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1 Introduction 

 Monocytes are white blood cells that play a central role in the innate immune 

system as circulating precursors to macrophages and some dendritic cells. Monocytes 

can be rapidly mobilized to peripheral tissues in response to infection or wounding, 

where they and their progeny carry out diverse immune functions such as 

phagocytosis, antigen presentation, and cytokine secretion [1]. These cells are 

controlled at the level of gene transcription by different classes of transcription 

factors (TFs), as well as several transcriptional co-regulators [2]. While monocytes 

are vital for host defense against pathogens, in cases of non-resolving inflammation, 

monocytes and their progeny can secrete tissue-damaging factors, present 

auto-antigens, and promote the inflammatory response. Because of their important 

roles in numerous diseases such as atherosclerosis and coronary artery disease, 

understanding the complex gene regulatory network that controls monocyte 

properties such as behavior, cell differentiation, and response to molecular signals is 

essential for the rational discovery of novel therapies and diagnostics. 

Currently, mapping cell type-specific gene regulatory networks is a great 

challenge due to the large number (> 1,500) of TFs and the expansiveness of the 

noncoding human genome [3]. One way that this problem is being addressed is 

through tissue-specific expression quantitative trait loci (eQTL) studies, which 

identify expression single nucleotide polymorphisms (eSNPs) that are correlated with 

expression levels of one or more genes. Previous studies have identified 

transcriptome measurements obtained from individuals within a large population and 

then combined these measurements to identify common genetic variants that are 
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associated with differential gene expression in the cell type of interest. The genomic 

regions that are in linkage disequilibrium (LD) with these variants are enriched for 

cis−regulatory elements such as TF binding sites. Because of their potential 

biomedical significance as circulating biomarkers (via their gene expression or cell 

surface protein expression) and as targets for therapeutic targets, monocytes have 

been the subject of two large population studies, which have collectively mapped 

over 80,000 eQTLs [4, 5]. Additionally, the Encyclopedia of DNA Elements 

(ENCODE) project has provided measurements of binding sites for about 140 TFs 

derived from various human cell lines. These measurements were obtained via 

chromatin immunoprecipitation-to-tag-sequencing (ChIP-seq) analysis [6]. 

In this study, a systems biology approach was used to map human monocyte 

gene regulatory networks by integrating publicly available eQTL and TF location 

data. We hypothesized that monocyte-specific TFs will have binding sites that are 

concentrated in the vicinity of the monocyte eQTLs. If this hypothesis is consistent 

with available monocyte eQTL and human TF ChIP-seq data, it could lead to new 

understanding of the gene regulatory basis of chronic inflammatory diseases and to 

novel therapeutic approaches to these diseases involving the targeting of immune cell 

populations. Additionally, it could significantly increase the interest of the systems 

biology community in utilizing eQTLs for mapping cell-type specific, mammalian 

gene regulatory networks. 
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2 Methods 

2.1 Data Extraction 

A collection of 400 TF binding site (TFBS) experiments derived from 

ChIP−seq analysis of 68 human cell lines and 140 TFs were obtained in genome 

reference consortium human assembly 37 (GRCh37) coordinates from the public 

repository of the National Human Genome Research Institute (NHGRI) ENCODE 

project [6]. Additionally, human monocyte eQTL data, in the form of eSNPs, were 

retrieved from two published large-cohort studies of genotype information and 

peripheral blood monocyte gene expression in GRCh36 from 1,773 unrelated 

individuals [4, 5]. Monocyte eSNPs were mapped to their respective GRCh37 

chromosomal coordinate locations using coordinate information from the Database of 

Single Nucleotide Polymorphisms (dbSNP) [7]. 

2.2 eSNP Expansion 

 Locations that are in linkage disequilibrium (LD) with each monocyte eSNP 

were mapped using the SNP Annotation and Proxy (SNAP) search tool (Broad 

Institute) based on haplotype information from the 1,000 Genomes Project, obtained 

from Utah residents with northern and western ancestry (CEU population) [8]. The 

eSNPs that are located on nuclear autosomes were each expanded to an LD block 

using SNAP, by obtaining the maximum allowed R2 threshold (nominally 1.0) and a 

distance limit of 10 kilobase pairs (kb). The left-most and right-most proxy-SNPs for 

each eQTL were employed to define the boundaries of the LD blocks. Monocyte LD 

blocks collectively yielded approximately 14% genome coverage. This genome 

coverage excludes sex chromosomes. LD blocks located on nuclear autosomes were 
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used in analysis due to the limited proxy−SNPs identified to be in LD with eSNPs on 

the X and Y chromosomes.  

2.3 Overlap Tabulation and Statistical Analysis 

2.3.1 Computer Software and Overlap Tabulation 

 The R statistical computing language integrated development environment, 

RStudio version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria), was 

used to tabulate overlap of TF binding sites within monocyte LD blocks and for 

statistical analysis [9]. To analyze the TFBS frequencies within monocyte specific LD 

block locations, TFBS peak locations were treated as point locations in the genome. 

For each TFBS experiment, the number of peaks that directly overlapped monocyte 

eSNP LD blocks was tabulated.  

2.3.2 Statistical Analysis 

For the purpose of testing the significance of each TFBS experiment’s overlap 

count, a block permutation approach was used. A concatenated file of genome 

locations was created to function as a background model for randomization. This file 

was constructed by collapsing genomic locations in the 400 TFBS experiments and 

the LD block locations. Peak locations that were within 1.9 kb of one another were 

merged together. The value of 1.9 kb was determined empirically by ensuring that all 

LD blocks could be accommodated within the background model during 

randomization. This peak-merging procedure yielded genomic features covering 26% 

of the genome. Monocyte eQTL LD blocks were assigned to random, non-

overlapping locations in the genome restricted by the background model. For each 

ChIP-seq experiment, counts of the binding sites within the randomly placed LD 
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blocks were tabulated. The LD block randomization procedure was repeated 1,000 

times for each ChIP-seq experiment. 

The actual overlap count for each ChIP-seq experiment within monocyte LD 

blocks was compared to the counts tabulated from the 1,000 randomizations. As a 

preliminary analysis, Z-scores were computed for each TFBS ChIP-seq experiment. 

TFs were ranked according to descending Z-scores. Gene Set Enrichment Analysis 

(GSEA) was conducted on various cell types, such as the myelogenous K562 cell 

line [10]. This analysis yielded GSEA enrichment scores (E scores), between -1.0 and 

1.0, to describe the concentration of a specific cell type towards the top of the list of 

TFs when ranked according to Z-score [11]. The rationale for the GSEA was that it 

would quantify the extent to which the K562 cell line, a cell type with known immune 

function, is concentrated towards the top of the preliminary ranked list. 

P values and adjusted P values were obtained for each TFBS ChIP-seq 

experiment using a one-tailed binomial test. For each TFBS ChIP-seq experiment, a 

"background" probability that a randomly selected binding site would be located 

within a randomized monocyte LD block was calculated by computing the average 

overlap count from 1,000 randomizations and dividing this value by the total number 

of binding sites for the TFBS ChIP-seq experiment,  

 

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	
  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	
  𝑜𝑓	
  𝑇𝐹𝐵𝑆	
  𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒	
  𝑜𝑣𝑒𝑟𝑙𝑎𝑝	
  𝑐𝑜𝑢𝑛𝑡	
  𝑜𝑓	
  𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙	
  𝑛𝑜. 𝑜𝑓	
  𝑏𝑖𝑛𝑑𝑖𝑛𝑔	
  𝑠𝑖𝑡𝑒𝑠
. 
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2.4 Ranking of Transcription Factors According to Significance 

In the ENCODE TFBS ChIP-seq dataset, in many cases there are multiple 

TFBS ChIP-seq experiments (usually from different cell lines) for the same TF. To 

condense the TFBS ChIP-seq experiments to include only one representative 

experiment for each TF, a ratio value was calculated for each ChIP-seq experiment by 

taking the ratio of the actual overlap, the total number of binding sites for the TF, and 

the background probability of each experiment (i.e., if in a given experiment, 

transcription factor X has an actual overlap of 50 binding sites, 1,000 total binding 

sites, and a background probability of 0.05, the ratio would be calculated as 

50 / 1,000 / 0.05 = 1). For each TF, the ChIP-seq experiment with the highest ratio for 

the TF was used to represent the TF. This finalized list of 140 unique TFs was then 

ranked in order of ascending adjusted P value.  

2.5 Analysis of Significant TFs 

 A biomedical literature review was conducted in order to obtain a list of TFs 

that are previously known to have regulatory functions in monocytes. TFs obtained 

through literature analysis were compared to the 140 unique TFs that were ranked by 

their adjusted P values. The density of known monocyte-regulating TFs near the top 

of the ranked list of 140 TFs was analyzed. A P value cut off of P < 1.00 x 10-7 was 

selected to obtain a list of the top 20% of TFs. GSEA analysis was conducted on the 

top-ranked (i.e., smallest P value) TFs in the list to reinforce that the TFs were highly 

concentrated near the top of the list when preliminarily ranked according to Z-score.  

A predicted network of interactions between the top 20% of the TFs was 

identified using GeneMANIA, a web-based bioinformatics tool [12]. Mouse 
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orthologs expressed in monocytes and other immune cell types of the top TFs were 

identified using the Immunological Genome (ImmGen) project database [13]. The 

gene annotation portal, BioGPS [14], was used to obtain human microarray-based 

gene expression measurements for the top TFs. Additional literature review was 

conducted on TFs that had not been identified to have regulatory function in 

monocytes in order to ascertain their previously known functions in immunity, if any. 

 

3 Results and Discussion 

3.1 GSEA of K562 cell line 

GSEA was conducted for the K562 cell line (which is a myeloblast cell line 

that can differentiate towards monocyte lineage). This yielded a positive E score of 

0.359, reinforcing that ChIP-seq experiments derived from the K562 cell line are 

concentrated towards the top of the preliminary list of TFs ranked according to 

Z-score. Analysis of the H1-hESC human embryonic stem cell line as a negative 

control yielded an E score of -0.316. The GSEA plots of both cell lines are displayed 

in Fig. 1. 
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Fig. 1 (a) GSEA plot of K562 cell line with an E score of 0.359 (b) GSEA plot of H1-hESC cell line with an 
E score of -0.316.  Black and red points on uppermost graphs describe locations of each cell line within the list of 
ChIP-seq experiments when ranked by Z-score. Distribution of Z-scores is shown directly below GSEA plots.  

 

3.2  Comparison to Previous Literature 

3.2.1 Literature Analysis 

A biomedical literature review was carried out in order to identify TFs 

previously known to have regulatory functions in monocytes, as summarized in 

Table 1. TFs identified from the literature review were joined to form a combined list 

of monocyte−regulating TFs, which were used to assess the accuracy of our results. 

 
Year Authors Transcription Factors Reference 

No. 
2002 A. Friedman CBF, CEBPε, EGR1, IRF8, JUN, MAFB, MYB, 

PU.1, RARA, SP1 
[15] 

1998 A. Valledor, F. Borras, M. 
Cullell-Young et al. 

EGR1, FOS, GATA1, GATA2, HOXB7, IRF1, 
JUN, JUNB, MYB, MYC, PU.1, RUNX1, SCL, 

STAT1, STAT3, 

[16] 

2014 B. Fairfax, P. Humburg, S. 
Makino et al. 

IRF2, IRF8, IRF9, POU2F1, STAT1 [17] 
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2013 C. Dong, G. Zhao, M. Zhong 
et al 

AR, C/EBPα, C/EBPδ, E2F4, EGR1, P300, FOS, 
FOXA2, FOXO1, GATA1, GATA2, HNF4A, 

RARA, RB1, RUNX1, RUNX3, SOX2, STAT3, 
VDR 

[18] 

2004 C. Shi, X. Zhang, Z. Chen 
et al. 

C/EBPα, C/EBPβ, FOXP1, PU.1, RUNX1 [19] 

2013 D. Kurotaki, N. Osato, 
A. Nishiyama et al. 

KLF4 [20] 

2007 F. Rosenbauer, D. Tenan BMI1, C/EBPα, CEBPε, ELF1, GATA1, GFI1, 
IRF8, PU.1, RARA, RUNX1, SCL, TCF 

[21] 

2011 H. Kikuchi, F. Kuribayashi, 
N. Kiwaki et al. 

GCN5 [22] 

2013 J. Larabee, S. Shakir, S. Barua 
et al. 

HES1, HEY1, IL2RA, IL7R [23] 

2012 J. Van den Bossche, 
B. Malissen, A. Mantovani 

et al. 

NF-κB [24] 

2009 K. Khan, A. Coaquette, 
C. Davrinche et al. 

BCL3 [25] 

2006 K. Resendes, A. Rosmarin GABP [26] 
2011 K. Weigelt, L. Carvalho, 

R. Drexhage et al. 
ATF3, EGR3, PU.1 [27] 

2010 M. Marullo, M. Valenza, 
C. Mariotti et al. 

NRSF [28] 

2011 P. Li, J. Wong, C. Sum et al. IRF3 [29] 
2014 R. Huber, D. Pietsch, 

J. Gunther et al. 
C/EBPα, C/EBPβ, C/EBPε, IRF4, JUNB, PU.1, 

STAT1, STAT3, VDR 
[30] 

2014 T. Nikolic, D. Movita, 
M. Lambers et al. 

CTCF [31] 

2012 T. Suzuki, 
M. Nakano-Ikegaya, 

H. Yabukami-Okuda et al. 

BTG2, CEBPα, CREG1, EGR2, FOS, FOSB, 
HCLS1, IRF8, JUNB, LMO2, LYL1, MAF, MAFB, 

MNDA, MXD1, MYB, MYC, PU.1, STAT5A, 
ZFP36 

[32] 

Table 1 Preliminary analysis of previous literature yielding a list of monocyte-specific TFs. 

 

3.2.2 Previous Literature vs. Results Obtained 

A ranked list of about 140 unique TFs according to adjusted P value was 

obtained after the statistical analysis of Sec. 2.4 was completed. Among all ENCODE 

TFs ranked by monocyte eQTL overlap P value, known monocyte TFs are biased 

toward more significant P values (Fig. 2).  
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Fig. 2 Density plot displaying the concentration of monocyte-
specific TFs from previous studies near the top of the list of TFs 
ranked according to adjusted P value. 

 

3.3 Analysis of Ranked List of TFs 

The top 20% of TFs in the ranked list was obtained by selecting an adjusted 

P value cutoff of P < 1.00 x 10-7 (Table 2). GSEA was conducted for all TFs that 

were not identified to be monocyte-specific in previous literature, referred to as 

“Novel Monocyte TFs" (NMTFs). This analysis was performed to test whether the 

NMTFs were concentrated near top of the TFBS list when their individual ChIP-seq 

experiments are ranked according to Z-score. Specifically, for each NMTF shown in 

Table 2, the Z-scores for all ChIP-seq experiments for that TF (within the global set 

of ChIP-seq experiments ranked by Z-score) were analyzed by GSEA. As shown in 

Table 2, NMTFs in the top 20% of TFs (by P value) appear to have high E scores. 

The average E score of the top 20% of NMTFs is 0.823, while the average E score of 

the middle 20% of TFs is 0.099. 
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Rank Transcription Factor 
Name(s) 

Adjusted P value E score 

1 HEY1 1.37 x 10-38 -- 
2 BCLAF1 4.10 x 10-35 0.899 
3 SIN3A 7.17 x 10-35 0.719 
4 TAF1 4.45 x 10-27 0.778 
5 GABP/ GABPA 3.19 x 10-23 -- 
6 TBP 2.10 x 10-22 0.849 
7 GTF2F1 1.97 x 10-21 0.866 
8 GATA1 2.91 x 10-18 -- 
9 ELK4 3.07 x 10-17 0.714 

10 MXI1 6.11 x 10-17 0.922 
11 BCL3 3.26 x 10-16 -- 
12 IRF1 1.49 x 10-15 -- 
13 NFKB/ NFKB1 8.35 x 10-14 -- 
14 ELF1 2.02 x 10-13 -- 
15 SP2 2.06 x 10-13 0.932 
16 NRF1 8.30 x 10-13 0.870 
17 GTF2B 1.04 x 10-12 0.924 
18 MYC 2.19 x 10-12 -- 
19 YY1 1.53 x 10-11 0.690 
21 P300/EP300 2.26 x 10-10 -- 
22 FOS 3.89 x 10-10 -- 
23 THAP1 1.41 x 10-09 0.859 
24 ETS1 2.81 x 10-09 0.858 
25 E2F4 3.06 x 10-09 -- 
27 TAF7 3.53 x 10-08 0.823 
28 TR4/NR2C2 1.03 x 10-07 0.602 

Table 2     Top 20% TFs ranked according to adjusted P value with cut 
off of P < 1.00 x 10-7. Bolded names are TFs that have been identified 
to be monocyte-specific in previous literature. 

 

GSEA plots of two top-ranked TFs, TAF1 and TBP, are shown in Fig. 3. 

These TFs had high GSEA E scores based on multiple TFBS experiments (ten and 

five, respectively). 
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Fig. 3 GSEA plots of highly ranked TFs, (a) TAF1 and (b) TBP. Black and red points on uppermost graphs 
describe locations of each TF within the list of ChIP-seq experiments when ranked by Z-score. Distribution of 
Z−scores is shown directly below GSEA plots. 

 

3.4 Predicting Relationships in the Gene Regulatory Network 

 A network of predicted relationships between the top 20% of TFs was 

obtained using the GeneMANIA bioinformatics web tool, which identifies 

relationships among proteins by using a large set of functional association data [12]. 

Predicted relationships between the top TFs are displayed in Fig. 4 as a network of 

proteins connected by physical interactions, co-expression, and predicted interactions.   
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Fig. 4 TF network predicted by GeneMANIA. Each node represents a TF from Table 2. Monocyte-specific 
TFs from previous studies (blue circles) appear to have high connectedness to many novel TFs (black circles) that 
have been identified to be in the top 20% of the ranked list of TFs. 

 

3.5 Analysis of Novel Monocyte-specific TFs 

 TFs in the top 20% of the ranked list that were not previously identified to be 

monocyte-specific were investigated in order to examine their known molecular 

and/or cellular functions. Mouse orthologs of the NMTF genes were identified using 

the ImmGen project database in order to obtain expression levels for the TFs in 

murine monocytes and other immune cell types [13]. Human microarray-based gene 
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expression measurements were also reviewed for each novel TF, using data from the 

gene annotation portal, BioGPS [14]. 

 Of the NMTFs identified in this study, many have been previously identified 

to have functions related to immunity or have relationships with previously identified 

monocyte-specific TFs. The NMTF identified with the most significant P value in 

Table 2, BCLAF1, is highly expressed in B cells, T cells, natural killer (NK) cells, 

and monocytes in mice [13, 14]. It has also been found to play a crucial role in 

transducing the senescence-inducing signal between NF-κB and C/EBPβ during 

therapeutic drug senescence in multiple cancer cells [33]. Both NF-κB and C/EBPβ 

are high-scoring TFs in Table 1, and this relationship with BCLAF1 may provide 

insight into its function in monocytes. Another significant NMTF, SIN3A, has been 

identified along with the monocyte-specific TF, MYC, as playing a role in a signaling 

circuit which may be the underlying mechanism for the pathogenesis of acute 

myeloid leukemia [34]. Although limited data is available about SIN3A expression in 

monocytes and its function in immunity, our study shows that it may have a more 

prominent role in monocytes than previously recognized.  

The NMTFs TAF1, TAF7, and TBP may have dependencies on each other in 

their function in monocytes, as they are components of the Transcription Factor II D 

(TFIID), which is the first protein to bind DNA during the initiation of 

transcription [35]. TBP, or the TATA binding protein, has high expression in both 

human and mouse monocyte cells [13, 14]. Additionally, its expression levels across 

various human cell lines correlate with the expression of other monocyte-regulating 

TFs, such as PU.1, C/EBPβ and NF-κB [33]. TAF7 appears to have a significantly 
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high expression in monocytes, and has the highest expression in immune cells when 

compared to all other cell types [13, 14]. It also has been recognized that in human 

HeLa cells the level of expression of TAF7 directly correlates with the level of 

expression of TAF1, a NMTF that has not been well studied for its role in 

immunity [36]. 

 Many other novel TFs were identified to have functions in immunity. 

Evaluation of mouse liver proteins after host defense response against the parasitic 

protozoan Toxoplasma gondii has shown that the NMTF SP2 (along with other 

monocyte-regulating TFs, STAT1, STAT3, IRF1, and EGR1) is among the top ten 

TFs used by upregulated genes [37]. YY1 is known to significantly regulate the 

activity of the promoter of murine IRF-3, a TF which plays a key role in 

inflammation and immune response [38]. Furthermore, the highly-ranked NMTF, 

GTF2B, is known to be a target of the YY1 TF gene in bovine muscle tissue [39].  

THAP1, ETS1, TR4, and NRF1 are also highly ranked NMTFs that have been 

previously identified to have specific immune regulatory functions. THAP1 is known 

to play a role in inducing T-cell apoptosis [40]. STAT3, a monocyte-regulating TF, is 

a known regulator of ETS1 in inflammation control in mouse macrophages [41]. In 

addition, TR4 has been found to be a target of mouse miR-133a, microRNA that is 

expressed in macrophages and that is known to play a key role in the vascular 

inflammatory disease, atherosclerosis [42]. Lastly, NRF1 has been identified as an 

essential transcription factor in regulating gene expression in human integrin 

associated protein, which is expressed in hematopoietic cells [43]. 
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The remaining top NMTFs, which includes GTF2F1, ELK4, and MXI1, 

appear to be expressed in monocytes to a lesser extent than other cell types or have 

not been studied in relation to the immune system. ELK4 and MXI1 have 

medium-to-low expression in mouse monocytes [13]. However, in human LNCaP 

(prostate adenocarcinoma) cells, the NMTF ELK4 has been found to be regulated by 

CTCF, a known monocyte-regulating TF [44]. These TFs require more in-depth 

analysis in order to determine their functions, if any, in monocytes. 

 

4 Conclusion 

 Our novel systems biology approach offers an efficient method to identify 

monocyte-regulating TFs and gain insight into the monocyte gene regulatory 

network, leveraging publicly available human molecular datasets. It appears that TFs 

with known immune functions and monocyte-specificity tend to have binding sites 

located in the vicinity of monocyte eQTLs. Of the candidate novel 

monocyte-regulating TFs that were identified in our analysis, the most significant (by 

our statistical enrichment score) were BCLAF1, SIN3A, TAF1, and TBP. As revealed 

by protein network reconstruction, the top 20% of TFs identified by our approach are 

highly interconnected. We speculate that the network is enriched for TF pairs that 

cooperatively regulate monocyte gene expression (a prediction that could be tested in 

a future study, through pairwise binding site proximity analysis).  

Further experimentation on the TFs identified will provide greater insight on 

their role in monocytes and the monocyte gene regulatory network. This can yield 

novel information on genes to target when developing therapies for chronic 
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inflammatory disorders, such as atherosclerosis. Moreover, this approach can be 

utilized to identify cell-type specific TFs in order to predict mammalian gene 

regulatory networks for various cell types.  
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