

4 [3a + 2 (1 -a)]

(3-16)

(D.7 i= the flux on the interface between node i and

node j,and

a = relative weight factor on the mid-point

flux.
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3.2 Modified Borresen's Method

Borresen's coarse-mesh 1.5 (two)-group diffusion

theory scheme is an efficient tool for power distribution

calculations. It's major drawback is in cases where large

thermal gradients occur. To overcome this, Kim et al. [4]

presented a modification which was made with regard to the

thermal group. In this technique the nodal interface

thermal group was determined analytically, and using this

a node-averaged thermal flux was obtained. A discussion of

the modification follow below.

3.3 Mathematical Formulation of the Modified Borresen's

Scheme

The interpolation formula for the node-averaged

group flux for a three-dimensional case is

(T)gi = bg(I) gi + 2 C9.( E
4

.4)igi WR14:Bigi)
2j

with the nodal interface group flux given by

D (10 + D- g. gj
Dgi + Dgj

(3-19)

(3-20)

Only a two-dimensional analysis was being considered

in this study. Therefore, the R in Eq(3-19) was set to

zero. Thus, the effect of the w in Eq(3-19) was not there.

The f is a parameter that was not present in the original

formulation by Borresen, but was added by Kim and Levine

[3,4]. It gives different weights to the nodal interface
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group fluxes, depending on whether they are at vertical or

horizontal surfaces. Thus, for the two-dimensional

analysis, Eq(3-19) is exactly the same as Eq(3-16).

In the original Borresen scheme, an approximation

similar to Eq(2-3) was used:

(1)2i = ls11 E
azi

(3-21)

But in the modified scheme the node-averaged thermal

flux was computed using an interpolation formula with

separate weight factors for the thermal groups:

4= b 4 + 2C E (1302i 21 2i 2i 21
j=1

where

b21 = [1 2tanh (hKi/2) hKi]2 ,

C2i = (1 -b21) /2

Ki =

(3-22;

(3-23)

(3-24)

(3-25)

How the expression given above for equation (3-22) is

obtained will be shown in the following section.

3.4 Solution to the 1-D Diffusion theory equation

Consider a one-dimensional thermal group diffusion

equation for a two-region slab representing two adjacent

half-nodes in the x-direction, figure(3.2):



d2 T,D2i w2i

and

zazicp2i = Si

d2-D
2 dx2

412j412j + E a2i 4)2j

with boundary conditions

s12., a2i(2i()02' = /B2 1 la

and

(1)23(-2) = (1)22 = (Es123/Ea2)

for --hsxs0
2

for Osxsh
2

and the interface continuity conditions

42,(0) = (p2;(0) =

and

18

(3-26)

(3-27)

(3-28)

(3-29)

(3-30)

D21021(0) = D2i02i (0) (3-31)

y

J

-h/2 0 h/2

Figure 3.2 A two region slab representing two adjacent
half nodes in the x-direction
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Solving equations (3-26) and (3-27) assuming a constant

source, resulted in a solution of the form

(D2i = 02i + AiCOSh(X/Li) Blsinh(x/Li) (3-32)

and

(D2j = 02j A2COSh (X/Lj ) +B2sinh(x/L,j) (3-33)

Applying the boundary conditions

02i (h/2) = 02i A1COSh(12/2Li) B1sinh(h/2Li) (3-34)

j ( -h/2 ) = 02j + A2 COSh ( -h/2Li ) B2sinh( -h/2L,j) (3-35)

02i (0) = 4 7 =Uzi + Al (3-36)

4)2j ° = 4:14i 4:14i + A2

and

2i = 2j Lj

from equation (3-38)

D," 4Li
B, = Bi

D2 j L

(3-37)

(3-38)

(3-39)

and substituting for B2 in equation (3-35) and rearranging

the equations (3-34) and (3-35), the two equations thus

become



A2 + B1 D2 iL-1 tanh ( h/2Li) = 01
D2 Li

20

(3-40)

and

Al Bitanh(h/2Li) = 0 (3-41)

From equations (3-36), (3-37), (3-40) and (3-41)

we can

Al

obtain

D2j (2j(1)

all the unknowns.

2
i)tanh(h/2Li)

Thus

+
D tanh (h/2Li)

(3-42)

(3-43)

(3-44)

(3-45)

A2

2i (021

DM

02i) tank h/2Li)
Li

Bl

D2i

DM

223

and

where

22

DM

D21 ( \

Li 23 21'
DM

DM
D2

tanh ( h/2L,i)
L2i

and from equation (3-36),



D2 .Ki D2 j K
T -21 T. 2 j

D2 Ki
+

D2 K,.

where

KI = [Za2,/ D211/2

and

TJ = tanh (Ich/2)

21

(3-46)

I,J =1,2

Similar expression can be obtained for the y-directed

surfaces of the node i.

To determine the thermal group weight factor, b2,

consider the one-dimensional diffusion equation for node i.

d2
(1:0 + (I) .Si

dX2 22 a2i 21

Si = Zs/i1:131i = Za2i 41)2i

and

021(-h/2) =

421( -h /2) = Ofsi

for h + h
2 2

The node-averaged thermal flux is

1 rh/2
-h/2

(3-47)

(3-48)

(3-49)
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Substituting for 4)2i, using a similar solution as performed

above,

(T)21 h[ [ 2/ + A COSh X/Li

+ B1 sinh ( x/Li )

where

+ 2 4:12i
A1

2 cosh (h/2Li)

(3-50)

(3-51)

OfsiB1
2 sinh (h/2Li) (3-52)

Thus,

1 a2 Is rs
= a21112

2 2
1 (

where

(3-53)

4)211s = thermal flux at the left surface of node i

4,2irs = thermal flux at the right surface of node i,

and

a21 = 1 2 tanh (hKi/2) /hK1 (3 -54)

Thus the b21 is an approximation of the product of a2i

along the x and y directions. Thus,

b2i = [1 2 tanh (hKi/ 2 ) /hKi]2

The treatment of the boundary conditions is the same as the
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one discussed in chapter 2.(section 2.3).

3.5 Power Calculation

The power distribution was obtained from the node

averaged fast and thermal flux distributions. The node

average fast and thermal fluxes were obtained by the

averaging techniques discussed from the node-centered fast

and thermal flux distributions. Thus

P = vEfii§i + Vlf2 2



24

4.0 THE DISCONTINUITY FACTOR METHOD

The discontinuity factor method was developed for power

reactor analyses in which "discontinuity factors" were used

in each of the node interfaces. The face dependent

discontinuity factor and the node averaged discontinuity

factor methods are discussed in this chapter. The conventional

diffusion theory model is the fundamental basis of the

discontinuity factor method with the exception of introducing

"discontinuity factors" in order to predict accurately the

node-averaged reaction rates, provided that the discontinuity

factors are obtained from a reference solution.

4.1 Derivation of the Nodal Equations

Consider the multi-group diffusion theory equation,

G

V'jg(11) 4-Erg(2)40g(i') = E [1-mgg, (2) +Egg, (1) ] (I) g. (2) (4-1)
g, =1

where

Jg(it) = i j(1".,E)dE ,
,&Eg

Og(f) = 1 cll (I, E) dE ,
AEg
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E,g(2)0g(2) = i Er(2,E)0 (2, E) dE ,
AE,

M
gg'

(2)0g (2)

= i dEf dE'Exi (E) VE fi (2, E') 0 (2,E') ,
AEg LtEcr i

Egg (2)0g (2)

=f dEf dE'Es(i,E'-E)0(2,E') (4-2)
,AEg AE

Subscript g or g' refer to energy groups, superscript j

identify particular isotopes, Eggi(fl is the macroscopic cross

section for removal of neutrons from group g' to group g,

Erg(?) is the macroscopic cross section for removal of

neutrons from group g (includes absorption), x(E) is the

probability that fission neutrons will be born with energies

between E and E+AE.

By the use of the net current we can derive a

formally exact finite-difference equation. The reactor was

partitioned into a large number of nodes of the size

V- = 12112j13 x Y I

where h can vary in size.

With the location of nodes labeled by two

numbers (i,j) ; figure(4.l), Eq(4-1) was integrated over the

volume (area) of any one node,
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E tY (2)ns ds +
_n 9 99'ij n=1 n

oi; "
gg- gg. g'

9' =1 g *

where

Vii = (1) d Vj g g
V

= f [E -E dVa) rg, g gg g
V

vj.171 = f m ,dv ,l gg, g gg, g
V

= f B ,0 , dv ,13 gg g gg g
V

(4-3)

(4-4)

26

The formulation of the above integration was based

on three dimensions, in which hzk was considered as

unity and the z-component was suppressed.

In order to obtain formally exact nodal equations

of the finite-difference form for (Dij we shall relate

(f Jn ds) to in exactly the same way as we would

if deriving the finite-difference equations from the

diffusion equation Eq(4-1). Two approximate expressions can

be written for the face-integrated current between node

(i,j) and node (i +l,j),



hi(T)1+1'-i f dycD g(xi,012, y)
PlYL7-gx(x_i+lh,37) z g

h1+1-/ 2

f dy4) g(xi,1/2, _Y) -h3-
hx-'12

(4-5)

27

The approximations were based on the validity of

Fick's law ( Jgu(r) = -Dgu(i.) (a 011) 1),g(i*.) ) on the interface

between the two nodes. The reason for the two expressions is

that one can approach the interface from either of the two

directions.

Jgx(X y) mpg ( ,

ax

ao y)
g
ax

(4-6)

By dividing the first expression in Eq(4-5) by Di+l'i,

and the second by ni,j, rearranging and adding the two

equations will result in

fdyt-Tgx(xi+1/2, Y)
2.5L-7

hi+3.

1+1-1 ij)
9- (4-7a)
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Figure 4.1 A representation of the node (i,j) in relation
to its neighboring nodes.
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Similarly, the expressions for the currents across the

other three faces of the node (i,j) are:

(4 -7b)1 ply,797c(Xi_1/2,37) hl
h.,-1-1 -1 /

4 ' 2P-1' g W g

"4

hj

hX
-Y L'g x +1/2 1 Y2' '2

1 f
hx-1-

-V2)
25i,j

by
+1

(4-7c)
21fri+1 g g

-1

(cD9,-"'-1 (4-7d)

Equations (4-7a), (4-7b),(4-7c) and (4-7d) yield one of

the standard set of finite-difference equations. But the

approximation made was a poor one for a large h. To obtain a

somewhat formally exact set of finite-difference equations,

we can alter Eq(4-5) and force it be exact. Eq(4-5) can be

used to define the values of 15i+1,i and 51,j associated with

the two faces of boundary separating node (i,j) from node

(i+1,j). If the face integrated fluxes, currents and volume

average fluxes are known from a reference transport theory

calculations, the node average D's could be obtained by

solving eq(4-5). Thus, the surface fluxes of the two

expressions in eq(4-5) are divided by the "discontinuity

factors", Eq(4-5) then becomes:



fdyf tigx(x

i+i
= ' gx

g
14+1 / 2

(1) xY g fi +1 , j fdy g ( 1+1/21 y)

.

r
dy(1)9.(xi+1/2, y) h3,42)g

fij
gX

el/2
(4-8)
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Comparing eq(4-8) to eq(4-5) shows that the finite

difference diffusion theory expression for the integrated

surface current can be forced to be correct by allowing the

integrated surface flux to be discontinuous across the

surface. Thus a fictitious flux-integral was defined as:

f(X1+1, y)

by the relationship

fdyer (Xi++1,

fdyer n (X1+1, y)

r
fi+i1 dy(1) g(xi+i, y)

1fi+i,ifdyceog (xi+i , y)
gx+

(4-9)

Since the net currents' expressions are dependent

upon the interfaces surrounding a node, the f's are

face-dependent discontinuity factors. The four discontinuity

factors in node (i,j) are obtained as:



f'igx*

fLi
gx

f'i
gy+

fit
gY

fdy4)g (xi+, y)
fdyegom

fdy-4 (xi, y)

f dyer (Xi ,Y)

fdycl (x , yi+i)
fdyegom

dy4)g(x, yi)

fdyegom

(4-10)
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The discontinuity factors account for the fact that we

are assuming Fick's law with the value Dg to be correct and

for the fact that we are making the finite-difference approxi-

mation. The f's have no physical significance.

By eliminating the face-integrated flux from

Eq(4-8), this result, together with its analogous expressions

for the three other surfaces, was substituted into Eq(4-3).

We then obtain the following:
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A less cumbersome method of using the discontinuity

factors is by the use of a node-averaged discontinuity factor,

f. The four Discontinuity factors as shown in eq(4-10) for a

given energy group in a given node are replaced by their

average value. Since fuel cells are rotationally symmetric and

embedded in a lattice of similar cells, the assumption seemed

reasonable. This makes it easier to program than using face

dependent discontinuity factors; instead of using four f's per

node, only one is used. The total leakage out of a node is

preserved. By using Eq(4-5) for all the four faces, the result

is:

fdy,Igx y) fdy,19,(xi, y)

+ fcbalgy(x, yi,1/2) f cbaigy (x, yi)

2,ETI2,1

[dy0g(xi+1/2, f dy (1) g (X 1..1/2, y)il

[fdxog(x,y;_1/2) fdxog(x,y,_,)] I (4-12)
by

f2j can be taken as a simple arithmetic average of the four

surface dependent discontinuity factors. Using f, eq(4-10)

becomes:
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(4-14)
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The boundary conditions employed are similar to the

treatment made in Chapter 2.
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5.0 RESULTS

A comparison of the results obtained for the various methods

studied in this thesis was made with the benchmark test case

calculations. The benchmark calculations were performed with

2DB code[10] using data from Oconee Nuclear Reactor[12]. A

quarter core of mesh size 21.811 cm was used, which is the

fuel assembly size of Oconee Nuclear Reactor core. The fuel

loading by type and the core geometry are shown in figures

(5.1) and (5.2). The design parameters of the Oconee nuclear

reactor is shown in table (5.1). The material properties for

the fuel and moderator are shown in table (5.2).

5.1 Discontinuity Factor Calculations

The face-dependent and the node-averaged discontinuity

factors were obtained from the 2DB code calculations. A

listing of the fast flux and thermal flux face-dependent

discontinuity factors are shown in tables(5.3) and (5.4), and

those of the fast and thermal node-averaged discontinuity

factors are shown in tables (5.4) and (5.5).
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Figure 5.1 Oconee quarter core geometry with fuel type
loading
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Figure 5.2 Quarter core configuration for actual core
and rectangular geometry with boundary
conditions
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5.2 Comparison of the various Methods

The results for all of the various methods implemented

were compared with the 2DB benchmark calculations. Table

(5.13) shows the percentage relative errors of all the methods

studied to the benchmark results. The relative percent error

of Keff, mean power density and maximum power density are

computed.

In the determination of both the Keff and power

distribution the 2-group Borresen's and the modified 2-group

Borresen's methods have identical relative percent errors. Of

the two methods, the two group Borresen's method has the least

relative percent error for the power distribution. The two

methods have the same Keff, since the modification only

affects the power calculations.

There is a significant improvement in the results from

the modified one-group Borresen's method (A in table(5.13))

to the 2-group methods(C and D in table(5.13)). The relative

errors are lower for the 2-group calculations. But there is

no significant difference between the modified one-group

modified Borresen's method (B in table(5.13)) and the two-

group calculations.

The power distribution of the six methods(A,B,C,D,E,F)

are shown together with the benchmark values in figures (5.7)

to (5.12).
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The results of the discontinuity factor methods closely

agree with the benchmark results. Between the two

discontinuity factor methods, the face dependent discontinuity

factor method have lower relative percent errors (Keff, mean

and maximum ) than the node-averaged discontinuity factor

method. The face-dependent discontinuity factor method has the

lowest mean and maximum percent error of all the methods

studied.

A fundamental disadvantage of the discontinuity factor

method is the requirement that a reference reactor solution

has to be known, and from it the discontinuity factors are

then determined. It would be worthwhile to develop a method

of determining the discontinuity factors without a reference

calculation, such as CASMO color sets.
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Table 5.1 Material properties of fuel and water for

the Benchmark problems

Region Group D Ea vEf Es12

1 1 1.47011 .0079912 .0042851 .0174688

2 0.389794 .0504723 .0721688

2 1 1.46264 .0082909 .0049451 .0168676

2 0.389884 .0602743 .0933065

3 1 1.4557 .0088974 .0062028 .0159719

2 0.38934 .078408 .13230

4 1 1.561 .000434 0.0 .03002

2 .31128 .008818 0.0
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Table 5.2 Design Data for the Oconee II Nuclear Power

Plant

Rated thermal output 2568 Mw

Vessel coolant inlet temperature 554 F

Vessel coolant outlet temperature 604.7 F

Core outlet temperature 605.5 F

Core operating pressure 2185 psig

Total reactor coolant flow rate 13.13 x 107 lb/hr

Average heat flux 171,470 Btu/hr-ft2

Core flow area 49.19 ft2

Average core fuel temperature 1540 F

Total number fuel assemblies 177

Number of fuel rods per assembly 208

Fuel rod pitch 0.568 in

Fuel assembly pitch 8.587 in

Active fuel length 144 in

Assembly lattice 8 x 8
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Table 5.3 Fast Flux Face-Dependent Discontinuity Factors

I J TOP BOTTOM LEFT RIGHT

1 1 1.004 1.017 1.004 1.017
1 2 0.949 0.952 0.993 0.981
1 3 1.057 1.055 1.003 1.016
1 4 0.944 0.899 0.997 0.985
1 5 1.179 1.178 1.017 1.050
1 6 0.896 0.936 0.999 0.986
1 7 1.040 0.962 1.008 1.020
1 8 1.199 3.257 1.004 1.004
1 9 0.537 0.192 1.004 1.004
2 1 0.993 0.981 0.949 0.952
2 2 1.047 1.051 1.047 1.051
2 3 0.936 0.894 0.966 0.966
2 4 1.045 1.046 1.052 1.052
2 5 0.893 0.935 0.967 0.970
2 6 1.048 1.041 1.056 1.052
2 7 0.949 0.945 0.948 0.916
2 8 1.005 1.013 1.270 3.207
2 9 1.018 0.000 0.536 0.101
3 1 1.003 1.016 1.057 1.055
3 2 0.966 0.966 0.936 0.894
3 3 1.173 1.175 1.173 1.175
3 4 0.962 0.964 0.896 0.941
3 5 1.043 1.046 1.053 1.059
3 6 0.937 0.935 0.957 0.962
3 7 1.042 0.951 1.087 0.996
3 8 1.058 3.132 1.122 2.316
3 9 1.081 0.000 0.521 0.100
4 1 0.997 0.985 0.944 0.899
4 2 1.052 1.052 1.045 1.046
4 3 0.896 0.941 0.962 0.964
4 4 1.050 1.049 1.050 1.049
4 5 0.944 0.944 0.949 0.953
4 6 1.045 0.954 1.078 0.985
4 7 1.082 1.034 1.170 2.824
4 8 0.611 0.807 0.581 0.481
4 9 0.765 0.000 0.652 0.100
5 1 1.017 1.050 1.179 1.178
5 2 0.967 0.970 0.893 0.935
5 3 1.053 1.059 1.043 1.046
5 4 0.949 0.953 0.944 0.944
5 5 1.063 0.968 1.063 0.968
5 6 1.131 1.080 1.140 1.086
5 7 1.080 3.065 1.037 2.340
5 8 1.023 1.288 0.523 0.209
5 9 0.824 0.000 0.572 0.100
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Table 5.3 (continued)

6 1 0.999 0.986 0.896 0.936
6 2 1.056 1.052 1.048 1.041
6 3 0.957 0.962 0.937 0.935
6 4 1.078 0.985 1.045 0.954
6 5 1.140 1.086 1.131 1.080
6 6 1.055 2.553 1.055 2.553
6 7 0.608 0.693 0.589 0.570
6 8 0.757 0.430 0.669 0.273
6 9 0.892 0.000 0.584 0.100
7 1 1.008 1.020 1.040 0.962
7 2 0.948 0.916 0.949 0.945
7 3 1.087 0.996 1.042 0.951
7 4 1.170 2.823 1.082 1.034
7 5 1.037 2.340 1.080 3.065
7 6 0.589 0.570 0.608 0.693
7 7 0.703 0.362 0.703 0.362
7 8 0.698 0.442 0.657 0.366
7 9 0.741 0.002 0.641 0.100
8 1 1.004 1.004 1.199 3.257
8 2 1.270 3.207 1.005 1.013
8 3 1.122 2.316 1.058 3.132
8 4 0.581 0.481 0.611 0.807
8 5 0.523 0.209 1.023 1.288
8 6 0.669 0.273 0.757 0.430
8 7 0.657 0.366 0.698 0.442
8 8 0.681 0.395 0.681 0.395
8 9 0.701 0.013 0.663 0.100
9 1 1.004 1.004 0.537 0.192
9 2 0.536 0.101 1.018 0.000
9 3 0.521 0.100 1.081 0.000
9 4 0.652 0.100 0.765 0.000
9 5 0.572 0.100 0.824 0.000
9 6 0.584 0.100 0.892 0.000
9 7 0.641 0.100 0.741 0.002
9 8 0.663 0.100 0.701 0.013
9 9 0.682 5.019 0.682 5.018
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Table 5.4 Thermal Flux Face-Dependent Discontinuity Factors

I J TOP BOTTOM LEFT RIGHT

1 1 0.989 0.909 0.989 0.909
1 2 1.328 1.334 1.008 1.106
1 3 0.801 0.799 0.988 0.907
1 4 1.344 3.327 1.010 1.103
1 5 0.591 0.595 0.979 0.782
1 6 3.452 1.326 1.012 1.104
1 7 0.800 1.999 0.992 0.909
1 8 0.662 0.289 1.003 0.999
1 9 0.533 0.471 1.004 1.004
2 1 1.008 1.106 1.328 1.334
2 2 0.796 0.807 0.796 0.807
2 3 1.328 3.309 1.329 1.330
2 4 0.804 0.805 0.808 0.810
2 5 3.287 1.326 1.335 1.331
2 6 0.806 0.793 0.809 0.802
2 7 1.348 1.337 1.360 3.887
2 8 1.022 1.031 0.565 0.288
2 9 1.020 0.000 0.533 0.106
3 1 0.988 0.907 0.801 0.799
3 2 1.329 1.330 1.328 3.309
3 3 0.591 0.592 0.591 0.592
3 4 1.322 1.324 3.365 1.336
3 5 0.793 0.794 0.797 0.803
3 6 1.307 1.348 1.352 1.395
3 7 0.796 1.554 0.802 1.580
3 8 0.939 0.289 0.727 0.296
3 9 1.051 0.000 0.577 0.105
4 1 1.010 1.103 1.344 3.327
4 2 0.808 0.810 0.804 0.805
4 3 3.365 1.336 1.322 1.324
4 4 0.807 0.797 0.807 0.797
4 5 1.320 1.370 1.333 1.385
4 6 0.794 1.902 0.805 1.951
4 7 0.742 1.050 0.673 0.289
4 8 0.700 1.059 0.589 0.831
4 9 1.146 0.000 0.849 0.101
5 1 0.979 0.782 0.591 0.595
5 2 1.335 1.331 3.287 1.326
5 3 0.797 0.803 0.793 0.794
5 4 1.333 1.385 1.320 1.370
5 5 0.801 1.932 0.801 1.932
5 6 0.700 0.963 0.701 0.957
5 7 0.960 0.293 1.102 0.295
5 8 0.991 0.893 0.598 0.674
5 9 0.884 0.000 0.668 0.100
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Table 5.4 (continued)

6 1 1.012 1.104 3.452 1.326
6 2 0.809 0.802 0.806 0.793
6 3 1.352 1.395 1.307 1.348
6 4 0.805 1.951 0.794 1.902
6 5 0.701 0.957 0.700 0.963
6 6 1.086 0.295 1.086 0.295
6 7 0.632 0.916 0.628 0.863
6 8 1.109 0.725 0.890 0.480
6 9 0.911 0.000 0.655 0.100
7 1 0.992 0.909 0.800 1.999
7 2 1.360 3.887 1.348 1.337
7 3 0.802 1.580 0.796 1.554
7 4 0.673 0.289 0.742 1.050
7 5 1.102 0.295 0.960 0.293
7 6 0.628 0.863 0.632 0.916
7 7 0.965 0.612 0.965 0.612
7 8 0.769 0.524 0.724 0.438
7 9 0.775 0.001 0.674 0.100
8 1 1.003 0.999 0.662 0.289
8 2 0.565 0.288 1.022 1.031
8 3 0.727 0.296 0.939 0.289
8 4 0.589 0.831 0.700 1.059
8 5 0.598 0.674 0.991 0.893
8 6 0.890 0.480 1.109 0.725
8 7 0.724 0.438 0.769 0.524
8 8 0.713 0.438 0.713 0.438
8 9 0.720 0.007 0.685 0.100
9 1 1.004 1.004 0.533 0.471
9 2 0.533 0.100 1.020 0.000
9 3 0.577 0.100 1.051 0.000
9 4 0.849 0.100 1.146 0.000
9 5 0.668 0.100 0.884 0.000
9 6 0.655 0.100 0.911 0.000
9 7 0.674 0.100 0.775 0.001
9 8 0.685 0.100 0.720 0.007
9 9 0.696 0.123 0.696 0.123
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Table 5.5 Fast Flux Node Average Discontinuity Factors

J= 1

I

2 3 4 5 6 7 8 9

1 1.011 0.969 1.033 0.956 1.106 0.954 1.007 1.616 0.684

2 0.969 1.049 0.941 1.049 0.941 1.050 0.940 1.624 0.414

3 1.033 0.941 1.174 0.941 1.050 0.948 1.019 1.907 0.426

4 0.956 1.049 0.941 1.050 0.947 1.016 1.527 0.620 0.379

5 1.106 0.941 1.050 0.947 1.015 1.109 1.881 0.761 0.374

6 0.954 1.050 0.948 1.015 1.109 1.804 0.615 0.532 0.394

7 1.007 0.940 1.019 1.527 1.881 0.615 0.532 0.541 0.371

8 1.616 1.624 1.907 0.624 0.761 0.532 0.541 0.538 0.369

9 0.684 0.414 0.426 0.379 0.374 0.394 0.371 0.369 2.850
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Table 5.6 Thermal Flux Node Average Discontinuity Factors

J= 1

I

2 3 4 5 6 7 8 9

1 0.949 1.194 0.874 1.696 0.737 1.723 1.175 0.738 0.753

2 1.194 0.802 1.824 0.807 1.820 0.802 1.983 0.726 0.415

3 0.874 1.824 0.592 1.837 0.797 1.351 1.183 0.563 0.433

4 1.696 0.807 1.837 0.802 1.352 1.363 0.689 0.795 0.524

5 0.737 1.820 0.797 1.352 1.366 0.830 0.662 0.789 0.413

6 1.723 0.802 1.351 1.363 0.830 0.691 0.760 0.801 0.416

7 1.175 1.983 1.183 0.689 0.662 0.760 0.789 0.614 0.388

8 0.738 0.726 0.563 0.795 0.789 0.801 0.614 0.576 0.378

9 0.753 0.415 0.433 0.524 0.413 0.416 0.388 0.378 0.410
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Table 5.7 Assembly Power Densities for the 2-D Benchmark
Problem (Borresen's Method Using Modified One-
Group Diffusion Theory Model)

J= 1 2 3 4 5 6 7 8
I

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.180 1.088 1.219 1.117 1.358 0.925 0.822 0.676

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
1.088 1.197 1.163 1.195 1.063 0.973 0.740 0.633

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.219 1.163 1.497 1.133 1.115 0.912 0.811 0.505

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
1.117 1.195 1.133 1.173 1.059 1.105 0.888

5 1.406 0.980 1.122 0.993 1.187 1.267 0.869
1.358 1.063 1.115 1.059 1.252 1.295 0.750

6 0.875 1.004 0.869 1.071 1.267 1.045
0.925 0.973 0.912 1.105 1.295 0.898

7 0.836 0.709 0.814 0.995 0.869
0.822 0.740 0.811 0.888 0.750

8 0.711 0.687 0.636 2DB BENCHMARK RESULTS
0.676 0.633 0.505 PRESENT METHOD

Mean error(%) = 4.72
Max. error(%) = -20.5
CPU Time (s) = 14.4
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Table 5.8 Assembly Power Densities for the 2-D Benchmark
Problem (Modified Borresen's Method Using Modified
One-Group Diffusion Theory Model)

J= 1 2 3 4 5 6 7 8
I

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.101 1.057 1.223 1.078 1.385 0.891 0.814 0.695

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
1.057 1.220 1.108 1.215 1.011 0.989 0.707 0.659

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.223 1.108 1.554 1.081 1.131 0.881 0.794 0.577

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
1.078 1.215 1.081 1.190 1.022 1.078 0.940

5 1.406 0.980 1.122 0.993 1.187 1.267 0.869
1.385 1.011 1.131 1.022 1.220 1.275 0.828

6 0.875 1.004 0.869 1.071 1.267 1.045
0.891 0.989 0.881 1.078 1.275 1.001

7 0.836 0.709 0.814 0.995 0.869
0.814 0.707 0.794 0.940 0.828

8 0.711 0.687 0.636 ----> 2DB
0.695 0.659 0.577 ----> PRESENT METHOD

Mean error(%) = 2.07
Max. error(%) = -9.28
CPU Time (s) = 15.1
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Table 5.9 Assembly Power Densities for the 2-D Benchmark
Problem ( Borresen's Method Using Two-Group
Diffusion Theory Model)

J= 1 2 3 4 5 6 7 8
I

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.033 0.978 1.184 0.996 1.420 0.842 0.822 0.750

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
0.978 1.171 1.021 1.175 0.948 0.982 0.689 0.730

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.184 1.021 1.583 1.003 1.113 0.844 0.823 0.646

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
0.996 1.175 1.003 1.166 0.967 1.088 1.035

5 1.406 0.980 1.122 0.993 1.187 1.267 0.869
1.420 0.948 1.113 0.967 1.216 1.383 0.916

6 0.875 1.004 0.869 1.071 1.267 1.045
0.842 0.982 0.844 1.088 1.383 1.088

7 0.836 0.709 0.814 0.995 0.869
0.822 0.689 0.823 1.035 0.916

8 0.711 0.687 0.636 ----> 2DB
0.750 0.730 0.646 ----> PRESENT METHOD

Mean error(%) = 2.81
Max. error(%) = 9.16
CPU Time (s) = 47.8
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Table 5.10 Assembly Power Densities for the 2-D Benchmark
Problem ( Modified Borresen's Method Using Two-
Group Diffusion Theory Model)

J= 1
I

2 3 4 5 6 7 8

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.028 0.976 1.179 0.995 1.412 0.841 0.820 0.749

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
0.976 1.179 1.018 1.175 0.943 0.983 0.688 0.730

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.179 1.018 1.580 1.002 1.113 0.844 0.824 0.647

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
0.995 1.175 1.002 1.166 0.968 1.091 1.038

5 1.406 0.980 1.122 0.993 1.187 1.267 0.869
1.412 0.943 1.113 0.968 1.220 1.388 0.920

6 0.875 1.004 0.869 1.071 1.267 1.045
0.841 0.983 0.844 1.091 1.388 1.093

7 0.836 0.709 0.814 0.995 0.869
0.820 0.688 0.824 1.038 0.920

8 0.711 0.687 0.636 ----> 2DB
0.749 0.730 0.647 ----> PRESENT METHOD

Mean error(%) = 2.92
Max. error(%) = 9.55
CPU Time (s) = 56.3
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Table 5.11 Assembly Power Densities for the 2-D Benchmark
Problem ( Face Dependent Discontinuity factor
Method Using Two-Group Diffusion Theory Model)

J= 1

I

2 3 4 5 6 7 8

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.145 1.025 1.187 1.051 1.356 0.872 0.861 0.715

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
1.025 1.180 1.090 1.235 0.995 0.996 0.711 0.700

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.187 1.090 1.487 1.064 1.098 0.885 0.808 0.637

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
1.051 1.235 1.064 1.150 0.991 1.073 0.979

5 1.406 0.980 1.122 0.993 1.187 1.267 0.869
1.356 0.995 1.098 0.991 1.207 1.294 0.861

6 0.875 1.004 0.869 1.071 1.267 1.045
0.872 0.996 0.885 1.073 1.294 1.036

7 0.836 0.709 0.814 0.995 0.869
0.861 0.711 0.808 0.979 0.863

8 0.711 0.687 0.636 ----> 2DB
0.715 0.700 0.637 ----> PRESENT METHOD

Mean error(%) = 1.40
Max. error(%) = 3.88
CPU Time (s) = 24.2
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Table 5.12 Assembly Power Densities for the 2-D Benchmark
Problem (Node Averaged Discontinuity factor
Method Using Two-Group Diffusion Theory Model)

1 2 3 4 5 6 7 8

1 1.118 1.023 1.212 1.044 1.406 0.875 0.836 0.711
1.160 1.024 1.241 1.022 1.430 0.851 0.834 0.660

2 1.023 1.216 1.066 1.218 0.980 1.004 0.709 0.687
1.024 1.281 1.026 1.305 0.939 1.056 0.677 0.627

3 1.212 1.066 1.528 1.042 1.122 0.869 0.814 0.636
1.241 1.026 1.676 1.001 1.183 0.859 0.822 0.596

4 1.044 1.218 1.042 1.188 0.993 1.071 0.995
1.022 1.305 1.001 1.244 1.000 1.057 0.952

5 1.406 0.980 1.121 0.993 1.187 1.267 0.869
1.430 0.939 1.183 1.000 1.176 1.344 0.819

6 0.875 1.004 0.869 1.071 1.267 1.045
0.851 1.056 0.859 1.057 1.344 0.993

7 0.836 0.709 0.814 0.995 0.869
0.834 0.677 0.822 0.952 0.819

8 0.711 0.687 0.636 ----> 2DB
0.660 0.627 0.596 ----> PRESENT METHOD

Mean error(%) = 3.14
Max. error(%) = 9.69
CPU Time (s) = 22.3
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Table 5.13 Summary of Results for the Benchmark Problem

( % ) A B C D E F G

Error in Keff .03 .03 -.10 -.10 .03 .03 0.0

Mean Error 4.72 2.07 2.81 2.92 1.40 3.14 0.0

Max Error -20.5 -9.28 9.16 9.55 3.88 9.69 0.0

CPU Time (sec) 14.4 15.1 47.8 56.3 24.2 22.3 6360.

Reference Eigenvalue: 1.2008
Mean Error: Mean Relative Assembly Power Difference
Max. Error: Maximum Relative Assembly Power Difference

A => Modified one-Group Borresen's Method
B => Modified One-Group Modified Borresen's Method
C => Two-Group Borresen's Method
D => Two-Group Modified Borresen's Method
E => Face-Dependent Discontinuity Factor Method
F => Node-Averaged Discontinuity Factor Method
G => 2DB Reference Calculation
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6.0 CONCLUSION

As stated in Chapter 1, the objective of this thesis was to

modify the one-group and two-group diffusion theory code

(SHUFFLE), and compare the various methods to a benchmark

(2DB) calculations.

The following conclusions were determined:

when the discontinuity factors were obtained from the

reference solutions, the results of the discontinuity factor

methods closely resemble that of the reference solution.

In both the one-group and two-group calculations, the

Borresen's and the modified Borresen's have very nearly

identical results. Although the modified Borresen's method

has an overall lower mean power and maximum relative percent

errors.

In the power distribution results of the discontinuity

factor methods, the face-dependent discontinuity factor

method has a lower percent relative errors than the node-

averege discontinuity factor method.

The two-group modified Borresen's method appear to the

most attractive. An aspect that needs to be studied in the

future would be a means of determining the discontinuity

factors without the use of the reference solution.
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