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Summary 

A previous analysis of the problem of sandwich cylinders subjected to
uniform external lateral loading is extended in order that results may
be applied to sandwich cylinders having relatively thick facings of
unequal thickness. In the development of the stability criteria, the
effect of the stiffness of the individual facings on the stability of
the composite cylinder is taken into account. Solutions are obtained
from which the stresses and displacements in a stable sandwich cylinder
may be determined, and an expression for the determination of the load
at which a sandwich cylinder becomes elastically unstable is derived.
The sandwich cylinder is assumed to consist of isotropic shell facings
and an orthotropic core.

Introduction

This report is a supplement to a previous report that contains a
theoretical analysis of sandwich cylinders acted upon by uniform ex-
ternal lateral pressure. Formulas were derived for the stresses in
the cylinder, and an expression was obtained from which critical

-This report is one of a series prepared by the Forest Products
Laboratory under U. S. Navy, Bureau of Aeronautics Order No. 01595

2 and U. S. Air Force Order No. A.F. 18(600)-102.
—Maintained at Madison, Wis., in cooperation with the University of

Wisconsin.
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pressures may be determined. In that report it was assumed that the
facings of the cylinder were thin enough to render membrane theory
applicable and that the facings were of equal thickness.

The purpose of this supplementary report is to present solutions for
the stresses and for the critical pressures that apply to sandwich
cylinders having moderately thick facings of unequal thickness. This
requires that the bending moment and the transverse shear in the
individual facings be considered in the development of the stability
criteria. This extension of the previous work is felt to be of import-
ance in view of the fact that an analysis based on membrane facings may
prove inadequate as a design criterion in cases where relatively thick
facings are used. It is assumed throughout that buckling takes place
at stresses below the elastic limit of the sandwich materials.

The method of analysis used here follows closely the method used in
the original report. The same core assumption, namely, that only
transverse shear stress and normal stress on planes parallel to the
facings are present, is used. It is felt that this assumption applies
very well to all practical sandwich constructions because of the rela-
tively low load-carrying capacity in the tangential direction, of the
core materials as compared to that of the facing materials. The facings
are assumed to be homogeneous and isotropic, and, as indicated pre-
viously, they are analyzed on the basis of shell theory rather than
membrane theory.

Notation

r, 9	 polar coordinates

a	 radius to middle surface of outer facing

b	 radius to middle surface of inner facing

to	thickness of outer facing

ti	 thickness of inner facing

t
	

thickness of either facing when t o = ti

E	 modulus of elasticity of facings

Poisson's ratio of facings

modulus of elasticity of core in direction normal to facings

modulus of rigidity of core in r - 9 plane
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q	 intensity of uniform external lateral loading

a ar, a
rc normal stress in the radial direction acting on the outerr , r , re

facing, on the inner facing, and in the core, respectively

11-r
, 

ar, arc small normal stress in the radial direction acting on the
outer facing, on the inner facing, and in the core,
respectively

Tre, Tr()
small shear stresses acting on outer and inner facings,

respectively

small transverse shear stress in the core

direct stress resultants in the tangential direction in
the plane of outer and inner facing, respectively

small direct stress resultants in the tangential direction
in the plane of outer and inner facings, respectively

small bending moments per unit length of outer and inner
facing, respectively

small resultant shear forces per unit length of outer and
inner facing, respectively

u $ uc	radial displacements of outer facing, inner facing, and
core respectively

small radial displacements of outer facing, inner facing,
and core, respectively

I
, V

€0,

vc	 small tangential displacements of outer facing, inner
facing, and core, respectively

unit tangential strains in outer and inner facing,
respectively

e• ,	
eec 

small unit tangential strains in outer facing, inner fac-
ing, and core, respectively

small changes in curvature of outer and inner facing,
respectively

n number of waves in circumference of cylinder

a	 one-half the central angle of curved panel

Eca (1 - 112)
P	 Eto

_t
u ,

e' e
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cla (1 - .L2) 
Eto

Ec	 n2

Gre - 2

Eto
 (1 - b2/a2)

2G	 b (1 - p.2)re

A, B, An , Bn , Cn , Hn	arbitrary constants

Stress Analysis 

The sandwich cylinder is assumed to be long enough that the effect of
the constraints at the ends is negligible. Under a condition of uni-
form external loading, each cross section remains circular. The dimen-
sions of a cross section of the cylinder and the positive directions of
the polar coordinates, r and e, are indicated in figure 1. In order to
avoid any confusion in regard to signs, the intensity of the external
load is assumed to act in the positive r direction; obviously, a nega-
tive value of q signifies compressive loading. In the analysis which
follows, the assumption is made that the core extends to the middle
surfaces of the facings and that the load q is applied to the middle
surface of the outer facing. This assumption amounts to neglecting the
half-thicknesses of the facings as compared to their radii.

Equilibrium of Core 

As previously stated, the assumption is made that, in general, the core
transmits only normal stresses in the direction perpendicular to the
facings and transverse shear stresses. In the case of uniform external
loading, it is noted that the transverse shear stress is zero from con-
siderations of symmetry, and the only stress present in the core is the
normal stress in the radial direction, Erc . Considering the equilibrium
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(1)

(2)

(3)

(4)

of the differential element of the core shown in figure 2, the sum-
mation of forces in the radial direction results in the following
equation:

dard) 
+ dr de = 0- arc r de + (arc	 dr

The differential element is considered to be of unit length in the
longitudinal direction. The above equilibrium equation reduces to

da	 arc	 re = 0
dr

The solution of equation (1) may be written as

Aarc E –rc	 c r

where, for convenience, the constant of integration is represented by
Ec A. Ec represents the modulus of elasticity of the core in the radial

direction, and A is an arbitrary constant. The radial displacement of
the core, uc , is related to the radial stress, arc , by the following

equation:

duca 	 E
c drrc

From equation (2) it follows that

duc A

dr

Integration of the above equation yields

uc = A log r/a + B

The use of log EL2 instead of log r merely alters the arbitrary con-
stant of integration.

Equilibrium of Facings 

With reference to the differential elements of the facings shown in
figure 3, it is seen that, when the cylinder is acted upon by an ex-
ternal loading of uniform intensity, so the only forces in the facings
are the tensile forces per unit length N9 and Ne. ar and al.. in figure
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3 represent the stresses exerted by the core upon the outer and inner
facings, respectively. An equilibrium equation can be obtained for
each facing by summing forces in the radial direction on each differ-
ential element, considered to be of unit length in the longitudinal
direction. The equilibrium equation which pertains to the outer facing
is

qa de - ara d6 - No d9 0

This equation reduces to

Ne = a (q - ar)

or, since /r = ((Ire) r = a

ii9 = a [q - (circ)
[	 r = ]

In a similar manner, the equilibrium equation of the inner facing is
found to be

(5)

Ne = b (a )rc r = b
(6)

From the application of Hooke's law along with the assumption that the
tangential stress in the facings is uniformly distributed through their
thicknesses, the following relationships are obtained:

Ne = Eto Ee

and.

Ne Eti E
o

e

If the right-hand sides of equations (5) and (7) and the right-hand
sides of equations (6) and (8) are equated, the following two equations
result:

a
Ee = Et L q	 (cfrc ) r =

and

e l	 b (a )
e Eti rc/

r = b

(7)

(8)
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,	 u

	

Since ee = T. and ee	 , these two equations become

a2
u =- (a )Etc 	rc

and.

b
2
 ,u =	 kaEt.ra

r = b

If continuity of displacements at the interfaces is assumed, then

u = (uc )
r = a

and

u ' = (uc)
r = b

The above relationships in conjunction with equations (2) and (4) enable
equations (9) and (10) to be written as follows:

2 ,	 ,.B =	 01 Eo v	 (11)Eto

and

A log b/a + B = Et i

Eb A	 (12)

Equations (11) and (12) may be solved for A and B with the following
results:

A = 523: kEc

and

2
B = ga (1 - k)Et (

where

1
b to Eto

	

a t	 Ea	 ai	 o	 b/

r =
(9)

(10)

k-

(14-)

(15)
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(19)

(20)

(21)

The substitution of the value of A given by equation (13) into equation
(2) yields the following expression for the radial stress in the core:

a
Q 	 (i6)rc

When the above value of arc is substituted into equations (5) and (6),
the following two equations result:

Ne = qa (1 - k)	 (17)

and

	N
e qak
	

(18)

The substitution of the values of A and B given by equations (13) and
(14) into equation (4) yields the following expression for the core
displacement:

	

qa2

	Eta
[1 - k (1u

c = En [1 ET log r/a)]

	

Since u = (u )	 and u = (u)	 , then

	

c r=a	 r = b

u =	 (1 - k)
Et2

and

- qab kEt
i

Equations (16) - (21) completely describe the stresses and displacements
in the sandwich cylinder subjected to uniform external, lateral loading.
In each of these equations the value of k is given by equation (15).

Stability Analysis 

In discussing the stability of the sandwich cylinder under uniform
external lateral pressure, the equilibrium of a slightly deformed
element of the cylinder must be considered. It is assumed that the
stress situation that exists in this deformed element differs only
slightly from the stress situation that existed just before buckling.
The stresses before buckling are given by equations (16), (17), and
(18). Since the cross section of the deformed cylinder is no longer
circular, the small changes in the stresses and the displacements result-
ing from buckling will be functions of e as well as r. Following the
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system of notation used in the original report, a bar is placed over the
appropriate symbol to denote the small stresses, strains, and displace-
ments that occur when the cylinder goes from the initial uniformly
stressed circular form to the slightly deformed configuration. Again,
it is assumed that the core extends to the middle surfaces of the fac-
ings and that the load q is applied to the middle surface of the outer
facing. This assumption is now somewhat more restrictive than it was
in the case of axial symmetry, since it now means that the effect of
the interface shear on the bending of the facings and the displacements
due to the bending of the individual facings are neglected. However,
it is felt that, for cylinders with shell-type facings, the results
based on this assumption should be of sufficient accuracy.

Equilibrium of the Core 

Since the cylinder is now considered to be slightly deformed, the core
is also slightly deformed: A differential element of - this core is shown
in figure 4. In addition to the radial stress, q r k, given by equation

(16), a small radial stress, 7	 and a small transverse shear stress,-rc)
due to buckling must be taken into account. The differentialrecY

element is considered to be in equilibrium under the action of the stresses
shown. Since the small change in the geametry . of the core introduces only
small terms of higher order into the equilibrium equations, the differ-
ential element in figure 4 is shown in its undeformed state. The analysis
of the core is exactly the same as that given in-the original report,
and for this reason only the basic equations will be repeated here.

The equilibrium equations that apply to the core are obtained by summing
forces in the radial and tangential directions in figure 4. Theseequi-
librium equations are:

	

3cir	 1 .rrecC	 rc	 = 0

	

-37 	 r	 r

and

67rec 2Trec n
r

The following stress-displacement relations are also applicable:

auC
arc Ec

and

	

1 Luc 	77
T	 = G	 c	 c]

rec	 re T 36-	 or	 r

3T—

( 22 )

(23)

(24)

(25)
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It was shown in the original report that the small radial and tangential
displacements of the core can be completely determined insofar as their
dependence on r is concerned. Then, on the assumption that during buckl-
ing the circumference of the cylinder subdivides into n waves, the dis-
placement functions are written as follows:

uc = [An + B	 + Cn log —a] cos nen r—
a 	 (26)

and

vc = [	 71-- n An + 1 bn Bn a - n Cn (1 + log -8 ) + H n 4 sin n9 (27)

where

Ec	 n
2

6 =n 2G	 2re

and

An , Bn, Cn, and Hn are arbitrary constants.

After the substitution of the expressions for Tic and vC given by equations

(26) and (27) into equations (24) and (25), the expressions for the small
core stresses become

a = —r - B 2 + C n cos nerc	
c	

n 

and

1 Ec
n = - — — B 2 sin neruc	 n r n r

It may be easily verified that equations (28) and (29) satisfy the equi-
librium equations, equations (22) and (23).

Equilibrium of Facings 

Figure 5 shows the differential elements of the facings of the slightly
deformed cylinder. In addition to the forces that exist just before
buckling (given by equations (16), (17), and (18)), the small forces and
moments that arise during buckling are shown in the figure. In consider-
ing the equilibrium of the facing elements, account is taken of the
rotation and stretching of the facings which occurs during buckling. As
described in the original report, the initial central angle, de, becomes

Cl	
_r	 01

	

1 ay. 1 gii)	 and	 (	 1 6v 1 6-u+ — — - 	 de	 + —  - —	 ) de
	a 6e a 6e2	 b 6e b 6e2

(28)

(29)
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for the outer and inner facings, respectively, and the, areas of the
differential elements of the outer and inner facings become (1 + Zo) a dB
and (1 + Ze) b de l respectively. Three equations of equilibrium can be

written for each facing; the differential elements are considered to be
of unit length in the longitudinal , direction.

Considering first the differential element of the outer facing, the sum-
mation of forces in the direction normal to the surface yields

q (1 + T) a dO - (qk + "dr)(1 + Te ) a d

/
	1 6V	 271)	 a-ge

9- [qa (1 - k) + Fi
e

]	 + —
6e 6e2 

d + — de = 0
6e

-	 OV
If the relationship, ce =	 'ET 51-P is used and small quantities of higher

order -- that is, products of barred quantities -- are neglected, the above
equation becomes

ce
isire -

6	
= - a	 + qa (1 - k)	 + 

a 
6271 )	 (30)

	a 	 602

The summation of forces in the tangential direction-yields the following
equation:

- [a (1 - k) + Re] + [qa	 (1 - k) + Fre +	 de]

-
(1 + TO a dO +	 + E - 2-J-1 ) de

a	 a 692	
0

If small quantities of higher order are again neglected, the above equa-
tion May be written as

Ogg, 7_
= a Tre

de

The third equilibrium equation of the outer facing is obtained by . equating
to zero the summation of moments about point 0, shown in figure 5. Thus

6146
- me +(me + ao dt4) + ;9 a de 0

The above equation reduces to

OR0 	-
&? 

+aQe=O

- Fre

(32)
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Similarly the three equilibrium equations which pertain to the inner
facing are obtained by summing forces in the normal and tangential
directions and by summing moments about the point 0' using the differential
element of the inner facing shown in figure 5. These equilibrium equations
are:

....,	 3%	 4	 11	 I at , )
N - - — - b o

r
 + qak (-

9 60	 b	 b 602 1
T

;

- I	
I

-1- Cle . - b 7re

and

,10 Q0 = 0

If equation (32) is solved for (74) and the resulting value is substituted

into equations (30) and (31), the three equilibrium equations of the outer
facing are reduced to the following two equations:

1 %
Ne + 

a6 302	 a	 + q (1 - k)(71 .1521

60)
and

6% 1 6Re

- a 1-re

In like manner, if equation (35) is solved for '47:9 and this value is sub-

stituted into equations (33) and (34), the three equilibrium equations
of the inner facing are reduced to the following two equations:

Nn + -

s" b 602	
bcrr+q-k u + u

b

a ( 	

68

62—'06	
-

and

6N; 1 6R;
IC 75—	 b :Fre

Fran the application of Hooke's law, the following twy expressions relating
the small tangential forcesper unit length, fi re and Ne, to the small tan-
gential strains, Te and ee, are obtained:

(33)

(34)

(35)

(36)

(37)

(38)

(39)
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Eto
Ne - 	  -E-0

2-

and

Et,71	 r
14 9 _ 	

- 42

Also, the following two equations relating the bending moments in the
facings, Re and Re, to the changes in curvature in the facings, 5-",;,(9
are applicable:2—

12(1 - 2 ) xe	 (42)
Eto

3 
–

and –t
	 Et 1

3

m
e	_
	 (43)
12(1 - p-) xe

Since

and

_ 1 (E-1
-

b2 69 66?7

equations (40) - (43) may be written as follows:

47:	 Eto	 (1.1	 1 6Ti.

e 1 - 42 a a 4)e)

2Timoshenko, S., and Goodier, J. Theory of Elasticity. New York, 1951.

Timoshenko, S. Theory of Plates and Shells, First Edition. New York
1940.

(40)

(a)

(14-0
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Eti
N 

1 	 1.1
2

– 2–

Me-	
Eto 	 (16

v

(1	
.L2) a2 ae	 ae;

12 1 -

and

Et i
3 	 /6:71	 62u,

Me

	

12 (1 - p
2
) b

2 \ae	 ae2 )

The requirement is now made that there be continuity of displacements at
the interfaces; that is,

U = (Tic)
r = a

	 (48)

11 = (ac)
r 	 b

	 (49)

= (ve)
	

(50)

r = a

(45)

(46)

(47)

and

r = b
(51)

The use of equations (48) - (51) enables equations (44) - (47) to be
written as follows:

Et
- 	 o 	 (u_7▪ /6	 (52)

	° a (1 - p2 )	 ae )
r = a

N
e 	

Eti 	 aiT	

(53)

	

b (1 - p2 )	 c	 6(9▪
r = b

—Me

r = a

(55)

692 )
r = b

and

_A

Eto
3

7:r3 c

12a2 (1 - ) 69

Eti3 (-7/770

12b2 (1 - p2 ) 6f)

A_	 C\	 (54)
71

602
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(57)

(58)

(59)

With the aid of equations (48 ) - (55) and the fact that

ere = (7rOc)
r = a
	 (56)

7.re = (Tree
r = b

ar = (arc)
r = a

and

Ur = (_arc)
r = b

the equilibrium equations of the facings, equations (36) - (39), may be
expressed entirely in terms of the core displacements and stresses. For
example, if the right hand sides of equations (52), (54), (56), (58), and
(48) are substituted for Re, Me , 7re, Frr1 and IT, respectively, in equi-
librium equation (36), the result is

Eto 	61-To	 Et03	 3

a (1 -	 )	 6(9	 = a 12 (1 - p2) a3 ae3	 a)r

C
= - a (5."rc )	 + q (1 - k) (a0 + ;Or

r = a

In a similar manner, equations (37) - (39) may be transformed, respectively,
to the following three equations:

(6o)
= a

Eto
a (1 -

Eto3

12 (1 - p2)= a

= a (Tree )
	

(61)
r = a

Eti

c)	

Eti3	
(33-170

b (1 - p2 )	 a0	 12 (1 - 42 ) b3 6c) 3	,377)r = br = b
621.7

+ q k	 +	 (62)= b (Fre)
r = b	 b	 c ae2

r = b

and

Report No. 1844-A	 -15-



Eta 	 )ric	 a2.T7 	 Eti3	 (6c

b (1 -	 ) (6,9	 662 )	 12 (1 112 ) b3 602 	 60
r =.• b	 r = b

=	 b (7r6c)	
(63)

r = b

If the expressions given by equations (26) - (29) for the core displace-
ments and stresses are substituted into equations (60) - (63), four equa-
tions containing the parameters An, Bn„ Cn, and Hn are obtained. These

four equations aret

[(n2 - 1) y (1 - k) - (n2 -	 An 4. [(n2 - 1) y (1 - k) +n (1	 n2 0
o

)

+ (1 + n4 oo ) -p] Bn + [3 - n2 (1	 n2 00 )] Cn

+ [n (1 + n2 0 0)] Hn = o	 (64)

(n2 - 1) An + [ - 6n (1 + 0o) - (1 + n2 0 ) + ---] B0	 n2 n

+ [n2 (1 + 0o)] Cn + [ - n (1 + 0o)] Hn = 0	 (65)

to 
[(n2 - 1) yk — - (n2 - 1 N A 4. rtn2 - iN 8 ,- -2k	 + bp, EL-(1 + n2 0i)

	

ti 	‘	 1 -I n	 L ‘	 I b f ti 	- b

t	 t	 .h t
+ tt- 1 + n4 0 ) + p to ] B + [(n2 - 1) yk —°- log b/a - p -= 2

i	 ti n	 ti 	a ti

- (n2 - 1) log b/s. - n2 (1 + n2 00] Cn + [n b/a (1 + n2 00] Hn = o

(66)

and.

a	 a
(n2 - 1) An + [ - 611 .T-0 (1 + 0i ) - 17. (1 + n2 0 i)- 2t 1. ] Bnn

+ [(n2 - 1) log b/a + n2 (1 + 00] Cn + [- n b/a (1 + 00] Hn = 0

(67)

where, in each of the above equations,

qa (1 - u2)
7 	 Eto
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to

2

12a2

ti
2

(I)	 =
12b

2

and

a (1 - 112)
E-to

Each of the terms in equations (64) - (67) contains one of the para-
meters An) Bn) Cn0 and Hn that appear in the displacement equations of

the cylinder. A buckled form of equilibrium is possible only if equa-
tions (64) - (67) yield solutions for these parameters which are differ-
ent from zero. This requires that the determinant of the coefficients
of these parameters must be equal to zero. This determinant may be
written as follows:
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The use of equations (16) through (21) is self-explanatory; if the dimen-
sions and material properties of a given sandwich cylinder are known, the
stresses and displacements in terms of the external load, 2) may be easily
computed. In the case of sandwich cylinders having facings of equal thick-
ness, equations (16) - (21) reduce to equations (18) - (23) of the original
report. It is of interest to compare equations (16) - (21) with results
obtained by Reissner. a If Reissner's equations are expressed in the notation
used here, the following equations for the cylinder stresses result:    

Ne =qa 

t
E
E	 ,1 +	 kl - b/a)

ca  

EtE2 +	 - b/a)Eca    

1. N = qae 2 4. Et ( 1 _ b/a)
E a

and

a	 (at middle surface of core) = qrc
21 

(1 b/a) [	 Et2 + — (1 - b/a)
E

Equations (16)	 (18), for facings of equal thickness, may be written as
follows: 

Ne = qa 

b 
EtEE

- --- log b/a
a	 ca   

1 + b/a Et log b/aca    

Ne = qa 1 

and 

/
1 +	

Et
- --- log b/aEt 

( 2	 1 

	arc 	 middle surface of core) = q

	

re	 1 + bia) [1 4. b/a Et--- log b/a]
Eca

Since the first term in the series expansion of log b/a is - (1 - b/a), it
may be noted that, for cylinders with b/a ratios close to 1, the equations
of Reissner yield results that are very nearly the same as those given by
equations (16), (17), and (18). Reissner's results are based on the assump-
tion that a - b < < a and hence become increasingly less accurate as the
cylinder thickness is increased.

2Reissner, Eric, Small Bending and Stretching of Sandwich-type Shells.
National Advisory Committee on Aeronautics, Tech. Note 1832. 1949.
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where

b2
Et o (1 - 

;5
)

* - 	

2Gr0 b (1 - p
2

)

Equation (70), with n = 2, yields values of y er within 3 percent of the

values obtained from equation (69) for usual sandwich constructions.

For cylinders having very thin facings (membrane facings) of equal thick-
ness, 00 and O i are assumed to be zero, and equation (70) reduces to

(3.	 .12y

(n2	 1) (71)y	 = -	 -
cr /n2 Et kl

1 +

b)

a2 	
2Gre b (1 -

2
)

Equation (71), for n = 2, becomes

7cr  

3
( _)2

(72)
2Et (1 -

+ 	
Gre b (1 - p

2 )

The value of ger is then determined from the definition previously given,

Et 
qcr -	 7cr

a (1 - p.2)

Equation (72) may be used as a good approximation to the expression ob-
tained in the original report (equation 6!-) for the critical load on
cylinders with membrane facings.

It is of interest to examine the results given by equation (68) for certain
limiting cases other than that of membrane facings. Some of these results
are given in table 1. In each of these	 limiting cases, 0 0 and O i are

neglected as compared to 1.

Equation (68) may be used for determining the approximate value of the
critical load on long sandwich panels in the form of a portion of a cylinder
hinged along the edges e 0 and e = 2a as shown in figure (7). If, in
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equation (68), th is substituted for n, the smaller absolute value of
a obtained from equation (68) represents the critical load on a panel
whose dimensions and properties are known. This solution applies to the
unsymmetrical type of buckling shown in figure (7). If, as in the case
of relatively flat panels, symmetrical buckling with no inflection point
between the supports occurs, equation (68) is not applicable.

Conclusions 

The purpose of this report was to extend the previous work done in con-
nection with sandwich cylinders subjected to uniform lateral loading by
taking into account the effect of the stiffnesses of the individual fac-
ings of the cylinder and also by making the results applicable to sand-
wich cylinders having facings of unequal thickness. The results indicate
that for the majority of sandwich cylinders the analysis based on membrane
facings is sufficiently accurate. However, for cylinders having relatively
thick facings, say in the neighborhood of one-fourth of the core thickness,
the facing stiffnesses have an appreciable effect on the critical load on
the composite cylinder. Since the magnitude of the effect of the facing
stiffnesses is dependent not only on the dimensions of the cylinder but
also on the mechanical properties of the core and facing materials, equa-
tion (68) of this report should be used for computing the critical load
if indications are that this effect may be important. In all cases of
sandwich cylinders having facings of unequal thickness, the equations of
this report should be used for computing stresses prior to buckling and
for the determination of critical loads.
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