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MULTI-VARIATE MORPHOLOGICAL FILTERING
WITH APPLICATIONS TO COLOR IMAGE PROCESSING

1. INTRODUCTION

1.1 Motivations, Directions, and Contributions of this Study

Mathematical morphology, which was developed in early 1960's
by Matheron and Serra, has been used for numerous image processing
and analysis applications. Morphological filtering has proved to be an
indispensable technique for the development of vision system
algorithms. There are several reasons for the popularity of
mathematical morphology, including the following:

(1) Morphological filters have the ability to filter out wide-band
noise while preserving well-defined signal discontinuities or fast
transitions; this can not be accomplished using a linear filter.
(2) Mathematical morphology allows to quantify the shape of a
signal. This is an important property since the identification of
objects and their features is related directly to shape matching;
using the shape concept is a natural approach to pattern
recognition.
(3) Morphological algorithms can easily be implemented for
parallel computers (e.g. cellular logic computers), thus allowing
very fast processing; references for parallel computers with the
capability of performing morphological operations are listed in
[9].

Mathematical morphology was originally developed for single-
component signals. The current investigation is directed at the
systematic extension of mathematical morphology to multi-variate
signal analysis. Reported results have been based upon separate
application of morphological operations to each component of a multi-
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variate signal. From the current study, it may be observed that
separate morphological operation for each signal component may yield
poor results when the signal components are correlated. To address
the latter problem, two approaches have been developed. The first is
based upon the determination of a mapping method which provides
uncorrelated signal components. The second one is to generalize the
mathematical morphology for multi-variate signals. The basic research
direction undertaken for these two approaches is summarized in
Figure 1-1.

Morphological Filtering

I

Multi-Variate Signal Analysis
i

Multi-Variate Morphological Filtering

#
i

Direct Approach

Matrix
Morphology

Multi-Variate
Morphology

#
Two-Stage Processing

i
Coordinate Transformation

(NAD-CVM)

V

1---Morphological Measure

Sample Variance

Separate Component Operation

I

Experiments

Figure 1-1 Basic research direction.

In [26], an attempt is made to extend the current concept of
mathematical morphology (i.e., scalar morphology) to a matrix
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morphology formalism. An image matrix was introduced as an array of
separate images, as well as a structuring element for an image matrix.
The umbra of a matrix was defined as an array of each component
umbra. Thus matrix morphology is a method based upon separate
morphological operations applied to each of the signal components.
However, a principal difficulty in extending mathematical morphology
to multi-variate signals is -- since basic morphological operations are
based on maximum and minimum operations -- that the concept of
ordering in signal range space must be preserved. This generalization
of the ordering of real-line to a multi-dimensional space has not been
fully studied, and only so-called partial ordering has been achieved. In
this case, concepts of convex, cone-like set inclusions are potentially
usable, but the complicated theory underlying this approach has
obviated arrival at useful applications.

Therefore, for the current investigation attention was directed
toward methods for processing signals in two stages. First, for
convenient implementation of the morphological point of view,
decorrelation of the signal components was performed, following
which morphological operations were used to filter the decorrelated
components separately. The principal component, or Karhunen-Loeve
method, is a well known transformation which uncorrelates signal
components. It should be noted that this method, although optimal
with respect to representation of multi-variate signals in reduced
dimensionality coordinates, is not necessarily optimal with respect to
separation of pattern classes. The latter is important to the solution of
the feature extraction problem. This drawback is incurred since a
multi-variate signal is considered as single-class data.

Numerous mapping methods have been proposed for
generalization of the Karhunen-Loeve method to cope with the
problem of multi-class discrimination, particularly in the field of
statistical pattern recognition. One approach, proposed by Fukunaga
and Koontz [5] for the two-class problem, consisted of the use of a
normalization process prior to application of principal components
analysis. The fact that the so-called best feature for the analysis of one
class, and the so-called poorest feature for the analysis of the second
class, can be represented within the same component, has motivated
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efforts to adapt the normalization process to morphological analysis.
Then, following normalization, morphological operation by an
appropriate structuring element can be used to extract information
from each class selectively; that is, the essential shapes of one class
are preserved while the irrelevant shapes of the second class are
removed. The notion of selective morphological operation is studied
here by relating sample variance and the performance of
morphological information extraction to the average height of opening.

The mapping method, proposed in [5] is based on a
normalization and simultaneous diagonalization of two autocorrelation
matrices (NAD-CRM). Since the autocorrelation matrix is calculated
by combining the covariance matrix with the mean vector, the NAD-
CRM method provides maximum discrimination of variances and
means of two classes. However, in the sense that for the best
morphological separation, the maximum ratio of sample variances
must be sought, this has not proved to be a desirable method. For this
reason, the normalization and simultaneous diagonalization of sample
covariance matrices (NAD-CVM) is proposed. In general, methods of
this class have not received adequate attention as generalizations of
the Karhunen-Loeve method.

Some of the useful properties of NAD-CVM include:
(1) The eigenvalues, obtained by the process of normalization
followed by the simultaneous diagonalization of sample
covariance matrices, provide an interpretation of sample
variances.
(2) The eigenvectors for the normalized covariance matrix from
one class are identical to those from the second class, and all
eigenvalues are bounded by 0 and 1. Moreover, the sums of the
corresponding eigenvalues are equal to one.
(3) There is an unsupervised NAD-CVM algorithm, which
requires only one class sample covariance matrix to be known a
priori.

When the properties (1) and (2) are combined, the NAD-CVM method
can be used to produce an optimal signal component with maximum
discrimination of sample variances (i.e., maximum ratio of sample
variance from one class to the second class). Property (3) enables the
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implementation of the NAD-CVM algorithm for a variety of two-class
problems. The basic limitation of NAD-CVM is that it cannot be
generalized to multi-class problems. Nonetheless, since an image can
often be considered as a combination of object features and
background features, respectively, Class 1 and 2, it is a useful
mapping technique for multi-variate image analysis.

Morphological opening and closing operations provide selective
filtering property, that is, they filter out shapes which do not fit
structuring element while preserving those shapes which do resemble
the structuring element. This property is attractive for the purposes
of image processing and analysis. The effectiveness of the selective
filtering by the use of the NAD-CVM method can be maximized,
providing component with a maximum ratio of the sample variance of
the object (which contains useful geometrical information) to the
sample variance of the background (which contains irrelevant shapes).
Furthermore the relationship between variance and average height can
be used for the selection of a proper structuring element in a
morphological filter.

In combination, the two-class separation property,
morphological measure interpretation, and the ability to conduct an
unsupervised implementation justify the effort of applying NAD-CVM
mapping method to processing multi-variate signals. For two-class
multi-variate signal analysis problems, there are numerous applications
for which morphological filtering may be used. For example, to
develop these concepts for the present study, the RGB color images of
wooden boards were used, each with a defect, such as blue stain, an
intergrown knot, or a spike knot. The performance of a
morphological edge detection using open-close smoothing was
experimentally examined. The quality of binary edge image was
judged by the amount of detail provided in the object region (i.e., the
wood defects) and lack of the detail in the background (i.e., among the
wood grains). The problem of detecting blue stains provided the
original motivation for the study of multi-variate (i.e., color) image
analysis methods. Since the distribution of graylevels and texture of
blue stain are similar to those of wood grains, blue stains cannot be
easily detected using grayscale image. In case of blue stain detection,
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separate operations for each RGB color image plane were shown by
experimentation to be ineffective. However, a reasonable binary edge
image were obtained using the NAD-CVM method, at the same time
demonstrating the inadequacy of results obtained from the application
of the NAD-CRM and Karhunen-Loeve methods. In case of knots
detection, the results obtained by NAD-CVM method were similar to
those obtained from the use of NAD-CRM, but at the same time were
better than those obtained from the use of grayscale, RGB
components, and Karhunen-Loeve method.

1.2 Thesis Organization

References to existing results on the mapping methods,
mathematical morphology, and color image analysis are provided in
the first sections of Chapter 2, 3, and 4, respectively. In Chapter 2,
the properties of the principal components method are reviewed, the
derivation and the properties of the NAD-CVM method are presented,
and relevant mathematical results for an unsupervised NAD-CVM
algorithm are discussed. Specifically, the mapping technique
discussed in Section 2.2 are related to the mathematical morphology
concepts for multi-variate signal analysis. Chapter 3 is initiated with a
review of mathematical morphology, and an extension of grayscale
morphology to multi-variate signal is proposed. The application of this
technique produced different results than when separate
morphological operations were conducted on each component. So-
called multi-variate morphology is then introduced, using a
generalization of the umbra concept, and sample variance is related to
the properties of structuring elements, thus establishing a linkage
between mapping techniques and mathematical morphology. In
Chapter 4 color coordinate systems and the basic concepts of color
image analysis are reviewed and the experimental results are
presented. The conclusions derived from this investigation, as well as
suggestions for future research, are presented in Chapter 5.
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2. COORDINATES TRANSFORMATION TECHNIQUES
FOR PREPROCESSING OF MULTI-VARIATE SIGNALS

Transformation of coordinates and reduction of dimensionality
are two important issues in multi-variate signal analysis. There are
numerous coordinate transformation (or mapping) techniques for
pattern analysis [23]. Those mapping techniques can be divided into
two categories, linear and nonlinear. Nonlinear mapping methods may
be highly suitable in specific cases, however they lack generality in
both, the theory and applications. Here the transformation techniques
are used only as a vehicle to generalize morphological filtering. For
this reason only linear transformation methods are investigated in this
research. There are two basic linear transformation techniques which
depend on a specific criteria of optimization :

(1) minimization of the mean-square reduced dimensionality
representation error this technique is called principal
component method or Karhunen-Loeve expansion;
(2) generalized declustering method, which finds the projection
direction to maximize a performance criterion; depending on
the criterion used this technique is known as Fisher's
discriminant method, optimal discriminant plane method, or
declustering method [31], In [30].

Here, the main objective of coordinate transformation is to
maximize the separation between the object of interest and the
background, which represents no interest from the signal analysis
point of view. For morphological analysis purposes, maximun
separation of sample mean vectors is not important, because
morphological edge and boundary detection is not related to sample
means of the object and the background. Instead, the morphological
filtering is related to the local data structure within support region of
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the structuring element. For that reason, generalized declustering
method is not optimal either, since its criterion includes a global
between-class scatter matrix. Thus our approach to coordinate
transformation for morphological analysis focuses on principal
component method. This method provides an optimal local data
structure separation, in the sense that sample variance depends on
structuring element selection. This is why the normalization and
diagonalization of sample covariance matrices (NAD-CVM) method is
proposed here rather than normalization and diagonalization of sample
autocorrelation matrices (NAD-CRM) method, (Fukunaga and Koontz
[51).

2.1 Principal Component Method

The basic idea of principal component method is to describe the
dispersion of a set of n points in p-dimensional space by introducing a
new set of orthogonal coordinates so that the sample variance of the
given points with respect to the new coordinates are in descending
order of magnitude. Thus the first principal component is such that
the projection of the data points onto it has maximum variance among
all possible coordinates, the second principal component has
maximum variance subject to being orthogonal to the first principal
component, and so on. The underlying concept of principal
component method is based on the discrete Karhunen-Loeve
expansion.

2.1.1 Review of Principal Component Method

Let x(i)e RP be a p-dimensional observation vector, and let the
number of observation be n, i.e., i=1,2,,n. Here we do not consider
any randomness about observation. Define the sample mean and
sample covariance as follows :



1Ia =L(i) (sample mean), (2-1)n
i=1

ji..
K = i-

-1
I (x(i) - x (x(i) x)

T
(sample covariance),

i=1

where T denotes transposition.

(2-2)

9

The principal component method consists of :

(1) determine a normalized transformation vector, 01, 01T01=1,
such that the linear combination, 01Tx(i), i=1,2,,n, has
maximum sample variance in the class of all linear combinations;
(2) determine the j-th normalized transformation vector, 0J,
0iT0j=1 such that the linear combination 4/.1TX (i), i=1,2,,n;
j=2,3,, has maximum sample variance in the class of all
normalized linear combinations of x(i) orthogonal to
1Tx(i), 02Tx(i), ... 4:01.1Tx(i).

The last step is repeated until determining Op.
For a given arbitrary p-dimensional vector 0, sample variance of

0Tx(i), i=1,2,,n, can be written as

2
1 n T T

y ( 0 x(i) 0 x(i) ) ,
n- 1

1=1

where

T 1 c--411

(I) X(i) = 2., (1) X(i)
n

1=1

Equation (2-3) can be rewritten as

1 4.1, T T T

n-1
L (41 X(1) - (I) X) =10 K 4)
i=i

(2-3)

(2-4)

(2-5)



10

Thus the problem of finding 01 is equivalent to determining a nonzero
01 such that the ratio (Rayleigh quotient) OITIE 01 /4)1T.1 is maximized.

It is well known that maximum value of this ratio is the largest
eigenvalue Xi of the matrix K, and that 01 is a normalized eigen-
vector corresponding to Xi. Similarly the solution of Oi, i=2,,p is the
eigenvector corresponding to Xi , i=2,,p, of K and (NTK /4);r4),

=
Since the matrix K is nonnegative definite and symmetric,

diagonalization of K can be always achieved using the normalized
eigenvector matrix (I) , such that CDT(I) = I and

(DT li frto = A = diagal, X2, ., Xp) , (2-6)

where (I) = [01 102 I I Op], 4)i is an eigenvector corresponding to the
eigenvalue Xi ,and the matrix I denotes the identity matrix. Without
loss of generality, the eigenvalues, Xi's, are arranged in descending
order i.e. Xi Z X2 z Z X

P. IVI)Note that the matrix OT , is the sample
covariance matrix of y = CDTX. The transformation OkTx(i), i=1,2,,n;
k=1,2,...,p, is called the k-th principal component. Thus the principal
component method corresponds to the diagonalization of sample
covariance matrix. An equivalent approach is known as the discrete
Karhunen-Loeve expansion. The dimensionality reduction of principal
component method, which is discussed in the next section, is mainly
based on the properties of the discrete Karhunen-Loeve expansion.

2.1.2 Properties of Principal Component Method

(1) Dimensionality reduction property

Consider the transformation,

y(i) = PTx(i), i= 1 ,2, ,n, (2-7)

where the vectors a and y are p-dimensional vectors, and pxp matrix
P is the transformation matrix, such that P = [p1 I p21 I pp), and PTP =
I. Note that y(i) is an orthogonal transformation of x(i).
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Suppose that we use only k<p components of vector y(i), to
reconstruct x(i), i=1,2,,n, replacing those components of y(i) which
we do not calculate with the preselected constants as follows :

k
X(i) = I yj(i) Pj + i ci pi

j=i j=k+1
(2-8)

In (2-8) yj(i) denotes the j-th component of y(i). The corresponding
reconstruction error can be defined in the mean-square sense as :

2 n
E =n-1 I 1 x(i) _ x(1)12

i=1

, n
=

p T'.l. I ( I I (yj(i)-Ci)(311)-C1)Pj pl)
1=1 j=k+11=k+1

E
p/= 1 (yj(i) -C)

2

w1 /
n

= I (y)(i) - c) 2.
n-1 .A+1

(2-9)

The optimum choice of 9 to minimize E2 is given by setting ac2/aci = 0,
which yields ci = (1/n) E1=1n yj(i) II= yi , j=k+1,,p. Consequently we
can rewrite E2 as

E I (
2

1E
2

= 3rj(i)-37))n-1 /
1=1j=k+1

= I I Pj (x(i)-x)(x(i)-x) Pj
n-1 t=lj=k+1

21 T
= L., Pi pi.

j=k+1
(2-10)

Now the problem is to find the optimal pits which minimize mean-
square reconstruction error E2 . It is well known that the eigenvectors
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of the matrix li minimize c2 over all choices of orthonormal basis
vectors, i.e., pi = 4:. Using Equation (2-6), the minimum mean-square
error is

2 p
C = 1 21 .

j=k+1
(2 1 1)

Note that if yi is replaced by a constant, then the mean square error
increases by Xi. Therefore given dimensionality reduction k, the
minimum mean-square reconstruction error can be achieved by taking
the first k principal components.

(2) Geometric interpretation

The equation :

(x-1)TK-1 (x -x) = d , (2-12)

for nonnegative values of d, defines a family of concentric ellipsoids in
the p-dimensional space of x. The principal component transformation
of the data is the projection of observation data onto the principal axes
of this concentric ellipsoid family. The two-dimensional case
illustration is shown in Figure 2-1. The original coordinates (x1,x2),
are transformed by a shift of the origin to the sample mean (xl,x2) ,

followed by a rotation about this origin that yields the principal
component coordinates (yr 3r2)
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Figure.2-1 Geometric interpretation of principal component method.

2.2 Mapping Technique Using Normalization and Simultaneous
Diagonalization of Sample Covariance Matrices (NAD-CVM)

2.2.1 Basic Properties of NAD-CVM Method

The mapping reviewed in Section 2.1 is also called the total
principal component mapping, since the projection axes are
computed from the total covariance matrix of a given data set. It is
noted that although the total principal component mapping is optimal
with respect to fitting data, it is not necessarily optimal with respect
to separating pattern classes as far as feature extraction problem in
pattern recognition is concerned. This suggests that we need another
mapping technique which satisfies our objective, i.e., the maximum
separation between the object and the background.

There are numerous separation techniques suggested in the
literature [23],161, [1]. Fukunaga and Koontz [5] proposed a
normalization process, prior to applying principal component
mapping, in order to extract the important features for separating two
pattern classes. The normalization process provides eigenvectors
which "best" fit one class and are the "poorest" for representing the
other class. The fact that the best feature and the poorest one can be
represented in one coordinate, motivates the effort to adopt this
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normalization process for morphological data analysis. This property is
convenient since we use the same structuring element for both classes
in one stage of morphological operation. In [51 the transformation
vectors are determined by the normalization and diagonalization
process (described in the next section) of two autocorrelation
matrices (NAD-CRM). Sample autocorrelation matrices are defined as
follows :

1 (D (D (D (j = 1,2 ),
T

xR= x (i)x (i) = Ki + xn1.
1=1

(2-13)

where Rj, Hi, x0), ia) and nj denote sample autocorrelation matrix,

sample covariance matrix, sample vector, sample mean, and number of
samples in the j-th class respectively. It should be noted that the
transformation vectors of the sample autocorrelation matrices are
different from those of sample covariance matrices. The sample
autocorrelation matrices are used to select features with respect to
the discriminatory potential of both, the class sample means and the
class sample variances. Accordingly this mapping will weaken the
discriminatory power between class sample variances in exchange for
adding the discriminatory power between class sample mean vectors.
This makes the NAD-CRM mapping not optimal in the sense that the
transformation vectors are not principal axes. Hence we propose
NAD-CVM mapping whose transformation vectors are principal axes.
The term principal axes refers here to the generalized eigenvalue
problem (Equations (2-34) or (2-35)), while the term principal axes
used in Section 2.1.2 refers to the standard eigenvalue problem.
Eliminating the discriminating power of class sample means is
justified in morphological analysis as explained in the introduction of
this chapter.
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2.2.2 Derivation of NAD-CVM Method

Let S1 and S2 be the weighted sample covariance matrices of
Class 1 and Class 2, respectively :

Si = milli (i=1,2), (2-14)

where
Iii is the (pxp) sample covariance matrix of Class i, and
oh is a weight of Hi , oh z0, col +co2 =1.

Then the sample covariance matrix of the mixture of both classes So ,

can be written as :

So = S1 + S2 . (2-15)

The basic properties of normalization and simultaneous
diagonalization are as follows :

Simultaneous diagonalization of the matrices So and Si (or S2)
by the process of normalization of the matrix So provides set of
orthogonal eigenvectors which are also eigenvectors of S2 (or
S1), and the sum of the eigenvalue matrices (as defined by
Equation (2-6)) of the both classes is the identity matrix.

Sample covariance matrix is by definition symmetric. We assume that
sample covariance matrix is positive definite without loss of generality,
since the eigenvalues (which have interpretation of sample variances
of principal components) equal to zero can be eliminated by
eliminating the components which correspond to those eigenvalues.
Thus So is assumed to be positive definite and we can simultaneously
diagonalize the matrices So and S 1 by a congruence transformation
matrix C , such that

CSoCT=I andCSiCT=Ai, (2-16)
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where the matrices I and Al denote the identity matrix and a diagonal
matrix respectively. Fukunaga and Koontz [5] showed that Sc, and S2
can be also simultaneously diagonalized by the same matrix. C , i.e. :

CS2CT=A2.

Furthermore, from Equations (2-15), (2-16), and (2-17),

Al +A2 =I.

(2-17)

(2-18)

The matrix C , which satisfies Equations (2-16) and (2-17) can be
determined by the following process:

Since So is positive definite, there exists a transformation
matrix P , such that

P So PT = I .

Let us define two matrices Qi and Q2 , as follows :

Q1 = P S1 PT and fit2= P S2 PT

(2-19)

(2-20)

Then Q 1 + Q2 = I, and the eigenvalues and eigenvectors of CI I are
given by

J(1) J(i) 4)j(.) (J =1,2,...,p), (2-21)

where the superscript (1) indicates Class 1. Assuming that the
eigenvalues are in the descending order, i.e.,

xi") x2") A ) (1) > 0.

Then the eigenvalues and eigenvectors for the Class 2 are

Q2 0;2) Q1) 40.1(2) xj(2) j(2)

(2-22)

(2-23)



From Equation (2-23) we have,

Q 0.1(2) - j(2)) 4)j(2)

Thus from Equations (2-21) and (2-24),

(2) (1)
= 4>j

and

(2-24)

for j=1,2,,p, (2-25)

(1)_ (2)
"i Ai for j=1,2,,p (2-26)
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Equations (2-25) and (2-26) show that the eigenvector corresponding
to the largest eigenvalue for Class 1 has the smallest eigenvalue for
Class 2, and so on, i.e..

and
1 > Xi") z X2(1) Z X.p(1) > 0 for Class 1, (2-27)

1 > xp(2) 1- xp(i) > > 1- xi(i) > 0 for Class 2.
(2-28)

Let (I) be a (pxp) matrix composed of the eigenvectors ,i.e.,

(13= [011021.. Pp]

Then the matrix

C =cbTP

satisfies Equations (2-16), (2-17), and (2-18).

(2-29)
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2.2.3 Useful Properties of NAD-CVM Method

(1) Sample variance interpretation of an eigenvalue

Let us consider the following transformation using matrix, C
defined by Equation (2-29) :

yU)(i) = CT x0)(i), j= 1,2 ; i=1,2,,n1 (for Class 1) or i=1,2,,n2
(for Class 2) (2-30)

where the vectors x and y are p-dimensional vectors, and C =
(c11c2IIcp]. Let y() = I y1 ti) y20) yp0)1T. Then the sample variance of
yk0) for the Class j can be written as

1 tykokos_yko )).2=x)
n-. k

J 1=1

(2-31)

Since Xic") satisfies 0 < Xk(1) < 1, if we select the eigenvector c1 as the
transformation vector, we get the maximum ratio of the sample
variance of Class 1 to that of Class 2, i.e., A.1(1)/1 - 21(1). Consequently
this transformation yields the best component for the Class 1 and the
poorest for the Class 2 in the sense of the sample variances ratio. On
the other hand, the transformation by the eigenvector cp provides
the maximum ratio of Xp(1)/1 Xp(1), and is the best component for
the Class 2 and the poorest for the Class 1. Therefore the best
selection of the transformation vectors is cl, c2, for Class 1, cp, cp_1,

for Class 2, and cl, cp, c2, cp_1, for both Classes 1 and 2.
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(2) 2-dimensional geometric interpretation

The following four figures (Figure 2-2a - 2-2d) show the process
of NAD-CVM mapping using the ellipsoid interpretation.

1(
10 2.5 -1.5

1=1.[04.11 . '2= 1.5 and
1 ' (02= 0.5 are used. To show the

interpretation of sample variances, sample means of each class are set
at the origin.

(3) Unsupervised NAD-CVM algorithm

In general, we do not know a priori Hi and wi as used in
Equation (2-14). Here we remove the assumption about knowing oh,

and refer to such situation as an unsupervised NAD-CVM algorithm.
The following lemmas provide characterization of the unsupervised
NAD-CVM algorithm.

Lemma 2.1
Assume that K2 is known, and Ho (the sample covariance matrix

of the whole image) can be calculated. Then the transformation matrix
(DTP is given by

(DTP K2pT A

(2-32)

(2-33)

where (DT(D= I, and A is a diagonal matrix whose diagonal elements are
the eigenvalues of the matrix P K2 PT.

Proof.
Since So = H0, the matrix P in Equation (2-32) is the same as

the matrix P in Equation (2-19). The matrices PII2PT and P(o)21:(2)PT
share the same normalized eigenvectors satisfying : (DT(D = I. Therefore
the transformation matrix (DTP is identical to the matrix defined by
Equation (2-29).
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Figure 2-2a Ellipsoid inter-
pretation of K1 and K2 .

Figure 2-2b Generation of So .

Figure 2-2c Generation of Q1 . Figure 2-2d Relationship between
Q1 and Q2
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Lemma 2.2
Let It1 and Ii2 be symmetric and positive definite. Then the

transformation matrix (DTP is invariant with respect to w1 ,w2, where
co1>0, co2>0, and col+ co2 =1.

Proof.
Let Ho = collEi + w2K2 ,wi ,co2> 0 and col+ co2 =1. Then the

problem of finding the transformation matrix C = (DTP is equivalent to
the solution of the following generalized eigenvalue problem :

or
(wilci) ci = 41E0 ci,

(o2K2) ci = xiKo ci

(2-34)

(2-35)

where the vector ci is a generalized eigenvector corresponding to the
eigenvalue Xi, and forms the i-th column of the matrix C. We have
proven in Section 2.2.2 that Equations (2-34) and (2-35) share the
same eigenvectors. It remains to show that the two generalized
eigenvalue problems, (coilEi) ci = 24E0 ci and (wilti) ci' = Xi'Ho ci'
share the same eigenvectors, i.e., ci = ci' for any i=1,2,,p, 1>wi'>0,
and Ho' = wilt' + (1-w1lli2 .

Since 1E0 is positive definite, the generalized eigenvalue problem
is equivalent to the standard eigenvalue problem ( lio-lwilti )ci =X, ci.
Let coif be any positive real number such that col* wi, and wi'<1, and
let co2'= 1- w 1' >0. To show that the matrices (110-1w11E1) and
(1Ecr1wilEi) have identical eigenvectors, it suffices to show that these
two matrices commute [32, p.1931. To show that

OK - 1 K 1) Mot - 1 ifici) (Ho'-lwilKI HK0 1 )

we need to prove that lio-1K1K0,-1= Ko,-1KiK0 1. Since Ii1 is positive
definite, col and col' are scalars, and Ho, IE0', It1 are invertible, it
suffices to show that Holi1 -1K0 KoKi-i--n. 0.. Replacing lic, with wilEi
+w2K2 and Ho' with wilti +w2'li2 we have :
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Ho'll1-1H0 = ( +co2H2 )1E1-1 +co2H2)
= + co2'co1H2+ col'co2H2 + m2'0)21E21E1-11E2,

(2-36)

= (0)1K1 +0)282 )K1-1( +0)21E2 )

= (01'0011 + W2'cO1K2 + (011(.02K2 + CO21(02K2K1-1K2 ,

(2-37)
which proves the desired equality.

Lemma 2.3
Let col and col' be such that
Ho = co1H1+0)21E2

and
Ho' = +co2'lt2 .

Consider the generalized eigenvalue problems :

(co11E1) ci = Ailto ci and = ci ,i=1,2,...,p.
Let Xi Av >0 .

If col < col' , then Xi < Xi for all i.

Iargg.
For col we can rewrite the generalized eigenvalue problem as
( ci.

Since Ho and H1 are both positive definite, we have :
( )ci = (1/4 ci.

Replacing Ho with co1H1 +co2H2 we have :
(I + ((1- col)/ coi)H1-1H2 )ci = (1/Xi) ci,

which gives
)ci = (o)1/1- col )( (1/X1)-1) ci . (2-38)

For col' the generalized eigenvalue problem can be rewritten as
(I + ((1- col' )/ co1lli1-1H2 )ci = (1/24') ci . (2-39)

Eliminating (H1 -1H2 )ci from Equation (2-38), (2-39) yields :

wi 1 14°1' (1)1 1-X.ci+( )+( )( 1)c, = [1+( )+(--)(---1)[ci
(01' 1wi Xi



1-o1' ol 1-X. _1 oi'(1-oi)XiThus =

1-wr Xi (.1)11(1-co1)Xi+ (1410(01(1-Xi)

and

2
(.01V-001)Ar(01'(1-(01)A. 0-00031(1Xi)a'i

W1t(1-031)Ai+ (1-000)1(14.1)

241-X0)1'401)

co i'(1-co i)Xj+(1-col')coi(1-Xi)
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Since 0< Xi <1, co 1 > 0, and co 1' > 0, the denominator of the above
equation is positive. The numerator is positive iff > col which shows
that Xi' > Xi.

Lemma 2.1 can be used constructively when the sample
covariance matrix of the background is known a priori. Lemma 2.2
implies that we do not need to calculate or estimate coi and co2 as long
as we know the sample covariance matrices Hi and K2 . However,
according to Lemma 2.3 the eigenvalues depend on wl. Together, the
above results show the feasibility of NAD-CVM implementation. An
application of these properties to defect detection problem will be
discussed in Chapter 4 .

2.2.4 NAD-CVM as a Preprocessing for Multi-variate Image
Analysis

This section relates the mapping techniques discussed in this
chapter to multi-variate morphology discussed in the sequel. The
application of mapping methods to multi-variate morphology
represents a novel approach. The mapping techniques for image
analysis [21], [19] take advantage of the dimensionality reduction
property of the eigenvector expansion. This approach may not be the
best for image processing, since sample variance may not yield a good
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measure of image quality. We have already introduced the best and the
poorest NAD-CVM mappings in the sense that the resulting sample
variance corresponds to a morphological measure. Such a measure can
be directly related to the properties of morphological filtering. These
concepts are further discussed in Section 3.3.

We note that NAD technique cannot be extended to a general
multi-class problem. However, NAD-CVM mapping solves the
segmentation problem , which is one of the three basic techniques in
image analysis. Image segmentation is the most important in the sense
that most image processing techniques, including morphological
operations, are developed to provide a good segmentation results.
Segmentation problems can be generally interpreted as the two class
problems, i.e., segmentation of the object and the background. The
term segmentation includes feature extraction techniques used for
preprocessing.

The two class separation property of NAD-CVM, the
morphological measure interpretation of sample variance, and the
unsupervised implementation of NAD-CVM algorithm justify the effort
of applying NAD-CVM mapping to preprocessing of multi-variate
signals.
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3. MATHEMATICAL MORPHOLOGY FOR MULTIVARIATE SIGNALS

There are numerous applications of morphological filters in
image processing, analysis, and related areas. The references for these
applications can be found in [16]. Recently the multi-variate signal
analysis and processing, mainly for color and multi-spectral images,
have attracted a significant attention [21],[33] 442). Here we present a
new approach to apply mathematical morphology to multi-variate
signals.

First, we briefly review morphological operations using set-
theoretical definitions. Next, an extension to grayscale morphology for
multilevel signals using the concepts of umbra and top surface is
discussed. Using Serra[22], Haralick et al[9], and Maragos[16] as the
basic references, we review only essential definitions and properties of
morphological operations, especially those which are used in the
sequel. The morphological operations developed for single-component
(uni-variate) signal (refered as uni-variate morphology) are extended to
multi-variate signals using two different methods :

(1) separate morphological operations are applied to each signal
component.
(2) multi- variate morphology concepts are developed using
partial-ordering in finite dimensional spaces.

Since separate morphological operations are easy to define, but not
effective when applied to original multi-variate signal components, and
multi-variate morphology is meeting serious theoretical difficulties, we
propose separate morphological operation for each transformed signal
component. The transformed components are obtained from the
original signal by a special mapping method. This approach is well
founded by introducing a morphological measure related to the sample
variance, and using it as a criterion to optimize the mapping
technique.
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3.1 Review of Mathematical Morphology

Mathematical morphology was developed in 1964 at the Paris
School of Mines (France) by G. Matheron and J. Serra, who were asked
to investigate the relationships between the geometry of porous media
and their permeabilities and to quantify the petrography of iron ores
in order to predict their milling properties [22]. By probing and
transforming a geometric structure with different patterns of
predefined shapes, or structuring elements, Matheron and Serra
developed a number of different techniques. They called their
geometric transformations "morphology", meaning the "study of
forms." In order to avoid tying the results of morphological
transformations to the specific application, they derived four
mathematical quantification constraints with four corresponding
principles [22, pp.6-15], or the method of "mathematical morphology."

Originally, Matheron and Serra represented image objects and
structuring elements by sets in a Euclidean space. Hence, the
morphological operations are actually set operations based on unions
and intersections. The simplest morphological operations are erosion,
dilation, opening, and closing, all of which grew out of Minkowski
addition and subtraction. Since binary images can be represented by
two-dimensional sets, Matheron [18] and Serra [22] applied the
Minkowski set operations to image analysis using the concepts of
mathematical morphology. Such an image analysis technique is called
morphological image analysis or morphological filtering.

Binary signal analysis was extended to multilevel signals by Serra
[22] and Sternberg [24,25]. Serra used signal cross sections to
generalize the morphological operations of multilevel signals.
Sternberg further generalized morphological transformations for
multilevel signals by considering graytone images as surfaces of three-
dimensional volumes and introducing the concept of umbra.

In this section a brief summary of basic morphological operators
(erosion and dilation) and their secondary operators (opening and
closing) is presented. Since mathematical morphology is based on the
set-theoretical method, the discussion begins with binary signals
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viewed as a set. Next this set-theoretical method is extended to multi-
level signals.

There are several slightly different definitions of morphological
operations found in the relevant literature, [22], [16], [9], and [8]. Here
we follow Serra's definitions [22].

3.1.1 Set Processing Operators

An n-dimensional binary signal can be represented as a set in an
n-dimensional Euclidean space (Rn), or its discrete equivalent, the set
of n-tuples of integers Zn, depending on whether the function is
sampled or not. Serra [22] presents a complete analysis of discrete
version of morphology. Here we do not distinguish between the
continuous space (Rn) and the discrete space (Zn) using common
symbol En for both.

3.1.1.1 Erosion and Dilation

Let two sets A and B be subsets of En. Minkowski set addition
ASB, of two sets A and B, consists of all points that can be expressed
as a vector addition, a+b, where the vector a and b belong to the sets A
and B respectively, i.e. :

Also
AEBB = (a+b : ae A, bE B).

AsEDB = V Ab = v Ba = (ze En : A n (138)z *0 ). (3-1)
bB aEA

where Ab denotes the translation of A by the vector b and is equivalent
to AED(b). Bs denotes the symmetric set of B with respect to the origin,
i.e., Bs =( -b : bE B).

Dilation
The dilation of A by B is the set (ze En : A n Bz * 0 } containing

the points z such that the translation Bz intersects A. Therefore the
dilation of A by B is equal to ABS.IED
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Minkowski set subtraction of A by B, denoted by AeB, is defined
indirectly as the operational "dual" to Minkowski set addition with
respect to the complement :

AeB = (AceB)c = n Ab = {ze En : (Bei)zC (3-2)
be B

Erosion
The erosion of A by B is defined by the set {zE En : (B)zC A

containing the points z such that the translation Bz is included in A.
This definition is equivalent to the operation "dual" to dilation, i.e.,
(Act9Bs)c . Using the relationship (3-2), erosion is equal to Aess.

3.1.1.2 Opening and Closing

By combining erosion and dilation, opening and closing
operators are obtained. The opening AOB of A by B and closing AB of
A by B are defined as follows :

AOB = (AeBs)9B ,

AB = (A (1308)eB (3 -3)

Since the opening of A by B is the union of the translations,(i.e., AOB =
u {By : ye En, ByC A}, [18, p.19I ), the output AOB appears to be the
result of fitting B around the inside perimeter of A. From this
interpretation we can characterize opening as having a fitting
property. Fig.3-1 shows an example of opening A by a non-symmetric
structuring element B. On the other hand, the output of AOB appears
to be the result of fitting B around the outside perimeter of A. This
inside-outside duality between the opening and closing indicates that
the complement of closing is equal to the opening of complement [81.

The morphological opening and closing defined by Equation
(3-3) have the following three properties :
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(1) Anti-extensivity for opening and extensivity for closing :

AOB C A C A11113

(2) Increasing Property :

ACA' ---> AOB C A'OB ,

A C A' - -> AFB C MOB .

(3) Idempotence :

(AOB)OB = AOB

(AB)B = A113 .

A

Translation of B in A

(3-4)

(3-5)

(3-6)

Figure 3-1 Opening by fitting. (Giardina and Dourgherty (8))

3.1.2 Relationship between Sets and Functions

To extend all the morphological set transformations to
functions, certain relations between sets and functions must be
established. Therefore, representing functions as sets is the main
issue. There are two different, but equivalent, approaches to this
problem: An n-dimensional (n-D) function can be represented either
by an ensemble of n-D sets called its cross sections [221 or a single
(n+1)-D set called its umbra. Due to its simple interpretation, the
umbra representation of a function is generally used. We discuss here
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the concept of umbra, since it can be used to generalize grayscale
morphology to multi-variate signals.

In order to visualize the umbra concept, it is enough to observe
that any function can be viewed as a 2-D image, without loss of
generality. Umbra simply means shadow cast by the function
"surface", and the umbra of a set B, in 3-D includes both B and the
points of its shadow.

(a) (b)

Figure 3-2 (a) Umbra of a set B, (b) umbra of a function.

The shadow is cast by a point light source at an infinite distance in the
positive t-direction. Figure 3-2a illustrates this concept. Analytically,
the umbra of set B can be expressed as a morphological transformation
of B and a structuring element T, composed of the points belonging to
the t-axis, including the origin. Using Minkowski sum ED definition, the
umbra of a closed set B equals to B®( -.0,0]. This relation corresponds
to BED[0,+.)s, i.e., dilation of B by the positive t-axis. Similarly, the
umbra of a function f, is the Minkowski sum of the function and (-00,0].
Thus the umbra of f, denoted by U(f), is the set:

U(f) = ((x,t) : f(x) t). (3-7)

Serra [22] maintained that mapping between an upper semi-
continuous (u.s.c.) function f and U(f) is one-to-one. Maragos [ 16]
mathematically formalized this correspondence.
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3.1.2.1 Theorem on One-to-One Correspondence between
Signal and its Umbra

To any real valued u.s.c. function, f(x), XE R n , corresponds an
unique umbra U(f), which is a closed set in RnxR such that

(x,t) E U(f) <-4 t f(x) . (3-8)
and

(x,t) E U(f) ----> (x,a) E U , for all a < t . (3-9)
Conversely, to any closed subset U of RnxR satisfying relation (3-9),
corresponds a unique u.s.c. function f(x), which can be reconstructed
from U as follows :

for XE Rn,

f(x) = sup (tE R : (x,t) E U) . (3-10)

Note that the case where f(x) is defined on Zn is trivial as far as the
u.s.c. is concerned, because any sampled function is both u.s.c. and
l.s.c. (lower semi-continuous). Hence Equations (3-8), (3-9), and
(3-10) are also true for sampled functions, f(x), xe Zn. The supremum
operation in Equation (3-10) is called top surface of U, and is denoted
by

(x) = sup(te R : (x,t) E U ) . (3-11)

3.1.3 Function Processing Operators

Set-theoretic definitions of morphological operators can be
extended to the case of multilevel signal and multilevel structuring
element using the umbra.

Let us define function processing dilation and erosion using the
umbra and the top surface.

Definition 3-1 Let f : FcEn --> E and g : GcEm --> E (n-in). The
dilation of f by g is denoted by fag, and is defined as

fOg = 711/(f)(1) U(g) . (3-12)



The erosion of f by g is denoted by fag, and is defined as
leg = TW(fleUr(g)1,

where Ur(g) denotes the reflected set of U(g) ,i.e.,
Ur = {(x,t) : (x,-t) E U .

(3-13)

32

Using Equations (3-1) and (3-2), Equations (3-12) and (3-13)
can be rewritten as

(feg)(x) = sup{te R : Us(g) n U(f) * 0 ), (3-14)
and

(le ox) = sup{te R : [Ur(g)1s C U(0), (3-15)
where Us denotes the transposed set of U, i.e.,

Us = {(x,t) : (-x,-t) E U ),
and

1U9s = {(x,t) : (-x,t) E U I.

Alternatively, Equations (3-14) and (3-15) can be written in an
algebraic form as follows:

(feg)(x) = sup {f(z)+g(x-z)), (3-16)
ZE En

and
(feg)(x) = inf {f(z)-g(x-z)), (3-17)

ZE En

where f(x) = - oo, for xe F, and g(x) = oc, for xe G.

Function processing opening and closing are defined using
function processing dilation and erosion as follows:

opening : fog = gs)9g, (3-18)
closing: fog = (fegs)e g, (3-19)

where gs denotes the transposition of function g such that
gs(x) = g(-x).

3.2 Extension of Grayscale Morphology to Multi-variate Signals

In this section, we discuss a possible extension of the
morphological concepts to analyze multi-variate signals. There are two
possible approaches to such an extension. The first approach is to
apply morphological operations to each signal component separately
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and combine the results [2]. The second approach is to define an
umbra of multi-variate function and to generalize definitions of set-
theoretical operations. In [26] an attempt is made to extend the
current concept of mathematical morphology (called scalar
morphology) to a matrix morphology formalism. However the results of
[26] are based on the application of separate morphological operations
to each signal component. Here we discuss a possible extension of
grayscale morphology to multi-variate morphology by modifying the
definition of umbra.

3.2.1 Separate Component Morphological Operations

Let us define a multi-variate signals f and g , as follows:
f : En --> EP , and g : Ern --> EP , (3-20)

where f= [f1 f2 fp]r, g= igi g2 gpjr, m 5 n. Separate morphological
operations of each signal component of a multi-variate signal can be
introduced using the following definitions of umbra and top surface.

Definition 3-2 The vector umbra of f, denoted by Us(f), is defined
by

Us(fl = [ U(f1) U(f2) U(fp) 1T, (3-21)
where the notation U follows Equation (3-8).

Definition 3-3 The top surface of Us(f), denoted by Ts,is defined
by

Ts[Us(f)] = T(U(f1)) T(U(f2)) T(U(fp)) 1T, (3-22)
where the notation T follows Equation (3-11).

Definition 3-4 Let * denote any morphological operation, i.e.,
dilation, erosion, opening, or closing. Then the separate component
morphological operation is defined by

f*g =Ts[Us(f) *Us(g)) , and (3-23)
Us(f) *Us(g) = U(fi)*U(gi) U(f2) *U(g2) U(fp)*U(gp) 1T.

(3-24)
Alternatively, Equations (3-23) and (3-24) can be rewritten as

f *g = [ fi*gi f2*g2 .fp*gp (3-25)
We note that Equation (3-25) allows to define different morphological
operations for each signal component. Definitions 3-2, 3-3,and 3-4 are
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special cases which relate function processing operations to set
processing operations.

Although the separate morphological operations are useful for
analyzing multi-variate signal in certain circumstances [2], [26], they
may extract less information than the grayscale morphological
operations applied to a single component which is obtained by the
Karhunen-Loeve, NAD-CVM, or NAD-CRM transformation.

3.2.2 Generalization of Umbra Concept

Definitions 3-2 and 3-3 define separate morphological
operations. The following definition of umbra is proposed as a
generalization of the umbra concept to multi-variate signals.

Definition 3-5 (Umbra of function f : En --> EP )
U(f) = ((x,t) : f(x) t) such that U(f) C En+P, (3-26)

where the vector inequality symbol , means that every component of
f(x) is greater or equal to the corresponding component of t. ( is a
partial-ordering operator.)

The above definition of umbra is equivalent to the successive
dilation of the graph GM of f, by the positive axis 10,+.) of the ti axis,
1=1,2, i.e.,

U(f) = G(f) ED (-0.,01t, "" (-0.,01tp ,

where (-.,01ti denotes the negative axis of ti .

Next we need to define the top surface to reconstruct a vector
function from the umbra defined in 3-5. A suitable top surface can be
defined by using the following pseudo-supremum operation (denoted
by psup) on vector space.

Definition 3-6 (Top surface of the umbra of multi-variate
function)

Ma] (x) = psupfte EP : (x,t) a U(f) ) , (3-27)
where psup operation is defined as follows :
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Definition 3-7 (Pseudo-supremum on vector space)
Let B C EP, then

psup(B) = [tE EP : t b for all be B and z t, ZEE
whenever z b for all bE B). (3-28)

The following example shows an illustration of Definitions 3-5,
3-6, and 3-7 for p=2.

Example 3-1 Consider a space ZxR2. Define sets A and B C ZxR2
as

[(zi, al,a2)E ZxR2 : [2 3]T [ai,a2]T for a given ziE Z1,
and

B={(z2,ai,a2)EZxR2 : [4 1]T [al,a2]T for a given z2E Z1,
where the sets A and B are sections of the umbra of a multi-variate
function f : Z--> R2 at z = z1 and z = z2, respectively, f(z1)=[2 3]T and
f(z2)=[4 1]T.
Let A = [(a ,a2) : (x,al,a2)E A ), and 'B = [(al ,a2) : (x,a ,a2)E B ).
Then psup (A nB) = (2,1), and (3-29)

psup (A uB) = (max(2,4), max(3,1)) = (4,3) (3-30)
Figure 3-3 shows a geometrical illustration of this example.

;ler

A A7 7 7 '7 7 II 7 7 7

Figure 3-3 Umbra and top surface in vector space.
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Using Definitions 3-5 to 3-7, we can define multi-variate morphology
as follows.

Definition 3-8 (Multi-vartate morphology)
Let f, g and * be given by Equations (3-20) and (3-23). Then
f*g =T{U(f) *U(g)] , (3-31)

where U and T are given by Equations (3-26) and (3-27) respectively.

Continuing with Example 3-1, let us assume that f(z1) =[2 31T and
f(z1+1)={4 11T for a given z1. Then for a structuring element C={0 -1),
Equation (3-29) is equivalent to (fe C) (z 1) and Equation (3-30) is
equivalent to (fEBC)(zi) .

If we use Definitions 3-5, 3-6, and 3-7 for the umbra and top surface of
multi-variate signal, Equation (3-31) results in separate morphological
operations, and is equivalent to Equation (3-25). However the
following problem may arise :

U(f) *U(g) =U [ fi*gi f2*g2 fp*gp fr for some xe En,
(3-32)

but
TI U(f) *U(g)1 = T[U [ fi*gi f2*g2 .... fp*gp jr) for all XE En.

(3-33)
Undesirable property (3-32), (3-33) is caused by the definition of
supremum of EP, (3-28). Since we cannot relate every two elements
using the partial-order , the vector space EP is not a well-ordered
vector space. Thus this extension of umbra applies only if the range of
multi-variate signal is a well-ordered space under some ordering
operation. The following Example 3-2 shows the difference between
separate morphological operations and multi-variate morphological
operations using a special ordering relationship.

Example 3-2 Let X = I Xi X2 fl' ,and Xi : 22 -->{0,1} , X2 : Z2 -->
{0,1 }. Figures 3-4-1, 3-4-2, and 3-4-3 show X, Xi,and X2, respectively.
In Figure 3-4-1, symbols a, b, and c denote vectors El 01T, [0 11T, and
11 11T, respectively.
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Figure 3-4-1 Multi-variate image X
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Figure 3-4-2 Image component X1 Figure 3-4-3 Image component X2

Figures 3-4-4 and 3-4-5 show the results of separate opening by a

structuring element (B), Rhombus (.:.).Figures 3-4-6 and 3-4-7

show the results of separate closing.

Figure 3-4-4 Opening X10B

.

Figure 3-4-5 Opening X2OB



.

Figure 3-4-6 Closing XiB

a
a a a

a c a
c c c

Figure 3-4-8 Opening XoB by
separate operation

..

Figure 3-4-7 Closing X213

aaccca.. accca...bccc..
. bbcccca..

b a a
b a a

b

Figure 3-4-9 Closing XB by
separate operation
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Figures 3-4-10 and 3-4-11 show the results of multi-variate opening
and closing when vector ordering a<b<c is assumed, and (XEBBs)(z) =
max(X(y) : ye Bz) , Bs)(z) = min(X(y) : ye BO, where z,ye Z2. Figures
3-4-12 and 3-4-13 show the results of opening and closing when
b<a<c is assumed.



a
a a a

a c aac cc. .

a c a a. .

a a a
a a a

a

Figure 3-4-10 Opening XOB
assuming a<b<c

a
a a a

a c a . . .

b c c c . .

b c b b . . .

b b b
b b b

b

Figure 3-4-12 Opening XOB
assuming b<a<c

caacccaaaac cc .aaaabccc.bbcc cc a.
b a a

b a a
b

Figure 3-4-11 Closing ROB
assuming a<b<c

caaccc
abbac cca bbbbc cc.
. bbcccca.

b a a
b a a

b

Figure 3-4-13 Closing XOB
assuming b<a<c
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As shown in Figure 3-4-8 and Figure 3-4-10 (or 3-4-12), separate
opening eliminates a tail in the right-lower corner, while multi-variate
opening preserves it. Figure 3-4-9 and Figure 3-4-11 (or 3-4-13) show
that separate closing does not fill the hole on the left side, but multi-
variate closing does. We observe that multi-variate operations yield
more intuitive results, in the sense that closing fills small gulfs and
opening suppresses sharp capes, where the reference point for "small"
and "sharp" is the size and shape of the structuring element.

The advantages of using multi-variate morphology are
overshadowed by the difficulties in dealing with partially-ordered sets.
Convenient, partially-ordered sets are currently under investigation
but no conclusive results are available at this point in time.
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Consequently we devote our efforts to a two-stage processing,
where a multi-variate signal undergoes preprocessing transformation
and the morphological operations are applied to each component of
the transformed signal separately. We propose an optimal
transformation from the point of view of morphological filtering
performance as discussed in Chapter 2.

3.3 Morphological Application of the Mapping Technique

The proposed mapping technique, NAD-CVM (normalization and
diagonalization of sample covariance matrices), is based on the
maximum separation between object and background in terms of the
sample variances. The usage of sample variance in image processing
and analysis is limited to the spatial feature extraction in the form of a
histogram feature and to the dimensionality reduction. However we
hypothesize that large sample variance, obtained by a specific mapping
technique, gives better morphological information extraction. To
justify this hypothetical statement we define a morphological measure
which corresponds to the sample variance. We note here that it is a
difficult task to find a morphological measure corresponding to the
sample variance, the main difficulty being the difference in
quantitative description of both concepts.

Therefore we propose to replace sample variance, with the first
absolute central moment of observation :

1
= I Yi(1) mi I (3-34)

where yj(i) is the observation for the j-th component, the number of
observations is n, and in denotes sample mean of the j-th component.
For simplicity we omit in the sequel the subscript j, unless otherwise
noted. The first absolute central moment is not used in general as a
measure of dispersion of observed data since the sample variance
provides more computationally tractable algorithms using the well
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developed theories in 12 normed vector spaces. However there are
several good reasons for using p. instead of a2 (sample variance) :

(1) it is difficult to find a morphological measure corresponding
to a2 as noted above,
(2) p can be reinterpreted by a morphological measure which is
defined using the anti-extensivity property of opening,
(3) for the transformed components of some signals, ordering of
variances can be preserved , i.e., if ai < 6i, then p.i < pi for all
i,j=1,2,..,p.

The last statement is not true in general, but holds for the
transformation such that the "sample distribution" of transformed
values approximates Normal distribution. For a normal distribution
with variance a2 , the first absolute central moment is (2/7)1120. The
term "sample distribution" denotes here the relative frequency
distribution obtained from the observations. This provides a reasonable
starting point for the analysis. (3) is also true for the sample
distributions which approximate uniform, exponential, and gamma
distributions. Thus (3) is approximately true for the transformed data
unless there is a large number of outliers from the above distributions.

Next we need to define a morphological equivalent of p. Let us
consider a function f with bounded support D :

f : D C Z2 -> R. (3-35)

Let Sx be a structuring element such that

SA, = SEBSED EDS (X-1 times dilation operation by S), (3-36)

where S C 22 is a convex set, and X=1,2, .
Define the function f*: D C Z2---> R as f*(x) = I f(x) m I , where m is
the sample mean of f(x), i.e., m=(1/M(D))

EXE Df(x), and M(D) denotes
the number of elements of a set D. Now we can define morpholgical
pattern distribution function r(?) of f*, and morphological pattern
density function p(X), as follows :
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r(?) = Mes( Psi - ( f*0 Sx )), (3-37)

p(X)= r(A)- r(X-1), p(0)=0, p(1)=r(1), (3-38)

where 0 denotes opening operation and Mes(g) = Exe g(x). Let N be
the minimum X such that

Mes( PO SI, ) = Mes( Po Sx +1 ) = E , (3-39)
for all XN. We note that X such that D C Sx , always satisfies the
relationship (3-39), and E can be determined by

E = M(D) - minxED (f*(x)) for such a X.
Next we introduce another morphological measure h(X) :

N .\
h(X) = 1 , X=1,2 N

' ' (3-40)

Then the first absolute central moment of f can be represented using
h(X) as follows :

From Equations (3-37) and (3-39), we have

r(N) = Mes(f* - (f* 0 SN))
= Mes(f*) Mes(f* 0 SN))
= Mes(f*) - E

= 1.1.M(D) e. (3-41)
Equation (3-41) can be rewritten as

Mme)
p.=

M(D
(r(N) + e) . (3-42)

Using Equation (3-40), we have
Ni (h(X)(M(S ))-M(S x_i)) = I p(A) . (3-43)

),i xx1

Using Equations (3-37) and (3-38), we get :
N

Ep(X)=r(N) .

X=1

(3-44)
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Combining Equations (3-43) and (3-44), and substituting for
r(N) in Equation (3-42) yields :

N

II =Ai-0E (h( ?)(M(S x)-M(S x_i)) + c) ,

i
(3-45)

Equation (3-45) can be interpreted geometrically using the stack of
cylinders as shown in Figure 3-5.

h(N)

S2

Figure 3-5 Interpretation of average height using the stack of
cylinders.

The volume of the shape in Figure 3-5 is equal to
I h(20M(Sx-S,_1). Thus we can interpret h(X) as an average height of
(f*0 S, j, or alternatively p(X)/M(Sx) as an average height of
(f*-(f*OSA)). The height is interpreted in the sense that p(X)/M(Sx) is
the value of volume divided by the area of Sx.

Let us consider the NAD-CVM mapping. We expect that the
locations of discontinuities in the original components will be
maintained at least in one of the transformed components. On the
other hand, the variance increase (or decrease) caused by the mapping
is due to the facts that the mapping enlarged (or lessened) the amount
of jumps and created (or eliminated) discontinuities by the
normalization process and rotation of coordinates. This corresponds to
increase (or decrease) of p(X) for a given structuring element, Sk, i.e.,



44

increase (or decrease) of average height. This relationship between
variance and the average height can be used to select a proper
structuring element in a morphological algorithm. Such a proper
selection eliminates small details in the background, but enhances
discontinuities in the object.

To illustrate experimentally the above concepts, we use an RGB
color image. Figure 3-6 shows the original R,G,B components at a
horizontal section. Figure 3-7 is the result of NAD-CVM transformation
designating x-axis region 140,1101 as the object and the rest as the
background. In Figure 3-7, NAD-CVM-1 is the coordinate which has
the largest variance for the object and the smallest variance for the
background. This is reversed for NAD-CVM-2. NAD-CVM-3 is the
coordinate which represents no interest from the analysis point of
view. Figures 3-8 and 3-9 show the plot of p(X)/111(Sx) versus X. We
compare Figures 3-8 and 3-9 to identify the size of the largest
structuring element X* which still provides a significant average
height. In Figure 3-8 Xi* for the object is larger than the value for the
background A.,2*, for all three R,G,B coordinates. In Figure 3-9, as we
expected, A,1* is larger than Al* for the first coordinate (Figures 3-9a-1
and 3-9a-2), while A.2* is larger than Xi* for the second coordinate
(Figures 3-9b-1 and 3-9b-2). Thus, if we use the structuring element
with X=2 for the first coordinate, we can eliminate all the details
which have support smaller than S2, and the remaining discontinuities
with the support larger than S2 can be used to extract information.
Note that we have already eliminated nearly all the meaningless details
of the background. The same approach with reversed order of object
and background variances can be used for the second coordinate.
Another important observation is that the first few structuring
elements dominate the plot in the sense of significant average height.
This allows to reduce the computational burden, and consequently
makes the application of the proposed algorithm feasible by choosing
smaller structuring elements.
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Figure 3-6 Original Data : R,G,B components at a section of color
image.
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Figure 3-7 Results of NAD-CVM mapping of original data .
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Figure 3-8 Plots of normalized p(X)/M(Sx) vs. X for the original R,G,B
components.

The left side applies to the object component, and the right sideapplies to the background component.
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Figure 3-9 Plots of normalized p(X)/M(Sx) vs. A, for the components
transformed by NAD-CVM method.

The left side applies to the object component, and the right side
applies to the background component.
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4. APPLICATIONS AND EXPERIMENTAL RESULTS

4.1 Applications

The combination of the NAD-CVM and mathematical morphology
was applied to analyze color images. This combination seems to be
promising since the NAD-CVM may be applied to any multi-variate
two-class signal and the morphological filters have long proven their
effectiveness in image processing. Thus any multi-variate signal
analysis problem can benefit from the combined results of Chapter 2
and Chapter 3. In the following discussion the underlying assumption
is that the analyzed multi-variate signal is a combination of an object
and a background. The RGB color images and multi-spectral images
are most frequently used as the examples of multi-variate signals.

In the first experiment, we use the RGB wooden board images.
Various color coordinate systems have been developed to improve
human visual perception, while mapping methods for color images are
proposed to get a better image analysis performance in vision systems.
We briefly review existing color coordinate systems in Section 4.1.1.

The color image with the RGB tristimulus components can be
separated by NAD-CVM mapping method. We construct an
unsupervised mapping algorithm using Lemma 2.1, under assumption
that the background sample covariance matrix is known. Using the
transformed components, a proper structuring element operates on
the object and the background selectively. The examples of selective
morphological operations are opening and closing, which remove and
fill image features according to the sizes and shapes of the structuring
elements. In Section 4.1.2, we recommend an edge detection method
with an open-close smoothing which enhances edges in the object
region while suppressing the edges in the background.
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We further examine the effectiveness of the proposed edge-
detector by processing remotely sensed ocean data and a complex
color image.

4.1.1 An Overview of Color Image Analysis

Image analysis is concerned with the extraction of quantitative
information from an image. Image analysis is distinguished here from
other types of image processing, such as enhancement, restoration,
and image data compression. The output of the image analysis system
is usually numerical whereas the output of other image processing
schemes is usually in a form of an image. Basically the image analysis
includes feature extraction, segmentation, and classification
techniques. Feature extraction is required for an identification of the
object. Segmentation techniques are used to isolate the desired object
from a scene so that the measurements can be made on the object.
Quantitative measurements of object features allow classification and
description of the image. Using the color images, we increase
dramatically variety of features as compared to the features found in
the monochrome images. Paradoxically this is both the main advantage
and pitfall of color image analysis.

In general we may consider two different approaches to color
image analysis : one uses colorimetry and color coordinate system, and
the second concentrates on multi-spectral image analysis, treating
tristimulus values of color as multi-variate signal. In this study we
explore both approaches. However we will not use colorimetry or color
constancy 141,[7],1141,1101, since these results are not directly related
to the proposed here techniques.

The color can be specified by
(1) its tristimulus values for a given set of primaries,
(2) its chromaticity values and its luminance,
(3) some linear or nonlinear invertible function of its tristimulus
or chromaticity values.

There are many different color coordinate systems employed for the
specification of color. Pratt [20, pp.72-83] provides a detail
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discussions on those color coordinate systems together with their
historical and analytic significance. C.I.E. spectral primary color
coordinate system (11c,Gc,Bc) and N.T.S.C. receiver primary color
coordinate system (RN,GN,BN) belong to category (1). C.I.E. X-Y-Z color
coordinate system (X,Y,Z) and N.T.S.C. transmission color coordinate
system (Y,I,Q) are directly transformed form of Re-Gc-Be and RN-GN-BN
coordinate system, respectively, such that Y tristimulus value is
equivalent to the luminance of the color, and thus belong to category
(2). C.I.E uniform chromacity scale color coordinate system (U,V,W) is
a nonlinear transformation of the X-Y-Z coordinate system, which
ensures that any unit change in the chromacity diagram of that system
is perceived as an equivalently noticeable color shift to an observer.
The U*-V*-W* coordinate system is an extension of the U-V-W
coordinate system in an attempt to obtain a color solid for which unit
shifts in luminance and chrominance are uniformly perceptible.
S-q-W* color coordinate system is the polar representation of the
U*-V*-W* coordinate system, where W* represents the luminance
(scaled and shifted), S and q components are related to saturation of
color and its hue, respectively. It is known that the S-q-W* color
coordinate system is the closest color coordinate system to human
visual perception. The L-a-b coordinate system is a nonlinear
transformation of X-Y-Z coordinate system to provide a relatively
accurate measure of color in agreement with the Munsell color system.
The above color coordinate systems can be considered linear or
nonlinear transformations of the N.T.S.C. receiver primary coordinate
system, RN-GN-BN. The RN-GN-BN tristimulus values of N.T.S.C. receiver
primary system are highly correlated with one another. In image
analysis and pattern recognition, feature selection problem is of
primary interest. The importance of this step lies in the fact that if the
features show significant differences from one class to another, an
effective classifier can be easily designed. As mentioned earlier,
tristimulus values of color can be the features of an object in image
analysis system. Pratt [20] pointed out the fact that it is desirable to
work with uncorrelated components, and Ohta [19] concluded that a
large discriminant power of a feature can be achieved by large variance
of that feature. These criteria (uncorrelation and large discriminant
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power) can be fulfilled using Karhunen-Loeve transformation (or
principal components method), which was reviewed in Chapter 2.
The color coordinate system using Karhunen-Loeve transformation is
called Karhunen-Loeve color coordinate system. (In the sequel
Karhunen-Loeve will be abbreviated by K-L.) There are several
modifications of the K-L transformation [5], [3], [13], [21], which were
proposed to maximize the given criteria in multivariate-multiclass
situation. It should be noted that those are not originally intended to
obtain new color coordinate system, but to extract features used in
pattern recognition of multivariate-multiclass data. NAD-CVM mapping
is also included in that category. If we view the color image as
composed of an object of interest and background which represents
no interest from the analysis point of view, then we have a two-class
color feature extraction problem. Thus the NAD-CVM mapping
provides two features: one is the best for analyzing the object and the
poorest for analyzing the background, the other one has
complementary properties.

Next we survey image analysis techniques that can be applied to
analyze color images. It is apparent that all monochrome image
analysis techniques can be used for color images. There are three
categories of image analysis techniques : feature extraction,
segmentation, and classification. Since the classification techniques
will not be changed by adding color information (i.e., color merely
increases dimensionality), we exclude those techniques from our
discussion. The segmentation techniques are basically based on feature
extraction. Pratt [20] defines an image feature as a distinguishing
primitive characteristic or attribute of an image field. Some features
are natural in the sense that they are defined by the visual appearance
of an image, while others, so-called artificial features, result from
specific manipulations or measurements of an image. Natural features
include the brightness of a region pixels (amplitude feature), edge
outlines of objects, and grey scale textural region. Image amplitude
histograms and spatial frequency spectra are examples of artificial
features. Most applications of mathematical morphology involve natural
features. Amplitude features are the simplest and perhaps the most
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useful ones. To aid amplitude feature extraction, we propose a new
color coordinate transformation, NAD-CVM. Amplitude features can
form raw data for edge and texture feature extraction or can be used in
amplitude thresholding. Variety of image analysis algorithms can be
derived by using multi-variate amplitude features. The main problem is
how to manipulate these multi-variate features. There are several
known methods :

(1) Manipulate as if it is a uni-variate image using the weighted
sum of features. This is equivalent to the case of a monochrome
image analysis.
(2) Manipulate each feature separately, then combine the results
in a single image.
(3) Manipulate the features in a vector space considering the
features of a pixel as the elements of a vector.

As discussed in Section 3.2 and 3.3, methods (1) and (2), equipped
with a proper mapping, can provide effective color image analysis
algorithms.

4.1.2 Application of NAD-CVM Mapping and Mathematical
Morphology to Color Image Analysis

In color image analysis, color of a pixel is usually given as three
values corresponding to the N.T.S.C. receiver primary color coordinate
system, (RN,GN,BN). We consider the color image represented by
(RN,GN,BN) as an original color image, and denote it using the multi-
variate function notation:

h : D C Z2 ---> Rs, (4 1)
where D = (1,2 .....N1) x (1,2,...,N2).
Equation (4-1) can be rewritten as :

h(x,y) = Eh 1 (x,y) h2 (x,y) h3(x,y)JT, x=1 ,2 ..... NI , and y=1,2 .....N2

(4-2)
In many image analysis cases it is not unreasonable to assume that
sample covariance matrix of background is known a priori . Denote
this a priori known sample covariance matrix by K2. Using Lemma 2.1,
we can construct an unsupervised NAD-CVM mapping algorithm as
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shown in Figure 4.1. Note that the eigenvalue matrix A, does not have
property (2-18), since K2 is used in place of S2 = (021E2. However the
eigenvalues of K2 are equal to the eigenvalues of S2 multiplied by co2.
Therefore transformation by the eigenvector which corresponds to the
smallest eigenvalue of K2 yields maximum ratio of the object to the
background sample variances. On the other hand, we get the minimum
variance ratio using the eigenvector which corresponds to the largest
eigenvalue of K2. Consequently, this algorithm can be used for a color
image analysis, especially for algorithms that extract object
information by separating background from the image, (e.g.,
segmentation algorithm).

Next we consider morphological applications of NAD-CVM
mapping. There are many desirable properties of morphological
filters, which are used in numerous image processing and analysis
applications. The following property of opening and closing is the
most valuable as far as NAD-CVM mapping is concerned :

By properly selecting structuring element size and shape, the
operation of opening and closing can selectively remove image
features according to feature size and orientation. The smaller
structuring element, the smaller the details which are filtered
or modified. Transformations which apply opening and closing
are less severe and introduce less distortion when a small
structuring element is used before a larger one.

Combining the concepts of Section 3.3 and the above property of
opening and closing , we can select a structuring element which
operates on the object and the background selectively. An intuitive
example is the open-close smoothing prior to applying an edge
detection algorithm. The open-closing by a spherical structuring
element is known as the rolling ball algorithm [25]. A simple
morphological edge detector can be defined by considering the
erosion residue as an edge strength. Let the image components,
fi(x,y), f2(x,y) be the result of applying our algorithm (Figure 4.1), and
represent the components with the maximum and minimum ratios of
the object to the background variances, respectively.
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Read :

h i(x,y), h2(x,y), h3(x,y)

N1, N2
K2

Calculate :

1
K0 =

NiN 2- 1
II(h(x,y)-T)(h(x,y)-i)T
x=ly=1

iN h(x,y)
7

h
N

-X=iy=1

Calculate the matrix, P, such that

PK 'PT= I (2-32)

Calculate the eigenvector matrix (1), and the eigenvalue matrix A,

of the matrix, pK 2p T , such that
T

(I) (PK 2P )0 = A, and (10 (1) = I (2-33)

Calculate the transformation matrix,

C = (1) P,

Select ci examining eigenvalues Xi , and
calculate corresponding new components :

fi(x,y) = ciTh(x,y)

Figure 4-1 Unsupervised NAD-CVM algorithm.
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Let the structuring element B, be a finite subset of Z2. Then an edge
strength can be determined by

ei(x,y) =fi(x,y) - (fie B)(x,y) , i=1,2. (4-3)
A binary edge image can be produced by thresholding the edge
strength ei(x,y). An appropriate threshold level should be determined
by a design criterion. The operation of Equation (4-13) is a noise
sensitive detector, and should not be applied directly to noisy images
[15]. Thus a noise suppression algorithm is necessary before we apply
the morphological edge detection operation. Open-closing is a good
filter for noise suppression [25], [16], [27]. However the open-closing
filter by a large structuring element can remove both noise and image
features which do not fit the structuring element. Thus the structuring
element of open-closing filter should be selected as small as possible,
but large enough to remove noise. Here we consider image features in
background as noise in the sense that those features represent no
interest from the analysis point of view. Furthermore it is desirable to
remove those features with minimal loss of object feature information.
Thus the image component f1 will have good object but not
background edge features, provided that we use a structuring element
selected according to the criterion discussed in Section 3.3.

The application of NAD-CVM and mathematical morphology to
the edge detection is only one of many possible applications. The
applications for NAD-CVM and mathematical morphology are our
continuing effort.

4.2 Experiments on Color Wooden Board Images

The experiment algorithm was implemented in FORTRAN
language and was tested on a Stardent computer running the UNIX
operating system. Three 200x150 color images were used in this
experiment:

(1) a wooden board with blue stains (Wood 1),
(2) a wooden board with an intergrown knot (Wood 2),
(3) a wooden board with a spike knot (Wood 3).
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Figure 4-2 shows the original test images. All three test images were
produced by scanning color pictures from [29] using the HP color
scanner. All pictures shown in this chapter are displayed using AVS
[28] and printed using TEK-4693DX color printer.

Experiments are designed to verify conjectures and proposed
signal analysis technique described in Chapter 2 and 3. The algorithm
performance measure is a visual inspection of binary edge images
which are produced by morphological edge detector (Section 4.1.2).
More detail in the binary image of the object, and stronger
suppression of the background detail, better the algorithm
performance.

The experiments are divided into three groups :
(1) test on selecting size and vertical shape of structuring
element used in open-close smoothing,
(2) comparison of various mapping methods,
(3) test on the advantage of using color information and mapping
method.

In calculation of NAD-CVM and NAD-CRM mappings, sample
covariance matrix of the background K2 and sample autocorrelation
matrix of the background R2 were calculated from a selected part of
sample image. For convenience, we assign the names to the image
components as shown in Table 4.1. The component marked by
asterisk is selected as the best component for a given coordinate
system. The best means either the maximum eigenvalue ratio of object
to background for the NAD-CVM and the NAD-CRM mappings, or the
maximum eigenvalue for the K-L mapping. The best for the RGB
coordinate system is determined by a visual inspection. In group (2),
we show only one binary edge image of a selected component per each
mapping method.
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Table 4.1 Names of component images

Coordinate
System Woodl Wood2 Wood3

Original

R * Wl-R W2-R W3-R

G Wl-G * W2-G W3-G

B Wl-B W2-B * W3-B

NAD-
CVM

1 W1 -H W2-H * W3-H

2 Wl-I * W2-I W3-I

3 * W1 -J W2-J W3-J

NAD-
CRM

1 W1 -K W2-K * W3-K

2 * Wl-L W2-L W3-L

3 Wl-M * W2-M W3-M

K-L

1 Wl-N W2-N W3-N

2 W1-0 W2-0 W3-0

3 * Wl-P * W2-P * W3-P

Grayscale * Wi -Gray * W2-Gray * W3-Gray

4.2.1 Selecting Structuring Element

We use the three disc-like structuring elements to illustrate how
the size of structuring element affects the performance of edge
detection. Figure 4-3 shows all flat structuring elements used for
experiments in this chapter. Figure 4-4 shows the results of
processing W2-I using all three discs and the open-closing operation.
Threshold level for each case is determined by the highest value
which ensures the closure of knot edges. Without the transformation
smaller structuring elements would yield more background as well as
object edges. However Figure 4-4c shows that background edges are
almost completely removed while object edges remain virtually
independent of the structuring element size. This result verifies the
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claims of Section 3.3, since W2-I is the best component for the NAD-
CVM mapping.

Next we use structuring element rec(x,y), since the blue stain in
Wood 1 appears in horizontally strapped fashion. Figure 4-5 shows the
results of filtering W1 -J using rec(9,5) and rec(13,5) in the process of
open-closing. Comparing Figures 4-5a and 4-5b, we note that
horizontally longer structuring element rec(13,5), gives better
detection of horizontal edges. However neither structuring element
provides an acceptable result.

The results of filtering WI -J using disc-like structuring
elements are shown in Figure 4-6. Obviously the disc-like structuring
elements provide better results than the rectangular structuring
elements. This is due to the fact that the edges consist of not only
horizontal lines, but various slopes as well. The discussion about
selecting the disc size for Figure 4-4 holds also for this case, with
Figure 4-6b showing better results than 4-6a.

As an auxiliary experiment, we tested WI-J using various dome-
like structuring elements to improve the quality of edge detection.
Figure 4-7 shows the results of processing W1 -J using dome-like
structuring elements with disc 4 supporting region. Due to the fitting
property of opening and closing operations, a dome-like structuring
element leaves more details which do not fit flat structuring element,
disc 4. In general, the higher the dome is, the more details are
preserved. Consequently, we can detect more edges in object region
as well as background region using dome-shaped structuring elements.
Again, using NAD-CVM mapping leads to selective morphological
operations on object and background as shown in Figure 4-7. We note
here that too high dome may worsen the results, since almost every
detail fits a part of dome, thus canceling the effectiveness of open-
close smoothing.
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(a)

(b)

(c)

Figure 4-2 Original color images : wooden boards with (a) blue stains
(Wood 1), (b) an intergrown knot (Wood 2), and (c) a spike knot
(Wood 3).
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Figure 4-3 Structuring elements.
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Figure 4-4 Results of processing W2-I using (a) disc 1, (b) disc 2,
(c) disc 3.
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(a) (b)
Figure 4-5 Results of processing W1 -J using (a) rec(9,5), (b) rec(13,5).

.

"0..

(b)
Figure 4-6 Results of processing W1 -J using (a) disc 3, (b) disc 4.

- -".

-.
JL.

-12"1.4 "
(a) (b)

Figure 4-7 Results of processing W1-J using (a) dome with height 5,
(b) dome with height 8.
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4.2.2 Comparison of Various Mapping Methods

In this section we compare the results of processing various
color components (Table 4.1) using the structuring elements
discussed in Section 4.2.1. We begin with Figures 4-8, 4-9, 4-10, and
4-11 which show each component transformed by NAD-CVM, NAD-
CRM, and total principal component method for Wood 3. All images
shown are linearly scaled in amplitude to provide a good visualization.

Figures 4-9a, 4-10a, and 4-11a show the best components
selected for the object. We cannot clearly identify the advantages and
disadvantages of each mapping from these figures. However, through
the experiment, we show the advantage of NAD-CVM method to
separate the object from the background.

Figures 4-12 and 4-13 show the results of processing Wood 2
and Wood 3, respectively. Since even grayscale processing of Wood 2
and Wood 3 provide somewhat reasonable results as shown in Figures
4-12e and 4-13e, our discussion is focused on the performance of the
background (wood grains) edge removal in each component. The
results show that NAD-CVM and NAD-CRM mapping methods yield
better performance than any other component processing. Since Wood
2 and Wood 3 have some amount of sample mean vector discriminant
potential between object and background, NAD-CVM and NAD-CRM
behave similarly. Table 4.2 shows the transformation vectors (ci of
matrix C in Equation (2-29)) for NAD-CVM and NAD-CRM methods.
The similarities between those vectors further explain similar behavior
of the two mappings for Wood 2 and Wood 3.

Table 4.2 Transformation vectors for NAD-CVM and NAD-CRM
methods.

Wood 1 Wood 2 Wood 3

NAD-CVM [0.209 -0.155 0.0881 [0.112 -0.154 0.0601 [0.045 -0.066 0.021]

NAD-CRM [0.125 -0.183 0.050] [0.089 -0.138 0.055] [0.040 -0.058 0.018]
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Figure 4-14 shows the result of processing Wood 1. Only Figure
4-14b shows connected edges of blue stain strip. Any other
component does not show a good detection of blue stain, while
suppressing the wood grains in background. The comparison of NAD-
CVM and NAD-CRM is very interesting in this case. Since the sample
mean vectors of the object and the background are located closely,
NAD-CRM mapping attempts to get a large sample mean vector
discrimination as well as sample variance discrimination. The NAD-
CVM tries to obtain large sample variance ratio of the object to the
background. The resulting transformation vectors for Wood 1 are
shown in Table 4.2, and as we expected they are dissimilar. As shown
in Figure 4-14c, this is the case when the NAD-CRM fails. However
NAD-CVM does not provide a perfect result either, Figure 4-14b shows
that lighter and smaller stains, which are located below the main blue
stain strip, could not be detected. In conclusion we state that the
NAD-CVM method comes the closest to solving the blue stain
detection problem.



(a)

66

(a)

(b)

(c)

Figure 4-8 Original RGB compo-
nents of Wood 3 : (a) R, (b) G,
(c) B.

(b)

(c)

Figure4-9 Components trans-
formed by NAD-CVM method:
(a) W3-H, (b) W3-I, (c) W3-J.
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(a) (a)

(b) (b)

(c)

Figure4-10 Components trans-
formed by NAD-CRM method:
(a) W3-K, (b) W3-L, (c) W3-M.

(c)

Figure4-11 Components trans-
formed by K-L method:
(a) W3-N, (b) W3 -O, (c) W3-P.
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Figure4-12 Results of processing Wood 2 for the components: (a) W2-
G, (b) W2-I, (c) W2-M, (d) W2-P, (e) W2-Gray.
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Figure4-13 Results of processing Wood 3 for the components: (a) W3-
B, (b) W3-H, (c) W3-K, (d) W3-P, (e) W3-Gray.
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Figure4-14 Results of processing Wood 1 for the components: (a) W1-
R, (b) W1-J, (c) W1 -L, (d) W1 -P, (e) W1 -Gray.
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4.2.3 Grayscale, Color and Mapping Method

In this section, we discuss the need for color image processing
and mapping methods. Figures 4-15a and 4-15b show two
thresholded images of grayscale Wood 1 image (W1- Gray). Figure 4-15a
shows a threshold level which removes not only wood grains in the
background but also a large part of the blue stain. Figure 4-15b shows
the result of using slightly higher threshold level. Comparing the two
images, we note that graylevels of the object (blue stain) and the
background (wood grains) are mixed, so grayscale image can not be
used for detecting blue stains. Furthermore the blue stain texture is
almost the same as that of background grains. We consequently turn
our attention to color image analysis. However the RGB components by
themselves do not provide a good threshold separation as shown in
Figures 4-16 and 4-17. Figure 4-17 is a set of histograms of R, G, and
B components of Wood 1, and shows that blue and green components
can not be separated by thresholding while red component may
provide a better result. In Figure 4-16 it is shown that thresholding
the red component provides the best result among all three
components. Here we note that the color of "blue" stain is not pure
blue, but a combination of red, green, and blue. The color of grain is
also a combination of red, green, and blue with similar blue and green-
levels to those of the blue stain. Thus we conclude that the difference
of color between blue stain and wood grain is mainly caused by red
rather than blue or green component. Still the result of thresholding
the red component is unacceptable, since the grains in the upper part
of image cannot be removed. Referring to the discussion in Section
4.2.2, a transformation of the RGB components is necessary and NAD-
CVM mapping provides the required separation.



(a)

(b)

Figure 4-15 Thresholded images
of W1 -Gray : threshold level at (a)
190, (b) 195.
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(a)

fp

(b)

(c)

Figure 4-16 Thresholded
images of (a) Wl-R, (b) Wl-G,
(c) Wl-B
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R- BACKGROUND

166 178 189 218 238

G-BACKGROUND

126 146 166 186 206

B-BACKGROUND

70 80 110 130 160

Figure4-17 Histograms of R, G, B components of Wood 1 image.
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4.3 Experiments on Remotely Sensed Ocean Data and Color Mandrill
Picture

To show various applications of algorithms discussed in section
4.1.2, a remotely sensed ocean surface temperature data and a
mandrill picture were used as the test images.

Figure 4-18a shows a pseudo-colored original ocean data. The
data represents remote measurements of ocean surface temperature,
which in turn is related to the plankton concentration. In this
experiment, morphological edge detector with open-close smoothing
provides simple boundary between high temperature region and low
temperature region. Such a boundary can be further used for analyzing
movement of boundaries of successively measured data sets. In this
application, we use relatively large structuring element (disc 4), and
large threshold level. Figures 4-18b, 4-18c, and 4-18d show the
results of edge detection in the form of binary images for : no open-
close smoothing (Figure 4-18b), open-close smoothing by flat
structuring element disc 4 (Figure 4-18c), and open-close smoothing
by dome-like structuring element with disc 4 support (Figure 4-18d).
It should be noted that Figure 4-18d represents the closest result to
the intended one however the edges are slightly underdetected.
Comparison of the three figures should focus on the effectiveness of
open-close smoothing. Consequently Figure 4-18b shows small,
unwanted details and Figure 4-18c shows underdetected edges.

The above results indicate that analyzing ocean data is a good
application for selective filtering property of morphological filters.
Assuming that we need to analyze multi-variate ocean data, measured
by multi-spectral sensors, the above result and availability of consistent
background sample covariance matrix justify application of NAD-CVM
method and morphological filtering.

Figure 4-19 shows color mandrill picture which is tested for
various coordinate transformation methods. We selected this picture
since it represents a very complex color image and thus is a very
difficult test for proposed here techniques. For NAD-CVM and NAD-
CRM methods mandrill's nose was assigned as the object, and the rest
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as the background. Figures 4-20, 4-21, and 4-22 show the results of
NAD-CVM, NAD-CRM, and K-L transformation methods, respectively.
Figure 4-20a and 4-20c represent the best and the poorest
components for the object, respectively. They also show maximum
sample variance ratio separation of the object and the background.
Figure 4-20b and 4-20d are binary edges of Figure 4-20a and 4-20c,
respectively, obtained by morphological edge detector with open-close
smoothing. They confirm the properties of NAD-CVM and selective
morphological filtering. The results of NAD-CRM (Figure 4-21) are
similar to those of NAD-CVM except that Figure 4-21d shows better
object boundary and less background details. These differences
between NAD-CVM and NAD-CRM methods agree with the discussion
of Chapter II and Section 4.2.2. Figure 4-22 shows the results of K-L
method. Figure 4-23a, 4-23b, and 4-23c show the binary edge images
of R, G, B components, respectively. Comparing Figures 4-22 and
4-23, we note that the first principal component (Figure 4-22b) shows
the most details in both, the object and the background.

We use the results of this section in Chapter 5, while discussing
the thesis contributions.



(a)

(c)
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(b)

1

(d)

Figure 4-18 (a) Pseudo-colored original ocean data, (b) edge image of
(a) without using open-close smoothing, (c) edge image of (a) with
open-close smoothing by flat disc 4, (d) edge image of (a) with open-
close smoothing by dome shape structuring element with disc 4
support.
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Figure 4-19 Original mandrill image.
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(a)

(c)

(b)

(d)

Figure 4-20 Results of NAD-CVM method : (a) the best component for
the object, (b) edge image of (a), (c) the best component for the
background, (d) edge image of (c).
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(b)

(c) (d)

Figure 4-21 Results of NAD-CRM method : (a) the best component for
the object, (b) edge image of (a), (c) the best component for the
background, (d) edge image of (c).
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(a) (b)

(c) (d)

Figure 4-22 Results of K-L method : (a) the first principal component,
(b) edge image of (a), (c) the second principal component, (d) edge
image of (c).
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(a) (b)

(c)

Figure 4-23 Edge images of (a) R-component, (b) G-component
(c) B-component.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The goal of this study was to apply morphological filtering to the
process of multi-variate signal analysis. For reason of the lack of
ordering in vector spaces, direct approaches to the extension of the
theory of single-component morphological filters to multi-variate cases
have been failures. Thus, in the current study, a two-stage processing
technique, consisting of the maximum separation of the object from
background feature and separate morphological filtering of each
component, has been proposed.

To separate the object from the background, the NAD-CVM
mapping method for multi-component signal transformation was
considered. The morphological measure interpretation of sample
variance indicated that the NAD-CVM mapping constituted an
excellent preprocessing tool for morphological filtering of multi-
variate signals. An unsupervised implementation of NAD-CVM was
tested experimentally and the theoretical results were confirmed.

5.1.1 Mapping Methods

The study of mapping methods is popular in the pattern
recognition area, particularly for discriminating among individual
observations between two classes. In the current study, a mapping
method for the separation of local data structures was used as a
complement to the nature of morphological (neighborhood set)
operations. The fact of separation maximized the ratio of variances
between two classes. This approach is novel in the sense that
mapping techniques provide for maximum local data structure
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separation as a preprocessing for multi-variate signals prior to
morphological filtering. The normalization and simultaneous
diagonalization of sample covariance matrices (NAD-CVM) was
identified as a promising mapping technique. The desirable
properties of NAD -CVM mapping were studied theoretically, then
verified experimentally.

5.1.2 Mathematical Morphology in Relation to Mapping Methods

To relate the NAD-CVM separation quality to a morphological
measure, the average height of opening by a structuring element was
defined. It was demonstrated that the first absolute central moment
was a reasonable substitute for sample variance, and was related to the
average height of opening. In addition, the increase (or decrease) of
sample variance by the application of NAD-CVM mapping increased (or
decreased) average height of opening. This relationship between
sample variance and average height was used to select a proper
structuring element for a morphological filtering algorithm, a process
which enabled the elimination of small background details while
preserving discontinuities within the object. Thus, the results of this
investigation have justified the degree of effort required to construct a
two-stage morphological processing algorithm for multi-variate signals.

5.1.3 Generalization of Mathematical Morphology

Although the study of mapping methods provides a constructive
means for morphological filtering solutions of multi-variate signals, it
would still be more appropriate to generalize uni-variate mathematical
morphology. This generalization process was attempted by defining
an umbra and a top-surface of multi-variate signal based upon partial-
ordering. In general, for a partial-ordering approach, multi-variate
morphology is reduces to processing each signal component
separately. However, as illustrated in this study with a simple
example, if an order in the signal range can be defined, then
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generalization of the umbra concept will provide new and intuitive
results for multi-variate morphology.

5.1.4 Experimental Results

Since the NAD-CVM can be applied to any two-class, multi-
variate signal analysis problem, there are a number of applications of
the technique considered in this study. As a test of algorithm
performance, a morphological edge detector with open-close
smoothing was simulated. The edge detector, in combination with the
NAD-CVM unsupervised mapping method, performed well while
detecting defects in color board images. Promising results were also
obtained for the detection of blue stains in wooden boards, an image
analysis problem which cannot be solved using uni-variate analysis. In
addition, edge detection was also tested for ocean images and for a
complex color image of a mandrill. The result of these tests further
verified the basis for the theoretical claims presented in this
investigation.

5.2 Suggestions for Future Study

It has been demonstrated that finding a proper partial-ordering
in vector spaces should be the first step toward generalization of
single-component morphology to multi-variate signals. Such a partial-
ordering can be obtained by using the concepts of convex, cone-like
set inclusions. Simultaneously, the development of a multi-variate
version of one-to-one correspondence between signal and its umbra,
based upon proper modification of minimum and maximum
operations, should be further developed.

Linear transformation techniques, as a vehicle to generalize
morphological filtering, was investigated. Since nonlinear techniques
may be effective for some specific cases, it would be of interest to
investigate nonlinear mapping properties for preprocessing of multi-
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variate signals. This study is further justified by the fact that the
morphological filters are nonlinear.

Average height was introduced as a consideration in the relation
of sample variance and structuring element size for the deterministic
observations. Based upon the assumption of random observations, a
theory for the relation of the original data statistics to the
(morphologically) filtered data should be developed. The second
order statistics of morphological filtering have been examined by Zhu
(431. Using stochastic image models, sample means and variances can
be replaced by their statistical counterparts, thus enabling a precise
and formal mathematical analysis. This type of statistical framework
can also be used to define an objective index for the evaluation of the
performance of the algorithm proposed in the current study.
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