Title: MATRICES CONJUNCTIVE WITH THEIR ADJOINTS

This paper studies necessary and sufficient conditions for a matrix to be conjunctive with its adjoint. The problem is solved completely in the usual complex case, in which it is shown that a matrix is conjunctive to its adjoint iff it is conjunctive to a real matrix. The problem is extended to pairs of fields \(\mathcal{F}, \mathcal{E} \), where \([\mathcal{F}:\mathcal{E}] = 2 \) and characteristic \(\mathcal{F} \neq 2 \). It is shown that if a matrix is conjunctive to a matrix over \(\mathcal{E} \), it is then conjunctive to its adjoint. To achieve this result, we first show a matrix over any field \(\mathcal{E} \) is congruent over \(\mathcal{E} \) to its transpose. We also show that it is sufficient to consider non-singular pencils by proving the uniqueness up to conjunctivity of the non-singular summand of the pencil \(\lambda \mathcal{H} + \mu \mathcal{K} \), where \(\lambda \) and \(\mu \) are indeterminates over \(\mathcal{E} \), \(\mathcal{H}^* = \mathcal{H} \) and \(\mathcal{K}^* = \mathcal{K} \), when \(\lambda \mathcal{H} + \mu \mathcal{K} \) is decomposed (by conjunctivity over \(\mathcal{F} \)) into a direct sum of its minimum-indices part and a non-singular part.
Matrices Conjunctive with Their Adjoints

by

Elizabeth Lingfoon Yip

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the
degree of
Doctor of Philosophy

Completed November 1973
Commencement June 1974
APPROVED:

Signature redacted for privacy.

Professor of Mathematics
in charge of major

Signature redacted for privacy.

Chairman of Department of Mathematics

Signature redacted for privacy.

Dean of Graduate School

Date thesis is presented November 29, 1973

Typed by Clover Redfern for Elizabeth Lingfooon Yip
ACKNOWLEDGMENT

I would like to express my gratitude to Professor C. S. Ballantine for accepting me as an apprentice and for his generosity in giving me his time and advice during the preparation of this thesis, which, without his infinite patience, encouragement and understanding would have never been completed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION AND PRELIMINARY</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Uniqueness of the Non-Singular Core of *-Symmetric Pencil</td>
<td>7</td>
</tr>
<tr>
<td>II. GENERAL CASE</td>
<td>17</td>
</tr>
<tr>
<td>1. Congruency of a Matrix to Its Transpose</td>
<td>17</td>
</tr>
<tr>
<td>2. General Results</td>
<td>28</td>
</tr>
<tr>
<td>3. Non-Singular *-Symmetric Pencil with All Eigenvalues in (\mathbb{F})</td>
<td>34</td>
</tr>
<tr>
<td>III. USUAL COMPLEX CASE</td>
<td>59</td>
</tr>
<tr>
<td>1. General Results</td>
<td>59</td>
</tr>
<tr>
<td>2. Geometrical Approach to the 2 x 2 Usual Complex Case</td>
<td>65</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>70</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>71</td>
</tr>
<tr>
<td>Appendix I: Pictures of Matrices</td>
<td>71</td>
</tr>
<tr>
<td>Appendix II: Miscellaneous Results</td>
<td>73</td>
</tr>
</tbody>
</table>
MATRICES CONJUNCTIVE WITH THEIR ADJOINTS

I. INTRODUCTION AND PRELIMINARIES

1. Introduction

Let \(\mathcal{F} \) be a field of characteristic not equal to 2 and \(\mathcal{E} \) be a subfield of index 2 in \(\mathcal{F} \) (i.e., \(\mathcal{F} \) is a vector space of dimension 2 over \(\mathcal{E} \)). Then there is a unique automorphism \(* \) of \(\mathcal{F} \) whose fixed field is \(\mathcal{E} \):

\[
(a+b)^* = a^* + b^*,
\]

\[
(ab)^* = a^*b^*,
\]

and \(a^* = a \) iff \(a \in \mathcal{E} \). Because \(\mathcal{F} \) has dimension 2 over \(\mathcal{E} \), we also have that \(* \) is involuntary: \((a^*)^* = a \). We call \(a^* \) the conjugate of \(a \). If \(A \) is a matrix over \(\mathcal{F} \), we denote by \(A^* \) the transpose of the conjugate of \(A \). Then we have the following properties:

\[
(A^*)^* = A,
\]

\[
(A+B)^* = A^* + B^*,
\]

\[
(AB)^* = B^*A^* ,
\]

\[
(aA)^* = a^*A^*
\]

when \(A+B \) and \(AB \) are well defined and \(a \in \mathcal{F} \). We shall say \(S \) is \(* \)-symmetric iff \(S = S^* \), and say \(S \) is \(* \)-congruent to a
matrix T iff there exists a non-singular matrix C such that $C^*SC = T$. We say a matrix S is of type 1 iff S is $*$-congruent to S^*; we say S is of type 2 iff S is $*$-congruent to a matrix over \mathbb{C}.

We also consider our matrix S as a linear transformation from \mathcal{V}, an n-dimensional vector space over \mathbb{F}, into \mathcal{V}^* defined by $\mathcal{V}^* = \{f: \mathcal{V} \to \mathbb{F} | f(x+y) = f(x) + f(y), f(ax) = a*f(x)\}$. We call \mathcal{V}^* the $*$-dual of \mathcal{V}. Then S^* is a linear transformation from $(\mathcal{V}^*)^* = \mathcal{V}^*$ into \mathcal{V}^*. Elements of both \mathcal{V} and \mathcal{V}^* are being written as column vectors over \mathbb{F}. Suppose $x \in \mathcal{V} = \mathbb{F}^{n \times 1}$, $f \in \mathcal{V}^*$, define $\langle x, f \rangle = x^*f$. Then $\langle x, Sy \rangle = \langle y, S^*x \rangle^*$ for all $x, y \in \mathcal{V}$. In this context, S is $*$-symmetric iff $\langle x, Sy \rangle = \langle y, Sx \rangle^*$ for all $x, y \in \mathcal{V}$. S is $*$-congruent to T iff there exists a one-to-one, onto, linear transformation $C: \mathcal{V} \to \mathcal{V}$ such that $\langleCx, SCy \rangle = \langle x, Ty \rangle$ for all $x, y \in \mathcal{V}$. If $\{e_1, \ldots, e_n\}$ is a basis for \mathcal{V}, then $\langle e_i, Se_j \rangle = e_i^*S^*e_j$ is the (i, j) entry of the matrix of S with respect to the basis $\{e_1, \ldots, e_n\}$. If \mathcal{U} is a subspace of \mathcal{V}, we define $\mathcal{U}^0 = \{x \in \mathcal{V}: x^*\mathcal{U} = 0\}$. Suppose $\mathcal{V} = \bigoplus_{j=1}^{m} \mathcal{U}_j$. Define $\mathcal{V}^*_j = (\mathcal{V}_1 \oplus \mathcal{V}_2 \oplus \cdots \oplus \mathcal{V}_{j-1} \oplus \mathcal{V}_{j+1} \oplus \cdots \oplus \mathcal{V}_{m-1} \oplus \mathcal{V}_m)^0$ $= \mathcal{V}_1^0 \odot \mathcal{V}_2^0 \odot \cdots \odot \mathcal{V}_{j-1}^0 \odot \mathcal{V}_{j+1}^0 \cdots \odot \mathcal{V}_{m-1}^0 \odot \mathcal{V}_m^0$.
then \(\mathcal{U}_j^* \) acts as a \(^*\)-dual of \(\mathcal{U}_j \), i.e., \(\mathcal{U}_j^0 \cap \mathcal{U}_j^* = 0 \), and
\[
\mathcal{U}_j^* = \bigoplus_{j=1}^{m} \mathcal{U}_j^*.
\]

If \(n = \sum_{i=1}^{p} k_i \), and we partition the matrix
\[
S = \begin{pmatrix}
S_{11} & S_{12} & \cdots & S_{1p} \\
S_{21} & \cdots \\
\vdots \\
S_{p1} & \cdots & S_{pp}
\end{pmatrix},
\]
where \(S_{ij} \) is a \(k_i \times k_j \) matrix, we write \(S = (S_{ij}) \). If \(C \) is a matrix such that \(C = M_1 \oplus \cdots \oplus M_p \), we write
\[
C = \text{diag}(M_1, \ldots, M_p),
\]
and call \(C \) a direct sum of \(M_1, \ldots, M_p \).

We have the following facts which will be useful in the work following (we shall not prove those quoted from the literature):

Fact 1. If \(S = (S_{ij}), C = \text{diag}(I_{k_1}, -I_{k_1}, I_{k_1}, \ldots), \) and
\[
P = (P_{ih}) = C \ast SC,
\]
then \(P_{ih} = (-1)^{i+h} S_{ih} \).

Fact 2. If \(C = \text{diag}(I_{k_1}, jI_{k_1}, I_{k_1}, \ldots) \) where \(j^* = -j \), and \(P = C \ast SC \), then
\[
P_{ih} = S_{ih} \quad \text{if \(i \) and \(h \) are odd}
\]
\[
= jS_{ih} \quad \text{if \(i \) is odd and \(h \) is even}
\]
\[
= -jS_{ih} \quad \text{if \(i \) is even and \(h \) is odd}
\]
\[
= -j^2 S_{ih} \quad \text{if \(i \) and \(h \) are even.}
\]
The proofs of Fact 1 and Fact 2 are routine computations.

Fact 3. If \(S = A \oplus O \) where \(A \) is non-singular and \(O \) is a zero matrix, and if \(S \) is \(*\)-congruent to \(B \oplus O \) where \(B \) is non-singular and of the same dimension as \(A \), then \(A \) is \(*\)-congruent to \(B \).

Proof: Suppose \(C \) is a non-singular matrix such that \(C^*SC = B \oplus O \). Partition \(C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \) accordingly. Thus

\[
C^*SC = C^*(A \oplus O)C = C_{11}AC_{11} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}.
\]

Thus \(C_{11}AC_{11} = B \). Since \(A \) and \(B \) are both non-singular, \(C_{11} \) is also non-singular. Thus \(A \) is \(*\)-congruent to \(B \).

Suppose \(H \) and \(K \) are \(*\)-symmetric and \(K \) is non-singular. Suppose \((K^{-1}H-\beta I) \) is nilpotent for some \(\beta \in \mathcal{E} \). Let \(m \) be a positive integer such that \((K^{-1}H-\beta I)^m = 0 \), but \((K^{-1}H-\beta I)^{m-1} \neq 0 \). If we define an inner product \((x, y) = x^*Ky \), then from Mal'cev [7], we can choose a basis for \(\mathcal{V} \) so that \(K^{-1}H \) is block diagonal with each diagonal block a Jordan canonical block of eigenvalue \(\beta \), and the Gram matrix of the inner product is conformably block diagonal with each diagonal block of the form...
We define E_n as the $n \times n$ matrix with 1's on the anti-diagonal and zero everywhere else, F_n as the matrix with 1's on the first super-anti-diagonal and zero everywhere else. Also define $N_n = E_n F_n$.

Fact 5. If K and H are $*$-symmetric and

$$(K^{-1}H-\beta)(K^{-1}H-\beta^*)$$

is nilpotent with $\beta \neq \beta^*$, and if λ, μ are
indeterminates over \mathcal{F}, then there exists a basis for \mathcal{V} such that $\lambda H + \mu K$ is block diagonal with each block of the form:

$$
\begin{pmatrix}
\lambda & \lambda \beta + \mu \\
\lambda \beta + \mu & \lambda & \lambda \beta + \mu \\
\lambda \beta + \mu & \lambda \beta + \mu & \lambda
\end{pmatrix}
$$

Fact 6. If H is symmetric and K is skew-symmetric over \mathcal{E}, and λ and μ are indeterminates over \mathcal{E}, then the pencil $\lambda H + \mu K$ is congruent over \mathcal{E} to the following form

$$
\bigoplus_{i=1}^{n} \begin{pmatrix}
0 & L_{\varepsilon}^{\wedge}_{i} \\
L_{\varepsilon}^{\wedge}_{i} & 0
\end{pmatrix} \oplus (\lambda H_{0} + \mu K_{0}),
$$

where

$$
\bigoplus_{i=1}^{n} \begin{pmatrix}
0 & L_{\varepsilon}^{\wedge}_{i} \\
L_{\varepsilon}^{\wedge}_{i} & 0
\end{pmatrix}
$$
is called the minimum-indices part of the pencil $\lambda H + \mu K$, and

$$L_{\epsilon_i} = \begin{pmatrix} \lambda & \mu & \epsilon_i \\ \mu & \lambda & \epsilon_i \\ \epsilon_i & \epsilon_i \\ \epsilon_i & \epsilon_i + 1 \end{pmatrix}, \\
L_{\epsilon_i}^* = \begin{pmatrix} \lambda & -\mu \\ \mu & -\mu \\ \epsilon_i & -\mu \\ \epsilon_i + 1 & \lambda \end{pmatrix}$$

and $\det(\lambda H_0 + \mu K_0)$ is a non-zero polynomial.

Fact 7. Witt's Theorem [9]. If A, B_1, B_2 are $*-\text{symmetric}$ non-singular matrices over \mathcal{F}, then $A \oplus B_1, B_2$ is $*-\text{congruent}$ to $A \oplus B_2$ implies B_1 is $*-\text{congruent}$ to B_2.

2. **Uniqueness of the Non-Singular Core of a $*-\text{Symmetric}$ Pencil**

Theorem 1.2.1. Let H and K be $*-\text{symmetric}$. Then the pencil $\lambda H + \mu K$, where λ and μ are indeterminates over \mathcal{E}, is $*-\text{congruent}$ to $L \oplus M$, where

$$L = 0 \oplus \bigoplus_{i=1}^{k} \begin{pmatrix} 0 & L_{\epsilon_i} \\ L_{\epsilon_i}^* & 0 \end{pmatrix}.$$

L_{ϵ_i} is as defined in Fact 6, $L_{\epsilon_i}^*$ is the conjugate-transpose of L_{ϵ_i}, and $M = \lambda H_0 + \mu K_0$ is a non-singular pencil. If $\lambda H + \mu K$ is $*-\text{congruent}$ also to $L \oplus N$ where N is a non-singular pencil,
then M is $*$-congruent to N.

Turnbull proved that a $*$-symmetric pencil can always be reduced to the form $L \oplus M$, where L is the minimum-indices part and M is a non-singular pencil [11]. In this section we shall only prove the uniqueness (up to $*$-congruency) of the non-singular summand M.

Before we proceed with the proof of the theorem, we shall discuss some of the properties of the pencil $L \oplus M$.

Suppose \mathcal{U} is a subspace of \mathcal{V}, and S, T are linear transformations from \mathcal{V} to \mathcal{V}^*. For our discussion in this section, we need to define, for $\mathcal{U} \subseteq \mathcal{V}$, $(S^{-1}T)\mathcal{U} = \{x \in \mathcal{V} : Sx \in T\mathcal{U}\}$, and, inductively, define $(S^{-1}T)^i\mathcal{U} = \{x \in \mathcal{V} : Sx \in T(S^{-1}T)^{i-1}\mathcal{U}\}$, for $i = 2, 3, \ldots$. $(S^{-1}T)^0\mathcal{U} = \mathcal{U}$.

Also note that if we let $\Lambda = \lambda H + \mu K$ be a pencil of $*$-symmetric matrices, considered as the matrix of a pencil of bilinear forms, then, for each co-ordinate subspace, the matrix of this pencil of forms restricted to this subspace is the corresponding principal submatrix of Λ, and conversely.

Lemma 1. Let \mathcal{V}^* be the $*$-dual of \mathcal{V}, let \mathcal{V}_j ($j = 1, 2, \ldots, k$) be subspaces of \mathcal{V} such that $\mathcal{V} = \bigoplus_{j=1}^{k} \mathcal{V}_j$, and let $\mathcal{V}^* = \bigoplus_{j=1}^{k} \mathcal{V}_j^*$ be the corresponding $*$-dual direct sum defined in Section 1 of this chapter. If S and T are linear
transformations such that $S, T : \mathcal{V} \rightarrow \mathcal{V}^*$, $S \mathcal{V}_j \subseteq \mathcal{V}_j^*$, and $T \mathcal{V}_j \subseteq \mathcal{V}_j^*$, then $(S^{-1}T)^i \mathcal{V} = \bigoplus_{j=1}^k [\mathcal{V}_j \cap (S^{-1}T)^i \mathcal{V}_j].$

Proof of Lemma 1. The proof proceeds by induction on i.

If $i = 0$, the lemma is obviously true. Suppose it is true for $i \leq h-1$. Consider $i = h$. It is enough to show

$$(S^{-1}T)^h \mathcal{V} \subseteq \bigoplus_{j=1}^k (\mathcal{V}_j \cap (S^{-1}T)^h \mathcal{V}_j).$$

Suppose $x \in (S^{-1}T)^h \mathcal{V}$, and $x = \sum_{j=1}^k x_j$, with $x_j \in \mathcal{V}_j$. Then $Sx = \sum_{j=1}^k Sx_j \in T(S^{-1}T)^h \mathcal{V}$. By our induction hypothesis,

$$T(S^{-1}T)^h \mathcal{V} = T\left(\bigoplus_{j=1}^k (S^{-1}T)^h \mathcal{V}_j\right).$$

Thus

$$Sx = \sum_{j=1}^k Sx_j = \sum_{j=1}^k Ty_j,$$

where $y_j \in (\mathcal{V}_j \cap (S^{-1}T)^h \mathcal{V}_j)$ and $Ty_j \in \mathcal{V}_j^*$. But $Sx_j \in \mathcal{V}_j^*$. Therefore $Sx_j = Ty_j \in T(S^{-1}T)^h \mathcal{V}_j$, so $x_j \in \mathcal{V}_j \cap (S^{-1}T)^h \mathcal{V}_j$. Thus $x \in \bigoplus_{j=1}^k (\mathcal{V}_j \cap (S^{-1}T)^h \mathcal{V}_j)$.

Lemma 2. Let (as usual) characteristic $\mathcal{F} \neq 2$, $H = H^*$ and $K = K^*$ be linear maps of \mathcal{V} into \mathcal{V}^*. Let λ, μ be...
indeterminates over \(\mathcal{J} \). Suppose \(\lambda H + \mu K \) is \(*\)-congruent over \(\mathcal{J} \) to \(L \oplus M_\infty \oplus M_0 \oplus M_1 \), where \(L \) has no elementary divisors, \(M_\infty \) has elementary divisors only of the form \(\mu^q \), and \(M_0 \) has elementary divisors only of the form \(\lambda^q \), and \(M_1 \) has elementary divisors neither of the form \(\lambda^q \) nor of the form \(\mu^q \) and \(M = M_\infty \oplus M_0 \oplus M_1 \) is a non-singular pencil. Then the \(*\)-congruency type of \(M \) over \(\mathcal{J} \) is determined as follows:

Let \(\mathcal{U} = (K^{-1}H)^{n}\mathcal{U}, \quad \mathcal{W} = (H^{-1}K)^{n}\mathcal{U}. \) (Here \(n = \dim \mathcal{V} \) as usual.) Then the pencil \(\Lambda \) of \(*\)-bilinear forms \(x^*(\lambda H + \mu K)y \) with \(x \) and \(y \) restricted to \(\mathcal{U} \) is \(*\)-congruent over \(\mathcal{J} \) to the pencil of \(*\)-bilinear forms whose matrix is \(O \oplus M_0 \oplus M_1 \), and \(\Lambda \) restricted to \(\mathcal{W} \) is \(*\)-congruent over \(\mathcal{J} \) to the pencil of \(*\)-bilinear forms whose matrix is \(O \oplus M_\infty \oplus M_1 \).

Proof of Lemma 2: Without loss of generality, we may assume \(\lambda H + \mu K = L \oplus M_\infty \oplus M_0 \oplus M_1 \) and

\[
L = \bigoplus_{i=1}^{k'} 0 \oplus \bigoplus_{i=1}^{k} \begin{bmatrix} 0 & L_{\xi_i} \\ L_{\xi_i}^* & 0 \end{bmatrix}
\]

Let \(\mathcal{U} = R \oplus \mathcal{U}_\infty \oplus \mathcal{U}_0 \oplus \mathcal{U}_1 \). Here \(R, \mathcal{U}_\infty, \mathcal{U}_0, \mathcal{U}_1 \) denote the co-ordinate subspaces corresponding to \(L, M_\infty, M_0, M_1 \), respectively. Denote by \(R_i = \text{span} \{x_1, \ldots, x_{2m+1} \} \), \(m \geq 0 \), one of
the co-ordinate subspaces corresponding to one of the direct sum-
mmands in \(L \), where \(x_j \) denotes the \(j \)th co-ordinate vector.

Let \(R_i^* = \text{span}\{\hat{x}_1, \ldots, \hat{x}_{2m+1}\} \) be the corresponding subspace of
\(R^* \), thus \(R_i^* \) acts as a \(*\)-dual of \(R_i \). Note that the matrix
of \(\lambda H + \mu K \) restricted to \(R_i \) is

\[
\begin{bmatrix}
\lambda & & \\
\mu & \lambda & \\
\vdots & & \ddots & \lambda \\
\mu & \cdots & \lambda & \mu
\end{bmatrix}
\]

For simplicity in notation we drop the subscript \(i \) in \(R_i \). Thus

\[
\begin{align*}
Hx_1 &= \hat{x}_{m+2}, & Kx_1 &= 0 \\
Hx_2 &= \hat{x}_{m+3}, & Kx_2 &= \hat{x}_{m+2} \\
& \vdots & & \vdots \\
Hx_m &= \hat{x}_{2m+1}, & Kx_m &= \hat{x}_{m+2} \\
Hx_{m+1} &= 0, & Kx_{m+1} &= \hat{x}_{2m+1} \\
Hx_{m+2} &= \hat{x}_1, & Kx_{m+2} &= \hat{x}_2 \\
Hx_{m+3} &= \hat{x}_1, & Kx_{m+3} &= \hat{x}_3 \\
& \vdots & & \vdots \\
Hx_{2m} &= \hat{x}_{m-1}, & Kx_{2m} &= \hat{x}_m \\
Hx_{2m+1} &= \hat{x}_m, & Kx_{2m+1} &= \hat{x}_{m+1}
\end{align*}
\]
\[\mathcal{R} \cap (K^{-1}H) \mathcal{R} = \text{span } \{x_1, x_2, \ldots, x_{2m}\} \]
\[\mathcal{R} \cap (K^{-1}H)^2 \mathcal{R} = \text{span } \{x_1, x_2, \ldots, x_{2m-1}\} \]
\[\vdots \]
\[\mathcal{R} \cap (K^{-1}H)^{m+1} \mathcal{R} = \text{span } \{x_1, x_2, \ldots, x_{m+1}\} \]
\[= \mathcal{R} \cap (K^{-1}H)^k \mathcal{R} \quad \text{for all } k \geq m+1. \]

Thus the matrix of \(\Lambda \) restricted to \(\mathcal{R} \cap (K^{-1}H)^n \mathcal{R} \) is \(0 \).

(This \(0 \) matrix is of order \(m+1 \) here.)

\(K \) is non-singular on \(\mathcal{U}_\infty \); hence \(K \mathcal{U}_\infty = \mathcal{U}_\infty^* \) and \(H \mathcal{U}_\infty \subseteq \mathcal{U}_\infty^* \), so \(K^{-1}H \mathcal{U}_\infty \subseteq \mathcal{U}_\infty \) and \(K^{-1}H \) is a nilpotent mapping on \(\mathcal{U}_\infty \). Thus \((K^{-1}H)^n \mathcal{U}_\infty = 0 \).

\(H \) is non-singular on \(\mathcal{U}_0 \). Thus, \(H \mathcal{U}_0 = \mathcal{U}_0^* \).

\((K^{-1}H) \mathcal{U}_0 \subseteq K^{-1} \mathcal{U}_0^* = \{x : Kx \in \mathcal{U}_0^*\} = \mathcal{U}_0 \), since \(K(\mathcal{U}_0) \subseteq \mathcal{U}_0^* \).

Thus \((K^{-1}H) \mathcal{U}_0 = \mathcal{U}_0 \). Suppose \((K^{-1}H)^i \mathcal{U}_0 = \mathcal{U}_0 \) for \(i \leq k-1 \).

Then \(x \in (K^{-1}H)^k \mathcal{U}_0 \iff Kx \in H(K^{-1}H)^{k-1} \mathcal{U}_0 = H \mathcal{U}_0 = \mathcal{U}_0 \).

Thus \(\mathcal{U}_0 \bigcap (K^{-1}H)^n \mathcal{U}_0 = \mathcal{U}_0 \).

\(K \) and \(H \) restricted to \(\mathcal{U}_1 \) are non-singular. Thus \((K^{-1}H)^n \mathcal{U}_1 = \mathcal{U}_1 \).

Therefore \(x^* \Lambda y = x^* (\lambda H + \mu K)y \), with \(x, y \) restricted to \(\mathcal{U} = (K^{-1}H)^n \mathcal{U} \), is \(* \)-congruent to a pencil of \(* \)-bilinear forms whose matrix is \(0 \oplus M_0 \oplus M_1 \).

Similarly, we can show that \(x^* \Lambda y \), with \(x, y \) restricted to
\[W = (H^{-1}K)^nU \] is \(^*\)-congruent to a pencil of \(^*\)-bilinear forms whose matrix is \(O \oplus M_\infty \oplus M_1 \).

Proof of Theorem 1.2.1. Write

\[L \oplus M = \lambda H + \mu K = \Lambda, \]
\[L \oplus N = \lambda H_1 + \mu K_1 = \Lambda_1. \]

Without loss of generality, we may assume \(M = M_{\infty 1} \oplus M_{01} \oplus M_{11} \), \(N = M_{\infty 2} \oplus M_{02} \oplus M_{12} \), where \(M_{\infty 1} \) and \(M_{\infty 2} \) have elementary divisors only of the form \(\mu^q \), \(M_{01} \) and \(M_{02} \) have elementary divisors only of the form \(\lambda^q \), and \(M_{11} \) and \(M_{12} \) have no elementary divisors of the form \(\mu^q \) nor of the form \(\lambda^q \), and recall that \(M \) and \(N \) are non-singular pencils. If \(C \) is a non-singular matrix over \(\mathcal{F} \), (we also consider \(C \) as a non-singular map of \(U \) into \(\mathcal{G} \)) such that \(C^*\Lambda C = C^*(L \oplus M)C = L \oplus N \), then \(C^*H_1C = H_1 \) and \(C^*K_1C = K_1 \).

By Lemma 2, \(x^*\Lambda y \), and \(x^*\Lambda_1 y \), with \(x, y \) restricted to \((K^{-1}H)^nU \) and \((K^{-1}H_1)^nU \), respectively, is equal to \(u^*(O \oplus M_{01} \oplus M_{11})v \) and \(u^*(O \oplus M_{02} \oplus M_{12})v \), respectively, with \(u, v \in (K^{-1}H)^nU \) and \((K^{-1}H_1)^nU \), respectively.

We want to show by induction on \(i \) that
\[[(C^*KC)^{-1}(C^*HC)]^iU = C^{-1}(K^{-1}H)^iC^*U. \]
For $i = 1$:

$$
x \in [(C*KC)^{-1}C*HC)]^n \cup
$$

iff

$$
C*KCx \in C*HC \cup
$$

iff

$$
KCx \in HC \cup
$$

iff

$$
Cx \in K^{-1}HC \cup
$$

iff

$$
x \in C^{-1}(K^{-1}H)C \cup.
$$

Suppose

$$
[(C*KC)^{-1}(C*HC)]^k \cup = C^{-1}(K^{-1}H)^{k-1}C \cup.
$$

Then

$$
x \in [(C*KC)^{-1}(C*HC)]^k \cup
$$

iff

$$
(C*KC)x \in C*HC[(C*KC)^{-1}(C*HC)]^k \cup
$$

iff

$$
KCx \in HC[(C*KC)^{-1}(C*HC)]^k \cup
$$

(by our induction hypothesis)

$$
= HCC^{-1}(K^{-1}H)^{k-1}C \cup
$$

$$
= H(K^{-1}H)^{k-1}C \cup
$$

iff

$$
Cx \in K^{-1}H(K^{-1}H)^{k-1}C \cup
$$

iff

$$
x \in C^{-1}(K^{-1}H)^{k}C \cup.
$$

Let $\{x_1, x_2, \ldots, x_m\}$ be a basis for $\cup = (K^{-1}H)^n \cup$. Then

$$
\{C^{-1}x_1, C^{-1}x_2, \ldots, C^{-1}x_m\} \text{ is a basis for}
$$

$$
C^{-1}(K^{-1}H)^n \cup = C^{-1}(K^{-1}H)^nC \cup
$$

$$
= [(C*KC)^{-1}(C*HC)]^n \cup.
$$
Therefore
\[
\left(C^{-1} x_j \right)^* \Lambda_1 \left(C^{-1} x_j \right) = x_i^* \left(C^* \right)^{-1} \Lambda_1 C^{-1} x_j
\]
\[
= x_i^* \left(C^* \right)^{-1} C^* A C C^{-1} x_j
\]
\[
= x_i^* \Lambda x_j.
\]
Thus \(x^* \Lambda y \) with \(x, y \) restricted to \(\mathcal{U} \) is \(*\)-congruent to
\[
u_i^* (O \oplus M_{02} \oplus M_{12}) v_j \text{ with } u_1, v_1 \in (K_1^{-1} H_1).
\]
Thus \(O \oplus M_{01} \oplus M_{11} \) is \(*\)-congruent to \(O \oplus M_{02} \oplus M_{12} \). Thus by Fact 3, \(M_{01} \oplus M_{11} \) is \(*\)-congruent to \(M_{02} \oplus M_{12} \). Let
\[
M_{ij} = \lambda H_{ij} + \mu K_{ij} \quad i = 0, 1, j = 1, 2, \text{ where } H_{ij} \text{ and } K_{ij} \text{ are}
\]
\(*\)-symmetric. Then
\[
C_1^* (H_{01} \oplus H_{11}) C_1 = H_{02} \oplus H_{12}
\]
\[
C_1^* (K_{01} \oplus K_{11}) C_1 = K_{02} \oplus K_{12}.
\]
Thus
\[
C_1^{-1} \left(H_{01}^{-1} K_{01} \oplus H_{11}^{-1} K_{11} \right) C_1
\]
\[
= [C_1^* (H_{01} \oplus H_{11}) C_1]^{-1} [C_1^* (K_{01} \oplus K_{11}) C_1]
\]
\[
= H_{02}^{-1} K_{02} \oplus H_{12}^{-1} K_{12}.
\]
Partition \(C_1 \) accordingly: \(C_1 = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \). Let
\[
B_{ij} = H_{ij}^{-1} K_{ij}.
\]
Then
\[(B_{01} \oplus B_{11})^{C_{1}} = C_{1}(B_{02} \oplus B_{12})\]

\[
\begin{bmatrix}
B_{01}C_{11} & B_{01}C_{12} \\
B_{11}C_{21} & B_{11}C_{22}
\end{bmatrix}
= \begin{bmatrix}
C_{11}B_{02} & C_{12}B_{12} \\
C_{21}B_{02} & C_{22}B_{22}
\end{bmatrix}
\]

\[B_{11}C_{21} = C_{21}B_{02}.\]

Since \(B_{11}\) and \(B_{02}\) have no eigenvalues in common, \(C_{12} = 0\) [12]. Similarly, \(C_{21} = 0\). Thus \(C_{11}M_{01}C_{11} = M_{02}\).

\(C_{22}M_{11}C_{22} = M_{12}\). \(M_{01}, M_{02}, M_{11}\) and \(M_{12}\) are non-singular, thus \(C_{11}\) and \(C_{22}\) are non-singular. So \(M_{01}\) is *-congruent to \(M_{02}\) and \(M_{11}\) is *-congruent to \(M_{12}\). Likewise, \(L \oplus M\) restricted to \((H^{-1}K)\) is *-congruent to \(O \oplus M_{\infty 1} \oplus M_{11}\);

\(L \oplus N\) restricted to \((H^{-1}K)\) is *-congruent to \(O \oplus M_{\infty 2} \oplus M_{12}\), where \(M_{\infty 1}\) and \(M_{\infty 2}\) have elementary divisors of the form \(\mu^q\). With an approach similar to that of our consideration on \(L\), we can show that \(M_{\infty 1}\) is *-congruent to \(M_{\infty 2}\). Since

\[M = M_{01} \oplus M_{\infty 1} \oplus M_{11}\]

\[N = M_{02} \oplus M_{\infty 2} \oplus M_{12},\]

we have that \(M\) is *-congruent to \(N\). q.e.d.
II. GENERAL CASE

1. Congruency of a Matrix to Its Transpose

If $H = H'$, $K = K'$, H and K are over \mathcal{E}, and λ and μ are indeterminates over \mathcal{E}, then $\lambda H + \mu K$ is congruent to the following:

$$[\text{II. 1. 1}] \quad L \oplus M_0 \oplus M_\infty \oplus M_1$$

where L is described in Fact 6 of Chapter I, M_0 has elementary divisors only of the form λ^q, and M_∞ has elementary divisors only of the form μ^q, M_1 has neither elementary divisors of the form λ^q nor μ^q, and $M_0 \oplus M_\infty \oplus M_1$ is non-singular.

In this section, we shall prove:

Theorem II. 1. 1. Every matrix over \mathcal{E} is congruent over \mathcal{E} to its transpose.

Lemma 3. Let \mathcal{U} be finite dimensional over \mathcal{E} with (as always) characteristic $\mathcal{E} \neq 2$. Let $H: \mathcal{U} \rightarrow \mathcal{U}'$ be symmetric, $K: \mathcal{U}' \rightarrow \mathcal{U}$ be skew, and $B = KH: \mathcal{U} \rightarrow \mathcal{U}$ be non-singular. Let $q(t)$ be irreducible in $\mathcal{E}[t]$ and let $q(t^2)^m$ be the minimum polynomial for B on \mathcal{U}. (Here \mathcal{U}' is the (ordinary) dual of \mathcal{U}.)

Then there is a maximum B-cyclic subspace \mathcal{U} of \mathcal{U} such that
Proof of Lemma: Let \(H_1 = Hq(B^2)^{m-1} \). Then \(H_1' = H_1 \neq 0 \), thus there exists \(e \in U \) such that \(e'H_1e \neq 0 \). Let \(U \) be the B-cyclic subspace generated by \(e \). To show that \(U \) is maximum cyclic and that \(U \cap (HU)^0 = 0 \), it is sufficient to show that for \(f(t) \in \mathcal{E}[t] \), \((f(B)e)'HU = 0 \Rightarrow q(t^2)^m | f(t)\).

Suppose \((f(B)e)'HU = 0\). Write \(f(t) = [q(t^2)]^\ell p(t) \) where \(q(t^2)^\ell p(t) \). Let \(r(t) = \text{g.c.d}(p(t), p(-t)) \). Then \(r(t) = t^k s(t^2) \), for some \(k \geq 0 \), and some \(s(t) \in \mathcal{E}[t] \), such that \(t^k s(t^2) \). We claim that \(\text{g.c.d}(r(t), q(t^2)) = 1 \). Let \(m(t) = \text{g.c.d}(r(t), q(t^2)) \).

Since \(q(t^2) \) is even and \(r(t) \) is even or odd, then \(m(t) = t^\ell n(t^2) \) for some \(\ell \geq 0 \) and \(n(t) \in \mathcal{E}[t] \), such that \(t^\ell | q(t^2) \). It follows that \(q(t^2) = t^{2m} h(t^2) \) for some \(m \geq 0 \) and some \(h(t) \in \mathcal{E}[t] \) such that \(t^\ell | h(t^2) \). Thus \(q(t) = t^{2m} h(t) \). But \(q(0) \neq 0 \), since \(B \) is non-singular \(\Rightarrow k = 0 \), so \(m(t) = n(t^2) \). Thus \(n(t^2) | q(t^2) \), which implies \(n(t) | q(t) \), which in turn implies \(n(t) = 1 \) or \(n(t) = q(t) \). If \(n(t) = q(t) \), then \(q(t^2) = n(t^2) = m(t) | r(t) \), so \(q(t^2) | p(t) \), which is a contradiction. \(\Rightarrow n(t) = 1 \). Thus \(m(t) = 1 \). Since \(\text{g.c.d}(r(-t), q(t^2)) = m(-t) = 1 \). Thus \(r(-B) \) is non-singular, so \(r(-B)U = U \). Let \(r(t) = a(t)p(t) + b(t)p(t) \), for some \(a(t), b(t) \in \mathcal{E}[t] \). Now, \(0 = (f(B)e)'HU \), which implies for all \(i \geq 0 \), that
Since $K = HB$ and $H' = H$, $B'H = (HB)' = K' = -K = -HB$. Inductively, we can show $HB^i = (-B^i)'H$. Thus,

$$[\text{II. 1.2}] = (f(B)e)'HB^i e = [q(B^2)^{\ell} p(B)e]'HB^i e$$

Thus

$$[\text{II. 1.2}] = ((-B)^i e)'H[q(B^2)^{\ell} p(-B)e]$$
$$= [[(-B)^i e)'H[q(B^2)^{\ell} p(-B)e]]'$$
$$= [q(B^2)^{\ell} p(-B)e]'H(-B)^i e .$$

Thus

$$[q(B^2)^{\ell} p(-B)e]'H \mathcal{U} = 0 = [q(B^2)^{\ell} p(B)e]'H \mathcal{U},$$

so

$$0 = [q(B^2)^{\ell} p(-B)e]'H \mathcal{U} \supset [q(B^2)^{\ell} p(-B)e]'H b(-B) \mathcal{U}$$
$$= [q(B^2)^{\ell} p(-B) b(B)e]'H \mathcal{U}$$

and

$$0 = [q(B^2)^{\ell} p(B)e]'H \mathcal{U} \supset [q(B^2)^{\ell} p(B)e]'H a(-B) \mathcal{U}$$
$$= [q(B^2)^{\ell} p(B) a(B)e]'H \mathcal{U}$$

Thus

$$0 = [q(B^2)^{\ell} [p(B) a(B) + p(-B) b(B)]e]'H \mathcal{U}$$
$$= [q(B^2)^{\ell} r(B)e]'H \mathcal{U}$$
$$= [q(B^2)^{\ell} e]'H r(-B) \mathcal{U}$$
$$= [q(B^2)^{\ell} e]'H \mathcal{U} .$$
\[[q(B^2)^i] \cdot H q(B^2)^i e = e' H q(B^2)^i e = 0 \quad \text{for all} \quad i \geq m. \quad \text{Since} \quad e' H q(B)^m e \neq 0, \quad f \geq m. \quad \text{Thus} \quad q(t^2)^m | f(t). \quad \text{q.e.d.} \]

Proof of Theorem II.1.1. Without loss of generality we may consider the pencil [II.1.1] \(L \oplus M_0 \oplus M_\infty \oplus M_1 \) described in the first paragraph of this section; and we replace the indeterminates \(\lambda, \mu \) with 1. We shall show separately \(L, M_0, M_\infty, \) and \(M_1 \) are congruent over \(\mathcal{E} \) to their respective transposes.

Consider \(L. \) For each non-zero block (of order \(2\varepsilon_i + 1 \)) of \(L, \) multiply on the right and left by \(I_{\varepsilon_i + 1} \oplus E_{\varepsilon_i}. \) Thus in \(L_{\varepsilon_i}, \) the first column becomes the last column, the second column becomes the second to the last column and etc.; in \(L_{\varepsilon_i}, \) the first row becomes the last row, and the second row becomes the second to the last row and etc. Thus, we have for each non-zero block of \(L \)

\[
\begin{bmatrix}
0 & Z_{\varepsilon_i} \\
\hat{Z}_{\varepsilon_i} & 0
\end{bmatrix}
\]

[II.1.3]

where

\[
Z_{\varepsilon_i} = \begin{bmatrix}
\circ & 1 & 1 \\
1 & \circ & 1 \\
1 & 1 & \circ
\end{bmatrix}_{\varepsilon_i}, \quad Z_{\varepsilon_i} = \begin{bmatrix}
\circ & 1 & 1 & -1 \\
1 & -1 & -1 & \circ \\
-1 & \circ & \circ & \circ
\end{bmatrix}_{\varepsilon_i}.
\]

Multiply [II.1.3] on the right and left by \(\text{diag}(1, -1, 1, -1, \ldots, 1); \)
we get the transpose of [11.1.3]. Thus L is congruent to L'.

Next consider M_0. Let V_0 be the co-ordinate subspace corresponding to the direct summand M_0 in $S = H + K = L \oplus M_\infty \oplus M_0 \oplus M_1$. H is non-singular and $B = (H^{-1}K)$ is nilpotent on V_0. Let m be a positive integer such that $B^m = 0$, and $B^{m-1} \neq 0$. We shall consider the cases m even and m odd separately. We shall prove the following:

(i) if m is odd, there exists a maximum B-cyclic subspace U such that $U \cap (HU)^0 = 0$;

(ii) if m is even, there exist two maximum B-cyclic subspaces U and W such that

$$0 = U \cap W = U \cap (HW)^0 = W \cap (HU)^0 = (U \oplus W) \cap (H(U \oplus W))^0,$$

$$U \subseteq (HU)^0, \text{ and } W \subseteq (HW)^0.$$

Suppose m is odd. $(HB^{m-1})' = HB^{m-1} \neq 0$. There exists $e \in V$ such that $e'HB^{m-1}e \neq 0$. Let U be the B-cyclic subspace generated by e. Suppose $(B^l p(B)e)'HU = 0$, where $p(t) \in E[t]$ such that $t_{m} p(t)$. Since t_{m} is the minimum polynomial of B on V_0, $p(-B)$ is non-singular and hence $p(-B)U = U$. Thus $0 = (B^l p(B)e)'HU = (B^l e)'H p(-B)U = (B^l e)'HU$. Thus $l \geq m$. We therefore have completed the proof of (i).

The following discussion is not needed in the proofs of (i) and
(ii), but useful for later purposes. We note that $B \mathcal{U} \subseteq \mathcal{U}$ because \mathcal{U} is B-cyclic. $B(H \mathcal{U})^0 \subseteq (H \mathcal{U})^0$ because if $x \in (H \mathcal{U})^0$, then $0 = x'H \mathcal{U} \supseteq x'H B \mathcal{U} = -(Bx)'H \mathcal{U}$, which implies $Bx \in (H \mathcal{U})^0$.

Let $e_1 = e + \sum_{i=1}^{m-1} a_i B^i e$; we can choose $a_1, a_2, \ldots, a_{m-1}$ so that $e_1'H B^k e_1 = 0$ for $k \leq m-2$. Let \mathcal{U}_1 be the B-cyclic subspace generated by e_1. \mathcal{U}_1 has all the properties proved for \mathcal{U}. B restricted to \mathcal{U}_1 is the Jordan canonical block of eigenvalue 0, H restricted to \mathcal{U}_1 is a matrix H_0 with non-zero elements on the anti-diagonal and zero everywhere else. Thus $K = HB$ restricted to \mathcal{U}_1 is a matrix K_0 with non-zero entries on the first super-anti-diagonal and zero everywhere else. Multiply $H_0 + K_0$ on the right and left by $\text{diag}(1, -1, \ldots, 1)$. Since m is odd, by Fact 1, we have multiplied the first super-anti-diagonal by -1, and have not changed the anti-diagonal. Thus we obtain the transpose of $H_0 + K_0$.

In the next paragraph, we shall prove (ii).

Suppose m is even; since $HB^{m-1} \neq 0$ there exist $e, f \in \mathcal{U}$ such that $e'H B^{m-1} f \neq 0$; we can choose e, f so that $e'H B^{m-1} f = 1$. Let \mathcal{U}, \mathcal{W} be the B-cyclic subspaces generated by e and f respectively. First, we want to show $\mathcal{U} \cap \mathcal{W} = 0$.

If $x \in \mathcal{U} \cap \mathcal{W}$, then $x = B^k p(B)e = B^k q(B)f$, for some $p(t), q(t) \in \mathcal{E}[t]$ such that $t^k p(t)$, $t^k q(t)$. Without loss of generality,
assume \(k \geq l \). If \(k \geq m \), then \(x = 0 \). Therefore assume \(k < m \).

Note, since \(t_p(t) \), \(t_q(t) \), \(p(B) \) and \(q(B) \) are non-singular, \(r(B) = p(B)q(B)^{-1} \) is non-singular and we can even take \(r(t) \in \mathcal{E}[t] \) here, and \(r(-B) \) is also non-singular. \(x = B^k p(B)e = B^l q(B)f \) and \(k \geq l \). Therefore

\[
0 = B^l [q(B)f - B^k p(B)e] = q(B) B^l (f - B^k r(B)e) = B^l (f - B^k r(B)e)
\]

since \(q(B) \) is non-singular. \(B^l (f - B^k r(B)e) = 0 \) implies

\[
0 = e'HB^m f - e'HB^m r(B)e .
\]

If \(k \geq l + 1 \), \(e'HB^m r(B)e = e'HB^m f = 0 \); thus

\[
0 = e'HB^m f \text{ which is a contradiction. If } k = l ,
\]

\[
e'HB^m r(B)e = e'HB^m e = e'HB^m - e'HB^m e
\]

because \(m - 1 \) is odd (and hence \(HB^m \) is skew). Thus

\[
e'HB^m e = 0 = e'HB^m f \text{ which is a contradiction. Thus } k \geq m,
\]

which implies \(x = 0 \). Thus \(\mathcal{U} \cap \mathcal{W} = 0 \).

Secondly, we want to show \(\mathcal{U} \cap (\mathcal{H}_\mathcal{W})^0 = 0 \). Suppose \((B^k p(B)e) \mathcal{H} \mathcal{W} = 0 \) for some \(p(t) \in \mathcal{E}[t] \) such that \(t_p(t) \). Thus \(p(B) \) and \(p(-B) \) are non-singular, so \(p(-B) \mathcal{U} = \mathcal{U} \).
0 = (B^k p(B)e)'H \mathcal{W} = (B^k e')Hp(-B)\mathcal{W} \\
\quad = e'H(-B)^k \mathcal{W} \\
\quad \supset e'H(-B)^{k+i} \mathcal{W} \quad \text{for all } i \geq 0

Thus \(k \geq m \). Thus \(\mathcal{U} \cap (H \mathcal{W})^0 = 0 \). Likewise we can show that \(\mathcal{W} \cap (H \mathcal{U})^0 = 0 \).

Thirdly, we want to show \((\mathcal{U} \oplus \mathcal{W}) \cap (H(\mathcal{U} \oplus \mathcal{W}))^0 = 0 \).

If \(x \in (\mathcal{U} \oplus \mathcal{W}) \cap (H(\mathcal{U} \oplus \mathcal{W}))^0 \), then \(x = B^k p(B)e + B^l q(B)f \) where \(p(t), q(t) \in \mathcal{E} [t] \) and \(t \not\equiv p(t), q(t) \). Without loss of generality, assume \(l \geq k \). Suppose \(k \leq m-1 \). Then

\[0 = [B^k p(B)e + B^l q(B)f]'H(\mathcal{U} \oplus \mathcal{W}) \]
\[\supset [B^k p(B)e + B^l q(B)f]'H(-B)^{m-1-k}(\mathcal{U} \oplus \mathcal{W}) \]
\[= [B^{m-1} p(B)e + B^{l+m-1-k} q(B)f]'H(\mathcal{U} \oplus \mathcal{W}) \]
\[\supset [B^{m-1} p(B)e + B^{l+m-1-k} q(B)f]'H \mathcal{W} \]
\[= [B^{m-1} p(B)e]'H \mathcal{W} + [B^{l+m-1-k} q(B)f]'H \mathcal{W} \]
\[\supset p(0)[B^{m-1} e]'Hf + [B^{l+m-1-k} q(B)f]'Hf. \]

If \(l > k \), then \(B^{l+m-1-k} = 0 \). If \(l = k \),

\[[B^{l+m-1-k} q(B)f]'Hf = [B^{m-1} q(B)f]'Hf = q(0)[B^{m-1} f]'Hf. \]
Since \(m - 1 \) is odd, then \(H^B m - 1 \) is skew. Thus \(f' H^B m - 1 f = 0 \). Both \(p(0) \) and \((B^m - 1 e)' H f \) are nonzero. Thus we have a contradiction. Therefore \(\ell > m - 1 \). Thus we have shown \((U \oplus \mathcal{U}) \cap [H(U \oplus \mathcal{U})]^0 = 0 \).

Fourthly, let \(p(t) = \sum_{j \geq 0} a_j t^{2j} \) and let

\[
\hat{f} = f + Bp(B)e
\]

\[
= f + \sum_{j \geq 0} (a_j B^{2j+1})e.
\]

Let \(\mathcal{W} \) be the \(B \)-cyclic subspace generated by \(\hat{f} \). We can choose \(a_0, a_1, \ldots \) such that \(H \mathcal{W} \subseteq \mathcal{W}^0 \).

\[
0 = \hat{f}' H^B m - 2 \hat{f} = (f + \sum_{j \geq 0} a_j B^{2j+1} e)' H^B m - 2 (f + \sum_{j \geq 0} a_j B^{2j+1} e)
\]

\[
= f' H^B m - 2 f - 2a_0 e' H^B m - 1 f.
\]

Thus we can solve for \(a_0 \). If we consider \(\hat{f}' H^B m - 4 \hat{f} = 0 \), we will get an expression in terms of \(f' H^B m - 4 f, a_0, f' H^B m - 3 e, e' H^B m - 2 f \) and \(e' H^B m - 1 f \), and solve for \(a_1 \). Likewise, we can solve for \(a_k \) by considering \(\hat{f}' H^B m - 2(k+1) f \). In like manner, let \(e' = e + Bq(B)f \)

where \(q(t) = \sum_{j \geq 0} \beta_j t^{2j} \). We can pick \(\beta_0, \beta_1, \ldots \) so that \(\mathcal{U} \), the
B-cyclic subspace generated by \(\hat{e} \) satisfies the property \(H \hat{\mathcal{U}} \subseteq \hat{\mathcal{U}}^0 \). \(\hat{\mathcal{U}} \) and \(\hat{\mathcal{W}} \) obviously satisfy the first 3 properties we proved for \(\mathcal{U} \) and \(\mathcal{W} \). Thus we have completed the proof of (ii). Further, let \(\hat{f} = f + \sum_{j=2}^{m} a_j B^{j-1} f \) we can choose \(a_2, a_3, \ldots \) so that \(e^H B \hat{\mathcal{K}} f = 0 \) for \(k \leq m \). Let \(\hat{\mathcal{W}} \) be the cyclic subspace generated by \(\hat{f} \); then the pair \(\hat{\mathcal{U}}, \hat{\mathcal{W}} \) also satisfies the properties we have proved for the pair \(\mathcal{U}, \mathcal{W} \). B restricted to \(\hat{\mathcal{U}} \oplus \hat{\mathcal{W}} \) is the direct sum of 2 \(m \)-dimensional Jordan blocks of eigenvalues 0.

\(H \), restricted to \(\hat{\mathcal{U}} \oplus \hat{\mathcal{W}} \), is

\[
H_0 = \begin{bmatrix} 0 & -S \\ S & 0 \end{bmatrix}, \quad \text{where } S = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \\ -1 & \cdots & \cdots & 0 \end{bmatrix};
\]

and \(K \), restricted to \(\hat{\mathcal{U}} \oplus \hat{\mathcal{W}} \), is

\[
K_0 = \begin{bmatrix} 0 & T \\ -T & 0 \end{bmatrix}, \quad \text{where } T = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 \\ -1 & \cdots & \cdots & 0 \end{bmatrix}.
\]

Multiply by \(\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \) on the right and left of \(H_0 + K_0 \) we get \(-H_0 - K_0 \). Since \(H_0 \) is of even dimension, if we multiply by \(\text{diag}(1, -1, \ldots, -1) \) on the right and left of \(-H_0 - K_0 \), then by Fact 1, the anti-diagonal has been multiplied by \(-1 \), and the first
super-anti-diagonal is not changed. Thus we get H_0K_0.

In case m is odd, $U_0 = U \oplus (HU)^0$, $U_0' = HU \oplus U^0$, and $H(HU)^0 \subseteq U^0$, $KU = HBU \subseteq HU$.

Thus we can repeat the above process with U_0' replaced by $(HU)^0$. Likewise, for m even, we can repeat the above process with U_0 replaced by $(H(U \oplus W))^0$. Thus, after a finite number of steps, we show that M_0 is congruent to its transpose.

The process of showing M_∞ congruent to M'_∞ is similar; in this case, instead of $H^{-1}K$, we consider $K^{-1}H$.

Now we consider M_1 (and thus we assume H and K are non-singular here). Suppose C_2 is a non-singular matrix such that $C_2M_1C_2 = M_1'$. Without loss of generality, write $M_1 = \bigoplus_{i=1}^{k} N_i$ such that if $H_i = \frac{1}{2}(N_i + N_i')$, $K_i = \frac{1}{2}(N_i - N_i')$, and $f_i(x)$ is the minimum polynomial of $K_i^{-1}H_i$, then $f_i(x)$ is prime to $f_j(x)$ for $i \neq j$.

Note that $K(K^{-1}H)K^{-1} = -HK^{-1} = -(K^{-1}H)'$, so the minimum polynomial of $K^{-1}H$ is even; thus we place another restriction on the polynomials $f_i(x); f_i(x) = [q_i(x^2)]^m$ where $q(x)$ is irreducible (and $x \nmid q(x)$). Without loss of generality, we may assume $M_1 = H_1 + K_1$. Lemma 3 (proved in this section) assures us that we can find a basis for U, such that $M_1 = \bigoplus_{i=1}^{p} M_{i1}$, where, if $H_{i1} = \frac{1}{2}(M_{i1} + M_{i1}')$ and $K_{i1} = \frac{1}{2}(M_{i1} - M_{i1}')$ then $K_{i1}^{-1}H_{i1}$ is similar to a companion matrix. Thus it suffices to prove the following:
Lemma 4. If H and K as defined above are non-singular, and $K^{-1}H$ is non-derogatory, then $S = H + K$ is congruent to S'.

Proof. Let m be the degree of the minimum polynomial of $A = K^{-1}H$. Thus, for some $e \in \mathcal{U}$, \(\{e, Ae, A^2e, \ldots, A^{m-1}e\} \) is a basis for \mathcal{U}. Write $e_j = A^{j-1}e$. Recall KA^i is skew when i is even, is symmetric when i is odd. Thus

\[
e_j^i Ke_i = (-1)^{j-1}e_k^j KA^{i+j-2}e_1 = 0 \text{ for } i + j \text{ even},
\]

\[
e_j^i He_i = (-1)^{j-1}e_k^j HA^{i+j-2}e_1 = 0 \text{ for } i + j \text{ odd}. \]

Let $C: \mathcal{U} \to \mathcal{U}$ such that $Ce_i = (-1)^{i-1}e_i$. Then

\[
e_j^i C^i HCe_i = (Ce_i)^i H (Ce_i) = (-1)^{i+j}e_j^i He_i = e_j^i He_i
\]

because if $i+j$ is odd, $e_j^i He_i = 0$. Also

\[
e_j^i C^i KCe_i = (Ce_i)^i K (Ce_i) = (-1)^{i+j}e_j^i Ke_i = -e_j^i Ke_i
\]

because if $i+j$ is even, $e_j^i Ke_i = 0$. Thus $C'SC = S'$. q.e.d.

2. General Results

In this section, we shall prove some simple results, some of which lay the ground work for the following section.

Proposition II.2.1. Let S be a non-singular matrix: then:
(i) if S is of type 1, then $\det S^* = \pm \det S$.

(ii) if S is of type 2, then $\det S \in E$.

(iii) if S is of type 2, then S is \ast-congruent to \bar{S}, where \bar{S} is the conjugate matrix of S.

(iv) if S is of type 2, then it is of type 1.

Proof. (i) If $C^*SC = S^*$, then $C^*S^*C = S$, so we have $(C^*)^2 S^* (C^2) = S^*$. Therefore $\det(CC^*) = \pm 1$. Thus $\det S^* = \pm \det S$.

(ii) If $C^*SC = T$ is over E, then $\det S = (\det T)(\det C^{-1})(\det C^{-1})^*$, which is in E.

(iii) If $C^*SC = T$ is over E, then $C^*S^*C = T^* = T' = C'S'C$. Therefore $(C')^{-1} C^*S^*C(C')^{-1} = S'$. I.e., $(C')^{-1} C^*S^*C(C')^{-1} = (S')^* = \bar{S}$.

(iv) If $C^*SC = T$ is over E, then T, from Theorem I.2.1, is congruent over E (hence \ast-congruent over F) to T', and from (iii) of Proposition II.2.1, S is \ast-congruent to \bar{S}; then S is \ast-congruent to $(S')' = S^*$.

Proposition II.2.2. Let $H = \frac{1}{2} (S-S^*)$, and let $K = \frac{1}{2j} (S-S^*)$, where $j^* = -j$, and let $A = S^{-1} S^*$. Then

(i) A is similar to $(A^{-1})^*$.

(ii) If K is non-singular, $B = K^{-1} H$ is similar to B^*.

(iii) If H is non-singular, $B_1 = H^{-1} K$ is similar to B_1^*.
(iv) If \(S \) is of type 1 (hence also if \(S \) is of type 2), \(A \) is similar to \(A^* \).

(v) If \(S \) is of type 1, i.e., \(C^*SC = S^* \) where \(C \) is non-singular, and \(K \) is non-singular, then \(C^{-1}K^{-1}HC = -K^{-1}H \).

Proof. (i) \(SAS^{-1} = S(S^{-1}S^*)S^{-1} = S^*S^{-1} = (A^*)^{-1} \).

(ii) \(KBK^{-1} = K(K^{-1}H)K^{-1} = HK^{-1} = B^* \).

(iii) \(HB_1H^{-1} = H(H^{-1}K)H^{-1} = KH^{-1} = B_1^* \).

(iv) If \(C \) is non-singular such that \(C^*SC = S^* \), then \(C^{-1}AC = C^{-1}(S^{-1}S^*)C = (C^*SC)^{-1}(C^*S^*C) = (S^*)^{-1}S = A^{-1} \). Since \(A \) is also similar to \((A^*)^{-1} \), thus \(A \) is similar to \(A^* \).

(v) If \(C \) is non-singular such that \(C^*SC = S^* \), then \(C^*HC = H \) and \(C^*KC = -K \). Thus

\[
C^{-1}(K^{-1}H)C = [C^*KC]^{-1}(C^*HC) = -K^{-1}H. \quad \text{q.e.d.}
\]

Proposition II. 2. 3. (i) Suppose \(S \) is non-singular, and \(S = S_0 \oplus S_{\infty} \oplus S_1 \) where \(A_0 = S_{0}^{-1}S_{0}^* \) has eigenvalues only at \(1 \), \(A_{\infty} = S_{\infty}^{-1}S_{\infty}^* \) has eigenvalues only at \(-1\), and \(A_1 = S_1^{-1}S_1^* \) has eigenvalues neither at \(1 \) nor at \(-1\). If \(C \) is a non-singular matrix such that \(C^*SC = S^* \), then \(C = C_0 \oplus C_{\infty} \oplus C_1 \), where \(C_0 \) is such that \(C_0^*S_0C_0 = S_0^* \), \(C_{\infty} \) is such that \(C_{\infty}^*S_{\infty}C_{\infty} = S_{\infty}^* \), and \(C_1 \) is such that \(C_1^*S_1C_1 = S_1^* \).
(ii) Suppose \(H = \frac{1}{2} (S+S^*) \) and \(K = \frac{1}{2} (S-S^*) \) and non-singular. Let \(B = K^{-1} H = \bigoplus_{i=1}^{p} B_i \), where the \(B_i \) are such that if \(f_i(t) \) is the minimum polynomial of \(B_i \), then \(f_i(t) = q_i(t^2) \) for some \(q_i(t) \in \mathbb{C}[t] \), and g.c.d \((f_i(t), f_j(t)) = 1 \) when \(i \neq j \). Suppose

\[
S = \bigoplus_{i=1}^{p} S_i,
\]

where if

\[
H_i = \frac{1}{2} (S_i + S_i^*),
\]

\[
K_i = \frac{1}{2j} (S_i - S_i^*),
\]

then \(B_i = K_i^{-1} H_i \). If \(C \) is a non-singular matrix such that \(C^*SC = S^* \), then \(C = \bigoplus_{i=1}^{p} C_i \) such that \(C_i^*S_iC_i = S_i^* \).

Proof. (i) Since

\[
C^{-1}AC = C^{-1}(S^{-1}S^*)C = [C^*SC]^{-1}[C^*SC] = (A^*)^{-1},
\]

\[
AC = C(A^*)^{-1}.
\]

Partition \(C = (C_{ih}) \) conformably to \(A \). \(i = 0, \infty, 1 \) and \(h = 0, \infty, 1 \).

Then \(AC = C(A^*)^{-1} \) implies \(A_i C_{ih} = C_{ih}(A_h^*)^{-1} \). If \(i \neq h \), \(A_i \) and \((A_h^*)^{-1} \) have no eigenvalues in common and thus \(C_{ih} = 0 \).
We have shown that the off-diagonal blocks of C are 0. Thus (i) is proved.

(ii) Since

$$C^{-1}BC = (C*KC)^{-1}(C*HC)$$

$$= -B$$

Thus $BC = -CB$. Partition C conformably to B. Thus

$B_{i}C_{ij} = -C_{ij}B_{i}$, $i, j = 1, 2, ..., p$. If $i \neq j$, then B_{i} and $-B_{j}$ have no eigenvalues in common, thus $C_{ij} = 0$. We have shown that the off-diagonal blocks of C are 0, thus we have proved (ii).

The next result is based on Taussky-Zassenhaus' result [10].

Proposition II.1.4. If S is non-singular and $S^{-1}S^*$ is non-derogatory, and $C*SC = S*$ for C non-singular, then $C*S$ is $*$-congruent to a symmetric matrix over \mathcal{F}.

Proof: First assume $A = S^{-1}S^*$ is a companion matrix. S is of type 1 therefore A is similar to A^* hence similar to a matrix over \mathcal{E} [2]; since A is a companion matrix, A is a matrix over \mathcal{E}.
Since
\[C \times S(A)S^{-1}(C^*)^{-1} = C \times S(S^{-1}S^*)S^{-1}(C^*)^{-1} \]
\[= C \times (S \times S^{-1})(C^*)^{-1} \]
\[= (C \times S \times C)(C^*SC)^{-1} \]
\[= S(S^*)^{-1} \]
\[= A^* = A' . \]

Since \(A \) is a companion matrix, by the Taussky-Zassenhaus result, \(C \times S \) is symmetric.

Now suppose \(A = S^{-1}S^* \) is not a companion matrix, but \(A \) is non-derogatory. There exists \(D \) such that \(D^{-1}AD = A_0 \), where \(A_0 \) is a companion matrix. Let \(T = D^*SD \). Then

\[S = (D^*)^{-1}TD^{-1}, \quad S^* = (D^*)^{-1}T^*D^{-1}. \]

\[C \times SC = C \times (D^*)^{-1}TD^{-1}C \]
\[= S^* \]
\[= (D^*)^{-1}T^*D^{-1} \]

Thus \((D^{-1}CD)^*TD^{-1}CD = T^* \). Note

\[T^{-1}T^* = D^{-1}S^{-1}(D^*)^{-1}D^*S^*D = D^{-1}AD = A_0 \]

is a companion matrix. From what we have shown for the case \(S^{-1}S^* \) being a companion matrix, \([D^{-1}CD]^*T \) is a symmetric
matrix over \mathcal{F}.

$$[D^{-1}CD]^*T = (D^*)C*(D^*)^{-1}D^*SD$$

$$= D^*C^*SD$$

Thus C^*S is $*$-congruent to a symmetric matrix.

3. Non-Singular $*$-Symmetric Pencils with All Eigenvalues in \mathcal{F}

Let H and K be $*$-symmetric. Then Theorem 1.2.1 asserts that the pencil $\lambda H + \mu K$, where λ and μ are indeterminates over \mathcal{E}, is $*$-congruent to $L \oplus M$ where L is the minimum-indices part as defined in Theorem 1.2.1 and M is the non-singular core, unique up to $*$-congruency. If $T = H_1 + jK_1$, where H_1 and K_1 are $*$-symmetric and $j^* = -j$, and jK_1 is a matrix over \mathcal{E}, then $H_1 - jK_1 = T^* = T^* = H_1' + jK_1'$. Thus proving that the matrix $S = H + jK$ is of type 2 is equivalent to proving that the pencil $\lambda H + \mu K$ is $*$-congruent over \mathcal{E} to $\lambda H_1 + \mu K_1'$, where $H_1' = H_1 = H_1^*$, $-K_1 = K_1 = K_1^*$, i.e., $H_1' = H_1^* \in \mathcal{E}^{\text{type}}$, and $jK_1' = -(jK_1)' \in \mathcal{E}^{\text{type}}$. We say a pencil is of type 2 if $\lambda H + \mu K$ is $*$-congruent to $\lambda H_1 + \mu K_1$ where H_1 and K_1 are as described above. We say a pencil is of type 1 if $\lambda H + \mu K$ is $*$-congruent to $\lambda H - \mu K$.

First we want to show that:
Proposition II. 3. 1. If \(S = H + jK \) where \(H \) and \(K \) are \(*\)-symmetric and \(j^* = -j \), then \(S \) is of type 2 iff the non-singular core of the pencil \(\lambda H + \mu K \) is of type 2.

Proof: Write \(\lambda H + \mu K = L \oplus M \) where \(L \) is the minimum-indices part and \(M \) is the non-singular core.

("only if") If \(\lambda H + \mu K \) is of type 2, then \(\lambda H + \mu K \) is \(*\)-congruent to \(\lambda H_1 + \mu K_1 \) where \(H_1 = H_1^* = H_1^t, -K_1^t = K_1^t = K_1^* \); thus \((j^{-1}K_1)^* = -j^{-1}K_1 = j^{-1}K_1 \) is a matrix over \(\mathcal{E} \). Let \(K_0 = j^{-1}K_1 \). \(\lambda H_1 + \mu K_0 \) is congruent over \(\mathcal{E} \) to \(L_0 \oplus M_1 \) where

\[
L_0 = \bigoplus_{i=1}^{k_1} \begin{pmatrix} 0 & L_{\epsilon_i}^t \\ L_{\epsilon_i} & 0 \end{pmatrix},
\]

\(L_{\epsilon_i} \) and \(L_{\epsilon_i}^t \) are as defined in Fact 6 and \(M_1 = \lambda H_1 + \mu K_0 \) is a non-singular pencil and \(H_1, K_0 \) are over \(\mathcal{E} \), and \(H_1^t = H_1 \), \((K_0)^t = -K_0 \). Thus \(\lambda H_1 + \mu K_1 = \lambda H_1 + j\mu K_0 \) is \(*\)-congruent to \(L_1 \oplus \lambda H_1 + \mu jK_0 \), where

\[
L_1 = \bigoplus_{i=1}^{k_1} \begin{pmatrix} 0 & W_{\epsilon_i}^t \\ W_{\epsilon_i} & 0 \end{pmatrix},
\]

where
Because of the uniqueness of the minimum indices, the same minimum indices, \(L_1 \) is \(*\)-congruent to \(L \) [11].

(Recall in the beginning of the proof, we assume \(\lambda H + \mu K = L \oplus M \), where \(L \) is the minimum-indices part and \(M \) is the non-singular core.) Thus \(\lambda H + \mu K \) is \(*\)-congruent to \(\lambda H_1 + \mu K_1 \) where

\[
(\lambda H_1)^* = H_1^* = H_1, \quad (jK_1)^* = jK_1^* = jK_1;
\]

in turn is

\[
\lambda H_1 + \mu K_1 \quad \text{*-congruent to} \quad L_1 \oplus \lambda H_1 + \mu K_0;
\]

which in turn is \(*\)-congruent to

\[
L \oplus \lambda H_1 + \mu K_0.
\]

Let \(K_1 = jK_0 \). Thus \(\lambda H + \mu K = L \oplus M \) is

\(*\)-congruent to \(L \oplus \lambda H_1 + \mu K_1 \). By the uniqueness of the non-singular core of pencils \(M \) is \(*\)-congruent to \(\lambda H_1 + \lambda K_1 \). We said before \((\lambda H_1)^* = H_1^* = \lambda H_1 \), \(jK_1 = jK_0 \) is a matrix over \(\mathbb{C} \), and

\[
(jK_1)^* = -jK_1^* = -j(jK_0)^* = j^2 K_0^* = j^2 K_0 = jK_1^*.
\]

Thus \(M \) is of type 2.

("if") We only need to prove the minimum-indices part \(L \) of
the pencil is of type 2. Therefore without loss of generality, assume

\[
\Lambda = \lambda H + \mu K = \begin{bmatrix}
0 & L_{\epsilon_i} \\
L_{\epsilon_i}^* & 0
\end{bmatrix},
\]

where \(L_{\epsilon_i} \) is defined in Fact 6 of Section 1 of Chapter I. Multiply on the right and left of \(\Lambda \) by \(\mathbb{I} \oplus E_{\epsilon_i} \). By a calculation similar to a calculation appearing in the proof of Theorem II.1.1, we can see that \(\Lambda \) becomes

\[
[\text{III. 1. 1}]
\]

\[
\Lambda_2 = \begin{bmatrix}
0 & Y_{\epsilon_i} \\
Y_{\epsilon_i}^* & 0
\end{bmatrix},
\]

where

\[
Y_{\epsilon_i} = \begin{bmatrix}
& & & \lambda \\
& \lambda & & \\
& & \mu & \\
\epsilon_i & & &
\end{bmatrix}
\]

Multiply on the right of [III. 1. 1] by \(C_1 = \text{diag}(1, j, \ldots, j, 1) \) and the left by \(C_1^* \). Since [III. 1. 1] is of odd order, by Fact 2 of Section 1, Chapter I, we have multiplied the entries on the anti-diagonal
alternately by \(j \) and \(-j \) and the entries on the anti-diagonal alternately by 1 and \(-j^2\). Thus \(C_1^* \wedge_2 C_1 = \lambda H_2 + \mu K_2 \) is such that \(H_2 \) is a matrix over \(E \) because its non-zero entries are \(\epsilon \{ 1, -j^2 \} \) and \(jK_2 \) is a matrix over \(E \) because \(K_2 \)'s non-zero entries are \(\epsilon \{ j, -j \} \). q.e.d.

In this section, we shall consider \(S = H + jK \) where \(H, K \) are \(*\)-symmetric and \(j^* = -j \), such that the pencil \(\lambda H + \mu K \) is non-singular, and such that all the eigenvalues of the pencil are in \(\mathcal{F} \). (Note that \(S^{-1}S^* = (H+jK)^{-1}(H-jK) \). If \(H \) is non-singular, then

\[
(H(I+jH^{-1}K))^{-1}H(I-jH^{-1}K) = (I+jH^{-1}K)^{-1}(I-jH^{-1}K).
\]

Therefore \(S^{-1}S^* \) having eigenvalue at 1 is equivalent to \(H^{-1}K \) being nilpotent. Likewise, \(S^{-1}S^* \) having eigenvalues at -1 is equivalent to \(K^{-1}H \) being nilpotent.)

Suppose \(S = \bigoplus_{i=1}^{p} S_i \) and \(H_i = \frac{1}{2} (S_i + S_i^*) \) and \(K_i = \frac{1}{2j} (S_i - S_i^*) \) and \(H_1^{-1}K_1 \) is nilpotent, \(K_2^{-1}H_2 \) is nilpotent, and for \(i \geq 3 \), \(H_i \) and \(K_i \) are non-singular, and \(K_i^{-1}H_i \) is similar to \(-K_i^{-1}H_i \) and has eigenvalues only at \(\beta_i, \beta_i^*, -\beta_i \) and \(-\beta_i^* \), and if \(f_i(t) \) is the minimum polynomial of \(K_i^{-1}H_i \) for \(i \geq 3 \), then g.c.d.

\[
(f_i(t), f_j(t)) = 1 \text{ for } i \neq j.
\]

Then Proposition II.2.3 asserts that \(S \) is of type 1 iff each of the \(S_i \) is of type 1. Therefore, without loss
of generality, we consider the following cases separately:

(i) $K^{-1}H$ has eigenvalue only at β and $-\beta$ where $\beta^* = -\beta$, and $K^{-1}H$ is similar to $-K^{-1}H$.

(ii) $K^{-1}H$ has eigenvalues only at β, β^*, $-\beta$ and $-\beta^*$, $\beta^* \neq \pm \beta$, and $K^{-1}H$ is similar to $-K^{-1}H$.

(iii) $K^{-1}H$ has eigenvalues only at β, $-\beta$ where $\beta \in \mathcal{E}$, and $K^{-1}H$ is similar to $-K^{-1}H$.

(iv) $H^{-1}K$ is nilpotent.

(v) $K^{-1}H$ is nilpotent.

Theorem II.3.2. If $K^{-1}H$ is similar to $-K^{-1}H$, and $K^{-1}H$ has eigenvalues only at β, β^*, $-\beta$, $-\beta^*$ where $\beta \notin \mathcal{E}$, then S is of type 2.

Proof: First consider $\beta^* = -\beta$. By Fact 5, in the introductory chapter, S is $*$-congruent to a block diagonal matrix whose diagonal blocks are of the form:
Icrote:

-13+j

1

become either

1

or

1

-1j

(R+j)* = j =

(-13+j)* = R - j =

1

[(\pi.3.1)]

\[
\begin{pmatrix}
1 & \beta+j \\
-\beta+j & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & \beta+j \\
-\beta+j & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
-\beta+j & -\beta+j
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & \beta+j \\
-\beta+j & 1
\end{pmatrix}
\]

Note: \((\beta+j)^* = -\beta - j = -(\beta+j)\)

\((-\beta+j)^* = \beta - j = -(-\beta+j)\)

Therefore \(j(\beta+j)\) and \(j(-\beta+j)\) are elements in \(E\). We shall
show that each block is \(*\)-congruent to a matrix over \(E\). Therefore
without loss of generality, we may assume \(S = [\pi.3.1]\). Multiply
by \(C = \text{diag}(1, j, 1, j, \ldots)\) to the right and by \(C^*\) on the left of \(S\);
then by Fact 2, the entries on the first super-anti-diagonal of \(S\)
become either 1 or \(-j^2\) or (in case of the middle entry) 0, and
the entries on the anti-diagonal are multiplied alternately by \(j\) and
\(-j\). Thus \(S\) is of type 2.

Next consider \(\beta^* \neq \pm \beta\). By Fact 4, \(S\) is \(*\)-congruent to a
matrix with diagonal blocks of the form:
\[\begin{array}{cccc}
1 & \beta+j & & \\
\ldots & \beta+j & & \\
\beta+j & & & \\
1 & \beta^*+j & & \\
\ldots & \beta^*+j & & \\
\beta^*+j & & & \\
\end{array}\]

\[\begin{array}{cccc}
1 & & & \\
1 & -\beta+j & & \\
\ldots & -\beta+j & & \\
1 & -\beta^*+j & & \\
\ldots & -\beta^*+j & & \\
-\beta^*+j & & & \\
\end{array}\]

\[= M \otimes N,\]
where M is the upper left $2m \times 2m$ block and N is the lower right $2m \times 2m$ block. Let $C = \text{diag}(1, j, 1, \ldots, j) \oplus \text{diag}(1, j, 1, \ldots, j)$.

Consider $C^*(M \oplus N)C = P \oplus Q$. $p_{ij} = q_{ij} = 0$ for $i+j \neq 2m+1$ and $\neq 2m$, and also $p_{m,m} = q_{m,m} = 0$ and

\[
P_{i, 2m-i} = q_{i, 2m-i} = (-1)^2 \quad \text{when} \quad i \quad \text{is even}
\]
\[
1 \quad \text{when} \quad i \quad \text{is odd}.
\]

\[
P_{i, 2m+1-i} = (-1)^{i-1}j(\beta^*+j) = (-1)^{i-1}[j\beta^*+2j^2] \quad i \leq m
\]
\[
= (-1)^{i-1}j(\beta+j) = (-1)^{i-1}[j\beta+j^2] \quad i > m.
\]

\[
q_{i, 2m+1-i} = (-1)^{i-1}(-j\beta+j^2) \quad i \leq m
\]
\[
= (-1)^{i-1}(-j\beta^*+j^2) \quad i > m.
\]

\[Q = \overline{P}.\] Consider

\[
\begin{bmatrix}
I & I
\end{bmatrix}
\begin{bmatrix}
P & 0 \\
0 & \overline{P}
\end{bmatrix}
\begin{bmatrix}
I & P
\end{bmatrix}
= \begin{bmatrix}
I & I
\end{bmatrix}
\begin{bmatrix}
P & P^2 \\
P^*P & \overline{P}
\end{bmatrix}
\begin{bmatrix}
P^*P & \overline{P}
\end{bmatrix}
\begin{bmatrix}
P & P^2 \\
P^*P & \overline{P}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
P+\overline{P} & P^2+\overline{P}^2 \\
P^*P+P^*\overline{P} & P^*P^2+P^*\overline{P}^2
\end{bmatrix},
\]

which is over \mathcal{E}. Note that
\[\det \begin{bmatrix} I & P \\ I & \bar{P} \end{bmatrix} = \det (\bar{P} - P) \]
\[= \pm j^{2m} (\beta + \beta^*)^{2m} \neq 0, \]

because \(\pm j(\beta + \beta^*) \neq 0 \). Therefore \(M \oplus N \) is of type 2. Thus \(S \) is of type 2.

From this point let \(B_i \) and \(D_i \) denote non-singular diagonal matrices over \(\mathbb{C} \).

Theorem II.3.3. (i) If \(H^{-1}K \) is nilpotent, then there is a basis for \(U \) such that \(S = \bigoplus \limits_{i=1}^{h} T_i^0 \) where \(T_i^0 = (E_{n_i} + jF_i) \otimes B_i \), and \(n_i \neq n_j \) for \(i \neq j \).

(ii) If \(K^{-1}H \) is nilpotent, then there is a basis for \(U \) such that \(S = \bigoplus \limits_{i=1}^{h} T_i^\infty \) where \(T_i^\infty = (jE_{n_i} + F_i) \otimes B_i \), and \(n_i \neq n_j \) for \(i \neq j \).

(iii) If \(K^{-1}H \) is similar to \(-K^{-1}H \) and has eigenvalues only at \(\beta \), and \(-\beta\), \(\beta \neq 0 \), \(\beta \in \mathbb{C} \), then there exists a basis for \(U \) such that \(S = \bigoplus \limits_{i=1}^{h} T_i^\beta \), where \(T_i^\beta = F_{n_i} \otimes (B_i \oplus D_i) + E_{n_i} \otimes [(\beta + j)B_i \oplus (-\beta + j)D_i] \), and \(n_i \neq n_j \) for \(i \neq j \).

(Pictures of blocks of \(T_i^z \), \(z = 0, \infty, \beta \) where \(\beta \neq 0 \), \(\beta \in \mathbb{C} \) are in Appendix I).

Proof: (i) By Fact 4, \(S \) is \(*\)-congruent to a matrix in diagonal blocks with each block of the form:

\[W_{\epsilon, n}^0 = \epsilon (E_{n} + jF_n) \; \epsilon \neq n, \; \epsilon \in \mathbb{C}. \]
Thus

\[S = \bigoplus_{j=1}^{k} \bigoplus_{i=1}^{n_j} \varepsilon_{i}^{j}, n_j \]

where \(n_j \neq n_i \) if \(i \neq j \). Suppose \(S = \bigoplus_{i=1}^{n_1} \varepsilon_{i}^{j}, n_1 \). Write \(n = n_1 \), \(B = H^{-1}K \), and \(k = k_1 \). Then

\{e_1, Be_1, \ldots, B^{n-1}e_1, e_2, Be_2, \ldots, B^{n-1}e_2, \ldots, e_k, \ldots, B^{n-1}e_k\} \]

is a basis for \(\mathcal{U} \) for some \(e_1, \ldots, e_k \in \mathcal{U} \). Rearrange the basis elements in the following manner:

\{e_1, e_2, \ldots, e_k, Be_1, Be_2, \ldots, Be_k, \ldots, B^{n-1}e_1, \ldots, B^{n-1}e_k\} \]

With respect to this new basis \(S \) becomes \(T_1^0 = (E_{n_1}^{j} + jF_{n_1}) \otimes B_1 \)

where \(B_1 = \text{diag}(\varepsilon_1, \ldots, \varepsilon_k) \). Repeat the above process for

\(j = 2, 3, \ldots, h \). Thus if \(S = \bigoplus_{j=1}^{h} \bigoplus_{i=1}^{n_j} \varepsilon_{i}^{j}, n_j \), \(S \) is \(\ast \)-congruent to \(T_1^0 \).

If \(K^{-1}H \) is nilpotent, by Fact 4 \(S \) is \(\ast \)-congruent to a matrix in diagonal blocks with each block of the form:

\[W_{\varepsilon, n}^\infty = \varepsilon(jE_{n} + F_{n}) \quad \varepsilon \neq 0, \quad \varepsilon \in \mathcal{E}. \]

Going through a similar process as in the case \(H^{-1}K \) being nilpotent, we can show \(S \) is \(\ast \)-congruent to \(\bigoplus_{j=1}^{h} T_j^0 \).

(ii) When \(K^{-1}H \) has eigenvalues only at \(\pm \beta \neq 0, \quad \beta \neq 0 \), by Fact 4, we have \(S \) \(\ast \)-congruent to a direct sum of blocks with these blocks paired off in the form \(U_{\varepsilon, n}^\beta \otimes U_{\varepsilon', n}^\beta \), where
\[
U_{\epsilon, n} = \epsilon(F_n + (\beta + j)E_n), \quad \epsilon \neq 0, \quad \epsilon \in \mathcal{E}.
\]
\[
V_{\delta, n} = \delta(F_n + (-\beta + j)E_n), \quad \delta \neq 0, \quad \delta \in \mathcal{E}.
\]

Without loss of generality, assume

\[
\text{[II.3.2]} \quad S = \bigoplus_{i=1}^{h} \bigoplus_{j=1}^{k_i} U_{\epsilon_i, n_i} \oplus \bigoplus_{i=1}^{k} V_{\delta_i, n_i}.
\]

First consider

\[
\text{[II.3.3]} \quad S = \bigoplus_{i=1}^{k_1} \left(U_{\epsilon_i, n_i} \right)^{\beta} \oplus \bigoplus_{i=1}^{k} \left(V_{\delta_i, n_i} \right)^{\beta}.
\]

Write \(n = n_1, \quad k_1 = k \). Let \(A_0 = (K^{-1}H^{-3}I), \quad A_1 = (K^{-1}H+\beta I) \). A basis of \(\mathcal{U} \) for which \(S \) is of the form \([\text{II.3.3}]\) is of the form:

\[
\{ e_1, A_0 e_1, \ldots, A_0^{n-1} e_1, e_2, \ldots, A_0 e_2, \ldots, A_1 e_1, d_1, A_1 d_1, \ldots, A_1^{n-1} d_1, \ldots, A_1 d_k, A_1^{n-1} d_k \}. \]

Rearrange this basis in the following manner

\[
\{ e_1, e_2, \ldots, e_k, d_1, d_2, \ldots, d_k, A_0 e_1, \ldots, A_0 e_k, A_1 d_1, \ldots, A_1 d_k, A_0 e_1, \ldots, A_0 e_k, A_1 d_1, \ldots, A_1 d_k \}. \]

Then in this new basis \(S \) is of the form

\[
T_{1}^{\beta} = F_n \otimes (B_1 \otimes D_1) + E_n \otimes [(\beta + j)B_1 \otimes (-\beta + j)D_1] \quad \text{where}
\]
\[
B_1 = \text{diag}(\epsilon_1, \epsilon_2, \ldots, \epsilon_k), \quad D_1 = \text{dial}(\delta_1, \ldots, \delta_k) \quad \epsilon_i, \delta_i \in \mathcal{E}. \]

Thus if \(S \) is of \([\text{II.3.2}]\) \(S \) is *-congruent to \(\bigoplus_{j=1}^{k} T_{j}^{\beta} \). q.e.d.

In the following theorem we let \(T_{1}^{z} = T_{1}^{z}, \) where \(z = \infty, 0, \beta \).
and where $\beta \neq 0$, $\beta \in \mathbb{C}$; we also write $n = n_1$, $k = k_1$, $B = B_1$, $E = E_n$, and $F = F_n$.

Theorem II.3.4. (i) (a) For n odd, T^0 is of type 2 and hence of type 1. For n even, (b) T^0 is of type 1 iff B is $*$-congruent to $-B$ (i.e., iff jB is of type 1), and (c) T^0 is of type 2 iff jB is of type 2.

(ii) For n even, T^∞ is of type 2 and hence of type 1. For n odd, T^∞ is of type 1 iff B is $*$-congruent to $-B$ (i.e., iff jB is of type 1), and T^∞ is of type 2 iff jB is of type 2.

Proof: Suppose n is odd. Let $C = \text{diag}(1, j, 1, \ldots, j_1)$.

Recall $T^0 = (E+jF) \otimes B$. Then

\[
(C \otimes I_k)^* T^0 (C \otimes I_k) = (C \otimes I_k)^* ((E+jF) \otimes B) (C \otimes I_k) = C^* (E+jF) C \otimes B
\]

By Fact 2, the entries on the anti-diagonal of $C^* (E+jF) C$ are alternately $-j^2$ or 1, those on the first super anti-diagonal are alternately $\pm j^2 = \pm j^2$, the rest of the entries of $C^* (E+jF) C^*$ are zeroes. Thus T^0 is of type 2, and hence is of type 1.

(b) Suppose n is even, and suppose B is $*$-congruent to $-B$. Suppose P is non-singular such that $P^*BP = -B$. Let $C = \text{diag}(1, -1, 1, \ldots)$; then
\[(C \otimes P)^* [(E+jF) \otimes B](C \otimes P) = C^*(E+jF)C \otimes P^*BP\]
\[= (-E+jF) \otimes -B\]
\[= (E-jF) \otimes B.\]

Conversely suppose \(C_1\) is non-singular such that \(C_1^*T_0C_1 = (T_0)^*\).

Let \(H = \frac{1}{2}(T_0^0 + (T_0)^*), \) and \(K = \frac{1}{2j}(T_0^0 - (T_0)^*). \) Then
\[C_1^*H(H^{-1}K)^{n-1}C_1 = -H(H^{-1}K)^{n-1}.\]
\[H(H^{-1}K)^{n-1} = [E \otimes B][E F \otimes I_k]^{n-1} = B \oplus O.\]

This computation will be used again in the proof of part (c). Thus
\[C_1^*(B \oplus O)C_1 = -B \oplus O.\] Thus by Fact 3, \(B\) is \(*\)-congruent to \(-B\).

(c) Now suppose \(n\) is even and \(jB\) is of type 2, i.e., there exists a non-singular \(C_0\) such that \(jC_0^*B C_0\) is over \(E\). Let \(C_2 = \text{diag}(1, j, \ldots, j)\). Then
\[(C_2 \otimes C_0)^* T_0^0 (C_2 \otimes C_0) = [C_2^* \otimes C_0^*][(E+jF) \otimes B](C_2 \otimes C_0)\]
\[= C_2^*(E+jF)C_2 \otimes C_0^*BC_0.\]

The anti-diagonal entries of \(C_2^*(E+jF)C_2\) are alternately \(+j\) and \(-j\); the first super-anti-diagonal entries are alternately \(-j^3\) and \(j\). Thus \(j^{-1}C_2^*(E+jF)C_2\) is over \(E\). Thus (if we multiply the first factor by \(j^{-1}\) and the second factor by \(j\) in the tensor product) we get that \([II.3.4] = j^{-1}C_2^*(E+jF)C_2 \otimes jC_0^*BC_0\) is over \(E\). Thus
\(T^0\) is of type 2.

Conversely suppose \(C_3^*T^0C_3 = W\) is over \(\mathcal{C}\). Let
\[H_1 = \frac{1}{2}(W+W^*), \quad K_1 = \frac{1}{2j}(W-W^*)\] then \(W = H_1 + jK_1\).
\[
W^* = H_1 - jK_1 = H_1' + jK_1'.
\]
Thus \(K_1' = -K_1\). Thus
\[(jK_1)^* = -jK_1 = jK_1',\]
so \(jK_1\) is over \(\mathcal{C}\). Likewise \(H_1 = H_1^* = H_1'\) is over \(\mathcal{C}\). Since \(C_3\) is non-singular, there exists a permutation matrix \(R\) such that \(C_3R\) has its first \(k \times k\) principal sub-matrix, \(D\), non-singular. Thus
\[
jR^*C_3^*(H^{-1}K^{n-1})C_3R = jR^*H_1^{-1}K_1^{-1}R.
\]
Since \(R\) is a permutation matrix, \(jR^*H_1^{-1}K_1^{n-1}R\) is a matrix over \(\mathcal{C}\). Recall \(H^{-1}K^{n-1} = B \oplus O\) and the first principal sub-matrix \(D\) of \(C_3R\) is non-singular. Hence \(jD^*BD\) is the upper left block of \(j(C_3R)^*(B \oplus O)C_3R = j(C_3R)^*(H^{-1}K^{n-1})C_3R\) which is over \(\mathcal{C}\). Thus \(jB\) is of type 2.

(ii) The proof of (ii) is similar to that of (i). q.e.d.

For the following discussion, write \(T^\beta\) as \(T\). Recall that \(\beta \neq 0\), and \(\beta \in \mathcal{C}\), \(n_2 = n\). (Refer to picture in Appendix I.)

Theorem II. 3. 5. The following are equivalent.

(1) \(T\) is of type 1.

(2) \(T\) is of type 2.
(3) \(B \) is \(\ast \)-congruent to \((-1)^nD\).

Lemma 5. If \(c \in \mathcal{C} \) such that \(c^* \neq \pm c \), \(C = cI \), \(\varepsilon \in \mathcal{C} \),

\[
M = \begin{pmatrix} C & C^* \\ C^* & C \end{pmatrix},
\]

then

\[
M^* \begin{pmatrix} A & 0 \\ 0 & \varepsilon A^* \end{pmatrix} M = \begin{pmatrix} cc^*(A+\varepsilon A^*) & (c^*)^2A+\varepsilon c^2A \\ c^2A+\varepsilon(c^*)^2A^* & cc^*(A+\varepsilon A^*) \end{pmatrix}
\]

The proof of Lemma 5 is routine computation.

Lemma 6. Suppose \(C, B, D \) are non-singular. If

\[
C^*(B \oplus (-1)^nD)C = -(B \oplus (-1)^nD)
\]

and

\[
C^*(B \oplus (-1)^{n-1}D)C = B \oplus (-1)^{n-1}D
\]

then \(B \) is \(\ast \)-congruent to \((-1)^{n-1}D\).

Proof of Lemma 6. Partition \(C \) conformably:

\[
C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}; \quad \text{then}
\]

\[
C^* \begin{pmatrix} B & 0 \\ 0 & \varepsilon D \end{pmatrix} C = \begin{pmatrix} c_{11}BC_{11} + \varepsilon c_{12}DC_{21} & c_{11}BC_{12} + \varepsilon c_{12}DC_{22} \\ c_{12}BC_{11} + \varepsilon c_{22}DC_{21} & c_{12}BC_{12} + \varepsilon c_{22}DC_{22} \end{pmatrix}
\]

where \(\varepsilon = \pm 1 \).

Referring to the first condition, we have

\[
c_{11}BC_{11} + (-1)^n c_{21}DC_{21} = -B.
\]
Referring to the second condition we have
\[C_{11}^* B_{11} + (-1)^{n-1} C_{21}^* D_{21} = B. \]

If we add the above two equations together, we get
\[2C_{11}^* B_{11} = 0. \]
Thus \((-1)^{n-1} C_{21}^* D_{21} = B.\) Thus \(B\) is \(^*\)-congruent to \((-1)^{n-1} D.\)

Lemma 7. If \(T\) is as in Theorem II.3.5, and \(H = \frac{1}{2}(T+T^*),\)
\[K = \frac{1}{2j}(T-T^*), \]
then
\[
K[(K^{-1}H)^2 - \beta^2 I]^{n-1} = (2\beta)^{n-1}(B \oplus (-1)^{n-1} D) \oplus O \\
H[(K^{-1}H)^2 - \beta^2 I]^{n-1} = (2\beta)^{n-1}(B \oplus (-1)^{n} D) \oplus O
\]

Proof of Lemma 7. Recall
\[T = F \otimes (B \oplus D) + E \otimes [(\beta+j)B \oplus (-\beta+j)D] \text{ and } \beta \in \mathbb{C}. \](Refer to picture.)
\[H = F \otimes (B \oplus D) + E \otimes (\beta B \oplus -\beta D) \]
\[K = E \otimes (B \oplus D), \]
so
\[K^{-1} = E \otimes (B^{-1} \oplus D^{-1}). \]

Let \(k = \text{dim } B.\)
\[K^{-1}H = E \otimes I_{2k} + I_n \otimes (\beta I_k \oplus -\beta I_k). \]
\[N = EF \text{ is the } n \times n \text{ matrix with } 1's \text{ on the first sub-diagonal} \]
and zero everywhere else.

\[
K^{-1}H - \beta I = N \otimes I_{2k} + I_n \otimes (O_k \oplus -2\beta I_k),
\]

\[
K^{-1}H + \beta I = N \otimes I_{2k} + I_n \otimes (2\beta I_k \oplus O_k),
\]

so

\[
(K^{-1}H - \beta I)(K^{-1}H + \beta I)
\]

\[
= N^2 \otimes I_{2k} + N \otimes (2\beta I_k \oplus -2\beta I_k)
\]

\[
= (N \otimes I_{2k})(N \otimes I_{2k} + I \otimes (2\beta I_k \oplus -2\beta I_k)).
\]

Thus

\[
[(K^{-1}H)^2 - \beta^2 I]^{n-1} = (N^{n-1} \otimes I_{2k})(N \otimes I_{2k} + I \otimes (2\beta I_k \oplus -2\beta I_k))^{n-1}.
\]

\[
M = (N \otimes I_{2k} + I \otimes (2\beta I_k \oplus -2\beta I_k))^{n-1}
\]

is a \(2kn \times 2kn\) block lower triangular matrix with the diagonal blocks

\[
= (2\beta)^{n-1}I_k \oplus (-2\beta)^{n-1}I_k.
\]

Thus

\[
K[(K^{-1}H)^2 - \beta^2 I]^{n-1} = [E \otimes (B \oplus D)][N^{n-1} \otimes I_{2k}]M
\]

\[
= ((2\beta)^{n-1}B \oplus (-2\beta)^{n-1}D) \oplus O,
\]

\[
= (2\beta)^{n-1}(B \oplus (-1)^{n-1}D) \oplus O.
\]

Similarly,

\[
H[K^{-1}H]^2 - \beta^2 I]^{n-1} = (2\beta)^{n-1}B \oplus (2\beta)^{n-1}(-\beta)D \oplus O
\]

\[
= (2\beta)^{n-1}\beta(B \oplus (-1)^{n}D) \oplus O.
\]

```
Proof of Theorem 11.3.5. We shall prove (3) => (2) => (1) => (3).

(3) => (2). Suppose $Q$ is non-singular $k \times k$ such that $Q^*DQ = (-1)^n B$. Let $C = I_n \otimes (I_k \oplus Q)$. Let $P = C*TC$. Then

$$P = [I_n \otimes (I_k \oplus Q)]*[F \otimes (B \oplus D) + E \otimes [(\beta+j)B \oplus (-\beta+j)D]] [I_n \otimes (I_k \oplus Q)]$$

$$= F \otimes (B \oplus Q*DQ) + E \otimes [(\beta+j)B \oplus (-\beta+j)Q*DQ]$$

$$= F \otimes (B \oplus (-1)^n B) + E \otimes [(\beta+j)B \oplus (-\beta+j)(-1)^n B].$$

Let $c \in \mathcal{J}$ such that $c^* \neq \pm c$, and

$$M = \begin{bmatrix} cI_k & c*I_k \\ c*I_k & cI_k \end{bmatrix}$$

By Lemma 5

$$R_0 = M*(B \oplus (-1)^n B)M = \begin{bmatrix} cc*(B+(-1)^n B) & (c*)^2 B + (-1)^n \ c^2 B \\ c^2 B + (-1)^n (c*)^2 B & cc*(B+(-1)^n B) \end{bmatrix}.$$ 

Let $\mu = \beta+j$, $\mu^* = \beta-j$. Thus $-\beta+j = -\mu^*$. Then again by Lemma 5,

$$R_1 = M*(\mu B \oplus (-1)^{n-1} \mu^* B)M$$

$$= \begin{bmatrix} cc*(\mu B+(-1)^{n-1} \mu^* B) & (c*)^2 \mu B + (-1)^{n-1} \ c^2 \mu^* B \\ c^2 \mu B + (-1)^{n-1} (c*)^2 \mu^* B & cc*(B+(-1)^{n-1} B) \end{bmatrix}.$$ 

Note
\[(I_n \otimes M^*)P(I_n \otimes M)\]
\[= (I_n \otimes M^*)(F \otimes (B \oplus (-1)^n B) + E \otimes (\mu B + (-1)^{n-1} \mu B))(I_n \otimes M)\]
\[= F \otimes (M^*(B \oplus (-1)^n B))M + E \otimes M^*(\mu B + (-1)^{n-1} \mu B)M\]
\[= F \otimes R_0 + E \otimes R_1.\]

Note that if \(n\) is even, \(R_0\) and \(jR_1\) are matrices over \(\mathcal{E}\), if \(n\) is odd, \(jR_0\) and \(R_1\) are matrices over \(\mathcal{E}\). Thus let

\[U = \text{diag}(1, j, 1, j, \ldots).\]

Then

\[(U \oplus I_{2k})(F \otimes R_0 + E \otimes R_1)(U \oplus I_{2k}) = U^*FU \otimes R_0 + U^*EU \otimes R_1,\]

by Fact 2, is a matrix over \(\mathcal{E}\). This \(T\) is of type 2.

Proposition 2.1 (iv) asserts that \((2) \Rightarrow (1)\).

\((1) \Rightarrow (3).\) Suppose \(C^*TC = T^*.\) Recall \(H = \frac{1}{2} (T + T^*),\)
\[K = \frac{1}{2j} (T - T^*),\]
\[C^*K[(K^{-1}H)^2 - \beta^2 I]^{-1}C = -K[(K^{-1}H)^2 - \beta^2 I]^{-1},\]
\[C^*H[(K^{-1}H)^2 - \beta^2 I]^{-1}C = H[(K^{-1}H)^2 - \beta^2 I]^{-1}.\]

Thus
\[C^*(H + jK)[(K^{-1}H)^2 - \beta^2 I]^{-1}C = (H - jK)[(K^{-1}H)^2 - \beta^2 I]^{-1}.\]

Lemma 7 asserts that
\[H[(K^{-1}H)^2 - \beta^2 I]^{-1} = (2\beta)^{-1}\beta(B \oplus (-1)^n D) \oplus O\]
\[K[(K^{-1}H)^2 - \beta^2 I]^{-1} = (2\beta)^{-1}(B \oplus (-1)^{n-1} D) \oplus O.\]
\[ C^*(H+jK)((K^{-1}H)^2-B^2I)^{n-1}C = C^*((2\beta)^{n-1}\beta(B \oplus (-1)^nD) \oplus O)C \]
\[ + j(2\beta)^{n-1}(B \oplus (-1)^nD) \oplus O]C \]
\[ = [(2\beta)^{n-1}\beta(B \oplus (-1)^nD) \]
\[ - j(2\beta)^{n-1}(B \oplus (-1)^nD) \oplus O \]

By Fact 3, there exists \( C_{11} \) non-singular, such that
\[ C_{11}^*(B \oplus (-1)^nD)C_{11} = B \oplus (-1)^nD \]
\[ C_{11}^*(B \oplus (-1)^{n-1}D)C_{11} = B \oplus (-1)^{n-1}D \]

Thus by Lemma 6, \( B \) is \( \ast \)-congruent to \((-1)^nD\). q.e.d.

**Theorem II.3.6.** (i) If \( S = \bigoplus_{i=1}^{h} T_i^z \), with \( n_i \neq n_j \) for \( i \neq j \), where \( z = \infty \) or 0, then \( S \) is of type 1 iff each \( T_i^z \) is of type 1.

(ii) Let \( H = \frac{1}{2}(S_z + S_z^*) \), \( K = \frac{1}{2j}(S_z - S_z^*) \). Then if \( z = 0 \), \( S_z \) is of type 1 iff \( H(H^{-1}K)^{2m+1} \) is \( \ast \)-congruent to \(-H(H^{-1}K)^{2m+1} \) for \( m = 0, 1, \ldots \); if \( z = \infty \), \( S_z \) is of type 1 iff \( K(K^{-1}H)^{2m} \) is \( \ast \)-congruent to \(-K(K^{-1}H)^{2m} \).

**Proof:** The "if" parts of both (i) and (ii) are trivial. To prove the "only if" part of (i) for \( z = 0 \) it is enough to prove \( T_i^0 \) is of type 1 for \( n_i \) even (see Theorem II.3.4(i)). Assume \( n_i > n_h \) for
i < h. Write $S_0$ as $S$. If $n_1$ is odd then $T_1^0$ is of type 1.

If $n_1$ is even, then $S$ is of type 1 implies $H(H^{-1}K)^{n_1-1}$ is *-congruent to $-H(H^{-1}K)^{n_1-1}$. Also $H(H^{-1}K)^{n_1-1} = B_1 \oplus O$, so by Fact 3 $B_1$ is *-congruent to $-B_1$. Hence by Theorem II.3.4(i) $T_1^0$ is of type 1 also if $n_1$ is even. Let $H_i = \frac{1}{2} (T_i^0 (T_i^0)^*)$, $K_i = \frac{1}{2} j (T_i^0 (T_i^0)^*)$; then

$$H(H^{-1}K)^{n_2-1} = H_1(H_1^{-1}K_1)^{n_2-1} \oplus H_2(H_2^{-1}K_2)^{n_2-1} \oplus O.$$ 

Also

$$H_2(H_2^{-1}K_2)^{n_2-1} = B_2 \oplus O,$$

and (if $n_2$ is even then) $H(H^{-1}K)^{n_2-1}$ is *-congruent to $-H(H^{-1}K)^{n_2-1}$. Thus by Fact 3 $H_1(H_1^{-1}K_1)^{n_2-1} \oplus B_2$ is *-congruent to $-H_1(H_1^{-1}K_1)^{n_2-1} \oplus -B_2$. Since $H_1(H_1^{-1}K_1)^{n_2-1}$ is *-congruent to $-H_1(H_1^{-1}K_1)^{n_2-1}$, then $B_2$ is *-congruent $-B_2$.

Thus (if $n_2$ is even and hence in any case) $T_2^0$ is of type 1. If we repeat the same process by considering in like manner

$$H(H^{-1}K)^{n_i-1} \quad \text{for} \quad i = 3, 4, \ldots, h, \quad \text{then we can show each} \quad T_i^0 \quad \text{is of type 1. Thus we have shown for} \quad i = 1, \ldots, h, \quad \text{that} \quad T_i^0 \quad \text{is of type 1 if} \quad S_0 \quad \text{is of type 1. Thus we have proved (ii) for} \quad z = 0.$$

The proof for $z = \infty$ for both (i) and (ii) are similar to the above discussion. In this case we would only replace "even" by "odd" (and vice versa) and $T_i^0$ by $T_i^\infty$ and $H(H^{-1}K)^{n_i-1}$ by
Theorem II.3.7. If \( S = \bigoplus_{i=1}^{h} T_{i}^{\beta}, \infty \neq \beta \neq 0, \beta \in \mathcal{E} \), then the following are equivalent:

1. \( S \) is of type 1;
2. \( S \) is of type 2;
3. \( T_{1}^{\beta} \) is of type 1 for each \( i \);
4. \( T_{1}^{\beta} \) is of type 2 for each \( i \);

Proof: Theorem II.3.5 asserts (3) \(\iff\) (4) and Proposition II.2.1 asserts (2) \(\implies\) (1). Thus the following implications are obvious:

\[
(2) \implies (1) \\
(4) \implies (3)
\]

Thus to complete the proof we have only to show \((1) \implies (3)\).

Let \( H = \frac{1}{2} (S+S^*) \), \( K = \frac{1}{2} (S-S^*) \), \( H_{i} = \frac{1}{2} (T_{i}^{\beta}+(T_{1}^{\beta})^*) \), \( K_{i} = \frac{1}{2} (T_{i}^{\beta}-(T_{1}^{\beta})^*) \). Suppose \( C^*SC = S^* \) where \( C \) is non-singular.

Let \( P_{i} = K[ (K^{-1}H)_{1}^{2} - \beta_{1}^{2} I_{1}^{n_{i-1}} ] \), \( Q_{i} = H[ (K^{-1}H)_{1}^{2} - \beta_{1}^{2} I_{1}^{n_{i-1}} ] \); then

\( C^*P_{i}C = -P_{i} \), and \( C^*Q_{i}C = Q_{i} \). Without loss of generality, assume \( n_{i} > n_{h} \) for \( i < h \). From Lemma 7 \( P_{1} = (2\beta) (B_{1} \oplus (-1) D_{1}) \oplus Q_{1} \), and \( Q_{1} = (2\beta) (B_{1} \oplus (1) D_{1}) \oplus Q_{1} \). Apply Fact 3 to \( Q_{1} + jP_{1} \) and \( Q_{1} - jP_{1} = C^*(Q_{1}+jP_{1})C \); there exists a non-singular \( C_{1} \) such that
and
\[
C_1^*(B_1 \oplus (-1)^{n_1-1} D_1)C_1 = -(B_1 \oplus (-1)^{n_1-1} D_1).
\]

Then by Lemma 6, \( B_1 \) is \(*\)-congruent to \((-1)^{n_1} D_1\). Thus \( T_1^\beta \) is of type 1 (see Theorem II.3.5). Now,

\[
P_2 = K_1[(K_1^{-1} H_1)^2 - \beta^2 I] \oplus (2\beta)^{n_2-1} (B_2 \oplus (-1)^{n_2-1} D_2) \oplus O,
\]

\[
Q_2 = H_1[(K_1^{-1} H_1)^2 - \beta^2 I] \oplus (2\beta)^{n_2-1} \beta(B_2 \oplus (-1)^{n_2-1} D_2) \oplus O,
\]

and

\[
C*(\beta P_2 + Q_2)C = -\beta P_2 + Q_2.
\]

Applying Fact 3 to this last \(*\)-congruency, we get that

\[
\beta K_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1} + H_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1} \oplus (2\beta)^{n_2} (B_2 \oplus O)
\]

is \(*\)-congruent to

\[
-\beta K_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1} + H_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1} \oplus (2\beta)^{n_2} (O \oplus (-1)^{n_2} D_2).
\]

Also, since \( T_1^\beta \) is of type 1, we have that

\[
\beta K_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1} + H_1[(K_1^{-1} H_1)^2 - \beta^2 I]^{n_2-1}
\]
is $\ast$-congruent to

$$-\beta K_1 [(K_1^{-1}H_1)^2 - \beta^2 I]^{n_2 - 1} + H_1 [(K_1^{-1}H_1)^2 - \beta^2 I]^{n_2 - 1}. $$

Thus by Witt's Theorem, $B_2 \oplus \mathbb{O}$ is $\ast$-congruent to $\mathbb{O} \oplus (-1)^{n_2} D_2$, so $B_2$ is $\ast$-congruent to $(-1)^{n_2} D_2$. Hence $T_2^\beta$ is of type 1.

If we repeat the above process by considering $P_i$ and $Q_i$ for $i = 3, 4, \ldots, h$, then we can show $T_i^\beta$ is of type 1 for each $i$. 
III. THE USUAL COMPLEX CASE

1. General Results

In this section, we take \( \mathbb{F} \) to be the complex field and \( \mathbb{E} \) to be the real field and we consider the problem from the viewpoint of a criterion Dina Ng proved in her thesis [3].

**Proposition III.1.1.** If \( h(y) \) is a real polynomial of simple real roots \( \lambda_1, \lambda_2, \ldots, \lambda_n \) and

\[
\bigcirc = \{ [h^{(1)}(y)]^1, [h^{(2)}(y)]^2, \ldots, [h^{(n)}(y)]^n \mid j_i = 0, 1, 2 \}
\]

and \( n = \deg h(y) \), then there exist \( g_1, g_2, \ldots, g_n \in \bigcirc \) such that the \( n \times n \) matrix \( P(i,j) = (\text{sgn} \ g_j(\lambda_i)) \) is non-singular.

**Proof:** Refer to Dina Ng's thesis [3].

**Proposition III.1.2.** Suppose \( S \) is an \( n \times n \) matrix and \( K = \frac{1}{2} (S-S^*) \), \( H = \frac{1}{2} (S+S^*) \). Then

(i) if \( H^{-1}K \) is nilpotent, we have that \( S \) is of type 1 iff \( H(H^{-1}K)^{2m+1} \) is of signature 0 for \( m = 0, 1, 2, \ldots \);

(ii) if \( H \) and \( K \) are as in (i) and \( K^{-1}H \) is nilpotent, we have that \( S \) is of type 1 iff \( K(K^{-1}H)^{2m} \) has signature 0 for \( m = 0, 1, 2, \ldots \).
Proof: (i) From Theorem II.3.6(ii), $S$ is of type 1 iff
\[ H(H^{-1}K)^{2m+1} \text{ is } \ast\text{-congruent to } -H(H^{-1}K)^{2m+1} \] (for $m = 0, 1, 2, ...$).

In the usual complex case, this is equivalent to saying that
\[ H(H^{-1}K)^{2m+1} \text{ has signature } 0. \text{ q.e.d.} \]

(ii) The proof follows in a similar manner as that of (i).

Theorem III.1.3. Suppose $S$ is an $n \times n$ matrix,

\[ K = \frac{1}{2i}(S-S^*) \quad H = \frac{1}{2}(S+S^*) \quad H \text{ and } K \text{ are non-singular, and} \]

$K^{-1}H$ is similar to $-K^{-1}H$. If $p(x)$ is the characteristic polynomial of $K^{-1}H$ and $f(x) = \frac{p(x)}{g. c. d.(p(x), p'(x))}$, then $f(x) = h(x^2)$ for some real polynomial $h(y)$. Let

\[ \mathcal{O} = \{[h(1)(y)]^j_1 h(2)(y)]^j_2 \ldots [h(r)(y)]^j_r \mid j_i = 0, 1, 2 \}, \]

where $r = \deg h(y)$. $S$ is of type 1 iff $K(f(K^{-1}H))^m g((K^{-1}H)^2)$ has signature 0 for $m = 0, 1, 2, ..., n-1$ (where $n$ is the order of $S$) and all $g \in \mathcal{O}$.

Proof: ("only if") If $S$ is of type 1 then $\text{sig } Kq(K^{-1}H) = 0$ for all even polynomials $q(x) \in \mathcal{E}[x]$.

("if") Suppose $K[f(K^{-1}H)^m g((K^{-1}H)^2)]$ has signature zero for $m = 0, 1, 2, ..., n-1$ and all $g \in \mathcal{O}$. Without loss of generality, we can assume $S = S_1 \oplus S_2$, where if $H_j = \frac{1}{2} (S_j + S_j^*)$ and

\[ K_j = \frac{1}{2i} (S_j - S_j^*) \quad j = 1, 2, \text{ such that all eigenvalues of } K_j^{-1}H_j \text{ are} \]
non-real, and all eigenvalues of \( K_1^{-1}H_1 \) are real. We have shown in Chapter II that \( S_2 \) is of type 1. Therefore without loss of generality, assume \( S = S_1 \). There exists a basis for \( V \) such that \( S \) of the form

\[
S = \bigoplus_{k=1}^{p} \bigoplus_{\ell=1}^{r} \beta_{k\ell}
\]

where

\[
T_{k\ell} = F_{n_k} \bigoplus (B_{k\ell} \oplus D_{k\ell}) + E_{n_k} \bigoplus [(\beta_{k\ell} + i)B_{k\ell} \oplus (-\beta_{k\ell} + i)D_{k\ell}],
\]

and \( B_{k\ell} \) and \( D_{k\ell} \) are real diagonal matrices, with entries \( \pm 1 \).

Assume \( n_i > n_h \) if \( i < h \). Note

\[
f(x) = \prod_{\ell=1}^{r} (x^2 - \beta_{\ell}^2), \quad \text{and} \quad h(y) = \prod_{m=1}^{r} (y - \beta_m^2)
\]

From our hypothesis,

\([III. 1.1]\)

\[
0 = \text{sig}(Kf(K_1^{-1}H) - \text{g}((K_1^{-1}H)^2))
\]

\[
= \text{sig}[K \prod_{m=1}^{r} [(K_1^{-1}H)^2 - \beta_m^2]] \text{g}((K_1^{-1}H)^2)
\]

Let

\[
K_{\ell} = \frac{1}{2i} (T_{1\ell} - (T_{1\ell})^*),
\]

\[
H_{\ell} = \frac{1}{2} (T_{1\ell} + (T_{1\ell})^*).
\]
Note \((K_{i}^{-1}H_{i})^2 = (\beta_{i}^2)^2I + M\) where \(M\) is strictly lower triangular.

Thus

\[
g((K_{i}^{-1}H_{i})^2) = g(\beta_{i}^2)I + M_1,
\]

\[
\prod_{m \neq i} ((K_{i}^{-1}H_{i})^2 - \beta_{m}^2 \mathbf{I}) = h'(\beta_{i}^2)I + M_2
\]

(because \(\prod_{m \neq i} (\beta_{i}^2 - \beta_{m}^2) = h'(\beta_{i}^2)\)), where \(M_1\) and \(M_2\) are strictly lower triangular.

\[
(K_{i}^{-1}H_{i})^2 - \beta_{i}^2 \mathbf{I} = N_{n_1} \otimes I_{2k}
\]

\[
M_j(N_{n_1} \otimes I_{2k})^{n_1-1} = 0 \quad \text{for} \quad j = 1, 2.
\]

Thus

\[
[\text{III. 1. 1}] = \text{sig} \bigoplus_{\ell=1}^{r} K_{\ell}[h'(\beta_{\ell}^2)I] n_1^{-1} g(\beta_{\ell}^2) (N_{n_1} \otimes I_{2k})^{n_1-1}
\]
Recall \( K_{\ell} = E_{n_1} \otimes (B_{\ell 1} \oplus (-1)^{n_1-1} D_{\ell 1}) \).

\[
[\text{III. 1. 1}] = \sum_{\ell=1}^{r} \text{sgn}[h'_{\ell}(\beta^2_{\ell})^n_{n_1-1} g(\beta^2_{\ell})(B_{\ell 1} \oplus (-1)^{n_1-1} D_{\ell 1})] \]

Choose \( g \) (successively) = \( g_1, g_2, \ldots, g_r \) such that

\[ P(j, \ell) = (\text{sgn } g_j(\beta^2_{\ell})) \text{ is a non-singular } r \times r \text{ matrix. (See Proposition III. 1. 1.) Then } Q(j, \ell) = P(j, \ell)(\text{sgn}(h'_{\ell}(\beta^2_{\ell}))^n_{n_1-1}) \text{ is also a non-singular } r \times r \text{ matrix. Thus } \text{sgn}(B_{\ell 1} \oplus (-1)^{n_1-1} D_{\ell 1}) = 0 \text{ for each } \ell. \]

Thus

\[ \text{sgn } B_{\ell 1} = -\text{sgn}(-1)^{n_1-1} D_{\ell 1} \]

\[ = \text{sgn}(-1)^{n_1-1} D_{\ell 1} \]

Thus \( B_{\ell 1} \) is \(*\)-congruent to \((-1)^{n_1} D_{\ell 1}\) for each \( \ell \). Thus \( T_{\ell 1}^{\beta_{\ell}} \) is of type 1 for each \( \ell \).

Write

\[ S_0 = \bigoplus_{\ell=1}^{r} T_{\ell 1}, \text{ and let } S_1 = \bigoplus_{j=2}^{p} \bigoplus_{\ell=1}^{r} T_{j\ell}, \]
\[ H_0 = \frac{1}{2} (S_0 + S_0^*), \quad K_0 = \frac{1}{2i} (S_0 - S_0^*) \]

\[ H_1 = \frac{1}{2} (S_1 + S_1^*), \quad K_1 = \frac{1}{2i} (S_1 - S_1^*) \]

Then

\[ 0 = \text{sig } K(f(K^{-1}H)^{n_2 - 1} g((K^{-1}H)^2)) \]

\[ = \text{sig } K_0(f(K_0^{-1}H_0)^{n_0 - 1} g((K_0^{-1}H_0)^2)) \]

\[ + \text{sig } K_1(f(K_1^{-1}H_1)^{n_2 - 1} g((K_1^{-1}H_1)^2)). \]

Because \( S_0 \) is of type 1 and \( f(x) \quad g(x^2) \) is an even polynomial, repeating the same process as above, by replacing \( K \) with \( K_1 \), \( H \) with \( H_1 \), \( n \) with \( n_2 \), we can show \( B_{l2} \) is \(*\)-congruent to \((-1)^{n_2} D_{l2}\), for each \( l \); thus \( T_{e_l} \) is of type 1 for each \( l \). The proof of the "if" part is completed by similarly considering the fact that

\[ 0 = \text{sig } K(f(K^{-1}H)^{n_k - 1} g([K^{-1}H]^2)) \]

for \( k = 3, \ldots, p \).

**Proposition III. 1.4.** In the usual complex case, \( S \) is of type 1 iff \( S \) is of type 2.

**Proof:** It is only necessary to prove that \( S \) is of type 1 implies \( S \) is of type 2.
Suppose $S$ is of type 1. Here all roots of $K^{-1}H$ are in $\mathcal{F}$, so, in view of Chapter II, where we have shown that when $K$ and $H$ are non-singular, type 1 is equivalent to type 2, it is only necessary to consider the cases $K^{-1}H$ nilpotent and $H^{-1}K$ nilpotent. Without loss of generality, assume $S = T_1^z$ where $z = 0$ or $\infty$. In view of Theorem II.3.4, it follows that showing $S$ of type 1 implies $S$ of type 2 is equivalent to showing that, if a diagonal matrix $B$ with entries $\pm 1$ is of signature 0, then $iB$ is of type 2. Suppose $B$ is a diagonal matrix with entries $\pm 1$ and of signature 0, then without loss of generality, write $B = I \oplus -I$.

Let $c \in \mathbb{C}$ such that $c^* \neq \pm c$. Let $M = (\begin{array}{cc} c & c^* \\ c^* & -c \end{array})$; then by Lemma 5 of Chapter II

$$iM^*BM = i \begin{bmatrix} 0 & [(c^*)^2 - (-c^2)]I \\ [c^2 - (c^*)^2]I & 0 \end{bmatrix}$$

Thus $iB$ is of type 2. q.e.d.

2. Geometrical Approach to 2 x 2 Usual Complex Case

In the $2 \times 2$ case, using geometric ideas from Ballantine's work on Positive Definite Matrices [1], we can characterize the problem geometrically.

Define $\Gamma(S) = \{X^*SX \mid X \in \mathbb{C}^{2 \times 1}\}$. We say $S$ is bidefinite iff $\Gamma(S)$ is a line; $S$ is contradefinite iff $\Gamma(S)$ is the whole
complex plane.

If $S$ is non-singular, let $\text{sgn det } S = e^{2i\beta} = \frac{\det S}{|\det S|}$. If $S = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, define $\gamma \geq 0$ such that

$$1 - \gamma^2 = \frac{ad - d\bar{a} - b\bar{b} - cc}{2|\det S|}$$

If $S$ is non-singular, $S$ is $*$-congruent to one of the following forms:

$$S_1 = e^{i\beta} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad S_2 = e^{i\beta} \begin{bmatrix} 1 & 0 \\ 2\gamma & 1 \end{bmatrix}$$

$S_1$ is bidefinite; $S_2$ is contradefinite if $\gamma > 1$.

If $S$ is singular and non-zero, $S$ is $*$-congruent to one of the following forms

$$S_3 = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}, \quad S_4 = \begin{bmatrix} i\beta & 0 \\ 0 & 0 \end{bmatrix},$$

where here

$$e^{i\beta} = \frac{\text{trace } S}{|\text{trace } S|} = \text{sgn } \text{tr } S$$

**Proposition III.2.1.** The following are equivalent:

(i) $S$ is type 2,

(ii) $S$ is type 1,
(iii) if $S$ is non-singular then $S$ has real determinant, and either $\det S$ is positive or $S$ is bidefinite or contradefinite;

if $S$ is singular, then either $S$ is contradefinite or trace $S$ is real.

**Proof:** In view of Proposition III.1.4, it is enough to prove (ii) $\Rightarrow$ (iii) and conversely. We consider the non-singular cases first.

(ii) $\Rightarrow$ (iii) Suppose $S$ is of type 1, then there exists $C$ such that $C^*SC = S^*$, then $\det(CC^*)\det S = \det S^*$. Also $C^*S^*C = S$ thus $\det(CC^*)\det S^* = \det S$. Thus

$$\frac{\det S^*}{\det S} = \frac{1}{\det(CC^*)} = \frac{\det CC^*}{1}$$

.$$\therefore \det CC^* = \pm 1.$$ Since $\det CC^* = (\det C)(\det C)^* > 0$, $\det CC^* = 1$. Thus $\det S = \det S^*$. Suppose $\det S > 0$; then $e^{i\beta} = \sqrt{\frac{\det S}{|\det S|}} = \pm 1$. Without loss of generality, assume $e^{i\beta} = 1$. If $S$ is $\ast$-congruent to $S_2 = \begin{pmatrix} 1 & 0 \\ 2\gamma & 1 \end{pmatrix}$, $S$ is of type 2, hence is of type 1. Now suppose $\det S < 0$, $e^{i\beta} = \mp i$. Without loss of generality, assume $e^{i\beta} = i$. If $S$ is $\ast$-congruent to $S_2 = i\begin{pmatrix} 1 & 0 \\ 2\gamma & 1 \end{pmatrix}$, $S$ is of type 1 if $iS$ is $\ast$-congruent to $iS^* = -(iS)^*$. Let

$$L = iS + (iS)^* = iS - iS^* = \begin{pmatrix} -2 & -2\gamma \\ -2\gamma & -2 \end{pmatrix}.$$
$S$ is of type 1 implies $L$ is $*$-congruent to

$iS^* - iS = -(iS)^* - iS = -L$, which in turn implies $\det L < 0$; and

$\det L = 4 - 4\gamma^2 = 4(1 - \gamma^2) < 0$ iff $1 < \gamma^2$ iff $\gamma > 1$ iff $S$ is contradefinite. If $S$ is $*$-congruent to $S_1$ then in all cases, $S$ is bidefinite.

(iii) $\Rightarrow$ (ii) Suppose $\det S \neq 0$ and is real. If $\det S > 0$, $e^{i\beta} = \sqrt{\frac{\det S}{|\det S|}} = \pm 1$. Without loss of generality, assume $e^{i\beta} = 1$.

If $\det S < 0$, then $e^{i\beta} = \pm i$. Without loss of generality, assume $e^{i\beta} = +i$. First suppose $S$ is bidefinite, if $\det S > 0; S$ is

$*$-congruent to $(i 0)$ without loss of generality, let $S = (i 0)$.

Let $C = (0 \ 1 \ 1 \ 0)$, then $C^*SC = S^*$. Thus $S$ is of type 1. If $\det S < 0$, then $S$ is $*$-congruent to $i(0 \ -1) = (0 \ -1)$. Thus $S$ is of type 2 hence, is of type 1. Suppose $S$ is contradefinite. If $\det S > 0$, $S$ is $*$-congruent to $(1 \ 0)$. Thus $S$ is of type 2, hence is of type 1. If $\det S < 0$, $S$ is $*$-congruent to $i(1 \ 0)$. By Lemma 4 of [1], $(1 \ 0)$ is $*$-congruent to $e^{i\alpha}$ provided $\gamma > |\sin \alpha|$. Choose $\alpha = \pi/2$.

(Note: $\gamma > 1 = |\sin \frac{\pi}{2}|$.) Thus $S$ is of type 2, hence is of type 1.

$q.e.d.$

Now suppose $S$ is singular. If $S$ is $*$-congruent to $S_3$, which is contradefinite and real then $S$ is of type 2, hence is of type 1. Therefore we assume $S = S_4$. Here $S$ is $*$-congruent to
S* iff there exists \( c \in \mathbb{C} \) such that \( c^* c e^{i\beta} = e^{-i\beta} \) iff
\[ e^{2i\beta} = cc^* \] iff \( e^{i\beta} = \pm \sqrt{cc^*} \in \mathbb{R} \) iff \( S \) is over \( \mathbb{R} \). q.e.d.

The above interpretation cannot be applied to higher dimensional matrices. Consider

\[ T_1 = \text{diag}(i, -i, i, i) \]
\[ T_2 = \begin{bmatrix} 1 & 0 \\ 2\gamma & 1 \end{bmatrix} \oplus \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}, \quad \gamma > 1 \]
\[ T_3 = \begin{bmatrix} i & 1 \\ 1 & 0 \end{bmatrix} \oplus \begin{bmatrix} i & 1 \\ 1 & 0 \end{bmatrix} \]

\( \Gamma(T_1) \) is the y-axis. Thus \( T_1 \) is bidefinite. If \( S = (1 0) \), then \( \Gamma(S) \subseteq \Gamma(T_2) \). \( \Gamma(S) \) is the complex plane. Thus \( \Gamma(T_2) \) is contra-definite. \( \text{Det} \ T_3 = 1 \). But \( T_j, \ j = 1, 2, 3 \) are not of type 1, because
\[ K_j = \frac{-i}{2} (T_j - T_j^*) \] are not of signature zero.
BIBLIOGRAPHY


APPENDICES
APPENDIX I

Pictures of Matrices

\[ T_1^0 = \begin{bmatrix} jB & B \\ jB & B \\ \vdots \\ jB \\ B \end{bmatrix} \]

\[ T_1^\infty = \begin{bmatrix} B & jB \\ B & jB \\ \vdots \\ B \\ jB \end{bmatrix} \]

n_1 blocks
Let $\mu = \beta + j$, $\mu^* = \beta - j$, $\mu^* = -\beta + j$. 

\[ T^\beta_{11} = \]

\[ \begin{bmatrix}
    B & 0 & \mu B & 0 \\
    0 & D & 0 & -\mu^* D \\
    B & 0 & \mu B & 0 \\
    0 & D & 0 & -\mu^* D
\end{bmatrix} \]

\[ \beta \epsilon \mathcal{E}_F \]

\[ n_1 \text{ blocks} \]
Here we observe that any non-singular $2 \times 2$ type 1 matrix has determinant over $E$. We also make observations on fields with $-1$ as a norm.

**Proposition IV. 1. 1.** If $S$ is a $2 \times 2$ non-singular matrix of type 1, then $\det S$ is over $E$.

**Lemma 8.** If $S$ is a $2 \times 2$ non-singular matrix and $S$ is of type 1, then $S$ is $\ast$-congruent to $\begin{bmatrix} s & s^* \\ -s^* as & s \end{bmatrix}$ for some $s \in F$ and some $a \in E$.

**Proof of Lemma 8.** It has been proved earlier that $A = S^{-1}S^\ast$ is $\ast$-congruent to $A^\ast$ and $A^{-1}$. Therefore the characteristic polynomial of $A$ is $x^2 - ax + 1$, i.e., $A = \begin{bmatrix} 0 & -1 \\ 1 & a \end{bmatrix}$.

Suppose

$$S^\ast = SA = \begin{bmatrix} s_{12} & -s_{11} + as_{12} \\ s_{22} & -s_{21} + as_{22} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{21}^* \\ s_{12}^* & s_{22} \end{bmatrix}$$

Therefore $s_{11}^* = s_{12}$, $s_{21}^* = s_{12}$, so $s_{11} = s_{22}$ and $s_{21} = -s_{11} + as_{12}$. Let $s = s_{11}$. We have $S = \begin{bmatrix} s & s^* \\ -s^* + as & s \end{bmatrix}$.

If $T^{-1}T^\ast$ is similar to $A = \begin{bmatrix} 0 & -1 \\ 1 & a \end{bmatrix}$, i.e.,
if there exists a non-singular \( D \) such that \( D^{-1}(T^{-1}T^*)D = A \), then \( S = D^*TD \) has the canonical form we have just shown. Thus it is enough to consider \( A \) being a companion matrix.

**Proof of Proposition IV.1.1.** From Lemma 8, when \( S \) is a 2 x 2 non-singular type \(-1\) matrix \( S \) is \(*\)-congruent to
\[
S_0 = \begin{pmatrix} s & s^* \\ -s^*a & a \end{pmatrix}, \quad \det S_0 = s^2 + (s^*)^2 + ass^* \in \mathbb{C}.
\]
If \( C \) is a non-singular matrix, such that \( C^*SC = S_0 \), then
\[
(det C)(det C^*)(det S) = det S_0, \quad so \quad det S = (det S_0)[(det C)(det C^*)]^{-1}.
\]
Therefore \( det S \in \mathbb{C} \).

**Proposition IV.1.2.** Suppose \( S \) is an \( n \times n \) matrix over \( \mathcal{F} \), \( H = \frac{1}{2}(S+S^*) \), \( K = \frac{1}{2j}(S-S^*) \). If \(-1\) is a norm, and one of the following holds:

1. \( H^{-1}K \) is nilpotent,
2. \( K^{-1}H \) is nilpotent,

then \( S \) is of type \( 1 \).

**Proof:** From Theorem II.3.4, it is enough to show every diagonal matrix over \( \mathbb{C} \) is \(*\)-congruent to its negative. Since \(-1\) is a norm, \(-1 = a(a^*) \) for some \( a \in \mathcal{F} \); if \( B \) is any matrix over \( \mathbb{C} \), \( (aI)^*B(aI) = -B \). q.e.d.

**Proposition IV.1.3.** Here we assume \( \mathbb{C} \) and \( \mathcal{F} \) to be
finite fields, and $S$, $H$, and $K$ are as defined in Proposition IV.1.2. If the following holds:

(i) $H^{-1}K$ and $K^{-1}H$ are not nilpotent.

(ii) $K^{-1}H$ is similar to $-K^{-1}H$ and all eigenvalues of $K^{-1}H$ are in $\mathcal{E}$, then $S$ is of type 2, hence is of type 1.

**Proof:** In view of Theorems II.3.2, II.3.3, II.3.4, II.3.5, and II.3.7, it is enough to show that every diagonal matrix over $\mathcal{E}$ is $\ast$-congruent to any diagonal matrix of the same order over $\mathcal{E}$.

Let $B = \text{diag}(\epsilon_1, \epsilon_2, \ldots, \epsilon_k)$, $\epsilon_i \in \mathcal{E}$. Since $\mathcal{E}$ and $\mathcal{F}$ are finite fields, every element in $\mathcal{E}$ is a norm. Let $a_i \in \mathcal{F}$ such that $a_i a_i^{-1} = \epsilon_i$. Let $C = \text{diag}(a_1^{-1}, a_2^{-1}, \ldots, a_k^{-1})$ then $C \ast BC = I_k$.

Thus every diagonal matrix over $\mathcal{E}$ is $\ast$-congruent to the identity matrix. q.e.d.

**Proposition IV.1.4.** Here $\mathcal{E}$, $\mathcal{F}$, $S$, $H$ and $K$ are as defined in Proposition IV.1.3. Suppose one of the following holds

(i) $H^{-1}K$ is nilpotent,

(ii) $K^{-1}H$ is nilpotent.

In view of Theorems II.3.3 and II.3.6, we may, without loss of generality, assume $S = T^z$, $z = \infty, 0$. (Refer to pictures in Appendix I.) Then the following holds:

(i) if $z = 0$, (recall $S = T^0 = (E_n + jF_n) \otimes B$, where $B$ is a diagonal matrix over $\mathcal{E}$) then
(a) when \( n \) is odd, \( S \) is of type 2,

(b) when \( n \) is even, \( S \) is of type 2 iff \( \dim B \) is even;

(ii) if \( z = \infty \) (recall \( S = T_n^\infty = (F_n + jE_n) \otimes B \), where \( B \) is a diagonal matrix over \( \mathcal{E} \), then

(a) when \( n \) is even, \( S \) is of type 2

(b) when \( n \) is odd, \( S \) is of type 2 iff \( \dim B \) is even.

Proof: (i) (a) Refer to Theorem II.3.4.

(b) In view of Theorem II.3.4, it is enough to show that if \( B \) is a diagonal matrix over \( \mathcal{E} \), then \( jB \) is of type 2 iff \( \dim B \) is even. Suppose \( \dim B \) is even. In the proof of Proposition IV.1.3, we have shown that every diagonal matrix over \( \mathcal{E} \) is *-congruent to any other diagonal matrix over \( \mathcal{E} \) of the same order and rank. If \( \dim B = 2m \), \( m \geq 1 \), without loss of generality, assume \( B = (1, -1, 1, -1, \ldots, 1, -1) \); let \( C = \text{diag}(C_0, C_0, \ldots, C_0) \), then \( C*BC = \text{diag}(D_0, D_0, \ldots, D_0) \) where

\[
D_0 = \begin{bmatrix}
0 & (c*)^2 - c^2 \\
(c^2 - (c*)^2) & 0
\end{bmatrix}
\]

Thus \( jC*BC = C*jBC \) is over \( \mathcal{E} \). Thus \( jB \) is of type 2. Conversely, suppose \( \dim B \) is odd and \( jB \) is of type 2. I.e., there
exists a non-singular matrix \( C \) such that \( C^* j B C = D \), and \( D \) is over \( \mathcal{E} \). Thus

\[
(det C^*) det(jB)(det C) = j^n(det B)(det C)^*(det C)
\]

\[= det \ W \]

which is over \( \mathcal{E} \). But \( n \) is odd, so \( j^n \) is not over \( \mathcal{E} \). Thus we have a contradiction; so \( jB \) is not of type 2.

(ii) The proof is similar to that of (i). q.e.d.

**Corollary 1.** If \( \mathcal{E} \) and \( \mathcal{F} \) are finite fields, \( S, H, K \) are as Proposition IV. 1. 4, and if one of the following holds:

(i) \( H^{-1}K \) is nilpotent

(ii) \( K^{-1}H \) is similar to \( -K^{-1}H \) and has all its eigenvalues over \( \mathcal{F} \), then \( S \) is of type 1.

**Proof:** Refer to Propositions IV. 1. 2 and IV. 1. 4.

**Corollary 2.** If \( \mathcal{E} \) and \( \mathcal{F} \) are finite fields, \( S \) is a 2 x 2 matrix over \( \mathcal{E} \) such that if \( H = \frac{1}{2}(S + S^*), \ K = \frac{1}{2j}(S - S^*) \), the pencil \( \lambda H + \mu K \) is non-singular, \( K \) is non-singular, \( K^{-1}H \) is similar to \( -K^{-1}H \), then \( S \) is of type 2.

**Proof:** Since the characteristic polynomial of \( K^{-1}H \) would be of the form \( x^2 - c \), where \( c \in \mathcal{E} \). Since \( \mathcal{E} \) is finite, \( \mathcal{F} \) is
the only quadratic field over \( \mathbb{Q} \), thus it contains all the roots of all second degree polynomials. So we can apply Propositions IV.1.3 and IV.1.4.