AN ABSTRACT OF THE THESIS OF

Dingguo Chen for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on September 30, 1998. Title:

Nonlinear Neural Control with Power Systems Applications

Redacted for privacy

Abstract approved: _Y ~ t VTV VALS N\

Ronald R. Mohler

Extensive studies have been undertaken on the transient stability of large intercon-
nected power systems with flexible ac transmission systems (FACTS) devices installed.
Varieties of control methodologies have been proposed to stabilize the postfault system
which would otherwise eventually lose stability without a proper control. Generally speak-
ing, regular transient stability is well understood, but the mechanism of load-driven voltage
instability or voltage collapse has not been well understood. The interaction of generator
dynamics and load dynamics makes synthesis of stabilizing controllers even more chal-
lenging.

There is currently increasing interest in the research of neural networks as identifiers
and controllers for dealing with dynamic time-varying nonlinear systems. This study
focuses on the development of novel artificial neural network architectures for identification
and control with application to dynamic electric power systems so that the stability of the
interconnected power systems, following large disturbances, and/or with the inclusion of

uncertain loads, can be largely enhanced, and stable operations are guaranteed.

The latitudinal neural network architecture is proposed for the purpose of system
identification. It may be used for identification of nonlinear static/dynamic loads, which
can be further used for static/dynamic voltage stability analysis. The properties associated
with this architecture are investigated.

A neural network methodology is proposed for dealing with load modeling and
voltage stability analysis. Based on the neural network models of loads, voltage stability
analysis evolves, and modal analysis is performed. Simulation results are also provided.

The transient stability problem is studied with consideration of load effects. The
hierarchical neural control scheme is developed. Trajectory-following policy is used so that
the hierarchical neural controller performs as almost well for non-nominal cases as they do
for the nominal cases. The adaptive hierarchical neural control scheme is also proposed
to deal with the time-varying nature of loads. Further, adaptive neural control, which is
based on the on-line updating of the weights and biases of the neural networks, is studied.
Simulations provided on the faulted power systems with unknown loads suggest that the
proposed adaptive hierarchical neural control schemes should be useful for practical power

applications.

Nonlinear Neural Control with Power Systems Applications
by

Dingguo Chen

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of
Doctor of Philosophy

Completed September 30, 1998
Commencement June 1999

Doctor of Philosophy thesis of Dingguo Chen presented on September 30, 1998

APPROVED:

Redacted fgf privacy LY o f-¢F

Major Professor, representing Electrical and Computer Engineering

Redacted for privacy

Chair of the Department of Electrical and Computer Engineering

Redacted for privacy

Dean of the Graﬂate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader
upon request.

Redacted for privacy

AJ—Ae-
o

Dingguo Chen, Author

ACKNOWLEDEGMENT

The author would like to express his great gratitudes to his advisor, Prof. Ronald R.
Mohler of Oregon State University, for his many helpful suggestions, much encouragement

and guidance throughtout the course of this work.

Sincere thanks are also due to the other members of the author’s committee, Prof.
Wojtek Kolodziej, Prof. Rene Spee, Prof. Larry Chen, Dr. Yu Wang, Prof. Satish Reddy,
Prof. Alexander Khapalov, and Prof. Dwight J. Bushnell.

The author is grateful primarily to the National Science Foundation for its support
(Grant No. ECS9301168 and ECS9530917) as well as supplemental support from Bon-
neville Power Administration and Electric Power Research Institution. The support by
Prof. David J. Hill of The University of Sydney, Australia is highly appreciated during

the author’s visit for collaborative research.

The author would also like to give his thanks to those who have helped in different

ways at various times with both technical and non-technical issues.

Finally, the author would like to express his deep appreciation to his wife, Xiaohui
Yang, for her patience, understanding, support and encouragement throughout the course

of his doctoral work.

1.

TABLE OF CONTENTS

Page

INTRODUCTION .t e et 1
1.1, Introduction........ ... 1
1.2. Identification and control issue of dynamic power systems............... 4
1.3. Neural networks as identifiers and controllers........................... 7
1.4. The goals of this thesis............ccoiiviiiiiiiii i 8
MULTI-LAYER NEURAL NETWORK ..ot 10
2.1, Introductionoooiieiiniit i e 10
2 O S o T P 10

2.1.2. Background. e 10

2.2. Feedforward neural networkoiiuiiiiiiiiiii i 1
2.2.1. Structure of feedforward neural networks 12
2.2.1.1. A neuron: Information processing cell 12

2.2.1.2. Sigmoidal functions..............coiiiiiiiiiiiiiiiant 13

2.2.1.3. Notations. ..ot e 14

2.2.2. Feedforward neural network composition 14

2.2.3. Approximation capabilityc..ooiiiiiiii 15

2.2.4. Backpropagation algorithms........... ...t 16

2.3. Recurrent neural network and dynamic backpropagation................ 23
2.4. Locally recurrent multilayer neural network 25
2.5. Software implementationttt 26

LATITUDINAL AND LONGITUDINAL NEURAL NETWORK STRUCTURES

FOR FUNCTION APPROXIMATION ..ottt 28
3.1, Imtroduction........ ... i e 28
3.2. Latitudinal neural network architecture...................l 29
3.2.1. Longitudinal neural network structure........................... 33
3.2.2. Sigmoidal functiont 33
3.2.3. Nonlinear fittingo 34
3.2.4. Neural network arrayccoveiiiiiiiiiiiiiiiiiaans 38
3.2.5. Continuous function approximation with desired pricision........ 40

3.2.6. Relations between latitudinal and longitudinal neural networks .. 41
3.2.7. COMIMENES . vttt ittt ettt e e 43

TABLE OF CONTENTS (Continued)

Page

3.3. Properties of latitudinal neural networksl 44
3.3.1. Sigmoidal functions and their combinations...................... 45

3.3.2. Study on the properties of latitudinal neural networks 51

3.3.3. General results on multi-dimension cases 57

3.3.4. Commentsoouiit ittt e 62

R SR 765 s e LT3 1a) 4T 63
LOAD MODELING AND VOLTAGE STABILITY ANALYSIS 64
4.1, Introductiont e 64
4.2. Typical voltage stability analysis.............ccooiiiiiiiiiiiii i, 67
4.2.1. Static voltage stability analysis...................oooiiiit 67

4.2.2. Quasi-steady state voltage stability analysis 71

4.2.3. Dynamic voltage stability analysis................... 72

424, CommENntsiiin ittt et e 73

4.3. Load modeling.........ovniuiiiiiiiiii i i 74
4.3.1. Static load statistics ..o 74

4.3.2. Load dynamics modeling.................ooiiii 7

4.4. Voltage stability analysis.............ciiiiiii it 85
4.4.1. Static voltage stability analysis..................oooviiiiit 86

4.4.2. Dynamic voltage stability analysis..................o.... 91

4.5. Conclusions and outlooks ... 92

SYNTHESIS OF ADAPTIVE HIERARCHICAL CONTROLLERS APPLIED

TO DYNAMIC POWER SYSTEMS ..ottt iiceaeeas 94
5.1, Inbroduction it e 94
5.2. Time-optimal control for SMIB withaload................ ... il 98
52.1. SMIBwithaload.........ccoiiiiiiiiiii i 101
5.2.2. Minimal time control it 103
5.3. Switching-time-variation method (STVM).................oiiiiiit, 105
5.4. Synthesis of a neural controller as a power system stabilizer............. 107
5.4.1. Time-optimal neural control..............cooiiiiiiiiiiiiiiii 108
5.4.2. Near time-optimal hierarchical neural control.................... 111

5.4.3. Adaptive near time-optimal hierarchical neural control 113

TABLE OF CONTENTS (Continued)

Page

5.5. Theoretical justification..............cciiiiiiiiiiiiii 115
5.5.1. Switching manifold approximationcooiiiiL 115

5.5.2. Support for construction of hierarchical neural controllers........ 119

5.5.3. Approximate time-optimal adaptive neural controller 122

5.6, SImUlationS ... ovt it e i 125
5.7. Generalization to more general systems...............ocoiiiiiiiiiin.. 130
5.8, ConClUSIONS . . oottt it e e e 131

NONLINEAR ADAPTIVE NEURAL CONTROL WITH APPLICATION TO

PREVENTION OF VOLTAGE COLLAPSE ... 143
6.1. Introduction........... ..o et 143
6.2. Models and neural control of FACTS-equipped power systems 145
6.2.1. Formulation of compound power systems 146
6.2.1.1. Single-machine infinite-bus system with a load 146

6.2.1.2. A typical system model for voltage collapse study 146

6.2.1.3. Multi-machine power systemsoal 149

6.2.1.4. Generalization: affine nonlinear systems................. 155

6.2.2. Neural control of affine systemsooiiit 155

6.3. Adaptive neural control designcooiiiiiiiiiii 158
6.3.1. Definitions, assumptions and lemmas............................ 159

6.3.2. Adaptive neural control for stabilization of nonlinear systems 160

6.4. Simulations........ ... e 176
6.4.1. Lyapunov-analysis-based control design 176

6.4.2. Optimal control design...........c..cooiiiiiiiiiiiiiiiiii .. 179

6.4.3. Equilibrium stabilizationot 185

6.4.4. Simulation results. ... 186

6.5, ConCluSIONS vu ettt e e e 193
SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 199
A5 W 11 1«1 7Y 20 199
7.2. Conclusions and future research.............. ... it 202

REFERENCES ... ettt e s 203

TABLE OF CONTENTS (Continued)

APPENDICES . i e e e s
A C Programsueitti ittt i
B About the singular solutionccoiiiiiii i

C About parameters updating i

LIST OF FIGURES

Figure Page
2.1 Block diagram for a recurrent neural networkol 23
3.1 Latitudinal neural network architecturel 30
3.2 Piecewise quadratic fitting 35
3.3 Piecewise linear approximation via a specific neural network. H — with

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

Heaviside activation function; S — with Soft squashing activation function 36

Piecewise quadratic approximation via a neural network. S — with Soft
squashing activation function; Q — with Quadratic squashing activation

function 39
Nonlinear approximation via a neural network 40
Neural network arrayoooeiiiiiiiiii i 41
TEEE 14-bUs SYSteIm .. oottt ittt et ai e e i 77
Real/reactive power vs voltage magnitude..................., 80
Neural network model for load at bus 14t 81
Recurrent neural network 82
Output-feedback neural networkot 83

Original data for voltage, active/reactive power (sampling interval: 9

SECOMAS) + ettt ettt et e 84
Normalized data for voltage, active/reactive power (sampling interval: 9

SECOMAS) ottt t et e 86
Target and output of the recurrent NN with 1 hidden layer (sampling

interval: 9 seconds)t e 87
Target and output of the recurrent NN (sampling interval: 9 seconds) ... 88
Neural-net-based time-optimal state feedback control.................... 110
Hierarchical time-optimal neural control 112

Time-optimal trajectories calculated by STVM for case P, =0 130

LIST OF FIGURES (Continued)

Figure Page
5.4 Rotor angle deviation data for neural net training for case P, =0........ 131
5.5 Learned pattern of rotor angle deviation for case P, =0................. 132
5.6 Learned pattern about time-optimal trajectories for case P, =0 133
5.7 Training performance for case P, = 0; solid—the resulting trajectory

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

6.1

6.2

6.3

6.4

6.5

from the neural controller; dashed—the off-line calculated trajectory 134

Performance of the neural controller for untrained case for case P, = 0;
solid—the resulting trajectory from the neural controller; dashed—the
off-line calculated trajectory; dotted—the trajectory resulted from fixed

03001 073 41T 1.5 10) « W O 135
Time-optimal trajectories calculated by STVM for case P, = 10%FP,, 136
Rotor angle deviation data for neural nét training for case P, = 10%P,,.. 137
Learned pattern of rotor angle deviation for case P, = 10%F,, 138
Learned pattern about time-optimal trajectories for case P, = 10%F5,, ... 139
Training performance for case P, = 10%PF,,; solid—the resulting trajec-

tory from the neural controller; dashed—the off-line calculated trajectory 140

Performance of the neural controller for untrained case for case P, =
10%P,,; solid—the resulting trajectory from the neural controller; dashed—
the off-line calculated trajectory oot 141

Performance of the hierarchical neural controller for SMIB with an un-
known load after experiencing a short-circuit fault; solid—the resulting
trajectory from the neural controller; dashed—the off-line calculated tra-

151762 200 142
A power system for voltage collapse studyccoiiiiiiiiit 148
Four-machine power system..............oooiiiiiiiiiiiiii 150
QV CUIVE. - ottt i et e et et 188
Reactive power demand @y varying with time..................... 189

Quasi-steady-state and transient stabilization via neural control 190

LIST OF FIGURES (Continued)

Figure Page

6.6 Neural-net-based feedback generated control 191

6.7 Performance of the hierarchical neural controller for generator dynamics;
@1 = 11.10 ;the equilibrium is translated to the origin. 192

6.8 Performance of the hierarchical neural controller for generator dynamics;
21 = 11.20 ;the equilibrium is translated to the origin. 193

6.9 Performance of the hierarchical neural controller for load side voltage
dynamics; (7 = 11.10 ;the equilibrium is translated to the origin......... 194

6.10 Performance of the hierarchical neural controller for load side voltage
dynamics; Q1 = 11.20 ;the equilibrium is translated to the origin......... 195

6.11 Performance of the hierarchical neural controller for the whole system;
Q1 = 11.20 (with control design for partial system dynamics cancella-
tion); the equilibrium is translated to the origin. 197

6.12 Performance of the hierarchical neural controller for the whole system;
21 = 11.20 ;the equilibrium is translated to the origin. 198

NOMENCLATURE

Symbol Description

c Capacitor

D damping factor

E voltage source

H Hamiltonian function
I branch current

M system inertia

p real (or active) power
Q reactive power

s series TCSC compensation degree
t time

u control variable

|4 bus voltage

v control variable

X reactance

T state

Y admittance

NOMENCLATURE (Continued)
Subscripts

Symbol Description

a Additional value

b power system base for conversion to per unit system
d load demand

e equilibrium

f final value

g generator

1 vector index

m machine

n nominal value

t terminal

0 nitial value

NOMENCLATURE (Continued)
Greek Symbols

Symbol Description

o multiplier coefficient
é rotor speed

A incremental value
00 infinite bus

A costate

w rotor speed

LG final-state constraint

T switching time

NONLINEAR NEURAL CONTROL WITH POWER SYSTEMS
APPLICATIONS

1. INTRODUCTION

1.1. Introduction

The derivation of a mathematical model from physical laws according to the use of
the model, such as for control, is most basic here to determine mathematical structure. For
example, it is shown in [1] that a close connection exists between dynamic identification
of an environment and its control. System identification itself is a well developed area
of system theory. The need of mathematical representations in many aspects of the real
world dictates the importance of system identification. In a way, it may be said that
identification is a link between the mathematical-model world and the real world. For
characterization of the cause and effect links of an observed plant, it is often assumed that
the plant can be described by a model whose structure is known, or in other words, the
plant is associated with a given form of parameterization, but the values of the parameters
are assuméd to be unknown. The parameters of the model are tuned in such a way that the
behavior of the model approximates that of the plant. Differential equations, difference
equations, and state-space representations are some examples of most widely used models.
An excellent treatment of system identification in theory and applications may be found
in [2, 3]. Note that identification may be categorized into off-line identification and on-line
identification. The former one refers to a separate procedure by which a model (usually
of given structure) is constructed based on a batch of data collected from the real system.

The latter one refers to a procedure by which a model (again usually of given structure)

2
is constructed and updated based on the most recent available data collected from the
system in operation. Off-line identification may be sufficient for time-invariant systems.
The need for on-line identification is seen in cases where the properties of the observed
object are time-varying. For control purposes, two different approaches exist. One is
the so-called indirect control by which the control action is adjusted based on the on-line
identification of the plant. The other is the so-called direct control by which the control
action is adjusted to improve a performance index involving implicit identification. Note
that for both approaches, efforts have to be made for identification of the behavior of
the plant even when control action is being taken based on the most recent available
information about the plant. In a way, it may be said that control and identification are
inter-dependent, which was referred to as dual control [4].

No matter what kinds of identification and adaptive control schemes are used, the
basic requirement is to keep the overall system stable. Stability is always an important
issue for design of adaptive control. Stability analysis of adaptive systems is still quite dif-
ficult. In general, the analytic solution of dynamic nonlinear systems is usually impossible
so that indeed, general results on adaptive control of nonlinear systems are very few. It
is true though that adaptive control can be designed for some general dynamic nonlinear
systems, for example, feedback linearizable nonlinear systems at least in theory. On the
other hand, adaptive control of linear systems was even an extensive research subject, and
numerous results are available. An attempt to present a unified framework of the currently
well known results for stable adaptive linear systems is made in [5]. Adaptive stabilization
of nonlinear systems is overviewed in [6] where the nominal control explicitly expressed
in terms of parameters is assumed. It is noted that either available results for dynamic
linear systems are not adequate for real nonlinear systems or general results for dynamic
nonlinear systems which are very useful are scarce. A simple class of nonlinear systems,
bilinear systems which are linear in state and control but are jointly nonlinear, possess

convenient structure properties, and hence make mathematical treatments possible. It is

3
illustrated in [7, 8, 9] that many real nonlinear systems cound be treated approximately as
bilinear systems, and the control design procedures and stability analysis theories devel-
oped have played crucial roles in designing proper controls for these systems. It is shown
in {7] that controllable linear systems may not be controllable with physical constraints on
control while the controllability of bilinear systems of the same order could be achieved.
Roughly speaking, bilinear systems are more controllable than linear systems. In many
practical problems, theory of bilinear systems has found its succeful applications [9]. Re-
cently, interest in application of bilinear system theory to power sytems was observed.
It is shown in [10] that the transmission network of power systems when controlled by a
variable series capacitor, (a simplified model for the thyristor-controlled series capacitor
(TCSC), one kind of the popularly used flexible ac transmission systems (FACTS) de-
vices), can be modeled as a bilinear system. Further, it has been demonstrated [11] that
bilinear system models offer better approximation to the nonlinear dynamics than their
linear counterparts, and moreover, that postfault power sytems which may not be stabi-
lized via linear control could be stabilized via bilinear adaptive control. In general, it is
the common consensus now that bilinear control (or more generally multiplicative control)
offers a lareger horizon of stable operation of the power systems than linear control does,
but of course, when the systems approach a small neighborhood of the equilibrium, linear
control, which can provide better damping and local asymptotic stabilization, should take
over. The idea behind bilinear control is further developed and applied to stabilization of
power sytems in [12] where the total control is a weigthed sum of a number of pre-designed
nominal controls. Each nominal control can conduct the system state to the system equi-
librium in some “optimal” sense for a corresponding specific case. In practice, analytic
forms of nominal optimal controls may not be available. Instead, through use of compu-
tational techniques [7, 13], optimal controls and optimal trajectories can be calculated,
which in turn are used to train a neural controller. The weights (or called multipliers)

are also obtained with another neural network yet trained with available measurements.

4
This leads to adaptive neural control structure, which may be applied to stabilize faulted
power systems.

Aiming at the same problem, stabilization of power systems, yet with consideration
of load modeling, identification and control issues, relevant to nonlinearly coupled bilinear
systems, are studied in this thesis. Some aspects of identification and control in dynamic
power systems are studied in this thesis. Brief description of these aspects and useful tools

for dealing with identification and control are presented next.

1.2. Identification and control issue of dynamic power sys-
tems

Due to increasing electric power demand, different groups of machines are intercon-
nected through tie-lines, and varieties of loads with various kinds of characteristics as well
as a lot of protective equiment are connected to large electric transmission systems at dif-
ferent locations, resulting in extremely complex nonlinear dynamics. Therefore, planning,
operation and control design of such systems become increasingly important.

Under ideal operational conditions, all the generators should keep synchronism.
In other words, the loads should be fed at constant a.c. voltage, and fixed frequency
all the time. Therefore, the variations of both voltage and frequency should be kept
so small that the related equipment can normally operate at design performance. This is
usually associated with the dynamic stability (or steady-state stability), which is concerned
with the stability of synchronous machines under the condition of small-disturbances.
Normally, synchronous machines can keep in step in some degree with the synchronizing
force. Situations, however, do arise in which the synchronizing force for some machines
may not be adequate such that they fall out of step, and small disturbances may cause

them to lose synchronism. Fortunately, this could be handled by traditioal Power system

5
stabilizers (PSS), etc. with linear control design to enhance the damping of power systems.
The linear control design thereof is on the basis of the linearized system model around the
desired equilibrium.

While the machines may return to their original state under samll perturbations
with no net power change involved, the large faults occuring in power systems may create
an unbalance between the supply and demand, and thus cause the power systems to
experience oscillatory transient dynamics. The oscillations are reflected as fluctuations in
the power flow over the transmission lines.

The system equations for a transient stability study are usually nonlinear. The

dynamics of a simple machine is characterized by the familiar swing equation:
0 =wp(w—1) (L1)
w= ﬁ(Pm — P, — Dw)
where § and w are the rotor angle and speed, both of which are the system states. Py, is
the prime-mover power, P, is the electrical power and D is the damping constant. The
rotor angle is measured with respect to a synchronously rotating reference.

When there are many machines in a large interconnected power system, the above
swing equation may be modified with one machine as reference, and with the relative rotor
angle and speed as the state of each machine other than the reference machine.

It is observed that P, is dependent on the network structure, and bus voltages (mag-
nitudes and phases) as well as the loads. The nonlinearity is thus introduced. The effects
of control devices are also reflected in the flow of P.. The flow of P, is usually associated
with the supply of rective power. These observations have brought increasing interests in
the use of flexible ac transmission system (FACTS) devices for purposes of increasing the
power transfer capability of the transmission system and enhancing transient stability.
The commonly used FACTS devices (to name a few, include thyristor-controlled series

capacitors, thyristor-controlled resistors, and static var-compensators) allow for rapid ma-

nipulation of the network impedances, and affect the power flow of the systems. Mathe-

6
matical modeling of FACTS devices itself is a difficult task, and is not addressed in this
thesis. Instead, the FACTS devices are assumed to be equivalent variable capacitors, or
variable resistors, or whatsoever, which permits convenient mathematical manipulation
for control purpose, and whose practical implementation is not considered.

Extensive studies have been made on the transient stability of large interconnected
power systems with FACTS devices installed. Many kinds of control methodologies (to cite
a few, nonlinear adaptive control, variable structure control, optimal control and artificial
neural network control) have been proposed to stabilize the postfault system which would
otherwise eventually lose stability without proper control.

Note that for classical transient stability study, loads are usually assumed to be
either constant power consumer, or constant impedance, or at worst constant current
source. The dynamics of loads are usually ignored for avoiding complexity. Since several
major system failures [14] have resulted from load side voltage instability and collapse,
load-driven voltage stability has now become a major concern in planning and operating
electric power systems.

Load-driven stability is mainly concerned with the stability caused by load dynam-
ics, big load build-up, etc.. Therefore, modeling of loads (including static modeling of loads
and dynamic modeling of loads) is an important issue and will be studied in chapter 4.

From the viewpoint of control design, modeling of each and every component of
loads in a load center is neither necessary nor practical. An aggregate load model is
usually developed for power flow and transient stability study [15]. Note that in the
literature voltage stability study is usually based on a static load model. As is known, the
dynamics of loads play an important role in the voltage instability problems, which needs
in-depth investigations. The voltage stability study and control design should include the
consideration of load dynamics. This important issue on the understanding of voltage
collapse mechanisms will be part of this work. Loads identification and its inclusion in

the stability study and control design will be presented in chapters 4 to 6.

1.3. Neural networks as identifiers and controllers

It is observed from the discussions in the previous sections that mathematical mod-
els for systems in question (for instance, loads and power systems) are needed for design
purposes in order to achieve desired performances. For these problems in discussion, an-
alytic mathematical models are not available, and large amounts of data on the system
behaviors are available. For conventional identification approaches, linear or specific non-
linear structure forms are assumed. This may be helpful in dealing with specific problems
with known properties. For the addressed problems with random characters, conventional
identification approaches may not be sufficient. For the problems addressed in the context
of stabilization of postfault power systems, conventional, analytic methods may not yield
satisfactory solutions, since either no accurate analytic model is availabe or the existing
model is too complicated for use in synthesis of controllers. Thus, there is a need for
novel and effective identification and control schemes. This has led to the exploration of
the use of artificial neural networks (or simply neural networks). It has been shown that
neural networks possess certain universal approximation properties which allow their use
as identifiers and controllers for a large class of nonlinear dynamical systems.

The distributed structure of neural networks allows fast parallel computation. In
addition, this kind of structure enables neural networks to perform robustly even in pres-
ence of disturbances. Due to neural networks’ nice properties, they have been used in
many diverse real-world applications, to cite a few, optimization [16], ill-posed inverse
problem [17], image compression {18], handwritten signature recognition [19], classifica-
tion [20], modeling and identification [21], and neural control [22].

Originally, artificial neural network research was motivated by the effort to model
biological neurons and neural systems. It was McCulloch and Pitts in the 1940s who first

represented the neuron with a methematical model [23]. The introduction of Hebbian

8
rule [24] makes possible the proper changing of the synaptic weights of the neuron. Rosen-
blatt’s perceptron [25], Widrow’s adaptive linear element [26], etc. aroused widespread
enthusiasm about artificial neural networks. The publication of an important book [27],
with exposure of serious theoretical limitations of perceptrons and in particular the pes-
simistic conclusions, almost gave an end to the then neural network research. The revival
of neural network research is largely attributed to several researchers’ famous works, such
as Grossberg’s ART (28], Kohonen’s self-organizing mapping [29], Rumelhart’s backprop-
agation training algorithm [30] etc.

There is currently increasing interest in the research of neural networks as identifiers

and controllers for dealing with dynamic time-varying nonlinear systems.

1.4. The goals of this thesis

This thesis is mainly devoted to the theoretical aspects of neural networks and their
applications as identifiers and controllers in dynamic nonlinear systems. In particular, the
applications are confined to dynamic modeling and control in dynamic power systems. To
be speicifc, this thesis will develop neural-net-based control design methodologies to deal
with power system stability problems involving both generator dynamics and load dynam-
ics since either generator dynamics or load dynamics, but not both, is usually considered
in the literature for stability concern. This in turn leads to the tasks to be performed,
namely, load modeling, transient stability study, load-side stability study, neural control
design, adaptive neural control design, and stabilization of power systems which is likely
to experience transient instability problems and/or voltage instability problems.

The thesis is organized as follows:

The background material on neural networks is provided in chapter 2. The back-

propagation algorithm, together with its derived versions for training recurrent neural net-

9
works and locally recurrent neural networks, is discussed and is represented in a compact
matrix-format. This is for convenience of software implementation of the backpropagation
algorithm.

Chapter 3 presents some proposed neural network architectures. The proposed
latitudinal neural network architectures are studied in detail. Relevent properties are
further investigated.

The voltage stability of electric-power systems is discussed in chapter 4. Since
voltage stability is normally associated with the load dynamics, the load modeling issue
is presented first. Then use of neural networks for load modeling is addressed. Further,
with the neural-network-based load model, static and dynamic voltage stability analyses
are provided.

In chapter 5, the synthesis of intelligent neural controllers is addressed. First of all,
the approximation of a switching manifold by a neural network is discussed. Based on such
a discussion, a novel pattern recognition scheme for time-optimal control is proposed. Then
a hierarchical, neural-network, control structure is proposed. Further, adaptive neural-
network control is presented. These neural control schemes are justified by mathematical
verification. Simulation results are presented to show the effectiveness of the proposed
neural control schemes.

In chapter 6, the stabilization of multi-machine systems is addressed, together with
the inclusion of dynamic load modeling by a neural network. First, the strategy developed
in chapter 5 is used to stabilize the postfault multi-machine system which is represented
by a set of generalized bilinear differential equaitions under some assumptions. Then the
adaptive neural control is discussed. Further a control scheme is proposed to stabilize the
mulit-machine systems and keep a good profile of load side voltage aiming at the study
on the mechanism of voltage collapse.

Chapter 7 reviews the main contributions of this dissertation, presents the conclud-

ing remarks, and suggests future research.

10
2. MULTI-LAYER NEURAL NETWORK

2.1. Introduction

2.1.1. Object

This chapter is intended to present a quick review of neural networks, an overview of
ongoing research topics on neural networks, and the implementation issue. Some standard
materials are covered, which may be useful either for further developments in later chapters
or for the interpretations of the implemented software. In addition, this chapter inten-

tionally provides a unified compact matrix format for the backpropagation algorithms.

2.1.2. Background

The past decade has witnessed increasing interest for the use of neural networks
in the identification and control of nonlinear dynamic systems. KEarly applications of
neural networks are found to be primarily in the area of pattern recognition and classifi-
cation. Function approximation by neural networks was one of the then major research
subjects. These theoretical studies have laid the foundations for neural networks as a
well-established discipline. Since multilayer feedfoward neural networks represent static
nonlinear mappings, it was suggested in [31] that for use of neural networks for model-
ing and identification of dynamical systems, these neural networks have to be modified
by addition of feedback connections, resulting in the so-called recurrent neural networks.
Since then a tremendous growth of research and development on this subject has resulted
in numerous publications. Dynamic backpropagation [32] was proposed in order to train
a recurrent neural network for approximation of the system dynamics. For demonstration

of use of neural networks for identification and control of dynamical systems, extensive

11
simulation results on identification and control and theoretical studies on controllability,
observability and stability have been reported in the literature. More recently, use of
locally recurrent neural networks was proposed in [33] for emulating a large class of non-
linear dynamic systems. It is believed that recurrent neural networks, or a similar adaptive
architecture, will be increasingly used in dealing with control design of dynamical systems
in the future. It is observed, however, that neural network training based on dynamic
backpropagation is intensively time-consuming, which makes impossible on-line training

of such neural networks.

2.2. Feedforward neural network

It is well known that multilayer feedforward neural networks have been intended
to pattern recognition and classification applications. The use of feedforward neural net-
works for representation of static mappings is also known. These successful applications
of feedforward neural networks are mainly due to their ability to approximate a certain
class of functions. It has been shown that any continuous functions with compact support
can be approximated arbitrarily well by a one-hidden-layer feedforward neural network
for the activation function being either sigmoidal ones [34] or radial basis functions [35].
In addition, the distributed structure of neural networks allows fast parallel computation.
With proper choices of activation functions, training process can proceed conveniently
for the relevant partial derivatives necessary for adjustment of weights and biases can be
computed and propagated backward layer by layer whilst the outputs of each layer can be
calculated easily and propagated forward. This is essentially the well-known backpropa-
gation algorithm [30], though the very idea behind this algorithm is originated in [36]. It
may be said that the appealing structural features of neural networks which allow conve-

nient software and hardward implementations and the availability of convenient training

12
algorithms have made their extensive application possible. Also note that the backprop-
agation algorithm is merely a simple gradient method and that other methods, such as

conjugate gradient, are sometimes more effective as noted in section 2.3..

2.2.1. Structure of feedforward neural networks

A feedforward neural network is composed of a number of layers, each of which in
turn consists of a number of neurons. There are only connections between the neurons in
one layer and its next layer (if it exists), and there are normally no connections between
neurons within the same layer. Usually all neurons in the same layer have identical struc-
ture except that relevant parameters (including the connection weights and biases) take
different values. The correspondence between the inputs and outputs of each layer may
be viewed as a mapping from the input space to the output space. Thus, a feedforward
neural network may be viewed as a composition of a number of mappings—a nonlinear
finite-dimensional mapping from the input space to the output space for this neural net-
work. In a way it may be said that a feedforward neural network realizes a parametrized
nonlinear mapping. Based on this understanding, a feedforward neural network may be
used to approximate, with a proper choice of the number of layers and the number of
neurons in each hidden layer, some nonlinear functions with the approximation error in
some sense dependent on the adaptation of the relevant parameters. The parameter op-
timization resulting in the optimal value of a chosen performance criterion may proceed

with an iterative search guided by a learning algorithm in the training process.

2.2.1.1. A neuron: Information processing cell

An artificial neuron is characterized by its synaptic connections with connection

weights w;’s, its activation function o(.) and the threshold b. The input signals z;’s that

13
a nueron receives through its corresponding synapses with connection weights w;’s are
multiplied by the connection weights and summed to yield the activation of the neuron.

The activation in turn produces the output y of the neuron, which can be given by

y= U(Z w;z; + b) = o(wz + b) (2.1)
B
-
where w = [wy wg -+ Wy] with n as the number of connections;
T
and z = [T1 Ty -+ Tp } . 7 designates transpose operation.

Mathematically, a neuron actually realizes a function f : R — R, where n is the
number of the inputs.
The activation function is usually a logistic function o;(z) = 1-&—%’ a tan-sigmoidal

. —p T
function o4(z) = %, or a similarly saturating function.

2.2.1.2. Sigmoidal functions

The activation functions that are commonly used are a special form of the so-called
sigmoidal function.

A function ¢ : R — R is called sigmoidal, if it is nondecreasing and bounded, i.e.,
limg_, 1o 0(z) < +00, and lim, , o o(z) > —c0.

Besides the logistic and tan-sigmoidal activation functions, several other kinds of

sigmoidal or squashing functions are defined in the following.

e Heaviside function

1 ifz>0
on(z) =
0 ifz<O
o Soft squashing function
1 ifz>1
os(z) =9 z ifz€0,1]

0 ifz<0

14

¢ Quadratic squashing function

1 ifz>1
og(z) =4 22 ifz€0,1]
0 ifzx<0

2.2.1.3. Notations

An opterator o is defined as follows: C = Ao B if for A € R™*", B € R™*", and
C € R™™, ¢;j = aijbij, where a;j, b;j, and c;; are the elements in the intersection of row
+ and column j of A, B, and C, respectively.

f[A] is defined as

flan) flaz) -+ f(am)w
flaz) flag2) --- flazn)

f[A] = (2.2)
| flem) flamz) -+ f(ama) |
[aiy a2 - Qp]
where A = 721 fl22 h 727} € R™*™ and f is a scalar function.
| G Gmp o G |

2.2.2. Feedforward neural network composition

A feedforward neural network with L layers consists of the input layer, layer 0, of
dp inputs, the output layer, layer L, of d;, outputs, and hidden layers with d; neurons for
each layer [=1,2,---, L.

In general, the activation function for each neuron of a layer is assumed to be the

same as for all others. Let the activation functions for the /th layer be otforl=1,2,---, L.

15
All the neurons in each layer are numbered from 1. A neuron n in layer [is connected to
all the neurons in layer [— 1 through d;_; connections, each one associated with a weight
wfm- where j = 1,2,---,d;_1. The threshold or bias for this neuron is bfr It is observed
that layer I actually realizes the following function vector:
F': R%-1 — R% where the ith component is given by F}(z}1) = al(Z?’:'f wé,jxé_l +8)
with z!~1 € R%-1 and m;"l is the jth component of the vector z/~1, the output vector of
layer { — 1.

Therefore, a feedforward neural network with L layers results in the following com-

pound mapping from R% —s RIL;
F(z%) = (FF... FY)(z°) (2.3)

For brevity, the neural network structure discussed above will be represented here-

after by N;if;;‘;;:::;gig.

2.2.3. Approximation capability

Function approximation theory in terms of neural networks has been studied ex-
tensively. Under some mild assumptions, neural networks may be used to approximate a
large class of functions. To make the description simple and convenient in the following, a
neural network and the function it realizes are used exchangeablely if there is no confusion
arising.

It has been shown in [37] that for any continuous function f with a compact support

(2, there exists a neural network N, which approximates f arbitrarily close in Ly sense.

That is,
/Q 17 () — N(2)|[Pdz < e (2.4)

where ¢ is a pre-specified positive number.

16
Moreover, it has been shown in Funahashi [34] that for a continuous function f with
a compact support {2, there exists a neural network N, which approximates f arbitarily

closely in uniform topology. That is,

sup | f(z) — N(z)|| <e (2.5)
T€EN

More results about the approximation ability of neural networks can be found
in [38, 39, 40]. Most results are for three-layered neural networks with sigmoidal acti-
vation functions used in the hidden layer. One fundamental result states that such neural
networks can approximate any continuous or other kinds of functions defined on compact

sets in R™.

2.2.4. Backpropagation algorithms

Suppose the training data contain a number of patterns s(i) and their corresponding
targets t(z) fori = 1,2,---, P where P is the number of patterns and s(i) € RM, t(i) € RV.
Since a neural network with m neurons in the input layer and n neurons in the output
layer can be viewed as a parameterized function F : RM — RY. This function can
be explicitly expressed as F'(.,6). Note that the first argument is the input vector, and
the second argument designates the parameter vector 6, composed of all the weights and
biases. Once the structure of a neural network is chosen, i.e., the number of layers, the
number of neurons in each layer, and the type of the activation function for each layer are
specified, the remaining task is to solve the following parameter optimization problem:
Find the optimal parameter vector 8* such that a performance index J(6) is minimized
(or maximized).

Often, it is of computational advantage to use a quadratic performance index. With

do,d1,+d
, L) of a neuron network N 75"
3))

s'(i) designating the output of layer I (I = 1,2,---

y

which is used to fit the given training data, a quadratic performance index can be ex-

17
pressed as J(§) = 3.7 | LItG) — s2(6)|12 = o8, E (t5(4) — sJL(z)) where the subscript
; designates the jth component of a vector, and ¢(¢) — sL (¢) is the error between the actual
output of the neural network and the desired ouput.

To obtain the optimal 6%, the computation of the gradient of J with respect to 8 is
needed for application of a gradient-based numerical technique.

Suppose that activation functions ¢!(.) for I = 1,2,---, L are chosen properly here
such that their derivatives are functions of themselves, that is, ﬂ_ﬂ_l = ¢'(ot(z)).

If layer [is the output layer, that is, [= L, the partial derivatives can be obtained

as follows.
aJ e OEG)
oL, = (tali) — sk(i)) L,
n, =1 n,
P
= =D (tali) — sy (D)g" (55 (i)sf ' (3)
i=1
Define 6% (i) = (¢ (i) — sL(3))g* (sL(i)). Then
L 0) 2.6
3wn % Z (2.6)
If layer [is one of the hidden layer, then the chain rule is used to compute the partial
derivatives.
P dg L;
oJ . Ly st (7’)
wl, g j;(tj(ﬁ) — 5 (z))——awil,k
S 35(06) — sk 22D 200
- ° i\t =55 (2 Bt
=1 j=1 aSn(Z) awn,k
diy1 d .
3 S SN0 — by 2) D)
i=1 m=1 j=1 ! 7 8s Hl() 0s,(i) awiz,k
Since 321 = g!(st (i))s (0),
wn k

Bwnk - _ZZ Z)—S asj(i) owl,

l
lel n »

18

P o . 83 (z) 1 -1/
= —ZZ (t; () — 6sl TG)9 (sh ()33 (5)
=1 j=1
P
= =) dLE)sk6) (2.7)
i=1

where 6, (i) is defined as 8k (4) = Zdi (¢;(7) — SL())gf%gl(n(1))-

Since 4—2;”, 7 ; g+ sk (i))whtl

m,n?’

e _i(§ dZL(t () — s7(i)) (Z) 83’“() O, ()
]

P dl+1 dy, (’L)
= -3 w6 -) Gl ? (o Duling (D)l ()28)
=1 m=1 j=1

Therefore, &!,(i) may also be written as

© 95} (i) ! 41 1
=20 3050 —f Dy O) @9
m=1 j=1 ?

Since by the definition of &},(i), 6571 (i) may be written as 651 (i) = L (t;(3) —

7=1
SL())Mglﬂ(siﬁl())- Therefore,

Askr1(i)
dit1
8 (8) = Y S @ywhi g (5 (5)) (2.10)
m=1

Observations from equations (2.7) and (2.10) indicate that the complete determina-
tion of the gradient requires two kinds of information from two phases: feedforward phase
and error backpropagation phase. To be more specific, the outputs of each layer can be
computed layer by layer forward, starting from the input layer, and the error associated
terms can be computed layer by layer backward, starting from the output layer. This is
the main reason why this algorithm is called the backpropagation algorithm.

By defining the following matrices, the backpropagation algorithm can be written

in a compact matrix format.

Define the input matrix

s1(1) s1(2)
s2(1) s2(2)

| sdo(1) 545(2)

the desired output matrix

t1(1) t1(2)
ta(1) t2(2)

ta, (1) ta,(2)

19

Sl(P)
82(P)

tq, (P) J

the output matrix for layer I = 1,2,---, L corresponding to all the input patterns

si(1) si(2) s1(P)
M ECRECRE R
| 5o, (1) s5,(2) o s (P)]
the weight matrix for layer [=1,2,---,L
[w wh wt]
1,1 1,2 17dl—1
W — why why w£¢_1 ’
L wflz,l wfiz,2 wflladl—l J
and the backpropagation error matrix for layer { = 1,2,---,L
si(1) 4(2) 61 (P)
A | B0 BE@ - ()
| &,0) @) - 8 (P)]

20
The backpropagation algorithm may be represented as the Backpropagation Algo-
rithm I:

1. Forward phase
St =g wist-t + BY.

2. Error backpropagation
ALl = (T - 8Y) oi[SL].

Al = ((Wl+1)TAl+1) o g_l[Sl].

3. Gradient computation and weight updating
Vi = —A{(SH-1)7,
W — W+ pAl(st-1)7.
]
where [=1,2,---,L; 8= 8: and B! = | : [| } € RuxP,
b,
and 7 is a positive number.
Of course, the updating formula for all the biases can also be obtained directly.

Alternatively, biases may be treated as weights so that the updating formula for weights

and biases can be unified.
The mathematical model of an artificial neuron can be modified by associating its
bias with a constant input signal 1 so that all the parameters (that is, the weights and the

bias) are treated uniformly as weights. This leads to another representation of a neuron

model (2.1) as

y=0(>_ wit;) (2.11)

T T
whereu“):[w b} ;and:ﬁz[m 1] .

21

The same can be done to all other neurons in a neural network. Then the orginal
input signals are augmented by a constant input signal 1 to form the new inputs to the first
hidden layer. The original outputs of each hidden layer (except the last hidden layer) are
augmented by a constant input signal 1 to form the new inputs to the next hidden layer.

Accordingly, the augmented input matrix S, output matrix St of each layer [=1,2,---,L

with ST = ST , and weight matrix W for each layer [=1,2,--+, L can be represented as
S = where S, is a matrix of 1 x P dimension with each entry being 1.
Sa
- St . .
St = with ! =0,1,---,L — 1. Note that S? = S.
Sa
N T
Wl=[Wl bl]whereblz[bl1 bl2 biil ,and [=1,2,---, L.

Therefore, the backpropagation algorithm to deal with weights and biases uniformly
may be represented as the Backpropagation Algorithm II:
1. Forward phase
St = gl[Wisi-1).
2. Error backpropagation
Al =(T - 880 i[SL].
Al = (WHT Al og_l[gq_
3. Gradient computation and weight updating
Vind = A8,
W s— W 4 pAl(S-1)T,
It should be noted that updating of weights above is based on the deepest descent

algorithm, which is known to be one of the slowest algorithms. It is true that backpropa-

gation with a constant step may be very sensitive with respect to the size of the step and

22
may even fail to converge at all. The reasons for its poor performance might be, among
others, that a constant step, if it is too large, may even increase the error to be minimized,
and local minima of the error surface may make the iteration process fail to approach the
global minimum.

An obvious way to improve the performance of the deepest descent method is to
adjust the step size adaptively instead of using a constant step, that is, increase the step
size if the previous step did not cause an overshoot around the minimum and decrease it
if otherwise.

It is noted that using directional search instead of a constant step might greatly im-
prove the convergence speed [41]. Modifications about the plain backpropation algorithm
is also shown in [42]. It is known that the variable metric (or quasi Newton) method
may be one of the fastest gradient optimization methods. However, its use involves the
inversion of a Hessian matrix which seems impractical for a typical neural network. To
aviod inversion of a Hessian matrix while converging fast, the conjugate gradient methodv
was applied to train a neural network in [42, 43].

One popularly used modified version of the backpropagation algorithm is the so
called momentum method. The weights are updated according to the current gradient as

well as their previous change, that is, the weights are updated in the following way.
W e— W+ A SH + AW (2.12)

where AW is the previous change of the weight matrix, and g is a positive number.
Note that the weight updating formula for the momentum method is almost the

same as for the conjugate gradient method [44] except that the involved coefficients in

the formula for the conjugate gradient method are computed more complicatedly and

directional minimization is performed.

23

2.3. Recurrent neural network and dynamic backpropaga-
tion

The backpropagation algorithm is very useful and has been extensively applied when
a neural net is trained to approximate a static continuous function. When a neural net is
fed as inputs the previous values of its output, static backpropagation algorithm becomes
ineffective in adapting the weights of this neural net. Since the current output of a neural
net is dependent on the weights as well as its previous outputs recursively, the calculation
of sensitivities involves a lot of complexity. The resulting neural net is called a recurrent
neural net, which here is viewed as a combination of a feedforward neural net and a linear

delayed feedback, shown in Figure 2.1.

uk) T y(k)
. FF -
NN

wk)

W(Z‘l) »

FIGURE 2.1: Block diagram for a recurrent neural network

This recurrent neural network may be described as
y(k) = fn(u(k), w(k),0) (2.13)

where function fy : RN x RM —s RM is function realized by the neural net with

u(k) € RN, w(k) € RN+, 6 € RN, y(k) € RMv, and 2z~ the unit time delay operator.

24

Since w(k) = W (2~ 1)y(k), and W(z~!) is an affine function vector with respect to

271, y(k) is dependent on W (z~')y(k) as well as 6. By the same equation, W(z~1)y(k)

is also dependent on 0. Therefore, we would like to denote the derivative of y(k) with
respect to a weight 6; by ddyTgf).

After the training is completed, the weight vector 8 is fixed. Then

y(k) = fn(u(k), w(k)) (2.14)

may be viewed as representative of dynamics of a plant. Usually a neural net is trained
along some temporal trajectories of a plant. Let the desired trajectory be y4(k) at the
instant of time k. Then the training error e(k) is the difference between y(k) and yu(k),
ie., e(k) = yq(k) — y(k). Let 6; be a weight compont of vector 8. Let J be the chosen
performance criterion, which is usually a functional of the training error e(.). Then the
sensitivity g—é]j can be computed as

8J _ dJ de

= 2.15

00; Oe 06; ()
However,

Oe dy(k)

= 2.16

06; do; ()
It is observed that

Nu .

db; 90; = = wi(k) 00,
where w;(k) is the ith component of w(k).
It is noted that since w;(k) is only the delayed version of y(k), the above equation
itself is a dynamic system and hence that backpropagation algorithm under this situation

is called the dynamic backpropagation [31, 32]. The caculation of %g—ék) can be performed

7

as the plain backpropagation does except that there are more computations involved for
the dynamic backpropagation.

Once the sensitivities are calculated, the weights updating can proceed with

o't = 6! — avyJ (2.18)

25
This is the well-known gradient-based updating rule. Other updating formula can also be

obtained as for a conventional feedforward neural network.

2.4. Locally recurrent multilayer neural network

A locally recurrent multilayer neural network is just a conventional multilayer neural
network with local recurrency and cross-talk, by which we mean the outputs of some
hidden layers are fed as inputs to these layers.

It should be noted that if on-line training is initiated to train a locally recurrent mul-
tilayer neural network, then the dynamic algorithm, such as the dynamic backpropagation
algorithm, can be used effectively. Although the dynamic backpropagation requires more
calculations than the plain backpropagation does, in nature calculations involved in the
dynmaic backpropagation are based on the plain backpropagation. In what follows, the
off-line training is focused, and the corresponding backpropagation algorithm is discussed.

The backpropagation algorithm for a conventional neural network can be somehow
generalized to apply to a locally recurrent neural network. The backpropagation algorithm
for a locally recurrent neural network is presented as the Backpropagation Algorithm II1
in the following.

The notations that are used in the Backpropagation Algorithm II are also used in
the Backpropagation Algorithm ITI. To describe the Backpropagation Algorithm III, some
more notations are needed, and are given as follows.

The original input signals are augmented, by the outputs of the first hidden layer,
to form the new inputs to the first hidden layer. The original outputs of each hidden layer
(except the last hidden layer) are augmented, by the outputs of the next hidden layer,
to form the new inputs to the next hidden layer. Mathematically, the augmented input

matrix S, output matrix St of each layer | =1,2,---, L with SL = §L , and weight matrix

W for each layer [=1,2,---, L can be represented as
N S
S =
Sl
- 5! -
St = with [=0,1,---,L — 1. Note that S® = §.
Sl+1
[.1] L]
wT1,1 wT1,2 le,d,
) W, wl !
Wt = [wt w!] where W} = LT 2
,wl { l

L 7q1 rd),2

wrd’,dl -

26

; !
with wy, . repre-

senting the connection strength from the jth neuron to the ith neuron in the same layer

l,andl=1,2,---, L.

Therefore, the Backpropagation Algorithm ITI may be described as

1. Forward phase
§ = opirisi-,
2. Error backpropagation
AL = (T — 8%) o gL[ST].
Al = (WHHT Al Og_l[gz]_
3. Gradient computation and weight updating
Viiud = —AY(S)T,

W — W+ pAl(Si-1)7.

2.5. Software implementation

Since training a typical neural network with a large set of data is very time-

consuming if a MATLAB version of neural network tools is used, software is implemented

27
and coded in C for training a multilayer neural network. Since conventional neural net-
works may be viewed as a special form of recurrent neural networks just by setting the
recurrent and cross-talk connection weights to be 0’s, the implementation of the Back-
propagation Algorithm III suffices. Note that the activation function f l() for each layer
I =1,2,---,L may assume, for example, a form of either logistic function or tan-sigmoid
function, or linear function. The momentum method is applied to update weights and
biases, which is much faster and more stable than the plain backpropagation method.
In addition, a proper random number generator is properly designed, which is useful for
initialization of neural networks’ parameters (that is, weights and biases).

All the programs for this software are listed in Appendix A, and used in the following

analyses.

28

3. LATITUDINAL AND LONGITUDINAL NEURAL
NETWORK STRUCTURES FOR FUNCTION
APPROXIMATION

3.1. Introduction

One of the active areas of neural networks has been on the function approximation
capabilities of neural networks, which still attracts a lot of attentions. One of the main
applications of feedforward neural networks is to approximate arbitrary nonlinear continu-
ous functions. Many research results [34, 39, 40] have been reported on the approximation
capabilities. Mostly these works focus on the approximations of continuous functions by
feedforward neural networks. Stronger results for approximations of functions defined on
spaces of infinite dimensions may be found in [45] (see references therein). However, the
theoretical results on approximations of nonlinear discontinuous functions by neural net-
works are considerably weaker. By applying Lusin’s theorem, Hornik et al [40] showed
that any measurable function may be approximated by a feedforward neural network in
L? sense. The neural networks involved in these works are non-constructive. Recently,
interests have been seen in the constructive neural networks [46, 47, 48] on the purpose
of overcoming the difficulties involved in training standard feedforward neural networks
with backpropagation. Choi, et al [46, 47] investigated the piecewise interpolation capa-
bilities for funciton approximations through constructive neural networks. Tessellation of
a compact space was performed, and a number of neural network granules are applied.
With the employment of the same kind of neural network structure, the proposed strat-
egy makes piecewise nonlinear approximations by means of quadratic squashing functions.
Very different from the traditional constructive neural networks, latitudinal neural net-

works are proposed to reduce the approximation error by recursively employing sub-neural

29
networks. This chapter is organized as follows: Section 3.2. is devoted to investigating the
convergence property of the novel neural network—latitudinal neural networks, discussing
function approximation with piecewise nonlinear fitting by longitudinal neural network,
and presenting the relationship between these two neural network structures. The prop-
erties of latitudinal neural network architecture are further investigated and presented in

section 3.3.. Finally, comments and concluding remarks are given.

3.2. Latitudinal neural network architecture

A novel neural network structure, which consists of a number of neural networks
with each of those being called as a sub-neural network hereafter, is formed as such that
the first sub-neural network aims at approximating the given function with given data,
and then the second sub-neural network tries to, with given input data, approximate the
error function from the first sub-neural network, and then the third one will devote to
approximation of the error function from the second sub-neural network, and so forth.
The resulting structure, called latitudinal neural network structure, shown in Figure 3.1,
is intended to reduce the approximation error again and again by using a number of neural
networks.

For simplifying notation, it is convenient to define the training error ratio r for a

neural network as
= {|f(z) — g@)I/11f (@) (3.1)

where f(z) is a continuous function from R™ (or its compact subset) to R™, and g(z),
which is designed to approximate f(z) (also assume g(z) € L?(R")), is a mapping from R”
to R™ achieved by the neural network. ||.|| is L? norm operation. Here,we call f(z), g(z)
and e(z) = f(z) — g(z) the target function, the actual output function and the training

error function respectively.

30

al
H—O—D

®

FIGURE 3.1: Latitudinal neural network architecture

Proposition 1 f(.) is a continuous function from R™ (or its compact subset) to R™, and
is approzimated by latitudinal neural networks, shown in Figure 3.1. Then f(.) can be
approzimated by a latitudinal neural network with arbitrary small error € > 0 in the L2

norm sense, if

sup{r;,i € Z; } <1 (3.2)

Where r; is the training error ratio for the ith sub-neural net.

Proof: We now consider the finite section of the latitudinal neural networks, which con-
sists of the first N (N € Z,) sub-neural networks. Let g;(.) and e;(.) be the actual output
function of the ith sub-neural network and the training error function, from R" to R™. As

is mentioned above, e;(.) is the target function for the ¢ + 1th sub-neural network. Here

31
1 €4 < N. We know that the target function for the first sub-neural network is f(.).
Now let e = f.
Then we obtain
ri = |lei-1 — gill/|lei-1]| (3.3)
where 1 <i < N.
Note: if ||e;|| happens to be zero, then we don’t need any more sub-neural nets for

further training. Thus, in our case, [|e;|| # 0.

Then we have
|lei—1 — gill = rillei-ll (3.4)

Butep=f,ande; =e€;_1 —g; for 1 <i< N, then g; =€;_1 —¢;.

Thus
k

k
D gi—F= (eic1—e) —eo=—ex (3.5)
=1

i=1

where 1 <k < N.

And Efﬂ Gi—f=g+3r g~ f=0g—ex1.

It turns out that

k
llexll = 11D gi = FIl = lige — ex—ll < 7kllex—1l] (3.6)
=1
Therefore,
N
1Y gi— fll < rwllenall < rvrvallen—all < -+ < T rifeol] (3.7)
i=1

However, eg = f € L?(R™), and hence ||eg|| < co. Let v = sup{r;,i € Z,}. By
assumption, we have r; <y <1for1 << N.

Therefore, || Zfil gi — fIl < ¥YV|leol|. With N sufficiently large, the error between
the target function and the final output of the latitudinal neural networks can be made
arbitrarily small, in the sense of L? norm. This ends the proof.

Remark (1): Generally, a set S of data points are given in such a form that S =

{(zi,y:) : z; € R™,y; € R™and i = 1,---,N,}. Then if we take the norm in the discrete

32
case, the above proposition still holds. This means that under some conditions, sufficiently
many sub-neural networks will make the approximation error, in the discrete norm sense,
sufficiently small, only on the the given data points. This does not mean, however, that
the approximation error, in the continuous norm sense, will be made sufficiently small.
This will explain why sometimes between two given immediate neighbor points, the actual
output of the latitudinal neural networks will oscillate (sometimes even badly).

Remark (2): The structures of those neural nets in the latitudinal neural network
may be either the same kind or different kinds. Thus here arises the concept of hybrid
neural networks, such as the combination of wavelet neural networks and feedforward
neural networks, the combination of neural networks based on radial basis function and
feedforward neural networks, etc..

Remark (3): The number of sub-neural networks in the latitudinal neural network,
which are needed to make a relative better approximation, will determine which part
will be easily trained. If the number of sub-neural networks, required to make a good
approximation, for a certain part, is less, then this part is smoother. A non-stationary
part will need more sub-neural networks to give a good approximation. So the numbers of
sub-neural networks are different for different parts. Then by finding the numbers of sub-
neural networks, it will be easier to locate the singular points or segments. These numbers
of sub-neural networks present a relative good measure for the relative singularity of the
orginal mapping.

Remark (4): Generally speaking, latitudinal neural networks are trained in cascade
form, and executed in parallel. But if somehow the training target for each sub-neural
network can be pre-specified, then the training process can be performed in parallel (as
we may can see later, this situation does occur).

Remark (5): It should be observed that even if sup{r;,i € Z,} = 1, but if with the
exclusion of a finite number of r;’s being 1’s, the greatest upper bound of all other r;’s is

less than 1, then the Proposition still holds.

33

3.2.1. Longitudinal neural network structure

The idea of this kind of neural network is originated in Choi, et al's work [46,
47]. As mentioned in section 3.1., they first tessellated the compact subspace of a finite-
dimensional space, then for each subset of this covering whose union covers the whole
compact subpace in question, a neural network granule will be applied to approximate
the specific function defined on the specific subset, which may be either a hypertriangle
or a hyperrectangle. This results in a neural network structure, called a longitudinal
neural network structure. In practice, piecewise linear functions are used in their work.
In this part, we will develop a strategy to use piecewise nonlinear functions to approximate
one-dimensional functions by introducing a new kind of sigmoidal function—a quadratic

sqashing funcition.

3.2.2. Sigmoidal function

Three kinds of sigmoidal or squashing functions will be used in our neural network

structures, which are defined in section 2.2.1.2. of chapter 2, and repeated in the following.

N 1if 220
¢ Heaviside function op(z) =

0if z<0

1if z>1

* Soft squashing function o5(z) = ¢ 2 if z ¢ [0,1]

0if <0

1if z>1

* Quadratic squashing function oy(z) = ¢ 22 if z €0, 1]

0if <0

34
3.2.3. Nonlinear fitting

In this part, our main focus will be on one-dimensional function approximation by
using two hidden-layers of neural networks with three kinds of activation functions defined
in the last part. As we know, any closed and bounded subset of the real set R will be
compact and vice versa [49]. Functions defined on compact subsets of R will be our main
interest. We also know that any three points in a plane, but not in a straight line, will
determine a quadratic parabola. As shown in Figure 3.2, points A, B, C are arbitrary
three points in the plane R?, with coordinates (x1,y1), (x3,¥3), (x2, y2), respectively, and
z1 < z3 < x3. Without loss of generality, let f be a function from [z1,z2] to R given
by f(z) = az? + bz? + ¢ with a, b, ¢ constants determined by the given points A, B,
and C; let g be a function from [z, z2] to R given by g(z) = dz + e with d, e constants
determined by the given points A and C. Let h be a fucntion defined on [z, z2] such that
h(z) = f(z) — g(z). By definition, we learn that f(z1) = v1; f(z2) = v2; and g(z1) = y1;
g(z2) = y2. Then it follows that h(z;) = f(x1) —g(z1) = 0 and h(z3) = f(z2) —g(z2) = 0.

Since the function f(z) is quadratic, then h(z) = k(z — z1)(z — z2), with k being a

constant which can be determined by

h(z3) = f(z3) — g(z3) (3.8)

However, h(z3) = k(z3 — z1)(z3 — z2), and f(z3) = y3, and g(z3) = L=L (23 —21) + 1

T2—T1

It turns out that

(s =)@ —31) — (42 — y1) (23 — 21)
k= (11;3 — xl)(z3 — 1:2)((52 — :1;1) (39)

If y1 = y2 = y3, then k£ = 0, and hence h(z) = 0. This means that if three points
happen to be on a straight line, then a linear function g(z) is sufficient to approximate it.
Since AC is a line segment, described by function g(z), it can be implemented by

the neural network structure [46, 47], shown in Figure 3.3.

35

FIGURE 3.2: Piecewise quadratic fitting

There are three neurons in the first hidden layer, whose weights and biases, from
left to right, are w1 and wyg, we; and woy, and wy and woy, respectively. The activation
function, is heaviside type for the first two neurons of this layer, and sqaushing type for
the last neuron of this layer. The weights for all the neurons in the second hidden layer
are all 1’s; and the biases for them, from left to right, are —1 and —2. The last layer is the
output layer, whose activation function is linear in weights, with the weights being ymin
and Ymaz — Ymin, from left to right.

The related weights are determined as follows:

I 1 w11 w21 _ 10 (3.10)
T2 1 w12 W92 01
and
1 1 w J;
! S (3.11)
2 1 wa Y2

where g; = JZ=dmin for § = 1, 2 with ymin = min{y;,y2}; and ymar = max{y:, y2}-

Ymez—Ymin

36

FIGURE 3.3: Piecewise linear approximation via a specific neural network. H — with
Heaviside activation function; S — with Soft squashing activation function

It can be easily checked that if input £ = z; for i = 1, 2, then the output of the
neural network will be y = y; for ¢ = 1, 2; if input & € (21, z2), then the output y will be
Ymin < Y < Ymagz; if input z & [21, 2], then the output y will be zero.

Next, a neural network is constructed to implement the function h(z) = k(z —
z1)(z — x2).

h(z) can rewritten as

M) = k(o — SLF e (BB gm = Tray (@2 HEERG g
2 2 2 e

The neural network structure, shown in Figure 3.4, are employed to approximate the
function h(z). In the first hidden layer, there are four neurons, with the weights and biases

for the first two neurons being the same as in Figure 3.3, and with the weights and biases

for the last two neurons being zlz 5, and 21£22 and xzz 5 and 21522 respectively. We use

37
the activation function of heaviside type for the first two neurons, and quadratic squashing
type for the last two neurons. In the second hidden layer, there is only one neuron with
the weights being 1, 1, —1 and —1 from left to right, and with the bias being —1. The last
layer is output layer with weight being —k(%5%2)2. We now show what kind of function
this neural network can produce. Let z € R. If z € {z1,z2}, then by Equation (3.10),

both of the outputs of the leftmost two neurons in the first hidden layer will be 1’s. For

2 1422
’ ;—x2? and z2—x1’

the third neuron in this layer, with the input, weight and bias being x

then the input to the activation function will be (z x xlzzz + i;f:i) = ’”1;;“”_2;12’; ifz =z,
then the output of this neuron will be 1; if z = x5, then the output of this neuron will be
0. Similarly, for the fourth neuron on the right, if z = z1, then the output of this neuron
will be 0; if x = x5, then the output of this neuron will be 1. Therefore, for the neuron in
the second hidden layer, the output will be 0, which in turn implies that the final output

of the neural network will be 0. If z € (1, z2), then the outputs of the first two neurons

on the left in the first hidden layer will be 1’s. For the third neuron from the left, the

input to the activation function is (z x wlz o+ ath) = ml;’ff;f‘” while the input to the

activation function of the neuron on the far right is QET;“’”_%—I—Z If z = 21122 then both

of the outputs of these two neurons will be 0’s. Otherwise, since —1 < %ﬁ < 1,

each of these two outputs will be either 0 or (3”-1:;—“”_#@)2, but not both. Counting in

all the inputs, weights and bias for the neuron in the second hidden layer, the output

of this neuron will be 1 — (%‘Z—gc_%h)Q Then the output of the output layer will be

—k(B522)2[1 — (LE22-22)2) — k(g — 1) (2 — 22) = h(z). If & & [21, T,], then the outputs

T2—I)

of the two neurons on the far left of the second hidden layer, by Equation (3.10), will
be either 1,0 or 0,1. By the same argument as above, the outputs of the two neurons

. -2
on the far right of the second hidden layer, will be either 0 and mm{(%‘%’”_?Tl“-”-)?, 1} or

min{(%){ 1} and 0. Then the input to the activation function for the neuron in the
second hidden layer will be 1+0+0—min{(ZX22-22)2 1} 1 = — min{(2122-22)2 1} < (.

Thus the output of this neuron is 0. And hence the final output of the output layer will

38
be 0. In a word, the neuron network shown in Figure 3.4 acts as a function that satifies

the following conditions:
e if the input z is inside the given interval [z}, z2], then the output will be h(z);
e if the input z is outside the given interval [z1, z2], then the output will be 0.

Incorporating the neural network structure shown in Figure 3.3 into the neural net-
work structure shown in Figure 3.4 produces the new neural network shown in Figure 3.5.
Thus, the output of this neuron network will be g(z) + h(z), which is precisely f(z), if
the input z is inside the given interval [z;, 7], while the output will be 0 if the input z is

outside the given interval [z, zo].

3.2.4. Neural network array

In this section, various constructive neural networks will be employed to implement
a continuous function f(z) defined on a compact subset 2 of R. First of all, segment
the given compact subset into many non-overlapping compact subsets U; (i € 4p, = {3 :
1 <i<n;n e Zy}), of Q whose union will precisely be the given compact set . As
we have known, the data samples are usually given in the form of (z, f(z)) with z being
one element of the set of the boundary points of all the subsets U;, which we may assume
to be {r;,i = 1,2,---,m;m € Z,} with z; > z; for 7 > j. Without loss of generality,
assume) to be connected (if it is not connected, we may have the same argument for
each of its connected subset ; with U;Q; = Q). If m is odd, then we have a collection
of intervals [Tog11,Z2k+3] with k ranging from 0 to mT_?’ If m is even, then we may
have an interval [z,,_1, %] and a collection of intervals [Zog11, Tog+3] With k varying from
0 to mT_4. For these two cases, the only difference is that for the latter case we need

to employ an extra constructive neural network, with structure shown in Figure 3.3, to

approximate the function defined on this interval by linear fitting. Consequently, we only

39
need to consider the former case. However, with f(zoxy1), f(z2k42), f(Z2x43) given, the
function defined on the interval [z2x+1, Tox+3] can be approximated by the neural network
shown in Figure 3.5. Therefore, we apply a variety of neural networks to approximate
the function f(z) defined on the compact subset (2, with each neural network nonlinearly
approximating a specific subset of the function f(z). Then we employ the structure
shown in Figure 3.6 [47] to capture the final output by using analog OR operation, which

essentially takes the non-zero real number from all the outputs of sub-neural nets N N;.

FIGURE 3.4: Piecewise quadratic approximation via a neural network. S — with Soft
squashing activation function; Q — with Quadratic squashing activation function

40

FIGURE 3.5: Nonlinear approximation via a neural network

3.2.5. Continuous function approximation with desired pri-
cision

As we know in Calculus, any one-dimensional continuous function defined on a
compact set can be approximated by either countably many rectangles, or by linear fitting,
or by piecewise quadratic functions, with arbitrary small error in the sense of the Euclidean
distance, so long as the maximum of the diameters of the resulting subsets of this compact
set is sufficiently small. This fact, in turn, means that to achieve the desired precision,
sufficiently many neural networks, either in the form shown in Figure 3.3, or in the form
shown in Figure 3.5, may be needed.

For each sub-neural network N N; in Figure 3.5, through use of nonlinear fitting, the
number of neurons involved in this kind of structure is 9 (counting out the input neruon),

while, with the use of linear fitting, two neural networks will be used with structure shown

41

FIGURE 3.6: Neural network array

in Figure 3.3 [47], and the number of neurons is 12. Then if there need be N sub-nerual
networks with nonlinear fitting, then 3N neurons will be saved compared with linear
fitting sub-neural networks. Since for precise function approximation, many sub-neural
networks will be used, a large number of neurons will be saved through nonlinear fitting
other than linear fitting. Moreover, the quadratic nonlinear approximation displays more

smoothness than the linear approximation.

3.2.6. Relations between latitudinal and longitudinal neural
networks

As discussed before, the latitudinal neural network and the longitudinal neural net-

work are organized in different ways with the former generally reducing the approximation

42
error by using more sub-neural networks based on the whole given data set, while with
the latter generally performing local piecewise linear/nonlinear fittings through specific
sub-neural networks based on a specific subset of the given data set. The longitudinal
neural network, however, can be considered as a specific case of a latitudinal neural net-
work if each sub-neural network of the longitudinal neural network is considered as an
approximation for the whole target function. This fact can be justified by the following
argument.

Without loss of generality, let f(.) be a continuous function defined on a connected
compact subset Q of R” with f(.) € L2(R"™). To achieve a close approximation by the
latitudinal neural network, the tessellation [47] of the compact set 2 has to be performed.
As mentioned above, there exists a positive integer N, for any given positive real number
€ > 0 such that N or more properly constructed neural networks [47] can approximate the
function f(.) with approximation error less than € in the L? norm sense. Let the compact
set 2 be tessellated into N nonoverlapping compact subsets §2; for i = 1,---, N such that
on each Q;, f(.) can be approximated by a specific sub-neural network of the longitudinal
neural network. As we know from [47], on the given data points, the longitudinal neural
network can achieve precise representation of the target function f(.). Consequently, it is
then only necessary to consider function approximation on the interior points of ; for i =
1,--+, N. For the funtion f(.) defined on £2;, there is a sub-nerual network N N;, which can
give an approximate G; on €; (0 if outside §;), and the approximation error is E; = F;—G;.
Here if z € ;, then Fi(z) = f(x); otherwise, F;(z) = 0. Then from the viewpoint of the
latitudinal neural network, the training is based on the whole data set, and the ith sub-
neural network of the longitudinal neural network is also considered as the sth sub-neural
network of a latitudinal neural network. In this context, let f = ey, and g; and e; be the
output of the ith sub-neural network and the approximation error, respectively. Since f =
Zi]il F;, e; = e;_1—¢;, and g; = Gj, then ||e;|| = ||ei—1—4i|| = ||ei—-1 —Gi||. However, from

the above discussion, e;_; = f — ch":ll g =f— Efc—:ll Gg. From f = Zfi , Fi, it follows

43
that, ei1 = 320 Fi — Y40y Gk = Sas; Fr + L4 (Fr — Gr) = Ti, Fe + iy B,
and e; = Yu_; 1 Fr + Yioy Br Thus, [leil| = | S0, Fr + Tiey Bl
Since Fy(z) and Gi(z) are 0’s if z € €2;, and hence Ex(z) is also 0, then Fi(z), Gx(z),
and Eg(z) for k = 1,---, N, are orthogonal, respectively, if z € UY int(;). It follows
that |[eil* = || Sglips Fr + Lot Bell? = Siligy [1Fkl? + Thay || Bell?. Hence,

lell> Sripr 1Fel? + iy NEP ACy IER)? + S 1Bl +))2

lei-all> S IFRl 2 + 02 |1 Bl ZLHann2+zi;‘1nEkn?+nﬂyz)
3.1

Since for the ith sub-neural network (also NN; in the context of the longitudinal neural

network), the approximation error can be made sufficiently small, that is, || E;||? < || F||2.

Thus, Illelfj|1||2|2 < 1, and hence, r; = lelfill < 1. Since N is finite, then there exists r such
that max{r;,s = 1,--- N} < r < 1. This means that the condition for Proposition in
section 3.2. can be satisfied, and hence the convergence can be guaranteed, which in turn
implies that the approximation with sufficiently small error can be made.

Remark: with the relationship between these two neural network structures estab-
lished, it is possible to employ the hybrid structure of these two structures in a specific
application, for example, using the longitudinal neural network structure for the non-

stationary part of the given target function, while using the latitudinal neural network

structure for its stationary part.

3.2.7. Comments

In this section, the concept of a new kind of neural networks (the latitudinal neural
network) is proposed, its structure is discussed, and its convergence property is given.
Another kind of neural networks (the longitudinal neural network) is applied by using
piecewise nonlinear activation functions, a number of neurons may be saved by the strategy
proposed in this section compared with existing works, and better smoothness may be

achieved with the proposed method. Furthermore, it has been shown that the longitudinal

44
neural network can be considered as a specific case of the latitudinal neural network, and

the related convergence properties is presented.

3.3. Properties of latitudinal neural networks

Neural network methodology has been widely applied. In the context of control
engineering it is mostly used as a pattern identifier or a synthesized controller based on
the available data or measurements, among others [31, 50]. Recently, the approximation
capabilities of constructive feedforward neural networks have been studied in [47] through
use of some special kinds of sigmoidal functions such as a heaviside function and a soft
squashing function and the piecewise linear approximation technique. In contrast to the
neural network structure thereof, the architecture of latitudinal neural networks is pro-
posed in [51] in hope to give a better approximation to a given function, and is further
studied in [52]. The convergence under some assumptions is further given. Mathemati-
cally speaking, a given function f : R™ —s R" is approximated by a series of functions
of the same dimensions f; for ¢ = 1,.--, N such that when N takes some proper value the
approximation error in some norm sense can be made acceptably small. The latitudinal
neural network structure is further investigated in this section with the introduction of
some new kinds of sigmoidal functions and their combinations. It will be shown that
any continuous piecewise quadratic function or polynomial of degree m (m > 3) can be
represented by a neural network, and how many neurons are needed in the hidden layer.
On this basis, the development of the properties relative to latitudinal neural networks is

dealt with. Finally, the concluding remarks are presented.

45

3.3.1. Sigmoidal functions and their combinations

In addition to the sigmoidal functions defined in section 3.2.2., a kind of somewhat

more general sigmoidal function, which is defined in the following, will also be used in this

section.
1if 2>1

opa(z) = z" if z€[0,1] wheren > 3.
0if <0

Definition 1: Suppose ¢ : R — R is a sigmoidal function. The class of functions,
which a 2-layer neural network with the activiation function o,n neurons in the hidden
layer and a linear output layer realizes, is defined as .7-",‘,{” ={f: R® - R|f(z) = vo +

v (X iy +6)}.

In [51], through use of the quadratic squashing function, the piecewise quadratic ap-

proximation is suggested with the employment of a longitudainal neural network. In what

follows, the idea thereof is further investigated, and more rigorous results are obtained.

Lemma 1 Any continuous, piecewise quadratic functions f(x): R — R with o < 71 <
-o» < @y (so0-called kinks) and constant values on (—o0,zp) and on (z,,00) are in

Foon @ Fs, s where the symbol @ is defined by A@ B = {u+v| u€ A, ve B}).

Proof. A continuous piecewise quadratic function f(z) on [zg,z,] can be written as
n—1
F@) =" fil@) g 000 (2) (3.14)
=0

y . . 1, T e [xi,zi+1]
where fi(z)’s are quadratic functions; and 1, 4, @) =

0, = ¢ [mi’mi+1]
Define a continuous piecewise linear function g : R — R such that g(z;) = f(z;) for

t=0,1,---,n. Then g(z) can be written as

Z{g(-’lfi) —g(zi_1) (2 — &)1, a(®) +

46

P T — Tj-1
[g(a:,-) - g(xi——l)]]'(xi,oo) (:L')} (3'15)
That is,
g(x) = g(zo) +
$ T — Tj-1
> lo(@:) - g(wi-l)]{ml[zi_l,x,—](w) + 1,00 (@)} (3.16)
i=1 -
But
T — i
mi . x:'__ll l[zi_l,xi] (.’L') + 1(.1‘,',00) (‘T)
T —Ti T — Tj-1 T — Tj—1
Zi — wi—l{ [0’1]($i - JJz‘—l) (l’oo)(xi - iL'i-l)}
= o, (252l (3.17)
T~ Ti-1
Therefore,
n
r—T;—
9() = f(z0) + E[fm) ~ failes—) (3.18)
3=
This implies that g(z) € F}, ,
Note that for ¢ € [z;,zi11], ¢ = 0,1,---,n — 1, f(z) is a quadratic function, and g(z)

is an affine linear function, and thus f(z) — g(z) is still a quadratic function. Since

f(z) — g(z) = 0 for z = z;, 11, then on [z;,zi11], f(z) — g(x) can be written as

f(@) — g(z) = ci(z — z:)(z — ®iy1)

(3.19)

So f(z) — g(z) = 2oL ci(z — :)(& — zi31)1g; 2,,,)(¢). It can be readily shown that

(iL‘ - 1:1)(.1: - J’.i+1)1[$iyzi+l](x)

Tit1 — T 2 Tit1 + T
_ _(H—12 1)2{1_[@](1‘. '.'II—- z‘+1_ z
i+1 — T4 Ti41 — T4

2 ZTit1 +)

+oq(— z+
iyl — T4 i1 — Tj

(3.20)

47
Then we have

n

f@)-gl@)= Y —a(PEE20

=0
o 2 g _ Titl +z;
T i — 2 Tit1 — L
2 Tit1 +T;
+o4(— T+
ol Titl — Ty Tit1 — Ty W
(3.21)
That is,
.’L' — Xy
f + z H—l 7)2]
n
Tigl — Tji\o 2 Ziy1 + T4
+ —C o T —
; i 2) q($i+1 - T Tit1 — wi)
n
Titl — Tiyo 2 Tit1 + T,
+ —¢; oq(— T+
; il 2 youl Tip1 — Z; Tip1 — iEi)
(3.22)

Note that g(z) € FZ, n» and hence the first term on the right-hand side of the above

equation [g(z) + X1 —ci(¥H—2)% € F;, ,; and note also that both the second-term

and the third-term are in f;q n Thus, f(z) € FL D f;q > concluding the proof.
Consider the approximation of a more general class of functions than what is involved

in Lemma 1, we then have the following result.

Lemma 2 Any continuous, piecewise polynomial of degree m (m > 3) functions f : R —

R with kinks zo < 21 < -+ < z, and constant values in (—o0, o) and on (z,,00) are on

fgs,n®f n@ ap,

Proof. The induction method is used to give the proof.

First of all, we show the conclusion holds for m = 3. Note that f can written as

Z fi(®) o, 20111 (2) (3.23)

where f;(z)’s are polynomials of degree 3.

One can show that

(2° ~ 2)1{_1,1)(2) = [0p4 (@) ~ Opa(~2)] ~ [05(2) — 05(~2)]

That is,

13

(2" = ') 1o, 2,141(&) = [0pa(2)) = 0ps (=2)] = [05(2") ~ 05(=2")]

2 g Tim +xi

r_
where ¢’ = P -Ti+1—-1'i-

Let fi(z) = Z] 0 @i ;z’. Then

Tiy1 — -'L'i)3

Fi(®) g z0] () = as,3(5
{[ops(2") — apg(—2")] — [05(a") — o5(—2")]}

2
+ Z ai7j$]1[1i7@i+l] (z)
Jj=0
Tit1 — Ti\3 2 Tit+1 + T4
i T — 1. ... lx
+az,3(2 $i+1 —z; Tit1 — :L_Z) [:El,:cH_]]()
iyl — z +1 + T s
23(H— Z(J : 2) szl[mi,l‘i+1](x)

Let

2
z) =Y 0zl 40, (@)
i=0

Tit1 — Tiyg 2 g Fitl +z;

. | TP ¢
+a1,,3(2 xi-{-l _ -Ti mi-}-l _ :L_l) [1‘1,11:7,_;.1]()
T Titl +Tj.a_:
a3 (o >3Z(O I ML TR C)
7=0

48

(3.24)

(3.25)

(3.26)

(3.27)

It can be shown that h;(x) = fi(zx) for £ = 4,1+ 1. Let h : R — R be defined as

h(z) = Z;‘z_ol hi(z)1(z; o;,,1(2). Then h(z) is a continuous, piecewise quadratic function,

49
and hence h(z) € 7, @f,}qm by Lemma 1.

However,

n—1
f(z) = h(@)+) ais{lop(a") — opy(—2")]
=0
—[os(z') — os(=2")}

= h(m)

+Z—a13 T —)¥0,(2') = ou(~a)

+ ; a3 () o33 (&) = 03 ()]
(3.28)

Note that in the above equation, the second term is in f;s’n and the third term is in

Fl Thus,

Opg

) € Fpo D Foon D Fspy (3.29)
Suppose that the conclusion holds for case m = k — 1. We now show that this implies the
conclusion also holds for case m = k.

Note that f can written as

Z f’ [zlaxz-}—l]) (3.30)

where f;(z)’s are polynomials of degree k.

One can show that

(2" ~ 0)11-1,1(2) = [0p, (2) — 09, (~2)] — [04(2) — 05(~)] (3:31)
That is,
(2% =)1,) (#) = (09, (&) — 0 (~2)] — [0a(a') = 0u(~2)] (3.32)
where o = o2 g - Ztm,

Let fi(x) = Z?:o ai jz%. Then

fz(m)l[zz,z,_,,l](z) = a’i,k(;

50
{lops (&) — op, (=2)] = [os(a") — 0u(=2")]}
k-1

+ Z ai,jwjl[fi,xi_‘_l] (z)
Jj=0

2 Tiy1 + X4
x —_—

Tig1 — Ti\k
. 1. ..
+a‘1,k(2) (mi-}-l _ 1Ei mi—f—l . :L'z) [JC,,:IJ,+1] ("L.)
k-1
Tit+l — Tik k Zit1 + Tivkj_j
+ai,k(T) Z(J)(__T_) T l[ziazi+1](m)
i=0
(3.33)
Define
k—1 .
:E) = Z ai,jmjl[zl.,xiﬂ](m)
i=0
Titl — Ti g 2 Tit1 + Z;
. — 1. ..
Faik 2 ($i+1 — Tip1 — -’L'i) fs21411(@)
k—
Tiy1 — T; i+l + Tivk—j_j
va(FEEZIE Yy (- TR i (@)
=0
(3.34)

and h(z) = 377 hi(z). One can show that h(z) is a continuous function of degree k — 1.

With the assumption,
k—1

(@) € Fo, n D Fo,n D Frp 1 (3.35)

=3
However, f(z) can be rewritten as

n—1
f(@) = h(@)+) aip{lop (@) — op(=2)]

=0

—[os(2") — o5 (=2")]}
= h(z)

n—1 . — T
+ Z —ai’k(ﬂ—HTl-)k[O's(ml) - Us(_ml)]

+ Z Tik xm T ko, (2') ~ 0, (—2')] (3.36)

Since on the right—hand—mde of the above equation, the first term is in

oo @ Foym 69 n» the second term is in F}

os,n?

and the third term is in F! 1t

Up ,n?

51

follows immediately that

) € Fp n D Foom @f}p n (3.37)

This concludes the proof.
Regarding the number of neurons used in the hidden layer and the type of corre-

sponding sigmoidal functions used, we have the following result.

Corollary 1 Any continuous, piecewise polynomial of degree m (m > 3) functions f :
R — R with kinks 9 < 1 < -+ < z, and constant values on (—00, o) and on (zn,o0),
can be realized by a 2-layer neural network with a hidden layer and a linear output layer.
The hidden layer has at most 2n neurons with activation function o, for 3 <k <m and

04, and n neurons with the activation function os.

Proof: Tt is observed from Equation (3.36) that the recursion process can be repeated until
h(z) is a continuous, piecewise quadratic function. By Lemma 1, a continuous piecewise
quadratic function can be formed by a function in f}q and a piecewise linear function.
And the linear combination of all the continuous,piecewise linear functions interpolating
the same points (z;, f(z;)) for i = 0,1,---,n are still continuous and piecewise linear.
Thus, in the hidden layer, at most 2n neurons with each of the activation functions op,
for 3 <k < 'm and o0y, and n neurons with the activation functions o, are needed. This

ends the proof.

3.3.2. Study on the properties of latitudinal neural net-
works

Definition 1: Suppose f : [a,b] — R is a function. The total variation norm of f is

defined by || f ||t = SUP{t0,t1 -t} Z,Lle [f(zi)—f(zi—1)| wherea =ty < t; <--- < tp =b.

If || flltw < o0, f is said to be of bounded total variation.

52
About the convergence speed of a neural network for approximation of a function

with a bounded total variation norm, we have Lemma 3 [53].

Lemma 3 Suppose f : [a,b] = R is a function of bounded variation. Then there exists a

neural network fn(z) with n neurons in the hidden layer satisfying

17(z) = fvte)loo < L2 (3.39)

Consider a latitudinal neural network with some assumptions, its convergence prop-

erty is proven in the following.

Theorem 1 Suppose f : [a,b] = R is a function of bounded variation and that ||f—g||t» <
Cl|flloo where g € F} n and C is a constant. Then there exists a series of neural networks

I i(x)’s with n neurons in the hidden layer and i = 1,2,---, M satisfying

CM—l v
/@ me o < S0k (3.39)

Proof. Direct application of Lemma 3 to the neural network fy 1 yields

1£() = Fva(@llo < L1 (3.40)

By use of Lemma 3 again, we obtain

17(2) = fxa(e) = Fvaloo < =Tl (.41

However, fn1 € F} .n Lhen with the assumption, we have

Cllf|le”
I1f(z) = fyi(z) = fuallo < Tllél_llt_ (3.42)
Repetition of the above procedure gives
CM 1 v
[1f(z) — me(Moo < ——M (3.43)

(n+1)M

This ends the proof.

53
In real applications, it is of interest to investigate a fairly large family of functions
which are differentiable up to some order. The following definition shows this fact while
noting that an analytic function f can be considered as f € C* with k — +oo0.
Definition 2: Suppose f : R® — R™ is a non-analytic function. If there exist a finite
positive integer set I = {k; | i =1,2,---,M; M < +oo} and the I-indexed functions
fx’s such that f = "M f; (z), where fr; € C*% and fi, # 0, then we say that f is of
finite smooth-decomposition with respect to the index set I.
It is shown in Lemma 4 [53] that differentiability of some degree helps reduce the

approximation error by a neural network.

Lemma 4 Suppose f : [a,b] = R is a C*-function. Then there exists a neural network

with n neurons in the hidden layer satisfying

SUPg<z<b |f (2)] (
n2

b—a)? (3.44)

sup |f(z) =Y aio(wiz — 6;)] <
i=1

a<z<b

Consider a well-defined function f € C3; then we have the following results.

Lemma 5 Suppose f : [a,b] = R is a C3-function. Then there exists a neural network

with 3n neurons in the hidden layer satisfying

25up,<, <3 |f ¥ ()]
3n3

(b—a)? (3.45)
a<z<b

3n
sup |f(z) = > aio(wiz — 6;)| <
i=1

where o may take the form of o4 and o,.

Proof. Define §; = a + >(b—a), i = 0,1,---,n. Let fy be the piecewise quadratic
curve interpolating (6o, f(6o)),- -, (6n, f(6,)). Through Lemma 1 and Corollary 1, fx
can be realized by a neural network with 2n neurons in the hidden layer with quadratic
squashing function o4, and with n neurons with the soft squashing function o5. On
[0:-1,6;], fn(z) can be expressed as fn(z) = f(8i—1) + f (8i—1)(z — ;1) + K;(z — 0;_1)?
with K; = [f(oi)"f(oi‘1)]_[0i_02i‘1]f’(ai‘l) such that fy(6;) = f(6;). Define functions g;(z) =

i—0i-1

54

FOim)+(z—0;1)f (6i_1)+ %ﬁfﬂ (6i-1). By Taylor’s theorem, f(z) on [f;—1,6;] can

be expanded as f(z) = f(6;-1) + (z - oi—l)fl (6i1) + E-_Mf" (0i-1) + %ﬁf@(&)

with & € [6i-1,] C [f-1,6]. Therefore, on [6; 1,01, f(z) — gi(z) = E=%=L F(g;).

Further, | (2) = g:(2)| < supseios) E57 01 D (€)] = §(6: — 01-1)" supseren | o)1
Note that on [6;_1,6;],

0.2 .
Fv(@) — (@) = |l — 0i0)? - =0 g, (3.46)

Since K; = L=/]-[0:—6;-1]f [(Bi1) , and by Taylor’s theorem, f(6;) = f(6;—1)+

(0:—0;-1)

£ (6:-1)0; — 0;,_1) + w"_%l)f”(,ui),it turns out that

Ki= 31" () (3.47)
where p; € [6;_1,6;].
Thus,
v @) = g0 = 150" (w)o ~ 1) = 31 G)a—0iaV (348)
Then
1) = £ (0im1) = (i ~ 6i0) 1O (1) (349)
where ¢; € [0;_1, pi]-
Therefore,
(@) = gi(o)] = 3 = 650 — 650l (60)] (3:50)

Since p; — ;-1 < 6; — 6;_1, and |f®)(¢;)| < SUPz¢[a,b] |F®) ()|, it then follows that

(6 — 6:-1)° sup |f®(z)l (3.51)
z€[a,b]

l\DIv—l

|fn(z) — giz)] <

From expressions of |fx(z) — gi(z)| and |f(z) — g;(z)|, it turns out that

|fn(z) — f(z)|

IA

|fn(2) = gi(@)| + | f(2) - g:(2)]|

< 20i-60)° swp |f9(a)] (3.52)
z€[a,b]

55
That is,

n 3)
2supa<x<b If((.’L‘)I 3
- X O BSUAS — 3.
a?;l;b |f(z) ;:1 aio(wiz — ;)| < 3 (b—a) (3.53)

This completes the proof.

Now, we consider a more general case.

Theorem 2 Suppose f : [a,b] = R is a C*-function (k > 3). Then there exists a neural

network with (2k — 3)n neurons in the hidden layer satisfying

su aio(w;x — 0;
a<z€b|f Z
(k + 1)Supa<ac<b |F®) ()]

< i (b—a)* (3.54)

where 0 may take the form of op, for 3 <i <k and o, and o.

Proof. The idea behind the proof to Lemma 5 also applies in the present proof.

Define 8; = a+ %(b-a), 1=0,1,---,n. Let fy be the piecewise degree-k polynomial curve
interpolating (6o, f(60)),- -, (6n, f(0n)). Through Lemma 2 and Corollary 1, fx can be
realized by a neural network with 2n neurons in the hidden layer with each of the activation
functions o, for 3 < i < k and o4, and with n neurons with the soft squashing function

os. On [0;_1,6;], fn(z) can be expressed as fy(x) = f(6;_ 1)+Zk 2(1)—’1—2(3; 0;i—1)7 +

_ =0 -3z LG (g, g,y
Ki(z — 6;)*"! with K; = Ol such that fx(8;) = f(6;).

Define functions g;(z) = f(6;-1)+ Ek ! f(])(a’ ’)(m 6;_1)’. By Taylor’s theorem, f(z) on
[6;—1,6;] can be expanded as f(x) = f(6;_1) +Zk ! f(])(el 1)(13 0;—)J+(z——%g:'1)—kf(k)(§i)
with & € [0;_1,2] C [6i-1,0;]. Therefore, on [0;_1,6:], f(z) — gi(z) = @%Mf(k)(&)-
Further, [f(z) ~ gi(z)| < supefqy =il 1) ()] = 46 — 0im1)* SuPge(a,p) [FF ()]

Note that on [6;_1, 6;],

in(@) —gi@) = |Ki(z —0;1)
(z—O__)_ (k-1) (g
(k;) f (1—1)|

(3.55)

o6

F69=10is]-5422 L2000 (g, g,y

Since K; = C — Y , and by Taylor’s theorem, f(6;) = f(6;-1)

Zk -2 f(])(el 1) (0; — 6;_1)7 + (9_0115)__f(k)(us), it can be readily shown that

1 ey,
Ki= gm0 (3.56)
where ; € [6;_1,6;].
Thus,
@)~ gl = |t -)
1 - -
_mf(k D(0i-1)(z — 6;-1)"
(3.57)
Then
FED) = FED031) = (i = 05-1) F P () (3.58)
where ¢; € [0;_1, ps).
Therefore,
) = @)l = Gl =0 = B P B 659)
Since p; ~ 0i—1 < 6; — 0;_1, and |f®)(¢;)| < SUDP¢[a,b] |7®)(z)|, it then follows that
1
v (@) = @) < G50 — 0-0)" b 1f®) ()| (3.60)
From expressions of |fnx(z) — gi(z)| and |f(z) — gi(z)|, it turns out that
[fn (@) — f(2)| < [fn(z) — gi(e)| + | F (=) — g9i(=)]
<20, —0,0)% sup |f D) (3.61)
k! z€[a,b]
That is,
Sup, |f (=) — ; a;o(wiz — ;)|
nkkl

This completes the proof.

57
Theorem 3 Suppose f : [a,b] = R is a function of finite smooth-decomposition with
respect to the index set I = {k; | i =1,2,---,M; M < +oo}. Then there exists a
latitudinal neural network structure whose each component, a sub-neural network N ks

either has (2k; — 3)n; neurons for k; > 3 in the hidden layer or has n; neurons for k; = 2

satisfying
M
S (@) - ; fre
Xk 1) sup,<z<p | F*) ()| (b—a)ki
Cisihe3 n; kil
. i SUWPagzc|f GOl PR (3.63)
=1,k =2 n;

Proof. Applictions of Lemma 4 and Theorem 2 will immediately give the proof.

3.3.3. General results on multi-dimension cases

Consider a function f : R™ — R™. Since this function can be viewed as n functions
from R™ — R, without loss of generality, we only consider a function from R™ — R.

Suppose there exist continuous partial derivatives of up to order n + 1 in a neigh-
borhood of zy for function f(z) with a compact support Q and £ € @ C R™. z can be
written in terms of its components, that is, z = [z! --- z™].

First of all, suppose f(.) € C2. consider the first-order expansion of f(z) at zg. we

have
m

£(@) = F(@0) + (X'~ ab) 5) (a0) + By (3.69)

i=1

where R; = £ (37, (z° — x%)a‘zi)Qf(mo +6(x — z0)) (0< 0 <1)and zp € Q.

Define g(z) = f(zo) + (32, (z* — mf))%)f(a:o). Note that g(z) is an affine-linear
function, and thus can be implemented by a constructive neural network [47]. This im-

plementation, however, is only valid in a small neighborhood of zg. To make a proper

58
approximation in the region € of interest, tessellation of the region is performed. Sup-
pose that the support Q is compact. This implies that each z* € [2¢, , z%,,.]- Tes-

sellation of the support {2 generates many non-overlapping hyper-rectangles witj2jm —

141 1.2 24l 9.2 1 2 idk & T e =Tt
[2590, 2'91] X [g?02, 202 X - - - X [g™Im g™Im] C Q) where 2 = 2t + (5] —1)=meg—min

and N; is the number of grid points for the ith axis. On each of such hyper-rectangles
wItizIm | expand function f(.) around 27192 Jm € wii2-Jm which can be just one vertex
of this rectangle. Let g/172Jm(.) define the affine linear part of f(.) around z7172"Jm_ Note
that g7192Jm () on the support of w/292"¥m can be implemented by a constructive neural
network such that on the grid points, the neural network generates outputs which exactly
match the function values of f(.), and for points inside w’172"Jm linear interpolation is
performed, and further for points outside w/172"Jm the constructive neural network gen-
erates outputs of a value 0. Piecewise linear approximation by a number of constructive
neural networks can then be achieved. The approximation error can be given by

R, = i(i(m’ - xi’j1j2"'jm)i)2f(zj1j2'“jm + O(z — x7192Im)) (3.65)

2! ox?

i=1
where 0 < 6 < 1, and z"/J2"Jm designates the ith component of z7172Jm,

Since z, z9192Im € WiI2dm | gt _ ghitjzdm| < fm%__wm&

(3

Since f(.) € C?, all the second-order partial-derivatives are bounded by

82
Bl = Supxeg; 1<2,5<m Bziéflj)
Thus,
1 — xfnaz — Thi 2
<1lp Smar — “min 3.66
R1—2! 1(; N; -1) 0

Note that w/12"Jm can be decomposed into at most ! hyper-triangles on which a
constructive neural network granule (NNG-t) can be applied to approximate the function
f(.) defined on it. Therefore, at most II™ | (N; — 1)m! constructive neural network granules
are needed. As is detailed in [47], a constructive neural network granule NNG-t is a
neural network with m hard-limiting neurons with an activation function of oy (.) and

1 soft-limiting neuron with an activation function of o,(.) in the first hidden layer, and

59
2 soft-limiting neurons in the second hidden neuron, and one output neuron performing
linear operations.

This leads to the following conclusion:

Proposition 2 Suppose that function f(.): C R™ — R with a compact support Q is
a C? function. Then there ezists a constructive neural network NN (.) which consists of

at most IT72 | (N; — 1)m! constructive neural network granules NNG-t such that

INN(z) — f(z)] < Bl(z maw'_ mm)2 (3.67)

. . . . 2
(3 — 2. pl — 1 T, — 9
where Tyap = SUPLeq T'5 Thyy, = infeeq 2*; and By = sup,eq, 1<i,j<m Fpida7 -

Next consider function f(.) € C3. According to Taylor’s Theorem, expansion of f(z)

around z(yields
21 & N
f(z) Z—, Z ' —xo)g—) f(zo) + Re (3.68)
el L

where Ry = (37 (¢* _xo)azl) flzog+08(z —z9)) (0< 0 <1)and x4 € 1.

Define g(z) = f(zo) + ijl %(Z:" (2% — 2}) 52) f (o). Note that the affine linear
part of g(.) can be realized by a constructive neural network composed of a number of
NNG-t’s. We now deal with the quadratic part of g(.), which is denoted by gq(.). g4(.)

can be rewritten in a matrix form. That is,
94(z) = 7Gx (3.69)

There exists an orthogonal matrix U such that A = UTGU is a diagonal matrix.
Hence, by means of a transform ¢ = Uz with z € R™ function, function g,(z) can
be expressed in terms of z such that g,(z) = 2"Az = Yo, Aiz? where z; is the ith
component of z. The support € is tessellated into a number of non-overlapping hyper-
rectangles w’172"Jm defined previously. On each w’1/2 7= second-order expansion of g(.)

and the corresponding orthogonization transformation U792 9 are performed.

60
As we discussed in the previous section, the zlz’s terms can be implemented by means
of a neual network consisting of neurons with a quadratic squashing activation function
04(.). It should be noted, however, that the non-overlapping hyper-rectangles in terms of
z may no longer be non-overlapping hyper-rectangles in terms of z. Therefore, a binary
logic is necessary to deal with this situation such that when z is inside w’192Jm the binary
logic turns on so that the quadratic terms are included to give a quadratic approximation
but when z is outside w/172Jm the binary logic turns off so that the quadratic terms are
not included to give a total output of 0. Fortunately, as shown for a one-dimensional case
in the previous section, the output of the far left soft-limiting neuron in the second-hidden
layer of an NNG-t precisely performs such a logic since the total input to the activation
function o0,(.) of this neuron is always an integer resulting in a binary logic even though
the activation function itself is not a binary logic at all. The combination of the neural
network achieving affine-linear approximation and the neural network achieving the pure
quadratic approximation results in a neural network granule, which is called a modified
constructive neural network granule MNNG-t if this neural network granule has a desired
support, hyper-triangle or MNNG-r if this neural network granule has a desired support,
hyper-rectangle.

The resulting approximation error can be given by

1 & . B o o
= — v gbdifedmy 3 £ (g 0102 Gm — ghjzim 70
Ry 3!(;:1(1' z)5 fle +0(z—w) (3.70)

Since &, z71727Im € II2TIm | |gt — ghiijzim| < —meg—min,

Since f(.) € C3, all the third-order partial-derivatives are bounded by

— 3
By = SUPzeq; 1<4,5,k<m 827917 8zF

Thus,
1 < 'Tinax — ‘T:nzn 3 3.71
< — —_ .
Ry < 3!32(;—1 N, =) (3.71)

We obtain the following conclusion:

61
Proposition 3 Suppose that function f(.) : @ C R™ — R with a compact support Q is
a C3 function. Then there ezists a constructive neural network NN (.) which consists of

at most II72; (N; — 1)m! modified constructive neural network granules MNNG-t such that
INN@) = @) < 5823 Tnsz — Tiin (3.72)
3! N; -1

. . . . 3
1 — 1. 1 _— 1. —_ a
where Ty, = Sup cq ¢*; zh,,, = infzeqx'; and By = SUPL e 1<i,j,k<m Fa7om 5k -

It is desired that instead of using neurons with o,4(.) as the activation function for approx-
imation of the quadratic polynomials, using neurons with op,, (n > 3) as the activation
function for approximation of higer order polynomials could be done. It turns out that
such a generalization may not be easily implemented. The reason may be that use of the
orthogonal transformation for quadratic polynomials can not be generalized to higher-
order terms.

Note that for quadratic nonlinear approximation, there is no need for the cross-
product terms to be inputs of a neural network. However, to deal with the case with
higher-order expansion of a function, using the cross-product terms as inputs to a neural
network may be necessary, which is illustrated next.

Suppose f(.) € C™*! with a compact support Q. According to Taylor’s Theorem,

expansion of f(z) around zg yields

£(@) = floo) + 3 (D@ — b)) (o) + R (3.73)
j=1Y" i=1

where R, = n+1) (i (28 — 28) 22) (D f (2o + 6(z — 20)) (0 <0 < 1) and o € Q.
Define g(z) = f(zo0) + 37—,],(Z;';l(z’ — z5)52:)? f(z0). Note that there are non-
linear terms, cross-product terms, which can not be well approximated by NNG-t’s.
As discussed Before, the support Q is tessellated into a number of non-overlapping
hyper-rectangles w/172"Jm defined previously. Each hyper-rectangle is supported by 2™

vertices. On each hyper-rectangle, a constructive neural network granule (NNG-r) can be

62
utilized to give a proper approximation to g(z), though it requires all the cross-product

terms as inputs. Refer to reference [47] for details. The resulting approximation error can

be given by
1 N iguaedmy O (1) o vaim Jriz-eim
Bn = (@ = eI g) (@I 4 (e — 2P (3.74)
Ti=1
Since x, z/192 " Im ¢ iriadm, |zt — ghdrizim| < z:m}\?_fll :

Since f(.) € C™*1, all the (n + 1)th-order partial-derivatives are bounded by

an+1

Bn = Sup.’L‘EQ; 1<y, 32, oy tnp1<m 811972 - drin+1 where 1 < il? i27 Ty in-!—l <m.
Thus,
R, < 1 B (in: xf'nax — xfm’n)n-{-l (375)
e)

We obtain the following conclusion:

Proposition 4 Suppose that function f(.) : Q@ C R™ — R with a compact support Q is
a C™1 function. Then there exists a constructive neural network NN (.) which consists

of at most I2 | (N; — 1) constructive neural network granules NNG-r such that

NN@) — £ < gy B e =S (3.76)

where 3, = Sup,cq 2*; 2l = infyeq zt; and

- grtly . L .
B, = SUPLeQ; 1<iy, iz, -, int1<m R —y with 1 <4y, 2, -+, Ipye1 <M.

3.3.4. Comments

This section demonstrates the relationship of neurons used in the hidden layer and
the achieved precision. Further, by using a latitudinal neural network architecture, the
approximation of a given function, with the finite smooth-decomposition property, can
be effectively accomplished in a constructive manner. The significance of the achieved
theoretical results is that it may lay a foundation for better modeling in identification and

control.

63

3.4. Conclusions

The architecture of latitudinal neural networks is proposed, and its relevant conver-
gence property is investigated, and further the approximation of a given function, with the
finite smooth-decomposition property, can be effectively accomplished in a constructive
manner. The theoretical results are generalized to multi-dimension cases. They may be

useful for dynamic system modeling or static mapping.

64

4. LOAD MODELING AND VOLTAGE STABILITY
ANALYSIS

4.1. Introduction

The power flow based static techniques still prevail on voltage stability analysis in
many utilities since they are simple, fast, and convenient to use [54, 55, 56]. The quasi-
static techniques (e.g.,small-disturbance analysis) have also been widely applied [57, 58,
59]. Those static or quasi-static methods are used either for estimating the static voltage
stability indices or determining the robustness and stability patterns of the systems to
be examined. Without question, they are very useful for on-line assessment which will
give operators rich information about the current operation status of power systems.
However, the disadvantages are also apparent; for instance, the static-technique based
voltage stability analysis needs further confirmation by using time-domain simulation.
And voltage collapse may occur well before the critical point predicted by steady-state
power flow study. More importantly, with dynamic interaction of various loads with
different characteristics initiated by heavy load buildup, line trip, etc., still using steady-
state or quasi-steady-state analysis may give misleading results.

It should also be noted that maintaining a good voltage stability profile does not
automatically guarantee voltage stability and that voltage instability need not be associ-
ated with low voltage [60]. For the former case, there are many such situations that no
abnormal advance warning appears for bus voltages but all of a sudden voltage instability
or even voltage collapse comes up. For the latter case, it is interesting to see that a voltage
collapse occurred in Western France on January 12, 1987, but the voltages stabilized at

low levels rather than completely collapsing [14].

65

Voltage instability covers different time frames. Transient voltage instability is usu-
ally closely associated with regular generator angle stability, which has been well studied
(e.g. [61] and therein). But traditional voltage collapse or related voltage instability also
may be more closely associated with loading dynamics. This kind of voltage instability has
stimulated extensive research on voltage stability analysis methods involving quasi-static
power flow or continuation power flow [55], snapshot method [62], modal analysis[56],load
dynamics [63, 64], energy method[54, 65], static bifurcation theory’s application to power
systems [66, 67] and so on. By means of many methods listed above (e.g., continuation
power flow), voltage collapse is viewed as a rather slow dynamic process, and can be
treated as a quasi-static process or quasi-steady state process, which equivalently treat
loads as constant load, constant impedance or, at worst constant current [60]. Such a
viewpoint of load is very indicative in many publications [65, 68, 62] which, however, ig-
nore load dynamics. As is argued in [69], the use of static load model for loads, combined
with the dynamics of underload (or overload) tap-changer transformer, will give rise to
rendered dynamics [70]. This, however, does not essentially change the feature of loads
which are still static in nature. The importance of using a dynamic model for dynamic
voltage stability analysis is further discussed in [71, 72, 73, 74]. A static load model in-
corporated into dynamic voltage stability analysis may conceivably lead to impractical
results.

Therefore, static techniques and dynamic methods should be coordinated to give
accurate and timely results.

To better understand the mechanisms of voltage collapses, the need for dynamic
voltage stability analysis is most important [14, 63]. It is stated that voltage collapse is
a dynamic phenomenon in nature, and that it is closely associated with overall (or pre-
dominant) dynamic characteristics of loads connected to a specific bus (say, a weak load
bus) [14]. With complex composition of loads with different dynamics, it may be very

difficult, if not impossible, to establish the time-varying dynamic interaction of all those

66
loads connected to a load bus. However, modeling of each and every load component is
not practical. Use of aggregate models describing the overall dynamics might be possible.
Motivated by this fact, the dynamics of all down-stream loads and voltage control equip-
ment were modeled as a generic dynamic load model with many factors contributing to
voltage collapse simplified or ignored [75]. Basic load dynamics and models are studied
in [63, 75, 64].

It should be emphasized here again that load characteristics should be very im-
portant when voltage instability or voltage collapse is involved. How to deal with load
characteristics in different stages of power systems is critical for better voltage stability
analysis.

Usually the component-based load model is used in some utilities. This load model-
ing approach is very much dependent on the accurate statistics of various power-consuming
devices. Because of its simplicity, a slightly more general form of exponential load models
is widely applied. This choice, however, has no theoretical guarrantees since a combination
of some exponential terms is often not likely to give a good approximation. Furthermore,
dynamic loading characteristics is too complex to be expressed in a simple analytic form.
Neural networks may be an appropriate choice. The use of a neural network for ap-
proximating a first-order load model is suggested in [21]. The aim of this chapter is to
propose to use a recurrent neural network which is capable of approximating a high-order
load model in general, and then to incorporate such a neural network model in voltage
stability analysis.

In this chapter, neural networks will be applied for modeling the static load charac-
teristics and dynamic load flow. These models will be used with the conventional power
flow study. The resulting Jacobian will be used for judgement of power system stability.
In a word, the whole methodology will make use of a neural network model for voltage
stability analysis and assessment. In the remainder of this chapter, some representa-

tive static/quasi-static/perturbation analysis methods are presented in section 4.2.. Load

67
modeling through neural networks is discussed in section 4.3.. With the resulting neural
network load models, dynamic and static voltage analyses are presented in section 4.4..

Finally, some concluding remarks are given.

4.2. Typical voltage stability analysis

In this section, static, quasi-steady state, and dynamic voltage stability analyses will
be presented. It will be shown that simple checking with either the relevant eigenvalues
or the sign of some parameters will provide information about the operation status of the
system. As is mentioned before, voltage instability may occur before the predicted critical

point.

4.2.1. Static voltage stability analysis

Static voltage stability analysis is important. It is particularly true when on-line
dynamic voltage stability assessment is not available. Typical static techniques may in-
volve a conventional power flow study. P-V or Q-V curves should be useful in power
system planning. It is well understood that reactive power transmission is inefficient for
transferring high real power, and that adequate reactive power supply nearby the heavy
loading area is very helpful for maintaining good voltage profiles. The P-V or Q-V curves
and their sensitivities (g—g or ‘—g%) gives operators information on the relative robustness
of load buses and on “how far away” (in some physical sense) a specific bus voltage is
from the potential voltage collapse point. To this end, there are also many voltage stabil-
ity indices calculated by estimating the distance from the current operation state to the
maximum voltage stability limit point or sometimes the maximum loadability limit point,

either of which may coincide with the other in some cases, and is usually called a singular

point in that the Jacobian becomes singular at this point such that it might be impossible

68
for conventional power flow study to go further. Modified power flow study is needed. A
more effective approach — modal analysis is proposed in [56], which in some cases can
provide a clear indication of weak voltage areas while V-Q sensitivities method may not.
A brief description of this method is given in the following.

Generally, steady state power flow at each bus k can be described by

P, = f(v70)
Qk 29(1079)

where Py’s, the real power, and Qy’s, the reactive power, are functions of the magnitude

(4.1)

vector v and phase angle vector 8 of relevant bus voltages.

Conveniently, these equations can be rewritten as
S = h(v,0) (4.2)

where S = [P Q]", h = [f g]™; P is a row vector whose kth componenet is Py; @ is a Tow
vector whose kth componenet is Qy.

The linearized version of Equation (4.2) is given by
08 = Joz (4.3)

where 65 = [0P 0Q]"; ¢ = [§0 dv]"; J = g—’; is the Jacobian of function h with respect to
x.

It is a common consensus that the static voltage instability is usually associated
with insufficient supply of reactive power. Therefore, to relate the variations of reactive

powers to the variations of voltage magnitudes, let 6P = 0. It then follows that
0Q = Jrdv (4.4)

where Jg = gﬁ — %%(%5)“1%5 is the reduced Jacobian.

Diagonalizing Jg to diagnonal matrix A by using a similarity transform yields

Jr = ¢AY (4.5)

69
where ¢ and 4 are square matrices of full rank such that ¢t = I with I designating the
unitary matrix.

That is,
IRt =A™l (4.6)

It follows that

Pt
_ 4.7
v EZ » 6Q (4.7)
where ¢; is the ith column vector of ¢;); is the ith row vector of .

If 6Q = then 6V = 3 @i di- — i _ 9Q

- ||¢II’ PN Nesll = Tlesll = X

Remark: (1) Each mode corresponds to an eigenvalue);. It can be seen that
if \; = 0, then any change of reactive power vector in the dirction of the associated
eigenvector will lead to infinite change of voltage magnitude vector. This would be exactly
the voltage collapse point according to this linearized analysis.

(2) If all the eigenvalues \;’s are positive (they are real since the reduced Jacobian

matrix is symmetric), then the power system under investigation can be considered stable.

(3) Sensitivities can be readily shown to be =3 d”““/’”“ with ¢g; and ¥

representing the kth element of ¢; and 4;, respectively.

(4) Participation factor Py; = ¢y;1; determines the bus &’s participation in mode

(5) Other sensitivities also can be obtained. That is, g_‘c;% =) %& These
sensitivities reflect how any reactive power of one bus influences any other bus voltage.

An energy method [54, 65] is noteworthy in that it gives the energy difference be-
tween the operating point and the likely voltage collapse point. This method is associated
with multiple power flow solutions. With the given initial operating conditions, it usu-
ally is possible to determine a unique stable equilibrium point (SEP) of interest while

the number of possible unstable (and stable) equilibrium points (UEP) may be very large.

Generally, for n bus power systems, there are 2"~! possible solutions. With more practical

70
considerations, this large number can be reduced to n — 1 for UEP (saddle points). It is
interesting to note that at the point immediately before collapse only a pair of closely lo-
cated solutions exist [54, 65]. And an algorithm proposed in [76] can be used to locate the
low voltage solution paired to the high voltage solution, which requires a certain amount
of time equivalent to that for convention power flow. The energy difference associated
with such a pair of closely located solutions is given further in [76].

By such an energy measure, when power systems are operating at some point very
close to a possible voltage collapse point, operators may know by how much more power
injection the power systems may escape from such a situation. However, it does not
directly answer such questions like “how much real/reactive power is needed and how are
these powers distributed?”.

An interesting application of neural networks to voltage stability assessment can
be seen in [77]. It is based on the energy method mentioned above. A feedforward
neural network with backpropagation algorithm is trained to approximate the mapping
f : R — R with the voltage stability margin V.SM = f(v,0) where v is the voltage
magnitude vector and 6 is the voltage phase angle vector. Function f can be considered
as composite h(g(.)) of function g and h. Here, functions g and h can be expressed as the
following mappings.

9 {(Pa, Qu, Py Qg, Vo) } — {(v*, 0%, 0", a*)}.

h:{(v*, o, v* a*)} — Energy Margin.

Here P;,Q4,P;,Q4 and V; are real power demands of loads, reactive power demands
of loads, real power supplies of generators, reactive power supplies of generators, and
voltages at the generator buses, respectively; v* and o are the magnitudes and phase
angles of voltages corresponding to a stable solution; and v* and o* are the magnitudes

and phase angles of voltages corresponding to an unstable solution.

71
By calculating sensitivities through other methods beforehand, the number of input
variables can be very much reduced. The results are shown to be very much the same as

the case without input number reduction [77].

4.2.2. Quasi-steady state voltage stability analysis

To overcome the difficulty encountered by conventional power flow at the voltage
collapse point, and to consider the slow changes in both generation and loading, a continu-
ation power flow method [62] is applied. To reflect the slow changes in both generation and
loading, a single load parameter X is assumed so that A = 0 corresponds to the base load
flow and A = A, corresponds to the critical point (a saddle point). Then the generation
and loading may be modified in such a way that

Pai = Pyio + MK i Ssbase c0s(1;);

Qai = Qaio + MKaiSsbase sin(y;);

Pgi = Pyio(1 + AKy;) where Pyig, Qgio and Py correspond to real power demand,
reactive power demand, and real power generation in the ith bus for the base case,
respectively; Ky and Kj; stand for load and generation change rate in the ith bus, re-
spectively; v; represents load change power factor angle; and Sjpese is a given quantity of
apparent power.

Then the power flow equations can be given by

0 = Pyio(1 + AKgi) — Paio — MKaiSspase c08(1hi) — Y _ |villvjlyis| cos(8; — 6; — 6;5) (4.8)
J
and

0 = Qgio — Qaio — M(KaiSsbase sin(shi) = Y _ [villv;llyisl sin(di — 5 — 6;5) (4.9)
J

The above equation can be rewritten in a compact form such that

F(5,0,0) =0 (4.10)

72
where d, v and)\ represent generator angle vector, bus voltage vector and load parameter,
respectively.

It follows from dF = 0 that

dé
[F; F, F,] dv | =0 (4.11)
dA
The linear prediction can be then given by
gnew gold ds
e | = | oold | ol qu (4.12)
\new yold d)\

where o is a weighting coefficient.

Another important step in continuation power flow is correction. The prediction
and correction procedures alternatively proceed. When) approaches \., d\ will approach
zero, and then may change sign after the critical point is passed. Thus, the critical point
can be checked out by noticing that a test of the sign of the d\ component will reveal

whether or not the critical point has been passed.

4.2.3. Dynamic voltage stability analysis

As is well known, generally there are two kinds of disturbances which may give rise ‘
to voltage instability, event driven ones and load driven ones. As is pointed out in [71],
traditional voltage instability is manifested at load buses, and is mainly load driven.
In [78], it is stated that event driven causes may include generator outages, short-circuits
caused by lightning, sudden large load changes, or a combination of such events.

In [66], bifurcation theory and perturbation methods are used to discuss voltage

stability and categorize voltage stabilities into four kinds, i.e., Type I instability, Type

73
II-1 instability, Type II-2S and Type II-2D instability. Power systems can sometimes be
divided into two subsystems: slow response subsystem and fast response subsystem.

An underload tap-changing transformer may be an example of slow response subsys-
tems while loads with fast response dynamics, generator and AVR may be fast response
subsystems. If both the slow response subsystem and the fast response subsystem are
stable, then the whole power system has the ability to restore the voltage after voltage
dip and the associated voltage stability is called Type I instability. Otherwise, the re-
sulting voltage stability may be called Type II instability. For this case, voltage collapse
may occur. The voltage stability associated with slow response subsystems is called Type
II-1 instability. The voltage stability associated with fast response subsystems is called
Type I1-2 instability, which is further categorized into two kinds, I1I-2S and II-2D, which
are associated with static bifurcation and dynamic bifurcation, respectively. These results
are very useful under some specific occasions, e.g., known load distribution. However,
there is no systematic way for recognition of fast subsystems and slow subsystems, and
the division of fast subsystems and slow subsystems may be changing with time or by

occurrence of contingencies. Again, load dynamics is not considered in [66].

4.2.4. Comments

In section 4.2., several voltage-stability analytical methods are introduced. They are
essentially either static techniques or small signal perturbation analyses. Yet the dynamics
of loads has not been considered. At best, the rendered dynamics [70] was considered. As
is known, the load dynamics contributes most to the load side voltage instability problems.
Therefore, inclusion of load dynamics in voltage stability analysis is important. This will

be addressed in more detail together with the study on the load modeling issue.

74
4.3. Load modeling

A load is defined in [79] as such: a load is a portion of the system that is not
explicitly represented in a system model, but rather is treated as if it were a single power-
consuming device connected to a bus. This indicates that an aggregate load model may
be used, though the precise load model is usually not available. Use of such aggregate load
models has been frequently recommended in the literature since voltage stability analysis
would otherwise be made impossible. Therefore, load modeling needs to be addressed for

voltage stability analysis.

4.3.1. Static load statistics

The neural network has been widely applied as a computing technique. As has been
mentioned before, one standard application of neural networks is to be used as a function
approximator. Therefore, they can be used to model the static load characteristics which
is usually represented by polynomial models. Generally, a neural network can give a better
approximation than mere polynomials.

As is well known, a static load model is usually expressed as a function of the
voltage magnitude and the frequency of the voltage at a specific bus to which the load is

connected. That is, static load characteristic may be given by
P=F(v,f) (4.13)
and

Q= G(v,f) (4.14)

where P and @ are real power and reactive power at some bus, respectively; v and f
are associated voltage and frequency, respectively; F'(.) and G(.) are generally nonlinear

functions.

75
We are more concerned about voltage stability than frequency stability since usually
voltage decays much faster than frequency does during power system instability. Thus,

the above equations may be approximated for short duration by
P = F(v) (4.15)

and
A feedforward neural network can be applied to model these two nonlinear functions. Since
sensitivities are useful in power flow study, the calculation of the sensitivity of the output

with respect to the input of the neural network should be performed, and is addressed in

the following.

Let the input be z = [z 3 -+ zp]” € RM to a neural network Nﬁf;ﬁ;; . ;ﬁg (vefer
to section 2.2.2 of chapter 2 for notations used here) with weights w‘ jsfori=1,2,---,d,

i=12,--,di_y,and 1 =1,2,--- L, its output y = [y; y2 --- yn]” € RY. Note that for
63/1

the representation of the neural network dy = M and d;, = N. Then the sensitivity »
for 1 <4< N and 1 <k < M can be computed by applying the chain-rule.

Let s' designate the output vector of layer [(I =1,2,---,L —1). Then

dp-1 L—-1
Oyi _ Z Oy; asmL 1
- L-1
Jzy, iyl BsmL_l Oz
dr—1 dp-» 9sL-l 9s2. sl

= Y Y. Z 9y le...asgj . (4.17)

T
mr_1=lmp_o=1 my= 185"% 1 8smL 2
Let the derivative of the activation function oy(.) for layer [= 1,2, - -, L be denoted

by g'(o;(.)). Note that

Oy;

L
9sL-1 = Wimy 19" (%)
mr_1

Jst
al—_mll = gl(sim)wmmm_1 for I=LL~-1,---,2
Smy_,

76

and

dsl

87": = gl(s’}nl)wmlyk
Therefore, the following results

dr—1 dp—2
Oyi

= § : E : § : Wmimp-1Wmyp_y,mp_s " " Wma,mi Wmy k
ozy,

mp-1=lmp_s=1 mi=1

95 W9 (5mgt,) - 9% (57m,)9" (570,) (4.18)

mp—-i1

Note that s, = o120 wy, st + 8,) for I = 1,2,---,L — 1 with &% = g; for
1<j3< M, and bin, designating the bias for the 7n;th neuron in layer [= 1,2,---, L.

Thus, all sim’s for{=1,2,-.-,L — 1 are continuous functions of z, and their values
for a specific z can be computed in a forward manner, as what is done for the feedforward
phase in the backpropagation algorithm.

Hence with the sensitivities available for real power and reactive power of a load
with respect to the voltage magnitude at the bus where the load is connected, modal
analysis can be performed, and information about the relative robustness of load buses
can be obtained. This will be detailed in next section, where the static and dynamic
voltage stability analyses will be made.

The standard IEEE 14-bus system, shown in Figure 4.1 is used for simulation.
Uniformly distributed loads are added to the original load at bus 14. The Newton-Raphson
method is adopted for power flow study. For random loads, the voltage magnitudes at bus
14 can then be obtained as shown in Figure 4.2. The use of a one hidden layer feedforward

neural network gives the approximation results in Figure 4.3.

77

— 10 -~ 14 17

1 --- Slack Bus; 2,3,6,8 --- PV Bus; all others PQ Bus

FIGURE 4.1: IEEE 14-bus system

4.3.2. Load dynamics modeling

Most physical system dynamic behaviors can not be described in terms of a static
mapping from the input space to the output space. One way out may be the use of
recurrent neural networks [32, 31] which can be state-feedback based, shown in Figure 4.4,
or output-feedback based, shown in Figure 4.5. The complex input-output dynamics can
be estimated and approximated by thses two kinds of neural networks. A natural choice
of the performance criterion for such neural networks would be the weighted summation
of the square of the error between the target sequence and the output sequence of the
neural networks. The dynamic back-propagation algorithm [32] is very useful for training a
recurrent neural network to follow a pre-specified temporal output sequence if the network

is fed the pre-specified input sequence. Again, power systems and load flows are essentially

78
dynamic and too complex to be expressed in a simple form, but recurrent neural networks
may be an appropriate option.

Power system loads or demands are dynamic in nature. Their dynamic characteris-
tics are critically important for making predictions about the operating point of the power
system and assessing the voltage stability limits. The load composition, however, is so
complex and time-variant that a simple analytic form for the aggregated load dynamics
is not likely by traditional methods. Due to the diversity of the dynamic characteristics
of all possible power-consuming devices connected to a voltage bus, it might not be possi-
ble to obtain satisfactory results with simple linear models (either time-invariant or time
varying). In [64], simplified nonlinear dynamic loads in power system are modeled by
using a first-order differential equation. The model in [64] (similar model in [75]) is such
that

T,Py+ Py = P,(V) + kp(V)(V) (4.19)

where Py and V are for power demand and bus voltage, respectively. P is denoted steady-
state power. Such a model is proposed to give some insight into the dynamic response of
the power when the voltage magnitude is suddenly reduced to a lower value. This model
might not be useful for unknown load dynamics. Based on the robustness and fault-
tolerance capability, and good approximation capability of neural networks, they have
been applied successfully to power forecasting. It also was used to model the complex
dynamics of overall load connected to a voltage bus [21]. Such model is also based on the
first-order differential equation

z = f(z,u) (4.20)

A discrete version of such a model is

Tk = f(Tr-1,Uk) (4.21)

where z stands for active power or reactive power. u denotes the voltage.

79
It is clear that a mathematical representation of load dynamics is critical for voltage
analysis. The above models are only of a first-order approximation.

In this section, we will discuss the following more general model.
f(.’IJ(N),-",.’I',',.’E,U(M),---,’l'l,,u):0 (422)

where z stands for active power or reactive power; u stands for bus voltage.

For the discrete case,

f(a:n——Na"'axnaun—Ma""un—hun) =0 (423)

Assume z, can be expressed in terms of other arguments in the above equations.

Then
T :g(xn—la"'7xn—N7unaun—1a"'aun—M) (424)

Note that the above model is a dynamic model for modeling purpose. If a prediction

model is in need, then the following model may be used.

Ip = g(ﬂ:n_]_,"' 7$n—N7un—1a"';un—M) (425)

This is a one-step ahead prediction model, which describes the structure of neural networks
shown in Figure 4.5.

For a multi-step ahead prediction model,

Tn4+pP =g($n)"')$n—N7U”na"'aun—M) (426)

where P is the prediction step.

80

Uniformiy distributed load at Bus 14

06 S R— — T T T T
05 }! *X)K
=0 X % xx ® *
8 I L
5041 ® x %
H ¥ £ x
203 xx X % Kl
%
L &f?* Cr
y L
0.1 1 1 1 1 i1 1 il] il
078 08 08 084 08 08 09 092 094 09 098
Voltage (pu)
02 T T : T T T
1 % T Ny X* x ** T
= ¥ y * ¥ %
‘a"’ * x M * ***;i i‘
50.15F * X w R x
: * Y
*
g- % *K K x% " ;;(** X *
2 *x
g 04r x
3 * X **’?‘ x X
o X ¥ « % X
0.05 1 ! |* *l* JM*J *

L) 1
078 08 082 084 08 08 09 092 094 09% 098
Voltage (pu)

FIGURE 4.2: Real/reactive power vs voltage magnitude

Our neural network model is based on Equation (4.24). Since the output of the
neural network is dependent not only on the previous voltage, but also on its own previous
values, it has been called a recurrent neural network, and can be used to model complex
system dynamics [80, 33].

Note that a neural network model for equation (4.24) can be obtained either by dy-
namic backpropagation or plain backpropagation. For the former case, the neural network
is trained in parallel model; for the latter case, the neural network is trained in series-
parallel model. Also both output-based recurrent neural network and locally recurrent
neural network are trained over a given set of data.

Consider a locally recurrent neural network with one hidden layer. It can be viewed

as a state-space model, which is illustrated in Figure 4.4.

z(k +1) = f(z(k),u(k)) (4.27)

e
~

Real power (pu)
< bod g
B [, Rz

T T T

L
w
T

Real power model at Bus 14 by NN (10-1)

L S&xna

5 ; A ;
082 084 086 08 09 092 094 09 098
Voltage (pu)

Xk
kY.)
L%

FIGURE 4.3: Neural network model for load at bus 14

08

] il 1 L il 1 1
082 084 08 08 09 092 094 096 098
Voltage (pu)

y(k) = g(z(k))

81

(4.28)

There are times at which it may be necessary to use a locally recurrent neural

network with two hidden layers. Such a model is also a state-space model but with more

complexity.

Let X (k) = [z(k)" z(k)']’, then the first two equations can be combined

z(k +1) = f(z(k), u(k))
z(k +1) = g(z(k), z(k))

y(k) = h(z(k))

X(k+1) = F(X(k),u(k))

The output of the recurrent neural network is

(4.29)
(4.30)

(4.31)

(4.32)

(4.33)

82

FIGURE 4.4: Recurrent neural network

A set of data [14], shown in Figure 4.6, which was recorded when voltage dip occurred
first at a specific voltage bus, is used for training neural networks. Since normally bus
voltages are within the pre-designated limits, say +5%, the training may not be so efficient
if no pre-processing for the original data is performed. Under such a consideration, a
standard normalization is applied befor neural network training. Let X, be the original

data. Then the post- processing data X, is
Xa = (Xp — Xp) /var(Xy) (4.34)

where X, is the average of the given data, and var(X,) is the standard deviation. The
normalized data to be used in training neural networks are shown in Figure 4.7.

First, model (4.24) is used for training a recurrent neural network through batch-
mode training. Such a training involves the choice of number of layers of neural networks,

and number of neurons in the hidden layers. Many different neural network configura-

83

: Ya

DN

FIGURE 4.5: Output-feedback neural network

tions are tested. And the common logistic sigmoidal function and tan-sigmoidal function
are used for simulations. From the experiments, it is seen that two hidden layer neural
networks are more efficient that one hidden layer neural network if both kinds of neural
network structures have approximately identical number of neurons (because there are
more connections in general for the former, hence allowing more freedom for adjustment
of parameters involved). The training error can be reduced by training more time for
a fixed neural network structure. In fact, the training model is essentially input-output
modeled by feeding the previous outputs into the neural network to model the dynamics of
the concerned process. It should be noted that of course, the proposed latitudinal neural

network structure in chapter 3 can be used for reduction of the training error.

Active Powar (MW) Voltage (KV)

Reactive Power (MVar)

~

100

L
200 300 400 500 600 700 800

=

1 1 1 1
200 300 400 500 600 700 800
time {second)

900

84

FIGURE 4.6: Original data for voltage, active/reactive power (sampling interval: 9 sec-

onds)

Secondly, a locally recurrent neural network with one hidden layer neural is trained,

in which 20 hidden neurons are used. The experimental results are shown in Figure 4.8

and Figure 4.9 after de-normalization.

layers and even with cross-talk links for modeling more complex dynamics.

It is also possible to train a locally recurrent neural network with two or more hidden

The precise gradient information involved in training a recurrent neural network can

be obtained only by using the dynamic backpropagation. The use of the dynamic back-

propagation algorithm, however, involves intensive computational effort even for simple

low-order dynamical systems. This has led to use of the plain backpropagation algorithm

keeping it in mind that the step size for weights updating has to be kept small to ensure

the stability of the closed-loop system.

85

4.4. Voltage stability analysis

Incorporation of load representations into voltage stability analysis is discussed

in {75, 70]. A simple form for load representation therein is given by
Tpz = Ps(v) — zPy(v) (4.35)

where P;(v) stands for static load model, which is usually represented by an exponential
model; P;(v) stands for transient load; and T), is load recovery time. Notice that mathe-
matically when £ — oo, tends to a constant z,, then P;(v) = Ps(v)/zs. In physics, when
there is voltage drop, the real power that the load can draw also decreases. And within a
certain amount of time, the real power recovers up to a certain amount.

Another similar load model is given in [70] by
Tpé = Py(v) - (z + Pi(v)) (4.36)

It should be noted that these two load models are consistent with the models derived
in [63, 64] and that all those models agree with the general model governed by first order
differential equation (first order models for induction motors, thermostatic heating load,
and tap changing transformers are typical examples).

In what follows, the loads modeled throught neural networks, addressed in the last

section, are included in voltage stability analysis.

86

1 1
0 100 200 300 400 500 600 700 800 §00

Active Power
o

|
)
T

L

=
8
0
8
[%3
8
=~
-3
S
o
3
S
@
2L
(=1
~
3
E=1
@
L
=1
w©
=1
S

Reactive Power
(=] n >
T

i
T

&

1 i
300 400 500 600 700 800 900
time (second)

g
ny
g

FIGUR%&) 4.7: Normalized data for voltage, active/reactive power (sampling interval: 9
seconds

4.4.1. Static voltage stability analysis

Consider a simple static case — a two bus system consisting of a generator and
an aggregated load which is modeled by two neural networks. Let vg, dg, vg, 04, z and
8, specify the generator bus voltage magnitude, the generator bus voltage pahse angle,
the load bus voltage magnitude, the load bus voltage phase angle, and the impedance
magnitude and phase angle of the transmission line (including the impedance on the
generator side if any), respectively. And P; and Qg are the real and reactive power
demand, whose neural network models are assumed to be f(vq) and g(vq), respectively.

It can be shown that

2
Py = "2 cos(5, — 5, +6,) — ”?d cos(6,) (4.37)

z

87

Recurrent NN {20-1) with 20 neurons in the hidden layer
T

Normalized active powser {solid: target; dot-dashed: NN output)

-4 1) i 1 1 1 1]
[100 200 300 400 500 600 700 800 900
time (second)

FIGURE 4.8: Target and output of the recurrent NN with 1 hidden layer (sampling
interval: 9 seconds)

and
2
Q4= “7“ sin(8g — 0, + 0,) — ”; sin(6,) (4.38)
where J, may be chosen to be zero; v, is pre-specified.
That is,
v v2
g— cos(dqg — 0y + 6,) — ~ 4 cos(8,) — f(vg) =0 (4.39)
and
2
ﬂ sin(dq — dg + 6,) — v? sin(#,) — g(vg) =0 (4.40)

We must now distinguish between specified or scheduled powers and powers cal-
culated using the above two equations. The difference is the so-called mismatch which

becomes small as convergence of the iterative process for a solution is reached.

88

bl
©
T

ol
o
T

Ll
B
T

Active power (MW) (solid: target; dot—dashed: NN output)

ol
o

| L L L L L L L
100 200 300 400 500 600 700 800 900
time (second)

bd
o

FIGURE 4.9: Target and output of the recurrent NN (sampling interval: 9 seconds)

The Newton-Raphson method may be employed to solve these two nonlinear equa-

tions as

ASy AP
J = (4.41)

Avd AQ
where AP and AQ are mismatch powers, Av, is the unknown load bus voltage magnitude

correction, and Adyg is the unknown load bus voltage angle correction; and J is the Jacobian

matrix given in the following:
Jui J
J=1"" " with
Jiz Jua
Ji1= 222 cos(dqg — 6y +0,) — 2% cos(f,) — f’(vd);
Jig = —2% sin(&d — (59 + 92);

1

Jig = Ezl sin(dg ~ (59 + 92) - 22:‘ Sin(ez) -9 (Ud);

Jig = —29%1' COS(5d - (59 + Oz)-

89
It should be noted that f (vs) and g'(vg) can be computed by using the results
derived in the last section. The system will reach its maximum loadability (sometimes
called voltage stability limit though there may be the case when power systems are still
stable even though the equilibrium point is located on the lower part of P-V curve) when
the Jacobian tends to zero. Also, it should be noted that transient instability may occur
without this condition.
The above results can be easily generalized to large interconnected power systems.
For a total of N buses the voltage Vi at any bus k, where net real power P, and reactive
power Qi are given, can be expressed as

1 P —
Vi =5 (57— i JQk Z Yin Vi (4.42)
kk n=1, n#k

where Yj.’s and Yj,’s are just mutual-admittances of nodes k and n, and self-admittances
of nodes k’s.
With Vi = v exp(—j&k), Vo = vn exp(_jén)v Yin = Yrnexp(—j0kn), the above

equation can be rewritten in polar form.

n=N
Py =) vknyin c0s(Okn + 5n — k) (4.43)
n=1
and
n=N
Qr=— Z VkUnYkn Sin(akn + 6, — 5k) (4'44)
n=1

The sensitivity 3 a—P& can be easily obtained.

% = VRYkn CO8(Okn + 6, — ;) fn#k
0P,
&f = 2ukYrk cos(Orx)

Z ViYki COS(eki +6; — 619) fn=k
i=1, i#k

90

Similarly, other sensitivities %Dfi, g?/’“ and %?’“ can also be obtained and given in
n n n

the following:

0P,
=2 = 0y Sin(Okn + 6, — k) T £ K
96y,
N
? = + Z VUi Yki Sin(eki + d; — 6k) ifn==%k
Un i=1, itk
0
@ _ —0kYkn SIN(Opn + 6, —) ifn#k
ovy,
%f: = —2upypi sin(Orr)
N
- Z VilYki Sin(@ki +4; — ‘Sk) ifn==%k
i=1, itk
9 _ —VgUnYkn €OS(Okn + 0n — O) ifn # k
a6,
N
0
8§k = + Z VU Yk; c0S(Ox; + 6 — 0r) ifn==k
n i=1, ik

The involved sensitivities at some specific buses need to be modified if the loads at
these buses are modeled by neural networks. For instance, assume bus k is one of such
buses. Then from equations (4.43) and (4.44), we have

n=N

ng — Pd;, = Z Vi VnYkn COS(gkn + 6, — 5k:) (4.45)
n=1
and
n=N
Qgr — Qde = —) VkvRYkn SIn(Bkn + Oy — 6) (4.46)
n=1

where Pdj; and Qdy are real and reactive power demands at bus k£ modeled by neural
networks, and Pgj and Qg are generated real and reactive powers at bus k.
Thus, the sensitivities neeed to be modified at bus k should be %1% + PJk (vx) and

%%: + Q(fk(vk) if they are g——f}f and % originally . However, Pd'k(vk) and Qd’k(vk) can

91
be obtained through the technique developed in last section. Therefore, the modified

Jacobian matrix, with some related elements modified, still takes the general form

P, P
g=|"" (4.47)

Qv Q6

where P, is the partial derivative matrix resulting from differentiating the real power vector
with respect to voltage magnitude vector; Ps, Q, and Qs can be explained similarly.

This matrix can be applied either for power flow study by the Newton-Raphason
method, or for eigenvalue analysis. The eigenvalues of the reduced Jacobian matrix display
the possible modes of voltage stability [56].

The resulting neural network load model for bus 14 in the IEEE 14-bus system is
combined with the Newton-Raphson method for use in the load flow study. The results
are shown in Table 4.1.

It can be observed from the results that if the randomly added loads are ignored, the
results may be optimistic; if the random loads are considered to be their average values,
the resulted power flow study may be over-simplified, and that the neural networks used
present an approximately accurate representation of the nonlinear relation between the
random loads and the 14th bus voltage magnitude, and thus give reasonable results. The
eigenvalues in Table 4.1 are all positive and, through modal analysis, suggest that the

power system is still stable.

4.4.2. Dynamic voltage stability analysis

Dynamic load models can be used for dynamic voltage stability analysis. Such a
model, detailed in the last section can be trained with available data recorded in credible
contingencies, large load buildup, and unfavorable load dynamics, etc. Also those data can
be used to train neural networks. Through the trained neural network, the loading patterns

can be recogized. Dynamic voltage stability analysis should be employed whenever there

92
is such a need indicated by neural networks. For application of the Newton-Raphson
method, equations (4.24) and (4.42) should be iteratively used. It should be noted that
equation (4.24) describes the dynamic relation of real load power and reactive load power
on voltage magnitude. It should also be noticed that equation (4.42) characterizes the
whole power system. With use of previous real/reactive load power and previous voltage
magnitude, current real/reactive load power at a specific bus can be computed through
equation (4.24) (Keep it in mind that there should be each dynamic model for either
dynamic real load or reactive load at a specific bus). With the resulting values and the
given conditions, equation (4.42) is applied to give the possible solution. These steps
can be repeated. Of course, the state-space model (4.27) and (4.28), combined with
equation (4.42), can also be used for dynamic voltage stability analysis. The modal
analysis can also be performed through time. The involved sensitivities for modal analysis
may be obtained in the way the static voltage stability analysis is made. Without question,

dynamic voltage stability analysis is very time-consuming.

4.5. Conclusions and outlooks

This chapter presents a neural network methodology for dealing with static and dy-
namic load modeling. The loading patterns are classified by feedforward neural networks.
Based on the static load model and dynamic load model, either static voltage stability
analysis or dynamic voltage stability analysis can be made. The sensitivities involved in
neural network models for loads are derived, and are then used in the Jacobian matrix,
and further for the modal analysis. The neural network methodology is tested either on
the IEEE-14 bus system or real field data. Since static load model may not be suitable for
loading dynamics while dynamic voltage stability analysis is too time-consuming, which

will affect its effective on-line use, voltage stability indices (e.g. margin for operating point

93
to reach the saddle point) may be very suitable for on-line use. Static voltage stability

indices may not be sufficient. Dynamic voltage stability indices are needed.

NN load model | Original load | Expected load
Real load 0.2268 0.1490 0.3725
Reactive load 0.1053 0.0500 0.1250
Voltage magnitude | 0.9458 0.9798 0.9076
Eigenvalues 63.8474 64.2885 63.2086
38.5836 38.6527 38.3830
30.6897 31.2209 30.0822
27.2015 27.6361 26.6971
17.2232 17.4309 16.9932
0.5126 0.5412 0.4750
15.2683 15.4484 15.0381
3.8089 3.8762 3.7308
5.4869 5.5675 5.9188
11.2959 11.5020 11.0658
6.0411 6.1986 5.3601
TABLE 4.1: Comparison of different load models

94

5. SYNTHESIS OF ADAPTIVE HIERARCHICAL
CONTROLLERS APPLIED TO DYNAMIC POWER
SYSTEMS

5.1. Introduction

The concern for maintaining bus voltages stability has been growing. Many voltage
instability incidents have occurred around the world (e.g. Japan, France, Belgium, and
USA). Some of these incidents even caused partial or complete blackouts (voltage col-
lapses). The detailed descriptions of these events can be obtained in [14, 81]. There are
various causes which might lead to these severe system failures. According to the available
data [14], the initial causes may be AC line trip caused by a ground fault, generator loss,
immediate heavy load buildup, special load with unfavorable load dynamic characteristics,
etc. The real problem, however, is one of interaction of very complex nonlinear dynamics
and lack of control.

Transient voltage stability is usually closely associated with regular generator an-
gle stability ([61] and therein). Longer-term voltage stability, however, is more closely
associated with loading dynamics. This kind of voltage instability has stimulated ex-
tensive research on voltage stability analysis methods involving quasi-static power flow
or continuation power flow [55], snapshot method [62], modal analysis [56],]Joad dynam-
ics [63, 64], energy method [54, 65), static bifurcation application to power systems [66, 67]
etc. However, voltage stability and rotor angle stability are more or less interlinked, and
their mechanisms can be difficult to separate. It is usually assumed that if voltage col-
lapse occurs in a transmission system far away from load centers, it is mainly a rotor
angle instability problem; if voltage collapse occurs in load areas, it is primarily a voltage

instability problem—but hardly proven.

95

The Flexible AC Transmission Systems (FACTS) are utilized to enhance power
transfer capability over existing transmission lines and greatly improve stability charac-
teristics of power systems. Some FACTS devices are already in wide use (for instance,
Thyristor Controlled Series Capacitors (TCSC) and Static VAR Compensators (SVC)),
while some others are still under development (for instance, Unified Power Controllers
(UPC)). One of the main roles that FACTS devices play is to adjust the reactive power
flow, correct the massive power imbalance, and re-establish the equilibrium in case of oc-
curance of large faults. Therefore, the proper manipulation of the FACTS devices in place
by means of some properly designed control mechanism is then crucial in maintaining
power system stability.

As is known, the mechanism of the transient stability is well understood while the
voltage collapse mechanism is much more complicated that might be associated with
either the rotor angle stability or load-driven stability or both, and needs many in-depth
investigations. Since voltage instability is closely associated with the loading patterns, as a
first attemp to exploration of the voltage collapse mechanism, the transient stability issue
is investigated while considering the effect of the load at the same time. Such an effort
is significant—in that: (1) since the TCSC installed on the tie line is intended to help
dampen the inter-area mode oscillations between the two subsystems connected through
a tie line, it is shown in [82] that such a system can be simplified as a SMIB system with a
TCSC and time-varying parameters under some assumptions; and (2) the insights gained
and the techniques developed from the study of a SMIB with a load may help develop
techniques which are useful for preventing voltage instability problems in multi-machine
systems with various kinds of loading characteristics.

Note that the random changes in operation conditions and possible faults in power
systems result in uncertain dynamic systems, which call for high-performance robust non-

linear controllers to enhance and ensure the system transient stability.

96

A number of studies, involving bilinear adaptive control scheme [10, 11], variable-
structure control [83], robust control [84], and neural network control [12], have been done
on the controller design which may stabilize the postfault power systems. Nonlinear control
strategies have been effective on a case to case basis. Note that adaptive control, robust
control and variable-structure control are typically considered model-based schemes, and
that neural control is considered to be data based. This difference makes neural control
perhaps superior to the others in the case of unmodeled plants since the off-line generated
optimal trajectories or the desired trajectories are available and may help train a proper
neural controller. However, it should be noted that the neural network structure, of
nonlinearly coupled bilinear systems, is similar to the basic nonlinear structure of FACTS
where the parametric control allows improved controllability and transient stabilization. In
order to handle the uncertainty that exists in practical systems, a control-switching scheme
is introduced in [85] in order to generate the intelligent control. The idea thereof was
further developed in [12], resulting in a multiplicative control scheme, which is essentially
a convex interpolation of the nominal controllers, designed for specific cases, instead of
control switching. A similar hierarchical control structure [86] is approximately the same
as that for a fuzzy control ([87] and therein) except that the control weights, i.e., the
membership values in the context of fuzzy logic, are determined by a set of fuzzy rules. The
application to jet aircraft engines of this kind of hierarchical structure was also investigated
in [88].

As is known, it is desired to stabilize the postfault power systems as quickly as
possible by means of the constrained control. The time-optimal control policy, or near-
time-optimal control policy in a more practical sense, is studied in the context of control
design. Note that for nonlinear power systems, generally it is still very difficult to solve for
optimal feedback controls. However, the off-line generated optimal trajectories may help
train a neural network control which sufficiently approximates the optimal control which

exists and whose analytic form is often quite difficult to obtain. Regarding the SMIB

97
system, yet with the consideration of the effect of the load, a number of novel techniques
are developed to stabilize the transients incurred by occurance of large faults to the single-
machine infinite-bus system with an uncertain load. Note that the uncertainty of the load
makes the whole power system uncertain, and thus a somewhat “intelligent” controller is
then necessary. The techniques proposed mainly include: (a) tessellation schemes which
help synthesize reliable controllers with respect to an uncertain load, which can be modeled
by a feedforward/dynamic neural network as discussed in chapter 4, and large faults;
(b) a couple of pattern recognition schemes which are intended to well approximate the
switching curve in the context of time-optimal control; (c) a hierarchical control structure
which consists of two levels of neural networks, with the lower level neural networks
trained for specific cases, and the upper level neural networks associated with some sort of
comparator properly assigning the multipliers so that the resulting multiplicative control
is still a bang-bang type. (d) A combination of a hierarchical neural control and a linear
control by the latter of which the system can be driven from some neighborhood of the
equilibrium to the exact equilibrium more effectively and thus it is required that the
system be driven by means of the former only until it comes to some neighborhood of the
equilibrium and then the latter takes over, thereby accomodating the possible errors in
the available calculated optimal trajectories and also avoiding the so-called “chattering”
phenomenon (83, 8, 9]. Further, some theoretical justifications of the proposed techniques
are presented. The techniques developed, however, can be generally applied to more
complex nonlinear systems.

This chapter is organized as follows: Section 5.2. formulates the problems that will
be studied in detail later on, and shows that the explicit analytic solution to the time-
optimal control problems are not available. In section 5.3., the formulated problems are
transformed and nonlinear systems linear in control result. Numerical solutions can then
be obtained by means of the switching-time-variation method (STVM) [7, 13] which makes

effective use of the linearity in control. Based on the available optimal trajectories, the

98
pattern recoginition schemes are developed and used to stabilize the postfault power sys-
tem. The hierarchical neural control is discussed in section 5.4.. Then section 5.5. presents
some theoretical justification for the proposed methods. Some illustrative simulations are
shown in section 5.6.. The proposed methods are generalized to more general systems in

section 5.7.. Finally, some comments and conclusions are presented.

5.2. Time-optimal control for SMIB with a load

As is well known, a SMIB system with a FACTS device TCSC installed can be

described by

5 = wb(w — 1) (5.1)

© =37 (Pn — D(w — 1) = 74", sind)
where
0 - rotor angle (rad);
w - rotor speed (p.u.);
wp - synchronous speed as base (rad/sec);
P, - mechanical power input assumed to be constant (p.u.);
D - damping factor;
M - system inertia referenced to the base power;
V; - terminal bus voltage (p.u.);
Vo - infinity bus voltage (p.u.);
Xq - transient reactance of the generator (p.u.);
X, - transmission reactance (p.u.);
s - series compensation degree (—sXe is the reactance of the TCSC, and often 0 < s < 1);
The system is desired to be driven, after a transient period, to its equilibrium (J., we)

by the admissible control s € [Smin, Smaz| and stay in the equilibrium thereafter by the

fixed compensation s¢ € [Smin, Smaz)-

99

With the translation transform w = w + 1, it follows that

[| ViVeo :
w = M(Pm—Dw—msm(S)

Note that the equilibrium for rotor speed is translated from 1 to 0.
To make the later derivations convenient, a nonlinear transformation is introduced

as follows:
Y(u) =Yy + Yau

where Yy corresponds to the total admittance (i.e., Xd—i}-(:) under no compensation (s =0
and also u = 0); Y, is the resulting additional admittance for u = 1 (and also s = 1) due
to TCSC; Y (u) is the resulting total admittance, Y (u) = m

It then follows that

1
Yo = —r
0 X+ X,
Xe
Y, = ——¢
* Xag+ Xe
s = u(Xq + Xe)
- Xg+ Xeu
Xgs
— 5.2
YT X A 9)X, (5:2)

Note that the mapping from s (s € [0,1]) to u (u € [0,1]) is one-to-one correspondence
and onto, and monotonical.

By the above transformation, the swing equation can then be rewritten as follows:

6=
e (5.3)
w = 37 (Pm — Dw ~ (V;Vio)(Yo + Yau) sin 6)

Further, it may be convenient sometimes to transform the above system in such
a manner that its equilibrium is translated into the origin and that the control range is

converted to [-1,1].

100

Note that 0 < spmin < Se < Smaz < 1. Hence 0 < Umin < Ue < Umaz < 1, where

Umin, Ue, a0d Umqey are associated with spp, Se, and sy,qz, respectively, by Equation (5.2).
Let u = u' + u, and 6 = ¢’ + §,. Then Equation (5.3) can be rewritten as

5:wbw

(5.4)
1

W = 17 (Pm — Dw — (ViVio) (Yo + Ya(u + 1)) sin (6 + 5¢))

Note that in the above equation, the admissible control u € [Usmin — Ue, Umaz — Ue)
and that the equilibrium is now at the origin.

— Umaz ~Umin Umaz +Um;
Let u > v+ 5

—ue. Then v € [—1, 1]. Substitution of u in terms

of v into Equation (5.4) and some algebraic manipulations yield

0 = wpw

@ = 37(Pm — Dw — (ViVio) (Yo + Yy (UmesUmin g 4 Ymezttmin)) gin(§ + 4))

That is,
) wpw
= +
@ 3 (P = Dw — ViV (Y + meztyminlle) gin(5 + 6,))
0
v (5.5)
— & ViV, (mee—tmin)Ya o1 (5 4 6,
(tmaz+umin)Ya (vmaz ~umin)Ya
Define ¢; = I—)Afj", C2 = %, c3 = Yi¥oo (Yo Y a—), and ¢4 = ViVeo T
Then we have
6 wpw 0
= + v (5.6)
w c1 — cow — c3sin(6 + &) —cysin(d +)

From Equation (5.6) the role of parametric control (and bilinear control for small
6) is apparent—making FACTS so effective. Likewise, the general nonlinearly coupled

bilinear system structure, and the assumed neural network structure of approximation

may be recognized.

101
5.2.1. SMIB with a load

On the study of power system stability, the load is usually assumed to be a constant
in the literature. In this section, the SMIB system with a load is considered for stability
concern and control design while the load is assumed to have some properties but its
parameters or itself needs to be identified. Several different system models are formulated
and discussed.

Case I: The load is assumed to be fixed but is unknown.

The SMIB system with a constant load P, = Py can be described as follows:

§ = wy(w—1) (5.7)

&= 37 (Pn — Py = D(w — 1) — x4, sind)

By using the same transformations introduced before, the above equation can be

transformed as follows:

5 = Whw
(5.8)
w = ¢1 — c19 — Caw — ¢38in(de +) — ¢4 8in(de + 0)v
where ¢jg = %; and all other coefficients are defined as before.

Case II: The load is assumed to be an affine function of the frequency.

The SMIB system with such a load P, = Py + Cw can be described as follows:

6= wp(w—1)
(5.9)
&= 37(Pmn — Py~ Cw = D(w — 1) = 7= sind)
The above equation can also be transformed as follows:
6 = wyw
(56.10)

w=c1 — c1g — (€20 + c2)w — c3sin(de +) — cq 8in(de + 6)v

where ¢g = BQ];;—C; Cag = %; and all other coefficients are defined as before.
Note that for case I, the parameter c;o is an unknown constant and has to be
identified in order to proceed with a proper control; and for case II, the parameters c;g

and cgp are unknown constants and have to be identified for the same purpose.

102
Case III: the analytic model for the load P, is not known, but may be identified

with previous data.

The SMIB system with such a load P, can be described as follows:

b =wy(w—1
bl =1) (5.11)
@ =37(Pm — P~ D(w — 1) — x7§"=yx; sind)
The above equation can also be transformed as follows:
b = wyw
(5.12)

w = c1 — €19 — cow — c38in(de + §) — ¢4 8in(de + 0)v

where ¢jg = %.

Note that with the formulation of these problems, the goal is to design neural con-
trollers which perform well for each case. Since for case I and II, once the parameters
involved are determined, the models take the same form as Equation (5.6) except that
the fixed parameters take different values, the techniques used for computing the optimal
control and trajectories can be used for cases I and II. Calculation of optimal control
for system Equation (5.6) is actually to locate the switching manifold. Unfortunately,
the switching manifold can not be given explicitly. It may, however, be determined ap-
proximately by using some numerical methods, for example, the switching-times-variation
method (STVM), detailed in section 5.3.. The parameter spaces for cases I and II are
tessellated into many sub-regions. For those parameters which correspond to the vertices
of the tessellated sub-regions, optimal trajectories and optimal control are computed in
the region of stability interest. The computed optimal trajectories and optimal control are
used for training a neural network which approximately characterizes the switching man-
ifold in a way described in later sections 5.4. and 5.5.. The synthesis of neural controllers
for cases I and II, which requires the identification of some parameters, is also described

in section 5.4..

103
Once the neural controller for cases I and II are synthesized, the neural controller
for case III may be synthesized in a way detailed also section 5.4.. The theoretical support

for these techniques is provided in section 5.5..

5.2.2. Minimal time control

Consider Equation (5.3) for minimal time control.

The optimal time performance index can be expressed as

T
J= / 1dt (5.13)
to

Define the Hamiltonian function as

H(z,u,t) = 1+ N f = 1+ A (wpw) + Ag(—}éf—(Pm — Dw — (ViVio) (Yo + Yyu) sind)) (5.14)

where 27 = [0 w]; AT = [A; Ag); and f(z,u,1)7 = [ww 2 (Pm — Dw — (ViVeo(Yo +
Y,u) sin 6))].

The final-state constraint is ¥(z(7T'),T) = z(T) — z. = 0, or

o) = o (5.15)

w(T) =we=0
where z{ = [0, w,] is the desired equilibrium point; 2] = [y wp] is the initial state.
The state equation can be expressed as

)

T = f(z,u), t 2>t (5.16)

= a5 =
The costate equation can be written as

| OH _ o
- dr Oz

A t<T (5.17)

where 7 designates transpose.

That is,

At = 3 ViVio (Yo + Yau)Aa cos d (5.18)

Ao = —wpA1 + %)\2

104
The Pontryagin minimum principle is applied in order to derive the optimal con-

trol [94]. That is,
H(z*,u*, *,t) < H(z*,u,*,t) for all admissible u (5.19)

It turns out that
~%)\§ sin8*Y, u* < ——-]\17)\3 sin §*Y,u (5.20)
Since M,Y, are assumed positive constants,
Assind*u® > A3 sind*u (5.21)
Thus, the time-optimal control satisﬁes the following condition:

Umaz, A28ind >0
wt =4 e (5.22)

Umin, A28ind <0

Note that the possibility of a singular solution, i.e., A2(t) sin é(¢) = 0 for some finite
time interval, can be excluded, which is shown in Appendix B.

The terminal boundary conditon can be given by

(¥ip+H)lr =0 (5.23)
or
Hip=1+ Ag(T)%[Pm ViV (Yo + Yau(T)) sin (T)] = 0 (5.24)
That is,
Xo(T) = — M (5.25)

Py —~ ViV (YO + YaU(T)) sin 5(T)
It is observed that the resulting Hamiltonian system is a coupled twopoint boundary-

value problem, and its analytic solution is not available, to our best knowledge.

105
5.3. Switching-time-variation method (STVM)

In section 5.2.2., though the necessary conditions for the time-optimal control are
given, the analytic solution is not available. In order to get the time-optimal control, the
switching-times-variation method (STVM) is used [7, 13].

It is observed that the system described by Equation (5.6) is a nonlinear system but
linear in control. In the following, the STVM applies to the SMIB system for calculation
of time-optimal control.

Define the performance index by

b P2 2 ()
J = 1dt + = (6% + w 5.26
/to 5 (0F +wp)

t .
J= / [1+ p(68 + wiv))dt
to
tf
{1 + plwpwd + w(er — cow — c3sin(8 + be) — casin(d + d¢)v)) }dt (5.27)

to
where p is a positive real number. Note that for equations (5.26) and (5.27) there is only
a constant difference.

Define
%o = 1 4 p(wpwd + w(c; — cow — e38in(d + be) — c48in(d + J)v)) (5.28)

Then J = zo(ty).
Define the augmented state vector as z = [z9 § w|”. And the augmented system is
then the following:
&= Az) + Ba)v (5.29)
1+ pw(wpd + ¢1 — cow — c38in(d + &;))
where A(z) = wWpw)

c1 — caw — c3sin(d + J)

106

—pcawsin(d + &)
B(z) = 0 , and z(to) = [0 do wo]”.
—c48in(d + &)
Define the adjoint equation as follows
: 9 .
A= {A() + Bl A (5:30)

where A = [Ao A1 A2]” and A(ty) = %lg(tf) =[1pd W]Tlg(tf)-

That is,
Ao 0 0 0 Ao
M| =— pwlwy — (c3 + cav) cos(8 + de)} 0 —(ca + cqv)cos(é + be) A1
A2 plwpd + c1 — 2cow — (€3 + cav) sin(d + 8.)] wy —c2 A2

Observation that A9 = 1 reduces the above equation to the following

5\1 0 -—-(63 + C4'U) COS((S + 6e) A1

Ao Wh —ca A2

pwlwy — (c3 + c4v) cos(§ + de)]

_ (5.31)
plwsd + €1 — 2cow — (c3 + c4v) sin(6 + b¢)]
The switching function is given by
¢(t) = 2)"B(z)
= —2¢c4sin(d + 6c)(pw + A2) (56.32)

Suppose the number of the optimal switching times is N (including the variable
terminal time). Let the switching vector be 7 = [r; --- Ta_1 t4]7. According to [7, 13],

the gradient of the cost function with respect to the switching vector can be given by

Vi = —¢"
= [¢(r) - () elrva) S (5.33)
where ¢" = [—p(m1) -+ (=1)N"lg(ry_1) — J(tp)]" and J(ts) = 1 + p{wpwd + wlc; —

cow — c38in(d + de) — eqsin(d + de)v]He, -

107
The optimal switching vector can then be obtained by using a gradient-based method

through iterations.

Ty = 1; + Kigl (5.34)

where 7; is the switching vector, , va is the negative gradient vector, and Kj is a properly-
chosen N x N-dimensional diagonal matrix with non-negative entries for the ith iteration.

Note that the time-optimal solution can also be obtained by considering the orginal
variable terminal time problem as the limit of a sequence of fixed terminal time problems.
Mathematically, let ¢; be the solution to the variable terminal time problem, and t’]} the

solution to the ith fixed variable terminal problem, then
ty = inf{t} : solution exists} (5.35)
K3

Details are available in [7, 13], where the solution is shown to converge to the minimum-
principle solution in general.
It is observed that the STVM is also applicable to Equation (5.8) and (5.10) for

calculation of optimal trajectories for different initial conditions.

5.4. Synthesis of a neural controller as a power system sta-
bilizer

Artifical neural networks have been widely applied in many diverse real-world appli-
cations, such as speech processing, image processing, computer vision, pattern classifica-
tion and recognition, system control, and robotics [89]. The great function approximation
capabilities of neural networks and the gradient-based back-propagation algorithms [90]
have made possible their various applications. In the context of control engineering ap-
plications, neural networks are often trained either to approximate the forward and/or
inverse input-output relations of nonlinear systems [91] and are further used in differ-

ent applications, or to approximate the analytically unobtainable mappings by means of

108
available data [92]. As discussed before, the state based feedback optimal control is not
analytically available, which is often the case for nonlinear power systems. Therefore, the
trajectory following approach is to be used to synthesize a state feedback optimal neural

control. This will be detailed in what follows.

5.4.1. Time-optimal neural control

The design of optimal feedback controllers for general nonlinear systems is usually
untractable. Yet by means of a numerical method, the optimal trajectories and optimal
controls can be computed. The information inherent in these outputs and controls help
establish the link between them. This link actually leads to a closed-loop feedback to
generate approximately an optimal policy. To put this more specifically for time-optimal
control, the link thereof can be completely characterized by the associated switching curve
in state space. Suppose the switching curve is represented by S(z) = 0 where z is the
state vector of the system of interest. Note that as shown previously, the control range
can be converted to [—1, 1]. Then the optimal control u of a bang-bang type can be
given by

u = sgn(S(z)) (5.36)

u = —sgn(S(z)) (5.37)

1, if §>0
where the function sgn(.) is defined by sgn(S) =

-1, if §S<0
Denote sgn(S(.)) by g. Then u = g(x).

The off-line optimal trajectories and optimal controls may be computed by a gra-
dient based numerical method, say switching-time-variation method [7, 13], which makes
effective use of the linearity in control of the nonlinear system. The function ¢ can then

be approximated by training a neural network.

109

Denote by € the region of stability interest, which is assumed to be compact. Then

the switching curve divides the region into two parts. On one side of the switching curve
(or manifold in general), the optimal control takes one extremal value of the confined
control while on the other side the optimal control takes the other control limit. From this
observation a pattern recognition scheme is proposed as follows. Note that the true state
feedback control u = g(z) displays a discontinuity on the switching curve (or manifold in
general). This may lead to the training of a neural network a difficult job. Also note that
sufficiently many trajectories uniformly distributed in the region of interest may ensure
the desired approximation with respect to Lebesgue measure. Let the function realized
by a neural network be denoted by u = NN(z). With a number of off-line generated
trajectories which are approximately distributed in the region of interest, the trained
neural network tends to produce the outputs closely approximating the optimal control
on both sides of the switching curve while it is likely that some mismatch error may occur
in some neighborhood containing the switching curve and that the output of the neural
network tends to take a positive (or negative) value when the desired control takes the
positive (or accordingly negative) limit. Since the time-optimal control only takes the

extremal values, the control by means of the trained neural network can be formed as
u = sgn(NN(z)) (5.38)

or

u = —sgn(NN(z)) (5.39)

Therefore, a new neural network may be formed by means of a conventional neural network

followed by a neuron with a heaviside sigmoidal function. This is shown in Figure 5.1.

110
X Standard U
AN uy

FIGURE 5.1: Neural-net-based time-optimal state feedback control

Remark (1): This structure can recognize the optimal control pattern which is
characterized by a switching curve. The output of the new neural network precisely
matches the optimal control on both sides of the switching curve except in some small
neighborhood containing the switching curve. The training patterns are in the form of
(z,u).

Remark (2): This structure will be a component of the lower level neural networks
in the hierarchical neural network architecture which is detailed next.

Remark (3): The optimal controls, as the desired output of a neural network can be
scaled by a positive factor, say 8. There might be some §’s such that the neural network
is trained satisfactorily well. Then the activation of the heaviside function gives out a
control of a bang-bang type.

Remark (4): The above method can be applied to system (5.6) or system (5.8) as
long as the parameter is specified or system (5.10) with the parameters specified. The
resulting time-optimal neural controllers for different cases form the lower level neural
controllers in the hierarchical neural network architecture which will be studied.

Remark (5): The alternative for inputs to the neural network, for system (5.6),
(5.8) or (5.10), may be the rotor angle and its previous value since they can be used to
reconstruct a state approximation, and since it may affect the training since the deviated

rotor speed is too small relative to the rotor angle.

111

5.4.2. Near time-optimal hierarchical neural control

For parameterized systems with fixed parameters, for instance, system (5.6) (sys-
tem (5.8) or (5.10) exactly takes the same form as system (5.6) does once related pa-
rameters are given), the transient stabilization of power systems can be done by means
of time-optimal neural control even though the explicit analytic form of the state based
feedback control is not available. The same task, however, may become more challenging
if the parameters of the load are not known, which calls for somewhat robust control. Note
that the range for the parameters can often be assumed to be specified without loss of
generality. The parameter (or parameter vector) space can be tessellated into a number of
sub-intervals (or rectangles, or rectangles on high-dimension case, simply called rectangles
hereafter). For each case on which the parameter (or parameter vector) corresponding to
an endpoint (or vertex) is specified, the case-specific time-optimal neural controller can be
trained. For simplicity, these cases may be termed as nominal cases. It is then expected
that a near time-optimal control may be synthesized by making use of the information
extracted from each nominal case. However, the information abouth those nominal cases,
for which the unknown parameter (or parameter vector) lies within the sub-interval (or
rectangle) determined by the corresponding endpoints (or vertices), may be more relevant
than that about other nominal cases. Therefore, a rough estimate of the parameter (or
parameter vector) is necessary in order to determine which sub-interval (or rectangle) it is
within. After such an identification, a control u corresponding to the unknown parameters

can be synthesized as
M
u= Z Qi (5.40)
i=1

where the time-optimal neural control u; corresponds to a specific parameter case; o; is
the multiplier for control u;; and Ef\il o; =1 and ¢; > 0. The resulting hierarchical near

time-optimal neural controller is shown in Figure 5.2.

112

Upper Level
Neural Networks

Multiplier
ocessing Unit

[»

| D s {
Lowe'rxLevell "Nm uM \Xj

Neural Networks

FIGURE 5.2: Hierarchical time-optimal neural control

Remark (1): TDL stands for tapped delay line such that the previous values and
also the current value are available to feed into the input of neural networks.

Remark (2): Note that the outputs of lower level neural networks as lower level
controls take a value of either -1 or +1. For state z(k — 1) at instant (k — 1)T (T is
the sampling period), it can be driven to z(k) by means of an optimal control u;(k — 1).
Also note that for some optimal trajectories and corresponding optimal controls, they
are related in the second equation of system (5.6), (5.8) or (5.10). This means that
the multiplier o;(k) may be somehow related to u;(k). It is then expected that (z(k —
1), z(k),u;(k—1),u;(k)) may characterize the behavior specific to the ith case. Therefore,
the training patterns are in such a form ((z(k—1), z(k), u; (k—1),u;(k)), o;(k)). As pointed
out previously, the state z(k) can be replaced by the rotor angle and its previous values.

It is desired that the multiplier o; may take 1 if the trajectories and controls are specific to

113
the ith case and for other cases the multiplier o;; may take 0. Based on these arguments,
the upper level neural networks can be trained.

Remark (3): Since u; € [-1, +1], then u = ¥, o;u; € [-1, +1], too. And
the outputs of the upper level neural networks need normalization (still denote them by
@;’s) such that Zf\il a; = 1. Note that all u;’s only take either +1 or -1. Thus, if all
u;’s have the same sign, then from u = Ef\il o;u;, w = u;. For other situations, let
A1 = Vieis w=tiel, M)y %5 let Ap = 2ielis ui=—1zelt, M)y % Then if Ay > Ay, u=1;
if Ay < A, u = —1. These operations are mainly done by the multiplier processing unit,
which is shown in Figure 5.2. Therefore, the resulting control is still a bang-bang type,
which drives the system to a neighborhood of the equilibrium in near optimal time.

Remark (4): To accomodate the possible computation errors involved in obtaining
the off-line optimal trajectories and to avoid the so-called chattering phenomenon, the
linear feedback controller is necessary, which also performs very effectively around the
equilibrium. These will be illustrated through simulations in section 5.6..

It is pointed out that the proposed control scheme can be applied to cases I and II,

described in section 5.2.1..

5.4.3. Adaptive near time-optimal hierarchical neural con-
trol

Consider the system Equation (5.12), where the load P, hence c1g, is a continuous
nonlinear function of w, but its explicit form may not be known. This is usually the
case in reality, which accounts for the fluctuation and random nature of loads. The
modeling of an aggregate load is usually useful from available data and measurements.
As is known, load modeling is an important issue for voltage stability analysis. Load
modeling was studied in [93], where static and dynamic load modeling through neural

networks and corresponding voltage stability analyses were discussed. Here again, a neural

114
network is trained with available data to approximate the nonlinear load such that the
approximation error is uniformly bounded. That is, the load can be modeled as B =
NN (w), or equivalently cjp = NN(w). And the approximation error can be expressed as
e1 = cip — c1o with |e;| < e, where €., is a pre-specified positive number.

Note that cip is a continuous function of w with a compact support since the max-
imum value and minimum value for w are usually physically determined for stability
concern. cjp can then be approximated by a piece-wise linear function cip such that the
approximation error ez = c¢jp — cjo is uniformly bounded by a positive number €.,. That
is, Jea] < €ey-

It then follows that |cip—ci0] = |cio—clo+clo—c10| < |clo~cio|+]|clo—c10| < €6 te€e,-

It is then reasonable to assume that for the region of stability interest, the suffi-
ciently small disturbance in ¢19 would not bring about a significant change in the resulting
trajectories. Since cip is a piece-wise linear function, the near time-optimal hierarchical
neural control scheme applies. And since c¢j9 can be approximated by a piece-wise linear
function with a uniformly bounded small error, the near time-optimal hierarchical neural
control scheme also applies with some adaptations addressed in the following.

At sampling instant kT (T is the sampling period), from the measurements about
the state, the load is estimated by the trained neural network cjg;. The previous estimate
clok—1 and the current estimate cjp; can be used to identify the coefficients a; and aq
involved in an affine approximation ¢jp = a; + aow for the period of time [(k — 1)T, kT).
Note that o and a3 are time-varying. Since for the period of time [(k—1)T, kT, the load
is approximately identified as an affine function of w, the near time-optimal hierarchical
neural control structure then applies, which first locates the parameter vector (a;, a2)
in the tessellated parameter vector space, and enables the proper lower-level time-optimal
neural controllers. Since oy and oy are time-varying, then on-line estimation of the load
helps achieve a piece of affine approximation for the specific period of time, and initiates

the corresponding lower-level time-optimal neural controllers.

115

Remark: As the system is stabilized and is gradually driven toward its equilibrium,

the rotor speed is approaching a constant, the load must also approach a constant. There-
fore, the range for the parameters of the load thereafter shrinks, and enables only the
lower-level time-optimal neural controllers correpsonding to the vertices of the sub-region
encircling the almost fixed parameter vector involved in the load. As the system is brought
to some small neighborhood of its equilibrium, then a linearized controller is enabled to

take over, and quickly drive the system to the equilibrium.

5.5. Theoretical justification

This section provides theoretical support for the control schemes developed in the

last section.

5.5.1. Switching manifold approximation
Consider the system Equation (5.6)

5 = Wpw
(5.41)
w = ¢ — cow — c3 8in(de + §) — ¢4 sin(d + O)v
Let z = [0 w|", a(z) = [wpw €1 — cow — c3sin(de + 6)]7, B(z) = [0 c4sin(e + 9)]7,

and f(z) = a(z) + B(z)v. The above equation can be rewritten as
& = a(z) + B(z)v (5.42)

Note that v € [-1, +1].

Suppose that with the initial condition z(ty) = z¢, a proper bang-bang control v(¢)
for t € [to, t] can be found such that the state can be driven to the origin at the
instant t;. Note that the control can be completely specified by giving the switching

N_:[N N

vector 7 " 7' ---7{]" (where N designates the number of switching times) and

116
the first initialized control, and that the corresponding trajectory is a function of zo and
the switching times, and can be denoted by z(zg,t). For our interest, without loss of
generality, the initial control is assumed to be positive.

Suppose there is a perturbation in the initial state while this does not cause a change
of the sign of the initial control and a change of the number of the switching either. Let
the perturbed initial state be yo & z*(xo,t) (the optimal trajectory starting from z), and
the resulting switching vector 7V = [#]V 21V ...2N]7.

In what follows, it is shown that for the small change in the initial state, the switch-
ing times may make an accordingly small change in order to drive the final state to the
origin.

Integrating the system equation from ¢y to ¢ yields

N
71

s(aoty) =z + [lola(oo,0) + Bla(zo,)]t + -

[alotan,) + (<1 Blatao, O))ds + -+

i

N
N

ty
+ / [a(z(xo,t)) + (=1) B(z(z0,t))]dt (5.43)
T

Observation from the above equation indicates that if xg is fixed, then z(zo,t) is
a continuous function of the switching vector. Since f(z) satisfies the Lipschitz condi-
tion [94], that is, a constant k exists such that ||f(z1) — f(22)|] < kl||z1 — z2|| for all 71,2,
in the region of interest, the solution z(xg, t) is unique. In a word, z(zg, t) is a continuous
function of zy and the switching times.

dx(zo,t ; :

Note that %—d = 2(~1)*B(z(xo, 7)) fori = 1,---, N; and
9z (zo,t
P = a(a(z0,tp)) + (~1)V Ba(ao, ty)).

It follows that

dx(zo,tp) = dzg + Z 2(—1)! B(z(zo, 7¥))drN

117

" 9la(z(zo,) + B(z(xo, t))]
to Ozo

+ /T"]yh Ola(z(zo, 1)) + (=1)*B(z (20, t))]

N O0xg

7

+

dzodt + - -

dzodt + - --

/tf da(z(zo, 1)) + (1)~ B(z(x0,1))]

T
N 9z

dzodt (5.44)

dz(zo, ty) = 22(_1)iB(x(x0aTiN))dTiN + [a(x(0, 7)) + (—1)" B(z(zo, t5))]dt

v e [olelont) £ B0,

to (9:1: 0

N /Ti]il dla(z(zo,t)) + (=1)'B(z(zo, 1))} dt + ---

N Jzo

/ s dlale(wo, 1)) + (~1)¥ B(x(0,t))]

N (9560

dt}dzg (5.45)

Define C(zo, 7V, t5) =1 + ftle a[a(z(%’t)g;"OB(z(z"’tm dt+---+

; dxo Oxo

fT]ig—l da(x(xo,t))+(—1)* B(z(z0,t))] dt+ -+ ft1fv a[a(x(mo,t))+(—1)NB(x(zo,t))]dt.
T, ™

Notice that dx(zo,ts) = 0 since the desired final state is the origin. Then we have

f: 2(~1)'B(z(zo, 7V))drN + la(z(z0,t5)) + (=1)Y B(z(z0, tf))]dt; = —C(wo, ™, t4)dzo
= (5.46)
It can be readily shown that C(zg, 7,1t) is bounded. Then it follows that there may be
some freedom for dTiN and di; to take some small values. Hence, for any positive small
number ¢, there exists a positive small number § such that i f||z2—=z}|| < 6, ||[7V2—7V1|| <

e where z{ and z3 are different initial conditions; and 7! and 772 are corresponding

switching vectors.

It should be noted from Equation (5.45) that since all the first-order partial deriva-

tives are bounded, any small perturbations to both the switching times and the initial

state only cause small change to the final state.

118

Therefore, some conclusions naturally follow.

Conclusion 1: Suppose 2 is a compact region where with proper control the optimal
trajectories starting in the compact region will still remain in it. That is, for any initial
state zp € €2, there exists an optimal control v = g(z) which is a state feedback control
such that the state can be driven to the origin in a finite amount of time. Let the
switching curve (or manifold) be S. Let a region D C surrounding the switching
curve be defined as D = {z : |lz —y|| < e y € S; z € Q}. Then a neural controller
u = NN(z) which only takes -1 or +1 with z being the state, can be trained such that
ifzx € Q- D, |lu(z) — v(z)|| = 0. Then for any ¢; > 0 and ez > 0, there exists €3 > 0
such that if ||z, — zo|| < €3, there exists the terminal time ty such that [ty — t7| < e,and
|z (zg, 7) —x*(zo,t)|| < €2 where t} is the optimal terminal time for the initial state zo;
and x*(zo,) is the optimal trajectory starting form zg.

Remark: First of all, the optimal control v = g(z) with z € Q is a discontinuous
function only on z € S. It can be approximated with a continuous function,say v = h(z),
with the same support with sufficiently small error v > 0 such that h =g ifz € Q — D,
and |h(.) — g(.)] < v for z € D. Then a neural network NN1(.) can be trained to
approximate the function h(.) such that [NN1(.) — h(.)| < 71 with 7, being an arbitrarily
small positive number. Note that h(.) takes a value of -1 or +1 if z € @ — D. Then
-7 <NN1()<l4mor—1~79 < NN1(.) < =1+, forz € 2 — D. As long as v
is chosen such that v < 1, then sgn(NN1(.)) = h(.) for z € @ — D. But sgn(NN1(.)) is
another neural network. Thus, the existance of such a neural controller is assured.

Conclusion 2: Suppose 2 is a compact region where with proper control the optimal
trajectories starting in the compact region will still remain in it. That is, for any initial
state zo € 2, there exists an optimal control v = g(z) which is a state feedback control
such that the state can be driven to the origin in a finite amount of time. Let the
switching curve (or manifold) be S. Let S; be the piecewise linear approximation of the

switching curve. Suppose that z € S and z' € S; where z and z' are points of an optimal

119

trajectory. Then for any €; > 0 and e; > 0, there exists e3 > 0 and €4 > 0, such that if
SUP g /e, 1T — || < €3, and ||zy — 2o|| < e4, there exists the terminal time ty such
that |ty — 3| < er,and ||z, tg) — z*(zo0,ts)|| < €2 where ¢} is the optimal terminal time
for the initial state zo; and z*(zo,t) is the optimal trajectory starting form z.

Remark: Such a piecewise linear approximation of the switching manifold may be

realized by a constructive neural network.

5.5.2. Support for construction of hierarchical neural con-
trollers

Consider again the system equation

6 = wyw
(5.47)
w = ¢} — caw — c38in(de + 0) — cg sin(de + O)v

Note that since a load is considered in the SMIB case, c¢; is now a fixed unknown
scalar. c; is assumed to be within the interval I, = [Cimin, Cimaz]- Thus, the above
system equation is equivalent to Equation (5.8).

For any fixed c;, the control can be designed to stabilize the system in a near op-
timal manner. The question then arises how an effective control can be designed for the
fixed but unknown parameter. One natural solution would be identifying the parameter
first and then activating the according control. One other alternative is to use all avail-
able specific controllers corresponding to specific cases, and make a combination of them.
In what follows, the theoretical aspects for the latter case are investigated about how
such a combined controller can be synthesized and how well such a synthesized controller
performs.

For any given initial state zy, and the corresponding optimal switching vector 7V

and the final time ty, if ¢; is a variable, then the state z = [§ w]” will be a continuous

function of the switching vector, ¢; and c¢;. Suppose there is an increment de; in ¢;, and

120

suppose that this variation in ¢; does not cause the structure change in the system (which
means the behavior of the system does not change much), and the goal is still to drive the
system state to the origin. Suppose that this will cause some increments in the switching

vector 7V and ¢ 7- Therefore, we have the following equation by means of perturbation

analysis.

0=

M=

2(=1)'B(z(zo, 7";e1))dr + [a(z(zo, tf; 1)) + (=1)V Bz (o, tf; c1))ldty

1
ty

+ [0 1]7deydt
t

(=)

' Ola(z(zo,;¢1)) + B(z(xo, t; cl))] Oz

1dt
+ : o d +-
. /’i Bla(z(z0, t; 1)) + (—1)”B(ﬂc(wo,t; Cl))] %d dt + -
N oz “
N /tf da(z(zo,t;c1)) + (=) B(z(z0,t; ¢1))] a—xdcldt (5.48)
.y 0x G

Define Cler, 7V, t7) = f7F 2eeGotien)+Blalzotien)] g2 gy 4

f:;iil %jm(xo,t,cl))+(aw1)wB(z(wo,t;cl))] (z—fdt

i

+ [, deteoota)) Blaleotin)] e g

And C(c1,7V,tf) can be further expressed as

0 w
C(Cl,TN,tf) = tt)f ’ (z—cfdt
(—c3 — cq) cos(de +6) —co
0 w
+ fvﬂ . ’ %dt
(—c3 — (—1)*cq) cos(de +6) —ca
0 Wy
+ % % gt.
Ml (—c3 —c4)cos(e +0) —cp

It follows that

0= 22) + la(z(ty)) + ()N B(x(ty))ldty

+ {(f—-to [0 1" +C(ey, 7V, ty)}dey (5.49)

121

Since we assume that the variation in ¢; does not cause any structure change in
the system, for any ¢, ‘Z—f is bounded. Thus, C(c;, 7V, ;) is bounded. Since 587:% for
t=1,---,N and %f; are bounded, any small change dc; in ¢; will cause small changes in
the switching vector and the terminal time.

Based on the above discussion, the interval I is devided into M — 1 parts such that
Cimin = ¢ <2 < -+ < M = ¢mag. Since ¢; € I, ¢; must be in some interval [ct, c’i‘”].
Further suppose there exist a number of optimal controllers u*(z), corresponding to the
parameter c’i, where 7 ranges from 1 to M , for the above system. For any c¢; € I, define
the combined controller by u(z) = Z;‘il Aju?(z) where 0 < A\; < 1for j =1,---,M and
Zjﬂil Aj = 1. But since there exists ¢ such that ¢; € [¢}, /'], it is then reasonable to
use, for synthesis of a control corresponding to ¢, only the information about the system
and control corresponding to both cases where the parameter takes a value of ¢} and
c’i"‘l,respectively.

Therefore, a controller can be synthesized in two stages that follow.
First, identify the sub-interval [c!, Ciﬂ] that ¢ is likely within.
Secondly, construct the control by means of a combination of the pre-designed controller
u™(z) and w'**(z). That is, u(z) = Z;g Ajud*(z).

Remark (1): since the analytic form for 4/* may not be available, it is then therefore
necessary to use the method described before to train a neural controller NN7(z) for each
case.

Remark (2): since A; is not known, it has to be identified. This can be done
by using the available optimal trajectories to train another neural network. That is,
\j = NNi(z,%).

Remark (3): to identify the parameter cy, first feed the initial state to all M neural
controllers. Let the number of the resulting controls taking +1 be Mj. If My > M/2,

then the control for the first cycle takes +1; otherwise it takes —1. With the control for

the first cycle, the measurement can then be used to determine the parameter ¢;. That

122

18, ¢1 = w + cow + ¢38in(6) + ¢4 sin(8)v. Note & is now the rotor angle not the rotor angle

deviation from the equilibrium, because for each ¢;, the equilibrium is different from the
other.

It should be noted that for system (5.10) with a couple of unknown parameters

similar theoretical results and implementation procedures can be readily obtained.

5.5.3. Approximate time-optimal adaptive neural controller

In the following, it will be shown that the procedures used for synthesis of neural
controllers for cases I and II, described in section 5.2., can be used for case III.
Gronwall-Bellman Inequality [95]: Suppose that ¢(¢), ¥(t) and pu(t) are real, continuous

functions with x(¢) > 0 for all ¢ > ¢y. Then the implicit inequality
80 <%0 + [w0, t2 1 (5.50)
0
implies the explicit inequality
B(t) < W(t) + /t t (o) (o)els MU 45 ¢ > ¢, (5.51)
0
In the following, it will be shown for case III that a bounded error involved in the

identification of the load only results in a bounded deviation from the desired trajectory.

Here,

5 = Wpw
(5.52)
w= ¢ — ¢1p — cow — c38in(de + 0) — ¢4 sin(de + 6)v
where ¢1g = f]vlf, and ¢, cg, cs3, ¢4, de, and wy are all constants.
A neural network is trained with available data to approximate the nonlinear load
such that the approximation error is uniformly bounded. That is, the load can be modeled

as b= NN (w), or equivalently ¢jp = NN(w) (mathematically, cio should be written as

cio(w); for brevity, the argument is dropped if no confusion arises). And the approximation

123
error can be expressed as e; = ¢jg—cjp with |e;| < €, where €, is a pre-specified positive
number.

Note that cip is a continuous function of w with a compact support since the max-
imum value and minimum value for w are usually physically determined for stability
concern. cjp can then be approximated by a piece-wise linear function cip such that the
approximation error e = cjp — cjp is uniformly bounded by a positive number ¢.,. That
is, |e2]| < €e,.

It then follows that |cio—ci9| = |cip—clo+clo—c10]| < |clo—clo|+|clo—c1o0| < €6, Fee,-

Therefore, ¢1p can be expressed as
clp =cip + € (5.53)

where || e(.) ||< €, and € is a positive number.

It follows that

§=w
- (5.54)
w = c1 — ¢l — e — cow — c38in(de + &) — cq sin(de + 0)v
Note that the optimal control can be obtained for
j = wyw
’ (5.55)

w = c; — €1p — cow — c38in(de +) — ¢4 8in{de + 0)v
through the method described before.
Define z = [0 w]"; a(z) = [wpw €1 — ¢lo — cow — c3sin(be + 6)]"; and B(z) =
[0 — c4sin(de + 4)]7.

Then the above two equations can be writen compactly as
z = a(z) + Ce + B(z)v (5.56)

where C' = [0 1]".
and

z = a(z) + B(z)v (5.57)

124
Since the optimal control exists for £ = a(z) + B(z)v, with the given initial condition

z(to) = zo, we have, by integration of the above two equations from g to ¢

t

z1(t) = z1(to) + t [a(z1(s)) + Ce + B(z1(s))v(s)]ds (5.58)
and
72(t) = 2a(t) + / (a(a(s)) + Blza(s))v(s)]ds (5.59)

By noting that z1(tp) = z2(t9) = zo, substraction of the above two equatioﬁs yields

210 = 22(6) = [{alar(s) - aaa(s)) + Ce + [Bles(s) - BleaDo(o)}ds (560
Note that, by Taylor’s theorem, a(z;(s)) — a(z2(s)) = ar(z1(s) — z2(s)) and B(z1(s)) —
B(aa(s)) = Br(z1(s) — za(s)), where

0 W

ar = ’ with ¢ lying between d; and d2;
—c3s8in(d + de) —co
and
0 0
Br = with § lying between §; and ds.

—cysin(6 +d,) O
Define Az (t) = z1(t) — z2(t). Then we have

Ax(t) = t Ceds + t[aT(a:(s))Aw(s) + Br(z(s))Az(s)v(s)]ds (5.61)

to to

If the appropriate norm of both sides of the above equation is taken and the triangle

inequality is applied to it, the following is obtained:

t t
Az (@)l S/t ICellds +1 | [ar(z(s))Az(s) + Br(z(s)) Az(s)v(s)]ds]| (5.62)

to

Note that e is uniformly bounded (ie., |e| <€), |v(t)] < 1, |lar|| = supgeq ar(z) < oo,
and ||Br|| = sup,cq Br(z) < oo.

It follows that
t
1Az(8)]] < 6(t—to)+/t |ller(z(s))Az(s) + Br(z(s))Az(s)v(s)]||ds

< et~ to) + (lall + ||Brl) / 1Az (s)]lds (5.63)

125
Application of Gronwall-Bellman Inequality yields

1Az < et —to) + / (Hall + 1Brlles — to)exp [(larll +11BI)do}ds

_ 2
E=DF cxpllar + 131N ~ o))

< Ke (5.64)

< €(t —to) +e(llar|| + [|Br|])

where K = (t—to)[1+ (|lar | + || Brl)) 52 exp{(laz| + | Brll) (¢ ~ o)}, and K < oo, for
all ¢ € [to, ty].

Roughly speaking, as long as the identified load, by means of an affine function for
each period of time, is close to the actual load, through the control corresponding to the
identified load, the resulting trajectory corresponding to the actual load is close to the
trajectory corresponding to the identified load. Therefore, the procedures developed for

synthesis of neural controllers for case I and II, suitably apply for case III.

5.6. Simulations

A SMIB system with a load P, described by Equation (5.9), is considered for sim-
ulations with the parameters and some related data given as
wp = 27 X 60; M = 3.5; P, =0.3665; D = 2.0; V;, = 1.0; Voo = 0.9; X3 = 2.0; X, = 0.35;
Se = 0.4; Smaz = 0.75; symin = 0.2;
A controller is to be synthesized to stabilize the postfault SMIB system in minimal time,
taking into account the unknown load.

Due to the uncertainty of the load, this can be achieved by application of a somewhat
“intelligent” time-optimal control to drive the system to a small neighborhood of the
equilibrium in near optimal time and thereafter a linearized feedback controller to take

over and maintain the equilibrium.

126
For brevity, Equation (5.10) is preferred to Equation (5.9). The linearized version

of the SMIB system (5.10) around the origin can be obtained as follows:

AS 0 wh AS 0
= + Av (5.65)

Aw —(c3 + cave) c0s e —(c2 + cop) Aw —c48in &,

With the substitution of the parameters, it follows that

Ab 0 376.9911 A6 0
= + Av (5.66)

Aw —0.0507 —0.5714 — c99 Aw —0.0047

For cy9 = 0, the eigenvalues are —0.2857 + j4.3625. This indicates that the equilib-
rium is lowly damped. It can be seen that even for czg # 0, this low-damping nature will
hardly change as long as ¢y is around the level of ¢z or less. In case of disturbances, this
equilibrium may experience the oscillation. Therefore, a linear state-feedback controller
is useful to enhance stability around the equilibrium of the SMIB power system.

Let the feedback gain vector be K = [k ko]”. Then Av = k1 Ad + k2Aw.

Note that due to the calculation error involved in computing the off-line time-optimal
trajectories and other practical reasons mentioned previously, the system is expected
to be driven to a small neighborhood of the equilibrium. This neighborhood can be
chararcterized by an elliptic region (%{;‘i)2 + (29)? = 1 where €5 and €, are two posi-
tive numbers, and €5 is much larger than ¢,. The feedback gain k; can not take very

large values for small-signal analysis. Further, the resulting feedback system matrix be-

0 376.9911
comes . In order for the oscillation to be

—0.0507 — 0.0047k; —0.5714 — 0.0047k-
suppressed, k; must take a large value with a negative sign. To make a trade-off, let k; be

0. However, k2 can take a relative larger value. But k2 can not take too large a value in or-
der to keep Av small enough so that the small signal analysis is validated. Let ko = 1000.
The eigenvalues of the resulting feedback system now become —2.6357 + j3.4881, which

ensures much stronger stability of the SMIB system.

127

In what follows, approximation of switching manifolds, synthesis of neural con-
trollers, and synthesis of a hierarchical neural controller are demonstrated.

Note that the load in system (5.9), denoted by P,(Py, C), is parameterized, and that
the each of the parameters thereof can be generally assumed to lie within some range. That
is, assume Py € [Py, Po,,,] and C € [Crmin, Cimaz)- Tessellate the region spanned by
Py and C into small sub-regions A; ;s whose vertices are (P§, C7),(Pt*!, C9),(P§, C7+))

and (Pj*!, C9*1), where i =1,2,---,N,—1,j=1,2,---,N,—1, B, = P} < P2 <

- < Pévp = Pope, a0d Crpyp = C < C%2 < --- < CNe = Py .. Note that once the
sub-region A; ; within which the load parameter vector may lie is roughly identified, only
the pre-designed lower level time-optimal neural controllers corresponding to the loads
P(F, %), P(PgtY, C9),P(P, Ct1) and B(Pi*', (U+1), respectively, can be
enabled to synthesize a controller, with the structure proposed in section 5.4., applicable
to this unknown load case. For simplicity, let C = 0 while Py may range from 0 to Py, .

By means of the efficient switching-time-variation-method, in the region of stability
interest, a number of optimal trajectories, corresponding to different initial conditions as
well as the load P, = 0, are generated and shown in Figure 5.3. Note that in Figure 5.3,
the equilibrium is the origin, and the rotor angle and the rotor speed are translated from
the equlibrium rotor angle and rotor speed, respectively. To make a distinction, the
rotor angle and the rotor speed thereof are called the rotor angle deviation and the rotor
speed deviation. Hereafter, this will be done for similar cases. Since for different sets
of parameters for a load, the corresponding equilibrium points are different, the specific
equilibrium will, therefore, be mentioned in case the confusion arises. The trajectories
shown in Figure 5.3 are computed in a continuous time setup. For the sake of neural
network training, the time continuous trajectories are sampled at a rate of 1 sample per
cycle. As pointed out previously, the inputs to a lower-level neural network include the
rotor angle and its previous value. The computed trajectories in terms of the rotor angle

and its previous value are shown in Figure 5.4. The lower-level neural networks are trained

128
and neural controllers are obtained in the configuration shown in Figure 5.1. The learned
pattern in terms of the rotor angle and its previous value by the neural network is shown
in Figure 5.5. Accordingly, the learned pattern in terms of the system state is shown
in Figure 5.6. Comparisons between Figure 5.4 and Figure 5.5, and between Figure 5.3
and Figure 5.6, indicate that the lower-level neural network in the proposed configuration
performs satisfactorily in terms of the given pattern. For an initial condition corresponding
to an off-line calculated optimal trajectory, the resulting trajectory by means of the trained
time-optimal neural controller is shown in Figure 5.7. It can be seen that the resulting
trajectory and the corresponding off-line optimal trajectory are almost indistinguishable.
(Note that a linearized controller further brings the system to the exact equilibrium; this
will not be mentioned hereafter unless the confusion arises). The system after experiencing
a severe short-circuit fault, from which the resulting initial condition is not trained, loses
its stability with the fixed compensation s, (or v.). By application of the trained neural
controller, the system can be stabilized in near optimal time. The resulting trajectory is
shown in Figure 5.8, which is very close to the computed optimal trajectory by means of
the STVM method.

Similarly, for a load P, = P, x 10%, the off-line calculated optimal trajectories in
the region of interest are shown in Figure 5.9. The corresponding trajectories in terms
of the rotor angle and its previous value are shown in Figure 5.10. The learned patterns
by a time-optimal neural controller, in terms of the state and in terms of the rotor an-
gle and its previous value, are shown in Figure 5.11 and Figure 5.12, respectively.For an
initial condition corresponding to an off-line calculated optimal trajectory, the resulting
trajectory by means of the trained time-optimal neural controller is shown in Figure 5.13.
It can be seen that the resulting trajectory and the corresponding off-line optimal trajec-
tory are nearly indistinguishable. With employment of the trained neural controller, the
system after experiencing a severe short-circuit fault can be brought to a pre-designated

small neighborhood of the equilibrium in near optimal time, and further brought to the

129
equilibrium by a linearized controller, discussed above. The resulting trajectory is shown
in Figure 5.14, which is also very close to the computed optimal trajectory by means of
the STVM method.

Similarly, other lower-level time-optimal neural controllers can be obtained corre-
sponding to the case on which the load P, = B, x 20%, P,, x 30%, - - -, etc.

Next the training of the upper-level neural networks is addressed. As discussed
before, the inputs include the current rotor angle d(k) and its previous values (6(k — 1)
and §(k — 2)), and the current control and its previous value (v(k) and v(k — 1)) coming
from the corresponding lower-level neural controller. Each of those neural network can
be described by o, = UNN,(6(k),d(k — 1),8(k — 2),v(k),v(k — 1)). With these upper-
level neural networks trained, the outputs of the upper-level neural networks are fed into
the multiplier processing unit. The sum of the lower-level controllers multiplied by the
resulting multipliers forms the current control to the power system.

The proposed hierarchical neural control, in the configuration shown in Figure 5.2,
is examined for a severe short-circuit fault for an unknown load (P, = P, x 5%) , for
which the related optimal trajectory are not used for neural network training. Following
the proposed identification and control procedures described in section 5.5., the resulting
trajectory is shown in Figure 5.15, and is also very close to the off-line calculated time-

optimal trajectory.

130

rotor speed deviation (p.u.)
2
T

o
T

L
-0.4 -02 0 0.2 0.4 0.6 0.8 1
rotor angle deviation {rad)

FIGURE 5.3: Time-optimal trajectories calculated by STVM for case P, =0

5.7. Generalization to more general systems

The results obtained for simplifed power systems with loads can be generalized to

more general nonlinear systems. Consider a parameterized nonlinear system described by
z = f(z,u;c) (5.67)

where z € R™ is the system state; u € R™ is the admissible control vector; and ¢ € R! is the
parameter vector confined within some sub-space. Assume for the region (2 of interest the
existance of a bang-bang type of control is assured. Through tessellation of the parameter
vector space, lower-level time-optimal controllers can be designed corresponding to the
vertices of each sub-region. The upper-level neural networks in the proposed hierarchical
neural control structure can also be trained in the way discussed previously. Then for an

unknown parameter vector, its identification based on the measurements of the state helps

131

08

o
>
T

o
Y
T

02F

current rotor angtle deviation (rad)

1 1 1 1
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
previous rotor angle deviation (rad)

FIGURE 5.4: Rotor angle deviation data for neural net training for case P, = 0

locate which sub-region it is likely within, and then the lower-level neural controllers are
enabled corresponding to the vertices of this sub-region. With the state and its previous
value feeding in, the upper-level neural networks and additional multiplier processing unit,
calculate and process the proper multipliers. The “intelligent” control signal is the sum

of the modulated control by the multipliers.

5.8. Conclusions

For efficient utilization of the existing high voltage transmission networks, FACTS
devices are installed in order to enhance power system stability. The proper manipulation
of the installed FACTS devices are crucial for maintaining power system stability while

improving the power transfer capability of transmission networks. The transients initiated

132

08

o [=g
) Y 123
T T

current rotor angle deviation (rad)

=3
T

-04 L L L i L L J
-04 -0.2 0 02 04 0.6 0.8 1

previous rotor angle deviation (rad)

FIGURE 5.5: Learned pattern of rotor angle deviation for case P, = 0

by large faults may interact with the loads, and further cause voltage instability problems.
The transient stabilization of power systems is addressed while the load effect is also
considered. The uncertainty of the load makes the faulted power system a nonlinear
uncertain dynamic system, which is a challenge calling for robust and intelligent control
design.

The explicit analytic optimal feedback control is generally not available, but it can be
obtained numerically. The numerically obtained optimal trajectories can help produce an
approximate near optimal control by training a neural network. The time-optimal control,
more specifically, the bang-bang control, is achieved by a neural network such that the
feedback control pattern is recognized. This is essential to approximate the switching
curve (or manifold). Related theoretical justification is presented. When the load taking

a parameterized form is unknown with its parameters fixed but needing identification,

133

rator speed deviation (p.u.)
o
T

o
T

-0.4 -0.2 1) 0.2 04 0.6 0.8 1
rotor angle deviation {rad)

FIGURE 5.6: Learned pattern about time-optimal trajectories for case P, = 0

a reasonable control is synthesized by means of a hierarchical neural network structure.
Here, the lower level neural networks are designed so that for a given parametrized load,
a corresponding lower level neural network will work well enough to approximate the
minimal time control, whose upper level neural networks assign corresponding values to
the “weights”, or membership values in the context of fuzzy control, to the associated
lower level control. Since the possible control values that the optimal control may take
are discrete, say -1 or +1, the current lower level controls can then be fed into the input of
the upper level neural networks. This is motivated by noting the fact that the the proper
“weights” have something to do with the corresponding lower level control. The “weights”
for controls are not simply operated to obtain a weighted sum — the resulting control.
Rather they are somehow operated so that the resulting control is also a bang-bang type,

which may avoid the otherwise longer duration for transient stabilization. The tessellation

134

rotor angle deviation (rad)

S
e

=3
-
"

o
)

=3

rotor speed deviation (p.u.)

control v
=]

time (s)

FIGURE 5.7: Training performance for case P; = 0; solid—the resulting trajectory from
the neural controller; dashed—the off-line calculated trajectory

scheme and rough identification of the parameters involved help identify the sub-interval
(or rectangle) that the parameters (or parameter vector) are within. The idea behind
these schemes should be readily generalized to more general systems.

The linear controller around an equilibrium is designed so that it is sufficient to drive
the system into a pre-designed neighborhood of the equilibrium by means of a time-optimal
control. This may accomodate some slight differences between the actual switching and
the optimal switching.

As a subsequent effort, more complex power systems will be studied along with
the dynamics of connected loads in order to further investigate the mechanism of voltage

collapse, which will be studied in chapter 6.

135

E 1 T T T T T T
= :
5 :
3 05 h
s
2
°
2 0
<
g
2 05 i 1 | I I 1
= 0 05 1 15 2 25 3 35
3, x10 fime (s)
3w . ! . T T T
c : :
2 . .
35 : 4
H :
2
L :
8o :
a :
o .
Q 1 1
S
o 25 3 35
1
5 05k
5 | :
£ Of : :
g "]
-05f =
(I :
] T | | ; - ; ; 4
0 0.5 1 1.5 2 25 3 35

FIGURE 5.8: Performance of the neural controller for untrained case for case P, = 0;
solid-—the resulting trajectory from the neural controller; dashed—the off-line calculated
trajectory; dotted-—the trajectory resulted from fixed compensatlon

136

-3

L X10

1Y T T T T T T

8t ta, N 1

++"+++++ + +
+
o + ++++++++++Jr - ++ |
4t R AT U ot +
+++++++++++ i ++ ++ + ++ +
+,.h T+ +

- 4+ + + 1
3 +,+ s+ +
& * + + +
s + t ++ +
i + t + 1
H vt +
3 + o+t +
o + * M +
2 + + * + 4
3 Da o+ T +
2 + + F ¥
s IR
2, o0 b 4
4+ . . i
_6— .'. . 7
8 L L . 1 L L

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

rotor angle deviation (rad)

FIGURE 5.9: Time-optimal trajectories calculated by STVM for case P, = 10%P,,

137

current rotor angle deviation (rad)

_04 a L 1 1 1 1 1
-0.4 -0.2 0 0.2 0.4 0.6 08 1
previous rotor angle deviation (rad)

FIGURE 5.10: Rotor angle deviation data for neural net training for case P, = 10%P,,

138

081

0.61

04

current rotor angle deviation (rad)

04 & 1 1 Il L 4]]
~0.4 0.2 0 0.2 0.4 0.6 08 1
previous rotor angle deviation (rad)

FIGURE 5.11: Learned pattern of rotor angle deviation for case P, = 10%P,,

139

x10°
10r
8 toy + +
PR . +, +
T Lttty +, . ++
I S U AR S +
+t 4 LR L
EPE At S IR S + +
+7 4t LR S ¢ + 1 +

+ +++++4 +, + +
Tt ep, T b P T L E T +
|t sttt TR o e e y
= B T T A e T f
s | + A h +
2, b +T 0+ +
50y i3 ¥R o+ "
] I + t +
5 |- + * +
3 of + + +
2 + t +
o . +
5 |- S
2oar”, . g
-4}
-6 t. . .
-8 L I 1 1) 1]
-0.4 -0.2 0 0.2 04 0.6 0.8 1

rotor angle deviation (rad)

FIGURE 5.12: Learned pattern about time-optimal trajectories for case P, = 10%P;,

140

rotor angle deviation (rad)

rotor speed deviation (p.u.)

control v

FIGURE 5.13: Training performance for case P; = 10%P,,; solid——the resulting trajectory
from the neural controller; dashed—the off-line calculated trajectory

141

rotor angle deviation (rad)

rotor speed deviation (p.u.)

control v

fime ()

FIGURE 5.14: Performance of the neural controller for untrained case for case P, =
10%P,,; solid—the resulting trajectory from the neural controller; dashed—the off-line
calculated trajectory

142

rotor angle (rad}

o
o = o B >

u.)

rotor speed (p.

control v

FIGURE 5.15: Performance of the hierarchical neural controller for SMIB with an un-

known load after experiencing a short-circuit fault; solid-—the resulting trajectory from
the neural controller; dashed-—the off-line calculated trajectory

143

6. NONLINEAR ADAPTIVE NEURAL CONTROL
WITH APPLICATION TO PREVENTION OF
VOLTAGE COLLAPSE

6.1. Introduction

Since the concept of a bilinear system [7] was proposed, bilinear systems have been
studied extensively. The developed bilinear system theory has found many practical ap-
plications. It has been shown by both theoretical study and real applications ([7] and
therein) that bilinear control or more generally multiplicative control can be more effec-
tive than linear control. One approach is to use some kind of adaptation law for adaptively
changing the multipliers so that the resulting multiplicative control performs properly.

It is well known that bilinear systems comprise one of the simplest classes of non-
linear systems, and have appealing structural properties. Bilinear systems may typify
adaptive or variable structure systems as well as general nonlinear systems.

Affine nonlinear systems, as a generalized version of bilinear systems, have also been
investigated extensively. For a parameterized affine nonlinear system, a proper conven-
tional controller may be designed with the help of the developed theory provided the
parameters of the system to be studied are known. If the parameters are unknown to the
controller designer or the parameters vary in some way, it is desired that the controller
should be properly designed such that the whole system performs at least still the same
in the presense of parameter disturbances. In this sense, the control may be termed as
an adaptive control. Indeed, the neural-net controls, here, may be viewed as nonlinearly
coupled bilinear systems.

An excellent survey paper [6] has overviewed the current status of adaptive control,

and proposed a unified and generalized framework to address the adaptive stabilization

144
problems of nonlinear systems. It is observed that most available adaptive theoretical
results are obtained without constraints on the control. The main reason is perhaps that
Imposing constraints on the control may lead to tremendous difficulties for mathematical
treatments. And it is also noted that in adaptive stabilization problems of nonlinear
systems the control corresponding to the true parameter, possessing some analytic form,
is usually assumed available in some way. In some simple cases, it might be true. For
more general cases, however, such a control is usually not available analytically. Instead,
numerical techniques may have to be employed. The available calculated controls and
temporal trajectories can be then used to train a neural network, which is well known
to be capable of approximating properly both static nonlinear functions and dynamics
of nonlinear systems. The concept of dynamic neural networks, accordingly the dynamic
backpropagation algorithm for training such a neural network, was proposed in [31] as a
natural extension of static neural networks in the context of dynamical system control.
The combination of a static neural network with some feedback forms a dynamic neural
network, which may involve online weights updating. Weights updating by means of the
so-called dynamic backpropagation algorithm, however, requires intensive computation
and a large amount of storage memory, which is not practical in the foreseeable future.
Instead, simple adaptation laws for weights updating are sought. Extensive studies have
been in progress in this respect. Still stability is an overwhelming issue. General results are
very few, and most often depend on some fundamental assumptions such as the matching
condition and the separation principle [6]. Some results have been obtained for affine
nonlinear systems linear in parameters. For general dynamic nonlinear systems containing
dynamic neural networks, general results are quite difficult to obtain. Rather, it is most
often assumed that the nonlinear systems to be dealt with take specific forms and/or
dynamic neural networks take specific forms. For example, with the assumption that
the dynamic neural network that models a very special nonlinear system is a one hidden

layer neural network without crosstalk feedback links among other assumptions, it is

145
demonstrated that the use of dynamic neural networks is efficient, as long as there are
no constraints imposed on the control, for adaptive regulation of unknown dynamical
nonlinear systems [96, 97]. Some other results are also available for dealing with the
control of linear systems, nonlinear systems which can be feedback linearizable, and so
on. Motivated by the fact that desirable control can be synthesized by training a neural
network off-line with available optimal controls and optimal trajectories, our approach
is then to synthesize a proper multiplicative control by off-line available nominal neural
network controllers with updating the according multipliers on-line. This will become
clear later. The systems to be studied are affine nonlinear systems which are linear in
parameters. It is demonstrated in section 6.2. that several commonly-used power system
models belong to the affine systems which are also affine in parameters. It is then natural
to extend to these systems the hierarchical intelligent control schemes developed in chapter
9. Further, the conventional adaptive control combined with the hierarchical intelligent
control schemes is studied in the following aspects: First of all, adaptive control is studied
for time-invariant unknown parameters; for time-varying unknown parameters, adaptive
controllers are synthesized; and the relevant system stability issues are studied. Finally,
the simulations are provided for a typical model exhibiting voltage collapse phenomena to

demonstrate the performance of adaptive hierarchical neural control.

6.2. Models and neural control of FACTS-equipped power
systems

A few examples of power systems equipped with FACTS devices are presented in
this section and their models are formulated/developed to illustrate the fact that many
real systems may belong to a parameterized system affine in both control and parameters,
for which the hierarchical neural-control scheme may be applied. Such a formulation also

leads to the investigation of adaptive stabilization of affine systems which are also affine

146
in parameters via neural control. The adaptive stabilization of affine systems via neural

control is presented in section 6.3..

6.2.1. Formulation of compound power systems

As is known, FACTS devices are popular for their rapid response, which should
be properly manipulated. Models of power systems with FACTS devices are useful for
control purpose. In what follows, a SMIB system with a load, developed in chapter 5,
is described here again as one of illustrative examples; then a typical system model for
voltage collapse study is presented to show that such a model is also an affine system;
and further a four-machine sytem is presented and its model is developed with some
reasonable assumptions, with which similar models can be formulated for general power

systems equipped with FACTS devices.

6.2.1.1. Single-machine infinite-bus system with a load

As studied in chapter 5, one of the models for a SMIB system with a load is given

by equation (5.10), and repeated in the following.

6 = wpw
’ (6.1)
w=c1 —c10 — (c20 + c2)w — c38in(de + &) — ¢4 8in(de + 6)v
Note that the parameters are cjgp and cy. It is evident that this system is affine in both

control v and parameters.

6.2.1.2. A typical system model for voltage collapse study

The voltage collapse mechanism is not well understood yet. A simple system model
in Figure 6.1, proposed in [98], was shown to display complex system behaviors typified

for voltage collapse circumstances. Inclusion of this model is for designing a proper control

147
which is capable of preventing the occurrence of potential voltage collapse. Such a study is
important in that it demonstrates how a specific potential voltage collapse problem could
be solved by means of proper control, whose design is not clear until later sections. This
study may also represent an important step towards a general approach to general voltage
collapse problems.

The system model is given by

bm = w
Mo = —dpw+ Py + EnYmVsin(é — 6 — 0p) + E2, Y, sin6,,
Kpbd = —KpoV2 =KoV +Q(6,V) - Qo — @

TK@WKpV = KpKpoV?+ (Kpw Ko — Ko Kp)V
+ K (P(5,V) — Py — P,)
—Kpu(Q(6,V) — Qo — Q1) (6.2)

where P(6,V) = —EyYyV sin(6+6p) — EnYinV sin(6 — 8 + 0 + (Y sin 6 + Yy, 5in 6,) V2
and Q(8,V) = E,Y, V cos(6 + 00) + EpnYmV cos(8 — 6 + Om) — (Y cos Oy + Yy, cos 0,,) V2,

. ' B ' —2 -1 ro_
with By = qonv="m0vTemigee Yo = Yo(1 + C?¥ " — 2CYy ™ cosfp)'/?, and 6 =

-1 .
0y + tan~1 (—Xo_Sinfo

1-CY; " cos 6o
Through some algebra, it can be readily shown that Y} sinf, = Yy sin6y, ¥, cosf =
Yocosy — C, and E,Y, = EyY;.
Therefore, P(4,V) and Q(4,V) can rewritten as P(§,V) = —EyYyV sin(é +) —
EnYnVsin(d — opm + 0p) + (Yo sinfg + Y, sin6,,) V2 and Q(6,V) = EpYyV cos(6 + 6g) +

EnYmV cos(d — 6 + 0) — (Yo cos g — C + Yy, cos 0,,) V2.

—_ _d EnY; Ppn+E2 Y sinb,, .
Define a1 = — %2, ap = =2/m and gp = = 7
_ _ Kgvat+Yo cos 8o+Ym cos Om _ _Kgp _ EgYs . EnYn | _ . Qo.
by = Koo 7b2"—quab3_K_qw)b4_ Kow abS“quabO— Koo’
¢ = Kpw Kqva+Kqw (Yo 5in o+ Yo, sin 0m)+ Kpw (Yo cos g+ Yo cos Oir) Coy = Kpuw Kgv—KquwKpy
1= TKewKpo ' 2 T TRKpe 0
_ KqwEoYp _ KeWwEpYnm KpwEoYo _ KpuEmYm _ Kpw

O3 = TTKuKpy 4T T TKuKp ' O = TTR Ky 6 = T TRpKp ' 7 = " TRywKpe?

148

— qu(P0+Pl)‘Kqu0 . —
cy = ~— TR, Kou ;and u = C.

Y20y 1) Vzé Y /(0:)

— 711

By 0<> CT |Load | Motor () B/ ém

and PQ load

FIGURE 6.1: A power system for voltage collapse study

Then the system model can be rewritten in a simpler form as follows:

6;n = w
w = aw+aVsin(d — oy — 0p) + ag
5 = vt [b2 + b3 cos(d + Bp) + by cos(6 — by, + 0m)]V + bsV2u — bsQ1 + bo
V = V2?4 ey + c3sin(d + 0p) + casin(— 6, + Opm)

+¢5 €088 + 0p) + g €08(6 — 6 + 0,2)]V + c7V2u — ¢1Qq + co (6.3)

Note that in the above equation, the control is C, which conceptually consists of
two parts, i.e., Cy, the nominal value, which is relevant to the regulation of the voltage
magnitude, and AC, the adjustable part, which is related to dynamic stability. In practice,
Cn is usually implemented by traditional switching capacitors, and AC is implemented by
a FACTS device, which can be operated rapidly for stability purposes. Note again that

the resulting system is affine in control and also affine in parameters.

149
Let C = C,, + AC. The above system can be rewritten as
bm = w
w = aw+aVsin(d - b, — 0,) + ag
§ = byV? 4 [ba + bycos(6 +) + by cos(8 — 6 +)]V + b5V 2u — b5Q1 + bo
V o= qV%+ [ca + c38in(d + 6p) + cq sin(d — 6y, + Or)

+c5c08(8 + Op) + cg cos(d — Iy, + 0)]V + Vi — e7Q1 + ¢ (6.4)

where b'1 =b + b5C,,, cll =c +c7Cp, and u = AC.

6.2.1.3. Multi-machine power systems

Consider a four-machine power system model shown in Figure 6.2, which is also
described in [11].

The network equation can be expressed as

- - ~ - - -

¥ 0 o 0 0 0 —yb; O Vi I
0 45 0 0 -k 0 0 0 V2 I
0 0 4 0 0 0 0 —yh||Vs I
0 0 0 yhe O —yhe 0 0 Vi _ Iy (6.5)
0 ~y35 0 0 yss —yhe —vbr —uis Vs 0
0 0 0 —% —uyls vee O —ytq Ve 0
~y}; 0 0 0 -y, 0 yrr 0 V 0
| 0 0 ~ygs 0 —uls —ubs O yse | [V8] | O

where yss = y35 + ybs + by + ys + uls; Yoo = s + vbs + vbs + vbes yrr = vhy + vby + b
yss = ybs + g5 + ubs + vhs-

Note that if the transient reactances from the generators are also considered, the
Nodes 1 to 4 have to be moved to between the generators and their corresponding tran-

sient reactances. The form of the network equation still holds except that y’l’7, yg5, ygs,

150

and y4, are formed as follow:

N Sy S NN NS W S
T hpzgr 725 7 Bitzgy? 938 T PBqagy Y46 T E s

where z{’7, zg5, zgs, and 226 are the branch impedances; z41,242,2¢3,and 244 are the corre-

sponding generator transient reactances.

1 _ 2
7 I
R T S
8 6
v |]
s A 4

O O

'FIGURE 6.2: Four-machine power system

151

The network equation can then be written as

(W, 0 0 0 0 0 g o0 Eg, I
0 y$5 0 0 —-ygs 0 0 0 Ego I
0 0 g% 0 0 0 0 -yt || Egs Is
0 0 0 .0 —yb. 0 0 Eg4 Iy
Y Yae g _ (6.6)
0 —ygs 0 0 Ys5 _?/ge —y§7 —ygs Vs 0
0 0 0 ~uls -vk wes O —ul Ve 0
-t 0 0 0 -y% 0 yrr 0 V7 0
| 0 0 ~y3; 0 —ybs -yl O yss | | V& | | 0 |
The admittance matrix can be partitioned as
Yii Yo
Y = (6.7)
Yor Yoo
Elimination of V7 and V3 yields the reduced admittance matrix as
Yr =Yi - YiaY5; Yo (6.8)
- .
5-17—} 0 0 O 1:';77757 0
0 0 0 0 0 0
0 0 %& 0 y38258 Y3syes
where Y12Y251Y21 — EE] UEE] KEE]
0 0 0 0 0 0
Y17Ys7 0 Yagyss 0 }{521_ & Ys58Ye8
yr7 yss yr7T ' ys8 yss
0 0 338368 0 Ys58Ye8 2@?&

- Yss Yyss Yysg

152
Substitution of Y7; and Y12Y2§1Y21 yields the following:

2 -

b _ Uiz _Yryst
Y17 = gy 0 0 0 Y77 0
b b
0 Yas 0 0 —Ya5 0
2
b _ Yz __Y38Yss __Y3sYyss
Yr= 0 0 Y38 ~ yas 0 Yss Yss (6.9)
b b
0 0 0 Yae 0 —Yi6
2 2
_ YNrysz _ab __Y38Ys8 Y57 __ Yss __,b _ Ys8Yes
yr7 Yas Y88 0 Y55 ™ 477 T ys8 Ys6 yss
2
__Y38Yes b _.b __ Yssyes _ Yes
L 0 0 yss Yae Yse Y88 Y66 — ygq

The reduced network equation can be written as

[Eg, 11 I -
Eg, L
yr | P82 B (6.10)
Eg, I
Vs 0
| V6] L O]

The reduced admittance matrix Yr can be partitioned as

Yr Yr
Vo= 11 12 (6.11)
YT‘21 Y'I‘QQ

Let Ve = [V5 Vg|” and Eg = [Eg; Eg> Egs Egy]”. Then

YrinE;+YrigVe=1
T11L4 12 g (6.12)
Y7‘21Eg +YreVe=0

Note that the complete information about the TCSC is contained in Yr9,. And
1 -1
Yry2 can be rewritten as Yryy = YTSQ + ju
-1 1

Here u is the additional compensation around the fixed compensation, and Y19, is the

admittance matrix related to the TCSC structure with fixed compensation.

153

~1
Let Ya =

-1 1
Then elimination of V¢ yields the following:

{Yr; — leg[Yr32 + qua]_ergl}Eg = Ig (6.13)
However, [Yr3, + juYa]™! can be rewritten as
[Yrd + juYa) ™ = Yrd, " — juYrd, 'YaYrd, "+ O(u?) (6.14)

where O(u?) represents the second-order and higher-order terms of u.
If the system dynamics introduced by the nonlinear term O(u?) can be compensated for
in some manner, the following analysis is simplified.

In such a case, it follows that
{Yry; — lez{Yrgz_l - qu’I‘SQ_lYaYT(2)2—1}YT‘21}Eg = Ig (6.15)

Define Yrr = Yr;; — Yr12Yr(2)2_1Yr21 and Yra = erlergZ_lYaYrgz_ergl.
Then

(Yrr +uYra)Eg = Ig (6.16)

where Yrr represents the reduced admittance matrix with fixed compensation.
The electrical power drawn from each generator can be expressed as
Pe; = Re{Eglg’} = Re{Z(Yrri’j +uYra™)*Eg} Eg;}
J
= > |Bgi||Eg;||Yrr*| cos(8i; — 6i;) + | Eg;|| Eg;||Y ra™ |u cos(d;; — fas;)
J

(6.17)

where ¢ ranges from 1 to the number of the generators. Note that the absolute value

symbol will be dropped for brevity unless the confusion arises.

154
Given the mechanical power Pm; for each generator, we have the following swing

equation:

b = wy(w; — 1
i b(i) (6.18)
Mid)i = Pmi - Pei - Di(wi - 1)

That is,

0; = wb(- 1)
Miw; = Pm; — Di(w; — 1) = 3, Eg:Eg;Yrr7 cos(di; — 03;) + EgiEg;Y raiu cos(6;; — fai;)
(6.19)

Translation of the equilibrium of the above system to the origin yields the following:

b = wpw;
’ ’ (6.20)
=pi—a; Z T4 COS((S” + 562] ij) + a;ju COS((S,’J' + 5eij - Haij)
where p; = %’7"1,—1, d; = M y Tij = @’—%ﬂi a;j = E—E—gﬁy—w—— and 0¢;; = d¢; — Oej-
The above equation can be rewritten in matrix form as
T = Az + B(F(z) + G(z)u) (6.21)

0 Tyxy O4x4
wher z = [(51 52 53 (54 W1 Wy W3 w4]T; A= A . 3 B = 8 5

O4xa Oaxs I4x4

—dywy — Z] 1715 cos(61j + 5e1j - 91]’)

— dowy — 1725 C08(02; + degj — 02
Flay= | 727 T D eosllay 4 8 = 0) |

_ d3w3 — Z 1735 COS(53j + 633]' - 03])

| P14 —dywy — Z] 1 745 08(845 + 5643' — 045) |
- Zj 1615 €08(015 + de1; — Bay

G(z) =

)
- E] 1 @25 CO8(02;5 + degj — Bas;)
)
) |

(
- 24 1 @35 COS((53J' + 5e3j -— 00,3]
(

4
- EJ 1 @4 €08(d45 + beqj — Oay;

Note that Equation (6.21) is affine in control u.

155
It should be noted that similar results can be obtained for general multi-machine

systems equipped with FACTS devices.

6.2.1.4. Generalization: affine nonlinear systems

The previously presented systems belong to a class of affine nonlinear systems in

general. A parameterized affine-in-control nonlinear system may be described as follows.

& = f(z,p) +g(z,p)u (6.22)

where z € R™ is the state; p € R! is the parameter vector; and u € R™ is the control
vector.
Notice that those example systems also belong to a class of affine-in-parameter

nonlinear system, which may be described by

T = ¢(z,u) +¥(z,u)p (6.23)

As an intersection of the class of systems (6.22) and the class of systems (6.23), a

special class of parameterized nonlinear systems is given by

& = ¢(z,u) + $(o)p (6.24)

where ¢(z,u) is affine in u.

The hierarchical neural control of systems (6.22) is discussed in section 6.2.2..
Through use of on-line hierarchical neural control (by which we mean relevant weights
are updated in real time), the stabilization and adaptive control of systems (6.24) are

presented in section 6.3..

6.2.2. Neural control of affine systems

Since systems (6.22) are affine in control, the so-called STVM—the computational

algorithm developed in [8, 13], may be employed to calculate efficiently the time-optimal

156
trajectories and optimal controls. The techniques in addition to the hierarchical neural
control structure developed in chapter 5, may be used to design an adaptive nezir time-
optimal neural controller.

Of course, neural-network-based quadratic performance index optimal control may
also be synthesized with the same techniques for near time-optimal control except for
some minor modifications, which are clarified later.

First of all, quadratic-performance-index-based optimal trajectories and controls are
derived in the following. The goal is to bring the state z very close to the equilibrium
within a specified period of time [y, 7]. Often the starting point #; is assumed to be 0
without loss of generality.

The quadratic performance index can be then expressed as

T
(t0) = 3(eT) =r (D) ST D) ~r(T) + 5 [(07 Qe+ (w—ue) Rlu—w))dt (625)

to
where S(T) > 0, @ > 0, R > 0. The desired final state (T is specified as the equilibrium
Te. Ue is the equilibrium control.

The Hamiltonian function can be defined as
1
H(z,u,1) = 5(7Qz + (u — ue)” R(u ~ ue)) + X(f + gu) (6.26)

The state equation is given by

OH
p= 20 = 6.27
&=y =Ff+gu (6.27)

The costate equation can be given by

s _O0H _9(f+gu)”

— by 6.28
A oz 0x + Qe (6.28)
The stationarity equation gives
OH Af +gu)”
- = — RACANIE il 6.29
0 M R(u —ue) + EW A (6.29)

157

Since 2/(zp LolTp) = g(z,p), which is independent of u, the optimal control u can

be solved out as

u=—R7lg(z,p)"A +u
Substitution of u into the state equation yields
& = f(z,p) + g(z,p) (=R g(z,p)" A + uc)

Substitution of u into the costate equation yields

i = Af(@p) +g(@,p)(—R71g(x,p)"A + ue]”
Ox

By choosing R = I, the control u can then be written as
u=—g(z,p)" X+ e

Further, the boundary condition can be given by

A+ Qx

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

Notice that for the Hamiltonian system which is composed of the state and costate

equations, the initial condition for the state equation is given while for the costate equation

there are constraints for the final costate value.

It is observed that the Hamiltonian system is a set of nonlinear ordinary differential

equations in z(t) and A(f) which develop forward and backward in time, respectively.

Generally, it is not possible to obtain the analytic closed-form solution to such a two-point

boundary-value problem (TPBVP). Numerical methods have to be employed to solve for

the Hamiltonian system. One simple method, called shooting method [99] may be used.

There are other methods like the ”shooting to a fixed point” method, and relaxation

method, etc.

The idea for the shooting method is as follows:

1. first make a guess for the initial values for the costate.

158

2. integrate the Hamiltonian system forward.
3. evaluate the mismatch on the final constaints.

4. find the sensitivity Jacobian for the final state and costate with respect to the

initial costate value.

5. Using Newton-Raphson method to determine the change on the initial costate

value.

6. repeat the loop steps 2 through 5 until the mismatch is close enough to zero if

convergence indeed is assured.

For hierarchical neural control, the lower-level nominal neural controllers may be
trained by using the computed optimal trajectories, and the upper-level multipliers may
also be trained as for the neural-network-based time-optimal control case except that
the multiplier processing unit in Figure 5.2 only performs the normalization of these

multipliers.

6.3. Adaptive neural control design

The previous section presents development of models of FACTS-equipped power
systems and control of affine-in-control nonlinear systems via hierarchical neural control.
The parameters (i.e., weights and biases) relevant to neural networks therein are kept
unchanged once the training is completed. In this section, we take a different approach
to the same problem—adaptive stabilization of nonlinear systems. This approach is a
combination of the conventional adaptive control design strategy [6] and the neural control
design strategy developed in chapter 5. It is different from the neural control design
strategy developed in chapter 5 since it allows for the on-line updating of weights and
biases of applied neural networks as well as updating of estimates of the true parameters

in the systems. For convenience of the subsequent derivations involved in the proposed

159
control design, some basic assumptions and useful lemmas are presented; then adaptive
control of affine systems with unknown fixed parameters is discussed; further adaptive
control of affine systems with time-varying pafameters is discussed. It should be noted
that some assumptions in the following (e.g., SBO and SCO) are made as usual in the
literature (e.g., [6] and therein). However, there have been researches on stabilizability of
affine nonlinear systems as well as power systems by employment of different assumptions

(e.g., [100] and therein).

6.3.1. Definitions, assumptions and lemmas

Definition [5]: For any fixed s € [1,00), f : Ry — R is said to belong to L*® iff
f is locally integrable and [|f|l; = (f;° |£(t)|°dt)'/* < co. When s = oo, f € L® iff
1flloo = sup;<q | £ (2)] < o0.

Several basic assumptions [6] relevant to the adaptive stabilization problem of non-
linear systems are stated in the following, and will be assumed to hold throughout this
chapter by default unless otherwise claimed.

Assumption of State Boundedness Observability (SBO): Let 7 be an open subset of
R! and Q be an open neighborhood of z, € R". There exists a function: h : @ — Ry of
class C2, such that there exist an open neighborhood Q of z. in Q and a strictly positive
constant c such that for all real numbers «, 0 < a < ay, all compact subsets K of 7 and all
vectors zg € {)y, we can find a compact subset I of {2 such that, for any C! time functions
p: Ry — mand u: Ry — R™ and any solution z(t) of ©(t) = ¢(z,u) + ¥(z,u)p*,
z(0) = zg € g defined on [0, T), we have the following implications:

h(z) < o and p(t) € K Vt € [0, T) imply z(t) € T Vt € [0, T).

The SBO assumption guarantees the boundedness of the state if an observation

function is bounded.

160

Assumption of State Convergence Observability (SCO): For any bounded C! time
function p: Ry — 7 and u : R, — R™ with ﬁ also bounded and for any solution z(t)
of (t) = ¢(z,u) + ¢(z,u)p* defined on [0, oc), we have the following implication:

if limy o A(z) =0, and for V¢ € [0, 00), z(¢) € Q is bounded, then lim;_, o z(t) =
Ze, where z, is a desired equilibrium.

The SCO assumption guarantees the convergence of the state to a desired point if
an observation function converges to zero in addition to the boundedness of the state.

To show that an observation function is bounded by zero, and the convergence of
the state, in the context of adaptive stabilization of affine nonlinear systems, the following

lemmas are considered for convenience.

Lemma 1 (Barbalat’s Lemma) [5]: If f € L2NL*, and f is bounded, then lim;_, o f(t) =
0.

Lemma 2 [6]: Let X be a C' time function defined on [0, T) (0 < T < o), satisfying
X <—cX + 3 9:(0)X([) +) w;(t) (6.35)
i J

where ¢ 1s a strictly positive constant, ., and >, are finite sums and 9;, and w; are
positive time functions satisfying: fOT 97" < Sy; and fOT w§j < Sy, where 0; > 1 and
¢ = 1. Then X(t) is bounded from above on [0, T), and X (t) < K1 X(0)+K, YVt € [0, T),

with K1 and K» depending only on o, (j, S1; and Saj. Moreover, if T is infinite, then

lim sup X (¢) <0 (6.36)
t—o0

6.3.2. Adaptive neural control for stabilization of n