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Polyphase Scrambled Walsh Codes for
Zero-Correlation Zone Extension in QS-CDMA

Kwonhue Choi, Senior Member, IEEE and Huaping Liu, Senior Member, IEEE

Abstract—Polyphase complex scrambling patterns are de-
signed to extend the zero-correlation zone (ZCZ) of a fam-
ily of user spreading sequences, called properly scrambled
Walsh-Hadamard (PSW) codes, recently proposed for quasi-
synchronous (QS) code-division multiple-access systems. The
merits of the binary (ZCZ equals 2) and quadri-phase (ZCZ
equals 4) PSW codes over the existing QS spreading codes are
still retained in the proposed polyphase PSW codes. Scrambling
patterns for the case of ZCZ of 8 are derived first. Then, the
scrambling pattern design rules are generalized for greater ZCZs
and a structured procedure to generate polyphase PSW codes for
any ZCZ is developed. Finally, the cross-correlation properties
of the proposed spreading codes are evaluated.

Index Terms—Quasi-synchronous CDMA, orthogonal spread-
ing codes, zero-correlation zone (ZCZ), scrambling.

I. INTRODUCTION

A family of user spreading sequences, called properly
scrambled Walsh-Hadamard (PSW) codes [1], is proposed
recently for quasi-synchronous code division multiple access
(QS-CDMA) systems. The work in [1] extends the binary
scrambling patterns given in [2] that achieves a zero cross-
correlation zone (ZCZ) of 2 to quadri-phase scrambling pat-
terns for a ZCZ of 4; that is, cross-correlation between any two
sequences is zero when the offset in time is within ±3 chips.
The major advantage of PSW codes over existing deterministic
ZCZ codes is that the effects of long code scrambling such
as multiple-access interference randomization and robustness
against interception are preserved. Additionally, PSW codes
have unique features such as no zero insertion, easy code
construction, and flexible code family size.

In this paper, we extend the scheme in [1] to achieve larger
ZCZs by designing polyphase scrambling patterns. Although
there are existing polyphase codes (e.g., those to extend ZCZ
[3] or to maintain flexible code parameters [4]), they are
deterministic codes and random scrambling on top of them
is not allowed. We first derive the scrambling pattern for ZCZ
of 8. The additional constraint to extend ZCZ from 4 to 8 is
derived based on the constraint for the case of ZCZ = 4. This
results in an 8-ary complex scrambling pattern, whose values
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are like 8-ary phase shift keying (PSK) symbols. From this
specific case, we further develop a generalized polyphase PSW
code construction procedure for larger ZCZ values, where
additional constraints to increase ZCZ from 2n to 2n+1 are
generated recursively. The proposed polyphase PSW codes
satisfy the theoretical limit of the code size given a ZCZ,
and the elements of the scrambling patterns are M -ary PSK
symbols with the number of phases M equal to ZCZ.

II. POLYPHASE PSW CODE CONSTRUCTION

We follow the definition and notations as adopted in [1]:
• N : code length
• s = [s0, s1, · · · sN−1]: length-N scrambling pattern
• w(i) = [w(i)

0 , w
(i)
1 , · · ·w(i)

N−1]: the ith row of the N ×N
Walsh-Hadamard (WH) matrix

• c(i) =
[
s0w

(i)
0 , s1w

(i)
1 , · · · , sN−1w

(i)
N−1

]
: the ith se-

quence of PSW code set c
• Rl,k(d): periodic cross correlation of c(l) and c(k) at an

offset of d chips, given as
∑N−1

n=0 c
(l)
n c

(k)
n+d

∗
, where the

subscript + denotes modulo-N addition and (·)∗ denotes
complex conjugate

• ZCZ: zero correlation zone in chips, i.e., the maximum
value of T such that Rl,k(d) = 0, −T < d < T .

A. Scrambling Pattern to Achieve ZCZ=8

The scrambling pattern conditions for ZCZ of 4 given
in Table 1 of [1] are briefly summarized as follows. First,
s0:(N/4−1), which denotes the first quarter part of the binary
scrambling pattern, is arbitrarily generated. Then, the second
quarter part sN/4:(N/2−1) and the second half part sN/2:(N−1)

are generated by the following two steps:

sN/4:(N/2−1) = s0:(N/4−1) ¯ f [a,−a, a,−a, · · · ] (1a)
sN/2:(N−1) = s0:(N/2−1) ¯ [b,−b, b,−b, · · · ] (1b)

where ¯ denotes element-by-element multiplication, b = ±1,
a =

[±
√

b,±√−b
]
, f = 1 for the first and 2nd quarter rows

of WH matrix or f = j for the third and fourth quarter rows,
and [a,−a, a,−a, · · · ] denotes the repeated concatenation of
a and −a. Since this condition guarantees Rl,k(d) = 0
when d equals 0,±1,±3,±5,±7, · · · , and any integers whose
remainder of modulo 4 is 2 (that is, ±2,±6,±10, · · · ), ZCZ
can be extended to 8 if additional constraints are applied on
the scrambling patterns to ensure Rl,k(d) = 0 at d = ±4. For
the case of ZCZ = 8, the maximum code size will be N/8 by
the theoretical bound.

Next, we derive 8-phase scrambling patterns that achieve
Rl,k(d) = 0 with d = ±4 for N/8 rows of the N × N
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Walsh-Hadamard (WH) matrix. For simplicity of description,
let us call the N/8 rows of the N × N WH matrix a
subset; thus, the WH matrix has 8 subsets and the vth subset
is

{
w((v−1)N/8+1),w((v−1)N/8+2), · · · ,w(vN/8)

}
. Consider

the scrambling patterns for the 1st subset (v=1). From the
WH matrix structure, this subset satisfies the following re-
lation: w

(l)
mN/8+n = w

(l)
n for m = 1, 2, · · · , 7, and 0 ≤

n ≤ N/8− 1. Thus, w
(l)
mN/8+nw

(k)
mN/8+n+4 = w

(l)
n w

(k)
n+4

for l = 1, · · · , N/8 and k = 1, · · · , N/8. Substituting
this into Eq. (2) in [1], Rl,k(4) is rewritten as Rl,k (4)
= 4

∑N
8 −1

n=0

(
sns∗n+4 + sN

8 +ns∗N
8 +n+4

)
w

(l)
n w

(k)
n+4, where the

identity sm N
4 +ns∗

m N
4 +n+4

= sns∗n+4 for m = 1, 2, 3 is used
because sn should satisfy (12), (13) or (14a), (14b) in [1] for
Rl,k(±2) = 0.

To ensure Rl,k(4) = 0, the scrambling pattern should satisfy

sns∗n+4 + sN
8 +ns∗N

8 +n+4
= 0, ∀n. (2)

By applying sns∗n = 1, ∀n, (2) is expressed as sn

s N
8 +n

=

− sn+4
s N

8 +n+4
, ∀n, which is rewritten as

si

sN
8 +i

=− s4+i

sN
8 +4+i

=
s8+i

sN
8 +8+i

· · ·=
sN

8 +i

sN
4 +i

, i = 0, 1, 2, 3. (3)

In further derivations, we consider the case of b = 1, a =
[1, j] and f = 1 in (1a) and (1b). With these parameters, (1a)
becomes sN

4 :( N
2 −1) = [s0, js1,−s2,−js3, · · · ]. Setting i = 0

in (3) and substituting sN
4

= s0 into the final term lead to
s0

s N
8

=
s N

8
s0

, which results in s0
s N

8

= ±1. Hence,

sN
8 :4:

(
N
4 −4

) = ±[
s0,−s4, s8,−s12, · · · ,−sN

8 −4

]
(4)

where sx:y:z denotes [sx, sx+y, sx+2y, · · · , sz].
Similarly, substituting sN

4 +1 = js1, sN
4 +2 = −s2, sN

4 +3 =
−js3 into (3) for i = 1, 2, 3, respectively, results in sN

8 +1 =
±ejπ/4s1, sN

8 +2 = ±ejπ/2s2 and sN
8 +3 = ±ej3π/4s3. Thus,

s( N
8 +1):4:( N

4 −3) =±e
jπ
4

[
s1,−s5, s9,−s13, · · · ,−sN

8 −3

]
(5)

s( N
8 +2):4:( N

4 −2) =±e
jπ
2

[
s2,−s6, s10,−s14, · · · ,−sN

8 −2

]
(6)

s( N
8 +3):4:( N

4 −1) =±e
j3π
4

[
s3,−s7, s11,−s15, · · · ,−sN

8 −1

]
.(7)

Eqs. (4)-(7) can be combined as

sN
8 :( N

4 −1) = [p,−p,p,−p, · · · ]¯ s0:( N
8 −1) (8)

where the notation [a,b] denotes the concatenated sequence
of a and b, and p is expressed as

p = [±1,±ejπ/4,±ejπ/2,±ej3π/4]. (9)

B. Generalization to Larger ZCZ

Eq. (8) shows that the 2nd half of a quarter of s (i.e.,
sN/8, · · · , sN/4−1) is obtained by scrambling the first half of
the same quarter of s (i.e., s0, · · · , sN/8−1) with the sequence
formed by repeating [p,−p]. Let us call [p,−p] the unit
inner scrambling pattern (UISP). As observed from (9), p can
be obtained by taking the element-by-element square-root of
vector [1, j,−1,−j], which is the UISP chosen for generating

the 2nd quarter of s in (1a). Further, the first half of this UISP
(i.e., [1, j]) is one of the element-by-element square roots of
[1,−1], which is the UISP for generating the second half of s
in (1b). This process can be generalized to recursively obtain
the UISPs for ZCZs that are a power of 2 (i.e., ZCZ = 2n)
as:

pi = ±√[pi−1,−pi−1], i = 2, · · · , n; p1 = [±1] (10)

where
√

x denotes element-by-element square-root of se-
quence x and ± indicates that the polarity of the elements
of
√

x can be arbitrarily chosen to be 1 or −1. Let [pi,−pi]
be the UISP for generating the second partition of 2i partitions
of s, i.e.,

[
s N

2i
, · · · , s N

2i−1−1

]
.

A method to derive the scrambling patterns for the 1st subset
(i.e., v=1) has been discussed in Sec. II-A. The same procedure
applies in deriving the patterns p for the remaining subsets
(2 ≤ v ≤ 8). Similar to the case of ZCZ = 4, for which
f in (1a) is determined based on the selected subset of WH
sequences, the WH matrix structure results in two kinds of
recursive UISP generation equations: pi = ±√

[pi−1,−pi−1]
or pi = j

(±√
[pi−1,−pi−1]

)
, depending on the value of v

and i. Therefore, (10) can be further generalized for the vth
subset as pi = jbv,i

(±√
[pi−1,−pi−1]

)
, where bv,i equals 0

or 1, and is determined as bv,i = LSB (least significant bit)
of

⌊
(v − 1)2i−1/ZCZ

⌋
, by exploiting the structural properties

of the WH matrix.
A structured procedure to generate the polyphase PSW

codes for any ZCZ is thus summarized in Table I. This proce-
dure consists of four steps: parameter input, inner scrambling
pattern set generation, outer scrambling pattern generation, and
scrambling of WH sequence subset. Line 13 shows that the
scrambling pattern is recursively extended via inner scram-
bling and concatenation until it reaches WH sequence length
N . The options in lines 3 and 6, and the first N/ZCZ chips
of the scrambling pattern in line 8 can be arbitrarily chosen.
This results in nondeterministic scrambling patterns, which
preserves randomness in the scrambled WH sequence set,
although randomness is reduced compared to the conventional
long code scrambling. When used as user spreading sequences
in cellular CDMA systems, the proposed polyphase PSW
codes can be made random and different for different data
symbols and for different cells. This is a feature of the
proposed polyphase PSW codes that existing ZCZ codes do
not have since random scrambling over them is not allowed
[1].

Lines 16 and 17 show that the code size is equal to N/ZCZ,
which satisfies the theoretical limit of ZCZ code size with
sequence length N (eq. (15) of [5]). Also note that the
procedure in Table I includes the scrambling pattern rules for
ZCZ = 4 given in (1a) and (1b).

III. CROSS CORRELATION OF PSW CODES

The cross-correlation properties of the proposed polyphase
PSW codes in terms of the following two correlation metrics
are assessed in this section:

1) Average periodic cross-correlation power over all se-
quence pairs, i.e., El 6=k

[ |Rl,k(d)|2 ]
.
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TABLE I
POLYPHASE PSW CODE GENERATION

Parameter input
1 Input code length N and ZCZ;
2 Input v, the index of WH sequence subsets, v ∈

{1, 2, · · · , ZCZ}.
Inner scrambling pattern set

{
p1,p2, · · · ,plog2 (ZCZ)

}
generation

3 p1 = ±1;
4 FOR i = 2 to log2 (ZCZ)
5 bv,i = LSB of

⌊
(v − 1)2i−1/ZCZ

⌋
;

6(a) pi = jbv,i × (±√
[pi−1,−pi−1]

)
;

7 END FOR
Outer scrambling pattern generation

8 Generate first N/ZCZ chips of s, i.e.,
[s0, s1, · · · , sN/ZCZ−1] with the random chips
si ∈ {ejθ, ej2θ, · · · , 1} with θ = 2π/ZCZ;

9 r = s0:(N/ZCZ−1);
10 FOR i = 0 to log2 (ZCZ)− 1
11 l = log2 (ZCZ)− i;
12(b) q =

[
[pl,−pl] , [pl,−pl] , · · · : 4iN

ZCZ2

]
;

13(c) r ⇐ [r, r¯ q];
14 END FOR
15 s = r;

Scrambling of WH sequence subset
16 FOR i = 1 to N/ZCZ

17(d) c(i) = s¯w

(
(v−1)N/ZCZ+i

)
;

18 END FOR
(a) [a,b] denotes the concatenation of the sequence a and the

sequence b.
√

x denotes element-by-element square-root of
the sequence x and ± indicates that the polarity of the
elements of

√
x can be arbitrarily chosen to be 1 or −1.

(b) [a,a, · · · : n] denotes n-times concatenation of the sequence
a.

(c) ¯ denotes element-by-element multiplication.
(d) w(l) denotes the lth row of the N ×N WH matrix.

2) Average data modulated correlation power over all se-
quence pairs and data symbols within an access window
size of W given as:

I(W ) =
1

2W + 1
∑W

d=−W El 6=k

[ |Xl,k(d)|2 ]
. (11)

The definition of Xl,k(d) is given by Eq. (17) of [1].
Fig. 1 shows El 6=k

[ |Rl,k(d)|2 ]
for N = 256, ZCZ = 16

and several WH sequence subset indices v′s. It is observed
that El 6=k

[ |Rl,k(d)|2 ] 6= 0 only at d = ±16,±32,±48, · · · ;
thus, El 6=k

[ |Rl,k(d)|2 ]
= 0 for −15 ≤ d ≤ 15, which

verifies that ZCZ = 16. It is also observed that the values
of El 6=k

[ |Rl,k(d)|2 ]
are identical irrespective of v; this im-

plies that the procedure in Table I achieves the desired ZCZ
irrespective of which subset of WH sequence is chosen as the
base sequence set.

Fig. 2 plots I(W ) expressed in (11) for several values of
N and ZCZ in order to assess the multiple access interference
when the proposed codes are used as user spreading sequences
for quasi-synchronous CDMA. It is observed that interference
is not zero even when the access window size W is smaller
than ZCZ. This is because the delayed version of other users’
sequences after data modulation is not exactly the cyclicly
shifted version in the desired sequence period; thus, the
correlation values of the data modulated sequences differ from
their periodic correlation. However, this is still far smaller than
N , which is the average power of cross correlation between
two random sequences of length N . Note that I(W ) increases
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Fig. 1. Average periodic cross correlation power over all sequence pairs
(N = 256, ZCZ = 16 and v = 1,5,16).

drastically when the access timing window W is greater than
ZCZ. This is because the large correlation at d = ± ZCZ is
included within the window.
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Fig. 2. Average data modulated correlation power over all sequence pairs
and data symbols within access window size of W .

IV. CONCLUSIONS

We have proposed polyphase PSW codes for ZCZ extension
and developed a systematic code construction procedure. The
proposed polyphase PSW codes retain the unique features of
existing binary and quadri-phase PSW codes that other existing
ZCZ codes do not have. A larger ZCZ allows the polyphase
PSW codes be employed in multi-path fading environments,
and guarantees other users’ signals that arrive either via the
direct path or multi-path be removed in the desired user’s de-
spreading process.
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