
Spatial Scale, Means and Gradients of Hydrographic Variables Define 
Pelagic Seascapes of Bluefin and Bullet Tuna Spawning Distribution

Alvarez-Berastegui, D., Ciannelli, L., Aparicio-Gonzalez, A., Reglero, P., Hidalgo, 
M., et al. (2014) Spatial Scale, Means and Gradients of Hydrographic Variables 
Define Pelagic Seascapes of Bluefin and Bullet Tuna Spawning Distribution. PLoS 
ONE, 9(10), e109338. doi:10.1371/journal.pone.0109338

10.1371/journal.pone.0109338

Public Library of Science

Version of Record

http://cdss.library.oregonstate.edu/sa-termsofuse

http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse


Spatial Scale, Means and Gradients of Hydrographic
Variables Define Pelagic Seascapes of Bluefin and Bullet
Tuna Spawning Distribution
Diego Alvarez-Berastegui1*, Lorenzo Ciannelli2, Alberto Aparicio-Gonzalez3, Patricia Reglero3,
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Abstract

Seascape ecology is an emerging discipline focused on understanding how features of the marine habitat influence the
spatial distribution of marine species. However, there is still a gap in the development of concepts and techniques for its
application in the marine pelagic realm, where there are no clear boundaries delimitating habitats. Here we demonstrate
that pelagic seascape metrics defined as a combination of hydrographic variables and their spatial gradients calculated at
an appropriate spatial scale, improve our ability to model pelagic fish distribution. We apply the analysis to study the
spawning locations of two tuna species: Atlantic bluefin and bullet tuna. These two species represent a gradient in life
history strategies. Bluefin tuna has a large body size and is a long-distant migrant, while bullet tuna has a small body size
and lives year-round in coastal waters within the Mediterranean Sea. The results show that the models performance
incorporating the proposed seascape metrics increases significantly when compared with models that do not consider
these metrics. This improvement is more important for Atlantic bluefin, whose spawning ecology is dependent on the local
oceanographic scenario, than it is for bullet tuna, which is less influenced by the hydrographic conditions. Our study
advances our understanding of how species perceive their habitat and confirms that the spatial scale at which the seascape
metrics provide information is related to the spawning ecology and life history strategy of each species.
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Introduction

Seascape ecology represents an emerging field in the study of

how the habitat structure shapes the spatial distribution of marine

species and influences key ecological processes [1],[2]. This

discipline initiated applying techniques and metrics from the

traditional landscape ecology to characterize and quantify spatial

structure of benthic habitats, observed as a mosaic of patches of

different habitat classes [1],[3],[4], [5],[6]. Nevertheless, there is

still a gap in the development of concepts and techniques

providing metrics to characterize the spatial structure of the

seascape in the pelagic environments, where there are no clear

boundaries delimitating different habitats [1],[2],[6]. In the

framework of landscape ecology spatial gradients have been

recently proposed as more appropriated metric than traditional

categorical patch mosaic based metrics to characterize continuous

habitats [7]. Accordingly, a location in a pelagic seascape would be

better characterized by the combination of the value of a

particular hydrographic variable and its spatial gradient.

Several studies have applied gradients of hydrographic param-

eters to characterize the spatial distribution of marine species

during various life history stages, as nursery, foraging or spawning

[8],[9],[10],[11],[12]. It is likely that the scale at which an

individual perceive a change in the environment (i.e., a gradient)
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varies according to life history, ontogeny and to the hydrographic

variable in exam. For instance, while large-scale gradients

associated with the North Pacific transition zone drive the location

of many pelagic predators including albacore tuna (Thunnus
alalunga) during their feeding migratory stages [13], once off the

west coast of the US, albacore tuna distribution is associated with

smaller scale features linked to upwelling fronts [14]. In the

Mediterranean Sea during spawning, bluefin tuna distribution is

regulated by oceanographic variables that can change at relatively

small scales [15],[16]. In spite of the expected importance of

gradient scales, to our knowledge there are no studies that have

evaluated the effect of changing the spatial scales at which

environmental gradients are calculated to model the spatial

distribution of fish. The goal of our study is to examine the

distribution of large pelagic predators during spawning by

explicitly considering mean, gradients and scale of gradients of

hydrographic variables.

Atlantic bluefin tuna (Thunnus thynnus) and bullet tuna (Auxis
rochei rochei) are two species of pelagic predators showing different

spawning strategies. We target these species in the Balearic Sea

(Figure 1), known as a recurrent spawning area for large pelagic

species in the Western Mediterranean [17]. Bluefin tuna is a highly

migratory species; the Eastern population enters in the Mediter-

ranean Sea from the North Atlantic at the end of spring and early

summer [18],[19]. Their spawning activity at the Balearic Sea is

linked to the regional oceanography with spawning grounds

located in the vicinity of frontal structures formed when the recent

Atlantic water mass encounters the more saline resident surface

Atlantic waters [15]. The area is characterized by highly dynamic

processes that promote a seascape shaped by filaments, fronts and

eddies whose location varies between years [20],[21]. Bullet tuna,

by contrast, is smaller and more frequent in near coastal areas

[22]. The spawning of bullet tuna is associated with the geography.

Young larvae are found mainly in coastal areas and with little

influence of the local oceanography in comparison with bluefin

[16].

We expect that, when selecting spawning locations, a large-

bodied and long-distance migratory pelagic fish, such as the

bluefin tuna explores its environment at larger spatial scales than

bullet tuna, a small-bodied and non-migratory pelagic fish.

Therefore, we expect that pelagic seascape metrics based on the

combination of hydrographic parameter values and their gradients

calculated at appropriate spatial scales provide relevant informa-

tion for bluefin tuna but not for bullet tuna, where we expect a

greater reliance on geographic and hydrographic parameters,

calculated at comparatively small-scale.

In this work we analyze the influence of the pelagic environment

by depicting the spatial scales at which gradients of hydrographic

variables are linked to the spawning ecology of these tuna species.

We investigate the two most relevant hydrographic variables

describing their spawning spatial distribution: salinity and

geostrophic currents velocity [16], already determined in previous

studies. Our analytical approach has two steps. Firstly, we identify

the scale at which each hydrographic variable (Figure 2) maxi-

mizes the performance of a model fitted to larval distribution.

Second, we evaluate whether components of the seascape (i.e.,

mean and gradients of oceanographic variables) are interactively

affecting the spatial distribution of tuna larvae. By performing this

analysis on two species we evaluate how fish with contrasting life

history strategies perceive their environments when deciding for

spawning locations.

Materials and Methods

Data acquisition
Bluefin and bullet tuna larvae were collected during ichthyo-

plankton surveys using Bongo nets from 2001 to 2005. The surveys

were conducted by the Instituto Español de Oceanografı́a (www.

ieo.es), a Spanish Government marine research institution. The

sampling scheme was communicated and approved by the Spanish

Directorate of Fisheries before the sampling was conducted. No

specific ethical approval was required and the survey of biological

data was conducted using Bongo nets,which are accepted standard

Figure 1. Location of the Balearic Islands, Western Mediterranean.
doi:10.1371/journal.pone.0109338.g001
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techniques for this type of surveys, used worldwide for the

collection of plankton samples, including billfish and tuna larvae

[15],[17], [23], [24]. The nets were towed at low speeds, around 2

knots, during 8–10 minutes, and plankton samples were immedi-

ately preserved with 4% formalin buffered with borax onboard.

Around 200 stations were sampled every year, in a regular

sampling grid of 10610 nm located between 37.85u–40.35u N and

0.77u–4.91uE, covering a total area of 101360 km2

( = 2806362 km) around the Balearic archipelago. The sampling

was conducted during June–July coinciding with the spawning

period of bullet and bluefin tuna (see [15] for details of the

sampling procedures). Tuna larvae were identified to the species

level and measured in standard length. All larvae identified as yolk

sac and preflexion stages (,4.5 mm) were classified as ‘‘stage 1’’.

Mean and maximum age of larvae under this size are 6 days

and 11 days old respectively, accounting for growth [25] and

hatching time [26]. Displacement from spawning areas during

these intervals in the study area are below 25 kilometers for the

mean ages, which are in the range of 1.4 sampling stations, and

46 kilometers for the maximum ages, what is in the range of 2.6

sampling stations. These values have been calculated following

methods in [27]. Considering these values, abundances of stage 1

Figure 2. Sea surface salinity field in 2003. Spatial means of sea surface salinity processed at two different scales A) 0.15 degrees and B) 0.75
degrees. Spatial means were interpolated following an objective analysis onto a regular grid by using minimum error variance methods (Bretherton,
1976). The squares in each figure show the polygons used for the calculation of the spatial gradients at the two scales at station X.
doi:10.1371/journal.pone.0109338.g002
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larvae have been defined to get a proxy of spawning locations as in

previous research in the study area [28].

Vertical profiles of conductivity, temperature and pressure data

were recorded at all stations, by means of Sbe911 CTD. Sea

surface salinity at each station (SAL) was calculated as the mean

salinity over the mixed layer depth. Geostrophic velocities (GVEL)

were calculated at sea surface from the first-derivative of the sea

surface height between adjacent points, which was obtained by

vertical integration of the specific volume, using 600 m as the level

of no motion [21].

These two variables (SAL and GVEL) were selected, since they

have been demonstrated to be the two most relevant environ-

mental variables describing the spawning spatial distribution of

tuna [16]. Sea surface temperature was also included in the models

since in this area it is a secondary but relevant variable mainly

related to the phenology of the spawning process [29]. However,

the spatial gradient was not explored because sea surface

temperature during the summer changes relatively fast due to

solar irradiance [21].

Processing of spatial gradients along continuous spatial
scales

Spatial gradients from the sea surface salinity field (gSAL) and

geostrophic velocity field (gGVEL) within the sampled region were

calculated at six spatial scales, from 0.15u to 0.90u with a spatial

increment of 0.15u. The minimum (0.15u) and the maximum scale

(0.90u) were in the range of the smallest (from 0.13u to 0.27u) and

largest (up to 0.92u) mesoscale oceanographic structures in the

area [21]. For the computation of the gradients, nine square

polygons at every scale were delimitated around each sampling

position (see examples for scale 0.15u and 0.75u in figure 2A, 2B

respectively). The gradient was then computed as the maximum

absolute difference between the mean hydrographic variable at the

center polygon and each of the eight surrounding polygons

standardized to distance [9]. The software for the spatial

processing was developed in R language [30].

Identification of spatial scales
Comparison of how models perform along scales allowed

identifying the spatial scales at which information provided by

gradients is maximized. The effect of gGVEL and gSAL at each

scale on the abundance of bullet and bluefin tuna larvae was

assessed using nonparametric regression statistical models (gener-

alized additive models, GAMs, [31]). A base model was

formulated to describe inter-annual variability (variable YEAR),

sampling location (latitude and longitude variables), and the hour

of the day on the catch of tuna larvae. Over-dispersed Poisson

distribution family and a natural-log link were selected to model

larval data. The volume of water filtered was included as an offset

(after natural log transformation), to account for the effort

expanded in catching the sample (Equation 1). The effects of

these variables on the base model have been already analyzed in

previous studies [16]. Here, the base model represented the null

hypothesis of no gradient effect on tuna larvae distribution, against

which all other more complex formulations will be compared.

Equation 1: Base model

Larvae abundance~offset log m3ð Þð Þzfactor yearð Þ

zsm1 long, latð Þzsm2 hourð Þ

m3 = volume filtered by the bongo nets (m3); long = longitude;

lat = latitude; hour = hour of the day expressed from 0 to 1, sm1

and sm2 the smoothing functions.

At each spatial scale a GAM model was processed including the

gradient of one hydrographic variable (gSAL, gGVEL) as a new

additive term (s3) in the standardization model. The number of

knots for the new smoother was always set to a maximum of three

(i.e. two degrees of freedom) in order to avoid over fitting in the

responses.

The identification of characteristic spatial scales (cgSAL,

cgGVEL) was assessed with scalogram where the scale of the

covariate is plotted against a measure of the model goodness of fit,

which in our case were represented by the adjusted R-squared

(Rsq, the higher the better), and the Generalized Cross Validation

(GCV, the lower the better) [31]. We selected the scale that

maximize Rsq and minimize the GCV. Results of the base model

(when a seascape covariate was not included) were presented in the

same graphics. Note that due to the greater complexity of the

gradient model higher Rsq values do not necessarily imply an

improvement in relation to the base model, while they do

represent a better performance when compared to other gradient

models.

Significant differences of Rsq values between models, or GCVs,

were obtained from t-test of these parameters obtained from 500

iterations where 10% of the data was excluded. For all cases,

alternative hypothesis (difference in means is not equal to 0) was

accepted only if the P value was lower than 0.001, with a

confidence level of 0.99. When one variable presented similar Rsq

and GCV values at various scales, selection was assessed by

inspection of the plot showing the response of the abundance in

relation to the gradient processed at those scales.

Once the characteristic scale of the gradients was identified, we

tackled the questions of whether the information provided by the

gradients is different and complementary to the information

provided by the hydrographic variables from which they were

calculated, and in that case, how the information from these two

variables (spatial mean and gradient) should be combined to

maximize the goodness of fit of the models and the ecological

information they provide. To assess these questions we analyzed

the performance of models with different complexity:

i) The base model from equation 1.

ii) Hydrographic models combining the sea surface salinity,

geostrophic velocity and sea surface temperature at the

sampling station (stSAL, stGVEL, stSST).

iii) Seascape models combining the gradients at characteristic

scales (cgSAL, cgGVEL) and the hydrographic variable at

the sampling location (stSAL, stGVEL, stSST). Different

seascape models were constructed including the two

components of the seascape (values at stations and gradients)

as additive and interactive terms. An interaction may be

ecologically meaningful when a species is selecting its

spawning habitat on a specific side of a frontal region, for

example. In such case, it is the combination of both the

gradient and the mean that provide the suitable conditions

for spawning. The performance of different model configu-

rations for each species was assessed by the delta AIC

(DAIC), calculated as the difference between model AICs and

the base model AIC. The AIC in this case is best suited for

model comparisons because each model had different

number of variables [32]. Rsq, GCV and explained

deviances were used to compare how models perform

between the two species, as AIC values among models with

different dependent variables are not comparable.

Pelagic Seascapes of Bluefin and Bullet Tuna Spawning Distribution
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Results

Identification of characteristic spatial scales
In all years considered, the recent Atlantic water masses

encountered the more saline resident water masses forming an

oceanic frontal zone inside the study area. The size of such frontal

zone was bigger than other oceanographic phenomena as small

eddies and meanders derived from the instabilities along the haline

front and the effect of strong bathymetric changes (Figures S3, S4).

The scalogram of gGVEL for bluefin showed that Rsq values

gradually improve as the spatial scales increased to a maximum at

0.6u (Rsq = 0.44, Figure 3A), which was chosen as the geostrophic

velocity gradient characteristic scale for bluefin tuna. Values of

GCV showed a similar pattern of model improvement, being

significantly better than the base model at 0.6 degrees (Figure 3B).

At this characteristic scale the response of the larvae abundance is

positively related to the gradient of geostrophic velocity (Fig-

ure 3C).

The scalograms of gSAL for bluefin tuna showed also an

increment of Rsq with higher values at 0.6u and 0.75u that also

coincide with lower values of GCV (Figure 3D, 3E). Differences of

R-sq between these two scales (0.6u and 0.75u) were not significant.

The characteristic scale for gSAL was chosen at 0.6u as the model

response at this scale presented a less ambiguous effect on larval

abundance (Figure 3F). The gSAL at 0.75u spatial gradients

displays a dome-shaped response with a less clear ecological

interpretation (Figure S1). At this scale GCV was lower than the

base model.

In contrast to the results obtained for salinity, the gradients of

geostrophic velocities (gGVEL) did not show any single scale that

maximizes R-square and minimizes GCV for bullet tuna

(Figure 4A, 4B). The Rsq scalogram showed a flat trend with

the highest value at 0.15 degrees. The Rsq value at this scale

( = 0.18) showed similar values than other scales (values between

0.170 and 0.173) or when compared to the base model ( = 0.166).

On the contrary the GCV scalogram showed significantly lower

values than the base model at 0.45 and 0.6 degrees, scales at which

Rsq were not even significantly higher than the base model.

Therefore, the contradictory response of the model performance

indicators, the flat trend of Rsq scalogram and their very low

values (despite the higher complexity of the gradient models in

relation to the base model), may indicate that the spatial gradient

of geostrophic velocity is not a valid seascape metric for the

spawning locations of bullet tuna. Consequently, gGVEL was

excluded from further analysis in relation to this species.

The gSAL scalogram of bullet tuna showed a moderate effect of

the scale at which gradients were calculated. The shape of the

scalogram did not show a peak scale at which model performs

better (Figure 4C). Scales from 0.45u, 0.6u and 0.75u for gSAL

seemed to maximize Rsq, but not being different from each other.

In this case GCV-scalograms showed the lowest at 0.75u
(Figure 4D), being significantly lower than the base model, which

Figure 3. Rsq and GCV Scalograms of bluefin tuna larva abundance models along spatial scales, standard deviations. Horizontal grey
lines indicate statistics from the base model (Straight line = mean, dashed line = Sd). Black dots show scales at which values are significantly different
from the standardization model. Red arrows indicate the selected characteristic scale.
doi:10.1371/journal.pone.0109338.g003
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was selected as characteristic scale. The Rsq at this scale was

higher ( = 0.21) than that of the base model (Rsq = 0.16). At this

scale, gradients displayed a negative effect on the bullet tuna larvae

abundance (Figure 4E) showing that bullet tuna spawning

locations are found with more probability in areas where salinity

is spatially homogeneous– a result that contrasted to that obtained

for bluefin tuna.

Species-specific seascape characterization
The best model for each species included a gradient and a mean

term (Tables 1 and 2). Note however that the hydrographic model

already represents an improvement respect to the standardization

model (Tables 1 and 2). For bluefin tuna the best seascape model

had an improvement of 186% of the Rsq when compared to the

base model (Rsq base mode = 0.23; Rsq best seascape mod-

el = 0.66, Table 1). The improvement for bullet was 61%,

considerably lower compared to bluefin (Rsq base mode = 0.16;

Rsq best seascape model = 0.25, Table 2).

Pearson correlation coefficients between hydrographical vari-

ables and their gradients at characteristic scales were in all cases

below 0.50 and pair plots showed no clear tendencies on the

correlations (Figure S2), indicating that selected gradients provided

complementary information to that of the hydrographical variable.

Models showed a better performance (i.e. lower GCV and higher

DAIC; Tables 1 and 2) in all the cases when the gradient and the

hydrographic value were considered as an interaction term,

suggesting dependence in their effect on larvae abundance rather

than an additive response. However, larvae abundance of each

species responded differently to the interaction of seascape

components (Figures 5A, 5B, 5C).

For Bluefin tuna, higher probability of spawning was associated

to higher values of geostrophic velocity gradients, but where

velocities at station may present either high or low values

(Figure 5A), (Figures S7, S8). Considering that a gradient is

characterized by an area with high current speed near an area of

low current speed, this result indicates that spawning locations

were not associated to a particular side of the gradient, but in an

area around the location where maximum velocities occurs. The

extension of this area would be around a circle of 0.6 degrees of

radius (aprox. 65 km in the study area), the characteristic scale at

which the gradients were more relevant. In contrast, the

interaction of the salinity seascape variables showed high larvae

abundances in areas with high salinity gradients and intermediate-

high salinity levels (Figure 5B), indicating an effect of the location

of the main haline front and a preference for spawning at the high

salinity values of that front (Figures S5, S6). The characteristic

spatial correlation scale of local oceanographic structures in the

area is around 18 nmi (aprox. 0.15 meridian degrees) [21] and

therefore surface oceanographic structures at smaller spatial scales

are ephemeral. The oceanographic structures at larger spatial

scales, relevant for bluefin tuna, are linked to the Med-Atlantic

salinity front and last longer.

The functional form of the interaction terms was different for

bullet tuna. The relation between the bullet tuna larvae

Figure 4. Rsq and GCV scalograms of bullet tuna larva abundance models along spatial scales, standard deviations. Horizontal grey
lines indicate statistics from the standardization model (Strait line = mean, dashed line = Sd). Black dots show scales at which values are significantly
different from the standardization model. Red arrows indicate selected characteristic scale.
doi:10.1371/journal.pone.0109338.g004
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abundance and the interaction of spatial distribution of sea surface

salinity and its gradients is presented in Figure 5C. Spawning

locations were associated to areas where the salinity at the station

were lower and gradients presented intermediate values, but the

interaction plot revealed that spawning also appears in areas of

higher salinities associated to very low gradients. Areas defined by

this twofold combination were located at both sides of the front

avoiding more mixed waters. This spatial distribution was more

evident in years 2001, 2003 and 2005 (Figures S9, S10)

Discussion

We have found that the combination of sea surface current

velocities, salinities and their gradients calculated at characteristic

spatial scales are relevant for the parameterization of the pelagic

seascape affecting a key ecological process of bluefin tuna. For

bullet tuna only salinity and their gradient provided a valid

seascape metric not being relevant the gradients of sea surface

current velocities. In agreement with our expectations, the

importance of these metrics was much higher for bluefin, a

large-bodied, long distance migratory and more dependent on

local oceanography than were for bullet tuna a smaller coastal

species with shorter migration distance.

Previous studies have documented the links between the frontal

activity and the spawning of bluefin tuna [15],[16],[33]. In this

study we add to these results by examining the effect of gradients

and their interactions with hydrographic mean. These metrics

improved our understanding of the conditions for bluefin and

bullet tuna spawning when compared to models using just the

hydrographical values but not the gradients. Furthermore the

identification of characteristic scales of gradients provided a new

source of information for the interpretation of how local

oceanography determines the selection of the site to spawn.

For bluefin tuna larvae, spatial salinity and geostrophic velocity

gradients maximize spatial model performance when calculated at

0.6 degrees. The higher abundance of bluefin tuna larvae in areas

with intermediate to high salinities and with high gradients of

velocity is consistent among years. Higher abundance occurs

around the location of the main frontal area, at the side of higher

salinity of the front and where current speed presents high values.

Higher salinity water likely has higher resident time near the

islands than the less saline water, which may run along the front

towards east getting farther from the archipelago. Spawning at the

higher salinity side may favor spatial overlap with other larval

species that are also located in this water mass [17],[34].

Results for bullet tuna showed that pelagic seascape metrics are

not as relevant to explain the spawning distribution as they are for

bluefin. In the western Mediterranean, bullet tuna spawning has

been associated to near coastal areas [22], being less influenced by

the local oceanography than bluefin tuna [16], which is consistent

with our results.

Table 1. Summary of GAM models of larvae abundance for Atlantic bluefin tuna (Thunnus thynnus).

Model group Model variables R2 Dev(%) GCV AIC delta AIC

Base model (latitude, longitude) + filtered volume + hour 0.232 40.8 4,596 3985,54 0

One additive variable
models

base model + stGVEL0.15 0,271 43,4 4,412 3827,79 157,75

base model + gGVEL0.6 0,39 49,4 3,947 3465,03 520,50

base model + stSAL0.15 0,222 41,8 4,534 3924,70 60,84

base model + gSAL0.6 0,301 45,1 4,275 3723,53 262,01

Hydrographic model base model + stGVEL + stSAL + stTEMP 0,472 51,6 3,814 3338,62 646,92

GVEL seascape models Hydrographic model + stGVEL + gGVEL0.6 0,53 55,8 3,500 3087,14 898,40

Hydrographic model + (stGVEL,gGVEL0.6) 0,666 59,3 3,251 2881,29 1104,25

SAL seascape models Hydrographic model + stSAL + gSAL0.6 0,506 54,8 3,571 3145,80 839,74

Hydrographic model + (stSAL,gSAL0.6) 0,533 57,1 3,417 3009,58 975,96

Interaction terms included in parenthesis.
doi:10.1371/journal.pone.0109338.t001

Table 2. Summary of GAM models of larvae abundance for bullet tuna (Auxis rochei rochei). Interaction terms included in
parenthesis.

Model group Model variables R2 Dev(%) GCV AIC delta AIC

Base model (latitude, longitude) + filtered volume + hour 0,158 32,8 9,615 8857,17 0

One additive variable
models

base model + GVEL st0.15 0,177 35,3 9,281 8572,91 284,26

base model + stSAL0.15 0,16 36,5 9,130 8440,06 417,11

base model + gSAL0.75 0,207 39,6 8,741 8098,28 758,89

Hydrographic model base model + stGVEL + stSAL + stTEMP 0,192 38,8 8,847 8183,39 673,78

SAL seascape models Hydrographic model + stSAL + gSAL0.75 0,215 40,6 8,617 7984,18 872,99

Hydrographic model + (stSAL,gSAL0.75) 0,255 43,1 8,327 7708,82 1148,35

doi:10.1371/journal.pone.0109338.t002
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Despite the lower importance seascape metrics in bullet tuna,

the inclusion of salinity gradients provided additional information

for the identification of spawning sites. The analysis indicated that

bullet tuna spawning areas are mostly found in areas where salinity

gradients are low. Bullet tuna was found at both sides of the front

but avoiding more mixed waters, located closer to the front. This

was verified when observing the spatial distribution of larvae in

relation to the salinity seascapes among the different years. For

instance, in 2001, 2003 and 2005 high larvae abundances were

observed North of the archipelago (high salinity waters with very

low gradients), but intermediate abundances, indicating spawning,

also occurs in Southern areas (low salinities and intermediate

gradients). In 2002 and 2004 higher abundances were linked to

low salinity and intermediate gradients shown in the south of the

archipelago (Fig. S9 and S10). These results reinforce the theory of

bullet tuna spawning occurs in widespread geographic areas, and

not only close to the coast and suggest that the location of the main

haline front negatively affects the spawning of this species.

Overall results related to bullet tuna point to the fact that,

besides the avoidance of areas near strong surface haline gradients,

other factors not considered in this study may also be relevant for

spawning site selection in this species. It is also relevant that the

spatial pattern in relation to the salinity is the opposite to that

shown by bluefin tuna, located in areas near the front, suggesting

possible avoidance of predators by bullet spawners [35].

The application of seascape metrics derived from salinity and

geostrophic currents to characterize the spawning habitat provides

new descriptors for environmental variables that improve model

quality and predictions. This improvement allows a more precise

identification of the relationships between the spatial location of

the spawning grounds and the local oceanographic processes.

Moreover, our study demonstrates that seascapes must be

characterized at specific spatial scales to provide useful informa-

tion as proposed in previous studies [36] and supporting results on

terrestrial landscapes [37],[38] and bottom seascapes [39].

Therefore, the relations between the location of spawning sites

and the mesoscale oceanographic processes may prove to be non

significant if seascape metrics are not processed at the right spatial

scales.

Seascape ecology is an emerging field generally being applied

for the analysis of how benthic habitats pattern in coastal areas

drives different aspects of marine species ecology [39]. Techniques

are applied following categorical approach where the seascape is

composed by a number of patches of different type of habitats

[40],[7]. However, very little attention has been paid to the

techniques and concepts to investigate pelagic seascape ecology

due to the complex spatiotemporal dynamics of this system [2].

Thus, the work presented here sheds new light to modeling spatial

distribution and investigating key ecological processes of species

highly dependent on the variability of the pelagic environment,

like spawning ecology of many of the big tuna species are [41]. In

areas as the Balearic Sea, for which new operational oceanography

platforms provide near real time data of hydrography [42] and

also in combination with remote sensing data (e.g. altimetry [43])

and modeling [44],[45] these metrics will improve the species

spatial distribution forecast that has proved effective for manage-

ment [46].

In contrast to seascapes, landscape metrics have a long history

in terrestrial ecology, and have improved over time. For instance,

the effect caused on the habitat analysis derived from the spatial

definition of the input habitat maps or the extent of the study area

are common studied topics, [47],[48]. Likewise, calculation of

seascape metrics and the final results from their application in

ecological studies may be affected by different issues, like the

different ways of computing the hydrographic variables and their

gradients, or the origin of the input data source like from in situ

measurements, remote sensing or hydrodynamic models, each

with different sources of uncertainty. A relevant question is how

seascapes can provide information for other type of species and

ecological processes. Addressing all these challenges and develop-

ing comparative studies between different data sources, processing

methods, species and ecological processes will allow advancing

towards the understanding of how seascape metrics can provide

information about how ecological processes and oceanography are

linked together.

In summary, pelagic seascapes based on gradients and

characteristic scales allow improving spatial distribution models

and the identification of essential fish habitat of pelagic species.

They also provide a tool for analyzing the links between particular

ecological processes and local oceanography going far beyond

than stochastic models based on just hydrographic parameters as

salinity, temperature or geostrophic velocities. As a consequence

these metrics will provide an improvement in all the management

approaches and tools pending on the capability of models to

identify essential habitats as near real-time spatial management

based on habitat predictions [46],[10], pelagic species distribution

from deterministic models [49] or the standardization of larvae

indices to assess adult stock, [50],[51],[52].

Figure 5. The effect of the interactions of the seascape components on the larval abundance as estimated from the seascape
generalized additive model. The effects are shown for bluefin tuna (A–B) and bullet tuna (C). For bluefin tuna: A) the effect of the gGVEL and
st_GVEL interaction. B) the effect f the gSAL and st_SAL interaction. For bullet tuna C) the effect of the gSAL and st_SAL interaction. Isolines indicate
larval abundances predicted by the model. Peak of abundances are indicated in pink-yellow. Low and very low abundances are indicated in green
and blue, respectively.
doi:10.1371/journal.pone.0109338.g005
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Supporting Information

Figure S1 Model response of bluefin tuna in relation to
salinity gradient processed at 0.75 degrees. Fitted line

(solid line) and 95% confidence intervals (grey shaded areas) are

shown. Whiskers on the x-axis show the locations of measure-

ments.

(TIF)

Figure S2 Correlation between the gradients at the
characteristic scales and the hydrographical variables at
the sampled station. A) Current velocity and B) salinity for

Atlantic Bluefin tuna. C) Salinity for Bullet tuna.

(TIF)

Figure S3 Sea surface salinities in the area during the
five years analyzed (2001 to 2005).
(TIF)

Figure S4 Sea surface geostrophic currents in the area
during the five years analyzed (2001–2005).
(TIF)

Figure S5 Spatial distribution of bluefin tuna (Thunnus
thynnus) larvae in relation to the salinity mean calcu-
lated at its characteristic scale (0.6 degrees). Relative

stage-1 larval abundances are shown in the maps such as dots.

(TIF)

Figure S6 Spatial distribution of bluefin tuna (Thunnus
thynnus) larvae in relation to the salinity gradient
calculated at 0.6 degrees. Relative stage-1 larval abundances

are shown in the maps such as dots.

(TIF)

Figure S7 Spatial distribution of bluefin tuna (Thunnus
thynnus) larvae in relation to the geostrophic velocity
mean calculated at its characteristic scale (0.6 degrees).
Relative stage-1 larval abundances are shown in the maps such as

dots.

(TIF)

Figure S8 Spatial distribution of bluefin tuna (Thunnus
thynnus) larvae in relation to the geostrophic velocity
gradient calculated at the characteristic scale (0.6
degrees). Relative stage-1 larval abundances are shown in the

maps such as dots.

(TIF)

Figure S9 Spatial distribution of bullet tuna (Auxis
rochei rochei) in relation to the salinity mean calculated
at 0.75 degrees. Relative stage-1 larval abundances are shown

in the maps such as dots.

(TIF)

Figure S10 Spatial distribution of bullet tuna (Auxis
rochei rochei) in relation to the salinity gradient
calculated at 0.75 degrees. Relative stage-1 larval abundances

are shown in the maps such as dots.

(TIF)
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