
AN ABSTRACT OF THE THESIS OF

Dingguo Chen for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on September 30, 1998. Title:

Nonlinear Neural Control with Power Systems Applications

Abstract approved-

Ronald R. Mohler

Extensive studies have been undertaken on the transient stability of large intercon-

nected power systems with flexible ac transmission systems (FACTS) devices installed.

Varieties of control methodologies have been proposed to stabilize the postfault system

which would otherwise eventually lose stability without a proper control. Generally speak-

ing, regular transient stability is well understood, but the mechanism of load-driven voltage

instability or voltage collapse has not been well understood. The interaction of generator

dynamics and load dynamics makes synthesis of stabilizing controllers even more chal-

lenging.

There is currently increasing interest in the research of neural networks as identifiers

and controllers for dealing with dynamic time-varying nonlinear systems. This study

focuses on the development of novel artificial neural network architectures for identification

and control with application to dynamic electric power systems so that the stability of the

interconnected power systems, following large disturbances, and/or with the inclusion of

uncertain loads, can be largely enhanced, and stable operations are guaranteed.

Redacted for privacy

The latitudinal neural network architecture is proposed for the purpose of system

identification. It may be used for identification of nonlinear static/dynamic loads, which

can be further used for static/dynamic voltage stability analysis. The properties associated

with this architecture are investigated.

A neural network methodology is proposed for dealing with load modeling and

voltage stability analysis. Based on the neural network models of loads, voltage stability

analysis evolves, and modal analysis is performed. Simulation results are also provided.

The transient stability problem is studied with consideration of load effects. The

hierarchical neural control scheme is developed. Trajectory-following policy is used so that

the hierarchical neural controller performs as almost well for non-nominal cases as they do

for the nominal cases. The adaptive hierarchical neural control scheme is also proposed

to deal with the time-varying nature of loads. Further, adaptive neural control, which is

based on the on-line updating of the weights and biases of the neural networks, is studied.

Simulations provided on the faulted power systems with unknown loads suggest that the

proposed adaptive hierarchical neural control schemes should be useful for practical power

applications.

Nonlinear Neural Control with Power Systems Applications

by

Dingguo Chen

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of
Doctor of Philosophy

Completed September 30, 1998
Commencement June 1999

Doctor of Philosophy thesis of Dingguo Chen presented on September 30, 1998

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of the Department of Electrical and Computer Engineering

Dean of the G ate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Dingguo Chen, Author

Redacted for privacy

Redacted for privacy

Redacted for privacy

Redacted for privacy

ACKNOWLEDEGMENT

The author would like to express his great gratitudes to his advisor, Prof. Ronald R.

Mohler of Oregon State University, for his many helpful suggestions, much encouragement

and guidance throughtout the course of this work.

Sincere thanks are also due to the other members of the author's committee, Prof.

Wojtek Kolodziej, Prof. Rene Spee, Prof. Larry Chen, Dr. Yu Wang, Prof. Satish Reddy,

Prof. Alexander Khapalov, and Prof. Dwight J. Bushnell.

The author is grateful primarily to the National Science Foundation for its support

(Grant No. ECS9301168 and ECS9530917) as well as supplemental support from Bon-

neville Power Administration and Electric Power Research Institution. The support by

Prof. David J. Hill of The University of Sydney, Australia is highly appreciated during

the author's visit for collaborative research.

The author would also like to give his thanks to those who have helped in different

ways at various times with both technical and non-technical issues.

Finally, the author would like to express his deep appreciation to his wife, Xiaohui

Yang, for her patience, understanding, support and encouragement throughout the course

of his doctoral work.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1. Introduction 1

1.2. Identification and control issue of dynamic power systems 4

1.3. Neural networks as identifiers and controllers 7

1.4. The goals of this thesis 8

2. MULTI-LAYER NEURAL NETWORK 10

2.1. Introduction 10

2.1.1. Object 10

2.1.2. Background 10

2.2. Feedforward neural network 11

2.2.1. Structure of feedforward neural networks 12

2.2.1.1. A neuron: Information processing cell 12

2.2.1.2. Sigmoidal functions 13

2.2.1.3. Notations 14

2.2.2. Feedforward neural network composition 14

2.2.3. Approximation capability 15

2.2.4. Backpropagation algorithms 16

2.3. Recurrent neural network and dynamic backpropagation 23

2.4. Locally recurrent multilayer neural network 25

2.5. Software implementation 26

3. LATITUDINAL AND LONGITUDINAL NEURAL NETWORK STRUCTURES
FOR FUNCTION APPROXIMATION 28

3.1. Introduction 28

3.2. Latitudinal neural network architecture 29

3.2.1. Longitudinal neural network structure 33

3.2.2. Sigmoidal function 33

3.2.3. Nonlinear fitting 34

3.2.4. Neural network array 38

3.2.5. Continuous function approximation with desired pricision 40

3.2.6. Relations between latitudinal and longitudinal neural networks 41

3.2.7. Comments 43

TABLE OF CONTENTS (Continued)

Page

3.3. Properties of latitudinal neural networks 44

3.3.1. Sigmoidal functions and their combinations 45

3.3.2. Study on the properties of latitudinal neural networks 51

3.3.3. General results on multi-dimension cases 57

3.3.4. Comments 62

3.4. Conclusions 63

4. LOAD MODELING AND VOLTAGE STABILITY ANALYSIS 64

4.1. Introduction 64

4.2. Typical voltage stability analysis 67

4.2.1. Static voltage stability analysis 67

4.2.2. Quasi-steady state voltage stability analysis 71

4.2.3. Dynamic voltage stability analysis 72

4.2.4. Comments 73

4.3. Load modeling 74

4.3.1. Static load statistics 74

4.3.2. Load dynamics modeling 77

4.4. Voltage stability analysis 85

4.4.1. Static voltage stability analysis 86

4.4.2. Dynamic voltage stability analysis 91

4.5. Conclusions and outlooks 92

5. SYNTHESIS OF ADAPTIVE HIERARCHICAL CONTROLLERS APPLIED
TO DYNAMIC POWER SYSTEMS 94

5.1. Introduction 94

5.2. Time-optimal control for SMIB with a load 98

5.2.1. SMIB with a load 101

5.2.2. Minimal time control 103

5.3. Switching-time-variation method (STVM) 105

5.4. Synthesis of a neural controller as a power system stabilizer 107

5.4.1. Time-optimal neural control 108

5.4.2. Near time-optimal hierarchical neural control 111

5.4.3. Adaptive near time-optimal hierarchical neural control 113

TABLE OF CONTENTS (Continued)

Page

5.5. Theoretical justification 115

5.5.1. Switching manifold approximation 115

5.5.2. Support for construction of hierarchical neural controllers 119

5.5.3. Approximate time-optimal adaptive neural controller 122

5.6. Simulations 125

5.7. Generalization to more general systems 130

5.8. Conclusions 131

6. NONLINEAR ADAPTIVE NEURAL CONTROL WITH APPLICATION TO
PREVENTION OF VOLTAGE COLLAPSE 143

6.1. Introduction 143

6.2. Models and neural control of FACTS-equipped power systems 145

6.2.1. Formulation of compound power systems 146

6.2.1.1. Single-machine infinite-bus system with a load 146

6.2.1.2. A typical system model for voltage collapse study 146

6.2.1.3. Multi-machine power systems 149

6.2.1.4. Generalization: affine nonlinear systems 155

6.2.2. Neural control of affine systems 155

6.3. Adaptive neural control design 158

6.3.1. Definitions, assumptions and lemmas 159

6.3.2. Adaptive neural control for stabilization of nonlinear systems 160

6.4. Simulations 176

6.4.1. Lyapunov-analysis-based control design 176

6.4.2. Optimal control design 179

6.4.3. Equilibrium stabilization 185

6.4.4. Simulation results 186

6.5. Conclusions 193

7. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 199

7.1. Summary 199

7.2. Conclusions and future research 202

REFERENCES 203

TABLE OF CONTENTS (Continued)

Page

APPENDICES 211

A C Programs 212

B About the singular solution 272

C About parameters updating 274

LIST OF FIGURES

Figure Page

2.1 Block diagram for a recurrent neural network 23

3.1 Latitudinal neural network architecture 30

3.2 Piecewise quadratic fitting 35

3.3 Piecewise linear approximation via a specific neural network. H with
Heaviside activation function; S with Soft squashing activation function 36

3.4 Piecewise quadratic approximation via a neural network. S with Soft
squashing activation function; Q with Quadratic squashing activation
function 39

3.5 Nonlinear approximation via a neural network 40

3.6 Neural network array 41

4.1 IEEE 14-bus system 77

4.2 Real/reactive power vs voltage magnitude 80

4.3 Neural network model for load at bus 14 81

4.4 Recurrent neural network 82

4.5 Output-feedback neural network 83

4.6 Original data for voltage, active/reactive power (sampling interval: 9
seconds) 84

4.7 Normalized data for voltage, active/reactive power (sampling interval: 9
seconds) 86

4.8 Target and output of the recurrent NN with 1 hidden layer (sampling
interval: 9 seconds) 87

4.9 Target and output of the recurrent NN (sampling interval: 9 seconds) 88

5.1 Neural-net-based time-optimal state feedback control 110

5.2 Hierarchical time-optimal neural control 112

5.3 Time-optimal trajectories calculated by STVM for case Pi = 0 130

LIST OF FIGURES (Continued)

Figure Page

5.4 Rotor angle deviation data for neural net training for case Pi = 0 131

5.5 Learned pattern of rotor angle deviation for case P1 = 0 132

5.6 Learned pattern about time-optimal trajectories for case P1 = 0 133

5.7 Training performance for case P1 = 0; solidthe resulting trajectory
from the neural controller; dashedthe off -line calculated trajectory 134

5.8 Performance of the neural controller for untrained case for case P1 = 0;
solidthe resulting trajectory from the neural controller; dashedthe
off-line calculated trajectory; dottedthe trajectory resulted from fixed
compensation 135

5.9 Time-optimal trajectories calculated by STVM for case P1 = 10%P,, 136

5.10 Rotor angle deviation data for neural net training for case P1 = 10%/3,.. 137

5.11 Learned pattern of rotor angle deviation for case Pi = 10%P, 138

5.12 Learned pattern about time-optimal trajectories for case P1 = 10%Pin 139

5.13 Training performance for case P1 = 10%Pm; solidthe resulting trajec-
tory from the neural controller; dashedthe off -line calculated trajectory 140

5.14 Performance of the neural controller for untrained case for case P1 =
10%Pin; solidthe resulting trajectory from the neural controller; dashed
the off -line calculated trajectory 141

5.15 Performance of the hierarchical neural controller for SMIB with an un-
known load after experiencing a short-circuit fault; solidthe resulting
trajectory from the neural controller; dashedthe off -line calculated tra-
jectory 142

6.1 A power system for voltage collapse study 148

6.2 Four-machine power system 150

6.3 QV curve 188

6.4 Reactive power demand Q1 varying with time 189

6.5 Quasi-steady-state and transient stabilization via neural control 190

LIST OF FIGURES (Continued)

Figure Page

6.6 Neural-net-based feedback generated control 191

6.7 Performance of the hierarchical neural controller for generator dynamics;
Qi = 11.10 ;the equilibrium is translated to the origin. 192

6.8 Performance of the hierarchical neural controller for generator dynamics;
Qi = 11.20 ;the equilibrium is translated to the origin. 193

6.9 Performance of the hierarchical neural controller for load side voltage
dynamics; Qi = 11.10 ;the equilibrium is translated to the origin 194

6.10 Performance of the hierarchical neural controller for load side voltage
dynamics; Qi = 11.20 ;the equilibrium is translated to the origin 195

6.11 Performance of the hierarchical neural controller for the whole system;
Qi = 11.20 (with control design for partial system dynamics cancella-
tion); the equilibrium is translated to the origin. 197

6.12 Performance of the hierarchical neural controller for the whole system;
Qi = 11.20 ;the equilibrium is translated to the origin. 198

NOMENCLATURE

Symbol Description

C Capacitor

D damping factor

E voltage source

H Hamiltonian function

I branch current

M system inertia

P real (or active) power

Q reactive power

s series TCSC compensation degree

t time

u control variable

bus voltage

v control variable

X reactance

state

Y admittance

NOMENCLATURE (Continued)

Subscripts

Symbol Description

a Additional value

b power system base for conversion to per unit system

d load demand

e equilibrium

f final value

g generator

i vector index

171 machine

n nominal value

t terminal

0 initial value

NOMENCLATURE (Continued)

Greek Symbols

Symbol Description

a multiplier coefficient

6 rotor speed

A incremental value

oo infinite bus

A cost at e

w rotor speed

W final-state constraint

T switching time

NONLINEAR NEURAL CONTROL WITH POWER SYSTEMS

APPLICATIONS

1. INTRODUCTION

1.1. Introduction

The derivation of a mathematical model from physical laws according to the use of

the model, such as for control, is most basic here to determine mathematical structure. For

example, it is shown in [1] that a close connection exists between dynamic identification

of an environment and its control. System identification itself is a well developed area

of system theory. The need of mathematical representations in many aspects of the real

world dictates the importance of system identification. In a way, it may be said that

identification is a link between the mathematical-model world and the real world. For

characterization of the cause and effect links of an observed plant, it is often assumed that

the plant can be described by a model whose structure is known, or in other words, the

plant is associated with a given form of parameterization, but the values of the parameters

are assumed to be unknown. The parameters of the model are tuned in such a way that the

behavior of the model approximates that of the plant. Differential equations, difference

equations, and state-space representations are some examples of most widely used models.

An excellent treatment of system identification in theory and applications may be found

in [2, 3]. Note that identification may be categorized into off -line identification and on-line

identification. The former one refers to a separate procedure by which a model (usually

of given structure) is constructed based on a batch of data collected from the real system.

The latter one refers to a procedure by which a model (again usually of given structure)

2

is constructed and updated based on the most recent available data collected from the

system in operation. Off -line identification may be sufficient for time-invariant systems.

The need for on-line identification is seen in cases where the properties of the observed

object are time-varying. For control purposes, two different approaches exist. One is

the so-called indirect control by which the control action is adjusted based on the on-line

identification of the plant. The other is the so-called direct control by which the control

action is adjusted to improve a performance index involving implicit identification. Note

that for both approaches, efforts have to be made for identification of the behavior of

the plant even when control action is being taken based on the most recent available

information about the plant. In a way, it may be said that control and identification are

inter-dependent, which was referred to as dual control [4].

No matter what kinds of identification and adaptive control schemes are used, the

basic requirement is to keep the overall system stable. Stability is always an important

issue for design of adaptive control. Stability analysis of adaptive systems is still quite dif-

ficult. In general, the analytic solution of dynamic nonlinear systems is usually impossible

so that indeed, general results on adaptive control of nonlinear systems are very few. It

is true though that adaptive control can be designed for some general dynamic nonlinear

systems, for example, feedback linearizable nonlinear systems at least in theory. On the

other hand, adaptive control of linear systems was even an extensive research subject, and

numerous results are available. An attempt to present a unified framework of the currently

well known results for stable adaptive linear systems is made in [5]. Adaptive stabilization

of nonlinear systems is overviewed in [6] where the nominal control explicitly expressed

in terms of parameters is assumed. It is noted that either available results for dynamic

linear systems are not adequate for real nonlinear systems or general results for dynamic

nonlinear systems which are very useful are scarce. A simple class of nonlinear systems,

bilinear systems which are linear in state and control but are jointly nonlinear, possess

convenient structure properties, and hence make mathematical treatments possible. It is

3

illustrated in [7, 8, 9] that many real nonlinear systems cound be treated approximately as

bilinear systems, and the control design procedures and stability analysis theories devel-

oped have played crucial roles in designing proper controls for these systems. It is shown

in [7] that controllable linear systems may not be controllable with physical constraints on

control while the controllability of bilinear systems of the same order could be achieved.

Roughly speaking, bilinear systems are more controllable than linear systems. In many

practical problems, theory of bilinear systems has found its succeful applications [9]. Re-

cently, interest in application of bilinear system theory to power sytems was observed.

It is shown in [10] that the transmission network of power systems when controlled by a

variable series capacitor, (a simplified model for the thyristor-controlled series capacitor

(TCSC), one kind of the popularly used flexible ac transmission systems (FACTS) de-

vices), can be modeled as a bilinear system. Further, it has been demonstrated [11] that

bilinear system models offer better approximation to the nonlinear dynamics than their

linear counterparts, and moreover, that postfault power sytems which may not be stabi-

lized via linear control could be stabilized via bilinear adaptive control. In general, it is

the common consensus now that bilinear control (or more generally multiplicative control)

offers a lareger horizon of stable operation of the power systems than linear control does,

but of course, when the systems approach a small neighborhood of the equilibrium, linear

control, which can provide better damping and local asymptotic stabilization, should take

over. The idea behind bilinear control is further developed and applied to stabilization of

power sytems in [12] where the total control is a weigthed sum of a number of pre-designed

nominal controls. Each nominal control can conduct the system state to the system equi-

librium in some "optimal" sense for a corresponding specific case. In practice, analytic

forms of nominal optimal controls may not be available. Instead, through use of compu-

tational techniques [7, 13], optimal controls and optimal trajectories can be calculated,

which in turn are used to train a neural controller. The weights (or called multipliers)

are also obtained with another neural network yet trained with available measurements.

4

This leads to adaptive neural control structure, which may be applied to stabilize faulted

power systems.

Aiming at the same problem, stabilization of power systems, yet with consideration

of load modeling, identification and control issues, relevant to nonlinearly coupled bilinear

systems, are studied in this thesis. Some aspects of identification and control in dynamic

power systems are studied in this thesis. Brief description of these aspects and useful tools

for dealing with identification and control are presented next.

1.2. Identification and control issue of dynamic power sys-
tems

Due to increasing electric power demand, different groups of machines are intercon-

nected through tie-lines, and varieties of loads with various kinds of characteristics as well

as a lot of protective equiment are connected to large electric transmission systems at dif-

ferent locations, resulting in extremely complex nonlinear dynamics. Therefore, planning,

operation and control design of such systems become increasingly important.

Under ideal operational conditions, all the generators should keep synchronism.

In other words, the loads should be fed at constant a.c. voltage, and fixed frequency

all the time. Therefore, the variations of both voltage and frequency should be kept

so small that the related equipment can normally operate at design performance. This is

usually associated with the dynamic stability (or steady-state stability), which is concerned

with the stability of synchronous machines under the condition of small-disturbances.

Normally, synchronous machines can keep in step in some degree with the synchronizing

force. Situations, however, do arise in which the synchronizing force for some machines

may not be adequate such that they fall out of step, and small disturbances may cause

them to lose synchronism. Fortunately, this could be handled by traditioal Power system

5

stabilizers (PSS), etc. with linear control design to enhance the damping of power systems.

The linear control design thereof is on the basis of the linearized system model around the

desired equilibrium.

While the machines may return to their original state under samll perturbations

with no net power change involved, the large faults occuring in power systems may create

an unbalance between the supply and demand, and thus cause the power systems to

experience oscillatory transient dynamics. The oscillations are reflected as fluctuations in

the power flow over the transmission lines.

The system equations for a transient stability study are usually nonlinear. The

dynamics of a simple machine is characterized by the familiar swing equation:

(1.1)

211,0, (Prn Pe Dw)

where 6 and w are the rotor angle and speed, both of which are the system states. Pm is

the prime-mover power, P, is the electrical power and D is the damping constant. The

rotor angle is measured with respect to a synchronously rotating reference.

When there are many machines in a large interconnected power system, the above

swing equation may be modified with one machine as reference, and with the relative rotor

angle and speed as the state of each machine other than the reference machine.

It is observed that P, is dependent on the network structure, and bus voltages (mag-

nitudes and phases) as well as the loads. The nonlinearity is thus introduced. The effects

of control devices are also reflected in the flow of Pe. The flow of Pe is usually associated

with the supply of rective power. These observations have brought increasing interests in

the use of flexible ac transmission system (FACTS) devices for purposes of increasing the

power transfer capability of the transmission system and enhancing transient stability.

The commonly used FACTS devices (to name a few, include thyristor-controlled series

capacitors, thyristor-controlled resistors, and static var-compensators) allow for rapid ma-

nipulation of the network impedances, and affect the power flow of the systems. Mathe-

6

matical modeling of FACTS devices itself is a difficult task, and is not addressed in this

thesis. Instead, the FACTS devices are assumed to be equivalent variable capacitors, or

variable resistors, or whatsoever, which permits convenient mathematical manipulation

for control purpose, and whose practical implementation is not considered.

Extensive studies have been made on the transient stability of large interconnected

power systems with FACTS devices installed. Many kinds of control methodologies (to cite

a few, nonlinear adaptive control, variable structure control, optimal control and artificial

neural network control) have been proposed to stabilize the postfault system which would

otherwise eventually lose stability without proper control.

Note that for classical transient stability study, loads are usually assumed to be

either constant power consumer, or constant impedance, or at worst constant current

source. The dynamics of loads are usually ignored for avoiding complexity. Since several

major system failures [14] have resulted from load side voltage instability and collapse,

load-driven voltage stability has now become a major concern in planning and operating

electric power systems.

Load-driven stability is mainly concerned with the stability caused by load dynam-

ics, big load build-up, etc.. Therefore, modeling of loads (including static modeling of loads

and dynamic modeling of loads) is an important issue and will be studied in chapter 4.

From the viewpoint of control design, modeling of each and every component of

loads in a load center is neither necessary nor practical. An aggregate load model is

usually developed for power flow and transient stability study [15]. Note that in the

literature voltage stability study is usually based on a static load model. As is known, the

dynamics of loads play an important role in the voltage instability problems, which needs

in-depth investigations. The voltage stability study and control design should include the

consideration of load dynamics. This important issue on the understanding of voltage

collapse mechanisms will be part of this work. Loads identification and its inclusion in

the stability study and control design will be presented in chapters 4 to 6.

7

1.3. Neural networks as identifiers and controllers

It is observed from the discussions in the previous sections that mathematical mod-

els for systems in question (for instance, loads and power systems) are needed for design

purposes in order to achieve desired performances. For these problems in discussion, an-

alytic mathematical models are not available, and large amounts of data on the system

behaviors are available. For conventional identification approaches, linear or specific non-

linear structure forms are assumed. This may be helpful in dealing with specific problems

with known properties. For the addressed problems with random characters, conventional

identification approaches may not be sufficient. For the problems addressed in the context

of stabilization of postfault power systems, conventional, analytic methods may not yield

satisfactory solutions, since either no accurate analytic model is availabe or the existing

model is too complicated for use in synthesis of controllers. Thus, there is a need for

novel and effective identification and control schemes. This has led to the exploration of

the use of artificial neural networks (or simply neural networks). It has been shown that

neural networks possess certain universal approximation properties which allow their use

as identifiers and controllers for a large class of nonlinear dynamical systems.

The distributed structure of neural networks allows fast parallel computation. In

addition, this kind of structure enables neural networks to perform robustly even in pres-

ence of disturbances. Due to neural networks' nice properties, they have been used in

many diverse real-world applications, to cite a few, optimization [16], ill-posed inverse

problem [17], image compression [18], handwritten signature recognition [19], classifica-

tion [20], modeling and identification [21], and neural control [22].

Originally, artificial neural network research was motivated by the effort to model

biological neurons and neural systems. It was McCulloch and Pitts in the 1940s who first

represented the neuron with a methematical model [23]. The introduction of Hebbian

8

rule [24] makes possible the proper changing of the synaptic weights of the neuron. Rosen-

blatt's perceptron [25], Widrow's adaptive linear element [26], etc. aroused widespread

enthusiasm about artificial neural networks. The publication of an important book [27],

with exposure of serious theoretical limitations of perceptrons and in particular the pes-

simistic conclusions, almost gave an end to the then neural network research. The revival

of neural network research is largely attributed to several researchers' famous works, such

as Grossberg's ART [28], Kohonen's self-organizing mapping [29], Rumelhart's backprop-

agation training algorithm [30] etc.

There is currently increasing interest in the research of neural networks as identifiers

and controllers for dealing with dynamic time-varying nonlinear systems.

1.4. The goals of this thesis

This thesis is mainly devoted to the theoretical aspects of neural networks and their

applications as identifiers and controllers in dynamic nonlinear systems. In particular, the

applications are confined to dynamic modeling and control in dynamic power systems. To

be speicifc, this thesis will develop neural-net-based control design methodologies to deal

with power system stability problems involving both generator dynamics and load dynam-

ics since either generator dynamics or load dynamics, but not both, is usually considered

in the literature for stability concern. This in turn leads to the tasks to be performed,

namely, load modeling, transient stability study, load-side stability study, neural control

design, adaptive neural control design, and stabilization of power systems which is likely

to experience transient instability problems and/or voltage instability problems.

The thesis is organized as follows:

The background material on neural networks is provided in chapter 2. The back-

propagation algorithm, together with its derived versions for training recurrent neural net-

9

works and locally recurrent neural networks, is discussed and is represented in a compact

matrix-format. This is for convenience of software implementation of the backpropagation

algorithm.

Chapter 3 presents some proposed neural network architectures. The proposed

latitudinal neural network architectures are studied in detail. Relevent properties are

further investigated.

The voltage stability of electric-power systems is discussed in chapter 4. Since

voltage stability is normally associated with the load dynamics, the load modeling issue

is presented first. Then use of neural networks for load modeling is addressed. Further,

with the neural-network-based load model, static and dynamic voltage stability analyses

are provided.

In chapter 5, the synthesis of intelligent neural controllers is addressed. First of all,

the approximation of a switching manifold by a neural network is discussed. Based on such

a discussion, a novel pattern recognition scheme for time-optimal control is proposed. Then

a hierarchical, neural-network, control structure is proposed. Further, adaptive neural-

network control is presented. These neural control schemes are justified by mathematical

verification. Simulation results are presented to show the effectiveness of the proposed

neural control schemes.

In chapter 6, the stabilization of multi-machine systems is addressed, together with

the inclusion of dynamic load modeling by a neural network. First, the strategy developed

in chapter 5 is used to stabilize the postfault multi-machine system which is represented

by a set of generalized bilinear differential equaitions under some assumptions. Then the

adaptive neural control is discussed. Further a control scheme is proposed to stabilize the

mulit-machine systems and keep a good profile of load side voltage aiming at the study

on the mechanism of voltage collapse.

Chapter 7 reviews the main contributions of this dissertation, presents the conclud-

ing remarks, and suggests future research.

10

2. MULTI-LAYER NEURAL NETWORK

2.1. Introduction

2.1.1. Object

This chapter is intended to present a quick review of neural networks, an overview of

ongoing research topics on neural networks, and the implementation issue. Some standard

materials are covered, which may be useful either for further developments in later chapters

or for the interpretations of the implemented software. In addition, this chapter inten-

tionally provides a unified compact matrix format for the backpropagation algorithms.

2.1.2. Background

The past decade has witnessed increasing interest for the use of neural networks

in the identification and control of nonlinear dynamic systems. Early applications of

neural networks are found to be primarily in the area of pattern recognition and classifi-

cation. Function approximation by neural networks was one of the then major research

subjects. These theoretical studies have laid the foundations for neural networks as a

well-established discipline. Since multilayer feedfoward neural networks represent static

nonlinear mappings, it was suggested in [31] that for use of neural networks for model-

ing and identification of dynamical systems, these neural networks have to be modified

by addition of feedback connections, resulting in the so-called recurrent neural networks.

Since then a tremendous growth of research and development on this subject has resulted

in numerous publications. Dynamic backpropagation [32] was proposed in order to train

a recurrent neural network for approximation of the system dynamics. For demonstration

of use of neural networks for identification and control of dynamical systems, extensive

11

simulation results on identification and control and theoretical studies on controllability,

observability and stability have been reported in the literature. More recently, use of

locally recurrent neural networks was proposed in [33] for emulating a large class of non-

linear dynamic systems. It is believed that recurrent neural networks, or a similar adaptive

architecture, will be increasingly used in dealing with control design of dynamical systems

in the future. It is observed, however, that neural network training based on dynamic

backpropagation is intensively time-consuming, which makes impossible on-line training

of such neural networks.

2.2. Feedforward neural network

It is well known that multilayer feedforward neural networks have been intended

to pattern recognition and classification applications. The use of feedforward neural net-

works for representation of static mappings is also known. These successful applications

of feedforward neural networks are mainly due to their ability to approximate a certain

class of functions. It has been shown that any continuous functions with compact support

can be approximated arbitrarily well by a one-hidden-layer feedforward neural network

for the activation function being either sigmoidal ones [34] or radial basis functions [35].

In addition, the distributed structure of neural networks allows fast parallel computation.

With proper choices of activation functions, training process can proceed conveniently

for the relevant partial derivatives necessary for adjustment of weights and biases can be

computed and propagated backward layer by layer whilst the outputs of each layer can be

calculated easily and propagated forward. This is essentially the well-known backpropa-

gation algorithm [30], though the very idea behind this algorithm is originated in [36]. It

may be said that the appealing structural features of neural networks which allow conve-

nient software and hardward implementations and the availability of convenient training

12

algorithms have made their extensive application possible. Also note that the backprop-

agation algorithm is merely a simple gradient method and that other methods, such as

conjugate gradient, are sometimes more effective as noted in section 2.3..

2.2.1. Structure of feedforward neural networks

A feedforward neural network is composed of a number of layers, each of which in

turn consists of a number of neurons. There are only connections between the neurons in

one layer and its next layer (if it exists), and there are normally no connections between

neurons within the same layer. Usually all neurons in the same layer have identical struc-

ture except that relevant parameters (including the connection weights and biases) take

different values. The correspondence between the inputs and outputs of each layer may

be viewed as a mapping from the input space to the output space. Thus, a feedforward

neural network may be viewed as a composition of a number of mappingsa nonlinear

finite-dimensional mapping from the input space to the output space for this neural net-

work. In a way it may be said that a feedforward neural network realizes a parametrized

nonlinear mapping. Based on this understanding, a feedforward neural network may be

used to approximate, with a proper choice of the number of layers and the number of

neurons in each hidden layer, some nonlinear functions with the approximation error in

some sense dependent on the adaptation of the relevant parameters. The parameter op-

timization resulting in the optimal value of a chosen performance criterion may proceed

with an iterative search guided by a learning algorithm in the training process.

2.2.1.1. A neuron: Information processing cell

An artificial neuron is characterized by its synaptic connections with connection

weights wi's, its activation function a(.) and the threshold b. The input signals xi's that

13

a nueron receives through its corresponding synapses with connection weights wi's are

multiplied by the connection weights and summed to yield the activation of the neuron.

The activation in turn produces the output y of the neuron, which can be given by

y = a(Ewixi + b) = a(wx + b) (2.1)

[
T

where w = w1 w2 ... wn with n as the number of connections;
T

and x = x1 X2 - Xri T designates transpose operation.

Mathematically, a neuron actually realizes a function f : Rn * R, where n is the

number of the inputs.

The activation function is usually a logistic function ai(x) = 1±e-x , a tan-sigmoidal

function o-t(x) or a similarly saturating function.

2.2.1.2. Sigmoidal functions

The activation functions that are commonly used are a special form of the so-called

sigmoidal function.

A function a : R R is called sigmoidal, if it is nondecreasing and bounded, i.e.,

limx,+, Q(x) < +co, and lim,_ a(x) > oo.

Besides the logistic and tan-sigmoidal activation functions, several other kinds of

sigmoidal or squashing functions are defined in the following.

Heaviside function

Soft squashing function

ah(x) =

as (x) =

{ 1 if x >0> 0

if x < 0

1 if x > 1

x if x E [0, 1]

0 if x < 0

Quadratic squashing function

2.2.1.3. Notations

1 if x > 1

x2 if x E [0, 1]

0 if x < 0

14

An opterator o is defined as follows: C=A0BifforAefen",BERm", and

C E Rm", = aijbii, where aii, bii, and cii are the elements in the intersection of row

i and column j of A, B, and C, respectively.

f [A] is defined as

f (an) f (a12) f (ain)

f [A]
f (a21) f (a22) f (a2n)

(2.2)

f (aml) f (am2) f (an,72)

where A

all

a21

and

a12

a22

am2

ain

a2n

an,

E R"1", and f is a scalar function.

2.2.2. Feedforward neural network composition

A feedforward neural network with L layers consists of the input layer, layer 0, of

do inputs, the output layer, layer L, of di, outputs, and hidden layers with d1 neurons for

each layer 1 = 1, 2, , L.

In general, the activation function for each neuron of a layer is assumed to be the

same as for all others. Let the activation functions for the lth layer be a1 for / = 1, 2, , L.

15

All the neurons in each layer are numbered from 1. A neuron n in layer / is connected to

all the neurons in layer l 1 through d1_1 connections, each one associated with a weight

wn/ j where j = 1, 2, , The threshold or bias for this neuron is bri/ . It is observed

that layer l actually realizes the following function vector:

F1 : Rd1-1 Rcll , where the ith component is given by Fl (x/-1) = cr/(Vd1-1 2 3x/.-.1-Lb1)

with x1-1 E Rd1-1 and xii-1 is the jth component of the vector x1-1, the output vector of

layer l 1.

Therefore, a feedforward neural network with L layers results in the following com-

pound mapping from Rd0 RdL :

F(x°) (FL F1)(x°) (2.3)

For brevity, the neural network structure discussed above will be represented here-

after by Ali° ',d '
'dL

.

2.2.3. Approximation capability

Function approximation theory in terms of neural networks has been studied ex-

tensively. Under some mild assumptions, neural networks may be used to approximate a

large class of functions. To make the description simple and convenient in the following, a

neural network and the function it realizes are used exchangeablely if there is no confusion

arising.

It has been shown in [37] that for any continuous function f with a compact support

52, there exists a neural network N, which approximates f arbitrarily close in L2 sense.

That is,

f (x) N(x)II2dx < E

where c is a pre-specified positive number.

(2.4)

16

Moreover, it has been shown in Funahashi [34] that for a continuous function f with

a compact support 52, there exists a neural network N, which approximates f arbitarily

closely in uniform topology. That is,

sup Ilf (x) N(x)II <
xE1

(2.5)

More results about the approximation ability of neural networks can be found

in [38, 39, 40]. Most results are for three-layered neural networks with sigmoidal acti-

vation functions used in the hidden layer. One fundamental result states that such neural

networks can approximate any continuous or other kinds of functions defined on compact

sets in Rn.

2.2.4. Backpropagation algorithms

Suppose the training data contain a number of patterns s(i) and their corresponding

targets t(i) for i = 1, 2, , P where P is the number of patterns and s(i) E RM, t(i) E RN.

Since a neural network with m neurons in the input layer and n neurons in the output

layer can be viewed as a parameterized function F : RN. This function can

be explicitly expressed as F(., 0). Note that the first argument is the input vector, and

the second argument designates the parameter vector 0, composed of all the weights and

biases. Once the structure of a neural network is chosen, i.e., the number of layers, the

number of neurons in each layer, and the type of the activation function for each layer are

specified, the remaining task is to solve the following parameter optimization problem:

Find the optimal parameter vector 0* such that a performance index J(0) is minimized

(or maximized).

Often, it is of computational advantage to use a quadratic performance index. With

st(i) designating the output of layer 1 (1 = 1, 2, , L) of a neuron network N crd ,o ,v

which is used to fit the given training data, a quadratic performance index can be ex-

17

pressed as J(0) P= E-2=1 2 11t(i) SL(i)112 = z= i. 3EdL 1 3(t(i).93 (i))2 where the subscript=

j designates the jth component of a vector, and t(i) sL (i) is the error between the actual

output of the neural network and the desired ouput.

To obtain the optimal 0*, the computation of the gradient of J with respect to 0 is

needed for application of a gradient-based numerical technique.

Suppose that activation functions o.1(.) for 1 = 1, 2, ,L are chosen properly here

such that their derivatives are functions of themselves, that is, d'dix(x) = gl (o-1(x)).

If layer 1 is the output layer, that is, 1 = L, the partial derivatives can be obtained

as follows.

aJ
awn k

P asnL(i)

Ectn(i) sri(t»
i=1 awnk

_E(tn(i) stiL (0)9L (snL (0)4-1

i=1

Define (5,/,'(i) (tn(i) sf(i))gL (s 7.1 JO). Then

aJ
awk=L, Eg(i)4-1(i)

j=1
(2.6)

If layer 1 is one of the hidden layer, then the chain rule is used to compute the partial

derivatives.

Since

aJ
awn' k

(9,91 (i

awn ,k

aJ

P dL as-T-(i)E E(tj(i) s.f,(i))
Wn,k
3

j=1
P

in(i) aS(i)E E(ti(i) (0) aas'si (i) awl
n ki =1 j=1

p d1+1 dL ash (i) a 41-1 (i) a sln(i)
-E E E(ti(i) .94,(0)

3 a sl,t1 (i) aSiii(i) awnki=1 m=1 j=1

1(4(i))4, 1(i),

awlnk

P dL (i) a4(i)
=_ E E(ti(i)

(0)asn

i (.) a
Wn,ki=1 j=1

P dL as4'(i)-EE(t,(i)
,94,() as3 (i)) gl (sln (i))s11 (i)

3 l
i=1 j=1
P

(5n1 (oslk-1(i)

i=1

LfiNN_alL).. Itwhere 8.,(i) is defined as 6/n(i) = EcP_'1(tJ(i) si)) 84(i)g on(i))-
asn,4-1(i) n1+1(Ql-F1(4)),1+1Since asin(i) k'-'m

aJ
awnl k

p d1+1 dL ash (i) asi,V(i)a4(i)3

E E E(ti(i) `s.(i)) asinti (i) asin(i) awinki=1 m=1 j=1

18

(2.7)

P (11+1 dL
a ,S4'E E Ecti(i) 9(i» 3 , 1+1 1+1 1+1 1 1

i=1 m=1 j=1 &ntl (i)g
(sm (z))wm,ng (sn(z))s1 k-1(i)(2.8)

Therefore, (5,2/ (i) may also be written as

d1+1 as(i)
81n(i) = E Ect (i) `94' (i))

(2)

Since

gl (snl (0) (2.9)
m=1 j =1

Since by the definition of 8,,,/ (i), 8n/4-1(i) may be written as 67,/±1(i) = E3dL 1(tj

L (0) /-f-i(i) g1+1 (Sn i+1(i)). Therefore,Si
asn

d,±1

6/n(i) E 8mi(ow!zing1(4,(0)
m =1

Observations from equations (2.7) and (2.10) indicate that the complete determina-

tion of the gradient requires two kinds of information from two phases: feedforward phase

and error backpropagation phase. To be more specific, the outputs of each layer can be

computed layer by layer forward, starting from the input layer, and the error associated

terms can be computed layer by layer backward, starting from the output layer. This is

the main reason why this algorithm is called the backpropagation algorithm.

By defining the following matrices, the backpropagation algorithm can be written

in a compact matrix format.

(2.10)

Define the input matrix

S=

the desired output matrix

T=

si(1) .91(2) si(P)

32(1) s2(2) 32(P)

sdo(i) sd,(2) sdo(P)

ti(1) ti(2) (P)

t2(1) t2(2) t2(P)

t di, (1) t (2) td, (P)

19

the output matrix for layer 1 = 1,2, , L corresponding to all the input patterns

s1=

(1) 8/1(2)

4(1) 4(2) 4(P)

8 (1) 8/ (2)di di sl (P)

the weight matrix for layer

wi =

1 = 1,2,

,/
1,1"'

/
"'2,1

, L

,,/

"'2,2

/

1

d 1 61

. . . wl
- , ,2 d/ -

and the backpropagation error matrix for layer 1 = 1, 2, , L

4(1) 81(2) 8i (P)

(1) 4(2) 4(P)
61 =

8di (1) Sidi (2) Sidi (P)

20

The backpropagation algorithm may be represented as the Backpropagation Algo-

rithm I:

1. Forward phase

0.1[WIS1-1 + B1].

2. Error backpropagation

AL = (T SL) 0 gL[SL].

Ot ((wt+i)T At+i) gi[st]

3. Gradient computation and weight updating

_&i(s1 -1)T.

Wt +nAt(st-i)r.

bt

where / = 1,2, ,L; S° = S; and B/ =

bt
dt

and 7/ is a positive number.

[Rdj XP;

Of course, the updating formula for all the biases can also be obtained directly.

Alternatively, biases may be treated as weights so that the updating formula for weights

and biases can be unified.

The mathematical model of an artificial neuron can be modified by associating its

bias with a constant input signal 1 so that all the parameters (that is, the weights and the

bias) are treated uniformly as weights. This leads to another representation of a neuron

model (2.1) as

y = o-(Etbii,)

where w= [w b] ; and x= r
1 T.

(2.11)

21

The same can be done to all other neurons in a neural network. Then the orginal

input signals are augmented by a constant input signal 1 to form the new inputs to the first

hidden layer. The original outputs of each hidden layer (except the last hidden layer) are

augmented by a constant input signal 1 to form the new inputs to the next hidden layer.

Accordingly, the augmented input matrix S, output matrix §1 of each layer 1 =1,2, , L

with SL = SL, and weight matrix Wt each layer 1 = 1, 2, ,L can be represented as

S
where Sa is a matrix of 1 x P dimension with each entry being 1.

Sa

St

Sa
with / = 0, 1, , L 1. Note that S ° =S.

7'

471 [WI bI I where bt = [14 bid, , and 1 = 1, 2, , L.

Therefore, the backpropagation algorithm to deal with weights and biases uniformly

may be represented as the Backpropagation Algorithm II:

1. Forward phase

:§1 0-1[W1s1-1].

2. Error backpropagation

AL = (T SL) 0 VISE].

((wi+i)T Al+i) 0

3. Gradient computation and weight updating

j = _At(st"-1)T.

1,0 +_ Wt ± rip/ (st-)T.

It should be noted that updating of weights above is based on the deepest descent

algorithm, which is known to be one of the slowest algorithms. It is true that backpropa-

gation with a constant step may be very sensitive with respect to the size of the step and

22

may even fail to converge at all. The reasons for its poor performance might be, among

others, that a constant step, if it is too large, may even increase the error to be minimized,

and local minima of the error surface may make the iteration process fail to approach the

global minimum.

An obvious way to improve the performance of the deepest descent method is to

adjust the step size adaptively instead of using a constant step, that is, increase the step

size if the previous step did not cause an overshoot around the minimum and decrease it

if otherwise.

It is noted that using directional search instead of a constant step might greatly im-

prove the convergence speed [41]. Modifications about the plain backpropation algorithm

is also shown in [42]. It is known that the variable metric (or quasi Newton) method

may be one of the fastest gradient optimization methods. However, its use involves the

inversion of a Hessian matrix which seems impractical for a typical neural network. To

aviod inversion of a Hessian matrix while converging fast, the conjugate gradient method

was applied to train a neural network in [42, 43].

One popularly used modified version of the backpropagation algorithm is the so

called momentum method. The weights are updated according to the current gradient as

well as their previous change, that is, the weights are updated in the following way.

wl WI nAl(51-1)T pAwl. (2.12)

where AWi is the previous change of the weight matrix, and it is a positive number.

Note that the weight updating formula for the momentum method is almost the

same as for the conjugate gradient method [44] except that the involved coefficients in

the formula for the conjugate gradient method are computed more complicatedly and

directional minimization is performed.

23

2.3. Recurrent neural network and dynamic backpropaga-
tion

The backpropagation algorithm is very useful and has been extensively applied when

a neural net is trained to approximate a static continuous function. When a neural net is

fed as inputs the previous values of its output, static backpropagation algorithm becomes

ineffective in adapting the weights of this neural net. Since the current output of a neural

net is dependent on the weights as well as its previous outputs recursively, the calculation

of sensitivities involves a lot of complexity. The resulting neural net is called a recurrent

neural net, which here is viewed as a combination of a feedforward neural net and a linear

delayed feedback, shown in Figure 2.1.

u(k)

w(k)

FF
NN

W(z1)

y(k)

FIGURE 2.1: Block diagram for a recurrent neural network

This recurrent neural network may be described as

y(k) = f N (u(k) , w(k), 0) (2.13)

where function IN : RNu x RN. ---> RNY is function realized by the neural net with

u(k) E RNu, w(k) E RNW, 0 E RNe, y(k) E RNY , and z-1 the unit time delay operator.

24

Since w(k) = W(z-1)y(k), and W(z-1) is an affine function vector with respect to

z-1, y(k) is dependent on W (z-1)y(k) as well as 0. By the same equation, W(z-1)y(k)

is also dependent on 0. Therefore, we would like to denote the derivative of y(k) with

respect to a weight O by dY(k)
c103

After the training is completed, the weight vector 0 is fixed. Then

Y(k) = Ar(u(k),w(k)) (2.14)

may be viewed as representative of dynamics of a plant. Usually a neural net is trained

along some temporal trajectories of a plant. Let the desired trajectory be yd(k) at the

instant of time k. Then the training error e(k) is the difference between y(k) and yd(k),

i.e., e(k) = yd(k) y(k). Let 03 be a weight compont of vector 0. Let J be the chosen

performance criterion, which is usually a functional of the training error e(.). Then the

OJsensitivity aej can be computed as

However,

It is observed that

aJ aJ ae
ao, ae ao,

ae
ao, de,

dy(k) ay(k) awi(k)
do, ao wi(k)

where wi(k) is the ith component of w(k).

It is noted that since w2(k) is only the delayed version of y(k), the above equation

itself is a dynamic system and hence that backpropagation algorithm under this situation

is called the dynamic backpropagation [31, 32]. The caculation ofd) can be performed
3

as the plain backpropagation does except that there are more computations involved for

the dynamic backpropagation.

Once the sensitivities are calculated, the weights updating can proceed with

(2.15)

(2.16)

(2.17)

01+1 = 01 aVeJ (2.18)

25

This is the well-known gradient-based updating rule. Other updating formula can also be

obtained as for a conventional feedforward neural network.

2.4. Locally recurrent multilayer neural network

A locally recurrent multilayer neural network is just a conventional multilayer neural

network with local recurrency and cross-talk, by which we mean the outputs of some

hidden layers are fed as inputs to these layers.

It should be noted that if on-line training is initiated to train a locally recurrent mul-

tilayer neural network, then the dynamic algorithm, such as the dynamic backpropagation

algorithm, can be used effectively. Although the dynamic backpropagation requires more

calculations than the plain backpropagation does, in nature calculations involved in the

dynmaic backpropagation are based on the plain backpropagation. In what follows, the

off -line training is focused, and the corresponding backpropagation algorithm is discussed.

The backpropagation algorithm for a conventional neural network can be somehow

generalized to apply to a locally recurrent neural network. The backpropagation algorithm

for a locally recurrent neural network is presented as the Backpropagation Algorithm III

in the following.

The notations that are used in the Backpropagation Algorithm II are also used in

the Backpropagation Algorithm III. To describe the Backpropagation Algorithm III, some

more notations are needed, and are given as follows.

The original input signals are augmented, by the outputs of the first hidden layer,

to form the new inputs to the first hidden layer. The original outputs of each hidden layer

(except the last hidden layer) are augmented, by the outputs of the next hidden layer,

to form the new inputs to the next hidden layer. Mathematically, the augmented input

matrix S, output matrix S1 of each layer 1 = 1, 2, . , L with Si-' = SL, and weight matrix

Wt for each

S=

sl =

1/114 =

layer

S

Si

sl

st±'

[Wl

1 = 1,2,

with

Wi

, L can be represented

/ 0,1, L

where 1/177i =

as

1. Note that S° = S.

,,/ Wir12
wt Wir2,1 r2,2 r2,di

Wi w . . . wl
_ rdi,1 rdi,2 rdi,di

T

with writ

26

repre-

senting the connection strength from the jth neuron to the ith neuron in the same layer

/, and / = 1,2,- L.

Therefore, the Backpropagation Algorithm III may be described as

1. Forward phase

Si =

2. Error backpropagation

AL = (T SL) gL[SL].

At ((wt-Fi)TAt+i) 0 gt[t§i]

3. Gradient computation and weight updating

V 14-71J = Al(S11-1)T

Wi f__ T/TTt npl

2.5. Software implementation

Since training a typical neural network with a large set of data is very time-

consuming if a MATLAB version of neural network tools is used, software is implemented

27

and coded in C for training a multilayer neural network. Since conventional neural net-

works may be viewed as a special form of recurrent neural networks just by setting the

recurrent and cross-talk connection weights to be O's, the implementation of the Back-

propagation Algorithm III suffices. Note that the activation function PO for each layer

/ = 1 , 2, .. , L may assume, for example, a form of either logistic function or tan-sigmoid

function, or linear function. The momentum method is applied to update weights and

biases, which is much faster and more stable than the plain backpropagation method.

In addition, a proper random number generator is properly designed, which is useful for

initialization of neural networks' parameters (that is, weights and biases).

All the programs for this software are listed in Appendix A, and used in the following

analyses.

28

3. LATITUDINAL AND LONGITUDINAL NEURAL
NETWORK STRUCTURES FOR FUNCTION

APPROXIMATION

3.1. Introduction

One of the active areas of neural networks has been on the function approximation

capabilities of neural networks, which still attracts a lot of attentions. One of the main

applications of feedforward neural networks is to approximate arbitrary nonlinear continu-

ous functions. Many research results [34, 39, 40] have been reported on the approximation

capabilities. Mostly these works focus on the approximations of continuous functions by

feedforward neural networks. Stronger results for approximations of functions defined on

spaces of infinite dimensions may be found in [45] (see references therein). However, the

theoretical results on approximations of nonlinear discontinuous functions by neural net-

works are considerably weaker. By applying Lusin's theorem, Hornik et al [40] showed

that any measurable function may be approximated by a feedforward neural network in

LP sense. The neural networks involved in these works are non-constructive. Recently,

interests have been seen in the constructive neural networks [46, 47, 48] on the purpose

of overcoming the difficulties involved in training standard feedforward neural networks

with backpropagation. Choi, et al [46, 47] investigated the piecewise interpolation capa-

bilities for funciton approximations through constructive neural networks. Tessellation of

a compact space was performed, and a number of neural network granules are applied.

With the employment of the same kind of neural network structure, the proposed strat-

egy makes piecewise nonlinear approximations by means of quadratic squashing functions.

Very different from the traditional constructive neural networks, latitudinal neural net-

works are proposed to reduce the approximation error by recursively employing sub-neural

29

networks. This chapter is organized as follows: Section 3.2. is devoted to investigating the

convergence property of the novel neural networklatitudinal neural networks, discussing

function approximation with piecewise nonlinear fitting by longitudinal neural network,

and presenting the relationship between these two neural network structures. The prop-

erties of latitudinal neural network architecture are further investigated and presented in

section 3.3.. Finally, comments and concluding remarks are given.

3.2. Latitudinal neural network architecture

A novel neural network structure, which consists of a number of neural networks

with each of those being called as a sub-neural network hereafter, is formed as such that

the first sub-neural network aims at approximating the given function with given data,

and then the second sub-neural network tries to, with given input data, approximate the

error function from the first sub-neural network, and then the third one will devote to

approximation of the error function from the second sub-neural network, and so forth.

The resulting structure, called latitudinal neural network structure, shown in Figure 3.1,

is intended to reduce the approximation error again and again by using a number of neural

networks.

For simplifying notation, it is convenient to define the training error ratio r for a

neural network as

r = 11 f (x) f (x)li (3.1)

where f(x) is a continuous function from IP (or its compact subset) to Rrn, and g(x),

which is designed to approximate f (x) (also assume g(x) E L2 (lin)), is a mapping from Rn

to Rni achieved by the neural network. 11 11 is L2 norm operation. Here,we call f (x), g(x)

and e(x) = f (x) g(x) the target function, the actual output function and the training

error function respectively.

30

X
NN1

NN2

NN3

O

Y

FIGURE 3.1: Latitudinal neural network architecture

Proposition 1 f (.) is a continuous function from lin (or its compact subset) to and

is approximated by latitudinal neural networks, shown in Figure 3.1. Then f (.) can be

approximated by a latitudinal neural network with arbitrary small error e > 0 in the L2

norm sense, if

supfri, i E Z +} < 1

Where ri is the training error ratio for the ith sub-neural net.

(3.2)

Proof: We now consider the finite section of the latitudinal neural networks, which con-

sists of the first N (N E Z+) sub-neural networks. Let gi(.) and e, (.) be the actual output

function of the ith sub-neural network and the training error function, from Rn to Rm. As

is mentioned above, ez(.) is the target function for the i + lth sub-neural network. Here

31

1 < i < N. We know that the target function for the first sub-neural network is f(.).

Now let eo = f.

Then we obtain

ri = (3.3)

where 1 < i < N.

Note: if I I ei I I happens to be zero, then we don't need any more sub-neural nets for

further training. Thus, in our case, lied' 0.

Then we have

= rillei-ill

But eo = f, and ei gi for 1 < i < N, then gi = ei.

Thus

Egi f = (ei -1 ei) eo =
i=i i=i

where 1 < k < N.

And Eik_i f = gk + gi f = gk ek-i.

It turns out that
k

IIekll = 11 = 119k raek-ill

Therefore,

N

(3.4)

(3.5)

(3.6)

I I > 9i I l l < r Nile N 1 1 1 5 rNrN-illeN-211 5 5_ fir=irilleoll (3.7)
j=1

However, eo = f E L2(Rn), and hence lied < oo. Let 7 = sup{ri,i E Z+}. By

assumption, we have ri < ry < 1 for 1 < i < N.

Therefore, I EiN-igi fII < 'YNIleoll. With N sufficiently large, the error between

the target function and the final output of the latitudinal neural networks can be made

arbitrarily small, in the sense of L2 norm. This ends the proof.

Remark (1): Generally, a set S of data points are given in such a form that S =

{(xi, yi) : xi E Rn, yi E Rmand i = 1, ,Ns}. Then if we take the norm in the discrete

32

case, the above proposition still holds. This means that under some conditions, sufficiently

many sub-neural networks will make the approximation error, in the discrete norm sense,

sufficiently small, only on the the given data points. This does not mean, however, that

the approximation error, in the continuous norm sense, will be made sufficiently small.

This will explain why sometimes between two given immediate neighbor points, the actual

output of the latitudinal neural networks will oscillate (sometimes even badly).

Remark (2): The structures of those neural nets in the latitudinal neural network

may be either the same kind or different kinds. Thus here arises the concept of hybrid

neural networks, such as the combination of wavelet neural networks and feedforward

neural networks, the combination of neural networks based on radial basis function and

feedforward neural networks, etc..

Remark (3): The number of sub-neural networks in the latitudinal neural network,

which are needed to make a relative better approximation, will determine which part

will be easily trained. If the number of sub-neural networks, required to make a good

approximation, for a certain part, is less, then this part is smoother. A non-stationary

part will need more sub-neural networks to give a good approximation. So the numbers of

sub-neural networks are different for different parts. Then by finding the numbers of sub-

neural networks, it will be easier to locate the singular points or segments. These numbers

of sub-neural networks present a relative good measure for the relative singularity of the

orginal mapping.

Remark (4): Generally speaking, latitudinal neural networks are trained in cascade

form, and executed in parallel. But if somehow the training target for each sub-neural

network can be pre-specified, then the training process can be performed in parallel (as

we may can see later, this situation does occur).

Remark (5): It should be observed that even if supfrz, i E Z+1= 1, but if with the

exclusion of a finite number of ri's being l's, the greatest upper bound of all other ri's is

less than 1, then the Proposition still holds.

33

3.2.1. Longitudinal neural network structure

The idea of this kind of neural network is originated in Choi, et al's work [46,

47]. As mentioned in section 3.1., they first tessellated the compact subspace of a finite-

dimensional space, then for each subset of this covering whose union covers the whole

compact subpace in question, a neural network granule will be applied to approximate

the specific function defined on the specific subset, which may be either a hypertriangle

or a hyperrectangle. This results in a neural network structure, called a longitudinal

neural network structure. In practice, piecewise linear functions are used in their work.

In this part, we will develop a strategy to use piecewise nonlinear functions to approximate

one-dimensional functions by introducing a new kind of sigmoidal functiona quadratic

sqashing funcition.

3.2.2. Sigmoidal function

Three kinds of sigmoidal or squashing functions will be used in our neural network

structures, which are defined in section 2.2.1.2. of chapter 2, and repeated in the following.

Heaviside function o-h(x) =

Soft squashing function as (x)

0 if x<0

1 if x >1

x if x E[0,1]

0 if x<0

1 if x>1
Quadratic squashing function aq(x) = x2 if x E [0,1]

0 if x < 0

34

3.2.3. Nonlinear fitting

In this part, our main focus will be on one-dimensional function approximation by

using two hidden-layers of neural networks with three kinds of activation functions defined

in the last part. As we know, any closed and bounded subset of the real set R will be

compact and vice versa [49]. Functions defined on compact subsets of R will be our main

interest. We also know that any three points in a plane, but not in a straight line, will

determine a quadratic parabola. As shown in Figure 3.2, points A, B, C are arbitrary

three points in the plane R2, with coordinates (xi, yi), (x3, y3), (x2, y2), respectively, and

xi < x3 < x2. Without loss of generality, let f be a function from [xi, x2] to R given

by f (x) = ax2 + bx2 + c with a, b, c constants determined by the given points A, B,

and C; let g be a function from [xi, x2] to R given by g(x) = dx + e with d, e constants

determined by the given points A and C. Let h be a fucntion defined on [xi, x2] such that

h(x) = f (x) g(x). By definition, we learn that f (xi) = yi; f (x2) = y2; and g(xi) = yi;

g(x2) = y2. Then it follows that h(xi) = f (xi) g(xi) = 0 and h(x2) = f (x2) g(x2) = 0.

Since the function f (x) is quadratic, then h(x) = k(x xi)(x x2), with k being a

constant which can be determined by

h(x3) = f (x3) g(x3) (3.8)

However, h(x3) = k(x3 xi)(x3 x2), and f(x3) = y3, and g(x3) =
y2-yX1

i (x3 x1) +X2

It turns out that

k (y3 Yi)(x2 xi) (y2 yi)(x3 xi)
(x3 xi) (x3 x2)(x2 xi)

(3.9)

If yi = y2 = y3, then k = 0, and hence h(x) = 0. This means that if three points

happen to be on a straight line, then a linear function g(x) is sufficient to approximate it.

Since AC is a line segment, described by function g(x), it can be implemented by

the neural network structure [46, 47], shown in Figure 3.3.

0

FIGURE 3.2: Piecewise quadratic fitting

X

35

There are three neurons in the first hidden layer, whose weights and biases, from

left to right, are w11 and w12, w21 and w22, and w1 and w2, respectively. The activation

function, is heaviside type for the first two neurons of this layer, and sqaushing type for

the last neuron of this layer. The weights for all the neurons in the second hidden layer

are all l's; and the biases for them, from left to right, are 1 and 2. The last layer is the

output layer, whose activation function is linear in weights, with the weights being yniir,

and Yrnax Ymzn 7 from left to right.

The related weights are determined as follows:

and

xi

X2

1

1

Xi

X2

1

1

wii

W12

W21

W22

wi

W2

1

1

Y21Y

0
(3.10)

(3.11)

where gi = Yi-Ymin for i = 1, 2 with yrnin = min y2 ;y21; and Yrnax = max{Y1, Y2}-Ymax Ymin

36

FIGURE 3.3: Piecewise linear approximation via a specific neural network. H with
Heaviside activation function; S with Soft squashing activation function

It can be easily checked that if input x = xi for i = 1, 2, then the output of the

neural network will be y = y, for i = 1, 2; if input x E (x1, x2), then the output y will be

Yrnin < Y < Yrnax; if input x [xl, x2 }, then the output y will be zero.

Next, a neural network is constructed to implement the function h(x) = k(x

xi)(x x2).

h(x) can rewritten as

h(x) = k[(x xl + X2 \ 2
2

(X1 X2121 X1

2 1

X2)2/-1. (X

2

X1 X2

xi- X22
)2] (3.12)

2

The neural network structure, shown in Figure 3.4, are employed to approximate the

function h(x). In the first hidden layer, there are four neurons, with the weights and biases

for the first two neurons being the same as in Figure 3.3, and with the weights and biases

for the last two neurons being xi 2x2 and xl-!z-x , and x2 2 xi and xi+s2, respectively. We usex2-xi xi -x2

37

the activation function of heaviside type for the first two neurons, and quadratic squashing

type for the last two neurons. In the second hidden layer, there is only one neuron with

the weights being 1, 1, -1 and -1 from left to right, and with the bias being -1. The last

layer is output layer with weight being k(x12")2. We now show what kind of function

this neural network can produce. Let x E R. If x e {x1, x2 }, then by Equation (3.10),

both of the outputs of the leftmost two neurons in the first hidden layer will be l's. For

the third neuron in this layer, with the input, weight and bias being x, xi_2 and xx21+_xx21,

then the input to the activation function will be (x x 2 xi+x2 = xi-Fx2-2x;
xl-X2 X2 -X1 X2-X1

then the output of this neuron will be 1; if x = x2, then the output of this neuron will be

0. Similarly, for the fourth neuron on the right, if x = xi, then the output of this neuron

will be 0; if x = x2, then the output of this neuron will be 1. Therefore, for the neuron in

the second hidden layer, the output will be 0, which in turn implies that the final output

of the neural network will be 0. If x E (x1, x2), then the outputs of the first two neurons

on the left in the first hidden layer will be l's. For the third neuron from the left, the

input to the activation function is (x x 2 xi+x2 x1 d-x2-2x
x2-xi while the input to thexi-x2

2x-xl -x2
x2-xiactivation function of the neuron on the far right is If x = xqx2 , then both

of the outputs of these two neurons will be 0's. Otherwise, since -1 < xi x2+x2xl2x

each of these two outputs will be either 0 or (xi +x2 -2x N) 2
x2-xi , but not both. Counting in

all the inputs, weights and bias for the neuron in the second hidden layer, the output

of this neuron will be 1 (xi +x2 -2x
x2-x1)2. Then the output of the output layer will be

k(xix2)20_ Xid-X2-2X \
k 2 / x2xi) = k(x xi)(x x2) = h(x). If x [xi, x2], then the outputs

of the two neurons on the far left of the second hidden layer, by Equation (3.10), will

be either 1,0 or 0,1. By the same argument as above, the outputs of the two neurons

2x)2, 11
x2-xion the far right of the second hidden layer, will be either 0 and minf(xl+x2- or

min{xi+x2-2x)2, 1}
x2-x1 and 0. Then the input to the activation function for the neuron in the

second hidden layer will be 1-1-0+0-min{ (x'+x2-2x)2 1 } -1 minf(xi+x2-2x)2 11 < 0.x2-xi '

Thus the output of this neuron is 0. And hence the final output of the output layer will

38

be 0. In a word, the neuron network shown in Figure 3.4 acts as a function that satifies

the following conditions:

if the input x is inside the given interval [x1, x2], then the output will be h(x);

if the input x is outside the given interval [xi, x2], then the output will be 0.

Incorporating the neural network structure shown in Figure 3.3 into the neural net-

work structure shown in Figure 3.4 produces the new neural network shown in Figure 3.5.

Thus, the output of this neuron network will be g(x) + h(x), which is precisely f (x), if

the input x is inside the given interval [xi, x2], while the output will be 0 if the input x is

outside the given interval [x1, x2].

3.2.4. Neural network array

In this section, various constructive neural networks will be employed to implement

a continuous function f (x) defined on a compact subset Q of R. First of all, segment

the given compact subset into many non-overlapping compact subsets Ui (i E An, = :

1 < i < n; n E Z+1), of Q, whose union will precisely be the given compact set Q. As

we have known, the data samples are usually given in the form of (x, f (x)) with x being

one element of the set of the boundary points of all the subsets Ui, which we may assume

to be {xi, i = 1, 2, , m; m E Z.+_} with xi > xi for i > j. Without loss of generality,

assume Q to be connected (if it is not connected, we may have the same argument for

each of its connected subset Qi with U,Qi = 1). If m is odd, then we have a collection

of intervals [X2k±1 , X2k_o] with k ranging from 0 to V. If m is even, then we may

have an interval [xm_i, xni] and a collection of intervals [X2k+1, X2k+3] with k varying from

0 to m±1. For these two cases, the only difference is that for the latter case we need

to employ an extra constructive neural network, with structure shown in Figure 3.3, to

approximate the function defined on this interval by linear fitting. Consequently, we only

39

need to consider the former case. However, with f (x2k+1), f (x2k+2), f (x2k+3) given, the

function defined on the interval [x2k+1, X2k+3] can be approximated by the neural network

shown in Figure 3.5. Therefore, we apply a variety of neural networks to approximate

the function f (x) defined on the compact subset 52, with each neural network nonlinearly

approximating a specific subset of the function f (x). Then we employ the structure

shown in Figure 3.6 [47] to capture the final output by using analog OR operation, which

essentially takes the non-zero real number from all the outputs of sub-neural nets N

FIGURE 3.4: Piecewise quadratic approximation via a neural network. S with Soft
squashing activation function; Q with Quadratic squashing activation function

40

FIGURE 3.5: Nonlinear approximation via a neural network

3.2.5. Continuous function approximation with desired pri-
cision

As we know in Calculus, any one-dimensional continuous function defined on a

compact set can be approximated by either countably many rectangles, or by linear fitting,

or by piecewise quadratic functions, with arbitrary small error in the sense of the Euclidean

distance, so long as the maximum of the diameters of the resulting subsets of this compact

set is sufficiently small. This fact, in turn, means that to achieve the desired precision,

sufficiently many neural networks, either in the form shown in Figure 3.3, or in the form

shown in Figure 3.5, may be needed.

For each sub-neural network NNi in Figure 3.5, through use of nonlinear fitting, the

number of neurons involved in this kind of structure is 9 (counting out the input neruon),

while, with the use of linear fitting, two neural networks will be used with structure shown

FIGURE 3.6: Neural network array

41

in Figure 3.3 [47], and the number of neurons is 12. Then if there need be N sub-nerual

networks with nonlinear fitting, then 3N neurons will be saved compared with linear

fitting sub-neural networks. Since for precise function approximation, many sub-neural

networks will be used, a large number of neurons will be saved through nonlinear fitting

other than linear fitting. Moreover, the quadratic nonlinear approximation displays more

smoothness than the linear approximation.

3.2.6. Relations between latitudinal and longitudinal neural
networks

As discussed before, the latitudinal neural network and the longitudinal neural net-

work are organized in different ways with the former generally reducing the approximation

42

error by using more sub-neural networks based on the whole given data set, while with

the latter generally performing local piecewise linear/nonlinear fittings through specific

sub-neural networks based on a specific subset of the given data set. The longitudinal

neural network, however, can be considered as a specific case of a latitudinal neural net-

work if each sub-neural network of the longitudinal neural network is considered as an

approximation for the whole target function. This fact can be justified by the following

argument.

Without loss of generality, let f (.) be a continuous function defined on a connected

compact subset 52 of Rn with f (.) E L2(Rn). To achieve a close approximation by the

latitudinal neural network, the tessellation [47] of the compact set f/ has to be performed.

As mentioned above, there exists a positive integer N, for any given positive real number

> 0 such that N or more properly constructed neural networks [47] can approximate the

function f (.) with approximation error less than E in the L2 norm sense. Let the compact

set S-/ be tessellated into N nonoverlapping compact subsets S2i for i = 1, , N such that

on each 52i, f (.) can be approximated by a specific sub-neural network of the longitudinal

neural network. As we know from [47], on the given data points, the longitudinal neural

network can achieve precise representation of the target function f (.). Consequently, it is

then only necessary to consider function approximation on the interior points of Cli for i =

1, , N. For the funtion f (.) defined on SZ there is a sub-nerual network NN which can

give an approximate G, on S2i (0 if outside iti), and the approximation error is Ei = Gi.

Here if x E 122, then Fi(x) = f (x); otherwise, Fi (x) = 0. Then from the viewpoint of the

latitudinal neural network, the training is based on the whole data set, and the ith sub-

neural network of the longitudinal neural network is also considered as the ith sub-neural

network of a latitudinal neural network. In this context, let f = eo, and gi and ei be the

output of the ith sub-neural network and the approximation error, respectively. Since f =

= ei_igi, and gz = Gi, then Neill = = However, from

the above discussion, ei_1 = f gk = f From f = EzN. 1 Fi, it follows

43

that, ei-1 kN ik- 11 ,--, ± E till (Fk Gk) = EL Fk + Fk -1 Ek 1L T k = Eiivi Fk

and ei = E;cf i+i Fk + Ek -1 Ek. Thus, 11 eill = II Eikv=i+i Fk + Ek-1 Ekil

Since Fk (x) and G k(x) are 0's if x E 521, and hence Ek (X) is also 0, then Fk (X), Gk (X),

and Ek(x) for k = 1,- , N, are orthogonal, respectively, if x E Unint(C2z). It follows

that Ile,112 = II Fk ELI EkII2 = I I Fkl12 IlEk 112. Hence,

ilei112 liFkl12 +ELI IlEkii2 Ek =,+111Fkli2+E11- 1 IlEk112+11Eill2
Ilei-1112 IIFkII2 + IIEkII2 EL+111Fk112+Ek 1 IlEk112 + iiFill2

(3.13)

Since for the ith sub-neural network (also NIV, in the context of the longitudinal neural

network), the approximation error can be made sufficiently small, that is, IlEi112 < 11Fi112.

Ile%112
lei)Thus, < 1, and hence, ri = < 1. Since N is finite, then there exists r such

Ilei--1112

that max{ri, i = 1, , N} < r < 1. This means that the condition for Proposition in

section 3.2. can be satisfied, and hence the convergence can be guaranteed, which in turn

implies that the approximation with sufficiently small error can be made.

Remark: with the relationship between these two neural network structures estab-

lished, it is possible to employ the hybrid structure of these two structures in a specific

application, for example, using the longitudinal neural network structure for the non-

stationary part of the given target function, while using the latitudinal neural network

structure for its stationary part.

3.2.7. Comments

In this section, the concept of a new kind of neural networks (the latitudinal neural

network) is proposed, its structure is discussed, and its convergence property is given.

Another kind of neural networks (the longitudinal neural network) is applied by using

piecewise nonlinear activation functions, a number of neurons may be saved by the strategy

proposed in this section compared with existing works, and better smoothness may be

achieved with the proposed method. Furthermore, it has been shown that the longitudinal

44

neural network can be considered as a specific case of the latitudinal neural network, and

the related convergence properties is presented.

3.3. Properties of latitudinal neural networks

Neural network methodology has been widely applied. In the context of control

engineering it is mostly used as a pattern identifier or a synthesized controller based on

the available data or measurements, among others [31, 50]. Recently, the approximation

capabilities of constructive feedforward neural networks have been studied in [47] through

use of some special kinds of sigmoidal functions such as a heaviside function and a soft

squashing function and the piecewise linear approximation technique. In contrast to the

neural network structure thereof, the architecture of latitudinal neural networks is pro-

posed in [51] in hope to give a better approximation to a given function, and is further

studied in [52]. The convergence under some assumptions is further given. Mathemati-

cally speaking, a given function f : lin is approximated by a series of functions

of the same dimensions fi for i = 1, ,N such that when N takes some proper value the

approximation error in some norm sense can be made acceptably small. The latitudinal

neural network structure is further investigated in this section with the introduction of

some new kinds of sigmoidal functions and their combinations. It will be shown that

any continuous piecewise quadratic function or polynomial of degree m (m > 3) can be

represented by a neural network, and how many neurons are needed in the hidden layer.

On this basis, the development of the properties relative to latitudinal neural networks is

dealt with. Finally, the concluding remarks are presented.

45

3.3.1. Sigmoidal functions and their combinations

In addition to the sigmoidal functions defined in section 3.2.2., a kind of somewhat

more general sigmoidal function, which is defined in the following, will also be used in this

section.

opn (x) =

1 if x>1
if x E [0, 1]

0 if x < 0
Definition 1: Suppose a R > R is a sigmoidal function. The class of functions,

which a 2-layer neural network with the activiation function o-,n neurons in the hidden

layer and a linear output layer realizes, is defined as Tadr,

where n > 3.

= {f : Rd RIPX) = VO
v20.(E3d=1 wi,xi + 001.

In [51], through use of the quadratic squashing function, the piecewise quadratic ap-

proximation is suggested with the employment of a longitudainal neural network. In what

follows, the idea thereof is further investigated, and more rigorous results are obtained.

Lemma 1 Any continuous, piecewise quadratic functions f(x) : R --+ R with xo < x1 <

< xn (so-called kinks) and constant values on (Do, xo) and on (x,,,00) are in

.rjs,n .F49,n, where the symbol ED is defined by AG) B = fu + vl n e A, v E B }.

Proof: A continuous piecewise quadratic function f (x) on [x0, xn] can be written as

n-1
f (x) = E fz(x)i[xi,x"] (x)

i=o
(3.14)

1, x E [Xi, Xi+1]
where fi(x)'s are quadratic functions; and l[x,x,+11(x) =

0, x [xi, X1+1]

Define a continuous piecewise linear function g R R such that g(xi) = f (xi) for

i = 0,1, , n. Then g(x) can be written as

g(x) = g(xo) ±

That is,

g(x) =

But

Therefore,

lg(xi) g(xji)
(x xi--1)1[xj,,xi](x) +

xi
i=1
[g(xi) g(xi-1)]1(xi,00)(x)}

g(x0)

n
Xi_i

[g(xi) g(xi_i)]{
Xi Xi-1

+ 1(xico)(x)}
i=1

X Xi_1
i[xi_ixi] (X) + 1(xj,00)(X)

Xi Xi_i
X xi -1

{1[0 11(
X Xi_i ,

) + 1(1,co) (
X Xi-1= ,

Xi xi -1 Xi Xi_i Xi xi -1

as(
x xi_i
xi xi -1

)}

46

(3.15)

(3.16)

(3.17)

rt

g(x) f (x0) + (xi) f (xi_1)]as(xi -1)
xi -1)

(3.18)
i =1

This implies that g(x) E Fcrism.

Note that for x E [xi, xi+i], i = 0, 1, , n 1, f(x) is a quadratic function, and g(x)

is an affine linear function, and thus f(x) g(x) is still a quadratic function. Since

f (x) g(x) = 0 for x = x2, xi+i, then on [xi, xi+i], f (x) g(x) can be written as

(x) g(x) = ci(x xi)(x xi+i) (3.19)

So f (x) g(x) = Ein_o ci(x xi)(x i±ii(x). It can be readily shown that

(x xi) (x Xi+1)1[xi,xj+i] (X)

2 4-xi1 +
xi)

xi
2 xi±i xi xi±i xi

+0-
2

X +
Xi±i + Xi

)1}q((3.20)
xi Xi+i Xi

Then we have

That is,

f (x) g(x) =
n

Eci(xi+1 xj)2{1
i=o

--k q(
2 xi±i + xi

)7 x
xi +1 xi xi-Fi xi

+0-q(
2

x +
xi±i ± xi

xi+i xi xi+i xi

n

f (x) = [g(x) E
\ 2 I

xi ,2,

i=o

)11

xixi+i
2 xi) xi+12 xi

+
xi±i xii=o

TL

+
Xi+1 Xi \ 2 2 xi+i + xi

)) x +
2 xi+i xi xi±i xii=o

47

(3.21)

(3.22)

Note that g(x) E F4,, and hence the first term on the right-hand side of the above

equation [g(x) Ein_o C1(xz+2 x')2] E .F,13,n; and note also that both the second-term

and the third-term are in F),-q,n. Thus, f (x) E Pas n ®.,1q,,, concluding the proof.

Consider the approximation of a more general class of functions than what is involved

in Lemma 1, we then have the following result.

Lemma 2 Any continuous, piecewise polynomial of degree m (m> 3) functions f : R

R with kinks xo < xi < < xn and constant values in

l e
q,n wz--=3'

(oo , x o) and on (xn,00) are on

Proof: The induction method is used to give the proof.

First of all, we show the conclusion holds for m = 3. Note that f can written as

n-1
(x) = E fi(x)i,x,,x,+1,(x) (3.23)

where fi(x)'s are polynomials of degree 3.

One can show that

That is,

48

(x3 x)1[_1,1](x) = [o-pa(x) ap,(x)] to-s(x) as(x)] (3.24)

(x13 X1)1[s,,xl-Fi] (X) = [CrP3 (xi) ap3(x% [a s(x') s(-41

where x' = 2
xi+i -xi xi+i-xi

Let fi(x) = 33=0 ai jxj. Then

Let

fi(x)ltx,,x 441(x) = ai,3(xi-F1

2

x,
)3

[cip3(x') up3 [us (x') as (-41}
2

+ E l[xi,xj+i] (x)
j =o

+ai,3(xi+12 xj)3(
2 + xi

)1[x ,xi+ [(x)x
xi xi

Xi+1 Xi 3
2

,3 Xi+1 + Xi 3j j
2

+ai,3())
2

x lki,s+11(X)
j =o

2

hi(x) = E ,xi,xi+i,(x)
i=0

2 xi+i +Xi xi
X)1[xixi+1](x)

2 xi+i xi xi+i xi
2

+ai 3
2

xi+1 Si Xi+i

2

± Xi
) J
3_,;

xJ
,;

2_, (j)(1[xi,xj+i] (x)
j =o

(3.25)

(3.26)

(3.27)

It can be shown that hi(xk) = fi(xk) for k = i,i + 1. Let h : R R be defined as

h(x) = E7=-01 hi(x)1 [xi,x2+1](x). Then h(x) is a continuous, piecewise quadratic function,

and hence h(x) E Fuls T1,,Th by Lemma 1.

However,

n-1
(x) = h(x) + ai,3-([0-p3(x') aP3(-4]

i=o

(x`)

h(x)
n-1

),[us(;')__0 -.5(!)]+ E a o
2i=0

n-1
+ E ai,3(xi±i

2

xi
)3 [aP3 (x')

i=0

49

(3.28)

Note that in the above equation, the second term is in To% and the third term is in

.T0-1 Thus,p3,n

f(x)
E

Fcrism ey.c.i.pvn (3.29)

Suppose that the conclusion holds for case m = k 1. We now show that this implies the

conclusion also holds for case m = k.

Note that f can written as
n-1

f (x) = E (x)1 [xi ,x,±1] (x)
i=0

where fi(x)'s are polynomials of degree k.

One can show that

That is,

(xk x)11-1,11(x) = {apk(x) apk(-4 [a s(x) s(x)]

(3.30)

(3.31)

(x'k x
/
)1.[x,,xt+,](x) =-- [apk(x) ap,(x')] [as(x) a (x')] (3.32)

where x' = 2 xi+i +xi
xi±i -xi xi+i -xi

Let fi(x) = E3=0 aijxj . Then

ii(x)1[xi,xj+1](x) = ai,k(xj+1
2

xi)k

Define

[uPk (xi) apk (xi)] [as (xi) us (xi)i}
k-1

+E aidxil[xi,xj+i] (x)
j=o

+aik(xi +l Xi
)k (

2 Xi+1 + xi
)1 (x)

2 xi xi+i Xi

+ai,k(
2

k-1
Xi)k (lc

2
\ Xj+1)ki 5:71r

] (x)
j=0

k-1
hi (x) E ai (x)

j=o
2 \ 1

[xiXi+i] (5)
Xi+1 Xi xi+i + xi

)X -I-+ai,k(
2 xi±i xi xi+1 xi

k-1
Xi+1 xi)k E(k,f xi-Fi 4-xyixiirx.x. ,(x), 2, i+,.J+aik(31k 22 j=o

50

(3.33)

(3.34)

and h(x) = o hi(x). One can show that h(x) is a continuous function of degree k 1.

With the assumption,
k-1

h(x) E F,10,

However, f (x) can be rewritten as

nI
f (x) = h(x) i,kilapk(xi) apk(x)]

i =0

[cr s(x') a s(-411

= h(x)
n-1

+E
2

xi)k[as(x)
Qs(-x))

i=0
n-1

+Ecti,k(xi+i
2)k [aPk(XI) aPk(X)]

i=0

Since on the right-hand-side of the above equation, the first term is in

Fa w wk u1 the second term is in .has n, and the third term is

(3.35)

(3.36)

in Tffl n, it
-Pk,

follows immediately that

m

f (x) To-1, , n , n .Fal
2=3

51

(3.37)

This concludes the proof.

Regarding the number of neurons used in the hidden layer and the type of corre-

sponding sigmoidal functions used, we have the following result.

Corollary 1 Any continuous, piecewise polynomial of degree m (m > 3) functions f :

R R with kinks x0 < x1 < < xn and constant values on (oo, x0) and on (xn,00),

can be realized by a 2-layer neural network with a hidden layer and a linear output layer.

The hidden layer has at most 2n neurons with activation function ap, for 3 < k < m and

aq, and n neurons with the activation function o-,

Proof. It is observed from Equation (3.36) that the recursion process can be repeated until

h(x) is a continuous, piecewise quadratic function. By Lemma 1, a continuous piecewise

quadratic function can be formed by a function in Y4-, and a piecewise linear function.

And the linear combination of all the continuous,piecewise linear functions interpolating

the same points (xi, f (xi)) for i = 0, I, .. , n are still continuous and piecewise linear.

Thus, in the hidden layer, at most 2n neurons with each of the activation functions apk

for 3 < k < m and 0q, and n neurons with the activation functions as, are needed. This

ends the proof.

3.3.2. Study on the properties of latitudinal neural net-
works

Definition I: Suppose f : [a, 1)] > R is a function. The total variation norm of f is

defined by IVIltv = supfto,t,, If (x2)- f (xi -i) I where a = t0 < t1 < < tm = b.

If I I f Iltv < 00, f is said to be of bounded total variation.

52

About the convergence speed of a neural network for approximation of a function

with a bounded total variation norm, we have Lemma 3 [53].

Lemma 3 Suppose f : (a, b] --> R is a function of bounded variation. Then there exists a

neural network f N(x) with n neurons in the hidden layer satisfying

111(x) fN(x)ilco <
n + 1

(3.38)

Consider a latitudinal neural network with some assumptions, its convergence prop-

erty is proven in the following.

Theorem 1 Suppose f : [a, b] R is a function of bounded variation and that IlfglItv <

clIfIl. where g E was and C is a constant. Then there exists a series of neural networks

JeN,i(x)'s with n neurons in the hidden layer and i = 1, 2, , M satisfying

M

111(x) EfN,i(x) I Ic. < (n + 1)m

Proof. Direct application of Lemma 3 to the neural network fN,1 yields

Ilf(x) fN,1(x)II. < + 1

By use of Lemma 3 again, we obtain

111(x) fN,1(x) fN,21I. n + 1

However, fN,1 E Yals,n. Then with the assumption, we have

111(x) fN,i(x) iN,211. < 1

Repetition of the above procedure gives

lif(x)_EfN,i(x)11.<
(n +1)m

i=1

This ends the proof.

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

53

In real applications, it is of interest to investigate a fairly large family of functions

which are differentiable up to some order. The following definition shows this fact while

noting that an analytic function f can be considered as f E Ck with k +oo.

Definition 2: Suppose f : Rn > Rm is a non-analytic function. If there exist a finite

positive integer set I = {ki I i = 1,2, , M; M < +oo} and the /-indexed functions

fict's such that f = Ezm=i fk,(x), where E Cki and fk, 0, then we say that f is of

finite smooth-decomposition with respect to the index set I.

It is shown in Lemma 4 [53] that differentiability of some degree helps reduce the

approximation error by a neural network.

Lemma 4 Suppose f : [a, b] -+ R is a C2-function. Then there exists a neural network

with n neurons in the hidden layer satisfying

sup 11(x) E aia(wix 001 < supa<x<b
2

If"(x)1
(b a) 2 (3.44)

a<x<b n
i=1

Consider a well-defined function f E C3; then we have the following results.

Lemma 5 Suppose f : [a, b] > R is a C3-function. Then there exists a neural network

with 3n neurons in the hidden layer satisfying

3n

sup 11(x) E aio-(w2x 001
2 supa<x If (3)(4

(b a)3 (3.45)
i=1a<x<b 3n3

where a may take the form of aq and as.

Proof. Define Oi = a + a), i = 0,1, ,n. Let f N be the piecewise quadratic

curve interpolating (00, f (00)), , (On, f (0n)). Through Lemma 1 and Corollary 1, IN

can be realized by a neural network with 2n neurons in the hidden layer with quadratic

squashing function aq, and with n neurons with the soft squashing function a,. On

[02_1, Oi], fN(x) can be expressed as fN(x) = f + (0i -1)(x ei_i) + Ki(x Oi-1)2

with Ki = [f(8%)-f(et-1)]-[°'°'-1]f'(°"-1) such that fN(19i) = f (0i). Define functions gi(x) =(61,-19._02

54

+ (x Oi_i) (0i-1) + 1)2 1" (0,_1). By Taylor's theorem, 1 (x) on [0i_1,0i] can

be expanded as f (x) = f (ei-1) + (x ei-1)f + (x-..11)2 1" (0,1) + (x111)3 f (3) (6)

with i E [ei- C Oij . Therefore, on [0i-1, (x) gi(x) = (X-93i!--1)3 f (3) (6)

Further, If (x) gi(x)I < suPxe[a,b] (x-or,)3 If (3) (6)1 = g (ei eii)3 supxE[a,b] If (3) (x)I-

Note that on [0i_i,

(x
ifN(x) 9i(x)I =1-Kt(x

2!
.f(ei-01 (3.46)

Since Ki = (9i-1), and by Taylor's theorem, f (0i) = f +

Oi-1) + (ei 2 -1)2f"(pi),it turns out that

Kt = 2f"(P2)

where pi E [Oi_ 1, Oij.

Thus,

I fAr (x) gi(x)I = I-p`" (Pi)(x (0i-1)(x oi-021

Then

f" (oz-1) = (tt2 0,1) f(3) (02)

where Oi E

Therefore,

1
IfN(x) gi(x)I = 2(x 0i_1)2(pi I f (3) (001

Since pi Oi_i < ei 0i_1, and If (3) (001 < suPxE[a,b] I f (3) (x)I, it then follows that

I fN (x) gi(x)1 <
2

eii)3 sup If (3) (x)I
xE[a,b]

From expressions of 1fN(x) gi(x)I and 11(x) gi(x)I, it turns out that

If N (x) f (x)I 5_ IfN(x) gi(x)I + If (x) gi(x)I

< 2(60i)3 sup If (3)(x)1
3 xE[a,b]

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

That is,
2 SUPa<x<b I f (3) (x)isup If (x) aia(wix 001 < (b a)3

i=1a<x<b 3n3

This completes the proof.

Now, we consider a more general case.

55

(3.53)

Theorem 2 Suppose f : [a, b] --4 R is a Ck -function (k > 3). Then there exists a neural

network with (2k 3)n neurons in the hidden layer satisfying
n

sup I f (x) aio-(wix 001
a<x<b i =1

(k + 1) sup a<x<b If (0 (x) I
(b a)k

nkk!

where a may take the form of erp for 3 < i < k and aq and a,.

(3.54)

Proof: The idea behind the proof to Lemma 5 also applies in the present proof.

Define Oi = a+72T, (b- a), i = 0, 1, , n. Let IN be the piecewise degree-k polynomial curve

interpolating (00, f (00)), , (On, f (On)). Through Lemma 2 and Corollary 1, f N can be

realized by a neural network with 2n neurons in the hidden layer with each of the activation

functions o-p, for 3 < i < k and o-q, and with n neurons with the soft squashing function

a3. On [0i-1, ed, fN(x) can be expressed as fN(x) =

Ki(x 0i)k-1 with Ki [f (°i)-f (°i-1)1 E1-12 (31i-(ei -ei _1)k-1

k-i fu)(ei-1) xDefine functions gi(x) = f (02;-1)+Ei=i.

f f (3) (x ei_i)i +
(oi-oi-iP

such that fN(19i) = POO.

Oi_i)3. By Taylor's theorem, f (x) on3

1

f) (3ei_1) (x ei --ei,(xv 0)k f(k)(6[0i_i, Oil can be expanded as (x) = f (0i_i) +E /1Z

with 6i E g [0i-1, Oil. Therefore, on [Oi_1, Oil , 1 (x) gi(x) = (s ci;!--1)k f (k)(ei)

Further, 11(x) - gi (x) I < supxE[a,b] (x-°11)k If (k) (6i)1 = k(ei ei_ok supxE[a,b] I f (x)

Note that on [0i-1, Oil,

ifN(x) gi(x)I IKi (x k-A.

(x

(k 1)! f (k-1) (ei -1)1

(3.55)

k-1 (0)

, and by Taylor's theorem, f (0i) =Since Ki = [f(90-1(°i--1] E,==? .2-1

xNk 7 f 7_1))02_,=i (0, 0,_1)i 1

where pi E [0i-i, 0i].

Thus,

Then

where Oi E

Therefore,

(k-1)! f (k-1) (pi), it can be readily shown that

1 (k-1)KZ =
(k 1)!

f (Pi)

I f N (x) gz(x)I =
(k

1

1)!
f (k-1) (Iti)(x

1

(k 1)!
f(I -1) (0 2-1)k-1

f (") (N) f(k-1)(0ii) = (pi Oii)f(k) (0i)

56

f (0i--1)

(3.56)

(3.57)

(3.58)

N (x) gi(x)! =
(k

1

1)1(x
0 i_i)k 0i-1)1 f (k) (001 (3.59)

Since Iii Oi_i < oi Oi_1, and If (k)(0i)I < suPxe[a,m1f(k)(x)I, it then follows that

IfN(x) gi(x)1 < (k
1

1)!(0i
0 i- i)k sup I f (k) (x)I

xE[a,b]

From expressions of I fN(x) gi(x) I and 11(x) gi(x)I, it turns out that

I f N (x) f (x)I c I f N (x) th(x)I + 11(x) gi(x)I

< k 1
(0 0- i)k sup I f (k) (x) Ik! xE[a,b]

That is,
n

sup I f (x) E aio-(wix 001
a<x<b

(k ± 1) SUPa<x<b I f (k) (x)I
(b a)knk

This completes the proof.

(3.60)

(3.61)

(3.62)

57

Theorem 3 Suppose f : [a, b] R is a function of finite smooth-decomposition with

respect to the index set I = fki I i = 1, 2, , M; M < +oo }. Then there exists a

latitudinal neural network structure whose each component, a sub-neural network fN,kti,

either has (2ki 3)ni neurons for ki > 3 in the hidden layer or has ni neurons for ki = 2

satisfying

M

J N ,ksup If (x) f
a<x<b i=1

M
(ki + 1) SUP < <b If(ki) (X)I5_ E ax_

(b a)ki
i=1,ki >3 niki ki!

M SUpa<x<b
ki
If (ki)(x)1

(b a)k
i=1,ki=2 ni

Proof Applictions of Lemma 4 and Theorem 2 will immediately give the proof.

3.3.3. General results on multi-dimension cases

(3.63)

Consider a function f : Rrn Rn. Since this function can be viewed as n functions

from RI' R, without loss of generality, we only consider a function from Rm > R.

Suppose there exist continuous partial derivatives of up to order n 1 in a neigh-

borhood of xo for function f (x) with a compact support 12 and x E ti C Rm. x can be

written in terms of its components, that is, x = [xl - - xm]T .

First of all, suppose f (.) e C2. consider the first-order expansion of f (x) at xo. we

have

f (x) = f(xo) + (
i=1

xo) b7).i (x0) + R1 (3.64)

where R1 = 2, (E::n±i (xi xt)),Z)2f (xo + O(x xo)) (0 < B < 1) and xo E

Define g(x) = f (x0) + (E7_1(xi xt))4-) f (x0). Note that g(x) is an affine-linear

function, and thus can be implemented by a constructive neural network [47]. This im-

plementation, however, is only valid in a small neighborhood of xo. To make a proper

58

approximation in the region Cl of interest, tessellation of the region is performed. Sup-

pose that the support 12 is compact. This implies that each xi E [Xi mxmi ax]. Tes-

sellation of the support 11 generates many non-overlapping hyper-rectangles =

x x2,- g] x x xmA] c S2 where xi,jk = xmi + (jk 1) Xila;r1-xirni in

and Ni is the number of grid points for the ith axis. On each of such hyper-rectangles

, expand function f (.) around xj02.i. E .jrn , which can be just one vertex

of this rectangle. Let gili2".jrn (.) define the affine linear part of f (.) around x3122"*.im. Note

that (.) on the support of wilj2"'im can be implemented by a constructive neural

network such that on the grid points, the neural network generates outputs which exactly

match the function values of f (.), and for points inside w31j2.-jrn, linear interpolation is

performed, and further for points outside the constructive neural network gen-

erates outputs of a value 0. Piecewise linear approximation by a number of constructive

neural networks can then be achieved. The approximation error can be given by

1 mR1 = _(E(xi x2,3132-.3.)) f (x3132-.3m + 0(x (3.65)
2! axti=i

where 0 < 0 < 1, and xi,j1i2"7m designates the ith component of xiljim.

Since x, x21j2.17n E wjli2jm 1x1 xili1j2jm I < Ximax
N

Ximtin
-1

Since f (.) E C2, all the second-order partial-derivatives are bounded by
a2f

B1 =--- suPxEct; i<i,i<m axiax3

Thus,
m

1 -- Xi Ximax min)2R1 <
2! 1

(3.66)

Note that w31/2"-im can be decomposed into at most m! hyper-triangles on which a

constructive neural network granule (NNG-t) can be applied to approximate the function

f (.) defined on it. Therefore, at most IT 1)m! constructive neural network granules

are needed. As is detailed in [47], a constructive neural network granule NNG-t is a

neural network with m hard-limiting neurons with an activation function of ah(.) and

1 soft-limiting neuron with an activation function of (73(.) in the first hidden layer, and

59

2 soft-limiting neurons in the second hidden neuron, and one output neuron performing

linear operations.

This leads to the following conclusion:

Proposition 2 Suppose that function f(.) : S2 C R with a compact support SZ is

a C2 function. Then there exists a constructive neural network NN(.) which consists of

at most1171_1(Ni 1)m! constructive neural network granules NNG-t such that

m xi
IN N(x) f (x)1 < B1(E max in)2

2! 1

axax2where xmax = supxest x2; x min = infxeci x2; and B1= supxEQ;1<i,j<rn

(3.67)

Next consider function f (.) E C3. According to Taylor's Theorem, expansion of f (x)

around xo yields

2

f (x) = f (x0) + E 7(E(xi x20)67)3f (xo) + R2 (3.68)ji i=i

where R2 = st (Eim_l (x x20)Z-)3 f (xo d- 0(x xo)) (0 < 0 < 1) and x0 E

\ 1 r\--.7nDefine g(x) = f (x0) + Lai=i linear(x0). Note that the affine

part of g(.) can be realized by a constructive neural network composed of a number of

NNG-t's. We now deal with the quadratic part of g(.), which is denoted by gq(.). gq(.)

can be rewritten in a matrix form. That is,

gq(x) = xTGx (3.69)

There exists an orthogonal matrix U such that A = UT GU is a diagonal matrix.

Hence, by means of a transform x = Uz with z E Rrn function, function gq (x) can

be expressed in terms of z such that gq(x) = zr Az = Ai4 where zi is the ith

component of z. The support Si is tessellated into a number of non-overlapping hyper-

rectangles co2122im defined previously. On each uii1j2--17., second-order expansion of g(.)

and the corresponding orthogonization transformation Ui02ini are performed.

60

As we discussed in the previous section, the 4's terms can be implemented by means

of a neual network consisting of neurons with a quadratic squashing activation function

aq(.). It should be noted, however, that the non-overlapping hyper-rectangles in terms of

x may no longer be non-overlapping hyper-rectangles in terms of z. Therefore, a binary

logic is necessary to deal with this situation such that when x is inside co3132Jrn , the binary

logic turns on so that the quadratic terms are included to give a quadratic approximation

but when x is outside L031j2...jm the binary logic turns off so that the quadratic terms are

not included to give a total output of 0. Fortunately, as shown for a one-dimensional case

in the previous section, the output of the far left soft-limiting neuron in the second-hidden

layer of an NNG-t precisely performs such a logic since the total input to the activation

function o-3(.) of this neuron is always an integer resulting in a binary logic even though

the activation function itself is not a binary logic at all. The combination of the neural

network achieving affine-linear approximation and the neural network achieving the pure

quadratic approximation results in a neural network granule, which is called a modified

constructive neural network granule MNNG-t if this neural network granule has a desired

support, hyper-triangle or MNNG-r if this neural network granule has a desired support,

hyper-rectangle.

The resulting approximation error can be given by

m
R2 =

3!
(E(jrn)

)3f
(xj1:72irre

axe
+ O(x)) (3.70)

Since x, x132 jm E Ixi xi, 1, 2 jm I < Ximax Xmi

I Ni 1

Since f (.) E C3, all the third-order partial-derivatives are bounded by

(93 fB2 = SUPsE52;1<i,j,k<m axit9x3 axk -

Thus,
m

Xi
R2 73 B2 (E maNx 1min)

3

i=1

We obtain the following conclusion:

(3.71)

61

Proposition 3 Suppose that function f (.) : S2 C Rm R with a compact support 12 is

a C3 function. Then there exists a constructive neural network NN(.) which consists of

at most Ilim_i(Ni 1)m! modified constructive neural network granules MNNG-t such that

771NN(X) f (x)I v- ax Ximin)3
I < B2(2_,

13!

03 fwhere xrni supxen x2; infxEc x2; and B2 = SUpx kEn; 1<i,.7, <rn Oxi0x3axk

(3.72)

It is desired that instead of using neurons with oq(.) as the activation function for approx-

imation of the quadratic polynomials, using neurons with an?, (n > 3) as the activation

function for approximation of higer order polynomials could be done. It turns out that

such a generalization may not be easily implemented. The reason may be that use of the

orthogonal transformation for quadratic polynomials can not be generalized to higher-

order terms.

Note that for quadratic nonlinear approximation, there is no need for the cross-

product terms to be inputs of a neural network. However, to deal with the case with

higher-order expansion of a function, using the cross-product terms as inputs to a neural

network may be necessary, which is illustrated next.

Suppose f (.) E Cn+1 with a compact support Q. According to Taylor's Theorem,

expansion of f (x) around xo yields

n

(x) = f (x0) + E ,(E(x2 f (x0) Rn (3.73)
3=1 2=-1.

where Rn = (ETLi (xi xio)h-)(n+l)f (xo 8(x xo)) (0 < 0 < 1) and xo

Define g(x) = f (x0) + Ejn=i (Eimd (Xi f (x0). Note that there are non-

linear terms, cross-product terms, which can not be well approximated by NNG-t's.

As discussed before, the support 12 is tessellated into a number of non-overlapping

hyper-rectangles w302Jrn defined previously. Each hyper-rectangle is supported by 2m

vertices. On each hyper-rectangle, a constructive neural network granule (NNG-r) can be

62

utilized to give a proper approximation to g(x), though it requires all the cross-product

terms as inputs. Refer to reference [47] for details. The resulting approximation error can

be given by

m ,Rn =
(n + 1)!(E(x

xj,i1J2-.3.)_) 0+1, , f 4 4

aXii=1

Since x, X31j2.-im E 1x2 1 < .

Since f (.) E Cn+1, all the (n + 1)th-order partial-derivatives are bounded by
on+if

B, = SUpxEn; 1<i1 i2, .. in±i <7n oxii axi2 where 1 < ii, 7:2, in±i < m.

+19(x xilj2-3m)) (3.74)

Thus,
1 m xi xi

< Bn(v max mzn)n-1-1

(n + 1)! Ni -1
i=1

We obtain the following conclusion:

(3.75)

Proposition 4 Suppose that function f (.) : S2 c Rm R with a compact support 52 is

a Cn+1 function. Then there exists a constructive neural network NN(.) which consists

of at mostl-Pil 1(N, 1) constructive neural network granules NNG-r such that

m
11NN(x) f (x) I < Bn (2_,

x
ma

1rni

i =1

where ximax = supxEQ x2; x2l,ein = infxEn x2; and

an+1 f
Bn = suPxEn; 1<i1 i2, in±i <772 axii axi2 with 1 5 22 in-1-1

3.3.4. Comments

< m.

(3.76)

This section demonstrates the relationship of neurons used in the hidden layer and

the achieved precision. Further, by using a latitudinal neural network architecture, the

approximation of a given function, with the finite smooth-decomposition property, can

be effectively accomplished in a constructive manner. The significance of the achieved

theoretical results is that it may lay a foundation for better modeling in identification and

control.

63

3.4. Conclusions

The architecture of latitudinal neural networks is proposed, and its relevant conver-

gence property is investigated, and further the approximation of a given function, with the

finite smooth-decomposition property, can be effectively accomplished in a constructive

manner. The theoretical results are generalized to multi-dimension cases. They may be

useful for dynamic system modeling or static mapping.

64

4. LOAD MODELING AND VOLTAGE STABILITY
ANALYSIS

4.1. Introduction

The power flow based static techniques still prevail on voltage stability analysis in

many utilities since they are simple, fast, and convenient to use [54, 55, 56]. The quasi-

static techniques (e.g.,small-disturbance analysis) have also been widely applied [57, 58,

59]. Those static or quasi-static methods are used either for estimating the static voltage

stability indices or determining the robustness and stability patterns of the systems to

be examined. Without question, they are very useful for on-line assessment which will

give operators rich information about the current operation status of power systems

However, the disadvantages are also apparent; for instance, the static-technique based

voltage stability analysis needs further confirmation by using time-domain simulation.

And voltage collapse may occur well before the critical point predicted by steady-state

power flow study. More importantly, with dynamic interaction of various loads with

different characteristics initiated by heavy load buildup, line trip, etc., still using steady-

state or quasi-steady-state analysis may give misleading results.

It should also be noted that maintaining a good voltage stability profile does not

automatically guarantee voltage stability and that voltage instability need not be associ-

ated with low voltage [60]. For the former case, there are many such situations that no

abnormal advance warning appears for bus voltages but all of a sudden voltage instability

or even voltage collapse comes up. For the latter case, it is interesting to see that a voltage

collapse occurred in Western France on January 12, 1987, but the voltages stabilized at

low levels rather than completely collapsing [14].

65

Voltage instability covers different time frames. Transient voltage instability is usu-

ally closely associated with regular generator angle stability, which has been well studied

(e.g. [61] and therein). But traditional voltage collapse or related voltage instability also

may be more closely associated with loading dynamics. This kind of voltage instability has

stimulated extensive research on voltage stability analysis methods involving quasi-static

power flow or continuation power flow [55], snapshot method [62], modal analysis[56],load

dynamics [63, 64], energy method[54, 65], static bifurcation theory's application to power

systems [66, 67] and so on. By means of many methods listed above (e.g., continuation

power flow), voltage collapse is viewed as a rather slow dynamic process, and can be

treated as a quasi-static process or quasi-steady state process, which equivalently treat

loads as constant load, constant impedance or, at worst constant current [60]. Such a

viewpoint of load is very indicative in many publications [65, 68, 62] which, however, ig-

nore load dynamics. As is argued in [69], the use of static load model for loads, combined

with the dynamics of underload (or overload) tap-changer transformer, will give rise to

rendered dynamics [70]. This, however, does not essentially change the feature of loads

which are still static in nature. The importance of using a dynamic model for dynamic

voltage stability analysis is further discussed in [71, 72, 73, 74]. A static load model in-

corporated into dynamic voltage stability analysis may conceivably lead to impractical

results.

Therefore, static techniques and dynamic methods should be coordinated to give

accurate and timely results.

To better understand the mechanisms of voltage collapses, the need for dynamic

voltage stability analysis is most important [14, 63]. It is stated that voltage collapse is

a dynamic phenomenon in nature, and that it is closely associated with overall (or pre-

dominant) dynamic characteristics of loads connected to a specific bus (say, a weak load

bus) [14]. With complex composition of loads with different dynamics, it may be very

difficult, if not impossible, to establish the time-varying dynamic interaction of all those

66

loads connected to a load bus. However, modeling of each and every load component is

not practical. Use of aggregate models describing the overall dynamics might be possible.

Motivated by this fact, the dynamics of all down-stream loads and voltage control equip-

ment were modeled as a generic dynamic load model with many factors contributing to

voltage collapse simplified or ignored [75]. Basic load dynamics and models are studied

in [63, 75, 64].

It should be emphasized here again that load characteristics should be very im-

portant when voltage instability or voltage collapse is involved. How to deal with load

characteristics in different stages of power systems is critical for better voltage stability

analysis.

Usually the component-based load model is used in some utilities. This load model-

ing approach is very much dependent on the accurate statistics of various power-consuming

devices. Because of its simplicity, a slightly more general form of exponential load models

is widely applied. This choice, however, has no theoretical guarrantees since a combination

of some exponential terms is often not likely to give a good approximation. Furthermore,

dynamic loading characteristics is too complex to be expressed in a simple analytic form.

Neural networks may be an appropriate choice. The use of a neural network for ap-

proximating a first-order load model is suggested in [21]. The aim of this chapter is to

propose to use a recurrent neural network which is capable of approximating a high-order

load model in general, and then to incorporate such a neural network model in voltage

stability analysis.

In this chapter, neural networks will be applied for modeling the static load charac-

teristics and dynamic load flow. These models will be used with the conventional power

flow study. The resulting Jacobian will be used for judgement of power system stability.

In a word, the whole methodology will make use of a neural network model for voltage

stability analysis and assessment. In the remainder of this chapter, some representa-

tive static/quasi-static/perturbation analysis methods are presented in section 4.2.. Load

67

modeling through neural networks is discussed in section 4.3.. With the resulting neural

network load models, dynamic and static voltage analyses are presented in section 4.4..

Finally, some concluding remarks are given.

4.2. Typical voltage stability analysis

In this section, static, quasi-steady state, and dynamic voltage stability analyses will

be presented. It will be shown that simple checking with either the relevant eigenvalues

or the sign of some parameters will provide information about the operation status of the

system. As is mentioned before, voltage instability may occur before the predicted critical

point.

4.2.1. Static voltage stability analysis

Static voltage stability analysis is important. It is particularly true when on-line

dynamic voltage stability assessment is not available. Typical static techniques may in-

volve a conventional power flow study. P-V or Q-V curves should be useful in power

system planning. It is well understood that reactive power transmission is inefficient for

transferring high real power, and that adequate reactive power supply nearby the heavy

loading area is very helpful for maintaining good voltage profiles. The P-V or Q-V curves

and their sensitivities (_g_f; or aa?) gives operators information on the relative robustness

of load buses and on "how far away" (in some physical sense) a specific bus voltage is

from the potential voltage collapse point. To this end, there are also many voltage stabil-

ity indices calculated by estimating the distance from the current operation state to the

maximum voltage stability limit point or sometimes the maximum loadability limit point,

either of which may coincide with the other in some cases, and is usually called a singular

point in that the Jacobian becomes singular at this point such that it might be impossible

68

for conventional power flow study to go further. Modified power flow study is needed. A

more effective approach modal analysis is proposed in [56], which in some cases can

provide a clear indication of weak voltage areas while V-Q sensitivities method may not.

A brief description of this method is given in the following.

Generally, steady state power flow at each bus k can be described by

{Pk = f (v, 0)
(4.1)

Qk = g(v, 0)

where Pk's, the real power, and Qk's, the reactive power, are functions of the magnitude

vector v and phase angle vector 0 of relevant bus voltages.

Conveniently, these equations can be rewritten as

S = h(v,0) (4.2)

where S = [P Q]T , h = [f g]T ; P is a row vector whose kth componenet is Pk; Q is a row

vector whose kth componenet is Qk.

The linearized version of Equation (4.2) is given by

SS = JSx (4.3)

where SS = [SP oQ]T; x = [80 6v]T; J = g is the Jacobian of function h with respect to

x.

It is a common consensus that the static voltage instability is usually associated

with insufficient supply of reactive power. Therefore, to relate the variations of reactive

powers to the variations of voltage magnitudes, let SP = 0. It then follows that

15(2 = JROv

where JR = -2,9191, a' 90 (g9)--1 g is the reduced Jacobian.

Diagonalizing JR to diagnonal matrix A by using a similarity transform yields

JR= 0A1P

(4.4)

(4.5)

69

where q5 and are square matrices of full rank such that 00 = I with I designating the

unitary matrix.

That is,

= 0A-10

It follows that

(4.6)

Sy = E
A

(5(2 (4.7)

where Oi is the ith column vector of 0; ?pi is the ith row vector of 0.

If 8Q 11::11' then 6V = Ei
11::11=

Remark: (1) Each mode corresponds to an eigenvalue Ai. It can be seen that

if Ai = 0, then any change of reactive power vector in the dirction of the associated

eigenvector will lead to infinite change of voltage magnitude vector. This would be exactly

the voltage collapse point according to this linearized analysis.

(2) If all the eigenvalues Ai's are positive (they are real since the reduced Jacobian

matrix is symmetric), then the power system under investigation can be considered stable.

(3) Sensitivities can be readily shown to be = OkzA iPik with fki and Pikacik L--/2 ,

representing the kth element of Oi and /Pi, respectively.

(4) Participation factor Pki

i.

= OkoPik determines the bus k's participation in mode

(5) Other sensitivities also can be obtained. That is, t = Ei . These

sensitivities reflect how any reactive power of one bus influences any other bus voltage.

An energy method [54, 65] is noteworthy in that it gives the energy difference be-

tween the operating point and the likely voltage collapse point. This method is associated

with multiple power flow solutions. With the given initial operating conditions, it usu-

ally is possible to determine a unique stable equilibrium point (SEP) of interest while

the number of possible unstable (and stable) equilibrium points (UEP) may be very large.

Generally, for n bus power systems, there are 2'1 possible solutions. With more practical

70

considerations, this large number can be reduced to n 1 for UEP (saddle points). It is

interesting to note that at the point immediately before collapse only a pair of closely lo-

cated solutions exist [54, 65]. And an algorithm proposed in [76] can be used to locate the

low voltage solution paired to the high voltage solution, which requires a certain amount

of time equivalent to that for convention power flow. The energy difference associated

with such a pair of closely located solutions is given further in [76].

By such an energy measure, when power systems are operating at some point very

close to a possible voltage collapse point, operators may know by how much more power

injection the power systems may escape from such a situation. However, it does not

directly answer such questions like "how much real/reactive power is needed and how are

these powers distributed?".

An interesting application of neural networks to voltage stability assessment can

be seen in [77]. It is based on the energy method mentioned above. A feedforward

neural network with backpropagation algorithm is trained to approximate the mapping

f R2n R with the voltage stability margin VSM = f(v, 0) where v is the voltage

magnitude vector and 0 is the voltage phase angle vector. Function f can be considered

as composite h(g(.)) of function g and h. Here, functions g and h can be expressed as the

following mappings.

{(Pd, Qd,Pg, Qg, Vg)} {(vs, as, vu, au)}.

h : {(vs,ois,vu,au)} Energy Margin.

Here Pd,Q d,Pg ,Q g and Vg are real power demands of loads, reactive power demands

of loads, real power supplies of generators, reactive power supplies of generators, and

voltages at the generator buses, respectively; vs and as are the magnitudes and phase

angles of voltages corresponding to a stable solution; and vu and au are the magnitudes

and phase angles of voltages corresponding to an unstable solution.

71

By calculating sensitivities through other methods beforehand, the number of input

variables can be very much reduced. The results are shown to be very much the same as

the case without input number reduction [77].

4.2.2. Quasi-steady state voltage stability analysis

To overcome the difficulty encountered by conventional power flow at the voltage

collapse point, and to consider the slow changes in both generation and loading, a continu-

ation power flow method [62] is applied. To reflect the slow changes in both generation and

loading, a single load parameter A is assumed so that A = 0 corresponds to the base load

flow and A = A corresponds to the critical point (a saddle point). Then the generation

and loading may be modified in such a way that

Pdi = Pdio AK-diSobasecos(0i);

Qdi = Qdio AKdiS8base sin(0j);

Pgio(1 Alci) where Pdio, Qdio and Pgio correspond to real power demand,

reactive power demand, and real power generation in the ith bus for the base case,

respectively;Kdi and Kgi stand for load and generation change rate in the ith bus, re-

spectively; /pi represents load change power factor angle; and Sobase is a given quantity of

apparent power.

Then the power flow equations can be given by

0 = Pgio(1± AKgi) Pdio A(KdiSobasecos(Pi) E tvitrvi I coo; Sj Oij) (4.8)
j

and

0 = Qgio Qdio A(KdiSaase sin(Oi) E Sj (4.9)
j

The above equation can be rewritten in a compact form such that

F(S,v, A) = 0 (4.10)

72

where 6, v and A represent generator angle vector, bus voltage vector and load parameter,

respectively.

It follows from dF = 0 that

[Fe Fv FA]

The linear prediction can be then given by

pew

vnew

new

=

bold

void

Hold

d6

dv

dA

+a

= 0 (4.11)

d8

dv

dA

(4.12)

where a is a weighting coefficient.

Another important step in continuation power flow is correction. The prediction

and correction procedures alternatively proceed. When A approaches Ac, dA will approach

zero, and then may change sign after the critical point is passed. Thus, the critical point

can be checked out by noticing that a test of the sign of the dA component will reveal

whether or not the critical point has been passed.

4.2.3. Dynamic voltage stability analysis

As is well known, generally there are two kinds of disturbances which may give rise

to voltage instability, event driven ones and load driven ones. As is pointed out in [71],

traditional voltage instability is manifested at load buses, and is mainly load driven.

In [78], it is stated that event driven causes may include generator outages, short-circuits

caused by lightning, sudden large load changes, or a combination of such events.

In [66], bifurcation theory and perturbation methods are used to discuss voltage

stability and categorize voltage stabilities into four kinds, i.e., Type I instability, Type

73

II-1 instability, Type II-2S and Type II-2D instability. Power systems can sometimes be

divided into two subsystems: slow response subsystem and fast response subsystem.

An underload tap-changing transformer may be an example of slow response subsys-

tems while loads with fast response dynamics, generator and AVR may be fast response

subsystems. If both the slow response subsystem and the fast response subsystem are

stable, then the whole power system has the ability to restore the voltage after voltage

dip and the associated voltage stability is called Type I instability. Otherwise, the re-

sulting voltage stability may be called Type II instability. For this case, voltage collapse

may occur. The voltage stability associated with slow response subsystems is called Type

II-1 instability. The voltage stability associated with fast response subsystems is called

Type 11-2 instability, which is further categorized into two kinds, II-2S and II-2D, which

are associated with static bifurcation and dynamic bifurcation, respectively. These results

are very useful under some specific occasions, e.g., known load distribution. However,

there is no systematic way for recognition of fast subsystems and slow subsystems, and

the division of fast subsystems and slow subsystems may be changing with time or by

occurrence of contingencies. Again, load dynamics is not considered in [66].

4.2.4. Comments

In section 4.2., several voltage-stability analytical methods are introduced. They are

essentially either static techniques or small signal perturbation analyses. Yet the dynamics

of loads has not been considered. At best, the rendered dynamics [70] was considered. As

is known, the load dynamics contributes most to the load side voltage instability problems.

Therefore, inclusion of load dynamics in voltage stability analysis is important. This will

be addressed in more detail together with the study on the load modeling issue.

74

4.3. Load modeling

A load is defined in [79] as such: a load is a portion of the system that is not

explicitly represented in a system model, but rather is treated as if it were a single power-

consuming device connected to a bus. This indicates that an aggregate load model may

be used, though the precise load model is usually not available. Use of such aggregate load

models has been frequently recommended in the literature since voltage stability analysis

would otherwise be made impossible. Therefore, load modeling needs to be addressed for

voltage stability analysis.

4.3.1. Static load statistics

The neural network has been widely applied as a computing technique. As has been

mentioned before, one standard application of neural networks is to be used as a function

approximator. Therefore, they can be used to model the static load characteristics which

is usually represented by polynomial models. Generally, a neural network can give a better

approximation than mere polynomials.

As is well known, a static load model is usually expressed as a function of the

voltage magnitude and the frequency of the voltage at a specific bus to which the load is

connected. That is, static load characteristic may be given by

and

P = F(v, f) (4.13)

Q = G(v, f) (4.14)

where P and Q are real power and reactive power at some bus, respectively; v and f

are associated voltage and frequency, respectively; F(.) and G(.) are generally nonlinear

functions.

75

We are more concerned about voltage stability than frequency stability since usually

voltage decays much faster than frequency does during power system instability. Thus,

the above equations may be approximated for short duration by

and

P = F(v)

Q = G(v)

(4.15)

(4.16)

A feedforward neural network can be applied to model these two nonlinear functions. Since

sensitivities are useful in power flow study, the calculation of the sensitivity of the output

with respect to the input of the neural network should be performed, and is addressed in

the following.

Let the input be x = [xi x2 xm]T E RM to a neural network No-di°,121:::::,dii (refer

to section 2.2.2 of chapter 2 for notations used here) with weights wizo's for i = 1, 2, , d1,

j = 1, 2, and / = 1, 2, , L, its output y = [yi y2 yN]T c RN. Note that for

the representation of the neural network do = M and di, = N. Then the sensitivity as
UXk

for 1 < i < N and 1 < k < M can be computed by applying the chain-rule.

Let si designate the output vector of layer / (/ = 1, 2, , L 1). Then

ayi
axk

ayi
asL-L1

E asL-1
mL-1=--1 ntL -1 axk

4-2 d1 ayi aSL-1 e2 as1E E E .L_1 772 2 rni
as1 axk

asrnL1-1 asm12-2n1L-1 n1L-2=1

(4.17)

Let the derivative of the activation function a1(.) for layer 1 = 1, 2, , L be denoted

by gt(aj(.)). Note that

ayi
wi,mL_Ig

L
(yi)a Lm-L1

asp ei ,
aQi_i k°17//111)77/1,n11-1 for / = L, L 1, , 2

-774-1

and

asml

axk = gl (SIMi)Wmi,k

Therefore, the following results

ayi
axk

dL 1 dL - 2 di

E E E
Tr/L-1=1 rnL-2=-1 mi =1
gL (yi)gL-1(smL-L1) g2 (s m2 gl (sml 1)

Wm?: ,ML - WML - ,ML - 2 WM2 7M1 Wm1,k

76

(4.18)

Note that snit = + KO for 1 = 1, 2, , L 1 with 8(3) = x3 for

1 < j < M, and Mini designating the bias for the math neuron in layer 1= 1, 2, , L.

Thus, all semi's for 1 = 1, 2, ,L 1 are continuous functions of x, and their values

for a specific x can be computed in a forward manner, as what is done for the feedforward

phase in the backpropagation algorithm.

Hence with the sensitivities available for real power and reactive power of a load

with respect to the voltage magnitude at the bus where the load is connected, modal

analysis can be performed, and information about the relative robustness of load buses

can be obtained. This will be detailed in next section, where the static and dynamic

voltage stability analyses will be made.

The standard IEEE 14-bus system, shown in Figure 4.1 is used for simulation.

Uniformly distributed loads are added to the original load at bus 14. The Newton-Raphson

method is adopted for power flow study. For random loads, the voltage magnitudes at bus

14 can then be obtained as shown in Figure 4.2. The use of a one hidden layer feedforward

neural network gives the approximation results in Figure 4.3.

77

5

6

11 12

10 14

13

1 --- Slack Bus; 2,3,6,8 --- PV Bus; all others PQ Bus

FIGURE 4.1: IEEE 14-bus system

4.3.2. Load dynamics modeling

Most physical system dynamic behaviors can not be described in terms of a static

mapping from the input space to the output space. One way out may be the use of

recurrent neural networks [32, 31] which can be state-feedback based, shown in Figure 4.4,

or output-feedback based, shown in Figure 4.5. The complex input-output dynamics can

be estimated and approximated by thses two kinds of neural networks. A natural choice

of the performance criterion for such neural networks would be the weighted summation

of the square of the error between the target sequence and the output sequence of the

neural networks. The dynamic back-propagation algorithm [32] is very useful for training a

recurrent neural network to follow a pre-specified temporal output sequence if the network

is fed the pre-specified input sequence. Again, power systems and load flows are essentially

78

dynamic and too complex to be expressed in a simple form, but recurrent neural networks

may be an appropriate option.

Power system loads or demands are dynamic in nature. Their dynamic characteris-

tics are critically important for making predictions about the operating point of the power

system and assessing the voltage stability limits. The load composition, however, is so

complex and time-variant that a simple analytic form for the aggregated load dynamics

is not likely by traditional methods. Due to the diversity of the dynamic characteristics

of all possible power-consuming devices connected to a voltage bus, it might not be possi-

ble to obtain satisfactory results with simple linear models (either time-invariant or time

varying). In [64], simplified nonlinear dynamic loads in power system are modeled by

using a first-order differential equation. The model in [64] (similar model in [75]) is such

that

Tpf'd Pd = Ps (V) + kp(V) (V) (4.19)

where Pd and V are for power demand and bus voltage, respectively. Ps is denoted steady-

state power. Such a model is proposed to give some insight into the dynamic response of

the power when the voltage magnitude is suddenly reduced to a lower value. This model

might not be useful for unknown load dynamics. Based on the robustness and fault-

tolerance capability, and good approximation capability of neural networks, they have

been applied successfully to power forecasting. It also was used to model the complex

dynamics of overall load connected to a voltage bus [21]. Such model is also based on the

first-order differential equation

= f (x, u) (4.20)

A discrete version of such a model is

xk = f (xk-1, uk) (4.21)

where x stands for active power or reactive power. u denotes the voltage.

79

It is clear that a mathematical representation of load dynamics is critical for voltage

analysis. The above models are only of a first-order approximation.

In this section, we will discuss the following more general model.

f (x(N) , , x, u(m) , u) = 0 (4.22)

where x stands for active power or reactive power; u stands for bus voltage.

For the discrete case,

Then

f(Xn-1NT, Xn,tin-M nn-1, Un) = (4.23)

Assume xn can be expressed in terms of other arguments in the above equations.

xn = g(Xn_i, , Xn-N, Un, Un-1, Un-M) (4.24)

Note that the above model is a dynamic model for modeling purpose. If a prediction

model is in need, then the following model may be used.

Xn = g(Xn-1, Xn-N, tin-1, Un-M) (4.25)

This is a one-step ahead prediction model, which describes the structure of neural networks

shown in Figure 4.5.

For a multi-step ahead prediction model,

Xn±p = g(Xn, , Xn-N, Un, nn-M)

where P is the prediction step.

(4.26)

80

0.6

30.5
a.

6 0.4

a 0.3
a)
cr

0.2

0.1
0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Voltage (pu)

Uniformly distributed load at Bus 14

0.2

a
'5 0.15

0
a.

0.1
os

cc

0.05
0.78 0.8 0.82 0.84 0.86 0.88 0.9

Voltage (pu)
0.92 0.94 0.96 0.98

FIGURE 4.2: Real/reactive power vs voltage magnitude

Our neural network model is based on Equation (4.24). Since the output of the

neural network is dependent not only on the previous voltage, but also on its own previous

values, it has been called a recurrent neural network, and can be used to model complex

system dynamics [80, 33].

Note that a neural network model for equation (4.24) can be obtained either by dy-

namic backpropagation or plain backpropagation. For the former case, the neural network

is trained in parallel model; for the latter case, the neural network is trained in series-

parallel model. Also both output-based recurrent neural network and locally recurrent

neural network are trained over a given set of data.

Consider a locally recurrent neural network with one hidden layer. It can be viewed

as a state-space model, which is illustrated in Figure 4.4.

x(k + 1) = f (x(k), u(k)) (4.27)

81

0.7

s0.6
o.

0.5
0
0
a 0.4

cc
0.3

0.2
0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Voltage (pu)

Real power model at Bus 14 by NN (10-1)

0.2

'30.18
0.

1 0.16

8.0.14

0.12
a
a
Q 0.1

0.08
0.78 0.8 0.82 0.84 0.86 0.88 0.9

Voltage (pu)

0.92 0.94 0.96 0.98

FIGURE 4.3: Neural network model for load at bus 14

y(k) = g(x(k)) (4.28)

There are times at which it may be necessary to use a locally recurrent neural

network with two hidden layers. Such a model is also a state-space model but with more

complexity.

x(k + 1) = f (x(k), u(k))

z(k + 1) = g(z(k), x (k))

y(k) = h(z(k))

Let X(k) = [x(k)' z(k)']', then the first two equations can be combined

X (k + 1) = F (X (k), u(k))

The output of the recurrent neural network is

y(k) = h(X (k))

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

82

FIGURE 4.4: Recurrent neural network

A set of data [14], shown in Figure 4.6, which was recorded when voltage dip occurred

first at a specific voltage bus, is used for training neural networks. Since normally bus

voltages are within the pre-designated limits, say ±5%, the training may not be so efficient

if no pre-processing for the original data is performed. Under such a consideration, a

standard normalization is applied befor neural network training. Let Xb be the original

data. Then the post- processing data Xa is

Xa = (Xb Xb)/var(Xb) (4.34)

where Xb is the average of the given data, and var(Xb) is the standard deviation. The

normalized data to be used in training neural networks are shown in Figure 4.7.

First, model (4.24) is used for training a recurrent neural network through batch-

mode training. Such a training involves the choice of number of layers of neural networks,

and number of neurons in the hidden layers. Many different neural network configura-

83

x.

NN

yn

FIGURE 4.5: Output-feedback neural network

tions are tested. And the common logistic sigmoidal function and tan-sigmoidal function

are used for simulations. From the experiments, it is seen that two hidden layer neural

networks are more efficient that one hidden layer neural network if both kinds of neural

network structures have approximately identical number of neurons (because there are

more connections in general for the former, hence allowing more freedom for adjustment

of parameters involved). The training error can be reduced by training more time for

a fixed neural network structure. In fact, the training model is essentially input-output

modeled by feeding the previous outputs into the neural network to model the dynamics of

the concerned process. It should be noted that of course, the proposed latitudinal neural

network structure in chapter 3 can be used for reduction of the training error.

118

116

114

1120

8.50

2.3

5
2
ill 2.2

; 2.1

20

100 200 300 400 500 600 700 800 900

100 200 300 400 500 600 700 800 900

100 200 300 400 500

time (second)

600 700 800 900

84

FIGURE 4.6: Original data for voltage, active/reactive power (sampling interval: 9 sec-
onds)

Secondly, a locally recurrent neural network with one hidden layer neural is trained,

in which 20 hidden neurons are used. The experimental results are shown in Figure 4.8

and Figure 4.9 after de-normalization.

It is also possible to train a locally recurrent neural network with two or more hidden

layers and even with cross-talk links for modeling more complex dynamics.

The precise gradient information involved in training a recurrent neural network can

be obtained only by using the dynamic backpropagation. The use of the dynamic back-

propagation algorithm, however, involves intensive computational effort even for simple

low-order dynamical systems. This has led to use of the plain backpropagation algorithm

keeping it in mind that the step size for weights updating has to be kept small to ensure

the stability of the closed-loop system.

85

4.4. Voltage stability analysis

Incorporation of load representations into voltage stability analysis is discussed

in [75, 70]. A simple form for load representation therein is given by

TpX = Ps(v) xPt(v) (4.35)

where Ps (v) stands for static load model, which is usually represented by an exponential

model; Pt(v) stands for transient load; and Tp is load recovery time. Notice that mathe-

matically when t oo, x tends to a constant x3, then Pt(v) = Ps (v)/xs. In physics, when

there is voltage drop, the real power that the load can draw also decreases. And within a

certain amount of time, the real power recovers up to a certain amount.

Another similar load model is given in [70] by

Tpx = Ps(v) (x + Pt(v)) (4.36)

It should be noted that these two load models are consistent with the models derived

in [63, 64] and that all those models agree with the general model governed by first order

differential equation (first order models for induction motors, thermostatic heating load,

and tap changing transformers are typical examples).

In what follows, the loads modeled throught neural networks, addressed in the last

section, are included in voltage stability analysis.

1

0

o-
0

- 1

2

4

2

4

4

2

o

2
cc

100 200 300 400 500 600 700 800 900

100 200 300 400 500 600 700 800 900

100 200 300 400 500

time (second)

600 700 BOO 900

86

FIGURE 4.7: Normalized data for voltage, active/reactive power (sampling interval: 9
seconds)

4.4.1. Static voltage stability analysis

Consider a simple static case a two bus system consisting of a generator and

an aggregated load which is modeled by two neural networks. Let v9, 6, vd, 6d, z and

0, specify the generator bus voltage magnitude, the generator bus voltage pahse angle,

the load bus voltage magnitude, the load bus voltage phase angle, and the impedance

magnitude and phase angle of the transmission line (including the impedance on the

generator side if any), respectively. And Pd and Qd are the real and reactive power

demand, whose neural network models are assumed to be f (vd) and g(vd), respectively.

It can be shown that

Vg Vd
d2Pd = COSOd 89 + z) COSV z (4.37)

87

Recurrent NN (20-1) with 20 neurons in the hidden layer

c, 2

zz

V
-5

.tt
a

0 3
z

100 200 300 400 500 600 700 800 900

time (second)

FIGURE 4.8: Target and output of the recurrent NN with 1 hidden layer (sampling
interval: 9 seconds)

and
2

Coe d =
Vg Vd

+ d sin(z)
Z

where 69 may be chosen to be zero; vg is pre-specified.

That is,

and

Vg Vd
COS(8d (5g Oz) d COS(9 z) f (v d) = 0

2

2vnvd .
sm(ad 6g ± Oz) d sin(0 z) g (V d) = 0

(4.38)

(4.39)

(4.40)

We must now distinguish between specified or scheduled powers and powers cal-

culated using the above two equations. The difference is the so-called mismatch which

becomes small as convergence of the iterative process for a solution is reached.

88

9.4

9.3

9.2

fi, 9.1

0

9

t 8.9

8.8

m 8.7

8.6

100 200 300 400 500
time (second)

600 700 800 900

FIGURE 4.9: Target and output of the recurrent NN (sampling interval: 9 seconds)

The Newton-Raphson method may be employed to solve these two nonlinear equa-

tions as

J[A8d
I [AP]

AVd AQ

where AP and AQ are mismatch powers, Avd is the unknown load bus voltage magnitude

correction, and A8d is the unknown load bus voltage angle correction; and J is the Jacobian

matrix given in the following:

J =[J11 J12
with

J13 J14

= - cos(Sd 69 + Oz) cos(Oz) f'(vd);

J12 =

(4.41)

V zVd sin(Sd 89 + 8z);

J13 = Sin(6d 8g + sin(0z) 91 (vd);

J14 = COS(6d 8g + Oz).

89

It should be noted that (vd) and g' (vd) can be computed by using the results

derived in the last section. The system will reach its maximum loadability (sometimes

called voltage stability limit though there may be the case when power systems are still

stable even though the equilibrium point is located on the lower part of P-V curve) when

the Jacobian tends to zero. Also, it should be noted that transient instability may occur

without this condition.

The above results can be easily generalized to large interconnected power systems.

For a total of N buses the voltage Vk at any bus k, where net real power Pk and reactive

power Qk are given, can be expressed as

Pk
Vk YknVn)

k n=1, nOkkk V*
(4.42)

where Ykk's and Ykn's are just mutual-admittances of nodes k and n, and self-admittances

of nodes k's.

With Vk = vk exp(jSk), Vn = vn exP(,j(5n) Ykn = Ykn exP(jOkn), the above

equation can be rewritten in polar form.

and

n=N

Pk = E vkvnYkn COS(Okn 6.71 8k)
n=1

n=N

Qk = VkVakn Sill(Okn 8n 81c)

The sensitivity 'LPnk can be easily obtained.

aPk
avn
aPk
avn

VkYkn COS(Okn (5n 6k) if n k

= 214Y kk COS(Okk)

EViYki cos (Oki ± Si 8k) if n = k

(4.43)

(4.44)

90

Similarly, other sensitivities Pon , acik
(andcav,,, can also be obtained and given in

the following:

aPk
as

aPk
avn

aQk
avn
aQk
avn

vkvnykn sin(Okr, + (Sn (5k) if n k

= E vkviyki sin(eki + Si 5k) if n = k
i=1, ilk

aQk
087,

aQk
avn,

V kYkn kn (571 k) if n k

2vokksin(ekk)

E ViYki ± Si 8k) if n = k

vkvnYkncos(Okn+ 5k) if n k

+ E vkviyki cos(eki + Si 8k) if n = k
i=1, ilk

The involved sensitivities at some specific buses need to be modified if the loads at

these buses are modeled by neural networks. For instance, assume bus k is one of such

buses. Then from equations (4.43) and (4.44), we have

n= N

Pgk Pdk = E vkvnykn cos(ekn + 6.72 6k)
n=1

and

(4.45)

n=N

Qgk Qdk = VkVnYkn Sill(Okn + Sn 5k) (4.46)
n=1

where Pdk and Qdk are real and reactive power demands at bus k modeled by neural

networks, and Pgk and Qgk are generated real and reactive powers at bus k.

Thus, the sensitivities neeed to be modified at bus k should be *, + Pcik(vk) and

ach + Q4(vk) if they area and aQk originally . However, Pdik(vk) and Qdik(vk) can

91

be obtained through the technique developed in last section. Therefore, the modified

Jacobian matrix, with some related elements modified, still takes the general form

[Pt, 138J = (4.47)

Qv Qs

where P is the partial derivative matrix resulting from differentiating the real power vector

with respect to voltage magnitude vector; P6, C2, and Qo can be explained similarly.

This matrix can be applied either for power flow study by the Newton-Raphason

method, or for eigenvalue analysis. The eigenvalues of the reduced Jacobian matrix display

the possible modes of voltage stability [56].

The resulting neural network load model for bus 14 in the IEEE 14-bus system is

combined with the Newton-Raphson method for use in the load flow study. The results

are shown in Table 4.1.

It can be observed from the results that if the randomly added loads are ignored, the

results may be optimistic; if the random loads are considered to be their average values,

the resulted power flow study may be over-simplified, and that the neural networks used

present an approximately accurate representation of the nonlinear relation between the

random loads and the 14th bus voltage magnitude, and thus give reasonable results. The

eigenvalues in Table 4.1 are all positive and, through modal analysis, suggest that the

power system is still stable.

4.4.2. Dynamic voltage stability analysis

Dynamic load models can be used for dynamic voltage stability analysis. Such a

model, detailed in the last section can be trained with available data recorded in credible

contingencies, large load buildup, and unfavorable load dynamics, etc. Also those data can

be used to train neural networks. Through the trained neural network, the loading patterns

can be recogized. Dynamic voltage stability analysis should be employed whenever there

92

is such a need indicated by neural networks. For application of the Newton-Raphson

method, equations (4.24) and (4.42) should be iteratively used. It should be noted that

equation (4.24) describes the dynamic relation of real load power and reactive load power

on voltage magnitude. It should also be noticed that equation (4.42) characterizes the

whole power system. With use of previous real/reactive load power and previous voltage

magnitude, current real/reactive load power at a specific bus can be computed through

equation (4.24) (Keep it in mind that there should be each dynamic model for either

dynamic real load or reactive load at a specific bus). With the resulting values and the

given conditions, equation (4.42) is applied to give the possible solution. These steps

can be repeated. Of course, the state-space model (4.27) and (4.28), combined with

equation (4.42), can also be used for dynamic voltage stability analysis. The modal

analysis can also be performed through time. The involved sensitivities for modal analysis

may be obtained in the way the static voltage stability analysis is made. Without question,

dynamic voltage stability analysis is very time-consuming.

4.5. Conclusions and outlooks

This chapter presents a neural network methodology for dealing with static and dy-

namic load modeling. The loading patterns are classified by feedforward neural networks.

Based on the static load model and dynamic load model, either static voltage stability

analysis or dynamic voltage stability analysis can be made. The sensitivities involved in

neural network models for loads are derived, and are then used in the Jacobian matrix,

and further for the modal analysis. The neural network methodology is tested either on

the IEEE-14 bus system or real field data. Since static load model may not be suitable for

loading dynamics while dynamic voltage stability analysis is too time-consuming, which

will affect its effective on-line use, voltage stability indices (e.g. margin for operating point

93

to reach the saddle point) may be very suitable for on-line use. Static voltage stability

indices may not be sufficient. Dynamic voltage stability indices are needed.

NN load model Original load Expected load

Real load 0.2268 0.1490 0.3725

Reactive load 0.1053 0.0500 0.1250

Voltage magnitude 0.9458 0.9798 0.9076

Eigenvalues 63.8474 64.2885 63.2086

38.5836 38.6527 38.3830

30.6897 31.2209 30.0822

27.2015 27.6361 26.6971

17.2232 17.4309 16.9932

0.5126 0.5412 0.4750

15.2683 15.4484 15.0381

3.8089 3.8762 3.7308

5.4869 5.5675 5.9188

11.2959 11.5020 11.0658

6.0411 6.1986 5.3601

TABLE 4.1: Comparison of different load models

94

5. SYNTHESIS OF ADAPTIVE HIERARCHICAL
CONTROLLERS APPLIED TO DYNAMIC POWER

SYSTEMS

5.1. Introduction

The concern for maintaining bus voltages stability has been growing. Many voltage

instability incidents have occurred around the world (e.g. Japan, France, Belgium, and

USA). Some of these incidents even caused partial or complete blackouts (voltage col-

lapses). The detailed descriptions of these events can be obtained in [14, 81]. There are

various causes which might lead to these severe system failures. According to the available

data [14], the initial causes may be AC line trip caused by a ground fault, generator loss,

immediate heavy load buildup, special load with unfavorable load dynamic characteristics,

etc. The real problem, however, is one of interaction of very complex nonlinear dynamics

and lack of control.

Transient voltage stability is usually closely associated with regular generator an-

gle stability ([61] and therein). Longer-term voltage stability, however, is more closely

associated with loading dynamics. This kind of voltage instability has stimulated ex-

tensive research on voltage stability analysis methods involving quasi-static power flow

or continuation power flow [55], snapshot method [62], modal analysis [56],load dynam-

ics [63, 64], energy method [54, 65], static bifurcation application to power systems [66, 67]

etc. However, voltage stability and rotor angle stability are more or less interlinked, and

their mechanisms can be difficult to separate. It is usually assumed that if voltage col-

lapse occurs in a transmission system far away from load centers, it is mainly a rotor

angle instability problem; if voltage collapse occurs in load areas, it is primarily a voltage

instability problembut hardly proven.

95

The Flexible AC Transmission Systems (FACTS) are utilized to enhance power

transfer capability over existing transmission lines and greatly improve stability charac-

teristics of power systems. Some FACTS devices are already in wide use (for instance,

Thyristor Controlled Series Capacitors (TCSC) and Static VAR Compensators (SVC)),

while some others are still under development (for instance, Unified Power Controllers

(UPC)). One of the main roles that FACTS devices play is to adjust the reactive power

flow, correct the massive power imbalance, and re-establish the equilibrium in case of oc-

curance of large faults. Therefore, the proper manipulation of the FACTS devices in place

by means of some properly designed control mechanism is then crucial in maintaining

power system stability.

As is known, the mechanism of the transient stability is well understood while the

voltage collapse mechanism is much more complicated that might be associated with

either the rotor angle stability or load-driven stability or both, and needs many in-depth

investigations. Since voltage instability is closely associated with the loading patterns, as a

first attemp to exploration of the voltage collapse mechanism, the transient stability issue

is investigated while considering the effect of the load at the same time. Such an effort

is significantin that: (1) since the TCSC installed on the tie line is intended to help

dampen the inter-area mode oscillations between the two subsystems connected through

a tie line, it is shown in [82] that such a system can be simplified as a SMIB system with a

TCSC and time-varying parameters under some assumptions; and (2) the insights gained

and the techniques developed from the study of a SMIB with a load may help develop

techniques which are useful for preventing voltage instability problems in multi-machine

systems with various kinds of loading characteristics.

Note that the random changes in operation conditions and possible faults in power

systems result in uncertain dynamic systems, which call for high-performance robust non-

linear controllers to enhance and ensure the system transient stability.

96

A number of studies, involving bilinear adaptive control scheme [10, 11], variable-

structure control [83], robust control [84], and neural network control [12], have been done

on the controller design which may stabilize the postfault power systems. Nonlinear control

strategies have been effective on a case to case basis. Note that adaptive control, robust

control and variable-structure control are typically considered model-based schemes, and

that neural control is considered to be data based. This difference makes neural control

perhaps superior to the others in the case of unmodeled plants since the off -line generated

optimal trajectories or the desired trajectories are available and may help train a proper

neural controller. However, it should be noted that the neural network structure, of

nonlinearly coupled bilinear systems, is similar to the basic nonlinear structure of FACTS

where the parametric control allows improved controllability and transient stabilization. In

order to handle the uncertainty that exists in practical systems, a control-switching scheme

is introduced in [85] in order to generate the intelligent control. The idea thereof was

further developed in [12], resulting in a multiplicative control scheme, which is essentially

a convex interpolation of the nominal controllers, designed for specific cases, instead of

control switching. A similar hierarchical control structure [86] is approximately the same

as that for a fuzzy control ([87] and therein) except that the control weights, i.e., the

membership values in the context of fuzzy logic, are determined by a set of fuzzy rules. The

application to jet aircraft engines of this kind of hierarchical structure was also investigated

in [88].

As is known, it is desired to stabilize the postfault power systems as quickly as

possible by means of the constrained control. The time-optimal control policy, or near-

time-optimal control policy in a more practical sense, is studied in the context of control

design. Note that for nonlinear power systems, generally it is still very difficult to solve for

optimal feedback controls. However, the off -line generated optimal trajectories may help

train a neural network control which sufficiently approximates the optimal control which

exists and whose analytic form is often quite difficult to obtain. Regarding the SMIB

97

system, yet with the consideration of the effect of the load, a number of novel techniques

are developed to stabilize the transients incurred by occurance of large faults to the single-

machine infinite-bus system with an uncertain load. Note that the uncertainty of the load

makes the whole power system uncertain, and thus a somewhat "intelligent" controller is

then necessary. The techniques proposed mainly include: (a) tessellation schemes which

help synthesize reliable controllers with respect to an uncertain load, which can be modeled

by a feedforward/dynamic neural network as discussed in chapter 4, and large faults;

(b) a couple of pattern recognition schemes which are intended to well approximate the

switching curve in the context of time-optimal control; (c) a hierarchical control structure

which consists of two levels of neural networks, with the lower level neural networks

trained for specific cases, and the upper level neural networks associated with some sort of

comparator properly assigning the multipliers so that the resulting multiplicative control

is still a bang-bang type. (d) A combination of a hierarchical neural control and a linear

control by the latter of which the system can be driven from some neighborhood of the

equilibrium to the exact equilibrium more effectively and thus it is required that the

system be driven by means of the former only until it comes to some neighborhood of the

equilibrium and then the latter takes over, thereby accomodating the possible errors in

the available calculated optimal trajectories and also avoiding the so-called "chattering"

phenomenon [83, 8, 9]. Further, some theoretical justifications of the proposed techniques

are presented. The techniques developed, however, can be generally applied to more

complex nonlinear systems.

This chapter is organized as follows: Section 5.2. formulates the problems that will

be studied in detail later on, and shows that the explicit analytic solution to the time-

optimal control problems are not available. In section 5.3., the formulated problems are

transformed and nonlinear systems linear in control result. Numerical solutions can then

be obtained by means of the switching-time-variation method (STVM) [7, 13] which makes

effective use of the linearity in control. Based on the available optimal trajectories, the

98

pattern recoginition schemes are developed and used to stabilize the postfault power sys-

tem. The hierarchical neural control is discussed in section 5.4.. Then section 5.5. presents

some theoretical justification for the proposed methods. Some illustrative simulations are

shown in section 5.6.. The proposed methods are generalized to more general systems in

section 5.7.. Finally, some comments and conclusions are presented.

5.2. Time-optimal control for SMIB with a load

As is well known, a SMIB system with a FACTS device TCSC installed can be

described by

{'3 = cob(co 1)

= (Pm D(u.; 1) xd+v6 °s)xe sin 6)

(5.1)

where

S - rotor angle (rad);

w - rotor speed (p.u.);

cob synchronous speed as base (rad/sec);

Pm mechanical power input assumed to be constant (p.u.);

D damping factor;

M system inertia referenced to the base power;

Vt - terminal bus voltage (p.u.);

Voo infinity bus voltage (p.u.);

X d transient reactance of the generator (p.u.);

Xe transmission reactance (p.u.);

s - series compensation degree (--sXe is the reactance of the TCSC, and often 0 < s < 1);

The system is desired to be driven, after a transient period, to its equilibrium (Se, We)

by the admissible control s E [smin, smax] and stay in the equilibrium thereafter by the

fixed compensation se E [smin, 8 max]

99

With the translation transform w = w + 1, it follows that

(prn Du) xd+v(iivaos)xe sin 6)

Note that the equilibrium for rotor speed is translated from 1 to 0.

To make the later derivations convenient, a nonlinear transformation is introduced

as follows:

Y(u) = Yo + Yau

where Yo corresponds to the total admittance (i.e., xd+1 xe) under no compensation (s = 0

and also u = 0); Ya is the resulting additional admittance for u = 1 (and also s = 1) due

to TCSC; Y(u) is the resulting total admittance, Y(u) = xd+0.1-s)xe.

It then follows that

yo =

Ya

U =
Xd + (1 S)Xe

1

Xd + Xe
Xe

Xd Xe
u(Xd Xe)
Xd + XeU

Xds
(5.2)

Note that the mapping from s (s E [0,1]) to u (u E [0, 1]) is one-to-one correspondence

and onto, and monotonical.

By the above transformation, the swing equation can then be rewritten as follows:

(5 = cob(2)

cw = -k- (Pm Dw (Vt1/00) (Yo + Yau) sin 6)
(5.3)

Further, it may be convenient sometimes to transform the above system in such

a manner that its equilibrium is translated into the origin and that the control range is

converted to [-1,1].

100

Note that 0 < smm < se < Smas < 1. Hence 0 < umm < ue < umax < 1, where

umm, ue, and umax are associated with smm, se, and smax, respectively, by Equation (5.2).

Let u = u' + ue and 6 = 6' + Se. Then Equation (5.3) can be rewritten as

= wbco

6.) = Du; (Vt17,0)(Y0 + Ya(u + ue)) sin (6 + Se))

Note that in the above equation, the admissible control u E [umin ue,

and that the equilibrium is now at the origin.

Let u = umax Urrttn v Umax+Um n
2 2 ue. Then v E [-1, 1]. Substitution of u in terms

of v into Equation (5.4) and some algebraic manipulations yield

(5.4)

umax ue]

{

S = coo)

W = b (Pm Dw (V1V)(Yo + Ya(Umax 2 Umin V + uniaqUmin)) sin(S + 6e))

That is,

(Au)

Dw Vt17,,(Y0 + (umax±2umin)Ya) sin(8 + 6e))

0

1 Vivoo(umax-2umin)Ya sin((5 + 6,)
(5.5)

P D VtVoo(Y0+(umax±umin)Ya
, and c4 = 2vtve<,

(u max u
Defined , C2 C3 = 2

M

Then we have

(5 wbco

W C1 c2w c3 sin((5 + Se)

0

C4 sin((5 + 6,)
v (5.6)

From Equation (5.6) the role of parametric control (and bilinear control for small

6) is apparentmaking FACTS so effective. Likewise, the general nonlinearly coupled

bilinear system structure, and the assumed neural network structure of approximation

may be recognized.

101

5.2.1. SMIB with a load

On the study of power system stability, the load is usually assumed to be a constant

in the literature. In this section, the SMIB system with a load is considered for stability

concern and control design while the load is assumed to have some properties but its

parameters or itself needs to be identified. Several different system models are formulated

and discussed.

Case I: The load is assumed to be fixed but is unknown.

The SMIB system with a constant load Pi = Po can be described as follows:

cob(co 1)

cw = T 1, / Po D (u) 1) xd+17(vc°,)x, sin 8)

By using the same transformations introduced before, the above equation can be

transformed as follows:

= coo)

= C1 cio c2co c3 sin((S, + 8) c4 sin((Se + (S)v

where c10 = M; and all other coefficients are defined as before.

Case II: The load is assumed to be an affine function of the frequency.

The SMIB system with such a load Pi = Po + Cw can be described as follows:

(5.7)

= cob (cv 1)

(Prn Po Cw D(w 1) v°° sin 6)Xd±(1s)Xe

The above equation can also be transformed as follows:

S = wbw{

Co = ci cio (c20 + c2)w c3 sin(8, + 6) q sin(6 e + (5)v

where cio _ Po+cm ; c20 = f; ; and all other coefficients are defined as before.

(5.8)

(5.9)

(5.10)

Note that for case I, the parameter c10 is an unknown constant and has to be

identified in order to proceed with a proper control; and for case II, the parameters c10

and c20 are unknown constants and have to be identified for the same purpose.

102

Case III: the analytic model for the load P1 is not known, but may be identified

with previous data.

The SMIB system with such a load P1 can be described as follows:

= cob(co 1)

1÷1(P,,, Pi D(w 1) xd+(.v21')x, sin 8)

The above equation can also be transformed as follows:

{ 8 = (Au)

ci0 c2w c3 sin(8, + 8) c4 sin(Se + 8)v

(5.11)

(5.12)

where c10 = /4.

Note that with the formulation of these problems, the goal is to design neural con-

trollers which perform well for each case. Since for case I and II, once the parameters

involved are determined, the models take the same form as Equation (5.6) except that

the fixed parameters take different values, the techniques used for computing the optimal

control and trajectories can be used for cases I and II. Calculation of optimal control

for system Equation (5.6) is actually to locate the switching manifold. Unfortunately,

the switching manifold can not be given explicitly. It may, however, be determined ap-

proximately by using some numerical methods, for example, the switching-times-variation

method (STVM), detailed in section 5.3.. The parameter spaces for cases I and II are

tessellated into many sub-regions. For those parameters which correspond to the vertices

of the tessellated sub-regions, optimal trajectories and optimal control are computed in

the region of stability interest. The computed optimal trajectories and optimal control are

used for training a neural network which approximately characterizes the switching man-

ifold in a way described in later sections 5.4. and 5.5.. The synthesis of neural controllers

for cases I and II, which requires the identification of some parameters, is also described

in section 5.4..

103

Once the neural controller for cases I and II are synthesized, the neural controller

for case III may be synthesized in a way detailed also section 5.4.. The theoretical support

for these techniques is provided in section 5.5..

5.2.2. Minimal time control

Consider Equation (5.3) for minimal time control.

The optimal time performance index can be expressed as

J = f ldt
to

Define the Hamiltonian function as

(5.13)

H(x, u, t) = 1 + AT f = 1 (cobw) + A2(m (Pm Dw (VtV00) (Y0 Yau) sin 6)) (5.14)

where xT = [8 w]; AT = [Ai A2]; and f (x, = [wbu) M (Pm Dw (Vt1700(Yo +

Yau) sin 0)].

The final-state constraint is W(x(T),T) = x(T) xe = 0, or

{8(T) = Se
(5.15)

w(T) = we = 0

where 4 = [6, we] is the desired equilibrium point; 4 = [8o wo] is the initial state.

The state equation can be expressed as

. ax
x = = f (x, u), t > to

The costate equation can be written as

an a fA= A t <T
ax ax

where T designates transpose.

That is,

{)q. = if VtV,,, (Yo + Yau) A2 cos 6.

X2 = WbX1 + fi X2

(5.16)

(5.17)

(5.18)

104

The Pontryagin minimum principle is applied in order to derive the optimal con-

trol [94]. That is,

It turns out that

H(x*, u*, A*, t) < H (x* u, t) for all admissible u (5.19)

1

MmA* sin 8*Yau* < 1 A; sin 6*Yau (5.20)

Since M,Ya are assumed positive constants,

A; sin Pu* > A; sin 6*u (5.21)

Thus, the time-optimal control satisfies the following condition:

Umax , A2 sin 6 > 0
u* (5.22)

Umza , A2 sin 6 < 0

Note that the possibility of a singular solution, i.e., A2(t) sin 8(t) 0 for some finite

time interval, can be excluded, which is shown in Appendix B.

The terminal boundary conditon can be given by

(WT + -11) = 0

Or

HIT = 1 + A2 (T) m [Prn Vt1700 (Y0 Yau(T)) sin (T)] = 0

That is,

(5.23)

(5.24)

(5.25)
A2 (I') Pm 1417.0,0(Yo + Yau(T)) sin 6 (T)

It is observed that the resulting Hamiltonian system is a coupled twopoint boundary-

value problem, and its analytic solution is not available, to our best knowledge.

105

5.3. Switching-time-variation method (STVM)

In section 5.2.2., though the necessary conditions for the time-optimal control are

given, the analytic solution is not available. In order to get the time-optimal control, the

switching-times-variation method (STVM) is used [7, 13].

It is observed that the system described by Equation (5.6) is a nonlinear system but

linear in control. In the following, the STVM applies to the SMIB system for calculation

of time-optimal control.

Define the performance index by

Or

if

j fto

ft
[1 + p(o + coci))]clt

if

to

where p is a positive real number. Note that for equations (5.26) and (5.27) there is only

a constant difference.

Define

ldt + (8f2 + cof2)
2

(5.26)

{1 + PGabw6 + w(ci C2W c3 sin(d + 6e) C4 sin(S + 5e)v))1dt (5.27)

xo = 1 + p(wbwS + w(ci c2w C3 sin(6 + 6e) c4 sin(8 + je)v)) (5.28)

Then J = xo (t f).

Define the augmented state vector as x = [xo e5 co]T . And the augmented system is

then the following:

where A(x) =

J =

= A(1) + B (x)v

1 + pw(wb6 + c2w c3 sin(5 + e))

WO)

C2W c3 sin(S + Se)

(5.29)

pc4w sin(6 + 6e)

B(x) = 0

c4 sin(S + Se)
Define the adjoint equation as follows

A =
ax

[A(x) + B(x)virA

where A = [A0 Al A2]T and A(tf) = '904 lx(tf) = [1 PS Pw]T ix(tf)

, and x(to) = [0 813 wo]T.

That is,
AO 0 0 0 Ao

Al PwEwb (c3 c4v) cos(5 + 5,)1 0 (,e3 c4v) cos(5 Al

A2 P[wbO ci 2c2w (c3 C4V) sin(S Se)] Lob -C2 - A2

Observation that A0 = 1 reduces the above equation to the following

Al

A2

0 (c3 + co) cos(8 + Se) Al

Wb C2 A2

pw[wb (C3 + C4V) cos(.5 + 6e)]

p[wbS c1 2c2w (c3 + co) sin(S + 6e)]

The switching function is given by

= 2ATB(x)

= 2c4 sin(S + (5,)(pw + A2)

106

(5.30)

(5.31)

(5.32)

Suppose the number of the optimal switching times is N (including the variable

terminal time). Let the switching vector be T = [T1 TN_1 'q]T. According to [7, 13],

the gradient of the cost function with respect to the switching vector can be given by

= [(Ti)O (-1)N-20(TN-1) j(tf)lr

where ON = [O(T1) (-1)N-195(TN-1)

c2w C3 sin(S + Se) C4 sin(6 + 8e)v]litf

(5.33)

i(tf)]T and i(tf) = 1 + p {wbwS + Loki

107

The optimal switching vector can then be obtained by using a gradient-based method

through iterations.

Ti+1 = Ti (5.34)

where Ti is the switching vector, OiN is the negative gradient vector, and K, is a properly-

chosen N x N-dimensional diagonal matrix with non-negative entries for the ith iteration.

Note that the time-optimal solution can also be obtained by considering the orginal

variable terminal time problem as the limit of a sequence of fixed terminal time problems.

Mathematically, let tf be the solution to the variable terminal time problem, and ef the

solution to the ith fixed variable terminal problem, then

t f = inf{tif : solution exists} (5.35)

Details are available in [7, 13], where the solution is shown to converge to the minimum-

principle solution in general.

It is observed that the STVM is also applicable to Equation (5.8) and (5.10) for

calculation of optimal trajectories for different initial conditions.

5.4. Synthesis of a neural controller as a power system sta-
bilizer

Artifical neural networks have been widely applied in many diverse real-world appli-

cations, such as speech processing, image processing, computer vision, pattern classifica-

tion and recognition, system control, and robotics [89]. The great function approximation

capabilities of neural networks and the gradient-based back-propagation algorithms [90]

have made possible their various applications. In the context of control engineering ap-

plications, neural networks are often trained either to approximate the forward and/or

inverse input-output relations of nonlinear systems [91] and are further used in differ-

ent applications, or to approximate the analytically unobtainable mappings by means of

108

available data [92]. As discussed before, the state based feedback optimal control is not

analytically available, which is often the case for nonlinear power systems. Therefore, the

trajectory following approach is to be used to synthesize a state feedback optimal neural

control. This will be detailed in what follows.

5.4.1. Time-optimal neural control

The design of optimal feedback controllers for general nonlinear systems is usually

untractable. Yet by means of a numerical method, the optimal trajectories and optimal

controls can be computed. The information inherent in these outputs and controls help

establish the link between them. This link actually leads to a closed-loop feedback to

generate approximately an optimal policy. To put this more specifically for time-optimal

control, the link thereof can be completely characterized by the associated switching curve

in state space. Suppose the switching curve is represented by S(x) = 0 where x is the

state vector of the system of interest. Note that as shown previously, the control range

can be converted to [-1, 1]. Then the optimal control u of a bang-bang type can be

given by

or

u = sgn(S(x)) (5.36)

u = sgn(S(x)) (5.37)

where the function sgn(.) is defined by sgn(S) =
{1, if S > 0

1, if S < 0
Denote sgn(S(.)) by g. Then u = g(x).

The off-line optimal trajectories and optimal controls may be computed by a gra-

dient based numerical method, say switching-time-variation method [7, 13], which makes

effective use of the linearity in control of the nonlinear system. The function g can then

be approximated by training a neural network.

109

Denote by SZ the region of stability interest, which is assumed to be compact. Then

the switching curve divides the region into two parts. On one side of the switching curve

(or manifold in general), the optimal control takes one extremal value of the confined

control while on the other side the optimal control takes the other control limit. From this

observation a pattern recognition scheme is proposed as follows. Note that the true state

feedback control u = g(x) displays a discontinuity on the switching curve (or manifold in

general). This may lead to the training of a neural network a difficult job. Also note that

sufficiently many trajectories uniformly distributed in the region of interest may ensure

the desired approximation with respect to Lebesgue measure. Let the function realized

by a neural network be denoted by u = NN(x). With a number of off-line generated

trajectories which are approximately distributed in the region of interest, the trained

neural network tends to produce the outputs closely approximating the optimal control

on both sides of the switching curve while it is likely that some mismatch error may occur

in some neighborhood containing the switching curve and that the output of the neural

network tends to take a positive (or negative) value when the desired control takes the

positive (or accordingly negative) limit. Since the time-optimal control only takes the

extremal values, the control by means of the trained neural network can be formed as

Or

u = sgn(NN(x)) (5.38)

u = sgn(NN(x)) (5.39)

Therefore, a new neural network may be formed by means of a conventional neural network

followed by a neuron with a heaviside sigmoidal function. This is shown in Figure 5.1.

110

x (
Standard

NN

(

FIGURE 5.1: Neural-net-based time-optimal state feedback control

Remark (1): This structure can recognize the optimal control pattern which is

characterized by a switching curve. The output of the new neural network precisely

matches the optimal control on both sides of the switching curve except in some small

neighborhood containing the switching curve. The training patterns are in the form of

(x, u).

Remark (2): This structure will be a component of the lower level neural networks

in the hierarchical neural network architecture which is detailed next.

Remark (3): The optimal controls, as the desired output of a neural network can be

scaled by a positive factor, say /3. There might be some /3's such that the neural network

is trained satisfactorily well. Then the activation of the heaviside function gives out a

control of a bang-bang type.

Remark (4): The above method can be applied to system (5.6) or system (5.8) as

long as the parameter is specified or system (5.10) with the parameters specified. The

resulting time-optimal neural controllers for different cases form the lower level neural

controllers in the hierarchical neural network architecture which will be studied.

Remark (5): The alternative for inputs to the neural network, for system (5.6),

(5.8) or (5.10), may be the rotor angle and its previous value since they can be used to

reconstruct a state approximation, and since it may affect the training since the deviated

rotor speed is too small relative to the rotor angle.

111

5.4.2. Near time-optimal hierarchical neural control

For parameterized systems with fixed parameters, for instance, system (5.6) (sys-

tem (5.8) or (5.10) exactly takes the same form as system (5.6) does once related pa-

rameters are given), the transient stabilization of power systems can be done by means

of time-optimal neural control even though the explicit analytic form of the state based

feedback control is not available. The same task, however, may become more challenging

if the parameters of the load are not known, which calls for somewhat robust control. Note

that the range for the parameters can often be assumed to be specified without loss of

generality. The parameter (or parameter vector) space can be tessellated into a number of

sub-intervals (or rectangles, or rectangles on high-dimension case, simply called rectangles

hereafter). For each case on which the parameter (or parameter vector) corresponding to

an endpoint (or vertex) is specified, the case-specific time-optimal neural controller can be

trained. For simplicity, these cases may be termed as nominal cases. It is then expected

that a near time-optimal control may be synthesized by making use of the information

extracted from each nominal case. However, the information abouth those nominal cases,

for which the unknown parameter (or parameter vector) lies within the sub-interval (or

rectangle) determined by the corresponding endpoints (or vertices), may be more relevant

than that about other nominal cases. Therefore, a rough estimate of the parameter (or

parameter vector) is necessary in order to determine which sub-interval (or rectangle) it is

within. After such an identification, a control u corresponding to the unknown parameters

can be synthesized as

u = E a,u, (5.40)

where the time-optimal neural control u2 corresponds to a specific parameter case; a, is

the multiplier for control ui; and Eim=i a2 = 1 and a2 > 0. The resulting hierarchical near

time-optimal neural controller is shown in Figure 5.2.

X
Neural

Upper Level
Networks

112

X

NN
TDL

TDL

x

NN
TDL1"- 2

c

Neural

FIGURE

Remark (1): TDL

L
NNM

x

X

X
Lower

Networks

5.2:

stands

NN
1

14

NN
2

U2

control

the previous values and

NN
MLevel

time-optimal

delay

neural

line such that

Hierarchical

for tapped

also the current value are available to feed into the input of neural networks.

Remark (2): Note that the outputs of lower level neural networks as lower level

controls take a value of either -1 or +1. For state x(k 1) at instant (k 1)T (T is

the sampling period), it can be driven to x(k) by means of an optimal control ui(k 1).

Also note that for some optimal trajectories and corresponding optimal controls, they

are related in the second equation of system (5.6), (5.8) or (5.10). This means that

the multiplier ai(k) may be somehow related to u,(k). It is then expected that (x(k

1), x(k), 7.4(k 1) , ui (k)) may characterize the behavior specific to the ith case. Therefore,

the training patterns are in such a form ((x(k 1) , x(k), ui(k 1) , ui(k)), ai (k)). As pointed

out previously, the state x(k) can be replaced by the rotor angle and its previous values.

It is desired that the multiplier a, may take 1 if the trajectories and controls are specific to

113

the ith case and for other cases the multiplier a, may take 0. Based on these arguments,

the upper level neural networks can be trained.

Remark (3): Since ui E [-1, +1], then u = Em 1 a u- E [-1, +1], too. And2=

the outputs of the upper level neural networks need normalization (still denote them by

ai's) such that Eim=1 ai = 1. Note that all ui's only take either +1 or -1. Thus, if all

ui's have the same sign, then from u = am=i aiui, u = u, For other situations, let

Al = EiEfi: u,=15jc[1, mil ai; let A2 = EzE12: uz=_1,jE[1, m]} ai. Then if Al > A2, u = 1;

if Al < A2, u = 1. These operations are mainly done by the multiplier processing unit,

which is shown in Figure 5.2. Therefore, the resulting control is still a bang-bang type,

which drives the system to a neighborhood of the equilibrium in near optimal time.

Remark (4): To accomodate the possible computation errors involved in obtaining

the off -line optimal trajectories and to avoid the so-called chattering phenomenon, the

linear feedback controller is necessary, which also performs very effectively around the

equilibrium. These will be illustrated through simulations in section 5.6..

It is pointed out that the proposed control scheme can be applied to cases I and II,

described in section 5.2.1..

5.4.3. Adaptive near time-optimal hierarchical neural con-
trol

Consider the system Equation (5.12), where the load Pi, hence cm, is a continuous

nonlinear function of w, but its explicit form may not be known. This is usually the

case in reality, which accounts for the fluctuation and random nature of loads. The

modeling of an aggregate load is usually useful from available data and measurements.

As is known, load modeling is an important issue for voltage stability analysis. Load

modeling was studied in [93], where static and dynamic load modeling through neural

networks and corresponding voltage stability analyses were discussed. Here again, a neural

114

network is trained with available data to approximate the nonlinear load such that the

approximation error is uniformly bounded. That is, the load can be modeled as Pi =

NN(w), or equivalently 60 = N N (w). And the approximation error can be expressed as

el = elm clo with lei I < eel , where eel is a pre-specified positive number.

Note that 60 is a continuous function of w with a compact support since the max-

imum value and minimum value for w are usually physically determined for stability

concern. elm can then be approximated by a piece-wise linear function 60 such that the

approximation error e2 = cio ci0 is uniformly bounded by a positive number Eel. That

is, je21 <

It then follows that Iciociol = Iciocio+ciociol < Iciociol+Iciociol < fel ±fev

It is then reasonable to assume that for the region of stability interest, the suffi-

ciently small disturbance in c10 would not bring about a significant change in the resulting

trajectories. Since c10 is a piece-wise linear function, the near time-optimal hierarchical

neural control scheme applies. And since c10 can be approximated by a piece-wise linear

function with a uniformly bounded small error, the near time-optimal hierarchical neural

control scheme also applies with some adaptations addressed in the following.

At sampling instant kT (T is the sampling period), from the measurements about

the state, the load is estimated by the trained neural network ci0k. The previous estimate

CiOk-1 and the current estimate ci0k can be used to identify the coefficients al and a2

involved in an affine approximation c10 = al + a2w for the period of time [(k 1)T, kT].

Note that al and a2 are time-varying. Since for the period of time Rk 1)T, the load

is approximately identified as an affine function of w, the near time-optimal hierarchical

neural control structure then applies, which first locates the parameter vector (al, a2)

in the tessellated parameter vector space, and enables the proper lower-level time-optimal

neural controllers. Since al and a2 are time-varying, then on-line estimation of the load

helps achieve a piece of affine approximation for the specific period of time, and initiates

the corresponding lower-level time-optimal neural controllers.

115

Remark: As the system is stabilized and is gradually driven toward its equilibrium,

the rotor speed is approaching a constant, the load must also approach a constant. There-

fore, the range for the parameters of the load thereafter shrinks, and enables only the

lower-level time-optimal neural controllers correpsonding to the vertices of the sub-region

encircling the almost fixed parameter vector involved in the load. As the system is brought

to some small neighborhood of its equilibrium, then a linearized controller is enabled to

take over, and quickly drive the system to the equilibrium.

5.5. Theoretical justification

This section provides theoretical support for the control schemes developed in the

last section.

5.5.1. Switching manifold approximation

Consider the system Equation (5.6)

{ S = (Au)
(5.41)

= ci c2w c3 sin(Se + 6) c4 sin(Se + 6)v

Let x = [S co]T , a(x) = [wbw cl c2co c3 sin((5e + 5)]T, B(x) --= [0 c4 sin(o + 5)]T,

and f (x) = a(x) + B (x)v . The above equation can be rewritten as

= a(x) + B(x)v (5.42)

Note that v E [-1, +1].

Suppose that with the initial condition x(to) = xo, a proper bang-bang control v(t)

for t E [to, t 1] can be found such that the state can be driven to the origin at the

instant t f. Note that the control can be completely specified by giving the switching

vector TN = [TIN T?- TN]T (where N designates the number of switching times) and

116

the first initialized control, and that the corresponding trajectory is a function of xo and

the switching times, and can be denoted by x(xo, t). For our interest, without loss of

generality, the initial control is assumed to be positive.

Suppose there is a perturbation in the initial state while this does not cause a change

of the sign of the initial control and a change of the number of the switching either. Let

the perturbed initial state be yo x* (xo, t) (the optimal trajectory starting from x0), and

the resulting switching vector '1"N = [TN '"AriTL ' 1 ' 2 ' NJ

In what follows, it is shown that for the small change in the initial state, the switch-

ing times may make an accordingly small change in order to drive the final state to the

origin.

Integrating the system equation from to to tf yields

X(X0,t f) = xo
1

to

[a(x(xo, t)) + B (x(xo, t))]dt +

[a(x(xo, t)) + (-1)i B (x(xo, t))]dt +
TN

ft f
+ [a(x(xo, t)) + (-1)N B(x(xo, t))]dt (5.43)

Observation from the above equation indicates that if xo is fixed, then x(xo, t) is

a continuous function of the switching vector. Since f (x) satisfies the Lipschitz condi-

tion [94], that is, a constant k exists such that 111 (x1) f (x2)11 < klIxi -x211 for all x1,x2

in the region of interest, the solution x(xo, t) is unique. In a word, x(xo, t) is a continuous

function of xo and the switching times.

Note that ax(x°N tf) = 2(-1)iB(x(xo, 7-2N)) for i = 1, , N; andaT,
ax(x0,tf) = a(x(xo, t1)) + (-1)N B(x(xo,t1)).at f

It follows that

dX (X0 tf)

N

dX0 E 2(1)1 B(X(X0, TiN))C1TiN
2=1

+ [a(x(xo,t f)) + (-1)N B (x(xo, t f))]dt f

That is,

dx(xo, tf) =

Tl a[a(x(x0,t)) + B (x(xo,
dxodt +

fto ox0

a[a(X(X0,0) + (-1)i B(X(X07t))]
dxodt

aX0

frtf a[a(x(xo, t)) (-1)NB(X(X0,
aX0

dX0dt

117

(5.44)

N

2(-1)ZB(x(x0,TiN))driN + [a(x(xo, t1)) + (-1)N B(x(xo,t f))]dtf
i=1

+ +
a[a(x(xo, t)) + B(x(xo, t))]

fto axo
dt +

a[a(x(xo,t)) + (-1)i B(x(xo,
axo

t))] dt +

a[a(x(x0,t)) + (-1)N B (x(xo, t))]
axo

dt}dxo (5.45)

Define C(xo, TN, tf) -- I + fTiv a[a(x(x°'t))+B(x(x° ''))1 dt + +to axo
fTN a[a(x(xo,t))+(-1y B(x(xo,t))] dt flt:Nf a[a(X(X0,t))+(-1)N B(X(X0,0)] dt.
iiv+1 axo iftoTN

Notice that dx(xo, tf) = 0 since the desired final state is the origin. Then we have

2(-1)V3(x(xo, (-1)NB(x(xo, tf))1dtf = C(xo, tf)dxoriN))driN + [a(x(xo,t1)) +

(5.46)

It can be readily shown that C(xo, TN, tf) is bounded. Then it follows that there may be

some freedom for dr,N and dtf to take some small values. Hence, for any positive small

number c, there exists a positive small number (5 such that if I 14-411 < 6, iiTN'2 <

E where 4- and x6 are different initial conditions; and TN,1 and TN,2 are corresponding

switching vectors.

It should be noted from Equation (5.45) that since all the first-order partial deriva-

tives are bounded, any small perturbations to both the switching times and the initial

state only cause small change to the final state.

118

Therefore, some conclusions naturally follow.

Conclusion 1: Suppose Q is a compact region where with proper control the optimal

trajectories starting in the compact region will still remain in it. That is, for any initial

state xo E Q, there exists an optimal control v = g(x) which is a state feedback control

such that the state can be driven to the origin in a finite amount of time. Let the

switching curve (or manifold) be S. Let a region D C Q surrounding the switching

curve be defined as D = : Ilx yll < 6 y E S; x E 1l }. Then a neural controller

u = NN(x) which only takes -1 or +1 with x being the state, can be trained such that

if x E Q D, Ilu(x) v(x)I1 = 0. Then for any El > 0 and E2 > 0, there exists E3 > 0

such that if I Ixo xo I I < 63, there exists the terminal time tf such that Itf t*f < E1,and

Ilx(xO,tf) x* (xo, t f)I1 < E2 where t;, is the optimal terminal time for the initial state xo;

and x*(xo, t) is the optimal trajectory starting form xo.

Remark: First of all, the optimal control v = g(x) with x E SI is a discontinuous

function only on x E S. It can be approximated with a continuous function,say v -= h(x),

with the same support with sufficiently small error -y > 0 such that h = g if x E Q D,

and Ih(.) g(.)I < 7 for x E D. Then a neural network NN1(.) can be trained to

approximate the function h(.) such that INN1(.) h(.)I < yl with yl being an arbitrarily

small positive number Note that h(.) takes a value of -1 or +1 if x E Q D. Then

1 yl < NN1(.) < 1 + yi or 1 yl < NN1(.) < 1 + yl for x E Q D. As long as 7

is chosen such that 7 < 1, then sgn(NN1(.)) = h(.) for x E S2 D. But sgn(NN1(.)) is

another neural network. Thus, the existance of such a neural controller is assured.

Conclusion 2: Suppose Q is a compact region where with proper control the optimal

trajectories starting in the compact region will still remain in it. That is, for any initial

state xo E Q, there exists an optimal control v = g(x) which is a state feedback control

such that the state can be driven to the origin in a finite amount of time. Let the

switching curve (or manifold) be S. Let Si be the piecewise linear approximation of the

switching curve. Suppose that x E S and x' E S1 where x and x' are points of an optimal

119

trajectory. Then for any Ei > 0 and E2 > 0, there exists E3 > 0 and ELI > 0, such that if

< 13, and 114suPxes; x'Est Ilx x'll < /4, there exists the terminal time tf such

that Itf t';,1 < Ei,and I lx(xio, t1) x*(xo, t.f)ii < 62 where t*f is the optimal terminal time

for the initial state xo; and x*(xo, t) is the optimal trajectory starting form xo.

Remark: Such a piecewise linear approximation of the switching manifold may be

realized by a constructive neural network.

5.5.2. Support for construction of hierarchical neural con-
trollers

Consider again the system equation

8 = cobw

W = C1 C2W c3 sin(Se + 8) c4 sin(Se + 8)v
(5.47)

Note that since a load is considered in the SMIB case, c1 is now a fixed unknown

scalar. Cl is assumed to be within the interval 1, = Thus, the aboveirchnin, cirnaxl.

system equation is equivalent to Equation (5.8).

For any fixed Cl, the control can be designed to stabilize the system in a near op-

timal manner. The question then arises how an effective control can be designed for the

fixed but unknown parameter. One natural solution would be identifying the parameter

first and then activating the according control. One other alternative is to use all avail-

able specific controllers corresponding to specific cases, and make a combination of them.

In what follows, the theoretical aspects for the latter case are investigated about how

such a combined controller can be synthesized and how well such a synthesized controller

performs.

For any given initial state xo, and the corresponding optimal switching vector TN

and the final time tf, if c1 is a variable, then the state x = [6 w]T will be a continuous

function of the switching vector, tf and c1. Suppose there is an increment dc/ in Cl, and

120

suppose that this variation in c1 does not cause the structure change in the system (which

means the behavior of the system does not change much), and the goal is still to drive the

system state to the origin. Suppose that this will cause some increments in the switching

vector TN and tf. Therefore, we have the following equation by means of perturbation

analysis.

N

0 = E 2(1)2 B(X(X0, TN; CO)driN [a(x(xo, t f; ci)) + (-1)N B(x(xo,t f; ci))]dt f
i=1

+

ftf
[0 l]rdcidt

to

T1 a[a(X(X0,t; CO) B(X(X0,t; C1))1 aX
dcidt

fto ax

a[a(X(X0,t; CO) + (-1)i B(X(X0,t; CO)] aX dcidt +
JTN ax

frtf a[a(x(xo, t; ci)) + (-1)N B (x(xo, t; cl))] ax
dcidt

aX Cl

P TIV a[a(x(xo ,t;c1))± B(x(so ,t;c1))] ax dt +Define C(ci, TN, tf)
to ax

fT,N+1 a[a(x(xo,t;c1))+(-1)iB(x(xo,t;c1))] ax dt
r,N ax Cl

tf a[a(x(xo,t;c1))+(-1)Ns(x(xo,t;c1))1
aX dt+ i

(2dt

eldt

NTN

And C(ci, TN, t

C(ci , TN, tf) =

,_NN r.i+i
Ei=1 TrN

f) can

ft?

(C3

ax ci

be further expressed as

0 Wb

[(c3 c4) cos(o, + 6) C2

0 Wb

(-1)tc4) cos(6, + C2

rtf
j NTN

[(c3 C4) cos(8, + 6) C2
It follows that

0 Wb al dt.

(5.48)

N

0 = E 2(1)2 B(x(TiN))c/TiN + [a(x(t f)) + (-1)N B (x(t f))1dtf
i=1

+ {(t1 to)[0 1]T + C(ci, TN, tf)}dci (5.49)

121

Since we assume that the variation in c1 does not cause any structure change in

the system, for any t,
ci is bounded. Thus, C(c1,7-N, tf) is bounded. Since axN for

i = 1, , N and AT-at are bounded, any small change dc1 in c1 will cause small changes in

the switching vector and the terminal time.

Based on the above discussion, the interval Ic is devided into M 1 parts such that

chnin = cl < ci < < Cr- = cimax. Since c1 E Cl must be in some interval [cii,

Further suppose there exist a number of optimal controllers ui(x), corresponding to the

parameter Cl, where i ranges from 1 to M , for the above system. For any c1 E .Tc, define

the combined controller by u(x) = Ajui(x) where 0 < A.7 < 1 for j = 1, , M and

Eim=i = 1. But since there exists i such that c1 E cii+1], it is then reasonable to

use, for synthesis of a control corresponding to Cl, only the information about the system

and control corresponding to both cases where the parameter takes a value of ci and
+ici ,respectively.

Therefore, a controller can be synthesized in two stages that follow.

First, identify the sub-interval [ci, cii+1] that Cl is likely within.

Secondly, construct the control by means of a combination of the pre-designed controller

ui*(x) and ui+1*(x). That is, u(x) = +i

Remark (1): since the analytic form for ui* may not be available, it is then therefore

necessary to use the method described before to train a neural controller N (x) for each

case.

Remark (2): since A is not known, it has to be identified. This can be done

by using the available optimal trajectories to train another neural network. That is,

= N.1\8 (x, X).

Remark (3): to identify the parameter c1, first feed the initial state to all M neural

controllers. Let the number of the resulting controls taking +1 be M1. If M1 > M/2,

then the control for the first cycle takes +1; otherwise it takes 1. With the control for

the first cycle, the measurement can then be used to determine the parameter Cl. That

122

is, ci = cli + c2cA) + c3 sin(8) + c4 sin(6)v. Note 8 is now the rotor angle not the rotor angle

deviation from the equilibrium, because for each Cl, the equilibrium is different from the

other.

It should be noted that for system (5.10) with a couple of unknown parameters

similar theoretical results and implementation procedures can be readily obtained.

5.5.3. Approximate time-optimal adaptive neural controller

In the following, it will be shown that the procedures used for synthesis of neural

controllers for cases I and II, described in section 5.2., can be used for case III.

Gronwall-Bellman Inequality [95]: Suppose that OM, k I f (t) and itt(t) are real, continuous

functions with ,u(t) > 0 for all t > to. Then the implicit inequality

t
OM < T(t) + f it(o-)0(o-)do-, t ? to (5.50)

to

implies the explicit inequality

rt
OM w (t) + i it (a)T(a)ef;A(T)dTda, t > to

to
(5.51)

In the following, it will be shown for case III that a bounded error involved in the

identification of the load only results in a bounded deviation from the desired trajectory.

Here,

1 .3 = wbw
(5.52)

Co = ci cio c2co c3 sin(Se + (5) c4 sin(6, + (5)v

where el() = 71-4-P , and cl, c2, c3, C4, 6e, and wb are all constants.

A neural network is trained with available data to approximate the nonlinear load

such that the approximation error is uniformly bounded. That is, the load can be modeled

as A = NN(w), or equivalently cio = NN(w) (mathematically, 60 should be written as

cio(w); for brevity, the argument is dropped if no confusion arises). And the approximation

123

error can be expressed as el = cio cio with lei I < Eel where Eel is a pre-specified positive

number.

Note that cio is a continuous function of w with a compact support since the max-

imum value and minimum value for co are usually physically determined for stability

concern. cio can then be approximated by a piece-wise linear function cio such that the

approximation error e2 = cio is uniformly bounded by a positive number E. That

is, le21 < Ee2.

It then follows that Iciocio I = Iciocio+ciociol < < Eel +fez*

Therefore, cio can be expressed as

cio + e

where 11 e(.) I1< E, and E is a positive number.

It follows that

(5 = WO)

c1 e c2co c3 sin(O, + 6) c4 sin(6, + 8)v

Note that the optimal control can be obtained for

(5 = (00)

W = C1 cio c2w c3 sin(8, + 6) c4 sin(Se + 6)v

(5.53)

(5.54)

(5.55)

through the method described before.

Define x = [6 (o]T; a(x) = Cl[vbcv cio c2w c3 sin(8e + 8)]T; and B (x) =

[0 c4 sin(Se + 8)]T.

Then the above two equations can be writen compactly as

where C = [0 1]r.

and

± = a(x) + C e + B(x)v (5.56)

= a(x) + B(x)v (5.57)

124

Since the optimal control exists for x = a(x) + B(x)v, with the given initial condition

x(to) = xo, we have, by integration of the above two equations from to to t

and

t
xi(t) = xi(to) + f [a(xi(s)) + Ce + B(xi(s))v(s)lds

to

t
x2(t) = x2(to) + f [a(x2(s)) + B(x2(s))v(s)]ds

to

(5.58)

(5.59)

By noting that xi (to) = x2(to) = xo, substraction of the above two equations yields

t
xi(t) x2(t) = f {a(xi(s)) a(x2(s)) + Ce + [B(xi(s)) B(x2(s))]v(s) }ds (5.60)

to

Note that, by Taylor's theorem, a(xi(s)) a(x2(s)) = aT(xi(s) x2(s)) and B(xi(s))

B(x2(s)) = Br(xi(s) x2(s)), where

0 Wb
aT = [with 6 lying between Si and 62;

c3 sin(O + Se) C2
and

0 0
BT -.-=[with 6 lying between 81 and 82.

C4 sin(o + 6,) 0

Define Ax(t) = xi(t) x2(t). Then we have

ft
Ax(t) = f Ceds + [aT(x(s))Ax(s) + BT(x(s))Ax(s)v(s)]ds (5.61)

to to

If the appropriate norm of both sides of the above equation is taken and the triangle

inequality is applied to it, the following is obtained:

t t

IlAx(t)11 f Wel lds + II f [aT(x(s))Ax(s) + BT(x(s))Ax(s)v(sAds11
to to

(5.62)

Note that e is uniformly bounded (i.e., lel <), Iv(t)1 5 1, IlaTII = suPxEct aT(x) < oo,

and IIBTII = suPxEst BT(x) < oo.

It follows that

t
iiAx(t)ii < f(t to) + f II [aT(x(s))Ax(s) + BT(x(MAx(s)v(s)llidsf

t
_< c(t to) + (IlaTII + PTO f IlAx(s)Ilds

to
(5.63)

125

Application of Gronwall-BellmanInequality yields

IlAx(011 < e(t to) + f (OA + IIBTIDE(s to) exPlf + IIBIDdalds
to

< e(t to) + E(liaTil + IIBTIU
24)2

exPlalaTil to)}

< KE (5.64)

where K = (t to)[1+ exPlalaTii+IPTINt to)}, and K < oo, for

all t E [to, tf].

Roughly speaking, as long as the identified load, by means of an affine function for

each period of time, is close to the actual load, through the control corresponding to the

identified load, the resulting trajectory corresponding to the actual load is close to the

trajectory corresponding to the identified load. Therefore, the procedures developed for

synthesis of neural controllers for case I and II, suitably apply for case III.

5.6. Simulations

A SMIB system with a load P1, described by Equation (5.9), is considered for sim-

ulations with the parameters and some related data given as

wo = 2ir x 60; M = 3.5; Pm =-- 0.3665; D = 2.0; V1 1.0; Voo = 0.9; Xd = 2.0; X, = 0.35;

se = 0.4; smax = 0.75; smin = 0.2;

A controller is to be synthesized to stabilize the postfault SMIB system in minimal time,

taking into account the unknown load.

Due to the uncertainty of the load, this can be achieved by application of a somewhat

"intelligent" time-optimal control to drive the system to a small neighborhood of the

equilibrium in near optimal time and thereafter a linearized feedback controller to take

over and maintain the equilibrium.

126

For brevity, Equation (5.10) is preferred to Equation (5.9). The linearized version

of the SMIB system (5.10) around the origin can be obtained as follows:

0 Wb

[(c3 + eve) cos 6, (c2 + c20)

AS 0
+ Av (5.65)

OW c4 sin Se

With the substitution of the parameters, it follows that

AS 0 376.9911 AS 0
Lv (5.66)

Ac;) 0.0507 0.5714 c20 Ow 0.0047

For c20 = 0, the eigenvalues are 0.2857 ± j4.3625. This indicates that the equilib-

rium is lowly damped. It can be seen that even for c20 0, this low-damping nature will

hardly change as long as c20 is around the level of c2 or less. In case of disturbances, this

equilibrium may experience the oscillation. Therefore, a linear state-feedback controller

is useful to enhance stability around the equilibrium of the SMIB power system.

Let the feedback gain vector be K = [k1 k2]T. Then Av = ki AS + k20w.

Note that due to the calculation error involved in computing the off -line time-optimal

trajectories and other practical reasons mentioned previously, the system is expected

to be driven to a small neighborhood of the equilibrium. This neighborhood can be

chararcterized by an elliptic region (2 + () 2 = 1 where fo and 6, are two posi-

tive numbers, and is much larger than cw. The feedback gain k1 can not take very

large values for small-signal analysis. Further, the resulting feedback system matrix be-

0
comes . In order for the oscillation to be

0.0507 0.0047k1 0.5714 0.0047k2

suppressed, k1 must take a large value with a negative sign. To make a trade-off, let k1 be

0. However, k2 can take a relative larger value. But k2 can not take too large a value in or-

der to keep Av small enough so that the small signal analysis is validated. Let k2 = 1000.

The eigenvalues of the resulting feedback system now become 2.6357 ± j3.4881, which

ensures much stronger stability of the SMIB system.

127

In what follows, approximation of switching manifolds, synthesis of neural con-

trollers, and synthesis of a hierarchical neural controller are demonstrated.

Note that the load in system (5.9), denoted by Pi (Po, C), is parameterized, and that

the each of the parameters thereof can be generally assumed to lie within some range. That

is, assume Po E [Pon., Po.] and C E [Cmzn, Cmax]. Tessellate the region spanned by

Po and C into small sub-regions Aio's whose vertices are (P(;, Ci),(P11+1, C3),(PO, C9+1)

and (Pj+1, 0+1), where i = 1, 2, , Np 1, j = 1, 2, , 1, Po,. = Pij < Pd <

< Poniax and Cmin = C1 < C2 < < CNc = Po.. Note that once the

sub-region Az o within which the load parameter vector may lie is roughly identified, only

the pre-designed lower level time-optimal neural controllers corresponding to the loads

Pi(1=', C3), P1(PO+1, C3),Pi(PO, C3+1) and
Uri 0-1-1

) respectively, can be

enabled to synthesize a controller, with the structure proposed in section 5.4., applicable

to this unknown load case. For simplicity, let C = 0 while Po may range from 0 to Poniax

By means of the efficient switching-time-variation-method, in the region of stability

interest, a number of optimal trajectories, corresponding to different initial conditions as

well as the load Pi = 0, are generated and shown in Figure 5.3. Note that in Figure 5.3,

the equilibrium is the origin, and the rotor angle and the rotor speed are translated from

the equlibrium rotor angle and rotor speed, respectively. To make a distinction, the

rotor angle and the rotor speed thereof are called the rotor angle deviation and the rotor

speed deviation. Hereafter, this will be done for similar cases. Since for different sets

of parameters for a load, the corresponding equilibrium points are different, the specific

equilibrium will, therefore, be mentioned in case the confusion arises. The trajectories

shown in Figure 5.3 are computed in a continuous time setup. For the sake of neural

network training, the time continuous trajectories are sampled at a rate of 1 sample per

cycle. As pointed out previously, the inputs to a lower-level neural network include the

rotor angle and its previous value. The computed trajectories in terms of the rotor angle

and its previous value are shown in Figure 5.4. The lower-level neural networks are trained

128

and neural controllers are obtained in the configuration shown in Figure 5.1. The learned

pattern in terms of the rotor angle and its previous value by the neural network is shown

in Figure 5.5. Accordingly, the learned pattern in terms of the system state is shown

in Figure 5.6. Comparisons between Figure 5.4 and Figure 5.5, and between Figure 5.3

and Figure 5.6, indicate that the lower-level neural network in the proposed configuration

performs satisfactorily in terms of the given pattern. For an initial condition corresponding

to an off -line calculated optimal trajectory, the resulting trajectory by means of the trained

time-optimal neural controller is shown in Figure 5.7. It can be seen that the resulting

trajectory and the corresponding off -line optimal trajectory are almost indistinguishable.

(Note that a linearized controller further brings the system to the exact equilibrium; this

will not be mentioned hereafter unless the confusion arises). The system after experiencing

a severe short-circuit fault, from which the resulting initial condition is not trained, loses

its stability with the fixed compensation se (or ye). By application of the trained neural

controller, the system can be stabilized in near optimal time. The resulting trajectory is

shown in Figure 5.8, which is very close to the computed optimal trajectory by means of

the STVM method.

Similarly, for a load P1 -,--- Pm x 10%, the off-line calculated optimal trajectories in

the region of interest are shown in Figure 5.9. The corresponding trajectories in terms

of the rotor angle and its previous value are shown in Figure 5.10. The learned patterns

by a time-optimal neural controller, in terms of the state and in terms of the rotor an-

gle and its previous value, are shown in Figure 5.11 and Figure 5.12, respectively.For an

initial condition corresponding to an off-line calculated optimal trajectory, the resulting

trajectory by means of the trained time-optimal neural controller is shown in Figure 5.13.

It can be seen that the resulting trajectory and the corresponding off -line optimal trajec-

tory are nearly indistinguishable. With employment of the trained neural controller, the

system after experiencing a severe short-circuit fault can be brought to a pre-designated

small neighborhood of the equilibrium in near optimal time, and further brought to the

129

equilibrium by a linearized controller, discussed above. The resulting trajectory is shown

in Figure 5.14, which is also very close to the computed optimal trajectory by means of

the STVM method.

Similarly, other lower-level time-optimal neural controllers can be obtained corre-

sponding to the case on which the load P1 = P,n x 20%, P,n x 30%, , etc.

Next the training of the upper-level neural networks is addressed. As discussed

before, the inputs include the current rotor angle S(k) and its previous values (6(k 1)

and 6(k 2)), and the current control and its previous value (v(k) and v(k 1)) coming

from the corresponding lower-level neural controller. Each of those neural network can

be described by an = UNN,,(8(k),S(k 1),8(k 2), v(k), v(k 1)). With these upper-

level neural networks trained, the outputs of the upper-level neural networks are fed into

the multiplier processing unit. The sum of the lower-level controllers multiplied by the

resulting multipliers forms the current control to the power system.

The proposed hierarchical neural control, in the configuration shown in Figure 5.2,

is examined for a severe short-circuit fault for an unknown load (P1 = P,n x 5%) , for

which the related optimal trajectory are not used for neural network training. Following

the proposed identification and control procedures described in section 5.5., the resulting

trajectory is shown in Figure 5.15, and is also very close to the off-line calculated time-

optimal trajectory.

130

x
to

5
-0 4 -0.2 0 0.2 0.4

rotor angle deviation (rad)
0.6 0.8

FIGURE 5.3: Time-optimal trajectories calculated by STVM for case P1 = 0

5.7. Generalization to more general systems

The results obtained for simplifed power systems with loads can be generalized to

more general nonlinear systems. Consider a parameterized nonlinear system described by

= f (x, u; (5.67)

where x E 1:0 is the system state; u E Kt' is the admissible control vector; and c E R1 is the

parameter vector confined within some sub-space. Assume for the region 12 of interest the

existance of a bang-bang type of control is assured. Through tessellation of the parameter

vector space, lower-level time-optimal controllers can be designed corresponding to the

vertices of each sub-region. The upper-level neural networks in the proposed hierarchical

neural control structure can also be trained in the way discussed previously. Then for an

unknown parameter vector, its identification based on the measurements of the state helps

131

0.8

0.6

0

0.4

0.2
2

2

0

-0.2

0.4
-04 -0.2 0 0.2 0.4 0.6

previous rotor angle deviation (rad)
0.8

FIGURE 5.4: Rotor angle deviation data for neural net training for case P1 = 0

locate which sub-region it is likely within, and then the lower-level neural controllers are

enabled corresponding to the vertices of this sub-region. With the state and its previous

value feeding in, the upper-level neural networks and additional multiplier processing unit,

calculate and process the proper multipliers. The "intelligent" control signal is the sum

of the modulated control by the multipliers.

5.8. Conclusions

For efficient utilization of the existing high voltage transmission networks, FACTS

devices are installed in order to enhance power system stability. The proper manipulation

of the installed FACTS devices are crucial for maintaining power system stability while

improving the power transfer capability of transmission networks. The transients initiated

132

0.8

0.6

0

3 0.4
O

0 0.2

0

0
o

-0.2

0.4
-0 4 -02 0 0.2 0.4 0.6

previous rotor angle deviation (rad)

0.8 1

FIGURE 5.5: Learned pattern of rotor angle deviation for case Pi = 0

by large faults may interact with the loads, and further cause voltage instability problems.

The transient stabilization of power systems is addressed while the load effect is also

considered. The uncertainty of the load makes the faulted power system a nonlinear

uncertain dynamic system, which is a challenge calling for robust and intelligent control

design.

The explicit analytic optimal feedback control is generally not available, but it can be

obtained numerically. The numerically obtained optimal trajectories can help produce an

approximate near optimal control by training a neural network. The time-optimal control,

more specifically, the bang-bang control, is achieved by a neural network such that the

feedback control pattern is recognized. This is essential to approximate the switching

curve (or manifold). Related theoretical justification is presented. When the load taking

a parameterized form is unknown with its parameters fixed but needing identification,

133

104
10

g 5

.&L

O

o

+ + + +++
+ ++ +

+
+
+ +

+:::+ +++ ++

+

+ + + ++ +it++
+ ++ ++++++, + ++ ++÷+ ++ ++++ ++++ +4. ++++ ++++

+++++++++
+ + + + + +++++++ ++ ++ ++

5
0 4 -0.2 0 0.2 0.4 0.6 0.8

rotor angle deviation (rad)

FIGURE 5.6: Learned pattern about time-optimal trajectories for case P1 = 0

a reasonable control is synthesized by means of a hierarchical neural network structure.

Here, the lower level neural networks are designed so that for a given parametrized load,

a corresponding lower level neural network will work well enough to approximate the

minimal time control, whose upper level neural networks assign corresponding values to

the "weights", or membership values in the context of fuzzy control, to the associated

lower level control. Since the possible control values that the optimal control may take

are discrete, say -1 or +1, the current lower level controls can then be fed into the input of

the upper level neural networks. This is motivated by noting the fact that the the proper

"weights" have something to do with the corresponding lower level control. The "weights"

for controls are not simply operated to obtain a weighted sum the resulting control.

Rather they are somehow operated so that the resulting control is also a bang-bang type,

which may avoid the otherwise longer duration for transient stabilization. The tessellation

5
0.5-

0
5

o -0.5

5

0

0.5 1.5 2 2.5 35
time (s)

0.5 1.5 2 2.5 3 35
time (s)

1

0.5

0.5 1.5 2 2.5 3 35
time (s)

134

FIGURE 5.7: Training performance for case P1 = 0; solidthe resulting trajectory from
the neural controller; dashedthe off-line calculated trajectory

scheme and rough identification of the parameters involved help identify the sub-interval

(or rectangle) that the parameters (or parameter vector) are within. The idea behind

these schemes should be readily generalized to more general systems.

The linear controller around an equilibrium is designed so that it is sufficient to drive

the system into a pre-designed neighborhood of the equilibrium by means of a time-optimal

control. This may accomodate some slight differences between the actual switching and

the optimal switching.

As a subsequent effort, more complex power systems will be studied along with

the dynamics of connected loads in order to further investigate the mechanism of voltage

collapse, which will be studied in chapter 6.

135

O

O 0.5

43

rn o

8
0.50

'1, 104
10

0
10 5

03,

a

50

> 0.5

z 0

° -0.5

0.5

time (s)

2.5 3 35

0.5 1 1.5 2 2.5 3 35
time (s)

0 0.5 1 1.5 2 2.5 3 35
time (s)

FIGURE 5.8: Performance of the neural controller for untrained case for case P1 = 0;
solidthe resulting trajectory from the neural controller; dashedthe off -line calculated
trajectory; dottedthe trajectory resulted from fixed compensation

136

8

6

g 4

5
'11 2

1 0

O

0 -2

-4

-6

-8
4.4 -0.2 0 0.2 0.4

rotor angle deviation (rad)
0.6 0.8

FIGURE 5.9: Time-optimal trajectories calculated by STVM for case Pt = 10%Pni

1

0.8

0.6

O

0.4

O
C

O
O

0.2

0

-0.2

0.4
-0 4 -0.2 0 0.2 0.4 0.6

previous rotor angle deviation (red)

0.8

137

FIGURE 5.10: Rotor angle deviation data for neural net training for case Pi = 10%/3,,

138

0.8

0.6.

0

0.4
V

9dv

5

0.2
0

2

0

-0.2

0.4
-0 4 -0.2 0 0.2 0.4 0.6 0.8 1

previous rotor angle deviation (rad)

FIGURE 5.11: Learned pattern of rotor angle deviation for case Pi = 10%P,

139

8

6

3 4

IT; 2

V
0

2 -2

- 4

6

10'

. .

' . . . '

.

8
-04 -02 0 0.2 0.4 0.6 0.8 1

rotor angle deviation (rad)

FIGURE 5.12: Learned pattern about time-optimal trajectories for case P1 = 10%Pni,

5
0.5

0

-0.5

3 0

09' 5

8
2

, 0.5

-0.5

0.5 1 1.5 2 2.5 3 35
time (s)

0.5 1 1.5 .5 35
time (s)

0.5 1.5 2 2.5 3 35
time (s)

140

FIGURE 5.13: Training performance for case P1 = 10%Pm; solidthe resulting trajectory
from the neural controller; dashedthe off -line calculated trajectory

0.5

1, 0

0

-0.5

103

5 5

5S 0

3
5-5

0

1

, 0.5

0

8 -0.5

-1

0.5 1.5 2 2.5 3.5

time (s)

0.5 1.5

time (s)

2. 35

,

,
-....

.,

0 0.5 1.5 2

time (s)

2.5 3 35

141

FIGURE 5.14: Performance of the neural controller for untrained case for case P1 =
10%Pm; solidthe resulting trajectory from the neural controller; dashedthe off -line
calculated trajectory

1

0.5

°

8 0.5

1

0 0.5 1.5 2

lime (s)

2.5 3 35

I 1 !

I

0 0.5 1.5 2

time (s)

2.5 35

142

FIGURE 5.15: Performance of the hierarchical neural controller for SMIB with an un-
known load after experiencing a short-circuit fault; solidthe resulting trajectory from
the neural controller; dashedthe off -line calculated trajectory

143

6. NONLINEAR ADAPTIVE NEURAL CONTROL
WITH APPLICATION TO PREVENTION OF

VOLTAGE COLLAPSE

6.1. Introduction

Since the concept of a bilinear system [7] was proposed, bilinear systems have been

studied extensively. The developed bilinear system theory has found many practical ap-

plications. It has been shown by both theoretical study and real applications ([7] and

therein) that bilinear control or more generally multiplicative control can be more effec-

tive than linear control. One approach is to use some kind of adaptation law for adaptively

changing the multipliers so that the resulting multiplicative control performs properly.

It is well known that bilinear systems comprise one of the simplest classes of non-

linear systems, and have appealing structural properties. Bilinear systems may typify

adaptive or variable structure systems as well as general nonlinear systems.

Affine nonlinear systems, as a generalized version of bilinear systems, have also been

investigated extensively. For a parameterized affine nonlinear system, a proper conven-

tional controller may be designed with the help of the developed theory provided the

parameters of the system to be studied are known. If the parameters are unknown to the

controller designer or the parameters vary in some way, it is desired that the controller

should be properly designed such that the whole system performs at least still the same

in the presense of parameter disturbances. In this sense, the control may be termed as

an adaptive control. Indeed, the neural-net controls, here, may be viewed as nonlinearly

coupled bilinear systems.

An excellent survey paper [6] has overviewed the current status of adaptive control,

and proposed a unified and generalized framework to address the adaptive stabilization

144

problems of nonlinear systems. It is observed that most available adaptive theoretical

results are obtained without constraints on the control. The main reason is perhaps that

imposing constraints on the control may lead to tremendous difficulties for mathematical

treatments. And it is also noted that in adaptive stabilization problems of nonlinear

systems the control corresponding to the true parameter, possessing some analytic form,

is usually assumed available in some way. In some simple cases, it might be true. For

more general cases, however, such a control is usually not available analytically. Instead,

numerical techniques may have to be employed. The available calculated controls and

temporal trajectories can be then used to train a neural network, which is well known

to be capable of approximating properly both static nonlinear functions and dynamics

of nonlinear systems. The concept of dynamic neural networks, accordingly the dynamic

backpropagation algorithm for training such a neural network, was proposed in [31] as a

natural extension of static neural networks in the context of dynamical system control.

The combination of a static neural network with some feedback forms a dynamic neural

network, which may involve online weights updating. Weights updating by means of the

so-called dynamic backpropagation algorithm, however, requires intensive computation

and a large amount of storage memory, which is not practical in the foreseeable future.

Instead, simple adaptation laws for weights updating are sought. Extensive studies have

been in progress in this respect. Still stability is an overwhelming issue. General results are

very few, and most often depend on some fundamental assumptions such as the matching

condition and the separation principle [6]. Some results have been obtained for affine

nonlinear systems linear in parameters. For general dynamic nonlinear systems containing

dynamic neural networks, general results are quite difficult to obtain. Rather, it is most

often assumed that the nonlinear systems to be dealt with take specific forms and/or

dynamic neural networks take specific forms. For example, with the assumption that

the dynamic neural network that models a very special nonlinear system is a one hidden

layer neural network without crosstalk feedback links among other assumptions, it is

145

demonstrated that the use of dynamic neural networks is efficient, as long as there are

no constraints imposed on the control, for adaptive regulation of unknown dynamical

nonlinear systems [96, 97]. Some other results are also available for dealing with the

control of linear systems, nonlinear systems which can be feedback linearizable, and so

on. Motivated by the fact that desirable control can be synthesized by training a neural

network off -line with available optimal controls and optimal trajectories, our approach

is then to synthesize a proper multiplicative control by off -line available nominal neural

network controllers with updating the according multipliers on-line. This will become

clear later. The systems to be studied are affine nonlinear systems which are linear in

parameters. It is demonstrated in section 6.2. that several commonly-used power system

models belong to the affine systems which are also affine in parameters. It is then natural

to extend to these systems the hierarchical intelligent control schemes developed in chapter

5. Further, the conventional adaptive control combined with the hierarchical intelligent

control schemes is studied in the following aspects: First of all, adaptive control is studied

for time-invariant unknown parameters; for time-varying unknown parameters, adaptive

controllers are synthesized; and the relevant system stability issues are studied. Finally,

the simulations are provided for a typical model exhibiting voltage collapse phenomena to

demonstrate the performance of adaptive hierarchical neural control.

6.2. Models and neural control of FACTS-equipped power
systems

A few examples of power systems equipped with FACTS devices are presented in

this section and their models are formulated/developed to illustrate the fact that many

real systems may belong to a parameterized system affine in both control and parameters,

for which the hierarchical neural-control scheme may be applied. Such a formulation also

leads to the investigation of adaptive stabilization of affine systems which are also affine

146

in parameters via neural control. The adaptive stabilization of affine systems via neural

control is presented in section 6.3..

6.2.1. Formulation of compound power systems

As is known, FACTS devices are popular for their rapid response, which should

be properly manipulated. Models of power systems with FACTS devices are useful for

control purpose. In what follows, a SMIB system with a load, developed in chapter 5,

is described here again as one of illustrative examples; then a typical system model for

voltage collapse study is presented to show that such a model is also an affine system;

and further a four-machine sytem is presented and its model is developed with some

reasonable assumptions, with which similar models can be formulated for general power

systems equipped with FACTS devices.

6.2.1.1. Single-machine infinite-bus system with a load

As studied in chapter 5, one of the models for a SMIB system with a load is given

by equation (5.10), and repeated in the following.

{
(5 = Wbco

= C1 c10 (c20 C2) CV c3 sin(6, + (5) C4 sin(8e + 6)v
(6.1)

Note that the parameters are cm and c20. It is evident that this system is affine in both

control v and parameters.

6.2.1.2. A typical system model for voltage collapse study

The voltage collapse mechanism is not well understood yet. A simple system model

in Figure 6.1, proposed in [98], was shown to display complex system behaviors typified

for voltage collapse circumstances. Inclusion of this model is for designing a proper control

147

which is capable of preventing the occurrence of potential voltage collapse. Such a study is

important in that it demonstrates how a specific potential voltage collapse problem could

be solved by means of proper control, whose design is not clear until later sections. This

study may also represent an important step towards a general approach to general voltage

collapse problems.

The system model is given by

SM =- w

M Co = -dmw + Pm, ± EmYmV sin(8 Sm 0m) ± EE Ym sin Om

K q,,iS = -Kgv2V2 K qvV + Q(8, V) (20 Q1

T K q, If p,,,V = K p, K q,2V2 + (K 1,,, K qv K q, K pv)V

± K qw (P (8 , V) Po PO

-Kpw(Q(6,V) Qo Q1) (6.2)

where P(S,V) = -E0' Yo V sin(o + 00) EmYm V sin(6 Sm + Om) + (17(; sin 00' ± Ym sin 0m)V2

and Q (S, V) = Ec; Yo V cos (S ± 00) + EmYmV cos (S jm + Om) (Yo cos 00' ± 17,, cos 0m)V2,

with Eio -= yo(1 + c2y0-2 2cyo-i cos 001/2, and 0:3 =(i+c2170-2-2Ec0Y-1- cos Go)1/2 ' ITC:

1 CY-1 sin 8000 + tan- (--?, ,)
' 1CY-- cos 00 '

Through some algebra, it can be readily shown that Yc; sin 0 Yo sin 9o, Yo cos 0

Yo cos 00 C, and Eo' Yo = Eolro

Therefore, P(S, V) and Q(S, V) can rewritten as P(S, V) = -EoY0V sin(8 + 00)

EmYmV sin(S Sm + Om) + (Yo sin 00 + Ym sin 9m) V2 and Q(6, V) = E0Y0V cos(S + 0o) +

EmYmV cos(8 877, + OM) (Yo cos 00 C + Ym cos 0m)V2.

Define a1 = -41ff , a2 = EmYm
, and ao = Prrid- 4Yni sin Om

M ,

Kqv2+170 C OS 00 +Yni cos On, ./<., E0Y0 b E Y L 1 Qo
Kg, K ' u3 K ' u4 = icnq: , u5 = Kqw 7 190 = Kqw '

= K K q v2--K qw (Yo sin 00+Ym sin Gm)+Kp, (Yo cos 90+Ym cos Gm)
=

Kpw K q v Kqw KpvCl TKKpv 7 c2 TKKpv '
K q w E0Y0 K qw . E mYm K pw E0Y0 K p, E mYrn Kpw

C3 = TKKpv ' C4 = T KKpv ' C5 = TKKpv ' C6 = TKqwKpv 7 C7 = TKKpv 1

148

icq,(Po+PO-K,Q() and u C.CO = T K qw Kpv ;

E 0

yoz(-eo_) VLO yniz(-e, z)

C Load Motor

and PQ load

FIGURE 6.1: A power system for voltage collapse study

Then the system model can be rewritten in a simpler form as follows:

(5,2 = w

cv = aiw + a2V sin(S 5m Om) + ao

(.5 = b1V2 + [b2 + b3 cos((5 + + b4 cos(S (5m + em)117 + b5V2u b5(21 + bo

ci V2 + [c2 + c3 sin((5 + 00) + c4 sin((5 Sm + Om)

+c5 cos((5 + 00) + c6 cos((5 1577, + 077)1V + c7V2u c7Q1 + co (6.3)

Note that in the above equation, the control is C, which conceptually consists of

two parts, i.e., Cn, the nominal value, which is relevant to the regulation of the voltage

magnitude, and AC, the adjustable part, which is related to dynamic stability. In practice,

Cn is usually implemented by traditional switching capacitors, and AC is implemented by

a FACTS device, which can be operated rapidly for stability purposes. Note again that

the resulting system is affine in control and also affine in parameters.

149

Let C = Cr + AC. The above system can be rewritten as

Sm. = Lc)

cal = aiw + a2V sin(6 on, Om) + ao

b1 y2 + [b2 + b3 cos(8 + Bo) + b4 cos(8 8,72 + 07701V b5V2u b5(21 + bo

V = c1V2 + [c2 + c3 sin(8 + 00) + c4 sin(o + Om)

+c5 cos(6 + 640) + c6 cos(8 + ern)]li c7V2u c7Q + co (6.4)

where b1 = b1 + b5Cri, c1 = c1 + c7C72, and u = AC.

6.2.1.3. Multi-machine power systems

Consider a four-machine power system model shown in Figure 6.2, which is also

described in [11].

The network equation can be expressed as

,b
7 U10 0 0 0 0 ,b

7 0U1

0 2J25 0 0 ,b
H25 0 0 0

0 0 ,b
H38 0 0 0 0 ,b

Y38

0 0 0 ,b
u46 0 U,b

46 0 0

0 1125 0 0 ,b ,b ,b
1155 U56 ,q57 U58

0 0 0

y17

Y
,b ,b

46 1156

0 0 0

0 0

where y55 =

fi ,b + ,b
Y88 = U83 + U85 Y86 + U88

Y83

Y57

Y66 0 Y68

0 1177 0

b 0 u,b ,b85 U6 0

.
1125 1156 1157 1158 ' u55,

Y88

V1

V2

V3

V4

V5

V6

V7

V8

12

/3

/4

0

0

0

0

(6.5)

1166 = 1146 4- 1166 + 1168 + 1166; 1177 = 1117 + 1167 + 07;

Note that if the transient reactances from the generators are also considered, the

Nodes 1 to 4 have to be moved to between the generators and their corresponding tran-

sient reactances. The form of the network equation still holds except that 07, A5 Y38,

150

and 06 are formed as follow:

,b 1 ,b 1 ,b 1 1
U17 b +z Y25 zb +z 7 Y38 b Y48 bZi7 g 1 25 g 2 Z38 +Zg3 Z48 +Zg 4

where 47, 45, 48, and 46 are the branch impedances; zg1 zg2,zg3,and zg4 are the corre-

sponding generator transient reactances.

1 2

7

8 6

3 4

0)
FIGURE 6.2: Four-machine power system

151

The network equation can then be written as

Y17

0

0

0

0

0

Y17

0

0

Y25

0

0

Y25

0

0

0

0

0

Y38

0

0

0

0

Y83

0

0

0

Y46

0

,bY46

0

0

0

Y25

0

0

Y55

,bH56

y57
,b

85

0

0

0

Y46

y56

Y66

0

,bY86

y17

0

0

0

Y57

0

Y77

0

0

0

Y38

0

u58

Y68

0

Y88

Egi

Eg2

Eg3

Eg4

V5

V6

V7

V8

Il

0

0

0

0

(6.6)

The admittance matrix can be partitioned as

Y =
Y11 Y12

Y21 Y22

Elimination of V7 and V8 yields the reduced admittance matrix as

(6.7)

Yr = Yu Yi2Y2-21Y21 (6.8)

where Yi2Y2-21Y21

y17
Y77

0

0

0

Y17Y57

0

0

0

0

f)v

0

0

0

Y:is
Y88

0

Y38Y58

0

0

0

0

0

n
V

V17Y57 0

0

Y38Y68

Y77

0

Y38Y58
Y88

0

2

Y57 + Y2 "
Y77 y88

Y58Y68

Y88

Y58Y68
Y77

0

Y88

Y38Y68

Y88
,,2
Y 68

Y88Y88 Y88

Substitution of Y11 and 371237221Y21 yields the following:

Yr =

b Y?7_ 0 0 0 jI17Y57 0Y17 Y77 /77

0 X25 0 0 Y
b

25 0

,2
0 0 b

Y
u38 0 m38Y58 Y38Y68

38 Y88 Y88 Y88

0 0 0 ,b
Y46 0 ,bU46

2 _2
Y17Y57 ,b Y38Y58 0 Y55

Y57 Y58 b Y58Y68Y56Y77 Y25 Y88 Y77 y88 Y88
_2

0 0 Y38Y68 ,b ,b Y58Y68 Y68
Y46 W56 Y66Y88 y88 Y88

The reduced network equation can be written as

Yr

Eg1 Il
Eg2 12

Eg3 13
=-

Eg4 14

V5 0

V6 0

The reduced admittance matrix Yr can be partitioned as

152

(6.9)

(6.10)

Yr =
Yr21 Yr22

Yr12
(6.11)

Yr11

Let Vc = [V5 V6]1- and Eg = [Eg1 Eg2 Eg3 Eg4]T . Then

{YrilEg + Yri2Ve = /g

Yr21Eg + Yr22Vc = 0
(6.12)

Note that the complete information about the TCSC is contained in Yr22. And

1 1
Yr22 can be rewritten as Yr22 = Yr22 + ju 1 1

Here u is the additional compensation around the fixed compensation, and Yr22 is the

admittance matrix related to the TCSC structure with fixed compensation.

1 -1
Let Ya = 1 1
Then elimination of Vc yields the following:

{Yrii Yr12[Yr22 juYa] 1Yr2i}Eg = Ig

However, [Y42 + juYarl can be rewritten as

[Yr132 + juYa]-1 = Y ° °r22
0

r22 -1 YaYr22
1 + 0(u2)

153

(6.13)

(6.14)

where 0(u2) represents the second-order and higher-order terms of u.

If the system dynamics introduced by the nonlinear term 0(u2) can be compensated for

in some manner, the following analysis is simplified.

In such a case, it follows that

-1{Yrii fv,,20
2 Ju' ' 22 ' 22 I" I 21}"-Jg = Ig (6.15)

Define Yrr = Yr11 Yr12Y/2-1Yr21 and Yra = jYri2Yr2 2 -1
YaYr2o2

-1 Yrn.
Then

(Yrr + uYra)Eg = Ig (6.16)

where Yrr represents the reduced admittance matrix with fixed compensation.

The electrical power drawn from each generator can be expressed as

Pei = Re{EgiIg':} = Re{ (Yrr2'3 + uYrai'i) *Eg;Egil

E iEgillEgi I tYrri'3 I cos (sip Oil) + lEgi I lEgillYre3lucos(Sii Oaij)

(6.17)

where i ranges from 1 to the number of the generators. Note that the absolute value

symbol will be dropped for brevity unless the confusion arises.

154

Given the mechanical power Pm, for each generator, we have the following swing

equation:

{(.5i = wb(wi 1)

Midi = Pmi Pei Di(wi 1)

That is,

(6.18)

wb(wi 1)

Prni Di(oi 1) Ei EgiEgjYrri'i cos(dii Oii) + E giE g iY re.) u cos(dii Baij)

(6.19)

Translation of the equilibrium of the above system to the origin yields the following:

di = wbwi

Wi = pi diwi Ei rij cos(8i j + oeij Oij) aiju cos(8ij + Seii 0 aij)

EgiEgjYrri,j EgiEgjYraiowhere pi = c-Ti- , d IA-, , rij , aij = , and 6-eij = Sei 6ejMi Mi

The above equation can be rewritten in matrix form as

(6.20)

= Ax + B(F (x) + G(x)u) (6.21)

04x4wher x = 82 83 64 (24 0,2 w3 w4]T; A =
04x4

F (x) =

G(x) =

'4x4

04x4

P1 d1w1 Eji=inj cos(Sij + 8eij 04j)

P2 d2w2 E34.=1 r2j cos (62j + Se2j 02j)

p3 d3(.4)3 j_l r3 j cos(63j + Se3j 03j)

P4 d4w4 r4j cos(84j + Se4j 04j)

cos (Sij + Se Oaii)

Ej=1 a2i c°s(62j 6e2j 0a2j)

j4=1 a3 cos(83j + 8e3j 0a3j)

Ej=1 a4j cos(k + Se4j a4j)

Note that Equation (6.21) is affine in control u.

1; B =

; and

04x4

/4x4

155

It should be noted that similar results can be obtained for general multi-machine

systems equipped with FACTS devices.

6.2.1.4. Generalization: affine nonlinear systems

The previously presented systems belong to a class of affine nonlinear systems in

general. A parameterized affine-in-control nonlinear system may be described as follows.

th = f (x,p) + g(x,p)u (6.22)

where x E R' is the state; p E R1 is the parameter vector; and u E Rm is the control

vector.

Notice that those example systems also belong to a class of affine-in-parameter

nonlinear system, which may be described by

= 0(x,u)+0(x,u)p (6.23)

As an intersection of the class of systems (6.22) and the class of systems (6.23), a

special class of parameterized nonlinear systems is given by

= .1)(x, u) +0(x)p (6.24)

where 0(x, u) is affine in u.

The hierarchical neural control of systems (6.22) is discussed in section 6.2.2..

Through use of on-line hierarchical neural control (by which we mean relevant weights

are updated in real time), the stabilization and adaptive control of systems (6.24) are

presented in section 6.3..

6.2.2. Neural control of affine systems

Since systems (6.22) are affine in control, the so-called STVMthe computational

algorithm developed in [8, 13], may be employed to calculate efficiently the time-optimal

156

trajectories and optimal controls. The techniques in addition to the hierarchical neural

control structure developed in chapter 5, may be used to design an adaptive near time-

optimal neural controller.

Of course, neural-network-based quadratic performance index optimal control may

also be synthesized with the same techniques for near time-optimal control except for

some minor modifications, which are clarified later.

First of all, quadratic-performance-index-based optimal trajectories and controls are

derived in the following. The goal is to bring the state x very close to the equilibrium

within a specified period of time [to, T]. Often the starting point to is assumed to be 0

without loss of generality.

The quadratic performance index can be then expressed as

T1 1J(to) = (x(T) r(T))". S(T)(x(T) r(T)) + 2 fo (xTQx + (u ue)TR(u ue))dt (6.25)

where S(T) > 0, Q > 0, R > 0. The desired final state r(T) is specified as the equilibrium

xe. ue is the equilibrium control.

The Hamiltonian function can be defined as

H(x, u, t) = 2 (x". Qx + (u ue)T 11(u ue)) + AT f + gu)

The state equation is given by

axx =
aA

= f + gu

The costate equation can be given by

ax au + gur
ax ax

The stationarity equation gives

ax o(f + gu)0 = = R(u ue) + Aau

(6.26)

(6.27)

(6.28)

(6.29)

157

Since NiGr,P).4-au9(x,P)u) = g(x,p), which is independent of u, the optimal control u can

be solved out as

u = -R-1g(x,p)T A + ue

Substitution of u into the state equation yields

= f(x,p) + g(x,p)(-R-1g(x,p)T A+ ue)

Substitution of u into the costate equation yields

(x,p) + g(x,p)(-11-1g(x,p)T A+ ue17-
Ox

By choosing R= I, the control u can then be written as

u = -g(x,p)r A + ue

Further, the boundary condition can be given by

A(T) = S(T)(x(T) r(T))

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

Notice that for the Hamiltonian system which is composed of the state and costate

equations, the initial condition for the state equation is given while for the costate equation

there are constraints for the final costate value.

It is observed that the Hamiltonian system is a set of nonlinear ordinary differential

equations in x(t) and A(t) which develop forward and backward in time, respectively.

Generally, it is not possible to obtain the analytic closed-form solution to such a two-point

boundary-value problem (TPBVP). Numerical methods have to be employed to solve for

the Hamiltonian system. One simple method, called shooting method [99] may be used.

There are other methods like the "shooting to a fixed point" method, and relaxation

method, etc.

The idea for the shooting method is as follows:

1. first make a guess for the initial values for the costate.

158

2. integrate the Hamiltonian system forward.

3. evaluate the mismatch on the final constaints.

4. find the sensitivity Jacobian for the final state and costate with respect to the

initial costate value.

5. Using Newton-Raphson method to determine the change on the initial costate

value.

6. repeat the loop steps 2 through 5 until the mismatch is close enough to zero if

convergence indeed is assured.

For hierarchical neural control, the lower-level nominal neural controllers may be

trained by using the computed optimal trajectories, and the upper-level multipliers may

also be trained as for the neural-network-based time-optimal control case except that

the multiplier processing unit in Figure 5.2 only performs the normalization of these

multipliers.

6.3. Adaptive neural control design

The previous section presents development of models of FACTS-equipped power

systems and control of affine-in-control nonlinear systems via hierarchical neural control.

The parameters (i.e., weights and biases) relevant to neural networks therein are kept

unchanged once the training is completed. In this section, we take a different approach

to the same problemadaptive stabilization of nonlinear systems. This approach is a

combination of the conventional adaptive control design strategy [6] and the neural control

design strategy developed in chapter 5. It is different from the neural control design

strategy developed in chapter 5 since it allows for the on-line updating of weights and

biases of applied neural networks as well as updating of estimates of the true parameters

in the systems. For convenience of the subsequent derivations involved in the proposed

159

control design, some basic assumptions and useful lemmas are presented; then adaptive

control of affine systems with unknown fixed parameters is discussed; further adaptive

control of affine systems with time-varying parameters is discussed. It should be noted

that some assumptions in the following (e.g., SBO and SCO) are made as usual in the

literature (e.g., [6] and therein). However, there have been researches on stabilizability of

affine nonlinear systems as well as power systems by employment of different assumptions

(e.g., [100] and therein).

6.3.1. Definitions, assumptions and lemmas

Definition [5]: For any fixed s e [1, oo), f : R+ -+ R is said to belong to LS iff

f is locally integrable and 11111, = (fr if (t)lsovs < oo. When s = oo, f E L°° iff

I If iko = supt<0 If < oo.

Several basic assumptions [6] relevant to the adaptive stabilization problem of non-

linear systems are stated in the following, and will be assumed to hold throughout this

chapter by default unless otherwise claimed.

Assumption of State Boundedness Observability (SBO): Let 7r be an open subset of

R1 and S/ be an open neighborhood of xe E Rn. There exists a function: h : R+ of

class C2, such that there exist an open neighborhood 90 of xe in 52 and a strictly positive

constant ao such that for all real numbers a, 0 < a < ao, all compact subsets /C of 7r and all

vectors xo E Clo, we can find a compact subset IT of S2 such that, for any Cl time functions

: R+ --> it and u : R+ > Rm and any solution x(t) of X(t) = 0(x, + 0(x, u)p* ,

x(0) = xo E flo defined on [0, T), we have the following implications:

h(x) < a and 73(t) E K Vt E [0, T) imply x(t) E I' Vt E [0, T).

The SBO assumption guarantees the boundedness of the state if an observation

function is bounded.

160

Assumption of State Convergence Observability (SCO): For any bounded C1 time

function /3 : R+ it and u : R+ If' with 15 also bounded and for any solution x(t)

of ±(t) = 0(x, u) + 0(x, u)p* defined on [0, oo), we have the following implication:

if limt,,, h(x) = 0, and for Vt E [0, oo), x(t) E 52 is bounded, then limt, x(t) =

xe, where xe is a desired equilibrium.

The SCO assumption guarantees the convergence of the state to a desired point if

an observation function converges to zero in addition to the boundedness of the state.

To show that an observation function is bounded by zero, and the convergence of

the state, in the context of adaptive stabilization of affine nonlinear systems, the following

lemmas are considered for convenience.

Lemma 1 (Barbalat's Lemma) [5]: If f E L2au°, and j is bounded, then limt_40,0 f (t) =

0.

Lemma 2 [6]: Let X be a C1 time function defined on [0, T) (0 < T < oo), satisfying

X < -cX E (t)X(t) + E tvi(t) (6.35)

where c is a strictly positive constant, Ei and Ej are finite sums and 19i, and wi are

positive time functions satisfying: foT 197-i < Sri and foT w < S2j, where ai > 1 and

(j > 1. Then X(t) is bounded from above on [0, T), and X(t) < KiX(0)+K2 Vt E [0, T),

with K-1 and K2 depending only on ai, (SIN and S2j. Moreover, if T is infinite, then

lim sup X(t) < 0 (6.36)tco

6.3.2. Adaptive neural control for stabilization of nonlinear
systems

Consider a parametrerized affine in control nonlinear system given by

= f (x,p) + g(x,p)u (6.37)

161

where x E M C Rn with M designating a manifold, u E U C Rm with U designating an

admissible control set, and pE it C R1 with it designating a parameter set; f M x 7r

M is a C1 vector field; and g M x it -+ .A4,,m is a C1 vector field.

The goal is to design an "adaptive" controller u such that the system can be stabi-

lized regardless of the parameter (p) disturbances.

As is illustrated in the previous sections, there are many practical systems which

may be approximately affine in control systems which are also affine in parameters. Thus,

the above system can be further written as

= [fo(x) + E fgx)pii + [go(x) + 9(x)pilu

= [fo(x) + go(x)u] + E[g(x) + g;,(x)n]Pi

i=1

(6.38)
i=1

where f (x, p) = fo(x) + f:,(x)pi, and g(x, p) = go(x) + EiP_i ggx)piu.

Define 0(x, u) = fo(x) + go(x)u and '(x, u)p = Er_i[fgx) + g;,(x)ulpi. Then

X = 0(x, u) + 0(x, u)p (6.39)

Note that system (6.37) and system (6.39) will be used exchangeably for convenience

if no confusion arises.

For the system parameterized with true parameters, we have

X = 0(x, u) + 0(x, u)p* (6.40)

It is reasonable to assume that for the true parameter vector p *, and for any initial

state xo E 52, there exists a proper state-based feedback control u(x, p*) E U such that for

any t, x(t) E Si and limt,, x(t) = xe where xe is a desired equilibrium which may depend

on p *.

Since the true parameter vector p* is usually not known, a control can only be

synthesized based on an estimate P of p* or available measurements, which is expected to

162

be able to stabilize the system regardless of the parameter disturbance. In this sense, the

synthesized controller may be called "adaptive".

More formally, as formulated in [6], the adaptive stabilization problem may be

formalized as follows:

Find an integer v and two functions pi : Rn x R" > R" and p2 : Rn x Rii

such that there exists an open subset D C Rn x R" with the following property:

The solution (x(t), X(t)) to the augmented system:

{± = 0(x , u) + 0(x , u)p*

= (x X)
(6.41)

and the state-feedback controller u = p2(x, x) with (x(0), x(0)) e D satisfies the following

assumptions:

Asl: (x(t), X(t)) and u are well-defined, unique and bounded on [0, oo).

As2: limt,,, x(t) = xe where xe is a desired equilibrium point which may depend

on p*.

Since the true parameter vector p* is not available, an estimate /5 of p* may be

obtained and the control can be synthesized simultaneously based on the separation prin-

ciple if indeed it holds. To be specific, use a parameter estimator to get an estimate P of

p *, and at the same time the control un(x,P) instead of un,(x, p*) is applied.

It is observed that this design scheme depends on the assumption that for the

nominal control its explicit dependence on the state x and the parameter vector p is

known. For the time being, it is assumed so; and later we will deal with the case where

this explicit dependence is not known.

Consider system (6.41) but with the parameter vector time varying. In order to

study the adaptive stabilization problem of this system, we make the following assump-

tions.

163

Assumption I: For any initial state xo E C2, and for any p E 7r, there exists a control

u(x,p) such that the system

= q5(x,u(x,p)) + W(x,u(x,p))p (6.42)

is stabilizable to a desirable equilibrium point.

Assumption II: For the same system as in Assumption I but with the parameter

vector time-varying, for any initial state xo E Si, for p E 71, and for all compact subsets

K E 7r, there exists a convex tessellation of K such that for any any p E Ki C K (1C, is a

tessellated sub-region of K), the corresponding control u(x , p) can be expressed as a linear

combination of the nominal controls corresponding to the vertices of K2. That is,

u(x,p) = a3(x)u(x,p3) (6.43)

where the multipliers cd(x) : .A4(Rn) R+ is a non-negative C1 function satisfying

> a3(x) = 1, and u(x , pi) is the nominal control corresponding to the jth vertex of Ki.

Note that in order to fulfill a proper control, the multipliers cd(x)'s must be iden-

tified and updated in a proper manner.

For a parameter vector in a small neighborhood of one of the vertices, the adaptive

control u(x,p*) is used to stabilize the system

± = q(x, u) + W(x,u)p (6.44)

where p is time-varying and satisfies Ipp*I < e where is a pre-specified positive number.

The following conclusion can be obtained. (Since any convex region may be ap-

proximately represented by a union of many non-overlapping hyper-rectangles, it is here-

after assumed that the true parameter vector is within a hyper-rectangle unless otherwise

claimed.)

Proposition 1 System (6.44) is stabilized by the control u(x,p*) if the following assump-

tions, together with the assumpitons of SBO and SCO, are met. There exists a function

h : .A4(Rn) R+ such that

164

Asi: R[0(x,u(x,p*))+0(x,u(x,p*))p1 < ch where constant c> O.

Proof: According to assumption 1, we have h = ax P(x, u) 0(x, u)p] < ch.

Application of Lemma 2 immediately yields the following:

lim sup h < 0 (6.45)
t-40.0

However, h > 0. Thus, 0 < h < sup h < 0. This implies that

h = 0.

Note also that from h < ch < 0, it follows that for Vt > 0, h(t) e L" . Then, use

of the assumption SBO leads to the boundedness of x(t).

The boundedness of x(t), and h, = 0, together with the assumption SCO,

leads to the convergence of the state, i.e., limt_,0° x(t) = xe. This completes the proof.

Note that the condition gi [0(x, u(x,p*)) + 0(x,u(x,p*))p*1 < ch, instead of the

assumption 1 in the above Proposition is usually assumed in the context of adaptive

control. However, for p(t) in a small neighborhood of p*, it is reasonable to assume that

2[0(x,u(x,p*))+ W(x,u(x,p*))p] < ch may hold.

Conclusion 1 System (644) with p(t) fixed, is stabilized by the control u(x,p*) if the

following assumptions, together with the assumpitons of SBO and SCO, are met. There

exists a function h: .A4(Rn) R+ such that

Asl: glx1-[0(x,u(x,p*))+0(x,u(x,p*))pl< ch where constant c> 0.

Next, consider the more general adaptive stabilization problem described by equa-

tion (6.39) but with the assumption that '(x, u) is independent of u. As a matter of

fact, the previously described application systems all belong to this class. The goal is to

estimate the parameters, and find a proper updating law for the multipliers so that the

nonlinear system can be stabilized.

165

The system equation can be given by

= 0(x ,n) + 11)(x)p* (6.46)

For the true parameter vector p*, the desired control u is u(x,p*), which can be

expressed as u(x , p*) = E3 ce*3 u(x, p;) with p* is inside the region whose vertices are pi's.

Therefore, the above system can be rewritten as

E a ,P;)) + i(x)p* (6.47)

Since p* and a* whose jth component is a*3 are not known, to fulfill a proper control

u, an estimate & of a* has to be used. Since p* is not available either, its estimation has

to be made, too.

Proposition 2 The adaptive stabilization of X = 0(x, u) + 117(x)p*, is generated by the

control as u(x,p*) = Ejj._ia*ju(x,p;), if the following assumptions, together with as-

sumptions of SBO and SCO, are met. There exists a function h : M(Rn) R+ such

that

Asl: ekkx,ii(x,p*)) + 0(x)p*] < ch where constant c > 0, and ii(x,p*) =

Ej.==iai (x)u(x,p;) with exj(x) being the non-negative estimate of the true multiplier

a*i (x) and E:1_, aj(x) = 1.

Proof: h = 2[0(x, a*3 u(x, p;)) + 11)(x)p*]

Define v = -2[0(x ,E u(x, p;)) + lb(x)P] it.

Let /5 = p p*, and a = & a*. Since 0(x, u) = fo(x) go(x)u, then we have the

following:

v = Rgo(x) Ei etiu(x,pD + to(x)13

Using the error filtering technique, we have é + re = v.

Define a Lyapunov-like function [6] W = 2 e're + 213T.13+

The derivative of W with respect to time t can be computed as follows:

ere +231-23+ &ref

er [re + go(x) Eifel u(x,p? +
Oh

(x)13] + 15'15 +
Ox

166

(6.48)

Let er-2-go(x)Ei a u(x,p;!) + aT & = 0 and er-20(x)25+251-i5 = 0. We end up with

the following results:

ah
1.5 = [er ax p(x)]r

= [elgo(x)171(x, fp;Wir (6.49)

where Ti(x, {pn) = [u(x,p1) u(x,pD 11(x,p*J)] with J designating the number of the

vertices of a tessellated sub-region

and

rleI2 (6.50)

Note that to confine the estimate of the parameter vector within a convex set, the

updating law has to be modified. Note also that the defaulted convex set is a hyper-

rectangle. Let this convex set be denoted by 7r =1112=i x pm' ax]. Then the modified

updating law for p(t) can be given by

[-y(1-11)(x,u))T

[7(211)(x,u))7"

if 152 e Pimax)

or 25i =gnu and [-y(2* (x, u))7 < 0

if 152 = pzmin and [7(R0(x,n))Te]2 > 0

if 152 E Pimax)

or pi = pimax and [-y(-20(x,u))Ter > 0

if 25' = pirnx and [7(20(x, u))Ter < 0

(6.51)

where for i = 1, ,1, pa desigates the ith component of p, and similarly [-y(20(x,u))T eli

the ith component of [7(R-0(x, u))T eii.

Similarly, the modified updating law for 6i(t) can be given by

if 0 < efk < 1 Ek-1

or a^k = 0 < 1 Eik:oleti and Zk <0

if = 0 < 1 ik:01 iftj and zk > 0

if 0 < etk < 1 EikZol 6ei

or eik = 1 asi > 0 and zk > 0

if eek = 1 E.7k101 /xi > 0 and Zk <0

if 1 E3k.-ioeti

167

(6.52)

where a -1 = "d° 0; and Zk {[r Oh)(.})] T lk de -8-00 x u x, p3 designates the kth component

of f[eggo(x)ii(x, {P;})1T}.

It can be shown in Appendix C that for Vt > 0, 15(0 E 7r, and 0 < ak(t) < 1 for

k = 1,2, , J with >k k (t) = 1, and that with the modified updating law, the quantity

W can be made even more negative provided that /5(0) E 7r, p* E 7r, and 0 < "&k(0) < 1

for k =1,2, , J with Ek oek (0) = 1.

Therefore, W < --yleI2, hence W E L°°, which in turn implies e E L°°, I E L°°,

and 1/51 E Since jell < Pk, i.e., fo°° lel2dt < ,1;-.[W(0) W(oo)], then e E L2.

With assumption 1, Ki[0(x,E3 edU(X,p;)) tP(x)pl < ch with c > 0. That is,

h < ch. Application of Lemma 2 yields limt_x, sup h = 0.

However, h > 0. Thus, 0 < h < sup h < 0. This implies that

h = 0.

Note also that from h < ch < 0, it follows that for Vt > 0, h(t) E Use of the

assumption SBO leads to the boundedness of x(t).

Since e E L2 n L°°, 1-5 E L°°, and 6 + re = v = RIP(x,u).73+

Kigo(x)E3 eilu(x,p'D, then 6 E L°°. Through application of Barbalat's Lemma,

e(t) = 0 immediately follow from the facts that e E L2 n Lc' and é E L°°.

Therefore, the boundedness of all the quantities involved is assured.

168

The boundedness of x(t), a(t) and P(t), and h = 0, together with the as-

sumption SCO, leads to the convergence of the state, i.e., limt+oo x(t) = xe. This com-

pletes the proof.

Note that the previous Proposition deals with the case where the multipliers are

fixed. In the following, it will be considered that the multipliers are functions of the state,

which consititute the upper-level controllers with respect to the nominal controllers in the

context of hierarchical control.

Each multiplier is assumed to be a weighted sum of some known functions of state

while the weights are unknown. Note that such a multiplier may be viewed as a one-hidden

layer neural network.

Proposition 3 The adaptive stabilization of x = q(x, u) + 71,(x)p* , is generated by the

control u(x,p*) = :I_ 1 a*i(x)u(x,p;) where a*i(x) = N±0 w;!nsn(x) with sn(x)'s being

known functions, if the following assumptions, together with assumptions of SBO and

SCO, are met. There exist a function h : .A4(Rn) R+ such that

Asl: ax [0(x, ii(x,p*)) + tP(x)p*] < ch where constant c > 0,

and ii(x , p*) = (x)u(x , p*)
3 1 3= jj= E 0 'thinsn(x)u(x,P

if each 2Ujn, wjn E [wjn,min, W jn,max]

Proof: h u(x , pi*)) + 11)(x)p*]

Define v = ax [0(x ,E u(x,p3*)) + 0(x)P1 h.

Let i5 = p p., and a = a a*. Note here that ei = EnN'j 0 'thinSn(X). Then

Enj 0 'thinSn(X) where ibin = tbjn W.
Since 0(x, u) = fo(x) + go(x)u, then we have the following:

v = go(x) E_i u(x + (x)13 = Rgo(x) E1=1 Eao tbinsn(x)n(x,p;!) +3 3 ax
ah,,/,(x),;,

Using the error filtering technique, we have é + re = V.

Define a Lyapunov-like function W = 2 eT e + b57-15 +

The derivative of W with respect to time t can be computed as follows:

j Ni

Ejn11) jn

j=1 n=0
-,--- ere +131-:73 +

j Ni

eT [-re +
ax
Ohgo(x) E E fi,j sn (x)u (x,

3 aX
) + ah 0(x)p-1 +p7 +

j=1 n=0

169

J Nj

EITV jnti) jn

=1 n=0

Let er911-a \-- v'Ari j
ax-0,X L-aj=11._m=0WjnSn(X)11(X7p:;) Ei=.1 2_,,0 winw in 0

and eT Eitp(x)/3 +1313 = 0. We end up with the following results:

p = ah
-[e.r-a0(x)]r

'thjn = -eT ah
gO(X)U(X,PD

and

W = r ler

(6.53)

(6.54)

Note that to confine the estimate of the parameter vector within a convex set, the

updating law has to be modified. Note also that the defaulted convex set is a hyper-

rectangle. Let this convex set be denoted by 7r = 11 x [pmi prni ax]. Then the modified

updating law for /5(t) can be given by

u))Te]i if pZ E (Amin, Amax)

or 151 = pniz in and [-y(R-0(x, u))T < 0

if pi = pimin and [-y(g/P(x, u))Ter > 0

-17(20(x, u))Ter if 152 E (P2min 1517:nax)

or 23i = pinaz and [-y(1-1*(x,u))7- e]z > 0

if pi = gricix and [1(-20(x, u))Teli < 0

(6.55)

where for i = 1, , 1, p2 desigates the ith component of p, and similarly [7(211)(x,u))Teli

the ith component of [-y(R0(x,u))reli.

170

Similarly, the modified updating law for ti,37, can be given by

jn =

er2g0(x)sii(x)u(x,pD if iain E (wjn,min, win,max)

or Win = wjn,min and er2-go(x)87/(x)u(x,PD < 0

if 'thin, = wjn,min and eT (x)sn (x)u(x, p;) > 0

er2go(x)sn(x)u(x,p;) if ti./jr, E (wjn,min, Wjn,max)

or 'ClIjn = Wjn,max and eTKigo(x)sn(x)u(x,p;) 0

if ellin = wjn,max and erego(x)sn(x)u(x,pD < 0
(6.56)

Following the same procedures as shown in Appendix C, it can be shown that for

Vt > 0,15(t) E 7r, and win(t) E [wjn,min, Wjn,max] for j = 1, 2, n = 0, 1, , Nj, and

that with the modified updating law, the quantity W can be made even more negative

provided that /5(0) E 7r, p* E 7i, and thin (0) E [Wjn,min, Wjn,max], w;92 E [Wjn,min, Wjn,max]

for j = 1,2, ,J; n=0,1, ,Ni.
Therefore, W < --412, hence W which in turn implies e E L°°, ini E L",

and I/51 E L. Since lel2 < i.e., jr lerdt < RW(0) W(oo)], then e E L2.

With assumption 1, 2[0(x, Eiedu(x,pD) + (x)p *] < ch with c > 0. That is,

h < ch. Application of Lemma 2 yields sup h = 0.

However, h > 0. Thus, 0 < h < sup h < 0. This implies that

h = 0.

Note also that from it < ch < 0, it follows that for Vt > 0, h(t) E Use of the

assumption SBO leads to the boundedness of x(t).

Since e E L2 n L", p E L", fujn E L", and e + re = I, and v = 20(x, u).73 +

Rgo(x) Ej=1 En2-1 'thjnU(X,P;), then e E L. Through application of Barbalat's Lemma,

e(t) = 0 immediately follow from the facts that e E L2 fl L" and é E L.

Therefore, the boundedness of all the quantities involved is assured.

171

The boundedness of x(t), a(t) and 15(t), and limt_,,, h = 0, together with the as-

sumption SCO, leads to the convergence of the state, i.e., limt,,,x(t) = xe. This com-

pletes the proof.

The previous Proposition deals with the case where the unknown fixed parameter

vector is within a hyper-rectangle. In the following, adaptive stabilization of nonlinear

systems with time-varying parameters is considered.

Proposition 4 The adaptive stabilization of X = 0(x, u) +0(x)p(t), is generated by the

control u(x,p) = E;Li a*i(x)u(x,p;), if the following assumptions, together with assump-

tions of SBO and SCO, are met.

Asl: pi(t) = p*2 + pa exp(-0t) where i = 1, 2, 1, p* = [p*1 p*2 *l]T is a

known constant vector, and pia's and Oi's are unknown positive constants. But there

exist known positive constants p°,2 's and 004 's such that p°,i < pia and 130 > 13i;

As2: a*(x) = [a*1(x) a*2(x) a*J (x)r corresponds to the system with fixed

parameter p*, whose variation rate with respect to time t is measureable;

As3: + /(x)p *] < ch where constant c > 0, and ii(x,p*) =

E3j._1 (x)u(x,p;) with 'di (x) being the non-negative estimate of the true multiplier

a*3 (x) and E3j._1 a (x) = 1.

Proof: h = 2[0(x, Ei a*3 u(x , 131)) + 0(x)p(t)]

Define v = ax [0(x,Ei ai u(x,p;)) + 0(x)fij h.

Let 1-3- = p p, and a = a a*. Since 0(x, = fo(x) + go(x)u, then we have the

following:

v = go(x)Ei aiu(x,p;) + 20(x)15

Using the error filtering technique, we have é + re = v.

Define a Lyapunov-like function W = 2 eT e + 2 pT p +

172

The derivative of W with respect to time t can be computed as follows:

W ere +731-75+ eir

ah
er [re + x-go (x) eriu(x,) +

ax
ah (x)13] + 05. 25) + (a. a*)

47'

From pi (t) = p*2 ± pia exp(,32t), we have Pi(t) = exp(-1321) = (pi (t)

p"). Thus, 75T (5 75) = 757-7.5 EL, 0/(75i pi (t)) (p2 p"). However, Ii=i Oi(i)i

pi (t))(pi (t) p") Pi (t) 12 + /31 (t))(13i P"). Hence, /TOY

pi (t)) (p2 (t) p") < 13i (Pi p2 (t)) p"). Notice that if each 752 is updated so that

it is confined between p*i and p2 (t), then ELI p2 (t)) (p2 (t) p") < 0. But p(t)

is not known. Fortunately, p°,i's and 00,i's are known. Let qi (t) = p*i exp(-00t).

Then p*i < qi (t) < pi (t). Note that q(t) = [ql (t) q2 ql (OF and p* are known, if

each 752 is updated so that p*i <75i < qi(t), then each 752 is confined between p*i and pi (t).

This can be done and is shown later.

Since each p*2 < pi < pi (t), 15T (1.5 < /31-13. Thus,

ahTit7 < er [re +
a x

go(x) a (x, ± vP(x)15] + PT 15+ eir (a. a*)
j =1

(6.57)

Let er 2-go(x)Ei iiiu(x,p;) + "cir (a ee*) = 0 and eTRIP(x)75 +75TP = 0. We end

up with the following results:

ah= [er 5x0 (x)]1-

cx [eT2g0(x)Tt(x, {p;!})]T +

where rt(x, {p;}) = [u(x,p1) u(x, u(x, p*J)].

and

1/i7 < r I e I 2

It should be noted that with assumption 2, ev* is measureable.

(6.58)

(6.59)

173

To confine the estimate of the parameter vector within a convex set, the updating

law has to be modified. Let this convex set be denoted by 7T = H1=1 x pzmax] with

Amin and p27.nax = q2. Then the modified updating law for p(t) can be given by

152 =

17(R0(xlu))Teli if p2 E (Pimm, Amax)

or p2 = pimin and [7(-20(x,u))Teli < 0

if /5i = pimin and [-y(R0(x,u))Te12 > 0

-[7(R0(x,u))Teii if /32 E (Pimin,

or /32 = Amax and [-y(e0(x,u))Teli > 0

if /52 = /Ymax and [7(t(x,u))T <0

where for i = 1, , 1, p2 desigates the ith component of /5, and similarly [-y(20(x,u))Te]i

the ith component of [-y(2-0(x,u))reji.

Similarly, the modified updating law for (5/(t) can be given by

(6.60)

dk
=

zk if 0 ak 1 Eik=-01 et/

or e/k = 0 < 1 vIc -1z_ii=0 aj and Zk <0

0 if = 0 < 1 Elk.=-016ti and Zk > 0

_zk if 0 < ak < 1 Eik=-01

or exk = 1 > 0 and Zk > 0

0 if 1 a > 0 and Zk < 0

0 if jk-i 0

where Zk = {[Cgt-go(x)47(x, {/5;})F + alk designates the kth component of the vector

{[eTRgo(x)Ti(x,{/3})17-

Following the same procedures as shown in Appendix C, it can be shown that for

Vt > 0, f3(t) E 7r, and 0 < eek(t) < 1 f o r k = 1,2, , J with Ek ak (t) = 1, and that with

the modified updating law, the quantity W can be made even more negative provided

that /3(0) E 7r, p* E 7r, and 0 < iik(0) < 1 for k = 1, 2, , J with Ek ak(0) = 1.

(6.61)

174

Therefore, W < ryler, hence W E L", which in turn implies e E ral E

and 1131 E L°°. Since lel2 < 0/17, i.e., fr lerdt < .[W(0) W(oo)], then e E L2.

Note also that from assumption 3, i.e., h < ch < 0, it follows that for Vt > 0,

h(t) E L. Use of the assumption SBO leads to the boundedness of x(t).

Again from assumption 3, it < ch < 0. Application of Lemma 2 yields limt-400

sup h = 0.

However, h > 0. Thus, 0 < h < limt_4,0 sup h < 0. This implies that

h = 0.

Since e E L2 n 13 E E + re = v,

and v = RO(x, u)/3 + go(x)Ei (x,p;), then e E L°°. Through application of Bar-

balat's Lemma, limt_*00 e(t) = 0 immediately follow from the facts that e E L2 n L°° and

E L°°. Therefore, the boundedness of all the quantities involved is assured.

The boundedness of x(t), &(t) and 15(t), and limt_,00 h = 0, together with the as-

sumption SCO, leads to the convergence of the state, i.e., limt_ x(t) = xe. This com-

pletes the proof.

In what follows, we consider adaptive stabilization of nonlinear systems with param-

eters time-varying within a hyper-rectangle through use of neural networks. Note that as

mentioned before, the nominal controllers (i.e., the lower-level neural controllers in the

context of hierarchical control) are trained neural controllers. The multipliers are actu-

ally the upper-level neural controllers for hierarchical control. These upper-level neural

controllers are assumed to be independent of the variation of the parameter vector p(t) as

long as p(t) is within some tessellated sub-region.

Proposition 5 The adaptive stabilization of x = 0(x, u) + b(x)p(t), is generated by the

control u(x,p*) =E;Lia*j(x)u(x,p;) where each a*i (x) is a mapping achieved by a one-

hidden neural network, and can be expressed as a " (x) with sn(x)'s= ETI:T2-0 w;'sn(x)

being known sigmoidal functions, if the following assumptions, together with assumptions

175

of SBO and SCO, are met.

Asl: p(t) E 7r, and its variation rate 15(0 with respect to time t is measureable. Here

7r is a tessellated hyper-rectangle.

As2: There exist a function h : .A4(Rn) R+ such that 3-1-1[0(x,it

0(x)pl < ch where constant c > 0, and

u(x,p *) = (x)u(x , I);) E.;__,Eaotbinsn(x).(x,p;) if each 'thin, w3'!`
Th

[Wjn,rnin) Win,max]

Proof: The proof can be given in the same way as for Proposition 3 except a minor

modification for the updating law for /5, which is given in the following.

pi =

[7(-1-1*(x, u))Teli + pZ if j2 E (pz,nin, Pimax)

or /52 = Knin and [ry (R0(x , u))T e]i p2 < 0

if /52 = pimin and [7(R0(x , u))T e]i 152 > 0

{7 u))Te]2 p2
if /31 E (pmin Amax)

(6.62)

or fii = Amax and [7(2-11)(x, u))T eli 132 > 0

0 if p2 = Amax and [7(2-0(x, u))T eji < 0

where for i = 1, ,/, pi and Pi desigates the ith component of P and p(t), respectively,

and similarly [-y(Kilp(x, u))Teli the ith component of Vy(RIP(x, u))Ter. Note that 15(t) is

assumed to be measureable.

When the parameter vector p(t) is not confined to be within a specific sub-region

(a hyper-rectangle), then perhaps information about which sub-region p(t) is within is

in need. If this can be done by a known indicator I : UiKi > Z+ where UiKi is a

tessellation of the parameter region of interest and Z+ designates the set of non-negative

integers, then corresponding lower-level nominal controllers are enabled, and all others are

disabled. Once such indications are done, Proposition 5 applies.

176

6.4. Simulations

Consider the system model (6.4) for simulations. The relevant parameters are given

next. According to [98], the load parameter values are given as Kp, = 0.4, Km, = 0.3,

Kg, = 0.03, Kqv = 2.8, K qv2 = 2.1, T = 8.5, Po = 0.6, Qo = 1.3, Pi = 0.0,

and the network and generator parameter values are given as Yo = 20.0, Oo = 5.0,

E0 = 1.0, Yr. = 5.0, Om = 5.0, Em = 1.0, Pm = 1.0, dm = 0.05, and M = 0.3.

According to [101], when the parameter Qi varies slowly, this system exhibits a qualitative

change in its behavior. For instance, when C. = 12, the node-saddle bifurcation point

is corresponding to Qi = 11.41, where equilibrium is lost. And further, Qi = 10.98

corresponds to a subcritical Hopf bifurcation point, and Qi = 11.38 corresponds to a

supercritical Hopf bifurcation point. This indicates that for Qi E [10.98, 11.38], the

equilibrium is oscillatorily unstable. Therefore, it is necessary to design a controller such

that for any Qi < 11.41, the system can be stabilized. Note that application of the results

developed in previous sections requires that the assumptions must be met, which is usually

hard to check for practical problems. In the following, both conventional control design

and adaptive neural control design are discussed; further simulations on the performance

of the adaptive neural control for the voltage collapse problem are demonstrated.

6.4.1. Lyapunov-analysis-based control design

Note that there are some features for this model, which can be utilized to design a

state-feedback nonlinear adaptive controller.

Define a function v : M --+ R where M is a state manifold. This function is given

by v = V2u Qi. Since u, the feedback control, is a well-defined function from M --> R,

then v is well-defined.

177

Define a Lyapunov function W = [rni Om (5me)2 -Frw(wCt/e)2 -1-ro (6 66)2 ± Tv (V

Ve)2] where rm, rw, ro and ry are all positive numbers, and (8,,,, we, 6 e , Ve) is a desired

equilibrium, which is dependent on Qi. At the equilibrium, the control is assumed to be

ue. Differentiating the Lyapunov function W along the system (6.4) yields the following:

W = rm(Sm (5,,,,e)iL, + r(cv we)d) + ro(O Se).. + ry (V Ve)V

= rm(6m, 8me)cv + r,(o.) we) [aiw + a2V sin(S 6m Om) + ao]

-Fro(8 (5e)[bilT2 + (b2 + b3 cos(8 + 00) + b4 cos(S 6m + em))V + b5v + b0]

+rv(V Ve){e1172 + (C2 + C3 sin(t5 + 00) + c4 sin(S Sm + Om)

+c5 cos(6 + 00) + c6 cos(6 6m + OTO)V + c7v + co]

= [s m (6m Sme)2 + s,(w we)2 + 85(6 Se)2 + sv(V Ve)2]

+[r o (6 6,)b5 + ry (V Ve)c71v

+rm (6m Sme)W + r w (CO we)[aiw + a2V sin(S Sm, Om) + ao]

+ro(8 Oe)[bi V2 + (b2 + b3 cos((5 + 00) + b4 cos(8 (5m + Om))V + bo]

+rv(V 17,)[ci V2 + (c2 + c3 sin(S + 00) + c4 sin(S (5, + Om)

+c6 cos((5 + Oo) + c6 cos(6 (5,n + Orn))V + coi

+[977,(6m Sme)2 + sw(co we)2 + so (6 Se)2 + sv(V Ve)2]

where sm, 3,, sj and sv are all positive numbers.

Define a function g(6,, w, 6, V) :M --* R as follows:

(6.63)

g(6, w,), 6,V) = rm(6,, 6,e)w + 71., (co we)[aiw + a2V sin(S Sm Om) + ao]

+r6(8 6e)[biV2 + (b2 + b3 cos(5 + 00) + b4 cos(8 8,, + Om))V + bo]

+rv(V Ve)[ci172 + (c2 + c3 sin(S + 610 + c4 sin(S 6,, + Om)

+c5 cos(6 + 00) + c6 cos(6 6rn + 07,i))v + col

+[sni(6,7, Sme)2 + .9, (co we)2 + 8(5(6 Se)2 + sv(V Ve)2 1 (6.64)

178

Then W can be rewritten as

W = [s.(6. snie)2 +8.(w we)2 + .56(8 6,)2 + sv (V Ve)2]

+[r 6(8 6e)b5 + rv(V Ve)c7jv + g (Sni , w, 6, V) (6.65)

Note that g(877 w, 8, V) is a well-defined continuous function.

Choose v as follows:

g (5,,, ,u., ,5,V)
r 6 (6 - O e)b5 -1-cv (V Ve)c7

[7 . 8 (b 8 e)b5 -I-c v (V Ve)c7]g(8,,, ,ce ,,; 5 ,V)
[15 (6 (5.)b5-irr v (V Ve)C7i2 +2

if Irs (6 (5 e)b5 + ry (V Ve)c7I > El

if 17-6(6 6e)b5 + ry (V Ve)c7I < Ei and g(S,,,,ca,S,V) < 0

0 if 17.6(5 (5e)b5 + rv(V Ve)c71 < el and g Om , co, a, V) > 0

(6.66)

where El and E2 are pre-specified positive numbers. It is pointed out that the above

control may not perform robustly in practice.

Note that for Ir a (8 8e)b5+ry (V Ve)c71 > ei, W = [Sm Om 6me)2 ±Sw GO We)2 ±

So (6 802 ± SV(V Ve)21; and for 17-6(S Se)b5 + ry (V Ve)c71 > ci and g(6, co, (5,V) _< 0,

it follows that

viT = [sm(sm, Sme)2 +8,,(w we)2 + ss(6 8e)2 + sv(V Ve)2]

[r8(6. 66)b5 + ry (V Ve)c712 g(6,,,, co, 8,V)
+ g(6,,,, co , S , V)

[r o (8 6e)b5 + rv(V Ve)c7]2 + E2

[Sm(Srn, 6,7,02 +8,,(w coe)2 +86(6 6,)2 +8v(v V,)2]

29 (8m, co , 8,V)
+

[7.6(6 8 e)b5 + rv(V Ve)c712 + E2

It is clear that W is negative. However, when g(8, w, 6, V) > 0, v can only take

a value which can make [ro(S (5e)b5 + rv(V Ve)c71v as negative as possible. That

is, v = vmaxsgn(ro(.5 6,)b5 + rv(V Ve)c7) where sgn(.) is defined by sgn(x) =

{

1 if x > 0

1 if x < 0
0 if x = 0

Note that even if v is such chosen, it is still possible that W may be positive.

Therefore, for the worst case, such a synthesized controller can drive the system to this

179

switching surface r 5 (6 6,)b5 + ry (V 17e)c7 = 0; for the best case, such a synthesized

controller may drive the system into a small neighborhood of a desired equilibrium.

6.4.2. Optimal control design

In this section, the goal is to bring the system from its transient period to the

equilibrium through an optimal control within a specified period of time [to, T]. Often

the starting point to is 0, which corresponds to the begining of the postfault transient

period. Note that for the region of interest, the system exhibits both stable and unstable

modes. Therefore, when the system approaches an unstable equilibrium, some other kind

of control must be designed to stabilize the equilibrium. In a way it may be said that

the former case is mainly a transient stability problem whereas the latter case is mainly

a steady-state stability problem.

Let the state be denoted by xT = [Sm w S V]. Let the initial state be x73- =

[Omo wo 50 Vo], and the equilibrium 1."),- = [Sme We (5e Vei

The system can be rewritten as

where

F (x, u) =

X = F(x, u) (6.67)

co

aiw ± a2V sin(8 Sm Om) + ao

1)10 + [b2 + b3 cos(S + 00) + b4 cos(S Sm + ern)1V + b5V2u b5Q1 + bo

c;y2 + [c2 ± c3 sin(8 + 00) + c4 sin(6 67 + Om)

±c5 cos(S + 00) + c6 cos(S 6,, + 0,)1V + c7V2u c7Q 1 + co

180

Case I: Quadratic-performance-index-based optimal control

The quadratic performance index is defined by

1 1J(to) 2(x(T)r(T))T S(T)(x(T)r(T))+
2
I (xT Qx + (u uer R(uue))dt (6.68)

to

where S(T) > 0, Q > 0, R > 0. The desired final state r(T) is specified as the equilibrium

xe. ue is the control at the equilibrium, and equal to zero for this simulated system model.

The Hamiltonian function can be defined as

1
H(x, u, t) = 2(X Qx + (u ue)T R(u ue)) + ATP' (6.69)

The state equation is given by

OHx= =F

The costate equation is given by

OH aFT-A=
ax ax

= A + Qx

where

(6.70)

(6.71)

0 a2V cos(5 5,, Om) b4 V sin(5 6m + 8m) {c4 cas(5 5, + Om)+

c6 sin(15 6,, +
1 di 0 0

0 a2V cos(5 Om Om) [-63 sin(5 b4 sin(6 6m + Om [c3 cos(5 + 00) C4 cos(5 Srn 0m
OFT [c3 sin(5 Op) c6 sin(5 5,

0 a3 sin(6 5,, 0,,) 2.6;y + 62 63 cos(b 00) 2c1V c2 c3 sia(3 + 00)

+64 cos(5 6m + 8m) 266 Vu si 5,, Om)

+

The stationarity equation gives

Since aF
au

solved out as

+c6 cos(5 6m + 8m) + 2C7V

aFT0 = R(u ue) + au A (6.72)
au

= [0 0 b5V2 c7V2]T, is independent of u, the optimal control u can be

u = -R-iaFTA+ ue (6.73)
au

Substitution of u into the state equation yields

aFT= f (x, R-1
au A + ue)

Substitution of u into the costate equation yields

A =
ax

aF(x, R -1 au
TA

±ue)TA + Qx

By choosing R = I, the control u can then be written as

U = b5 V2 A3 + C7V2 A4 + Ue

181

(6.74)

(6.75)

(6.76)

From the general boundary condition (Ox +1/4-p A)T l dx(T)+(0t-Hg + H)1T dT =

0 with 0(x(T),T) being part of the performance index, and '(x(T),T) the final state

constraint, the boundary condition for the problem under study can be obtained A(T) =

S(T)[x(T) r(T)] = S(T)[x(T) xe].

Notice that for the Hamiltonian system, the initial condition for the state equation

is given while for the costate equation there are constraints for the final costate value.

The analytic solution to the two-point boundary-value (TPBV) problem is not available

in general, and the numerical solution may be obtained through numerical techniques.

Case II: Time-optimal control

Translating the system equilibrium from xe to the origin yields the following equa-

tion.

where

(x, u) =

= F(x + xe7 u) = Fi(x,u) (6.77)

w

aiw + a2(V + Ve) sin(5 orn ao

bl (V + Ve) 2 + ib2 + b3 COS(d + OP) + b4 cos(5 dm + + Ve) + b5 (V + Ve)2u b5 Ch. + bo

cc (V -I- Ve)2 + [c2 + c3 sin(5 0'0) + c4 sin(b 8m +

+c5 cos(d + 0'0) + c6 cos(o + 0:;,)1(V Ve) C7(V + Ve)211 C7Q1 + CO

On = Om Se + (5me 00 = 00 + 6e, and Om = Om + 6e 8me.

182

Define the performance index as J = fttof dt + 2_21 sm2 ,2 + a,s2 + av-2 where
" f + 2`",f 2 'f ' 2 f

the subscript f designates for the value at the final terminal time tsf. By omitting the

constant terms related to the initial conditions, the performance index can be expressed

as J = fttof (1 + pAniSn, + p2w(.;) + 8(5+ p4V17)dt.

Define i0 in the following:

xo 1 + (5,7co + p2co[aibi + az (V + Ve) sin@ Om + ao]

+p38[14 (V + Ve)2 + (62 + 63 cos(B +) +b4 cos(S (5m + Om))(V + Ve) + 66 (V + Ve)2u b5 Q1 + bo]

-I-P4V[c1 (V + Ve)2 + (c2 + c3 sin(8 + 00) + c4 sin(d dm + Om)

+c6 cos((5 + 00') + C6 COS(6 Ora ± 0m))(V Ve) c7 (V ± Ve)2u c7Ch. + co]

Define the augmented state x' = [xT xo]T . The augmented system is then the

following:

where

(x') =

= .P' (x') + G(xi)u (6.78)

w

al + a2 (V + sin(t5 Sni 0:7,) a0

1911(V 14)2 + [b2 + 63 cos(8 +) b4 cos@ (5m + Om")](V + Ve) 65(2i + bo

c; (V+)2 + [c2 + c3 sin(5 ± 00') c4 sin(8 + Om")

+c5 cos(8 + 90') + c6 cos(8 Om + Om")] (V + Ve) c7C21 + co

1 + (5mw + p2w[aice + az (V + Ve) sin(8 (5m OM) + ao]

-Fp38Wi(V Ve)2 (b2 b3 cos(8 + + b4 cos(8 6m + Om"))(V + Ve) b5 Q1 bo]

+p4V[4(V +1702 + (c2 + c3 sin@ + 00 c4 sin(8 8m + Om")

+c6 cos(8 + Bo') + c6 cos(8 8m + 0 m"))(V Ve) c7Q1 + co]

0

0

1)5(V + Ve)2

c7(V + Ve)2

1)5(V -I- Ve)2P3O + c7(V + Ve)2p4

and x'(to) = [x0 O]r.

The adjoint state equation can be written as

A = 7:21k (x) + (x')ur A (6.79)

183

Define D = ,4T{Fi (x') + G' (x')14T . -.47 F' (x') and d (x') can be computed in the

following.

rF'' (x'Ir = F' F'[-L F'as -a-- F'av --a F' iT with
axo

a--a-687n
aW

.Q--'06,, F

F'au,

F'55

8--6V F'

0

a2 (V + Ve) cos(S dm Orn)

b4 sin(5 6,,, + O'n,')(V + Ve)

(V + Ve) [c4 cos(S on, + 19) + cs sin (S on, + Om)]

P1W P2a2cd(V + Ve) cos(S Sm Orri) + P36{b4(V + Ve) sin(S (5,n, + 8m)]

+p4V[c4 cos(S Sm + O',,n') + es sin(S Sm + Oin')](V + Ve)

1

al

0

0

PI 5y. + P2(42a1 + a2(V + Ve) sin(S Sm 07,,) + ao]

0

a2 (V + Ve) cos(6 on, On)

(V + Ve)[b3 sin(S + 00') + b4 sin(S Sm + Om A

(V + Ve)[c3 cos(S + 00') + c4 cos(S Sm + 0',,,,) c5 sin(S + 001) es sin(S Sm + 0::,,)}

P2a2w (V + Ve) cos(S Sm Om') + p3 [61(V + Ve) 2 + (b2 + 63 cos (S + 00')

+64 cos(S (5m + Om")) (I/ + Ve) + b5 (V + Ve)2 u b5Q 1 + bo]

+p35(b3 sin(S + 00') b4 sin(S Sm + Om"))(V + Ve) + p4V[c3 cos(S + 06')

+c4 cos(S (5, + Cm) c5 sin(S + 001) es sin(S Sm + 0:',1)] (V + Ve)

0

a2 sin(d Sm On%)

261(V + Ve) + b2 + 63 cos(S + 80) + b4 cos(S Sm + Om")

24 (V + Ve) + c2 + c3 sin(S + Bp) + c4 sin(S Sm + Om)

+c5 cos(S + 00') + c6 cos(S Sm + OM)

P2a2w sin(S Sm O') +)936[26; (V + Ve) + b2 + 63 cos(S + 001)

+b4 cos(S Sm + Om")] + p4[c'i (V + Ve) 2 + (c2 + c3 sin(S + 00)

+C4 sin(S Sm + Om") + c5 cos(S + 00) + C6 cos(S Sm + Om"))(7 + Ve) c7Q1 + col

+p41/[24 (V + Ve) + c2 + c3 sin(S + 80) + c4 sin(S Sm + 0m)

+C5 cos(S + 0'0) + c6 cos(S Sm + Om')1

184

az°

0

0

0

0

0

o o 0 0 0

o o 0 0 0

rG' (x')7 =ax 0 0 0 0 b5(v + ve)2p3

0 0 2b5(v + ve) 2c7(y + ve) (v + Ve)[2b5(5/33 + 2c7Vp4 + c7(V + Ve)P4]

0 0 0 0 0

Therefore, the adjoint equation can be written as

A = DA (6.80)

and the terminal condition is A(tf) = (tf = 1.016m1 P2W f P36 f p4Vf 1r.

Suppose the number of the optimal switching times is N (including the variable

terminal time). Let the switching vector be T = [Ti TN-1 MT . Then the switching

function can be given as follows

O(T,) = 2A(t)TC(x1(7-i)) for j = 1, 2, , N 1; and ON = f = 1 (P1677i6rn

P244)6) + P366 + P4V17)ltf

The gradient of the cost function with respect to the switching vector can be given

by

_0N

= [o(T1) (-1)N-2o(TN_1) (6.81)

where oN =[_0(7-i) .. (_i)N 0(TN _1) (t f)}7 .

The optimal switching vector can then be obtained by using a gradient-based method

through iterations [7, 13].

= ± Ki0 (6.82)

where Ti is the switching vector, 0,N. is the negative gradient vector, and Ki is a properly-

chosen N x N-dimensional diagonal matrix with non-negative entries for the ith iteration.

185

6.4.3. Equilibrium stabilization

For some values of Qi, the equilibrium of the system (6.4) are unstable. It is

necessary to stabilize the equilibrium. Of course, the state-feedback nonlinear control is

also able to stabilize the equilibrium after it supresses the transient and brings the system

to a small neighborhood of the desired equilibrium. However, it is more often effective to

employ a linear control around the equilibrium to enhance the damping.

Around the equilibrium xe with ue = 0, the linearized version of the system (6.4) is

obtained in the following:

OSm =

6.6.) =

=

AV =

Ow

a2Ve cos(Se Om, Oni)Aan, + alAw + a2Ve cos(Se Sme Om) AS

+a2 sin(Se Sme 0,,)AV

b4Ve sin(6e 8rne 0rn)A8m + V, [b3 sin(Se + 00) b4 sin(Se Sme Oni)106

+[2blVe + b2 + b3 cos(8e + 00) + b4 cos(Se Sme + Onz)]AV + by Ve2Au

Ve[c4 cos(Se 8me + 0m) + c6 sin(Se Sme + 07701A(57,

+Ve [c3 cos (6, + 00) + C4 Cos(Se 8me 0m)

c5 sin(Se + 00) CO sin(Se 8me + 07,)]08

+[2c;,17, + c2 + c3 sin(Se + 00) + c4 sin(Se 8me + Om)

+c5 cos(Se + 00) + c6 cos(Se Sme + em)1AV + c7K20u (6.83)

Since O 8e +15me OM, = (5e +00, and Om" = 8me +Om, the above equation

can be simplified as follows:

Ow

a2Ve cos(Omi)A6m + a1Ow + a2Ve cos(Om')A6 a2 sin(Om')AV

b4Ve sin(e")Adm + Ve[b3 sin(0j) b4 sin(077,")1AS

+[2b1Ve + b2 + b3 cos(0) + b4 cos(Omn)]AV + b617,2Au

AiSm, =

Ow =

OS =

186

OV = Ve[c4 cos(Omn) c6 sin(0,,"))A6,,

±Ve[c3 cos(00') + c4 cos(O) c5 sin(00') c6 sin(Orn")1A8

+[2ci V, C2 e3 sin(e0) + C4 sin(0,) + c5 cos(00) + c6 cos(Om")] AV + c7K20u

6.4.4. Simulation results

First of all, both the quasi-steady-state stabilization and the transient stabilization,

via gain scheduling, of the system (6.4) are simulated.

The dependence of the load-bus voltage magnitude V upon the reactive power de-

mand Qi is demonstrated in Figure 6.3. It is apparent that the voltage magnitude de-

creases as the reactive power demand increases until the voltage collapses at the bifurcation

point.

As Qi varies slowly with time in practice, the equilibrium of the system varies slowly

accordingly until it loses the equilibrium. Since the moving equilibrium demonstrates un-

stable modes, a feedback control must be imposed. The state-feedback control is designed

for some specific values of Qi. The resulting 131 patterns of the gain vector vs Qi are used

to train a one-hidden neural network with 15 neurons (with a logistic sigmoidal function

as the activation function) in the hidden-layer.

To illustrate the effectiveness of the trained neural-net-based controller with respect

to the variation in the reactive power demand Qi and the small disturbance in the state,

the reactive power demand Qi is supposed to vary slowly, as shown in Figure 6.4, and the

postfault initial state is assumed every several seconds. The transients to the state are

assumed in such a way that x+ = x_ [0.1 0.02 0.1 0.1]T, where x+ and x_ represent the

pre-fault state value and post-fault state value, respectively.

It is observed from Figure 6.5 that the whole system is stabilized with the tran-

sients suppressed and the equilibrium stabilized. The neural-net-based gain is shown in

Figure 6.6.

187

Next, the transient stabilization, via nonlinear control, of the system (6.4) is simu-

lated. Note that in reality the control of the generation-side and the control of the load-side

are often considered separately due to the fact that the control on the generation side has

relatively weak impact on the load-side, and vice versa. A variable resistor is installed on

the generator side. The resulting system may be written as

Sm = w

cv = aiw + a2V sin(8 Sm Om) ao + a3v

(.5 = b1V2 + [b2 + b3 cos(S + 00) + b4 cos(6. on, + em)] V + b5V2u b5Q1 + bo

V = c1V2 + [c2 + c3 sin(S + 00) + c4 sin(S Sm + Orn)

+C5 COS(6 + 610 + C6 COS(6 + Orn)117 c7172u c7Ch + co (6.84)

where a3 = Ern2 /M and v represents the conductance of the resistor.

First of all, for the convenient design of a proper control v, the generator dynamics

is considered while the load side voltage dynamics is ignored. The original fourth-order

system reduces to a second-order system. With the application of the hierarchical neural

control design method developed in chapter 5, the lower-level neural controllers, corre-

sponding to cases Q1 = 11.00, 11.15, 11.30, are trained based on the data obtained

through use of the Switching-Time-Variation Method for calculation of time-optimal con-

trol. The upper-level neural networks, acting as multipliers, are also trained for these

nominal cases. Once these trainings are done, the hierarchical neural controller is tested

for untrained cases. For Qi = 11.10, the behavior of the controlled system is shown in

Figure 6.7. For Q1 = 11.20, behavior of the controlled system is shown in Figure 6.8. It

can be seen that even for the untrained cases, the synthesized hierarchical neural controller

for generator dynamics performs reasonably well.

1.25

1.2

31.15
o.

& 1.1

1.05

0.95

0.9
10 10.5 11

Reactive Power Demand (p.u.)

FIGURE 6.3: QV curve

11.5

188

Similarly, for the convenient design of a proper control u, the load side voltage dy-

namics is considered while the generator dynamics is ignored. The original fourth-order

system also reduces to a second-order system. With the appication of the hierarchical

neural control design method developed in chapter 5, the lower-level neural controllers,

corresponding to cases Qi = 11.00, 11.15, 11.30, are trained based on the data obtained

through use of the Switching-Time-Variation Method for calculation of time-optimal con-

trol. The upper-level neural networks, acting as multipliers, are also trained for these

nominal cases. Once these trainings are done, the hierarchical neural controller is tested

for untrained cases. For Qi = 11.10, the behavior of the controlled system is shown in

Figure 6.9. For Qi = 11.20, behavior of the controlled system is shown in Figure 6.10. It

can be seen that even for the untrained cases, the synthesized hierarchical neural controller

for load side voltage dynamics also performs reasonably well.

189

11.35

11.3

11.25

Ei-

15 11.2

11.05

5 10 15 20 25

Time (sec)

30 35 40

FIGURE 6.4: Reactive power demand Qi varying with time

Finally, the hierarchical neural controllers for both generator dynamics and load side

voltage dynamics are applied for stabilizing the whole fourth-order system. The hierarchi-

cal neural controllers designed and trained for generator dynamics and load side voltage

dynamics are put together to form the control for the complete fourth-order system. This

control strategy is based on the observations that in power system practice control of

generator dynamics and load side dynamics is usually considered separately though there

are cases where generator dynamics is interacting with the load side dynamics. If there

is strong interaction between generator dynamics and load side dynamics, the installation

of TCSC may be a possible solution for control purpose, and its design can just follow

the same design procedures for control of either generator dynamics or load side dynamics

with the only difference that for the former case the considered system is of higher order.

190

0.32

0.3

0.28

026

E0.24

0.22

0.2

0.180

0.12

0.1

0.08

'xi 0.06
2

0.04

0.02

0

-0.02
0

20 30

time (sec)

r
0 20 30 40 5

time (sec)

0.05

-0.05

3 -0.1

-0.15

._

0.20
0 20 30 40 50

time (sec)

1.3

1.2

0.80

10 20 30 40 50

One (sec)

FIGURE 6.5: Quasi-steady-state and transient stabilization via neural control

Consider again the system (6.84)

cv = aiw + a2V sin(5 6, Om) + ao + a3v

(.5 = biV2 + [b2 + b3 cos(6 + Bo) + b4 cos(6 on, + Orn)jV + b5V2u b50. + bo

V = c1V2 + [c2 + sin(6 + 00) + sin((5 (57n + Om)

cos(6 190 + c6 cos(8 6rn + am)117. + c7V2u c7Q1 + co

As before, translating the system equilibrium into the origin yields the following:

0m. =W

= aice + az (V + Ve) sin(3 (5, O'rn)+ ao + a3v

;5 = bi (V + 14)2 + [b2 + 63 cos(O + 00') + b4 cos(5 Om + Om")1(V + Ve) + b5 (V + Ve)2u b5Qi + bo

V = cl (V + Ve)2 + [c2 + c3 sin(8 + 00') + c4 sin(8 -1- Om")

191

5 10 15 20 25

Time (sce)

30 35 40 45

FIGURE 6.6: Neural-net-based feedback generated control

± c5 COS((5 + BO) + CO cos(a Oni + Om")1(V + Ve) + c7(V + Ve)2u c7Q1 + co

Note that the load side dynamics has effect on the generator dynamics by observ-

ing the first two equations above, and the generator dynamics has effect on the load

side dynamics, too, by observing the last two equations above. This indicates that the

generator dynamics interacts with the load side dynamics. However, the design of the

hierarchical neural controller for generator dynamics is based on the first two equations

above with V and 6 forced to zeros, and similarly the design of the hierarchical neural

control for load side dynamics is based on the last two equations above with 8m and w

forced to zeros. To justify such a design, the control variable v is split into two parts,

namely v1 and v2. v1 functions just as designed to be a neural controller. v2 is designed

to reject the possible disturbance caused by the load side dynamics, and can be given by

v2 = °+,,23 [Ve sin(-8,, 9,,') (V + Ve) sin(8 6in Om')].

0.4

4.4o
time (sec)

10

0.5

o

--

3 -0.5

-1

1.50

0.6

0.4

10

time (sec)

ci. 0.2-

0 -
-02

0 3 5 6

time (sec)

10

192

FIGURE 6.7: Performance of the hierarchical neural controller for generator dynamics;
Qi = 11.10 ;the equilibrium is translated to the origin.

On the other hand, since only 6-77, has some impact on the load side dynamics, and it

appears in either sin(.) terms or cos(.) terms, the impact of its variation can be suppressed

by the designed neural controller for load side dynamics, as is illustrated in what follows.

For Qi = 11.20, with a quite large disturbance, the behavior of the controlled system and

the imposed control are all shown in Figure 6.11. It can be seen that the synthesized

hierarchical neural controller for the complete fourth-order system performs satisfactorily.

It should be noted that the design of v2 is dependent on the complete knowledge

of the plant dynamics, which is often not the case in reality. Instead, we will not split

v into v1 and v2. In other words, the control on the generator side is considered to be

v as in the system (6.84). The design of control v is not dependent on the availability

of the exact information about the generator dynamics. The above designed hierarchical

neural controller is tested against a large disturbance for Qi = 11.20. The behavior of

1

0.5 -

3 o

3-0.5

1

1.50

0.5

3
A-
> 0

time (sec)

0 12 14

10 14

time (sec)

0.5
0 4 6 6 10 14

time (sec)

193

FIGURE 6.8: Performance of the hierarchical neural controller for generator dynamics;
Q1 = 11.20 ;the equilibrium is translated to the origin.

the controlled system and the imposed control are all shown in Figure 6.12. It can be

seen again that the synthesized hierarchical neural controller for the complete fourth-order

system performs satisfactorily.

6.5. Conclusions

First of all, a few examples are given to demonstrate the fact that under (or even

sometimes without) some mild assumptions, many power systems may be modeled as

affine systems which are affine in both control and parameters. Proper control of power

systems is crucial for maintaining their transient and/or steady-state stability. Since

the parameters (for instance, the load demand) are time-varying, this requires that the

0.2

0.15

0.1

0.05

time (sec)

oo

0.8

0.5

time (sec)

15

0.6

0.4 I-

0.2

0
0.5

the (sec)
15

194

FIGURE 6.9: Performance of the hierarchical neural controller for load side voltage dy-
namics; Qi = 11.10 ;the equilibrium is translated to the origin.

designed controller must be somehow robust with respect to the variation of parameters,

or adaptive based on the estimated parameters.

The issue on adaptive control of nonlinear systems in general is still quite open. Very

few general results are availabe. On the other hand, some results on adaptive control of

affine systems which are affine in both control and parameters are available. However,

most available results are dependent on quite strong assumptions. For instance, one

of such assumptions is that the analytic form of the desired control corresponding to a

specified parameters' setting is available.

Motivated by the fact that desirable control can be synthesized by training a neural

network off-line with available optimal control and optimal trajectories, our approach is

to synthesize a proper multiplicative control by off-line available nominal neural network

controllers by updating the according multipliers on-line.

0.3

0.2

.11 0.1

0

-0.1
0

0.2

0.5 1.5

time (sec)

2 2.5 3

oo

0.6

0.6

ri 0.4
3

0.2

0

0.5 1.5

time (sec)
2.5

0.5 1.5

time (sec)

2.5

195

FIGURE 6.10: Performance of the hierarchical neural controller for load side voltage
dynamics; Qi --,---- 11.20 ;the equilibrium is translated to the origin.

With the employment of the hierarchical control architecture, the adaptive stabiliza-

tion of affine systems is investigated. First of all, neural-net-based adaptive hierarchical

control is studied for time-invariant unknown parameters. Then for time-varying unknown

parameters, neural-net-based adaptive hierarchical controllers are synthesized. The rele-

vant system stability issues are studied.

Finally, for a typical model for study of voltage collapse mechanism, several different

control approaches are discussed, which include the Lyapunov-analysis based control de-

sign, time optimal control, quadratic-performance-index based optimal control, and linear

control. The simulation shows that with proper design of a neural network as a pattern

identifier, and proper design of lower level nominal linear controllers corresponding to

different parameter values, the neural network can properly synthesize a linear controller,

which helps stabilize the postfault power system and maintain stability at a desired equi-

196

librium. Further simulations are also conducted to demonstrate the performances of the

adaptive hierarchical neural control, a nonlinear adaptive control strategy for suppressing

big transients and stabilizing the system equilibrium.

1

a
3 0.5

-6
a)

0
-o
cgs

=6-0.5
as

4E 1
7.3

0
co

1.5

3 0.8
-6
a)

0 2 4 6 8

time (sec)

10

CI

2
"E.

8 0.20
2 4 6 8 10

time (sec)

0.5

ri 0.4

-6 0.3

0.2

`45 0.1
V
ro

0

v -0.1
O

0.2
0

1

0.8

0.6

2 0.2

2 4 6

time (sec)

8 10

0.4
0 2 4 6 8 10

time (sec)

197

FIGURE 6.11: Performance of the hierarchical neural controller for the whole system;
Qi = 11.20 (with control design for partial system dynamics cancellation); the equilibrium
is translated to the origin.

1

0.

3 0.5

0.8

0.6

> 0.4
0

0
0.2

2 4 6 8

time (sec)

10

0.2
0 2 4 6 8 10

time (sec)

0.3

3
a 0.25

0.2
N

:6
0

0

0.05

0.8

0 2 4 6

time (sec)

8 10

0.6

3 0.4
0

0
0.2

0.2
0 2 4 6 8 10

time (sec)

198

FIGURE 6.12: Performance of the hierarchical neural controller for the whole system;
Qi = 11.20 ;the equilibrium is translated to the origin.

199

7. SUMMARY, CONCLUSIONS AND FUTURE
RESEARCH

7.1. Summary

This work is devoted to studies on the stabilization of dynamic power systems

through use of controlling FACTS devices. Power system stability is a big concern in

power engineering. Transient stability and load-driven voltage stability are equally im-

portant issues for normal operation of large interconnected power systems. To study

load-driven voltage stability, load modeling must be properly handled. Power systems are

highly nonlinear and dynamic in general, which calls for high-performance control designs,

leading to problems usually intractable. Data-based trajectory-following policy may be

used. Artificial neural networks, with rigorous theoretical support and some successful

control applications, may offer the potential for wide-spread application to practical dy-

namic nonlinear systems. Thus, development of novel neural network methodologies for

identification and control are not only of academic interest, but also practically significant.

Centering on this theme, this manuscript mainly addresses the following problems:

Development of new artificial neural network methodologies.

Load modeling through artificial neural networks and voltage stability analysis.

Stabilization of interconnected power systems following large disturbances, using

thyristor-controlled series-capacitor (TCSC), static var compensator (SVC), and

braking resistor.

Development of hierarchical neural-network control architectures.

Development of adaptive neural-network control design methodologies.

200

Studies on the mechanism of voltage collapse and its prevention by proper design of

adaptive neural control.

A review of artificial neural networks with application to system identification and

control is made in chapter 2. The backpropagation algorithm is discussed and is repre-

sented in a compact matrix-format. This is for convenience of software implementation of

the backpropagation algorithm.

The theoretical aspects of neural networks are studied in chapter 3. The architec-

ture of latitudinal neural networks is proposed, and its relevant convergence properties are

investigated, and further the approximation of a given function, with the finite smooth-

decomposition property, can be effectively accomplished in a constructive manner. More-

over, the theoretical results are generalized to multi-dimension cases. They are maybe

useful for dynamic system modeling or static mapping.

A neural network methodology is presented in chapter 4 for dealing with static

and dynamic load modeling. Further, with the neural-network-based load model, static

and dynamic voltage stability analyses are provided. The sensitivities involved in neural

network models for loads are derived, and are then used in the Jacobian matrix, and

further for the modal analysis. The neural network methodology is tested either on an

IEEE 14-bus system or real field data.

The synthesis of intelligent neural controllers is addressed in chapter 5. The ap-

proximation of a switching manifold by a neural network is discussed, and a novel pattern

recognition scheme for time-optimal control is proposed. To stabilize uncertain dynamic

power systems, a hierarchical neural-network control structure is proposed. Further, adap-

tive neural-network control is presented to deal with the time-varying nature of practical

dynamic power systems. These neural control schemes are justified by mathematical ver-

ification. Simulations are conducted to demonstrate the performances of the proposed

neural control schemes.

201

The stabilization of postfault multi-machine systems is addressed in chapter 6, to-

gether with the inclusion of the time-varying exogenous load model. First of all it is shown

that under some mild assumptions, many power systems may be modeled as affine systems

which are affine in both control and parameters. Adaptive control designs may benefit

from such a simplification.

The issue on adaptive control of nonlinear systems in general is still quite open. Very

few general results are available. On the other hand, results on adaptive control of affine

systems which are affine in both control and parameters are much richer. However, most

available results are dependent on quite strong assumptions. For instance, one of such

assumptions is that the analytic form of the desired control corresponding to a specified

parameters' setting is available.

Motivated by the fact that desirable control can be synthesized by training a neural

network off-line with available optimal control and optimal trajectories, our approach is

to synthesize a proper multiplicative control by off -line available nominal neural network

controllers with updating the according multipliers on-line.

With the employment of the hierarchical control architecture, the adaptive stabiliza-

tion of affine systems is investigated. First of all, neural-net-based adaptive hierarchical

control is studied for time-invariant unknown parameters. Then for time-varying unknown

parameters, neural-net-based adaptive hierarchical controllers are synthesized. The rele-

vant system stability issues are studied.

Finally, for a typical model for study of voltage collapse mechanisms, several different

control approaches are discussed. The simulation shows that with proper design of a neural

network as a pattern identifier, and proper design of lower level nominal linear controllers

corresponding to different parameter values, the neural network can properly synthesize a

linear controller, which help stabilize the postfault power system and maintain stability at

a desired equilibrium. Further simulations are conducted to demonstrate the performances

of the nonlinear adaptive hierarchical neural control, involving the controlling braking

202

resistor on the generator side and the controlling SVC on the load side. The satisfactory

performances of the designed adaptive neural controllers indicate that they may be useful

for practical power systems.

7.2. Conclusions and future research

Power systems are complex, nonlinear dynamic systems, for which stability is an

overwhelming issue. Regular generator rotor angle stability is well understood, but load-

driven voltage instability (or even voltage collapse) needs more in-depth investigations.

The interaction of generator dynamics and load dynamics make control design and stabil-

ity analysis even more difficult. In the literature, generator dynamics and load dynamics

are usually dealt with separately, which makes control design and stability analysis much

easier, but may give misleading results. This work deals with power system stability issues

with considering generator dynamics as well as load effects, and the methods proposed and

developed can be applied to complex nonlinear systems in general. Simulations are con-

ducted on simplified power system models, and have indicated that the proposed methods

may be useful for real power systems. For implementation of the proposed control design

strategies, future research that may be conducted should include the following aspects:

perform simulations on complex multi-machine systems.

perform simulations with inclusion of dynamic neural network model for loads.

develop control design methodologies to deal with hybrid nonlinear systems com-

posed of both time-continuous and discrete models.

203

REFERENCES

1. E. Laszlo, The relevance of general systems theory, George Brazil ler, Inc., New York,
1972.

2. L. Ljung and T. Soderstrom, Theory and practice of recursive identification, the MIT
Press, Mass., 1983.

3. L. Ljung, System identification: Theory for the user, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1987.

4. A. A. Fel'dbaum, Optimal control systems, Academic Press, New York, 1965.

5. K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Prentice Hall,
Englewood Cliffs, New Jersery, 1989.

6. L. Praly, G. Bastin, J. B. Pomet, and Z. P. Jiang, " Adaptive stabilization of non-
linear systems," in Foundations of Adaptive Control (P. V. Kokotovic Ed.), 347-433,
Springer-Verlag, Berlin, 1991.

7. R. Mohler,Bilinear control processes: with applications to engineering, ecology, and
medicine, Academic Press, New York, 1973.

8. R. R. Mohler, Nonlinear Systems Volume I, Dynamics and Control, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

9. R. R. Mohler, Nonlinear Systems Volume II, Applications to Bilinear Control, Pren-
tice Hall, Englewood Cliffs, New Jersey, 1991.

10. V. Rajkumar and R. R. Mohler, "Bilinear generalized predictive control using the
thyristor-controlled series capacitor," Pre-Print, IEEE PES Winter Meeting, 94 WM
194-1 PWRS, New York, 1994.

11. V. Rajkumar, Nonlinear Control Applied to Power Systems, Ph.D. dissertation, Ore-
gon State University, 1994.

12. R. R. Zakrzewski, R. R. Mohler, and W. J. Kolodziej, "Hierarchical intelligent control
with flexible AC transmission system application," IFAC J. Control Engineering
Practice, vol. 2, 979-987, 1994.

13. Sang Fi Moon, Optimal Control of Bilinear Systems and Systems Linear in Control,
Ph.D. dissertation, The University of New Mexico, 1969.

14. C. W. Taylor, Power system voltage stability, McGraw-Hill, Inc., New York, 1994.

204

15. W. Price, K. Wirgau, et al, "Load modeling for power flow and transient stability
computer studies," IEEE Trans. on Power Systems, vol. 3, 180-187, 1988.

16. J. J. Hopfield and D. W. Tank, "Neural computation of decisions in optimization
problems," Biological Cybernetics, vol. 52, 141-152, 1985.

17. Y. T. Zhou, R. Chellappa, A. Vaid and B. K. Jenkins, "Image restoration using a
neural network," IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 36,
1141-1151, 1988.

18. G. W. Cottrell, P. Munro and D. Zipser, "Learning internal representations from
gray-scale images: An example of extensional programming," Proc. Ninth Conf.
Cognitive Science Society, 462-473, Erlbaum, Hillsdale, 1987.

19. D. A. Mighell, T. S. Wilkinson and J. W. Goodman, "Backpropagation and its ap-
plication to handwritten signature verification," In Advances in Neural Information
Processing Systems 1, D. S. Touretzky, eds., 340-347, Morgan Kaufmann, San Mateo,
California, 1989.

20. R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley,
New York, 1973.

21. B. Ku, R. J. Thomas, C. Chiou and C. Lin, "Power system dynamic load modelling
using artificial neural networks," IEEE Trans. on Power Systems, vol. 9, 1868-1874,
1994.

22. A. U. Levin and K. S. Narendra, "Control of nonlinear dynamical systems using
neural networks: controllability and stabiliztion," IEEE Trans. on Neural Networks,
vol. 4, 192-206, 1993.

23. W. S. McCollough and W. Pitts, "A logical calculus of ideas immanent in nervous
activity," Bulletin of Mathematical Biophysics, vol. 5, 115-133, 1943.

24. D. Hebb, The organization of behavior, John Wiley and Sons, New York, 1949.

25. F. Rosenblatt, Principles of neurodynamics, Spartan Books, Washington, 1961.

26. B. Widrow, "Generalization and information storage in networks of Ada line 'neu-
rons'," In Self-Organizing Systems, M. Yovitz, G. Jacobi, G. Goldstein, eds., 435-461,
Spartan Books, Washington, 1962.

27. M. L. Minsky and S. A. Papert, Perceptrons. MIT Press, Mass., 1969.

28. S. Grossberg, "Competitive learning: From interactive activation to adaptive reso-
nance," Cognitive Science, vol. 11, 23-63, 1987.

205

29. T. Kohonen, "Correlation matrix memories," IEEE Trans. on Computers, vol. 21,
353-359, 1972.

30. D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, vol. 1-2, MIT
Press, Mass., 1986.

31. K. S. Narendra and K. Parthasarathy,"Identification and control of dynamical sys-
tems using neural networks," IEEE Trans. Neural Networks, vol. 1, 4-27, 1990.

32. K. S. Narendra and K. Parthasarathy,"Gradient methods for the optimization of
dynamical systems containing neural networks," IEEE Trans. Neural Networks, vol.
2, 252-261, 1991.

33. A. G. Par los, K. T. Chong, and A. F. Atiya,"Application of the recurrent multilayer
perceptron in modeling complex process dynamics," IEEE Trans. Neural Networks,
vol. 5, 255-266, 1994.

34. K. Funahashi,"On the approximate realization of continuous mappings by neural
networks," Neural Networks, vol. 2, 183-192, 1989.

35. E. J. Hartman, J. D. Keeler, and J. M. Kowalski," Layered neural networks with
Gaussian hidden units as universal approximations," Neural Computation, vol. 2,
210-215, 1990.

36. P. J. Werbos, New tools for prediction and analysis in the behavioral sciences, Ph.D.
Dissertation, Harvard University, Cambridge, 1974.

37. R. Hecht-Nielsen, "Theory of the backpropagation neural network," Proc. IJCNN,
vol. 1, 593-605, Washington, 1989.

38. K.Hornik, "Approximation capabilities of multilayer feedforward networks," Neural
Networks, vol. 4, 251-257, 1991.

39. K. Hornik, M. Stinchcombe and H. WHite, "Multi layer feedforward networks are
universal approximators," Neural Networks, vol. 2, 359-366, 1989.

40. G. Cybenko,"Approximation by superpositions of a sigmoidal function," Math.
Contr., Signals, Syst., vol. 2, 303-314, 1989.

41. E. D. Dahl ,"Accelerated learning using the generalized delta rule," Proc. IEEE
ICNN, vol. 2, 523-530, San Diego, 1987.

42. D. R. Hush and J. M. Salas, "Improving the learning rate of backpropagation with
the gradient reuse technique," Proc. IEEE ICNN, vol. 1, 383-389, San Diego, 1988.

43. T. P. Vogl, J. K. Mangis, A. K. Rig ler, W. T. Zink and D. L. Alkan, "Accelerating
the convergence of the backpropagation method," Biological Cybernetics, vol. 59,
257-263, 1988.

206

44. D. F. Shanno, "Conjugate gradient mehtods with inexact searches," Math. of Oper-
ations Research, vol. 3, 244-256, 1978.

45. T. Chen and H. Chen, "Approximations of continuous functionals by neural networks
with application to dynamic systems," IEEE Trans. Neural Networks, vol. 4, 910-918,
1993.

46. C. H. Choi and J. Y. Choi, "Construction of neural networks to approximate arbitrary
continuous functions of one variable," Elect. Lett., vol. 28, 151-153, 1992.

47. C. H. Choi and J. Y. Choi, "Constructive neural networks with piecewise interpo-
lation capabilities for function approximations," IEEE Trans. on Neural Networks,
vol. 5, 936-944, 1994.

48. E. K. Blum and L. K. Li, "Approximation theory and feedforward networks," Neural
Networks, vol. 4, 511-515, 1991.

49. J. R. Munkres, Topology: A first course, Prentice-Hall, Englewood-Cliffs, New Jersey,
1974.

50. A. U. Levin and K. S. Narendra, "Control of nonlinear dynamical systems using
neural networks Part II: Observability, Identification and Control ", IEEE Trans.
Neural Networks, vol. 7, 30-42, 1996.

51. D. Chen and R. Mohler, "Latitudinal and Longitudinal Neural Network Structures
for Function Approximations", Proc. IEEE Conf. Electronics, Circuits, and System,
Greece, 1996.

52. D. Chen and R. Mohler, "The properties of latitudinal neural networks with potential
power system applications", Proc. American Control Conference, Philadelphia, 1998.

53. R. M. Burton and H. G. Dehling, Mathematical Aspects of Neural Computing,
Preprint, Department of Mathematics, Oregon State University, 1996.

54. T. J. Overbye and C. L. Demarco, "Voltage security enhancement using energy based
sensitivities," IEEE Trans. Power Systems, vol. 6, 1196-1202, 1991.

55. V. Ajjarapu and C. Christy, "The continuation power flow: A tool for steady state
voltage stability analysis," IEEE Trans. Power Systems, vol. 7, 416-423, 1992.

56. B. Gao, G. K. Morison and P. Kundur, "Voltage stability evaluation using modal
analysis," IEEE Trans. Power Systems, vol. 7, 1529-1536, 1992.

57. C. D. Vournas, "Voltage stability and controllability indices for multimachine power
systems," IEEE Trans. Power Systems, vol. 10, 1183-1191, 1995.

207

58. T. V. Cutsem,"An approach to corrective control of voltage instability using simula-
tion and sensitivity," IEEE Trans. Power Systems, vol. 10, 616-622, 1995.

59. G. K. Morison, B. Gao and P. Kundur, "Voltage stability analysis using static and
dynamic approaches," IEEE Trans. Power Systems, vol. 8, 1159-1165, 1993.

60. M. K. Pal, "Voltage stability conditions considering load characteristics," IEEE
Trans. Power Systems, vol. 7, 243-249, 1992.

61. OSU-ECE-FACTS 9401 Report on Intelligent Control of Complex Nonlinear Systems
with Electric Power Applications, 1994.

62. G. C. Ejebe et al, "Methods for contingency screening and ranking for voltage sta-
bility analysis of power systems," IEEE Trans. Power Systems, vol. 11, 350-356,
1996.

63. D. J. Hill, "Nonlinear dynamic load models with recovery for voltage stability stud-
ies," IEEE Trans. Power Systems, vol. 8, 166-172, 1993.

64. D. Karlsson and D. J. Hill, "Modelling and identification of nonlinear dynamic loads
in power systems," IEEE Trans. Power Systems, vol. 9, 157-163, 1994.

65. T. J. Overbye and C. L. Demarco, "Improved techniques for power system voltage
stability assessment using energy methods," IEEE Trans. on Power Systems, vol. 6,
1446-1452, 1991.

66. N. Yorino et al, "An investigation of voltage instability problems," IEEE Trans.
Power Systems, vol. 7, 600-607, 1992.

67. B. Lee and V. Ajjarapu, "A piecewise global small-disturbance voltage-stability anal-
ysis of structure-preserving power system models," IEEE Trans. Power Systems, vol.
10, 1963-1968, 1995.

68. H. Chiang and R. Jean-Jumeau, "Toward a practical performance index for predicting
voltage collapse in elctric power systems," IEEE Trans. Power Systems, vol. 10, 584-
590, 1995.

69. Discussion of "An investigation of voltage instability problems," IEEE Trans. Power
Systems, vol. 7, 608-611, 1992.

70. Discussion of "Voltage stability analysis using generic dynamic load models," IEEE
Trans. Power Systems, vol. 9, 487-493, 1994.

71. Discussion of "Voltage stability and controllability indices for multimachine power
systems," IEEE Trans. Power Systems, vol. 10, 1191-1194, 1995.

208

72. Discussion of "Voltage stability analysis in transient and mid-term time scales," IEEE
Trans. Power Systems, vol. 11, 153-154, 1996.

73. Discussion of "Voltage stability analysis using static and dynamic approaches," IEEE
Trans. Power Systems, vol. 8, 1166-1171, 1993.

74. Discussion of "A piecewise global small-disturbance voltage-stability analysis of
structure-preserving power system models," IEEE Trans. Power Systems, vol. 10,
1969-1971, 1995.

75. W. Xu and Y. Mansour, "Voltage stability analysis using generic dynamic load mod-
els," IEEE Trans. Power Systems, vol. 9, 479-486, 1994.

76. K. Iba et al.,"A method for finding a pair of multiple load flow solutions in bulk
power systems," Proc. PICA, 98-104, Seattle, 1989.

77. A. A. EI-Keib and X. Ma, "Application of artificial neural networks in voltage sta-
bility assessment," IEEE Trans. Power Systems, vol. 10, 1890-1895, 1995.

78. Closure of "Toward a practical performance index for predicting voltage collapse in
elctric power systems," IEEE Trans. Power Systems, vol. 10, 591-592, 1995.

79. IEEE Committee Report, "Load representation for dynamic performance studies,"
IEEE/PES Winter Meeting, WM 126-3 PWRS, 1992.

80. J. T. Connor, R. D. Martin, and L. E. Atlas, "Recurrent neural networks and robust
time series prediction," IEEE Trans. Neural Networks, vol. 5, 240-254, 1994.

81. IEEE Committee Report, Voltage Stability of Power Systems: Concept, Analytical
Tools, and Industry Experience, IEEE publication 90TH0358-2-PWR.

82. Nonlinear Control and Operation of FACTS: Methodologies and Basic Concepts,
EPRI TR-103398, Palo Alto, 1995.

83. Y. Wang et al, "Variable structure FACTS controllers for power system transient
stability," IEEE Trans. Power Systems, Vol. 7, 307-313, 1992

84. D. Kosterev and W. Kolodziej, "Robust control for power system transient stabiliza-
tion," Proc. American Control Conf., San Francisco, 1993.

85. K. Narendra and S. Mukhopadhyay, "Intelligent control using neural networks,"
IEEE Control Systems Magazine, vol. 12, 11-18, 1992.

86. M. Herman, J. Albus, and T. Hong, "Intelligent control for multiple autonomous
undersea vehicles," In Neural Networks for Control (W. T. Miller, R. S. Sutton and
P. J. Werbos, eds.), 427-474, MIT Press, Mass., 1990.

209

87. K. Tanaka et al, "Fuzzy control of a vehicle with two trailers," Proc. American
Control Conf., Albuquerque, 1997.

88. T. W. Long et al, "A neural network based receding horizon optimal controller,"
Proc. American Control Conf., Albuquerque, 1997.

89. N. B. Karayiannis and A. N. Venetsanopoulos, Artificial Neural Networks: Learning
Algorithms, Performance Evaluation, and Applications, Kluwer Academic Publish-
ers, Boston, 1993.

90. P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural
Networks and Political Forecasting, John Wiley & Sons, New York, 1994.

91. M. Kawato, "Computational schemes and neural network models for formation and
control of multijoint arm trajectory," In Neural Networks for Control (W. T. Miller,
R. S. Sutton and P. J. Werbos, eds.), 197-228, MIT Press, Mass., 1990.

92. C. Atkeson and D. Reinkensmeyer, "Using associative content-addressable memories
to control robots," In Neural Networks for Control (W. T. Miller, R. S. Sutton and
P. J. Werbos, eds.), 255-285, MIT Press, Mass.,1990.

93.

94.

95.

96.

D. Chen and R.
networks," Proc.

E. B. Lee and L.
1967.

Wilson J. Rugh,
1993.

Mohler, "Load modelling and voltage stability analysis by neural
American Control Conf., Albuquerque, 1997.

Markus, Foundations of Optimal Control Theory, Wiley, New York,

Linear System Theory, Prentice-Hall, Englewood Cliffs, New Jersey,

G. A. Rovithakis and M. A. Christodoulou, "Direct adaptive regulation of unknown
nonlinear dynamical systems via dynamic neural networks," IEEE Trans. Syst. Man
Cyber., vol. 25, 1578-1594, 1995.

97. G. A. Rovithakis and M. A. Christodoulou, "Adaptive control of unknown plants
using dynamical neural networks," IEEE Trans. Syst. Man Cyber., vol. 24, 400-412,
1994.

98. I. Dobson and H. Chiang, "Towards a theory of voltage collapse in electric power
systems," System 8 Control Letters, vol. 13, 253-262, 1989.

99. A. E. Bryson and Y. C. Ho, Applied optimal control : optimization, estimation, and
control, Hemisphere Pub. Corp., distributed by Halsted Press, Washington, 1975.

100. A. Y. Khapalov and R. R. Mohler, "Asymptotic stabilization of the bilinear time-
invariant system via piecewise constant feedback," Systems & Control Letters, vol.
33, 47-54, 1998.

210

101. S. A. Shahrestani and D. J. Hill, "Hierarchical control of bifurcating power systems,"
Preprint, Univ. of Sydney, 1998.

211

APPENDICES

212

A C Programs

In the following, all the programs coded in C for implementation of the training

algorithm for neural networks are listed.

/* C Programs are listed in the following */

/********************* Begin of ../../C_nnet/mynn.h ************************/

/* This header file is specific to neural network application */

void system_error(char error message[]);

int *allocate_integer_vector(int 1, int u);

float *allocate_real_vector(int 1, int u);

int **allocate_integer_matrix(int lr, int ur, int lc, int uc);

float **allocate_real_matrix(int lr, int ur, int lc, int uc);
void free_integer_vector(int *v, int 1);

void free_real_vector(float *v, int 1);

void free_integer_matrix(int **m, int lr, int ur, int lc);

void free_real_matrix(float **m, int lr, int ur,int lc);

float rand_num(long *idum);

void myrand(float **w,int w_row,int w_col,float *b);

void mynormr(float **w, int w_row, int w_col);

void myrands(float **w, int w_row,int w_col,float *b);

void mynwtan(int s,float ** p,int p_row,int p_col,float ** w,int w_row,
int w_col,float *b);

void mynwlog(int s,float ** p,int p_row,int p_col,float ** w,int w_row,
int w_col,float *b);

void myinitff(float ** p, int p_row, int p_col,

int sl, char *fl,

int s2, char *f2,

int s3, char *f3,

float ** wl, int wl_row, int wl_col, float *bl,

float ** w2, int w2_row, int w2_col, float *b2,

float ** w3, int w3_row, int w3_col, float *b3);

void mysimuff(float **p, int p_row, int p_col,

float **wl, int wl_row, int wl_col, float *bl,

float **w2, int w2_row, int w2_col, float *b2,

float **w3, int w3_row, int w3_col, float *b3,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

float **al, int al_row, int al_col,

float **a2, int a2_row, int a2_col,

float **a3, int a3 row, int a3_col

);

void mytbpx3(float **wl, int rowl, int colt, float *bl,

float **w2, int row2, int co12, float *b2,

float **w3, int row3, int co13, float *b3,
float **p, int p_row, int p_col,
float **t, int t_row, int t_col,
float *tp,

213

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df3)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

);

void mytbpx2(float **wl, int wl_row, int wl_col, float *bi,

float **w2, int w2_row, int w2_col, float *b2,

float **p, int prow, int p_col,
float **t, int t_row, int t_col,

float *tp,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

) ;

float mysumsqr(float **e,int e_row,int e_col);

void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

float **dw,int dw_row,int dw_col,

float *db);

/************* This is the version for standard Backpropagation ****

float ** mypurelin(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b);

float ** mylogsig(float **w,int row,int col,

float **x,int x_row,int

float *b);

float ** mytansig(float **w,int row,int col,

float **x,int x_row,int

float *b);

float ** mydeltalin(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col);
float ** mydeltalog(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col);
float ** mydeltatan(float **a,int a_row,int

float **d,int d_row,int d_col,

float **w,int w_row,int w_col);

/************* This is the version for recurrent Backpropagation ****/

214

void mypurelin(float **w,int row,int col,

float **x,int x_row,int x_col,
float *b,float **a);

void mylogsig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b,float **a);

void mytansig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b,float **a);

void mydeltalin(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col,float **r);
void mydeltalog(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **woint w_row,int w_col,float **r);

void mydeltatan(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col,float **r);
/***/

/********* The above is for standard neural network ***********/

/********* The following is for recurrent nerual network ******/

/********* But it can be used for standard neural network *****/

/********* since the programs are such coded to accomodate both cases **/

void myinitelm(float ** p, int p_row, int p_col,

int si, char *fl, int local_recurl,

/* 1/0: yes/no local recurr */
int s2, char *f2, int local_recur2,

/* 1/0: yes/no local recurr */
int s3, char *f3, int local_recur3,

/* 1/0: yes/no local recurr */
float ** wi, int wl_row, int wl_col, float * bl,

float ** w2, int w2_row, int w2_col, float * b2,

float ** w3, int w3_row, int w3_col, float * b3);

void mysimuelm(float **p, int p_row, int p_col,

float **wl, int wi_row, int wl_col, float *bl,int local_recurl,

/* yes/no: 1/0 */

float **w2, int w2_row, int w2_col, float *b2,int local_recur2,

/* yes/no: 1/0 */

float **w3, int w3_row, int w3_col, float *b3,int local_recur3,

/* yes/no: 1/0 */

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

float **al, int al_row, int al_col,

float **a2, int a2_row, int a2_col,

float **a3, int a3_row, int a3_col

) ;

void mytrbpx3(float **wl, int wl_row, int wl_col, float *bl, int local_recurl,

float **w2, int w2_row, int w2_col, float *b2, int local_recur2,

float **w3, int w3_row, int w3_col, float *b3, int local_recur3,
float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

void (*f1)(float **w,int row,int col,float **x,

215

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfi)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),
void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),
void (*df3)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

);

void mytrbpx2(float **wl, int wl_row, int wl_col, float *bl, int local_recurl,

float **x42, int w2_row, int w2_col, float *b2, int local_recur2,
float **p, int p_row, int p_col,
float **t, int t_row, int t_col,
float *tp,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

);

/********** END of mynn.h ****************************/

/*********************** Begin of myinitff.c *****************/

*include <stdio.h>
*include <math.h>

*include <stdlib.h>

*include "mynn.h"

void myinitff(float ** p, int p_row, int p_col,

int sl, char *fl,

int s2, char *f2,

int s3, char *f3,

float ** wl, int wl_row, int wl_col, float *bl,

float ** w2, int w2_row, int w2_col, float *b2,

float ** w3, int w3_row, int w3_col, float *b3)

{

int ii,jj;

float **tmp2,**tmp3;

int tmp2_row,tmp2_col,tmp3_row,tmp3_col;

/* First of all, dimension consistency check */

if (strcmp(f2, "mypurelin ") ==0) {/* only 1 hidden layer case */

if (wl_col != p_row II w2_col != wi_row II sl !=wl_row II s2 !=w2_row) {
printf("Dimension inconsistency error in myinitff\h");

printf("Exiting from myinitff now.");
exit(1);

}

}

if (strcmp(f3,"mypurelin") ==0) {/* only 2 hidden layer case */

if (wl_col!=p_row II w2_col!=w1_row II w3_col!=w2_row II si!=w1_row

II s2!=w2_row II s3!=w3_row)
{

printf("Dimension inconsistency error in myinitff\n");

printf("Exiting from myinitff now.");
exit(1);

1

}

/********* Case 1: first layer mylogsig **********/

if (strcmp(fl,"mylogsig") == 0) {

mynwlog(s1,p,p_row,p_col,w1,wl_row,wl_col,b1);
tmp2 = allocate_real_matrix(1,s1,1,2);

/* the output range of the 1st layer */
for (ii=1;ii<=s1;ii++) {

tmp2[ii] [1] =0;

tmp2[ii] [2] =1;

}
tmp2_row=s1;

tmp2_co1 =2;

if (strcmp(f2,"mylogsig") ==0) {

mynwlog(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);
tmp3 = allocate_real_matrix(1,s2,1,2);

/* the output range of the 2nd layer */
for (ii=1;ii<=s2;ii++) {

tmp3[ii] [1]=0;

tmp3[ii] [2]=1;

1

tmp3_row=s2;

tmp3_co1 =2;

if (strcmp(f3,"mylogsig") == 0) {

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,b3);
}

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);
}

if (strcmp(f2,"mytansig") == 0) {

mynwtan(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);
tmp3 = allocate_real_matrix(1,s2,1,2);

for (ii=1;ii<=s2;ii++) {

tmp3[ii][1]=-1;

tmp3[ii] [2] =1;

}
tmp3_row=s2;

tmp3_col=2;

if (strcmp(f3,"mylogsig") == 0) {

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {
myrands(w3,w3_row,w3_col,b3);

}

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);
}

216

217

if (strcmp(f2,"mypurelin") == 0) {

/* if layer 2 is linear layer, then no more layers */

myrands(w2,w2_row,w2_col,b2);

free_real_matrix(tmp2,1,tmp2_row,1);
}

/***** Case 2: first layer mytansig *********/

if (strcmp(fl,"mytansig") == 0) {

mynwtan(sl,p,p_row,p_col,w1,wl_row,wl_col,b1);
tmp2 = allocate_real_matrix(1,s1,1,2);

/* the output range of the 1st layer */
for (ii=1;ii<=s1;ii++) {

tmp2[ii] [11 = -1;

tmp2[ii] [21 =1;

}
tmp2_row=s1;

tmp2_col=2;

if (strcmp(f2,"mytansig") ==0) {

mynwtan(s2,tmp2,tmp2_ row ,tmp2_col,w2,w2_row,w2_col,b2);

tmp3 = allocate_real_matrix(1,s2,1,2);

/* the output range of the 2nd layer */
for (ii=1;ii<=s2;ii++) {

tmp3[ii][1]=-1;

tmp3[ii][2]=1;
}

tmp3_row=s2;

tmp3_col=2;

if (strcmp(f3,"mytansig") == 0) {

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mylogsig") == 0) {

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,b3);
}

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);
}

if (strcmp(f2,"mylogsig") == 0) {

mynwlog(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);
tmp3 = allocate_real_matrix(1,s2,1,2);

for (ii=1;ii<=s2;ii++) {

tmp3[ii][1)=0;

tmp3[ii) [2]=1;

}
tmp3_row=s2;

tmp3_col=2;

if (strcmp(f3,"mylogsig") == 0) {

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,b3);
}

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);
}

if (strcmp(f2,"mypurelin") == 0) {

myrands(w2,w2_row,w2_col,b2);

free_real_matrix(tmp2,1,tmp2_row,1);
}

}

}

/************** END of myinitff.c ***************/

/************** BEGIN of mytrainff.c ************/

/* This subroutine is for training a standard neural network;

include mytbpx3 and mytbpx2 < * 2 hidden layers and 1 hidden layer case *>
*/

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

#include "mynn.h"

void mytbpx3(float **wl, int wl_row, int w1_col, float *bl,

float *49,72, int w2_row, int w2_col, float *b2,

float **1,T3, int w3_row, int w3_col, float *b3,

float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

{

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df3)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

float mysumsqr(float **e,int e_row,int e_col);
void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

float **dw,int dw_row,int dw_col,

float *db);

float ** allocate_real_matrix(int,int,int,int);

float * allocate_real_vector(int,int);

int df,me; /* epoches for display, default = 25

max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;

learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04 */

218

219

float MC;

float * *dwi, **dw2, **dw3;

float *dbl,*db2,*db3;

float **new_wl, **new_w2, **new_w3;

float *new_b1,*new_b2,*new_b3;

float **al,**a2,**a3,**e;

float **new_al,**new_a2,**new_a3,**new_e;

float **d1,**d2,**d3;

float SSE, new_SSE;

float **tr; /* training record */
int ii,jj,kk;

printf("Welcome to the neural net training program\n");
df=tp[1];

me=tp[2];

eg=tp[3];

1r=tp[4];

im=tp [5] ;

dm=tp[5];

mc=tp[7];

er=tp[8];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */
tr =allocate_real_matrix(1,2,1,me+1);

dwl =allocate_real_matrix(1, wl_row, 1, wl_col);

/* wl_row: number of neurons in the present layer */

/* wl_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

new_wl=allocate_real_matrix(1, wi_row, 1, wl_col);
dw2 =allocate_real_matrix(1, w2_row, 1, w2_col);

new_w2=allocate_real_matrix(1, w2_row, 1, w2_col);
dw3 =allocate_real_matrix(1, w3_row, 1, w3_col);

new_w3=allocate_real_matrix(1,

dbl =allocate_real_vector(1,

new_bl=allocate_real_vector(1,
db2 =allocate_real_vector(1,

new_b2=allocate_real_vector(1,
db3 =allocate_real_vector(1,

new_b3=allocate_real_vector(1,

w3_row,

wi_row);

wl_row);

w2_row);

w2_row);

w3_row);

w3_row);

1, w3_col);

for (ii=1;ii<=w1_row;ii++) {
dbl[ii]=0.0;

for (jj=1;jj<=w1_col;jj++)

dwl[ii][jj]=0.0;
}

for (ii=1;ii<=w2_row;ii++)

db2[ii]=0.0;

for (jj=1;jj<=w2_col;jj++)

dw2[ii][jj]=0.0;
}

for (ii=1;ii<=w3_row;ii++) {

db3[ii]=0.0;

for (jj=1;jj<=w3_col;jj++)

220

dw3[ii][jj]=0.0;
}

MC=0;

al =allocate_real_matrix(1, wl_row, 1, p_col);

new_al=allocate_real_matrix(1, wl_row, 1, p_col);
a2 =allocate_real_matrix(1, w2_row, 1, p_col);

new_a2=allocate_real_matrix(1, w2_row, 1, p_col);
a3 =allocate_real_matrix(1, w3_row, 1, p_col);

new_a3=allocate_real_matrix(1, w3_row, 1, p_col);

dl =allocate_real_matrix(1, wl_row, 1, p_col);
d2 =allocate_real_matrix(1, w2_row, 1, p_col);
d3 =allocate_real_matrix(1, w3_row, 1, p_col);
e =allocate_real_matrix(1, w3_row, 1, p_col);
new_e =allocate_real_matrix(1, w3_row, 1, p_col);

printf("Memory allocation ready\n");

/*********** Presentation Phase *****************************/
(*f1)(1,71,w1_row,w1_col,p,p_row,p_col,b1,a1);

/* note: al is a matrix with dimension wl_row x p_col */

(*f2)(w2,w2_row,w2_col,al,wl_row,p_col,b2,a2);
/* note: a2 is a matrix with dimension w2_row x p_col */

(*f3)(w3,w3_row,w3_col,a2,w2_row,p_col,b3,a3);
/* note: a3 is a matrix with dimension w3_row x p_col */

for (ii=1;ii<=w3_row;ii++)

for (jj=1;jj<=p_col;jj++)

e[ii] [jj] =t[ii] [jj]- a3[ii] [jj];

SSE = mysumscir(e,w3_row,p_col);

printf("Presentation Phase finished \n ");

printf("Initial SSE=U\n",SSE);

/*********** BackPropagation Phase **************************/

(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL,d3);

/* e, a3, d3 are same dimensional */

printf("Any problem with NULL (pointer) use?\n");

(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,w3,w3_row,w3_col,d2);

/* d2,a2 same dimension */
printf("Any problem with df2?\n");

(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col,d1);

/* dl,a1 same dimension */

printf("Error calculations ready\n");

for (ii=1;ii<=me;ii++)

if (SSE < eg) { /* CHECK PHASE */

ii--;

break;

}

/* LEARNING PHASE */

mylearnbpm(p,p_row,p_col,d1,wl_row,p_co1,1r,MC,dwl,wl_row,wl_col,db1);

mylearnbpm(al,wl_row,p_col,d2,w2_row,p_co1,1r,MC,dw2,w2_row,w2_col,db2);

mylearnbpm(a2,w2_row,p_col,d3,0_rov,P_col,lr,MC,dw3,w3_row,w3_col,db3);

MC=mc;

for (jj=1;jj<=wl_row;jj++) { /* updating wl,b1 */

new_hl[jj]=bl[jj]+dbl[jj];

for (kk=1;kk<=wl_col;kk++)

221

new_wl [j j] [kk] =w1 [j j] [kk] +dwl [j j] [kk] ;

}

for (jj= l;jj <= w2_row;jj + +) { /* updating w2,b2 */

new_b2[jj]= b2[jj] +db2[jj];

for (kk=1;kk<=w2_col;kk++)

new_w2[jj] [kk]= w2[jj] [kk]+dw2[jj] [kk];

}

for (jj=1;jj<=w3_row;jj++) { /* updating w3,b3 */
new_b3[j j]=b3[jj]+db3[jj];

for (kk=1;kk<=w3_col;kk++)

new_w3[jj][kk] =w3[jj][kk] +dw3[jj][kk];

}

/* PRESENTATION PHASE */

(*f1)(new_wl,wl_row,wl_col,p,p_

/* note: new_al (as al) is a

(*f2)(new_w2,w2_row,w2_col,new_

/* note: new_a2 (as a2) is a
(*f3)(new_w3,w3_row,w3_col,new_

/* note: new_a3 (as a3) is a

row,p_col,new_bl,new_al);

matrix with dimension wl_row x p_col */

al,wl_row,p_col,new_b2,new_a2);

matrix with dimension w2_row x p_col */
a2,w2_row,p_col,new_b3,new_a3);

matrix with dimension w3_row x p_col */

for (jj=1;jj<=w3_row;jj++)

for (kk=1;kk<=p_col;kk++)
new_e[jj][kk]=t[jj][kk]-new_a3[jj][kk];

new_SSE=mysumsqr(new_e,w3_row,p_col);

/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */

if (new_SSE > SSE * er) {
1r=lr*dm;

MC=0;
}

else {

if (new_SSE < SSE) {
1r=lr*im;

}

for (jj= l;jj<= wl_row;jj + +) {

bl[jj]=new_bl[jj];

for (kk=1;kk<=w1_col;kk++) {

wl[jj][kk]=new_wl[jj][kk];
}
for (kk=1;kk<=p_col;kk++) {

al[jj][kk]=new_al[jj][kk];
}

}
for (jj=1;jj<=w2_row;jj++) {
b2[jj]=new_b2[jj];

for (kk=1;kk<=w2_col;kk++) {
w2[jj][kk]=new_w2[jj][kk];

}

for (kk= l;kk <= p_col;kk + +) {

a2[jj][kk]=new_a2[jj][kk];
}

}

for (jj=1;jj<=w3_row;jj++) {

b3[jj]=new_b3[jj];

for (kk=1;kk<=w3_col;kk++) {

w3[jj][kk]=new_w3[jj][kk];
}

for (kk=1;kk<=p_col;kk++)

a3[jj][kid=new_a3[jj][kk];

e [jj] [kk] =new_e [j j] [kk] ;

}
}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */
(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL,d3);

/* e, a3, d3 are same dimensional */
(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,w3,w3_row,w3_col,d2);

/* d2,a2 same dimension */
(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col,d1);

/* dl,a1 same dimension */
}

/* TRAINING RECORDS */

tr[1][ii+1]=SSE;

tr[2] [ii+1]=1r;

if ((ii % df) == 0)

printf("Trainbpx: %d Epochs, 1r4f, SSE4f\n",ii,lr,SSE);

/* end ii "for" loop */

if ((ii % df) !=0) {/* This is for last training epoch printing

in case me is not multiples of df */

printf("Trainbpx: %d Epochs, 1r=%f, SSE=U\n",ii,lr,SSE);
}

if (SSE > eg) {

printf("Tranibpx: network error did not reach the error goal;\n");
printf("Future training may be necessary or try different \n");

printf("initial weights and biases and/or more hidden neurons.\n");

}

/*********** End of mytbpx3 ***********/

void mytbpx2(float **wl, int wl_row, int wl_col, float *bl,

float **w2, int w2_row, int w2_col, float *b2,
float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

{

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

float mysumsqr(float **e,int e_row,int e_col);

void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

222

223

float **dw,int dw_row,int dw_col,

float *db);
float ** allocate_real_matrix(int,int,int,int);

float * allocate_real_vector(int,int);

int df,me; /* epoches for display, default = 25

max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;

learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04 */

float MC;

float **dwl, **dw2;

float *dbl,*db2;

float **new_wl, **new_w2;

float *new_b1,*new_b2;

float **al,**a2,**e;

float **new_al,**new_a2,**new_e;

float **d1,**d2;

float SSE, new_SSE;

float **tr; /* training record */
int ii,jj,kk;

printf("Welcome to the neural net training program\n");
df=tp[1];

me=tpC23;

eg=tp[S];

1r=tp[4];

im=tp[5];

dm=tp[6];

mc=tp[7];

er=tp[8];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */
tr =allocate_real_matrix(1,2,1,me+1);

dwl =allocate_real_matrix(1, wl_row, 1, wl_col);

/* wl_row: number of neurons in the present layer */

/* wl_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

new_wl=allocate_real_matrix(1, wl_row, 1, wl_col);
dw2 =allocate_real_matrix(1, w2_row, 1, w2_col);

new_w2=allocate_real_matrix(1, w2_row, 1, w2_col);

dbl =allocate_real_vector(1, wi_row);

new_bl=allocate_real_vector(1, wi_row);
db2 =allocate_real_vector(1, w2_row);

new_b2=allocate_real_vector(1, w2_row);

for (ii=1;ii<=w1_row;ii++) {
dbl[ii]=0.0;

for (jj=1;jj<=w1_col;jj++)

dwl[ii][ji]=0.0;
}

224

for (ii=1;ii<=w2_row;ii++) {

db2[ii]=0.0;

for (jj=1;jj<=w2_col;jj++)

dw2[ii] [jj]=0.0;

}

MC=0;

al =allocate_real_matrix(1, wl_row, 1, p_col);
new_al=allocate_real_matrix(1, wl_row, 1, p_col);
a2 =allocate_real_matrix(1, w2_row, 1, p_col);
new_a2=allocate_real_matrix(1, w2_row, 1, p_col);

di =allocate_real_matrix(1, wl_row, 1, p_col);
d2 =allocate_real_matrix(1, w2_row, 1, p_col);
e =allocate_real_matrix(1, w2_row, 1, p_col);
new_e =allocate_real_matrix(1, w2_row, 1, p_col);

printf("Memory allocation ready\n");

/*********** Presentation Phase *****************************/

(*f1)(wl,wl_row,w1_col,p,p_row,p_col,b1,a1);

/* note: al is a matrix with dimension wl_row x p_col */

(*f2)(w2,w2_row,w2_col,al,wl_row,p_col,b2,a2);

/* note: a2 is a matrix with dimension w2_row x p_col */

for (ii=1;ii<=w2_row;ii++)

for (jj=1;jj<=p_col;jj++)

e[ii][jj]=t[ii][jj]-a2[ii][jj];

SSE = mysumsqr(e,w2_row,p_col);

printf("Presentation Phase finished\n");

printf("Initial SSE4f\n",SSE);

/*********** BackPropagation Phase **************************/

(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NUIL,NUIL,NULL,d2);

/* e, a3, d3 are same dimensional */

(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col,d1);

/* dl,a1 same dimension */

for (ii=1;ii<=me;ii++) {

if (SSE < eg) { /* CHECK PHASE */
ii--;

break;
}

/* LEARNING PHASE */

mylearnbpm(p,p_row,p_col,d1,wl_row,p_co1,1r,MC,dwl,wl_row,wl_col,db1);

mylearnbpm(al,wl_row,p_col,d2,w2_row,p_col,lr,MC,dw2,w2_row,w2_col,db2);

MC=mc;

for (jj=1;jj<=wl_row;jj++) { /* updating wl,b1 */

new_b1[jj]=1:11[jj]+dbl[jj];

for (kk=1;kk<=w1_col;kk++)

new_wl[jj][kk]=wl[jj][kk]+dwl[jj][kk];
}

for (jj=1;jj<=w2_row;jj++) { /* updating w2,b2 */

new_b2[jj]=b2[jj]+db2[jj];

for (kk=1;kk<=v2_col;kk++)

new_w2[jj][kk]=w2[jj][kk]+dw2[jj][kk] ;
}

225

/* PRESENTATION PHASE */
(*f1)(new_wl,wl_row,wl_col,p,p_row,p_col,new_bl,new_al);

/* note: new_al (as al) is a matrix with dimension wl_row x p_col */
(*f2)(new_w2,w2_row,w2_col,new_al,wl_row,p_col,new_b2,new_a2);

/* note: new_a2 (as a2) is a matrix with dimension w2_row x p_col */

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=p_col;kk++)

new_e j ji [kk] =t [j j] [kk] new_a2 [j j] [ick] ;

new_SSE=mysumsqr(new_e,w2_row,p_col);

/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */
if (new_SSE > SSE * er) {

1r=lr*dm;

MC=0;

}

else {

if (new_SSE < SSE) {
1r=lr*im;

for (jj=1;jj<=w1_row;jj++) {
bl[jj]=new_bl[jj];

for (kk=1;kk<=w1_col;kk++) {

wl[jj][kk]=new_wl[jj][kk];
}

for (kk=1;kk<=p_col;kk++) {

al[jj][kk]=new_al[jj][kk];
}

}
for (jj=1;jj<=w2_row;jj++)

b2[jj]=new_b2[jj];

for (kk=1;kk<=w2_col;kk++) {

w2[jj][kk]=new_w2Wlikkl;
}

for (kk=1;kk<=p_col;kk++)

a2[jj][kk]=new_a2[jj][kk];

e[jj][kk] =new_e[jj][kk];
}

}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */
(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL,d2);

/* e, a3, d3 are same dimensional */
(*dfl)(al,w1_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col,d1);

/* dl,a1 same dimension */
}

/* TRAINING RECORDS *1

tr[l][ii+1]=SSE;

tr[2] [ii+1]=1r;

if ((ii % df) == 0)

printf("Trainbpx: %d Epochs, 1r4f, SSE=U\n",ii,lr,SSE);

/* end ii "for" loop */

if ((ii % df) !=0) {/* This is for last training epoch printing

226

in case me is not multiples of df

printf("Trainbpx: %d Epochs, lr =%f, SSE=If\n",ii,lr,SSE);
}

*/

if (SSE > eg) {

printf("Tranibpx: network error did not reach the error goal;\n");

printf("Future training may be necessary or try different \n");

printWinitial weights and biases and/or more hidden neurons.\n");
}

}

/*************** END of mytbpx2 ***********************/

/*************** END of mytrainff.c *******************/

/*************** BEGIN of mysimuff.c ******************/

*include <stdio.h>

*include <stdlib.h>

#include <math.h>

*include "mynn.h"

void mysimuff(float **p, int prow, int p_col,

float **wl, int wl_row, int wl_col, float *bl,

float **w2, int w2_row, int w2_col, float *b2,

float **w3, int w3 row, int w3_col, float *b3,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

float **al, int al_row, int al_col,

float **a2, int a2_row, int a2_col,
float **a3, int a3 row, int a3_col

{

int ii,jj;

float **A1,**A2,**A3;

/* Dimension consistency check */

if ((a3) == NULL) { /* only 1 hidden layer case */

if (wl_coll=p_row 11 w2_col!=w1_row) {

printf("Dimension inconsistency in mysimuff\n");

printf("Exiting from mysimuff\n");

exit(1);

}

if (al_row!=wl_row II al_col!=p_col II a2_row!=w2_row II a2_col!=p_col) {

printf("Dimension inconsistency in mysimuff\n");
printf("Exiting from mysimuff\n");

exit(1);

}

A1=allocate_real_matrix(1,al_row,l,al_col);

A2=allocate_real_matrix(1,a2_row,l,a2_col);

(*f1)(wl,wl_row,wl_col,p,p_row,p_col,b1,A1);

(*f2)(w2,w2_row,w2_col,A1,wl_row,p_col,b2,A2);
/* Note: !!' */

/* Note here: al,a2 are float ***, so need use (*al) and (*a2)

to assure the consistence of the pointer type */
for (ii=1;ii<=al_row;ii++)

227

for (jj=1;jj<=al_col;jj++)

al[ii][jj]=Al[ii][jj];

for (ii=1;ii<=a2_row;ii++)

for (jj=1;jj<=a2_col;jj++)

a2[ii][jj]=A2Eii3[ji];

}

if ((a3) != NULL) { /* 2 hidden layer case */

if (wl_col!=p_row II w2_col!=wl_row II w3_col!=w2_row) {

printf("Dimension inconsistency in mysimuff\n");
printf("Exiting from mysimuff\n");
exit(1);

}

if (al_row!=wl_row II al_col!=p_col II a2_row!=w2_row 11

a2_col!=p_col II a3_row!=w3_row II a3_col!=p_col) {
printf("Dimension inconsistency in mysimuff\n");
printf("Exiting from mysimuff\n");

exit(1);

}

A1=allocate_real_matrix(1,a1_row,l,al_col);

A2=allocate_real_matrix(1,a2_row,l,a2_col);

A3=allocate_real_matrix(1,a3_row,l,a3_col);

(*f1)(wl,wl_row,wl_col,p,p_row,p_col,b1,A1);

/* note: al: wl_row x p_col */

(*f2)(w2,w2_row,w2_col,A1,w1_row,p_col,b2,A2);

/* note: a2: w2_row x p_col */

(*f3)(w3,w3_row,w3_col,A2,w2_row,p_col,b3,A3);

/* note: a3: w3_row x p_col */

for (ii=1;ii<=a1_row;ii++)

for (jj=1;jj<=al_col;jj++)

al [ii] [jj]=Ai [ii] [jj];

for (ii=1;ii<=a2_row;ii++)

for (jj=1;jj<=a2_col;jj++)

a2[ii][jj]=A2[ii][jj];

for (ii=1;ii<=a3_row;ii++)

for (jj=1;jj<=a3_colOi++)
a3[ii][jj]=A3[ii][jj];

/*

for (ii=1;ii<=a3_row;ii++)

for (jj=1;jj<=a3_col;ii++)

printf("U\n",(a3)Ciinii]);
*/

}

/*return ;*/
}

/*************** END of mysimuff.c *******************/

/*************** BEGIN of myinitelm.c ****************/
*include <stdio.h>

*include <math.h>

*include <stdlib.h>

*include "mynn.h"

void myinitelm(float ** p, int p_row, int p_col,

int sl, char *fl, int local_recurl,

228

/* 1/0: yes/no local recurr */
int s2, char *f2, int local_recur2,

/* 1/0: yes/no local recurr */
int s3, char *f3, int local_recur3,

/* 1/0: yes/no local recurr */

float ** wl, int wl_row, int wl_col, float * bi,

float ** w2, int w2_row, int w2_col, float * b2,

float ** w3, int w3_row, int w3_col, float * b3)

{

int ii,jj;

float **tmpl,**tmp2,**tmp3;

int tmpl_row,tmpl_col,tmp2_row,tmp2_col,tmp3_row,tmp3_col;

tmpl_row=p_row+sl*local_recurl;

tmpl_col=2;

tmpl = allocate_real_matrix(1,p_row+sl*local_recur1,1,2);

/* convert matrix p into tmpl

so that it may accomodate

the recurrent part from the

output of the 1st hidden layer

if applicable */

for (ii=1;ii<=p_row;ii++) {

tmpl[ii][1]=p[ii][1];

tmp1[ii][2]=p[ii][1];

for (jj=2;jj<=p_col;jj++) {

if (p[ii] [j j] < =pi [ii] [1])

tmpl [l]=p[ii) Eiji ;
if (p[ii][jj] > tmpl[ii][2])

tmpl [ii] [2] =p [j j] ;

}
}

/* First of all, dimension consistency check */

if (strcmp(f2,"mypurelin") ==0) {/* only 1 hidden layer case */
if (wl_col != (p_row+sl*local_recurl) 11 w2_col != (wl_row+s2*local_recur2)

11 si !=wl_row 11 s2 !=w2_row) {

printf("Dimension inconsistency error in myinitff\n");

printf("Exiting from myinitff now.");
exit(1);

}

}

if (strcmp(f3,"mypurelin") ==0) {/* only 2 hidden layer case */
if (wl_col!=(p_row+sl*local_recurl) 11 w2_col!=(wl_row+s2*local_recur2)

II w3_col!=(w2_row+s3*local_recur3)

II sl!=w1_row II s2!=w2_row II s3!=w3_row) {
printf("Dimension inconsistency error in myinitff\n");

printf("Exiting from myinitff now.");
exit(1);

}

}

printf("Dimension check ok\n");

/************ Read the following lines carefully and make modifications ***/

/********* Case 1: first layer mylogsig **********/

if (strcmp(fl,"mylogsig") == 0) {
if (local_recurl == 1) {

for (ii=1;ii<=s1;ii++) {

tmpl[p_row+ii][1]=0;

229

tmpl[p_row+ii][2]=1;
}

}

/*if (local_recurl == 0) ; doing nothing; doing-so to remind logic */

mynwlog(sl,tmpl,tmpl_row,tmpl_col,w1,wl_row,wl_col,b1);
tmp2 = allocate_real_matrix(1,s1+s2*local_recur2,1,2);

/* the output range of the 2nd layer */

for (ii=1;ii<=s1;ii++) {

tmp2[ii][1]=0;

tmp2[ii] [2]=1;

}
tmp2_row=s1+s2*local_recur2;

tmp2_co1 =2;

if (strcmp(f2,"mylogsig") ==0) {

if (local_recur2 == 1) {
for (ii=1;ii<=s2;ii++) {

tmp2[sl+ii][1]=0;

tmp2[sl+ii] [2]=1;

}

}
/*if (local_recur2 == 0) ; doing nothing; doing-so to remind logic */

mynwlog(s2,tmp2,timp2_row,tmp2_col,w2,w2_rov0.72_col,b2);

tmp3 = allocate_real_matrix(1,s2+s3*local_recur3,1,2);

/* the output range of the 2nd layer */
for (ii=1;ii<=s2;ii++) {

tmp3[ii][1]=0;

tmp3[ii][2]=1;
}
tmp3_row=s2+s3*local_recur3;
tmp3_co1 =2;

if (strcmp(f3,"mylogsig") == 0) {

if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3Cs2+iii[1]=0;

tmp3[s2+ii][2]=1;
}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {

if (local_recur3 == 1) {
for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=-1;

tmp3[s2+ii][2]=1;
}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,b3);
}

free_real_matrix(tmp1,1,tmpl_row,1);

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);
}

230

if (strcmp(f2,"mytansig") == 0) {
if (local_recur2 == 1) {

for (ii=1;ii<=s2;ii++) {

tmp2[s1+ii][1]=-1;

tmp2[sl+ii][2]=1;
}

}

/*if (local_recur2 == 0) ; doing nothing; doing-so to remind logic */

mynwtan(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);

tmp3 = allocate_realmatrix(1,s2+s3*localrecur3,1,2);
for (ii=1;ii<=s2;ii++) {

tmp3[ii] [1]=-1;

tmp3[ii][2]=1;
}

tmp3_row=s2+s3*local_recur3;

tmp3_co1 =2;

if (strcmp(f3,"mylogsig") == 0) {

if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=0;

tmp3[s2+ii] [2] =1;

}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {
if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=-1;

tmp3[s2+ii] [2]=1;

}
}
/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */
mynutan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);

}

if (strcmp(f3,"mypurelin") == 0) {
myrands(w3,w3_row,w3_col,b3);

}

free_real_matrix(tmp1,1,tmpl_row,1);

free_real_matrix(tmp2,1,tmp2_row,1);

free_realmatrix(tmp3,1,tmp3_row,1):
}

if (strcmp(f2,"mypurelin") == 0) {

/* if layer 2 is linear layer, then no more layers */

myrands(w2,w2_row,w2_col,b2);

free_real_matrix(tmp1,1,tmpl_row,1);

free_realmatrix(tmp2,1,tmp2_row,1);
}

/***** Case 2: first layer mytansig *********/

if (strcmp(fl,"mytansig") == 0) {

if (local_recurl == 1) {

for (ii=1;ii<=s1;ii++)

tmpl[p_row+ii][1]=0;

tmpl[p_row+ii][2]=1;

1
}

231

/* if (local_recurl == 0) ; doing nothing; doing-so to remind logic */

printf("ready to do mynwtan\n");

mynwtan(sl,tmpl,tmpl_row,tmpl_col,w1,wl_row,wl_col,b1);

printf("mynwtan ok\n");

tmp2 . allocate_real_matrix(1,s1+s2*local_recur2,1,2);

/* the output range of the 1st layer */

for (ii=1;ii<=s1;ii++) {

tmp2[ii][1] =-1;

tmp2[ii][2]=1;
}

tmp2_row=s1+s2*local_recur2;

tmp2_co1 =2;

if (strcmp(f2,"mytansig") ==0) {
if (local_recur2 == 1) {

for (ii=1;ii<=s2;ii++) {

tmp2[sl+ii] [1]=-1;

tmp2[s1+ii] [2]=1;

1

}

/*if (local_recur2 == 0) ; doing nothing; doing-so to remind logic */

mynwtan(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);

tmp3 = allocate_real_matrix(1,s2+s3*local_recur3,1,2);

/* the output range of the 2nd layer */
for (ii=1;ii<=s2;ii++) {

tmp3[ii][1]=-1;

tmp3[ii] [2]=1;

}

tmp3_row=s2+s3*local_recur3;

tmp3_col=2;

if (strcmp(f3,"mytansig") == 0) {

if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=-1;

tmp3[s2+ii][2]=1;
}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mylogsig") == 0) {
if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii] [1]=0;

tmp3[s2+ii][2]=1;
}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,b3);
}

free_ real_matrix(tmpl,1,tmpl_row,1);

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);

1

232

if (strcmp(f2,"mylogsig") == 0) {

if (local_recur2 == 1) {
for (ii=1;ii<=s2;ii++) {

tmp2[s1+ii][1]=0;

tmp2[sl+ii][2]=1;
}

}

/* if (local_recur2 == 0) ; doing nothing; doing-so to remind logic */

printf("ready to do mynwlog\n");

mynwlog(s2,tmp2,tmp2_row,tmp2_col,w2,w2_row,w2_col,b2);

printf("mynwlog ok\n");

tmp3 = allocate_real_matrix(1,s2+s3*local_recur3,1,2);

for (ii=1;ii<=s2;ii++) {

tmp3[ii][1]=0;

tmp3[ii][2]=1;
}

tmp3_row=s2+s3*local_recur3;

tmp3_co1 =2;

if (strcmp(f3,"mylogsig") == 0) {

if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=0;

tmp3[s2+ii][2]=1;

}

}

/* if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwlog(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mytansig") == 0) {

if (local_recur3 == 1) {

for (ii=1;ii<=s3;ii++) {

tmp3[s2+ii][1]=-1;

tmp3[s2+ii][2]=1;
}

}

/*if (local_recur3 == 0) ; doing nothing; doing-so to remind logic */

mynwtan(s3,tmp3,tmp3_row,tmp3_col,w3,w3_row,w3_col,b3);
}

if (strcmp(f3,"mypurelin") == 0) {

myrands(w3,w3_row,w3_col,h3);

printf("myrands for mypurelin ok\n");
}

free_real_matrix(tmp1,1,tmpl_row,1);

free_real_matrix(tmp2,1,tmp2_row,1);

free_real_matrix(tmp3,1,tmp3_row,1);

J.

if (strcmp(f2,"mypurelin") == 0) {

myrands(w2,w2_row,w2_col,b2);

free_real_matrix(tmp1,1,tmpl_row,1);

free_real_matrix(tmp2,1,tmp2_row,1);
}

}

/************* END of case 2 *******************/

}

/************* END of mysimuelm.c *******************/

/************* BEGIN of mytrainelm.c ****************/

/* This subroutine is used to train a recurrent nerual network */

/* Using standard backpropagation, not dynamic backpropagation */

/* local recurrency not global recurrency */

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

/* Train Recurrent using BackPropagation with fast algorithms */

/* thus,... ===> trbpx3 */

void mytrbpx3(float **wl, int wl_row, int wl_col, float *bl, int local_recurl,

float **w2, int w2_row, int w2_col, float *b2, int local_recur2,

float **w3, int w3 row, int w3_col, float *b3, int local_recur3,

float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

/*float ** (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),
float ** (*df1)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col),

float ** (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col),

float ** (*df3)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col)
*/

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r),

void (*df3)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

{

int df,me; /* epoches for display, default = 25

max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;

learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04

float MC;

float **dwl, **dw2, **dw3;

float *dbl,*db2,*db3;

float **new_wl, **new_w2, **new_w3;

float *new_bl,*new_b2,*new_b3;

float **al,**a2,**a3,**e;

*/

233

234

float **new_al,**new_a2,**new_a30**new_e;

float **d1,**d2,**d3;

float SSE, new_SSE;

float **tr; /* training record */

float **tmp_p ,**tmp_al,**tmp_a2;

/* in case of local recurrency,temp storage */

float **tmp_w2,**tmp_w3; /* local recurrency, part of w2, w3 */

int ii,jj,kk,mm;

float **tmp_new_p,**tmp_new_al,**tmp_new_a2,**tmp_new_a3;

float **tmp_tmp_new_al,**tmp_tmp_new_a2;

tmp_new_p=allocate_real_matrix(1,p_row+wl_row*local_recur1,1,1);

tmp_new_al=allocate_real_matrix(1,wl_row,1,1);

tmp_new_a2=allocate_real_matrix(1,w2_row,1,1);

tmp_tmp_new_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,1);

tmp_tmp_new_a2=allocate_real_matrix(1,w2_row+w3_row*local_recur3,1,1);

tmp_new_a3=allocate_real_matrix(1,w3_row,1,1);

if (wl_col!=(p_row+wl_row*local_recurl)

II w2_col!=(wl_row+w2_row*local_recur2)

II w3_col!=(w2_row+w3_row*local_recur3)) {
printf("Dimension inconsistency in mytrainelm\n");

printf("Exiting from mytrainelm\n");

exit(1);

/* Note: the number of neurons is the same

as that of rows for the weight matrix.

===> # neurons in layer 1 = wl_row; etc */

printf("Welcome to the Recurrent Neural Net training program\n");

df=tp[1];

me=tp[2];

eg=tp[3];

1r=tp[4]:

im=tp[5];

dm=tp[6];

mc=tp[7];

er= tpC8];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */
tr =allocate_real_matrix(1,2,1,me+1);

dwl =allocate_real_matrix(1, wl_row, 1, w1_col);

/* wi_row: number of neurons in the present layer */

/* wl_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

new_w1=allocate_real_matrix(1, wi_row, 1, wi_col);

dw2 =allocate_real_matrix(1, w2_row, 1, w2_col);

new_w2=allocate_real_matrix(1, w2_row, 1, w2_col);

dw3 =allocate_real_matrix(1, w3_row, 1, w3_col);

new_w3=allocate_real_matrix(1,

dbl =allocate_real_vector(1,

new_bl=allocate_real_vector(1,

db2 =allocate_real_vector(1,

new_b2=allocate_real_vector(1,

db3 =allocate_real_vector(1,

new_b3=allocate_real_vector(1,

w3_row,

wl_row);

wl_row);

w2_row);

w2_row);

w3_row);

w3_row);

1, w3_col);

235

for (ii=1;ii<=wl_row;ii++) {

dbl[ii]=0.0;

for (jj=1;jj<=w1_col;jj++)

dwl[ii][jj]=0.0;
}

for (ii=1;ii<=w2_row;ii++) {

db2[H]=0.0;
for (jj=1;jj<=w2_col;jj++)

dw2[ii][jj]=0.0;
}

for (ii=1;ii<=w3_row;ii++) {
db3Cii]=0.0;

for (jj=1;jj<=w3_col;jj++)

dw3[ii][jj]=0.0;
}

MC=0;

al =allocate_real_matrix(1, wl_row, 1, p_col);

new_al=allocate_real_matrix(1, wl_row, 1, p_col);

a2 =allocate_real_matrix(1, w2_row, 1, p_col);

new_a2=allocate_real_matrix(1, w2_row, I, p_col);

a3 =allocate_real_matrix(1, w3_row, 1, p_col);

new_a3=allocate_real_matrix(1, w3_row, 1, p_col);

dl =allocate_real_matrix(1, wl_row, 1, p_col);

d2 =allocate_real_matrix(1, w2_row, 1, p_col);

d3 =allocate_real_matrix(1, w3_row, 1, p_col);

e =allocate_real_matrix(1, w3_row, 1, p_col);

new_e =allocate_real_matrix(1, w3_row, 1, p_col);

/*********** Presentation Phase *****************************/

mysimuelm(p, p_row, p_col,

wl, wl_row, wi_col, bi, local_recurl,/* yes/no: 1/0 */

w2, w2_row, w2_col, b2, local_recur2,/* yes/no: 1/0 */

w3, w3_row, w3_col, b3, local_recur3,/* yes/no: 1/0 */
(*f1)

,

(*f2),

(*f3),

al, wl_row, p_col, /* al_row=wl_row; al_col=p_col; */

a2, w2_row, p_col, /* a2_row=w2_row; a2_co1=p_col; */

a3, w3_row, p_col /* a3_row=w3_row; a3_co1=p_col; */

);

for (ii=1;ii<=w3_row;ii++)

for (jj=1;jj<=p_col;jj++)

e[ii][jj]=t[ii][jj]-a3[ii][jj];

SSE = mysumsqr(e,w3_row,p_col);

tmp_w3=allocate_real_matrix(1,0_row,l,w3_col-w3_row*local_recur3);

tmp_w2=allocate_real_matrix(1,w2_row,1,w2_col-w2_row*local_recur2);

tmp_p =allocate_real_matrix(1, p_row+wl_row*local_recur1,1,p_col);

tmp_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,p_col);

tmp_a2=allocate_real_matrix(1,w2_row+w3_row*local_recur3,1,p_col);

printf("Initial SSE=U\n",SSE);

/*********** BackPropagation Phase **************************/

236

/* ALL the following lines must be modified, which are copied from mytbpx3.c */
for (jj=1;jj<=w3_row;jj++)

for (kk=1;kk<=(w3_col-w3_row*local_recur3);kk++)

tmp_w3[jj][kk]=w3[jj][kk);

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=(w2_col-w2_row*local_recur2);kk++)

tmp_w2[jj][kk]=w2[jj][kk];

/*

d3=(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL);

d2=(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,tmp_w3,w3_row,

w3_col-w3_row*local_recur3);

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2);
*/

(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL,d3);

(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,tmp_w3,w3_row,

w3_col-w3_row*local_recur3,d2);

(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2,d1);

/*** Training LOOP begins ***/

for (ii=1;ii<=me;ii++) {

if (SSE < eg) { /* CHECK PHASE */

ii--;

break;

/* LEARNING PHASE */

for (jj=1;jj<=p_row;jj++)

for (kk=1;kk<=p_col;kk++)

tmp_p[jj] [kk] =1) [j j] [kk]

if (local_recurl == 1) {
for (jj=1;jj<=wl_row;jj++) {
tmp_p[p_row+jj][1]=0.0;

for (kk=2;kk<=p_col;kk++)

tmp_p[p_row+jj][kk]=a1[jj][kk-1];
}

1

/*if (local_recurl == 0);*/

/*printf("Augmented input for the 1st hidden layer\n");*/

for (jj=1;jj<=w1_row;jj++)

for (kk=1;kk<=p_col;kk++)

tmp_al[jj][kk]=al[jj][kk];

if (local_recur2 == 1) {

for (jj=1;jj<=w2_row;jj++) {

tmp_al[wl_row+jj][1]=0.0;

for (kk=2;kk<=p_col;kk++)

tmp_al[wl_row+jj][kk]=a2[jj][kk-1];
}

}

/*if (local_recur2 == 0); */

/*printf("Augmented input for the 2nd hidden layer\n");*/

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=p_col;kk++)

tmp_a2[jj][kk]=a2Cjj][kk];

if (local_recur3 == 1) {

237

for (jj=1;jj<=w3_row;jj++) {

tmp_a2[w2_row+jj][1]=0.0;

for (kk=2;kk<=p_col;kk++)

tmp_a2[w2_row+jj][kk]=a3[jj][kk-1];
}

}

/*if (local_recur3 == 0); */

mylearnbpm(tmp_p,wl_col,p_col,

dl,wl_row,p_co1,1r,MC,dwl,wl_row,wl_col,db1);

mylearnbpm(tmp_al,w2_col,p_col,

d2,w2_row,p_co1,1r,MC,dw2,w2_row,w2_col,db2);

mylearnbpm(tmp_a2,w3_col,p_col,

d3,w3_row,p_co1,1r,MC,dw3,w3_row,w3_col,db3);

MC=mc;

for (jj=1;jj<=wl_row;jj++) { /* updating wl,b1 */

new_b1[jj]=b1[jj]+dbl[jj];

for (kk=1;kk<=wl_col;kk++)

new_wl[jj][kk]=wl[jj][kk]+dw1[jj][kk];
}

for (jj=1;jj<=w2_row;jj++) { /* updating w2,b2 */

new_b2[jj]=b2[jj]+db2[jj];

for (kk=1;kk<=w2_col;kk++)

new_w2[jj] [kk]=w2[jj][kk]+dw2[jj][kk];

for (jj=1;jj<=w3_row;jj++) { /* updating w3,b3 */

new_b3[j j]=b3[jj]+db3[jj];

for (kk=1;kk<=w3_col;kk++)

new_w3[jj] [kk]=w3[jj] [kk]+dw3[jj][kk];
}

/* PRESENTATION PHASE */

/********* Use (*f1),(*f2),(*f3) instead of mysimuelm ***********/

mysimuelm(p, p_row, p_col,

new_wl, wi_row, wl_col, new_bi, local_recurl,

new_w2, w2_row, w2_col, new_b2, local_recur2,

new_w3, w3_row, w3_col, new_b3, local_recur3,

(*f1),

(*f2),

(*f3),

new_al, wl_row, p_col,

new_a2, w2_row, p_col,

new_a3, w3_row, p_col

);

/***/

/**

for (mm=1;mm<=p_row;mm++)

tmp_new_p [mm] [1] =p [mm] [1] ;

if (local_recurl == 1) {

for (mm=1;mm<=w1_row;mm++)

tmp_new_p[p_row+mm][1]=0;

(tmp_new_a1)=(*f1)(new_wl,w1_row,w1_col,tmp_new_p,

p_row+w1_row*local_recur1,1,b1);

for (mm=1;mm<=w1_row;mm++) {

tmp_tmp_new_al[mm][1]=tmp_new_a1[mm][1];

238

new_al[mm][1]=tmp_new_al[mm][1];
}

if (local_recur2 == 1) {

for (mm=1;mm<=w2_row;mm++)

tmp_tmp_new_al[wl_row+mm][1]=0;
}

(tmp_new_a2)=(*f2)(new_w2,w2_row,w2_col,tmp_tmp_new_al,
wl_row+w2_row*local_recur2,1,b2);

for (mm=1;mm<=w2_row;mm++) {

tmp_tmp_new_a2[mm][1]=tmp_new_a2[mm][1];

new_a2[mm][1]=tmp_new_a2[mm][1];
}

if (local_recur3 == 1) {

for (mm=1;mm<=w3_row;mm++)

tmp_tmp_new_a2[1.72_row+mm][1]=0;

}

(tmp_new_a3)=(*f3)(new_w3,w3_row,w3_col,tmp_tmp_new_a2,

w2_row+w3_row*local_recur3,1,b3);

for (mm=1;mm<=w3_row;mm++)

new_a3[mm][1]=tmp_new_a3[mm][1];

for (jj=2;jj<=p_col;jj++) {

for (mm=1;mm<=p_row;mm++)

tmp_new_p[mm] [1]=p [mm] [jj] ;

if (local_recurl == 1) {

for (mm=1;mm<=wl_row;mm++)

tmp_new_p[p_row+mm][1]=new_al[mm][jj-1];
}

(tmp_new_a1)=(*f1)(new_wl,wl_row,wl_col,tmp_new_p,

p_row+wl_row*local_recur1,1,b1);

for (mm=1;mm<=w1_row;mm++) {

tmp_tmp_new_al[mm][1]=tmp_new_al[mm][1];

new_a1[mm][jj]=tmp_new_al[mm][1];
}

if (local_recur2 == 1) {

for (mm=1;mm<=w2_row;mm++)

tmp_tmp_new_al[wl_row+mm][1]=new_a2[mm][jj-1];
}

(tmp_new_a2)=(*f2)(new_w2,w2_row,w2_col,tmp_tmp_new_al,

wl_row+w2_row*local_recur2,1,b2);

for (mn=1;mm<=w2_row;mm++) {

tmp_tmp_new_a2[mm][1]=tmp_new_a2[mm][1];

new_a2[mm][jj] =tmp_new_a2[mm][1];
}

if (local_recur3 == 1) {

for (mm=1;mm<=w3_row;mm++)

tmp_tmp_new_a2[w2_row+mm][1]=new_a3[mm][jj-1];
}

(tmp_new_a3)=(*f3)(new_w3,w3_row,w3_col,tmp_tmp_new_a2,

w2_row+w3_row*local_recur3,1,b3);

for (mm=1;mm<=w3_row;mm++)

new_a3[nun][jj]=tmp_new_a3[mm][1];

239

}

/***************** end of (*f1),(*f2),(*f3) **************/

for (jj=1;jj<=w3_row;jj++)

for (kk=1;kk<=p_col;kk++)

new_ e [j j] [kk] =t [j j] [kk] -new_a3 [j j] [kk] ;

new_SSE=mysumsqr(new_e,w3_row,p_col);

/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */

if (new_SSE > SSE * er) {

1r=lr*dm;

MC=0;

}

else {

if (new_SSE < SSE) {

1r=lr*im;

}

for (jj=1;jj<=w1_row;jj++) {

b1(jj]=new_b1[jj];

for (kk=1;kk<=w1_col;kk++) {

wl[jj][kk]=new_wl[jj][kk];
}
for (kk=1;kk<=p_col;kk++) {

al[jj][kk]=new_al[jj][kk];
}

}
for (jj=1;jj<=w2_row;jj++) {

b2[jj]=new_b2[jj];

for (kk= l;kk<= w2_col;kk + +) {

w2[jj][kk]=new_w2[jj][kk];
}
for (kk=1;kk<=p_col;kk++) {

a2[jj][kk]=new_a2[jj][kk];
}

}
for (jj=1;jj<=w3_row;jj++) {

b3[jj]= new_b3[jj];

for (kk=1;kk<=w3_col;kk++) {

w3[jj][kk]=new_w3[jj][kk];
}
for (kk=1;kk<=p_col;kk++) {

a3[jj][kk]=new_a3[jj][kk];

e[jj][kk] =new_e[jj] [kk];
}

}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */

for (jj=1;jj<=w3_row;jj++)

for (kk=1;kk<=(w3_col-w3_row*local_recur3);kk++)

tmp_w3[jj][kk]=w3[jj][kk];

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=(w2_col-w2_row*local_recur2);kk++)

tmp_ii2Ejj][kk]=v2[jj][kk];

/*

d3=(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL);

d2=(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,tmp_w3,w3_row,

w3_col-w3_row*local_recur3);

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2);
*/

(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL,d3);

(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,tmp_w3,w3_row,

w3_col-w3_row*local_recur3,d2);

(*df1)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2,d1);

}

/* TRAINING RECORDS */

tr[1][ii+1]=SSE;

tr[2] [ii +1] =1r;

if ((ii % df) == 0)

printf("Trainbpx: %d Epochs, 1r=%f, SSE4f\n",ii,lr,SSE);

/* end ii "for" loop */

if ((ii 7. df) !=0) {/* This is for last training epoch printing

in case me is not multiples of df */

printf("Trainbpx: %d Epochs, 1r4f, SSE=U\n",ii,lr,SSE);
}

if (SSE > eg)

printf("Trainrbpx: network error did not reach the error goal;\n");

printf("Future training may be necessary or try different \n");

printf("initial weights and biases and/or more hidden neurons.\n");
}

}

/************** END of mytrbpx3() *************************/

void mytrbpx2(float **IA., int wl_row, int wi_col, float *bl, int local_recurl,

float **w2, int w2_row, int w2_col, float *b2, int local_recur2,

float **p, int prow, int p_col,
float **t, int t_row, int t_col,

float *tp,

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **v,int w_row,int w_col,float **r),

void (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col,float **r)

{

int df,me; /* epoches for display, default = 25

max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;
learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04

float MC;

*/

240

241

float **dwl, **dw2;

float *dbl,*db2;

float **new_wl, **new_w2;

float *new_bl,*new_b2;

float **al,**a2,**e;

float **new_al,**new_a2,**new_e;

float **d1,**d2;

float SSE, new_SSE;

float **tr; /* training record */

float **tmp_p ,**tmp_al; /* in case of local recurrency,temp storage */

float **tmp_w2; /* in case of local recurrency, part of w2 */

int ii,jj,kk;

if (wl_col!=(p_row+wl_row*local_recurl)

II w2_col!=(wl_row+w2_row*local_recur2)) {

printf("Dimension inconsistency in mytrainelm\nu);

printf("Exiting from mytrainelm\n");

exit(1);

/* Note: the number of neurons is the same

as that of rows for the weight matrix.

===> # neurons in layer 1 = wl_row; etc */

printf("Welcome to the Recurrent Neural Net training program\n");

df=tp[1];

me=tp[2];

eg=tp[3];

lr= tp[4];

im=tp[5];

dm=tp[6];

mc=tp[7];

er=tp[R];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */

tr =allocate_real_matrix(1,2,1,me+1);

dwi =allocate_real_matrix(1, wl_row, 1, w1_col);

/* wl_row: number of neurons in the present layer */

/* wi_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

new_wl=allocate_real_matrix(1, wl_row, 1, wl_col);

dw2 =allocate_real_matrix(1, w2_row, 1, w2_col);

new_w2=allocate_real_matrix(1, w2_row, 1, w2_col);

dbi =allocate_real_vector(1, wl_row);

new_bl=allocate_real_vector(1, wl_row);

db2 =allocate_real_vector(1, w2_row);

new_b2=allocate_real_vector(1, w2_row);

for (ii=1;ii<=w1_row;ii++) {

dbl[ii]=0.0;

for (jj=1;jj<=w1_col;jj++)

dwl[ii][jj]=0.0;

for (ii=1;ii<=w2_row;ii++) {

db2[ii]=0.0;

242

for (jj=1;jj<=w2_col;jj++)

dw2[ii][jj]=0.0;
}

MC=0;

al =allocate_real_matrix(1,

new_al=allocate_real_matrix(1,

a2 =allocate_real_matrix(1,

new_a2=allocate_real_matrix(1,

dl =allocate_real_matrix(1,

d2 =allocate_real_matrix(1,

e =allocate_real_matrix(1,

new_e =allocate_real_matrix(1,

wl_row,

wl_row,

w2_row,

w2_row,

wl_row,

w2_row,

w2_row,

w2_row,

1,

1,

1,

1,

1,

1,

1,

1,

p_col);

p_col);

p_col);

p_col);

p_col);

p_col);

p_col);

p_col);

/*********** Presentation Phase *****************************/

mysimuelm(p, p_row, p_col,

wl, wl_row,

w2, w2_row,

wl_col,

w2_col,

bl, local_recurl,/* yes/no: 1/0

b2, local_recur2,/* yes/no: 1/0

*/

*/

NULL, NULL, NULL, NULL, NULL,

(*f1),
(*f2),

NULL,

al, wl_row,

a2, w2_row,

p_col,

p_col,

/* al_row=wl_row; al_col=p_col;

/* a2_row=w2_row; a2_col=p_col;

*/

*/

NULL, NULL, NULL /* a3_row=w3_row; a3_col=p_col; */

);

for (ii=1;ii<=w2_row;ii++)

for (jj=1;jj<=p_col;jj++)

e[ii][jj] =t[ii][jj]-a2[ii][jj];

SSE = mysumsqr(e,w2_row,p_col);

printf("Presentation Phase finished\n");

printf("Initial SSE=U\n",SSE);

/*********** BackPropagation Phase **************************/

/* ALL the following lines must be modified, which are copied from mytbpx3.c */

tmp_w2=allocate_real_matrix(1,w2_row,l,w2_col-w2_row*local_recur2);

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=(w2_col-w2_row*local_recur2);kk++)

tmp_w2[jj][k10=w2[jj][kk];

/*

d2=(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL);

d1=(*dfl)(a1,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2);
*/

(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL,d2);

(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2,d1);

tmp_p =allocate_real_matrix(1, p_row+wl_row*local_recur1,1,p_col);

tmp_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,p_col);

/*** Training LOOP begins ***/

for (ii=1;ii<=me;ii++) {

if (SSE < eg) { /* CHECK PHASE */

ii--;

break;

243

}

/* LEARNING PHASE */

for (jj=1;jj<=p_row;jj++)

for (kk=1;kk<=p_col;kk++)

tn1P-P[ii] [kk] =p Ci i] [ick];

if (local_recurl == 1)

for (jj=1;jj<=w1_row;jj++)

tmp_p[p_row+jj][1]=0.0;

for (kk=2;kk<=p_col;kk++)

tmp_p[p_row+jj][kk]=a1[jj][kk-1];
}

}

/*if (local_recurl == 0) ;*/

for (jj=1;jj<=wl_row;jj++)

for (kk=1;kk<=p_col;kk++)

tmp_al[jj][kk]=al[jj][kk];

if (local_recur2 == 1)

for (jj=1;jj<=w2_row;jj++)

tmp_al[wl_row+jj][1]=0.0;

for (kk=2;kk<=p_col;kk++)

tmp_al[wl_row+jj][kk]=a2[jj][kk-1];
}

}

/*if (local_recur2 == 0) ; */

mylearnbpm(tmp_p,p_row+wl_row*local_recurl,p_col,

dl,wl_row,p_co1,1r,MC,dwl,w1_row,wl_col,db1);

mylearnbpm(tmp_al,wl_row+w2_row*local_recur2,p_col,

d2,w2_row,p_ col ,lr,MC,dw2,w2_row,w2_col,db2);

MC=mc;

for (jj= l;jj<= wl_row;jj + +) { /* updating wl,b1 */

new_bl[jj]=bl[jj]+dbl[jj];

for (kk=1;kk<=wl_col;kk++)

new_wl[jj][kk]=wl[jj][kk]+dwl[jj][kk];
}

for (jj=1;jj<=w2_row;jj++) { /* updating w2,b2 */

new_b2[jj]=b2[jj]+db21jj];

for (kk=1;kk<=w2_col;kk++)

new_w2 [j j] [kk] =w2 [jj] [kid +dw2 [jj] [kk] ;

}

/* PRESENTATION PHASE */

mysimuelm(p, p_row, p_col,

new_wl, wl_row, wl_col,

new_w2, w2_row, w2_col,

NULL, NULL, NULL, NULL,
(*f1),

(*f2),

NULL,

new_al, wl_row, p_col,

new_a2, w2_row, p_col,

NULL, NULL, NULL

);

new_bl, local_recurl,/* yes/no: 1/0 */

new b2, local_recur2,/* yes/no: 1/0 */

NULL,

/* al_row=wl_row; al_col=p_col; */

/* a2_row=w2_row; a2_co1=p_co1; */

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=p_col;kk++)

new_e[jj][kk]=t[jj][kk]-new_a2[jj][kk];

244

new_SSE=mysumsqr(new_e,w2_row,p_col);

/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */

if (new_SSE > SSE * er) {

lr= lr *dm;

MC=0;

}

else {

if (new_SSE < SSE) {

1r=lr*im;

}

for (jj=1;jj<=wl_row;jj++) {

bl[jj]=new_b1[ji];

for (kk=1;kk<=wl_col;kk++) {

wl[jj][kk]=new_w1[jj][kk];
}

for (kk=1;kk<=p_col;kk++) {

al[jj][kk]=new_al[jj][kk];
}

}
for (jj=1;jj<=w2_row;jj++) {

b2[jj]=new_b2[1j];

for (kk=1;kk<=w2_col;kk++) {
w2[jj][kk]=new_w2[jj][kk];

}
for (kk=1;kk<=p_col;kk++) {

a2[jj][kk]=new_a2Ejjlikk];

e[jj] [kk] =new_e[jj] Ekk];

}

}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=(w2_col-w2 _row*local_recur2);kk++)

tmp_w2[jj][kk]=w2WJ[kk];

/*

d2=(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL);

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2);

*/

(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL,d2);

(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,tmp_w2,w2_row,

w2_col-w2_row*local_recur2,d1);

}

/* TRAINING RECORDS */

tr[1][ii+1]=SSE;

tr[2][ii+1]=1r;

if ((ii % df) == 0)

printf("Trainbpx: %d Epochs, 1r=%f, SSE4f\n",ii,lr,SSE);

/* end ii --- "for" loop */

if ((ii % df) !=0) {/* This is for last training epoch printing

in case me is not multiples of df */

printf("Trainbpx: %d Epochs, 1r4f, SSE=U\n",ii,lr,SSE);
}

245

if (SSE > eg)

printf("Trainrbpx: network error did not reach the error goal;\n");

printf("Future training may be necessary or try different \n");

printf("initial weights and biases and/or more hidden neurons.\n");
}

}

/*************** END of mytrbpx2() ************************/

/*************** END of mytrainelm.c **********************/

/*************** BEGIN of mysimuelm.c *********************/

*include <stdio.h>

#include <math.h>

*include <stdlib.h>

#include "mynn.h"

/********** To simulate a recurrent neural network ************/

void mysimuelm(float **p, int prow, int p_col,

float * *wi, int wl_row, int wi_col, float *bl,int local_recurl,
/* yes/no: 1/0 */

float **w2, int w2 row, int w2_col, float *b2,int local_recur2,
/* yes/no: 1/0 */

float **w3, int w3 row, int w3_col, float *b3,int local_recur3,
/* yes/no: 1/0 */

void (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

void (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b,float **a),

float **al, int al_row, int al_col,

float **a2, int a2 row, int a2_col,

float **a3, int a3_row, int a3_col

{

int ii,jj;

float **tmp_p,**tmp_al,**tmp_a2,**tmp_a3;

float **tmp_tmp_al,**tmp_tmp_a2;

/* Dimension consistency check */

if ((a3) == NULL) /* only 1 hidden layer case */

if (wl_col!=(p_row+wl_row*local_recurl) II

w2_col!=(wl_row+w2_row*local_recur2)) {
printf("Dimension inconsistency in mysimuelm\n");

printf("Exiting from mysimuelm\n");

exit(1);

} /* Note: the number of neurons is the same

as that of rows for the weight matrix.

===> # neurons in layer 1 = wl_row; etc */

if (al_row!=wl_row II al_col!=p_col II a2_row!=w2_row II a2_col!=p_col)

printf("Dimension inconsistency in mysimuelm\n");

printf("Exiting from mysimuelm\n");

exit(1);

}

tmp_p=allocate_real_matrix(1,p_row+wl_row*local_recur1,1,1);

for (ii=1;ii<=p_row;ii++)

tmp_p[ii][1]=p[ii][1];

246

if (local_recurl == 1) { /* local recurrency */

for (ii=1;ii<=wl_row;ii+*)

tmp_p[p_row+ii][1]=0; /* Note: here the init_a1 assumed to be 0's;

and may use other non-zero values for

initial conditions */

}

/*if (local_recurl == 0) ; no local recurrency; doing nothing */

tmp_al=allocate_real_matrix(1,wl_row,1,1);

/*(tmp_a1)=(*f1)(wl,v1_row,w1_col,tmp_p,p_row+wl_row*local_recurl,l,b1);*/

(*f1)(wl,wl_row,wl_col,tmp_p,p_row+wl_row*local_recur1,1,b1,tmp_al);

tmp_tmp_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,1);

for (ii=1;ii<=wl_row;ii++) {

tmp_tmp_al[ii][1]=tmp_al[ii][1];

al[ii][1]=tmp_al[ii][1];
}

if (local_recur2 == 1) {

for (ii=1;ii<=w2_row;ii++)

tmp_tmp_al[wl_row+ii][1]=0;
}

/*if (local_recur2 == 0) ;*/

tmp_a2=allocate_real_matrix(1,w2_row,1,1);

/*(tmp_a2)=(*f2)(w2,w2_row,w2_col,tmp_tmp_a1,

wl_row+w2_row*local_recur2,1,b2);*/

(*f2)(w2,w2_row,w2_col,tmp_tmp_al,wl_row+w2_row*local_recur2,1,b2,tmp_a2);

for (ii=1;ii<=w2_row;ii++)

a2[ii][1]=tmp_a2[ii][1];

/* calculate the output column by column starting from the 2nd column */
for (jj=2;jj<=p_col;jj++) {

for (ii=1;ii<=p_row;ii++)

tmp_p [n] [1] =p [ii] [j j] ;

if (local_recurl == 1) { /* local recurrency */

for (ii=1;ii<=w1_row;ii++)

tmp_p[p_row+ii][1]=a1[ii][jj-1];

/*if (local_recurl == 0) ; no local recurrency; doing nothing */

/*(tmp_a1)=(*f1)(wl,w1_row,w1_col,tmp_p,p_row+wl_row*local_recurl,l,b1);*/

(*f1)(wl,wl_row,wl_col,tmp_p,p_row+wl_row*local_recur1,1,b1,tmp_al);

for (ii=1;ii<=w1_row;ii++) {

tmp_tmp_al[ii][1]=tmp_al[ii][1];

al[ii][jj]=tmp_al[ii][1];
}
if (local_recur2 == 1) {

for (ii=1;ii<=w2_row;ii++)

tmp_tmp_al[wl_row+ii][1]=a2[ii][jj-1];
}

/*if (local_recur2 == 0) ;*/

/*(tmp_a2)=(*f2)(w2,w2_row,w2_col,tmp_tmp_al,

wl_row+w2_row*local_recur2,1,b2);*/

(*f2)(w2,w2row,w2_col,tmp_tmp_al,wl_row+w2_row*local_recur2,1,b2,tmp_a2);

for (ii=1;ii<=w2_row;ii++)

a2[ii](jj]=tmp_a2[ii][1];

} /* End of loop jj */

247

free_real_matrix(tmp_p,l,p_row+wl_row*local_recur1,1);

free_real_matrix(tmp_a1,1,wl_row,1);

free_real_matrix(tmp_tmp_a1,1,wl_row+w2_row*local_recur2,1);

free_real_matrix(tmp_a2,1,w2_row,1);

/* End of 1 hidden layer case */

/******* Case 2: 2 hidden layer case ******/

if ((a3) != NULL) { /* 2 hidden layer case */

if (wl_col!=(p_row+wl_row*local_recurl) II

w2_col!=(wl_row+w2_row*local_recur2)

II w3_col!=(w2_row+w3_row*local_recur3)) {
printf("Dimension inconsistency in mysimuff\n");

printf("Exiting from mysimuff\n");

exit(1);

}

if (al_row!=w1_row II al_col!=p_col II a2_row!=w2_row II a2_col!=p_col II

a3_row!=w3_row II a3_col!=p_col) {
printf("Dimension inconsistency in mysimuff\n");

printf("Exiting from mysimuff\n");

exit(1);

}

tmp_p=allocate_real_matrix(1,p_row+wl_row*local_recur1,1,1);

tmp_al=allocate_real_matrix(1,wl_row,1,1);

tmp_a2=allocate_real_matrix(1,w2_row,1,1);

tmp_tmp_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,1);

tmp_tmp_a2=allocate_real_matrix(1,w2_row+w3_row*local_recur3,1,1);

tmp_a3=allocate_real_matrix(1,w3_row,1,1);

for (ii=1;ii<=p_row;ii++)

tmp_p[ii] [1]=p[ii] [1] ;

if (local_recurl == 1) { /* local recurrency */

for (ii=1;ii<=w1 _row;ii++)

tmp_p[p_row+ii][1]=0; /* Note: here the init_al assumed to be 0's;

and may use other non-zero values for

initial conditions */

}

/*if (local_recurl == 0) ; no local recurrency; doing nothing */

/*tmp_al=allocate_real_matrix(1,wl_row,1,1); */

/*(tmp_a1)=(*f1)(w1,w1_row,w1_col,tmp_p,p_row+wl_row*local_recurl,l,b1);*/

(*f1)(w1,wl_row,wl_colotmp_pop_row+wl_row*local_recurl,l,h1,tmp_a1);

/*tmp_tmp_al=allocate_real_matrix(1,wl_row+w2_row*local_recur2,1,1);*/
for (ii=1;ii<=w1 _row;ii++) {

tmp_tmp_al[ii][1]=tmp_al[ii][1];

al[ii][1]=tmp_al[ii][1];
}
if (local_recur2 == 1) {

for (ii=1;ii<=w2_row;ii++)

tmp_tmp_al[wl_row+ii][1]=0;
}

/*if (local_recur2 == 0) ;*/

/*tmp_a2=allocate_real_matrix(1,w2_row,1,1); */

/*(tmp_a2)=(*f2)(w2,w2_row,w2_col,tmp_tmp_al,

wl_row+w2_row*local_recur2,1,b2);*/

(*f2)(w2,w2_row,w2_col,tmp_tmp_al,wl_row+w2_row*local_recur2,1,132,tmp_a2);

248

/*tmp_tmp_a2=allocate_real_matrix(1,w2_row+w3_row*local_recur3,1,1);*/
for (ii=1;ii<=w2_row;ii++) {

tmp_tmp_a2[ii][1]=tmp_a2[ii][1];

a2[ii][1]=tmp_a2[ii][1);

if (local_recur3 == 1) {

for (ii=1;ii<=w3_row;ii++)

tmp_tmp_a2[w2_row+ii][1]=0;
}

/*if (local_recur3 == 0) ;*/

/*tmp_a3=allocate_real_matrix(1,w3_row,1,1);*/

/*(tmp_a3)=(*f3)(w3,w3_row,w3_col,tmp_tmp_a2,

w2_row+w3_row*local_recur3,1,b3);*/

(*f3)(w3,w3_row,w3_col,tmp_tmp_a2,w2_row+w3_row*local_recur3,1,b3,tmp_a3);

for (ii=1;ii<=w3_row;ii++)

a3[ii][1]=tmp_a3[ii][1];

/*** Calculating the outputs column by column starting from 2nd column ***/

for (jj=2;jj<=p_col;jj++) {

for (ii=1;ii<=p_row;ii++)

tmp_p[ii][1]=p[ii][jj];

if (local_recurl == 1) /* local recurrency */

for (ii=1;ii<=w1 _row;ii++)

tmp_p[p_row+ii][1]=a1[ii][jj-1];
}

/*if (local_recurl == 0) ; no local recurrency; doing nothing */

/*(tmp_a1)=(*f1)(wl,w1_row,w1_col,tmp_p,p_row+wl_row*local_recurl,l,b1);*/

(*f1)(wl,w1_row,w1_col,tmp_p,p_row+wl_row*local_recur1,1,b1,tmp_al);

for (ii=1;ii<=w1_row;ii++) {

tmp_tmp_al[ii][1]=tmp_al[ii][1];

al[ii][jj]=tmp_al[ii][1];

}

if (local_recur2 == 1) {

for (ii=1;ii<=w2_row;ii++)

tmp_tmp_al[wl_row+ii][1]=a2[ii][jj-1];
}

/*if (local_recur2 == 0) ;*/

/*(tmp_a2)=(*f2)(w2,w2_row,w2_col,tmp_tmp_al,

wl_row+w2_row*local_recur2,1,b2);*/

(*f2)(w2,w2_row,w2_col,tmp_tmp_al,wl_row+w2_row*local_recur2,1,b2,tmp_a2);

for (ii=1;ii<=w2_row;ii++) {

tmp_tmp_a2[ii][1]=tmp_a2[ii][1];

a2[ii][jj]=tmp_a2[ii][1];
}
if (local_recur3 == 1) {

for (ii=1;ii<=w3_row;ii++)

tmp_tmp_a2[w2_row+ii][1]=a3[ii][jj-1];
}

/*if (local_recur3 == 0) ;*/

/*(tmp_a3)=(*f3)(w3,w3_row,w3_col,tmp_tmp_a2,

w2_row+w3_row*local_recur3,1,b3);*/

(*f3)(w3,w3_row,w3_col,tmp_tmp_a2,w2_row+w3_row*local_recur3,1,b3,tmp_a3);

}

}

for (ii=1;ii<=w3_row;ii++)

a3[ii] [jj]=tmp_a3[ii][1];

}

free_real_matrix(tmp_p,l,p_row+wl_row*local_recur1,1);

free_real_matrix(tmp_a1,1,wl_row,1);

free_real_matrix(tmp_tmp_a1,1,wl_row+w2_row*local_recur2,1);

free_real_matrix(tmp_a2,1,w2_row,1);

free_real_matrix(tmp_a3,1,w3_row,1);

free_real_matrix(tmp_tmp_a2,1,w2_row+w3_row*local_recur3,1);

/********************* END of mysimuelm.c ** * * * * * * * * */

/********************* BEGIN of mytbpx2.c *******************************/

#include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

void mytbpx2(float **wl, int wl_row, int wl_col, float *bl,

float **w2, int w2_row, int w2_col, float *b2,

float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

float ** (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),
float ** (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col),

float ** (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col)

{

float mysumsqr(float **e,int e_row,int e_col);

void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

float **dw,int dw_row,int dw_col,

float *db);

float ** allocate_real_matrix(int,int,int,int);

float * allocate_real_vector(int,int);

int df,me; /* epoches for display, default = 25

max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;

learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04

float MC;

float **dwl, **dw2;

float *dbi, *db2;

float * *new_w1, **new_w2;

*/

249

250

float *new_bl,*new_b2;

float **al,**a2,**e;

float **new_al,**new_a2,**new_e;

float **d1,**d2;

float SSE, new_SSE;

float **tr; /* training record */

int ii,jj,kk;

printf("Welcome to the neural net training program\n");

df=tp[1];

me=tp[2];

eptp[3];
1r=tp[4];

im=tp[5];

dm=tp[6];

mc=tp[7];

er= tp[8];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */

tr =allocate_real_matrix(1,2,1,me+1);

dwi =allocate_real_matrix(1, wl_row, 1, wl_col);

/* wi_row: number of neurons in the present layer */

/* wl_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

new_wl=allocate_real_matrix(1, wl_row, 1, wl_col);

dw2 =allocate_real_matrix(1, w2_row, 1, w2_col);

new_w2=allocate_real_matrix(1,

dbl =allocate_real_vector(1,

new_bl=allocate_real_vector(1,

db2 =allocate_real_vector(1,

new_b2=allocate_real_vector(1,

w2_row,

wl_row);

wi_row);

w2_row);

w2_row);

1, w2_col);

for (ii=1;ii<=wl_row;ii++) {
dbl[ii]=0.0;

for (jj=1;jj<=w1_col;jj++)

dwl[ii][jj]=0.0;

}

for (ii=1;ii<=w2_row;ii++) {

db2[ii]=0.0;

for (jj=1;jj<=w2_col;jj++)

dw2[ii] [jj]=0.0;

}

MC=0;

al =allocate_real_matrix(1, wl_row, 1, p_col);

new_al=allocate_real_matrix(1, wl_row, 1, p_col);

a2 =allocate_real_matrix(1, w2_row, 1, p_col);

new_a2=allocate_real_matrix(1, w2_row, 1, p_col);

di =allocate_real_matrix(1, wl_row, 1, p_col);

d2 =allocate_real_matrix(1, w2_row, 1, p_col);

e =allocate_real_matrix(1, w2_row, 1, p_col);

new_e =allocate_real_matrix(1, w2_row, 1, p_col);

printf("Memory allocation ready\n");

251

/*********** Presentation Phase *****************************/

al=(*11)(wl,wl_row,wl_col,p,p_row,p_col,b1);

/* note: al is a matrix with dimension wl_row x p_col */

a2=(*f2)(w2,w2_row,w2_col,al,wl_row,p_col,b2);

/* note: a2 is a matrix with dimension w2_row x p_col */

for (ii=1;ii<=w2_row:ii++)

for (jj=1;jj<=p_col;jj++)

e[ii] [jj] =t[ii] [jj]- a2[ii] [jj];

SSE = mysumsqr(e,w2_row,p_col);

printf("Presentation Phase finished\n");

printf("Initial SSE=U\n",SSE);

/*********** BackPropagation Phase **************************/

d2=(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NULL);

/* e, a3, d3 are same dimensional */

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col):

/* dl,a1 same dimension */

for (ii=1;ii<=me;ii++) {

if (SSE < eg) { /* CHECK PHASE */

ii--;

break;

}

/* LEARNING PHASE */

mylearnbpm(p,p_row,p_col,d1,wl_row,p_co1,1r,MC,dwl,wl_row,wl_col,db1);

mylearnbpm(al,wl_row,p_col,d2,w2_row,p_co1,1r,MC,dw2,w2_row,w2_col,db2);

MC=mc;

for (jj=1;jj<=w1_row;jj++) { /* updating wl,b1 */

new_bl[jj]=bl[jj]+dbi[jj]:

for (kk=1;kk<=w1_col;kk++)

new_wl[jj][kk]=wl[jj][kk]+dwl[jj][kk];
}

for (jj=1;jj<=w2_row;jj++) { /* updating w2,b2 */

new_b2[jj]=b2[jj]+db2[jj];

for (kk=1;kk<=w2_col;kk++)

new_w2[jj][kk]=w2[jj][kk]+dw2[jj][kk];
}

/* PRESENTATION PHASE */

new_a1=(*f1)(new_wl,w1_row,w1_col,p,p_row,p_col,new_b1):

/* note: new_al (as al) is a matrix with dimension wl_row x p_col */

new_a2=(*f2)(new_w2,w2_row,w2_col,new_a1,w1_row,p_col,new_b2);
/* note: new_a2 (as a2) is a matrix with dimension w2_row x p_col */

for (jj=1;jj<=w2_row;jj++)

for (kk=1;kk<=p_col;kk++)

new_e[jj][kk]=t[jj][kk]-new_a2[jj][kk];

new_SSE=mysumsqr(new_e,w2_row,p_col);

/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */

if (new_SSE > SSE * er) {

1r=lr*dm;

MC=0;

}

252

else {
if (new_SSE < SSE) {

1r=lr*im;

}

for (jj=1;jj<=w1_row;jj++) {

bl[jj]=new_bl[jj];

for (kk=1;kk<=w1_col;kk++) {

w1[jj][kk]=new_wlEjjilkkl;

}
for (kk=1;kk<=p_col;kk++) {

al[jj][kk] =new_al[jj][kk];

}
}
for (jj=1;jj<=w2_row;jj++) {

b2[jj]=new_b2[jj];

for (kk=1;kk<=w2_col;kk++) {

w2[jj][kk]=new_w2[jj][kk];
}

for (kk=1;kk<=p_col;kk++) {
a2[jj][kk]=new_a2[jj][kk];

e[jj] [kk] = new_e[jj] [kk];

}
}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */

d2=(*df2)(a2,w2_row,p_col,e,w2_row,p_col,NULL,NULL,NOLL);
/* e, a3, d3 are same dimensional */

d1=(*dfl)(a1,w1_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col);
/* dl,a1 same dimension */

}

/* TRAINING RECORDS */

tr[1][ii+1]=SSE;

tr[2][ii+1]=1r;

if ((ii % df) == 0)

printf("Trainbpx: %d Epochs, 1r=%f, SSE=U\n",ii,lr,SSE);

/* end ii --- "for" loop */

if ((ii % df) !=0) {/* This is for last training epoch printing
in case me is not multiples of df */

printf("Trainbpx: %d Epochs, 1r4f, SSE4f\n",ii,lr,SSE);
}

if (SSE > eg) {
printf("Tranibpx: network error did not reach the error goal;\n"):

printf("Future training may be necessary or try different \n");

printf("initial weights and biases and/or more hidden neurons.\n");
}

}

/*************** END of mytbpx2.c ***********************/

/*************** BEGIN of mytbpx3.c *********************/

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

void mytbpx3(float * *wi, int wl_row, int wi_col, float *bl,

float **w2, int w2_row, int w2_col, float *b2,

float **w3, int w3_row, int w3_col, float *b3,

float **p, int p_row, int p_col,

float **t, int t_row, int t_col,

float *tp,

float ** (*f1)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*f2)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*f3)(float **w,int row,int col,float **x,

int x_row,int x_col, float *b),

float ** (*dfl)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col),

float ** (*df2)(float **a,int a_row,int a_col,float **d,

int d_row,int d_col,float **w,int w_row,int w_col),

float ** (*df3)(float **a,int a_row,int a_col,float **d,
int d_row,int d_col,float **w,int w_row,int w_col)

{

float mysumsqr(float **e,int e_row,int e_col);

void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

float **dw,int dw_row,int dw_col,

float *db);

float ** allocate_real_matrix(int,int,int,int);

float * allocate_real_vector(int,int);

int df,me; /* epoches for display, default = 25
max number of epochs to train, default = 1000 */

float eg,lr,im,dm,mc,er; /* sum-square error goal, default = 0.02;
learning rate, default = 0.01;

learning rate increse, default = 1.05;

learning rate decrease, default = 0.7;

momentum constant, default = 0.9;

maximum error ratio, default = 1.04

float MC;

float **dwl, **dw2, **dw3;

float *dbl,*db2,*db3;

float **new_wl, **new_w2, **new_w3;

float *new_bl,*new_b2,*new_b3;

float **al,**a2,**a3,**e;

float **new_al,**new_a2,**new_a3,**new_e;

float **d1,**d2,**d3;

float SSE, new_SSE;

float **tr; /* training record */

int ii,jj,kk;

printf("Welcome to the neural net training program\n");

df=tp[1];

me=tp[2];

eg=tp[3];

lr=tp[4];

/

253

254

im=tp[5];

dm=tp[0]:

mc=tp[7];

er=tp[S];

/* use memo_man.c in -/PS_simu/Copt to allocate memory */

tr =allocate_real_matrix(1,2,1,me+1);

dwl =allocate_real_

new_wl=allocate_real_

dw2 =allocate_real

new_w2=allocate_real_

dw3 =allocate_real

new_w3=allocate_real

matrix(1, wl_row, 1, wl_col);

/* wl_row: number of neurons in the present layer */

/* wi_col: number of neurons in the previous layer */

/* all others: with the same interpretation */

matrix(1, wl_row, 1, wi_col);

_matrix(1, w2_row, 1, w2_col);

matrix(1, w2_row, 1, w2_col);

_matrix(1, w3_row, 1, w3_col);

_matrix(1, w3_row, 1, w3_col);

dbl =allocate_real_vector(1, wl_row);

new_bl=allocate_real_vector(1, wl_row);

db2 =allocate_real_vector(1, w2_row);

new_b2=allocate_real_vector(1, w2_row);

db3 =allocate_real_vector(1, w3_row);

new_b3=allocate_real_vector(1, w3_row);

for (ii=1;ii<=wl_row;ii++) {
dbl[ii]=0.0;

for (jj=1;jj<=wl_col;jj++)

dwl[li][jj]=0.0;
}

for (ii=1;ii<=w2_row;ii++)

db2[ii]=0.0;

for (jj=1;jj<=w2_col;jj++)

dw2[ii][jj]=0.0;
}

for (ii=1;ii<=w3_row;ii++)

db3D.ii=0.0;

for (jj=1;jj<=w3_col;jj++)

dw3[ii][jj]=0.0;
}

MC=0;

al =allocate_real_matrix(1, wl_row, 1, p_col);

new_al=allocate_real_matrix(1, wl_row, 1, p_col);

a2 =allocate_real_matrix(1, w2_row, 1, p_col);

new_a2=allocate_real_matrix(1, w2_row, 1, p_col);

a3 =allocate_real_matrix(1, w3_row, 1, p_col);

new_a3=allocate_real_matrix(1, w3_row, 1, p_col);

dl =allocate_real_matrix(1, wl_row, 1, p_col);

d2 =allocate_real_matrix(1, w2_row, 1, p_col);

d3 =allocate_real_matrix(1, w3_row, 1, p_col);

e =allocate_real_matrix(1, w3_row, 1, p_col);

new_e =allocate_real_matrix(1, w3 row, 1, p_col);

printf("Memory allocation ready\n");

/*********** Presentation Phase *****************************/

a1=(*f1)(wl,w1_row,w1_col,p,p_row,p_col,b1);

/* note: al is a matrix with dimension wl_row x p_col */
a2=(*f2)(w2,w2_row,w2_col,al,wl_row,p_col,b2);

/* note: a2 is a matrix with dimension w2_row x p_col */

a3=(* f3)(w3, w3_ row,w3_col,a2,w2_row,p_col,b3);

/* note: a3 is a matrix with dimension w3_row x p_col */

for (ii=1;ii<=w3_row;ii++)

for (jj=1;jj<=p_col;jj++)

e[ii] [jj]=t [ii] [jj] -a3Cii] [jj]

SSE = mysumsqr(e,w3_row,p_col);
printf("Presentation Phase finished\n");

printf("Initial SSE4f\n",SSE);

/*********** BackPropagation Phase **************************/

d3=(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL);
/* e, a3, d3 are same dimensional */

printf("Any problem with NULL (pointer) use?\n");

d2=(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,w3,w3_row,w3_col);
/* d2,a2 same dimension */

printf("Any problem with df2 ? \n ");

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col);
/* dl,a1 same dimension */

printf("Error calculations ready\n");

for (ii=1;ii<=me;ii++) {

if (SSE < eg) { /* CHECK PHASE */

ii--;

break;

}

/* LEARNING PHASE */

mylearnbpm(p,p_row,p_col,d1,wl_row,p_co1,1r,MC,dwl,wl_row,wl_col,db1);

mylearnbpm(alorl_row,p_col,d2,w2_row,p_col,lr,MC,dw2,w2_row,w2_col,db2);

mylearnbpm(a2,w2_row,p_col,d3,w3_row,p_col,lr,MC,d0,0_row,v3_col,db3);

MC=mc;

for (jj=1;jj<=w1_row;jj++) { /* updating wl,b1 */

new_bl[jj]=bl[jj]+dbl[jj];

for (kk=1;kk<=w1_col;kk++)

new_wl[jj][kk]=wl[jj][kk]+dwl[jj][kk];
}

for (jj=1;jj<=w2_row;jj++) { /* updating w2,b2 */

new_b2[jj]=b2[jj]+db2[jj];

for (kk=1;kk<=w2_col;kk++)

new_w2[jj][kk]=w2[jj][kk]+dw2[jj][kk];
}

for (jj=1;jj<=w3_row;jj++) { /* updating w3,b3 */

new_b3[j j]=b3[jj]+db3[jj];

for (kk=1;kk<=w3_col;kk++)

new_w3 [j j] [kk]=w3[j j] [kk]+dw3[j j] [kk] ;

}

/* PRESENTATION PHASE */

new_a1=(*f1)(new_wl,w1_row,w1_col,p,p_

/* note: new_al (as al) is a matrix

new_a2=(*f2)(new_w2,w2_row,w2_col,new_

/* note: new_a2 (as a2) is a matrix

new_a3=(*f3)(new_w3,w3_row,w3_col,new_

/* note: nev_a3 (as a3) is a matrix

row,p_col,new_b1);
with dimension wl_row x p_col */

al,wl_row,p_col,new_b2);
with dimension w2_row x p_col */

a2,w2_row,p_col,new_b3);
with dimension w3 row x p_col */

255

256

for (jj=1;jj<=w3_row;jj++)

for (kk=1;kk<=p_col;kk++)

new_e[jj][kk]=t[jj][kk]-new_a3[jj][kk];

new_SSE=mysumsqr(new_e,w3_row,p_col);
/* new_e (as e) with dimension w3_row x p_col */

/* Momentum and adaptive learning rate phase */

if (new_SSE > SSE * er) {

1r=lr*dm;

MC=0;

}

else {

if (new_SSE < SSE) {

1r=lr*im;

}

for (jj=1;jj<=w1_row;jj++) {

bl[ji] =new_bl[jj];

for (kk=1;kk<=w1_col;kk++) {

wl[jj][kk]=new_wl[jj][kk];
}
for (kk=1;kk<=p_col;k1E++) {

al[jj][kk]=new_al[jj][kk];
}

}
for (jj=1;jj<=w2_row;jj++) {

b2[jj]=new_b2[jj];

for (kk=1;kk<=w2_col;kk++) {

w2[jj][kk]=new_w2[jj][kk];
}

for (kk=1;kk<=p_col;kk++) {

a2[jj][kk]=new_a2[jj][kk];
}

}
for (jj=1;jj<=w3_row;jj++) {

b3[jj]=new_b3[jj];

for (kk=1;kk<=w3_col;kk++) {

w3[jj][kk]=new_w3[jj][kk];

for (kk=1;kk<=p_col;kk++) {

a3[jj] [kkJ =new_a3 [i i] [kk] ;

e [j j] [kk] =new_e [j j] ;

}
}

SSE=new_SSE;

/* BACKPROPAGATION PHASE */

d3=(*df3)(a3,w3_row,p_col,e,w3_row,p_col,NULL,NULL,NULL);
/* e, a3, d3 are same dimensional */

d2=(*df2)(a2,w2_row,p_col,d3,w3_row,p_col,w3,w3_row,w3_nol);
/* d2,a2 same dimension */

d1=(*dfl)(al,wl_row,p_col,d2,w2_row,p_col,w2,w2_row,w2_col);
/* dial same dimension */

}

/* TRAINING RECORDS */

tr[l][ii+1]=SSE;

tr[2] [ii+1]=1r;

if ((ii % df) == 0)

257

printf("Trainbpx: 'Ad Epochs, 1r=%f, SSE=If\n",ii,lr,SSE);

/* end ii "for" loop */

if ((ii % df) !=0) 1/* This is for last training epoch printing
in case me is not multiples of df */

printf("Trainbpx: %d Epochs, 1r4f, SSE4f\n",ii,lr,SSE);
}

if (SSE > eg)

printf("Tranibpx: network error did not reach the error goal;\n");

printf("Future training may be necessary or try different \n");

printf("initial weights and biases and/or more hidden neurons.\n");
}

}

/********* mysumsqr ******************/

float mysumsqr(float **e,int e_row,int e_col)
{

int ii,jj;

float tmp;

tmp=0;

for (ii=1;ii<=e_row;ii++)

for (jj=1;jj<=e_col;jj++)

tmp += e[ii] [jj] * e[ii] [jj];

return (tmp);
}

/********* mylearnbpm

void mylearnbpm(float

float

float

float

float

**p,int p_row,int p_col,

**d,int d_row,int d_col,

lr,float mc,

**dw,int dw_row,int dw_col,

*db)

{
float ** allocate_real_matrix(int,int,int,int);

float **x;

int ii,jj,kk;

float tmp,tmpl;

x=allocate_real_matrix(1, d_row, 1, d_col);

if ((p_col==d_col) @ (d_row==dw_row) k (dw_col==p_row)) {
for (ii=1;ii<=d_row;ii++) /* x=(1-mc)*1r*d */

for (jj=1;jj<=d_col;jj++)

x[ii][jj]=(1-mc)*1r*d[ii][jj];

for (ii=1;ii<=dw_row;ii++) { /* dw=mc*dw+x*p' */

for (jj=1;jj<=dw_col;jj++)

tmp=0.0;

for (kk=1;kk<=d_col;kk++) {

tmp += x[ii][kk]*p[jj][kk];
}
dw[ii] [jj] =mc *dw[ii] [jj] +tmp;

}

tmpl=0.0;

for (kk=1;kk<=d_col;kk++) /* db=mc*db+x*ones(Q,1) */

tmpl += x[ii][kk]*1;

}

258

db[ii]=mc*db[ii] + tmpl;

/* end ii-loop */

free_real_matrix(x,l,d_row,1);
}

else {

printf("Error Dimensions are not consistent\n");

printf("Quiting from the subroutine mylearnbpm\n");

free_real_matrix(x,l,d_row,1);

exit(1);

I.

}

/********* END of mytbpx3.c ***********/

/********* BEGIN of rand_gen.c ********/

/* These subroutines are for generating random numbers

and doing some normalizing operations, etc. */

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

void mynwlog(int s,float ** p,int p_row,int p_col,float ** w,

int w_row,int w_col,float *b)
{

int ii,jj;

float magw,tmp;

float *tmp_min,*tmp_max;

float *rng,*mid;

tmp_min=allocate_real_vector(1,p_row);
tmp_max=allocate_real_vector(1,p_row);

rng =allocate_real_vector(1,p_row);

mid =allocate_real_vector(1,p_row);

for (ii=1;ii<=p_row;ii++)

tmp_min[ii]=p[ii][1];

tmp_max[ii]=p[ii][1];

for (jj=2;jj<=p_col;jj++)
if (p[ii][jj] < tmp_min[ii])

tmp_min[ii]=p[ii][jj];

if (p[ii][jj] > tmp_max[ii])

tmp_max[ii]=pai][jj);
}

}

magw=2.8*pow(s,1 /p_row);

/*************************** Replaced

myrandnr(w,w_row,w_col);

myrands(b,s,1);

***************************/

myrands(w,w_row,w_col,b);

mynormr(w,w_row,w_col); /* normalize row */

for (ii=1;ii<=p_row;ii++)

rng[ii]=tmp_max[ii]-tmp_min[ii];

mid[ii]=(tmp_max[ii)+tmp_min[ii])/2.0;
}

for (ii=1;ii<=w_row;ii++)

for (jj=1;jj<=w_col;jj++)
w[ii][jj]=2*magw*w[ii][jj] / rng[jj];

for (ii=1;ii<=v_row;ii++) {

259

tmp=0.0;

for (jj=1;jj<=w_col;jj++)

tmp += w[ii][jj] *mid[jj];

b[ii] = magw*b[ii] tmp;

}

free_real_vector(tmp_min,1);

free_real_vector(tmp_max;1);

free_real_vector(rng21);

free_real_vector(mid,1);
}

/************ mynwtan ***************/

void mynwtan(int s,float ** p,int p_row,int p_col,float ** w,

int w_row,int w_col,float *b)

{

int ii,jj;

float magw,tmp;

float *tmp_min,*tmp_max;

float *rng,*mid;

tmp_min=allocate_real_vector(1,p_row);

tmp_max=allocate_real_vector(1,p_row);

rng =allocate_real_vector(1,p_row);

mid =allocate_real_vector(1,p_row);

for (ii=1;ii<=p_row;ii++) {

tmp_mintiii=p[ii][1];

tmp_max[ii]=p[ii][1];

for (jj=2;jj<=p_col;jj++) {
if (p[ii][jj] < tmp_minCii])

tmp_min[ii]=p[ii][jj];

if (p[ii][jj] > tmp_max[ii])

tmp_max[ii]=p[ii][jj];

}

magw=0.7*pow(s,1 /p_row);
/************************** Replaced

myrandnr(w,w_row,w_col);

myrands(b,s,1);

myrands(w,w_row,w_col,b);

mynormr(w,w_row,w_col); /* normalize row */

for (ii=1;ii<=p_row;ii++) {

rng[ii] =tmp_max[ii]-tmp_min[ii];

mid[ii]=(tmp_max[ii]+tmp_min[ii])/2.0;

for (ii=1;ii<=w_row;ii++)

for (jj=1;jj<=w_col;jj++)

w[ii] [jj]=2*magw*w[ii] [jj] / rng[jj];

for (ii=1;ii<=w_row;ii++)

tmp=0.0;

for (jj=1;jj<=w_col;jj++)
tmp += w[ii][jj]*mid[jj];

b[ii] = magw*b[ii] tmp;

}

free_real_vector(tmp_min,1);

free_real_vector(tmp_max,1);

free_real_vector(rng,1);

free_real_vector(mid,1);
}

260

/*********** myrands ***************/

void myrands(float **w, int w_row,int w_col,float *b)

{

int ii,jj;

myrand(w,w_row,w_col,b); /* generate random number in [0,+1] */

for (ii=1;ii<=w_row;ii++) {/* generate random number in [-1,+1] */

for (jj=1;jj<=w_col;ii++)

w[ii][jj]=2*w[ii][jj]-1;

b[ii]=2*b[ii]-1;
}

}

void mynormr(float **w, int w_row, int w_col) /* row normalization */

{

int ii,jj;

float tmp;

for (ii=1;ii<=w_row;ii++) {

tmp=0.0;

for (jj=1;jj<=w_col;jj++)
tmp += w[ii][ii]*w[ii][jj];

for (jj=1;jj<=w_col;jj++)

w[ii] [jj] =w[ii] [jj] /sqrt(tmp);

}
}

void myrand(float **w,int w_rov,int w_col,float *b)

/* generate random number [0,+1] */
{

int ii,jj;

static long idum=-11; /* idum can be changed for initialization */

for (ii=1;ii<=1000;ii++) rand_num(&idum);

for (ii=1;ii<=w_row;ii++) {

for (jj=1;jj<=w_col;jj++)

w[ii] [ij]=rand_num(&idum);

b[ii]=rand_num(&idum);

}

}

/******************* rand_num ****************************/

*define IA 16807

*define IM 2147483647

*define AM (1.0/IM)

*define IQ 127773

*define IR 2836

*define NTAB 32

*define NDIV (1+(IM-1)/NTAB)

*define EPS 1.2e-7

*define RNMX (1.0-EPS)

float rand_num(long *idum)
/**

Minimal random number generator of Park and Miller with Bays-Durham shuffle

and added safeguards. Returns a uniform random deviate between 0.0 and 1.0

(exclusive of the endpoint values). Call with a negative integer to

initialize; thereafter, do not alter idum between successive deviates in a

sequence. RNMX should approximate the largest floating value that is less

than 1.

{

int j;

long k;

static long iy=0;

static long iv[NTAB];

float temp;

if (*idum <=0 II !iy) { /* Initialize */

if (-(*idum) < 1) *idum=1; /* Be sure to prevent idum=0 */

else *idum=-(*idum);

for (j=NTAB+7;2=0;j--) {
k=(*idum)/IQ;

idum=IA(*idum-k*IQ)-IR*k;

if (*idum < 0) *idum += IM;

if (j < NTAB) iv[j] = *idum;
}
iy=iv[0];

}
k=(*idum)/IQ; /* start here when not initializing */
idum=IA(*idum-k*IQ)-IR*k; /* compute idum=(IA*idum) % M without overflows

by Schrage's method */

if (*idum < 0) *idum += IM;

j=iy/NDIV; /* Will be in the range 0..NTAB-1. */

iy=iv[j]; /* Output previously stored value and refill the shuffle table */

iv[j]= *idum;

if ((temp=AM*iy) > RNMX) return RNMX;
/* Because users don't expect endpoint values */

else return temp;
}

/***************** END of rand_gen.c ****************/

/***************** BEGIN of sigm_deriv.c ************/

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

/* sigmoidal functions: pure-linear function,logistic sigmoid,tan-sigmoid */

float ** mypurelin(float **w,int row,int col,
float **x,int x_row,int x_col,

float *b)
/* a = mypurelin(w*x,b) */

/* w*x - SxQ Matrix of weighted input (column) vectors. */

/* b Sxl Bias (column) vector. */
{

float **a;

float tmp;

int ii,jj,kk;

if (col != x_row) {
printf("Inconsistent dimensions in mypurelin\n");

printf(" Exiting from mypurelin\n");

exit(1);

}

a=allocate_real_matrix(1,row,l,x_col);

for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

tmp=0;

for (kk=1;kk<=col;kk++) {
tmp += w [ii] [kk]*x [kk] [j j] ;

}

a[ii][jj]=tmp + b[ii];

/* n=w*x; */

/* n=n+b*ones(1,x_col); */

261

}

return (a);
}

float ** mylogsig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b)

/* a = mylogsig(w*x,b) */

/* w*x SxQ Matrix of weighted input (column) vectors. */

/* b Sxl Bias (column) vector. */
{

float **a;

float tmp;

int ii,jj,kk;

if (col != x_row) {

printf("Inconsistent dimensions in mylogsig\n");

printf(" Exiting from mylogsig\n");

exit(1);

}

a=allocate_real_matrix(1,row,l,x_col);

for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

tmp=0;

for (kk=1;kk<=col;kk++) {

tmp += w[ii][kk]*x[kk][jj];
}
a[ii][jj] =tmp + b[ii];

a[ii][jj]=1/(1+exp(-a[ii][jj]));

/* n=n+b*ones(1,x_col); a=1./(1+exp(-n)); */
}

}

return (a);
}

float ** mytansig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b)

/* a = mytansig(w*x,b) */

/* w*x SxQ Matrix of weighted input (column) vectors. */

/* b Sxl Bias (column) vector. */
{

float **a;

float tmp;

int ii,jj,kk;

if (col != x_row) {

printf("Inconsistent dimensions in mytansig\n");

printf(" Exiting from mytansig\n");

exit(1);

}

a=allocate_real_matrix(1,row,l,x_col);

for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

tmp=0;

for (kk=1;kk<=col;kk++) {

tmp += w[ii][kk]*x[kk][jj];
}
a[ii] [jj]=tmp + b[ii];

tmp=a[ii][jj];

a[ii][jj]=2.0/(1.0+exp(-2.0*tmp))-1.0;

/* n=n+b*ones(1,x_col); a=2./(1+exp(-2*n))-1; */
}

262

}

return (a);
}

/* Derivatives for pure-linear functions, logistic sigmoid, tan-sigmoid */

float ** mydeltalin(float **a,int a_row,int a_col,

float * *d,int d_row,int d_col,

float **w,int w_row,int w_col)
{

float ** r;

int ii,jj,kk;

if (d==NULL && w==NULL) {

r=allocate_real_matrix(1,a_row,l,a_col);

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii] [jj]=1;
}

if (d != NULL && w==NULL) {

r=allocate_real_matrix(1,d_row,1,d_col);

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii][jj]=d[ii][jj];
}

if (d != NULL && w != NULL) {

if (d_row !=w_row) {
printf(" Inconsistent dimensions in mydeltalin\u");

printf(" Exiting from mydeltalin\n");

exit(1);
}

r=allocate_real_matrix(1,w_col,l,d_col);

for (ii=1;ii<=w_col;ii++) /* r = w' * d */

for (jj=1;jj<=d_col;jj++) {
r[ii] [jj]=0.0;

for (kk=1;kk<=w_row;kk++)

r[ii] [jj] += w[kk] [ii] *d[kk] [jj];

}
}

return (r);
}

float ** mydeltalog(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col)
{

float ** r;

int ii,jj,kk;

if (d==NULL && w==NULL) {

r=allocate_real_matrix(1,a_row,l,a_col);

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r [ii] [jj]..a[ii] [jj] * (1 a[11] [jj]);
}

if (d != NULL && w==NULL) {

r=allocate_real_matrix(1,a_row,l,a_col);

for (ii=1;ii<=a_row;ii++)

263

264

for (jj=1;jj<=a_col;jj++)

r[ii] [j j]=a[ii] [jj]*(1-a[ii] [jj])*d[ii][jj];

}

if (d != NULL && w != NULL) {

if (d_row !=w_row) {
printf(" Inconsistent dimensions in mydeltalog\n");

printf(" Exiting from mydeltalog\n");

exit(1);

}

r=allocate_real_matrix(1,a_row,1,a_col);

for (ii=1;ii<=w_col;ii++) /* r = a.*(1-a).*(w' * d) */

for (jj=1;jj<=d_col;jj++) {

r[ii] [jj] =0.0;

for (kk=1;kk<=w_row;kk++)
r[ii] [jj] += w[kk][ii] *d[kk] [ii];

r[ii] [jj] *= a[ii] [jj] *(1 -a[ii] [jj]);

}
}

return (r);
}

float ** mydeltatan(float * *a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col)

{

float ** r;

int ii,jj,kk;

if (d==NULL && w==NULL) {

r=allocate_real_matrix(1,a_row,1,a_col);

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii] [jj] =1 a[ii][jj] *a[ii][jj];

}

if (d != NULL && w==NULL) {

r=allocate_real_matrix(1,a_row,l,a_col);

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii][jj]=(1-a[ii][jj]*a[ii][jj])*d[ii][jj];
}

if (d != NULL gaz w != NULL) {

if (d_row !=w_row) {
printf(" Inconsistent dimensions in mydeltatan\n");

printf(" Exiting from mydeltatan\n");

exit(1);

}

r=allocate_real_matrix(1,a_row,1,a_col);

for (ii=1;ii<=a_row;ii++) /* r = (1-a.*a).*(w' * d) */

for (jj=1;jj<=a_col;jj++) {

r[ii][jj]=0.0;

for (kk=1;kk<=w_row;kk++)

r[ii] EjjJ += w [kid [ii]*d[kk] [j j]
r CH] [jj] *= C1 -a[ii] [jj]*a[ii] Cjj]) ;

}
}
return (r);

}

/***** END of sigmoidal functions and its derivatives (sigm_deriv.c) *******/

/***** BEGIN of sigm_deriv_rnn.c ***/

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

/* sigmoidal functions: pure-linear function,logistic sigmoid,tan-sigmoid */

void mypurelin(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b,float **a)

/* a = mypurelin(w*x,b) */
/* w*x - SxQ Matrix of weighted input (column) vectors. */

/* b - Sri Bias (column) vector. */
{

/*float **a;*/

float tmp;

int ii,jj,kk;

if (col != x_row)
printf("Inconsistent dimensions in mypurelin\n");

printf(" Exiting from mypurelin \n ");

exit(1);

/*a=allocate_real_matrir(1,row,1,x_col);*/
for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

tmp=0;

for (kk=1;kk<=col;kk++) {

tmp += w[ii] CU] *x Ckki j] ;

}
a[ii][jj]=tmp + b[ii];

/* n=w*x; */

/* n=n+b*ones(1,x_col); */
}

/*return (a);*/
}

void mylogsig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b,float **a)

/* a = mylogsig(w*x,b) */

/* w*x SxQ Matrix of weighted input (column) vectors. */

/* b Sxl Bias (column) vector. */
{

/*float **a;*/

float tmp;

int ii,jj,kk;

if (col != x_row) {
printf("Inconsistent dimensions in mylogsig\n");

printf(" Exiting from mylogsig\n");

exit(1);

/*a=allocate_real_matrix(1,row,l,x_col);*/

for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

265

266

tmp=0;

for (kk=1;kk<=col;kk++) {

tmp += w[ii][kk]*x[kk][jj];

a[ii][jj]=tmp + b[ii];

a[ii] [jj] =1/(1 +exp(-a[ii] [jj]));

/* n=n+b*ones(1,x_col); a=1./(1+exp(-n)); */

}

}

/*return (a); */

}

void mytansig(float **w,int row,int col,

float **x,int x_row,int x_col,

float *b,float **a)

/* a = mytansig(w*x,b) */
/* w*x - SxQ Matrix of weighted input (column) vectors. */

/* b Sxl Bias (column) vector. */
{

/*float **a;*/

float tmp;

int ii,jj,kk;

if (col != x_row)

printf("Inconsistent dimensions in mytansig\n");

printf(" Exiting from mytansig\n");

exit(1);

}

/*a=allocate_real_matrix(1,row,1,x_col);*/

for (ii=1;ii<=row;ii++) {

for (jj=1;jj<=x_col;jj++) {

tmp=0;

for (kk=1;kk<=col;kk++) {

tmp += w[ii][kk]*x[kk][jj];
}
a[ii][jj]=tmp + b[ii];

tmp=a[ii][jj];

a[ii][jj]=2.0/(1.0+exp(-2.0*tmp))-1.0;
/* n=n+b*ones(1,x_col); a=2./(1+exp(-2*n))-1; */

}

}

/*return (a); */

}

void mydeltalin(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,

float **w,int w_row,int w_col,float **r)

{

/*float ** r;*/

int ii,jj,kk;

if (d==NULL 8A w==NULL) {

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii] [jj]=1;

}

if (d != NULL 8A w==NULL) {

/*r=allocate_real_matrix(1,d_row,l,d_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r [ii) [jj]=d[ii] [j j] ;

}

if (d != NULL && w != NULL) {

if (d_row !=w_row)

printf(" Inconsistent dimensions in mydeltalin\n");

printf(" Exiting from mydeltalin\n");

exit(1);

}

/*r=allocate_real_matrix(1,w_col,l,d_col);*/

for (ii=1;ii<=w_col;ii++) /* r = w' * d */

for (jj=1;jj<=d_col;jj++) {

r[ii][jj] =0.0;

for (kk=1;kk<=w_row;kk++)

r[ii][jj] += w[kk][ii]*d[kk][jj];
}

/*return (r);*/
}

void mydeltalog(float **a,int a_row,int a_col,

float **d,int d_row,int d_col,
float **w,int w_row,int w_col,float **r)

{

/*float ** r;*/

int ii,jj,kk;

if (d==NULL && w==NULL) {

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)
r[ii][jj]=a[ii][jj] * (1 - a[ii][jj]);

}

if (d != NULL && w==NULL) {

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii][jj]=a[ii][jj]*(1-a[ii][jj])*d[ii][jj];
}

if (d != NULL && w != NULL) {

if (d_row !=w_row) {
printf(" Inconsistent dimensions in mydeltalog\n");

printf(" Exiting from mydeltalog\n");

exit(1);

}

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=w_col;ii++) /* r = a.*(1-a).*(w' * d) */

for (jj=1;jj<=d_col;jj++) {

r[ii][jj]=0.0;

for (kk=1;kk<=w_row;kk++)

r[ii][jj] += w[kk][ii]*d[kk][jj];

r[ii][jj] *= [jj]*(1-u[ii] [in);
}

}

/*return (r);*/
}

267

268

void mydeltatan(float **a,int a_row,int a_col,
float **d,int d_row,int d_col,

float **w,int w_row,int w_col,float **r)

{

/*float ** r;*/

int ii,jj,kk;

if (d==NULL Bat w==NULL)

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii] [jj] =1 a[ii] [jj] *a[ii] [jj];

}

if (d != NULL && w==NULL) {

/*r=allocate_real_matrix(1,a_row,1,a_col);*/

for (ii=1;ii<=a_row;ii++)

for (jj=1;jj<=a_col;jj++)

r[ii.] 0j1=0.-a[ii] Ciji)*dail [in ;

}

if (d != NULL && w != NULL) {

if (d_row !=w_row) {

printf(" Inconsistent dimensions in mydeltatan\n");

printf(" Exiting from mydeltatan\n");

exit(1);

}

/*r=allocate_real_matrix(1,a_row,l,a_col);*/

for (ii=1;ii<=a_row;ii++) /* r = (1- a. *a). *(w' * d) */

for (jj=1;jj<=a_col;jj++) {

r[ii][jj]=0.0;

for (kk=1;kk<=w_row;kk++)
r[ii] [jj] += w[kk][ii]*d[kk] [jj];

r [ii] [j j) *= (1 -a[ii] Ejj)*a[ii] [jj]);

}
}
/*return (r);*/

}

/***** END of sigmoidal functions and its derivatives (sigm_deriv_rnn.c) *****/

/***** BEGIN of memo mans ***/

/* These utilities are used for dynamic memory management */

*include <stdio.h>

*include <stdlib.h>

*include "mynn.h"

void system_error(char error message[])
{

void exit(int);

printf("%s",error_message);

exit(1);

}

int *allocate_integer_vector(int 1, int u)

{

/* allocates an integer vector of range [1..u] */

269

void system_error(char *);

int *p;

p=(int *) malloc((unsigned) (u-1+1)*sizeof(int));

if (!p) system_error("Failure in allocate_integer_vector().");

return p-1;

}

float *allocate_real_vector(int 1, int u)

{

/* allocate a real vector of range [1..u] */

void system_error(char *);

float *p;

p=(float *)malloc((unsigned) (u-1+1)*sizeof(float));

if (!p) system_error("Failure in allocate_real_vector().");

return p-1;
}

int **allocate_integer_matrix(int lr, int ur, int lc, int uc)

{

/* allocate an integer matrix of range [1r..ur][1c..uc] */

void system_error(char *);

int i, **p;

p=(int **)malloc((unsigned) (ur-lr+1)*sizeof(int *));

if (!p) system_error("Failure in allocate_integer_matrix().");

p -= lr;

for (i=lr;i<=ur;i++) {

p[i]=(int *)malloc((unsigned) (uc-lc+1)*sizeof(int));
if (!p[i]) system_error("Failure in allocate_integer_matrix().");

p[i] -= lc;
}
return p;

}

float **allocate_real_matrix(int lr, int ur, int lc, int uc)

{

/* allocate a real matrix of range [1r..ur][1c..uc] */

void system_error(char *);

int i;

float **p;

p=(float **)malloc((unsigned) (ur-1r+1)*sizeof(float *));

if (!p) system_error("Failure in allocate_real_matrix().");

p -= lr;

for (i=lr;i<=ur;i++) {
p[i]=(float *) malloc((unsigned) (uc-lc+1)*sizeof(float));

if (!p[i]) system_error("Failure in allocate_real_matrix().");

pal -= lc;
}
return p;

}

void free_integer_vector(int *v, int 1)

{

/* free an integer vector of range [1..u] */

free((char *) (v+1));
}

void free_real_vector(float *v, int 1)

270

{

/* free a real vector of range [1..u] */

free((char *) (v+1));
}

void free_integer_matrix(int **m, int lr, int ur, int lc)

{

/* free an integer matrix of range [1r..ur][1c..uc] */

int i;

for (i=ur; i>=1r; i--) free((char *) (m[i]+1c));

free((char *) (m +lr));

}

void free_real_matrix(float **m, int lr, int ur,int lc)

{

/* free a real matrix of range [1r..ur][1c..uc]. */

int i;

for (i=ur; i>=1r; i--) free((char *) (n[i]+1c));

free((char *) (m +lr));

}

\input{../../C_nnet/learn_bp.c}

*include <stdio.h>

*include <stdlib.h>

*include <math.h>

*include "mynn.h"

/********* myeumnqr ******************/

float mysumsqr(float **e,int e_row,int e_col)

{

int ii,jj;

float tmp;

tmp=0;

for (ii=1;ii<=e_row;ii++)

for (jj=1;jj<=e_col;jj++)

tmp += e[ii][jj] * e[ii][jj];

return (amp);
}

/********* mylearnbpm ****************/

void mylearnbpm(float **p,int p_row,int p_col,

float **d,int d_row,int d_col,

float lr,float mc,

float **dw,int dw_row,int dw_col,

float *db)

{

/*float ** allocate_real_matrix(int,int,int,int);*/

float **x;

int ii,jj,kk;

float tmp,tmpl;

/*x=allocate_real_matrix(1, d_row, 1, d_col);*/

if ((p_col==d_col) k& (d_row==dw_row) && (dw_col==p_row)) {
x=allocate_real_matrix(1, d_row, 1, d_col);

for (ii=1;ii<=d_row;ii++) /* x=(1-mc)*1r*d */

for (jj=1;jj<=d_col;jj++)

x [ii] [jj]=(1-mc)*1r*d[ii] [j j] ;

271

for (ii=1;ii<=dw_row;ii++) { /* dw=mc*dw+x*p' */

for (jj=1;jj<=dw_col;jj++)
tmp=0.0;

for (kk=1;kk<=d_col;kk++) {
tmp += x[ii][kk]*p[jj][kk];

}

dw[ii][jj]=mc*dwail[jj]+tmp;
}

tmp1=0.0;
for (kk=1;kk<=d_col;kk++) { /* db=mc*db+x*ones(g,1) */

tmpl += x[ii][kk]*1;
}

db[ii3=mc*db[ii3 + tmpl;

/* end ii-loop */

free_real_matrix(x,1,d_row,1);
}

else {

printf("Error Dimensions are not consistent\n");

printf("Quiting from the subroutine mylearnbpm\n");

free_real_matrix(x,l,d_row,1);

exit(1);

}

}

/********* END of learn_bp.c ***********/

272

B About the singular solution

It is shown in the following that there is no singular solution to the Hamiltonian

system consisting of Equations (5.3) and (5.18).

Proof: Suppose otherwise. That is, there exists a time interval /(To, = [To, To+

T1] such that A2(t) sin 6(t) 0 for Vt E /(To, TO where To and T1 are two finite positive

numbers.
Umax A2 sin S > 0

Note again the time-optimal control (5.22) u* = . Since for

Umzri, A2 sin (5 < 0

A2 sin S = 0, it does not matter what value u* may take, let us assume u* = 0.

Let it = u* in Equation (5.3). It follows immediately that the time solution

co(t)) is continuous. Similarly the time solutioin (A1(t), A2(t)) to Equation (5.18)

is also continuous. These facts and the assumption A2(t) sin8(t) E. 0 for Vt E /(To, T1)

imply that there must exist an interval /(T2, T3) = [T2, T2 + T3] C [(To, TO such that

either A2(t) 0 or sin 6(0 El 0 for Vt E /(T2,T3).

Consider the case A2(t) =- 0 for Vt E i(T2,T3). It is apparent that A1(t) 0 for

T2 < t < T3- It follows from Equation (5.18) that (Ai (t), A2(t)) (0, 0) for T2 < t < T3.

Notice that (0, 0) for all t is also a solution. Since Equation (5.18) satisfies the

Lipschitz condition, the solution must be unique. This in turn leads to the following

implication:

(Ai (t), A2(t)) (0, 0) for T2 < t < T3 > (Ai(t), A2 (t)) (0, 0) for T3 < t.

In particular, A2 (T) = 0 where T is the finite terminal time. This, however, contra-

dicts Equation (5.25). Therefore, A2(t) must not be zero for any finite time interval.

Consider the case sinS(t) 0 for Vt E /(T2,T3). Since 6(t) is continuous, it follows

immediately that 6(t) C for Vt E /(T2, T3) where C is a constant value. This in turn

leads Equation (5.3) to the following contradiction:

1

0 = wbw

co = ki- (P, at))

273

(7.1)

Therefore, sin 6(t) must not be zero for any finite time interval.

By contradiction, we have shown that .A2 (t) sin 6(t) must not be zero for any finite

time interval, which implies that there is no singular solution to the Hamiltonian system

in question. This completes the proof.

274

C About parameters updating

It is shown in the following that with the modified updating laws (6.51) and (6.52),

for Vt > 0, W < --yleI2, and that p(t) E 7r, 0 < a(t) < 1 with Eif_i ii(t) = 1 provided that

P(0) E 7r, p(t) E 7r, 0 < ex(0) < 1 with EjJ.=1 &(0) = 1, and 0 < < 1 with lex* = 1.

Proof: First, we show that p(t) E it provided that P(0) E it and p(t) E 7r.

To show that p(t) E it, we only need to show that for Vt > 0, 151 E [10irnin =
19 imax 1

which can be verified by examination of the sign ofPi when Pi reaches the boundary of

[Pirnin 7 Pimax]

For Pi = pimin, the updating law is given by

--[-y(tkx, u))Ter if Pi = prni in and [-y(20(x, u))7. e]i 0

0
/52 -=

if Pi = prni in and [-y(R0(x,u))Teli > 0
(7.1)

Hence when Pi = pimin, pi > 0, which implies that pi is directed towards the interior of

[Pirnin PirnCIX]'

Similarly, it can be readily shown that for pi = pimax, pi < 0, which implies that pi

is directed towards the interior of [pimm, pimax].

For pi(0) E pimax), the updating law keeps the Pi(t) still in the region

[pimm, pimax] before it reaches the boundary.

Therefore, if pi (0) e and yi e 173 then for Vt > 0, Pi (t) Eimin, gnax] imin gnaact

[1327n.in, pimax]. This in turn implies that if P(0) E it and p* E 7r, /5 E 7r.

In the same way, one can show that if 0 < ee(0) < 1 with EiLi ii(0) = 1, and

0 < Iff* < 1 with a* = 1, then for Vt > 0, 0 < 6(0 < 1 with Ej_i ii(t) = 1.

Next, we prove that the modified updating law (6.51) and (6.52) can only make W

more negative. Note that since for Vt > 0, p2 (t) E ivnti in, pimax], then Equation (6.48)

holds. First, we show that the modified updating law (6.51) can only make W more

negative.

Consider Equation (6.48).

If E (Pirnain gnax), /5i Pimin and hi(KIP(x,u))Ter < 0, or Pax

[7(-24(X 07.0

> 0, from the updating law ;31= MR-0(x , u))T e]2, we have + [-y(g-i-10(x,u))Ten5t

275

and

0.

If p2 = plmin and [7(040(x,u))/-eli > 0, from the updating law pi = 0 and pi =-_

pZ pi (t), we have {15i + [-y(0(x, u))reli}731 = (t))f [7(110(x, u))7 = (Prnin

/31(.0)1[1410(x, tt))T 0.

If Pi = pimax and [7(10(x,u))Teli < 0, from the updating law k = 0 and 132 =

p (t), we have {/52 + [7(RIP(x,u))Teniii = (i pi(t)){[y(tgx,u))Ter} = (Pmax

Pi(t)){[7(tCx,u))relif
In a word, lb + [-y(20(x,u))Telilij2 < 0.

Thus, W < elre + go (x) -I_1 ce3 u(x , pp] + CYT et.

Similarly, it can be shown that with the modified updating law (6.52), the following

inequality holds, that is, eT R go (x) =1 di u(x, p;) + eir a < 0.

Therefore, W < rle12. This completes the proof.

