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ABSTRACT: The demand for biofuels continues to increase due in part to government 

standards and promotion as well as the ambitious goals set by various companies and 

industries. Camelina is considered to be an ideal energy crop because of its low input 

requirements, suitability for marginal soils, and naturally competitiveness with weeds. A 

partial equilibrium model with a break-even price approach is used to estimate the 

potential supply curves for camelina in Idaho, Montana, Oregon, and Washington. The 

supply curves are used to determine if the 50 million gallon goal set by the “Farm to Fly” 

initiative can be met. Given the current price of camelina, $0.15/lb, the estimated supply 

of camelina in all 4 states is 1,756,076,887 lbs and 1,493,684 acres. This estimation 

assumes that if the wheat-camelina rotation is more profitable than the current crop 

rotation, then all of the acres will be converted to a wheat-camelina rotation. When a 5% 

adoption rate is applied to the low and the intermediate rainfall zones and a 1% to the 

high rainfall zones, the number of acres converted to camelina decreases to 72,213. These 

results suggest that given current market conditions, the supply of camelina in the 



 

Northwest is not enough to meet the biofuel goal without an increase in yield and 

government promotion. 
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Economic Analysis of Potential Camelina Oil Crop Supplies in the 

Northwest U.S. 

 
1. Introduction 

 

Climate change and energy independence are two important issues facing the U.S. 

There is a strong need for energy sources that are clean, renewable, and cost-competitive 

with fossil fuels. The demand for all sources of energy will continue to rise with the 

growth of the economy, population, and standard of living. In 2011, approximately 71% 

of the energy consumption in the U.S. came from fossil fuels, 9% from nuclear power, 

and 9% from renewable energy. The three biggest sources of renewable energy were 

hydropower (35%), woody biomass (22%), and biofuels (21%) (Energy Information 

Administration 2012). Biofuels are a type of fuel produced from biomass-organic matter 

derived from plants or animals as opposed to fossil fuels. The two most common sources 

of biofuels in the U.S. are ethanol derived from corn and biodiesel derived from 

soybeans. The International Energy Agency (IEA) predicts that by 2050 biofuels will 

provide as much as 27% of world transport fuel (Gerasimchuk et al. 2012). 

 The rapid growth of the biofuels industry would not have been possible without 

government subsidies because many biofuel producers are not cost-competitive. The IEA 

estimates that biofuel subsidies globally amounted to $22 billion in 2010 and could 

increase to $67 billion per year in 2035. The objectives of biofuel subsidies are increased 

energy security, reduction in greenhouse gas (GHG) emissions, environmental 
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sustainability, rural economic development, and reduction of foreign trade deficits. 

However, biofuels have been the subject of serious concern due to their controversial 

social and environmental impacts, as well as competition with food crops for agricultural 

land and other production factors (Gerasimchuk et al. 2012). These concerns exist 

because the majority of biofuel production uses energy intensive food crops as 

feedstocks, such as corn and soybeans. Jaeger and Egelkraut (2011) found that U.S. 

produced biofuels are 14 to 31 times as costly at reducing fossil fuel use and lowering 

GHG emissions as alternative measures, such as raising the gas tax or promoting energy 

efficiency improvements. They also found that mandated U.S. corn ethanol production 

for 2025 reduces U.S. petroleum input use by 1.75% and would have negligible net 

effects on CO2 emissions (Jaeger and Egelkraut 2011). Many of the negative externalities 

of current biofuel production could be avoided if non-food crops, grown on marginal land 

with low input requirements were used instead. 

 The focus of this paper is on the potential supply of a new biofuel crop that has 

been receiving a lot of attention recently, camelina. Camelina is a part of the mustard 

family and is a relatively new crop to the U.S. It has been grown for millennia in parts of 

Europe for food, but was introduced to Montana in 2004 because it has great potential as 

a biofuel feedstock (Jaeger and Siegel 2008). The aviation industry has begun using 

biojet fuel derived from biomass sources like camelina in over 20 test flights 

(Geschickter and Lawrence 2010). Camelina is a promising new energy crop but the 

economic, environmental, and social impacts of increased camelina production must be 

analyzed. Policy makers and biofuel industry representatives must assess the costs and 
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consequences of different biofuel strategies, and make well-informed decisions before 

investing heavily in a particular technology or crop. 

 

1.1. Problem Statement 

 The aviation industry is seeking viable petroleum alternatives with a focus on 

camelina and other non-food energy crops. In the “Farm to Fly” initiative, the airline 

industry, aircraft manufacturers, the Seattle-Tacoma International Airport (Sea-Tac), and 

fuel production and transportation companies have agreed to produce, purchase and use 

approximately 50 million gallons of oilseed-derived biofuel to supply 10% of all aviation 

fuel delivered through Sea-Tac (Farm to Fly 2009). 

Camelina is considered to be an ideal energy crop because of its low input 

requirements, suitability for marginal soils, and naturally competitiveness with weeds 

(Putnam et al. 1993). However, the number of planted acres of camelina in the Northwest 

U.S. falls far behind these expectations.  This is partly due to the fact that camelina yields 

have not been adequate for sustained profitability (U.S. Department of Agriculture 

2011a). Approximately 1.3 to 1.6 billion lbs of camelina would be needed to achieve a 50 

million gallon goal, annually. This would require approximately 900,000 to 1,800,000 

planted acres depending on yield and oil content. Table 1 shows the annual camelina 

acreage required to meet the 50 million gallon goal given various yields and oil content. 
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Table 1: Annual Camelina Acreage Requirements for 50 Million Gallon Goal with 
Varying Productivity Assumptionsa 

 
Per Acre 

Yields (lbs) 
32% Oil Content 36% Oil Content 40% Oil Content 

900 1,810,516 1,609,347 1,448,413 
1200 1,357,887 1,207,011 1,086,310 
1500 1,086,310 965,609 869,048 

a These estimations were calculated assuming that camelina processing recovers 70% of the oil. 
 

1.2. Thesis Objectives  

The purpose of this research is to estimate the potential supply curves for 

camelina in Idaho, Montana, Oregon, and Washington by considering the economic 

returns of camelina compared to the returns from existing cropland. By assuming farmers 

maximize their profits it is possible to estimate where camelina will be grown and what 

crops it will replace by comparing the profitability of camelina to the profitability of the 

land in alternate uses. This study will consider these conversions under current market 

conditions and under variations in yield and price. It will also determine what, if any, 

policy incentive changes could be instituted to have adequate production to meet the 

“Farm to Fly” biofuel goal. The following is a list of main objectives that this thesis will 

be able to achieve.   

1. Determine the revenue, production costs, and profits per acre for camelina and the 

alternative crops for each state and rainfall zone. 

2. Compare the profits per acre of the wheat-camelina rotation to the profits per acre 

of alternative wheat rotations. 

3. Estimate the supply of camelina given the per acre profits of the wheat-camelina 

rotation and the per acre profits of alternative wheat rotations. 
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4. Estimate where camelina will be produced, how much will be produced, and what 

crop(s) it will replace. 

5. Determine how many acres of camelina must be grown in order to meet the “Farm 

to Fly” biofuel goal. 

6. If the supply of camelina is less than the amount demanded in the “Farm to Fly” 

initiative, determine what, if any, changes are necessary for farmers to 

realistically produce enough to meet or exceed demand. Policy incentives, market 

conditions, and agronomic improvements are all potential ways of increasing 

camelina production. 

 

1.3. Thesis Organization  

The remainder of this paper will be divided into four sections: literature review, 

methodology, results, and conclusion.  The literature review section will provide 

background information on the “Farm to Fly” initiative, camelina, the camelina supply 

chain, and grower economics.  The methodology section will describe the structure of the 

partial equilibrium model and the procedure used to develop the supply curve.  The 

results section will present the findings and discuss their significance.  Finally, the 

conclusion will summarize what was learned from the supply curves and discuss topics 

for future research.  
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2. Literature Review 

 

 In order to estimate the potential supply curves for camelina in Idaho, Montana, 

Oregon, and Washington and to determine the production necessary to meet the “Farm to 

Fly” biofuel goal it is necessary to review the “Farm to Fly” initiative, the agronomics of 

camelina, the camelina supply chain, and grower economics. The following sections 

review each topic in detail. There is limited published data because camelina is a new 

crop of interest. However, there is a considerable amount of unpublished field data and 

research performed by universities and private interest groups that will be cited in the 

following sections. 

 

2.1. Background of the “Farm to Fly” Program 

The U.S. government and many state governments have been promoting the 

increased use and production of biofuels. Federal and state renewable fuel standards 

(RFS) require a minimum percentage of biofuel blends in transportation fuel (U.S. 

Department of Energy 2009). The Energy Independence and Security Act of 2007 set a 

goal for the production of 36 billion gallons per year of alternative biofuels by 2022 

(Schnepf and Yacobucci 2010).  In addition to government promotion, both civilian and 

military aviation industries are beginning to use biofuels to reduce their reliance on crude 

oil. The Navy recently set a goal for 50% alternative energy use by 2020 (United States 

Department of the Navy 2010).  Sustainable Oils LLC, a producer and marketer of 

environmentally clean and high-value camelina-based renewable fuels, has been awarded 
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a contract by the Defense Energy Support Center (DESC) to supply 100,000 gallons of 

camelina-based jet fuel to the Air Force (Sustainable Oils LLC 2009). 

The Boeing Company with the Defense Advanced Research Projects Agency 

(DARPA) funded partners has produced synthetic paraffinic kerosene that meets or 

exceeds certification requirements from several feedstocks (tropical oilseeds, temperate 

oilseeds, and algae oil). Without modifying flight equipment, the Boeing Company has 

completed test flights using petroleum/biofuel blends in four locations around the world 

utilizing aircraft equipped with four different jet engines produced by all three of the 

major manufacturers (Farm to Fly 2009). The Boeing Company’s CEO for commercial 

airplanes recently stated, “Developing a sustainable aviation fuel supply now is a top 

priority both to ensure continued economic growth and prosperity at regional levels and 

to support the broader aim of achieving carbon-neutral growth across the industry by 

2020” (New Net 2010). 

On July 21, 2010 the Air Transport Association of America (ATA) announced the 

official launch of the “Farm to Fly” partnership initiative with private industry, federal 

agencies and academia to advance a comprehensive sustainable aviation biofuels rural 

development plan (Consumer Energy Alliance 2010). The U.S. Department of 

Agriculture (USDA) joined with the ATA and the Boeing Company in a resolution to 

accelerate the availability of sustainable aviation biofuels in the U.S., increase domestic 

energy security, establish regional supply chains, and support rural development 

(Consumer Energy Alliance 2010). 
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The ATA is committed to the development and deployment of sustainable 

alternative fuels for use in jet aircraft. The “Farm to Fly” initiative builds on and expands 

the work of the Commercial Aviation Alternative Fuels Initiative (CAAFI) to hasten the 

availability of commercially viable, environmentally friendly alternative jet fuels.  In the 

“Farm to Fly” initiative, the airline industry, aircraft manufacturers, Sea-Tac, and fuel 

production and transportation companies have agreed to produce, purchase and use 

approximately 50 million gallons of oilseed-derived biofuel to supply 10% of all aviation 

fuel delivered through Sea-Tac (Consumer Energy Alliance 2010). 

 The supporting goals of the “Farm to Fly” initiative are to improve regional 

productivity and environmental sustainability of cereal and livestock based agriculture by 

optimizing productivity and profitability of the current oilseed industry in the diverse 

agroecosystems across the Northwest.  To add value to non-food mustard family oilseeds 

by characterizing and demonstrating valuable uses for the co-products (i.e. seed meal).  

Lastly, to educate farmers, industry members, and a future work force, including those 

from underrepresented groups, on best practices for profitable and sustainable production 

of biofuel feedstocks (Farm to Fly 2009). The oilseed crops that are being evaluated in 

the “Farm to Fly” initiative are of the Brassicaceae family (mustard family), more 

specifically camelina. 

 

2.2. Background of Camelina 

Camelina is an ideal energy crop for several reasons.  After processing, camelina 

oil can be used as a replacement for conventional jet fuel.  Camelina is not a food crop 
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and can be grown on marginal farmland with relatively low inputs and no irrigation.  

Camelina and other mustard crops have the potential to improve the overall sustainability 

and productivity of the cropping systems in the Northwest (Consumer Energy Alliance 

2010).  Finally, life cycle assessment of camelina-based biodiesel found that camelina 

grown in rotation with wheat or as a double crop reduces GHG emissions and fossil fuel 

use by 40 to 60% when compared to petroleum diesel (Krohn and Fripp 2012). 

 

2.2.1. Agronomic History 

 Camelina Sativa, also known as Gold of Pleasure, False Flax, and German 

Sesame, is thought to have originated in Central Asia. There is evidence of cultivation 

dating back as early as 600 BC in the Rhine River Valley.  It is a member of the 

Brassicaceae family, which includes rapeseed and mustard.  However, camelina does not 

cross-pollinate with canola, mustard, and other vegetable seeds (McVay and Lamb 2007). 

Camelina is a fine seed, which can make it more difficult to harvest and press as well as 

aggregate in bulk. The seeds were originally crushed and boiled to release oil for food, 

medicinal use, lamp oil, and animal feed.  It is unique among vegetable oils because it is 

high in both vitamin E and omega-3 ALA essential fatty acid. (Dobre and Jurcone 2011). 

 Camelina was introduced to Montana in 2004 and is now grown in nine states and 

four Canadian provinces. Since camelina is such a new crop to the U.S., very little crop 

improvement or agronomic work has been done.  However, a major effort is under way in 

Montana, Oregon, Washington, Idaho, and Alberta, Canada, to produce camelina on a 

large scale under dryland conditions (Hunter and Roth 2010). 
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 Camelina is typically grown as an early summer annual oilseed crop, but can be 

grown as a winter annual in milder climates.  It is a short-season crop typically taking 85 

to 100 days.  It germinates at low temperature and seedlings are very frost tolerant. No 

seedling damage has been seen at temperatures as low as -11° C in Montana. The plant 

performs well on marginal lands and may be better suited to dryland regions than most 

other oilseed crops (Hunter and Roth 2010).  Historically, dryland farm ground produced 

a crop every other year with a winter wheat / fallow rotation.  Now many dryland farms 

are producing two crops in three years with a winter wheat / summer crop (corn, 

sunflower, or millet) / fallow rotation.  Spring camelina has the opportunity to be 

produced during the fallow period of any winter wheat based crop rotation allowing this 

region to produce a crop every year (Enjalbert and Johnson 2011). 

 

2.2.2. Weed, Disease, and Insect Resistance 

 Camelina has very low requirements for weed control because it is naturally 

competitive with weeds.  Since camelina is cold tolerant, early plantings of camelina 

have resulted in minimal weed competition (Hunter and Roth 2010).  In one three-year 

trial, camelina was not injured by trifluralin, an herbicide, incorporated either in the fall 

or spring (Putnam et al. 1993).  The herbicidal effect of camelina is short-lived and 

relatively weak and does not affect the next year’s crop.  Early seeding of spring 

camelina into clean fields usually results in minimal weed problems.  The 

competitiveness of camelina with annual weeds means it could possibly be grown both 

without tillage and without preemergence weed control. Both represent significant costs 
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of production and environmental risk factors.  Currently there is only one herbicide 

labeled for use with camelina, Poast, a post-emergence grass control product (Enjalbert 

and Johnson 2011).  Poast has not been used in many of the camelina performance, 

yield, and fertility trials because it is a new product. It received the camelina label in 

2008 (Hunter and Roth 2010).  

 Not only is camelina naturally competitive with weeds, but also it is resistant to 

numerous insects and diseases.  Few or no insects appear to cause damage to camelina. 

Flea beetles and common aphids, which can be pests in canola and mustards, do not seem 

to bother camelina. Downy mildew is a concern and has been found in some 

experimental trials. No downy mildew has been observed east of the Continental Divide 

(Hunter and Roth 2010). White mold has not been observed in camelina in Montana, but 

growers should monitor for white mold, as it is a disease common to Brassicas such as 

canola and members of the sunflower and legume families. White mold is typically found 

in areas with higher annual precipitation. Camelina is also highly resistant to blackleg, a 

major disease of canola and other Brassica crops (Hunter and Roth 2010). 

 

2.2.3. Water Utilization 

 For dryland farmers in semi-arid regions, water scarcity is a key factor in 

determining crop agronomics.  As a result, the issue of soil moisture depletion is a 

primary concern.  For a crop to be economically viable it must perform well in low-

moisture situations.  For subsequent crops to perform well it must not drain deep soil of 

moisture content.  A study done by the Central Great Plains USDA Agricultural Research 
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Station in Akron, CO compares the water yield response curve of leading oilseeds.  It 

shows that soybean is the most responsive to water.  Soybean yields increase in a linear 

fashion, starting from near zero at zero inches of rain to 3,500+ lbs/acre at 25 inches of 

water (during the growing season) (Nielsen 2008).  Note, however, that soybean oil 

content, at 18% to 20%, is much lower than for competing oilseeds.  Oil content is 

highest for safflower and sunflower (between 40% and 47%), however these are deep-

rooted species, which deplete deeper soil of much needed moisture content damaging 

long-term water balance.  This makes them impractical for semi-arid farming in the 

Pacific Northwest (Nielsen 2008). 

 The camelina yield response line is to the left of canola1 and its rate of change 

(slope) is smaller.  The two intersect at approximately 1,750 lbs per acre at approximately 

17 inches of water use.  This study shows that camelina has a comparative water use 

advantage in the 5 to 16 inch range.  Note that, according to the study, both camelina and 

canola have similar oil content of between 37% and 45%.  Taking moisture availability 

and use into consideration, camelina has distinct economic and agronomic advantages 

over canola for dryland farming, especially as a replacement for summer fallow, and as a 

way to rehabilitate lands that have fallen out of production (Nielsen 2008).  Yields, 

however, pose a key issue, especially in light of the USDA camelina crop report in 

Montana, with yields below 600 lbs per acre in 2007 and 2008 (U.S. Department of 

Agriculture 2011a). 

 

                                                
1 This means camelina has a higher seed yield for any given amount of water use below 
17 inches 
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2.2.4. Fertility Requirements 

A study was conducted in Montana by the Western Triangle Agriculture Research 

Center (WTARC) to determine the effect of nitrogen (N), phosphorous (P), and sulfur (S) 

fertilizers on camelina seed yield and oil content.  The study concluded that camelina has 

generally low fertility requirements. When 35 to 40 lbs of N was applied, yields ranging 

from 1,200 to 1,500 lbs per acre were expected.  When 40 to 50 lbs of N was applied per 

acre, higher yields were expected. In addition, a recommendation for 25 to 30 lbs of P per 

acre and 20 lbs of S per acre may be justified in some situations. Ammonium sulfate (21-

0-0-24S) at 100 lbs per acre could supply the S needs and provide 21 lbs N per acre. They 

concluded that camelina needs about 70 to 90 lbs of N per acre for optimum seed yield 

and oil content, it will likely respond to P fertilizer when P soil tests are 12 parts per 

million (ppm) or less, and camelina did not respond to S fertilization (Jackson 2008). 

The results of the WTARC study were similar to the fertility trials conducted in 

four locations during the 2008, 2009, and 2010 cropping seasons in regions of Idaho, 

Oregon, and Washington. In this study, camelina was grown in low, intermediate, and 

high rainfall sites to understand the growth relationship with applied N. Camelina 

responded differently to applied N at these sites based upon rainfall and available N in 

the soil. The low rainfall site had very little response to N fertilization. However, as 

annual precipitation increased, so did camelina’s response to applied N. They concluded 

that camelina requires about 10 lbs N per acre per 220 lbs of grain yield and it does not 

respond to S fertilization (Wysocki et al. 2011). 

 



 
 
 

14 
 

2.2.5. Yield 

 Camelina seeds are small with a typical seed weight around 400,000 seeds per lb 

with a range of 225,000 to 550,000 seeds per lb.  Camelina has yield potential similar to 

that of many other members of the Brassica family. Studies at the University of Idaho 

(UI) in 2005 and 2006, near Moscow, ID in a 24-inch rainfall zone, indicate a yield 

advantage for camelina compared to canola and mustard. While the yields of other 

Brassicas have been significantly increased in recent decades through plant breeding and 

agronomic improvements, the potential of camelina remains unexploited (Hunter and 

Roth 2010). 

 Under dryland conditions in Montana, camelina is expected to yield 1,800 to 

2,000 lbs of seed per acre in areas with 16 to 18 inches of precipitation and 900 to 1,700 

lbs per acre with 13 to 15 inches of rainfall. In Idaho, seed yields of 1,700 to 2,200 lbs 

per acre have been reported in the 20 to 24 inch rainfall area. Under irrigation, seed yields 

of 2,400 lbs per acre have been reported. Three years of yield data at Moscow, ID show a 

seed yield potential of 2,100 to 2,400 lbs per acre with 25 inches of rainfall (Hunter and 

Roth 2010).  Yield data at Pendleton, OR in a 14-inch rainfall zone reported 1,300 to 

1,500 lbs per acre when planted in March.  November and January had the lowest yields 

at 300 and 700 lbs per acre.  These results are similar to the past two seasons.  In 

Corvallis, OR planting camelina between November 1st and March 1st produces the best 

seed yields of 1200 lbs per acre or greater.  Yield data at Lind, WA in an 11-inch rainfall 

zone show that the March 1st planting date corresponded with the highest yield of 1,023 

lbs per acre.  A trial at Pullman, WA in a 21-inch rainfall zone showed a significant N 
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fertilizer response.  Camelina yielded 880, 1215, 1700, 1920, 2185, and 2380 lbs per acre 

from 0, 20, 40, 60, 80, 100 lbs of N per acre respectively (Fretz 2009). 

 

2.3. Camelina Supply Chain 

 Camelina faces many economic and logistical obstacles after it leaves the farm. 

These obstacles include costs and capacity constraints for feedstock processing, 

transportation, storage challenges, and a lack of efficient distribution infrastructure for 

finished products. Presently, the U.S. biodiesel market lacks sophisticated infrastructure 

and concerns about the contamination of petroleum products (specifically jet fuel) from 

transporting biodiesel has hampered market growth. However, it is likely that camelina-

based fuels will be integrated into the existing fuel infrastructure with the help of federal 

and state mandates for renewable fuels, increasing demand from the aviation industry, 

and new biofuel processing technologies (Geschickter and Lawrence 2010). 

 In order for camelina to reach its full potential as an aviation fuel feedstock, 

camelina-based biojet fuel must be “drop-in” compatible with the existing fuel delivery 

and storage infrastructure, and most importantly, the existing aviation fleet. Drop-in fuels 

are substitutes for conventional jet fuel that are completely interchangeable and 

compatible with conventional jet fuel. The primary technological pathway used to turn 

camelina seed into drop-in biojet involves hydroprocessing, a process that first uses 

hydrotreatment to deoxygenate the oil and then uses hydroisomerization to create normal 

and isoparaffinic hydrocarbons that fill the distillation range of Jet A (standard U.S. jet 

fuel).  An oxygen-free fuel that fills the distillation range of Jet A and is created from the 
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hydroprocessing of plant oils or animal fats is termed “HRJ”.  HRJ shares similar 

characteristics to Fischer-Tropsch pathways and both are referred to as “Bio-SPK” fuels 

(International Air Transport Association 2008). 

 Bio-derived synthetic paraffinic kerosene (Bio-SPK), a biojet fuel derived from 

biomass sources like camelina either via Fischer-Tropsch or hydroprocessing, has been 

used in over 20 test flights. Tests indicate that camelina-derived HRJ performs as well as 

or better than typical petroleum-based Jet A.  The Boeing Company tests have shown that 

camelina-derived HRJ has a freeze point of -63.5° C, lower than jatropha SPK at -57° C, 

and petroleum Jet A-1 (standard jet fuel for the rest of the world) at -47° C.  The tests 

further indicate that Bio-SPK fuel blends have no adverse effects on the engines or their 

components, and that the fuels have greater energy content by mass than typical 

petroleum-derived jet fuel. This translates into the potential for higher mileage (per 

volume and weight) from Bio-SPK fuel than for petroleum jet fuel (Kinder and Rahmes 

2009). 

 On July 1 2001, American Society for Testing and Materials (ASTM) announced 

the approval of renewable fuels to be blended with conventional commercial and military 

jet fuel.  Through the new provisions, up to 50% bioderived synthetic blending 

components can be added to conventional jet fuel.  This means that at a 50% blend, Bio-

SPK jet fuel made from non-food feedstocks like camelina can be a drop-in replacement 

for jet fuel.  Furthermore, it requires no changes to fleet technology or the fuel storage 

and delivery infrastructure (ASTM International 2011). 

 This certification opens the U.S. component of the worldwide annual jet fuel 
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market to biojet fuel.  Airbus SAS, an aircraft manufacturer, estimates that fuel from 

plant-derived sources may account for 30% of airlines’ consumption by 2030.  Airbus 

SAS and the Boeing Company, which together manufacture about 80% of the world’s 

passenger planes, are planning to set up biofuel production chains across the world 

(Downing 2011). Since camelina-based biojet fuel is drop-in compatible with existing 

storage, handling, and fueling infrastructure, it is likely that the market will expand more 

rapidly than it has for E85 ethanol (motor fuel blends of 85% ethanol and 15% gasoline). 

Also, the integration of Bio-SPK into the existing aviation fuel infrastructure should be 

far easier than it has been for E85 gasoline or biodiesel because airports have 

concentrated distribution, storage, and supply networks (Geschickter and Lawrence 

2010). 

 Supply chains for camelina-based biodiesel and biojet will need to incorporate 

animal feed end markets in order for camelina to realize its full potential.  The value of 

camelina meal, a byproduct of the oil extraction process, is a key economic driver of 

market growth.  The Food and Drug Administration (FDA) has not yet approved the 

unrestricted use of camelina or its byproducts as a commercial feed ingredient, which will 

limit camelina’s market in the near-term.  Private efforts to gain FDA approval for the 

unrestricted use of camelina meal as a feed ingredient are ongoing and will require 

additional research.  The FDA has approved camelina concentrations of no more than 

10% in beef cattle fed in confinement, broiler chickens and laying hens. The FDA has 

also allowed the use of camelina meal as a feed ingredient in swine rations of no more 

than 2% (Church 2012).  
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 Camelina is also a potential source for bioplastics.  Recently, Metabolix, Inc., a 

bioscience company focused on developing clean sustainable solutions to the plastics, 

chemicals and energy industries, was awarded $203,000 in research funding by the 

Saskatchewan Ministry of Agriculture through its Agriculture Development Fund (ADF).   

The company will use the funding to accelerate its ongoing research and development of 

oilseed crops, specifically camelina, as a potential source for bioplastics and other 

petroleum substitutes.  Camelina is a viable production vehicle for PHA polymers, and 

Metabolix has produced PHA polymers from the oilseed itself.  This funding will help 

support the company’s research and development into very low cost production sources 

for PHA polymers (Metabolix Oilseeds, Inc. 2011).  

 PHAs are naturally occurring polymers that are particularly well suited to large-

scale, industrial crop-based production as they are totally compatible with the natural 

environment.  PHAs also offer the opportunity for broad replacement of current 

petroleum-based plastics.  PHA production from camelina offers diversification from 

volatile food and feed markets in addition to creating significant new investment 

opportunities and highly skilled technical jobs.  High value bioplastic is produced in 

addition to existing oil and meal (Global Energy Division 2010).  This adds significant 

revenue and value to camelina, improving potential economic returns to producers. 

 

2.4. Grower Economics 

 In order for camelina-based fuels to be successful without subsidies they must be 

profitable at price points set by conventional petroleum fuels. The success of camelina is 
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highly dependent on the emergence of a supply chain that economically links remote 

growing regions with regional biodiesel and aviation fuel end markets, and strong local 

markets for camelina meal byproducts. Camelina must also compare favorably to other 

cropping systems before growers will devote acreage to it (Geschickter and Lawrence 

2010). 

 In general as the price and volatility of petroleum increases, the price and 

corresponding demand for camelina will benefit. Higher petroleum prices indirectly raise 

the cost of producing and delivering crops because fuel and electricity for planting, 

harvesting, tillage, drying, and irrigation account for a significant amount of farm 

operating costs. Also, the price of fertilizer is closely tied to the cost of energy, since 

fertilizer is a highly energy intensive product. Brandess (2012) estimated the relationship 

between the price of diesel fuel and the price of N fertilizer. He found that for every 

dollar increase in the price of diesel fuel, the price of N fertilizer increases by $120.82 per 

ton. As petroleum prices increase, camelina’s lower fertilizer and water use requirements 

will make camelina a more favorable crop when compared to other crops that need more 

fertilizer and water to produce (Geschickter and Lawrence 2010).  

 

2.4.1. Comparison to Other Crops 

 Camelina has many positive characteristics that make it a potentially valuable 

energy crop. However, widespread adoption of camelina has not happened due to the low 

price and yields when compared to other crops. Many advocates of camelina point out 

that camelina’s lower production costs should provide higher returns than other crops. 
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Biomass Advisors compared the costs and profitability of camelina in Eastern Montana to 

crops grown in rotation with wheat (Geschickter and Lawrence 2010). They adopted an 

economic model originally developed at Montana State University (MSU). Based on this 

study, both the MSU and the Geschickter and Lawrence models underestimate the 

production costs of camelina. The variable cost estimate for camelina is $80.27 per acre, 

with 23.5 lbs of N per acre and a yield of 1,350 lbs per acre. These estimations are 36% 

to 41% lower than the production costs estimates used in this study (see Appendix A for a 

camelina profitability comparison to other crops). 

 When more accurate costs and yields are used, camelina’s profitability decreases 

dramatically but is still favorable to many other crops. Appendix A compares the costs 

and profitability of camelina in Idaho, Montana, Oregon, and Washington using data 

obtained from the National Agricultural Statistics Service (NASS) (National Agricultural 

Statistical Service 2012), various yield trials (Fretz 2009; Jackson and Miller 2006; 

Karow et al. 2010; Montana State University 2006a, 2006b, 2008, 2009a, 2009b, 2010a, 

2010b; Schillinger et al. 2012; Wichman 2008) preformed in each state, and a series of 

enterprise budgets. The results also make favorable comparisons between camelina and 

other crops even with higher costs of production and lower yields.  
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3. Methodology 

  

In order to estimate the supply of camelina in Idaho, Montana, Oregon, and 

Washington a partial equilibrium model was developed that uses a break-even price 

approach. This method is more limited than the general equilibrium model approach, but 

nevertheless, provides useful insights regarding camelina crop quantities and associated 

prices. The partial equilibrium model requires inputs regarding the number of acres 

suitable for camelina production, camelina production costs and yields, and the 

profitability of the land in alternate uses (Walsh 2000). A series of enterprise budgets was 

developed to estimate the production costs of camelina and the alternate cropping 

systems. The enterprise budgets and the yield estimates were used to compare the 

profitability of camelina to the profitability of land in alternate uses.  By comparing the 

per acre profits of camelina and the alternate uses, one could estimate the amount of 

camelina that will be grown on eligible land in Idaho, Montana, Oregon, and 

Washington.   The following three sub-sections will describe the modeling procedure, 

how and why the partial equilibrium was used to estimate the supply of camelina, and the 

limitations to the partial equilibrium model. 

 

3.1. Modeling Procedure 

 There are various economic tools that can be used to compute supply curves for 

agricultural commodities.  Econometric and mathematical programming models are two 

tools that have been used in the past.  Extensive historical data is needed to accurately 



 
 
 

22 
 

estimate supply curves using econometrics.  Unfortunately, there is very little farm level 

data available for camelina since it is a relatively new crop to the U.S. Mathematical 

programming models have been used widely for simulating decision making at farm 

level, regional level or sectoral level (Chen and Önal 2012).  In order to develop a 

mathematical programming model, detailed micro-level data or historical data is also 

needed.  For these reasons, econometric and mathematical programming models are not 

suitable for this study. Instead of running an econometric or mathematical programming 

model, a partial equilibrium model with a break-even price approach will be used. A 

similar partial equilibrium approach has been used in the U.S. to estimate interim national 

supply curves for switchgrass, hybrid polar, and willow (Walsh 2000).  

 

3.2. Modeling Structure 

The following subsections will describe the land base suitable for camelina 

production, the method used to allocate camelina yields across state and rainfall zone, the 

approach used to estimate the cost of producing camelina by state and rainfall zone, and 

how the profitability of land in alternate uses was calculated. This information will be 

used to estimate the camelina prices and corresponding quantities needed to create the 

supply curves by state. Figure 1 summarizes the major components of the partial 

equilibrium model. 
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Figure 1: Major Components of the Partial Equilibrium Model 
 

3.2.1. Acres Suitable for Camelina Production 

Camelina is a fast growing crop that germinates at low temperatures and performs 

well on marginal lands. It is typically grown as an early summer annual oilseed crop but 

shows promise as a low-input rotation crop that can replace summer fallow in any winter 

wheat based crop rotation (Ehrensing and Guy 2008). MSU trials and companion work at 

Washington State University (WSU) and Oregon State University (OSU) have focused 
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on developing camelina’s potential in eastern Washington, eastern Oregon, and Montana 

(Montana State University 2010b; Karow et al. 2010). Agricultural land considered 

potentially suitable for camelina production includes all agricultural cropland. However, 

camelina is most likely to be grown as a rotation crop with winter wheat. For this reason 

the acres included in the partial equilibrium model are comprised of winter wheat, fallow, 

and crops that are grown in rotation with winter wheat. 

The rotation crops included in the analysis are barley, canola, dry edible peas, 

lentils, mustard, and flax. The acreage for these crops was obtained from NASS (National 

Agricultural Statistical Service 2012) then separated by state (Idaho, Montana, Oregon, 

and Washington) and rainfall zone (low- less than 15”, intermediate- 15 to 20”, high- 

more than 20”). County level data was available every year for winter wheat and barley, 

but for the other crops data was only available for years when the U.S. Census of 

Agriculture (Census) was released. A 5-year average was calculated for winter wheat and 

barley. For the other crops, the 2007 Census data was used (U.S. Department of 

Agriculture 2009a, 2009b, 2009c, 2009d). Appendix B contains the acreage data used in 

the partial equilibrium model. 

The NASS and Census data contain county estimates for each state. In order to 

separate the Census data by rainfall zone, each county was assigned to a rainfall zone. 

This was accomplished by creating a precipitation map using a Geographic Information 

System (GIS) dataset developed by the PRISM Climate Group (PRISM Climate Group 

2012). The map was created using ArcMap version 10.1 (Environmental Systems 

Resource Institute 2010) and the PRISM dataset containing the 30-year precipitation 
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averages. State and county borders were then inserted so each county could be assigned 

to the appropriate rainfall zone (see Figure 2 for a precipitation map of the Northwest 

U.S.).  

After each county was allocated to the appropriate rainfall zone, certain counties 

were excluded from the analysis. Counties that were located further than 100 miles from 

the closest refinery capable of using camelina as a feedstock were excluded. These 

counties were excluded because the higher transportation costs would decrease the 

profitability of camelina. After speaking with an oilseed agronomist at OSU (T. Chastain, 

personal communication, October 2011) and a camelina industry representative (T. 

Endicott, personal communication, February 2012), counties that received more than 2 

inches of rainfall from April to June were removed as well. These counties were excluded 

because camelina is not tolerant of over saturated soil and heavy rains during later stages 

of growth reduce production. Additionally, excess moisture can increase disease levels 

and reduce yields. This potential reduction in yield is an added risk to growing camelina. 

Therefore, the opportunity cost of growing camelina in high rainfall zones is greater than 

lower rainfall zones making camelina a less desirable crop. See Figure 3 for a map of the 

Northwest U.S. with April to June precipitation and refinery locations.  

Camelina’s tolerance to herbicides is a concern and will affect the acres suitable 

for camelina production. Winter wheat producers rely on numerous types of herbicides, 

each having a different effect on camelina. Unfortunately there are very few studies 

addressing this issue (Stougaard 2009; Stougaard 2010; Johnson et al. 2008; Campbell 

and Walton 2007). However, the studies show that camelina is tolerant to certain  
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Figure 2: Precipitation Map of Northwest U.S. 
 

 

 

Figure 3: Map of Northwest U.S. with April to June Precipitation and Refinery 
Locations 
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postemergent and postemergent herbicides. Crop injury ranged from 0% to 100%, 

depending on the herbicide used and the rate applied. There are herbicides used in winter 

wheat production that show potential for use in camelina, but the rate adoption will be 

hindered.  

 

3.2.2. Allocation of Crop Yields 

Yields were estimated using data obtained from the NASS and various yield trials 

performed in each state (Fretz 2009; Jackson and Miller 2006; Karow et al. 2010; 

Montana State University 2006a, 2006b, 2008, 2009a, 2009b, 2010a, 2010b; Schillinger 

et al. 2012; Wichman 2008). As with the acres data, county level data was available every 

year for winter wheat and barley, but not for the other crops. A five-year average yield 

was calculated for winter wheat and barley using the NASS data. For the other rotation 

crops, average yield estimates were estimated by using the Census data. Since camelina is 

not included in NASS nor the Census, average yield estimates were estimated by using 

various camelina yield trials preformed in each state. OSU, UI, MSU, and WSU have all 

conducted camelina yield trials. After compiling all of the available yield data for each 

crop, the average crop yields were calculated and allocated across state and rainfall 

zones. Appendix C contains the yield data used in the partial equilibrium model. 

 

3.2.3. Allocation of Crop Production Costs 

 An enterprise budget is a listing of all estimated income and expenses associated 

with a specific enterprise to provide an estimate of its profitability. A budget can be 
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developed for each existing or potential enterprise in a farm or ranch plan.  Several 

budgets could be developed for a single crop to represent alternative combinations of 

inputs and outputs. Each budget should be developed on the basis of a small common unit 

such as one acre of camelina.  This permits comparison of the profit for alternative and 

competing enterprises (Kaan and Sharp). 

 With the permission of Kathleen Painter, the Idaho wheat rotation enterprise 

budget was used for the preliminary budgets (Painter 2011).  The budget was then edited 

and updated to create the necessary budgets for the model (In Appendix D, I explain the 

process of developing these enterprise budgets). The camelina budgets were separated by 

state and rainfall zone. The camelina budgets were used to construct budgets comparing 

different wheat rotations.  The rotation crops evaluated were the regional crops that are 

most likely to be used as a rotation crop for wheat. Barley, mustard, canola, pea, and 

lentil were all included in the comparison budgets. Appendix E contains the summarized 

crop expenses from various enterprise budgets. 

 These budgets can be viewed as “typical” or “representative,” rather than a 

mathematical average of a large number of producers. Where such factors as farm size, 

machinery complement and hourly use, cultural practices and yield differ from those 

assumed in this study; substantially different enterprise costs and returns may result. 

Also, these budgets include only production costs and do not consider storage, handling, 

transportation, and interest costs associated with marketing the crop (Baldree and Hinman 

2003). 

 The following assumptions were made in developing the enterprise budgets: 
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1.  The representative farms are 2,500 acres. 

2.  Since yield variability is quite common in dryland farming, yields were 

varied for each enterprise to demonstrate the substantial impact yields have 

on per unit costs.  Camelina yields were estimated using various camelina 

yield trials preformed in each state. 

3.  A 10-year prices received average was calculated for the budgeted crops 

using data from the NASS site. Prices are $7.13 per bushel for winter wheat, 

$4.65 per bushel for spring barley, $9.26 per bushel for soft white spring 

wheat, $9.34 per bushel for hard red spring wheat, $0.13 per lb for field 

peas, $0.27 per lb for lentils, $0.38 per lb for garbanzos, $0.24 per lb for 

flax, $.26 per lb for mustard, and $.25 per lb for canola.  Prices received for 

camelina was posted by Great Plains Camelina Company at $0.16 per lb for 

2010. 

4. Machinery values and costs vary widely from farm to farm. When replacing 

machinery producers replace with both new and used equipment. Thus, the 

machinery complement used in constructing these budgets is a 

representation of what a machinery complement might look like on a typical 

farm in the relevant rainfall area.  

5.  The interest rate is 4.5%. 

6.  The farm is owned, managed, and operated by the same person. 
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3.2.4. Profitability of Land in Alternate Uses 

One of the underlying assumptions of the analysis is that farmers will not convert 

their land to camelina production unless they can earn at least as great a profit from the 

wheat-camelina rotation as from using the land for alternative uses such as a wheat-

fallow rotation. For each county, profit per acre for each crop rotation was calculated and 

used to determine the supply of camelina. The per acre profit of the wheat-barley and 

wheat-fallow rotations for each county were estimated using the production costs from 

the enterprise budgets, the 5-year yield average calculated from the NASS data, and the 

5-year prices received average calculated from the NASS data (a complete list of prices 

are included in Appendix F).  The per acre profits of the other wheat rotations were 

estimated using the production costs from the enterprise budgets, the yield average 

calculated from the 2007 Census, and the 5-year prices received average calculated from 

the NASS data. The per acre profit of the wheat-camelina rotation for each county was 

estimated by adding the per acre profit of wheat to the per acre profit of camelina at 

different prices for camelina. The camelina prices used ranged from $0 to $.40. To avoid 

double counting, the land costs were not included in the profitability estimates. Instead, 

the per acre cropland rental rate for each county was used from the NASS data. The 

rental rate can be viewed as being equivalent to the opportunity cost of growing winter 

wheat, rotation crops, and camelina. 
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3.3. Limitations to Model 

 The partial equilibrium modeling approach used has several limitations. First, the 

decision framework used in the model is simple. It does not allow one to differentiate 

between farm production options and practices. Additionally, it does not account for the 

reallocation of resources to produce the combination of crops that leads to maximum 

profit. Furthermore, the model is static with fixed cost and yield estimates. The enterprise 

budgets used in the model have fixed input variables and do not account for increases in 

price. The method also does not endogenously allocate land between the competing 

crops, requiring the analyst to make the calculation after the fact (Walsh 2000). 

 The partial equilibrium approach, unlike a general equilibrium approach, assumes 

that all other parameters remain fixed except for that parameter which the analyst is 

varying. For example, as camelina production increases and displaces land from 

competing crop production, the price of the competing crops will increase. This partial 

equilibrium model assumes that the price of all competing crops remain fixed and thus 

underestimates the price that must be paid for camelina to make it as profitable as the 

competing crops. Another limitation is that there is no upper bound constraint. The model 

estimates that all acres could be shifted to camelina production. This was corrected by 

applying an adoption rate to the data (Walsh 2000).  
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4. Results and Discussion 

 

This partial equilibrium model focused on the potential supply of camelina in the 

Northwest U.S. The analysis is meant to estimate the potential supply of camelina, 

evaluate the changes in the agricultural landscape, and determine what policy, market, 

and/or agronomic changes are necessary to meet the biofuel goals stated in the “Farm to 

Fly” initiative. The potential supply of camelina is first estimated under current market 

conditions. This estimation is then compared to a reference-dataset to determine its 

validity. Next, adoption rates are applied to the supply curve to get a more pragmatic 

estimate. Then the policy, market, and agronomic changes necessary to meet the “Farm to 

Fly” biofuel goals are discussed. Lastly, the land use change implications are explained.  

 

4.1. Potential Supply of Camelina 

The supply curve for camelina in Idaho, Montana, Oregon, and Washington is 

presented in Figure 4 (see Appendix G for the individual supply curves for each state). 

Given the current price of camelina, $0.15, the estimated supply of camelina in all 4 

states is 1,756,076,887 lbs, with 1,493,684 planted acres. Depending on oil content, oil 

recovery from processing and yields, approximately 1.3 to 1.6 billion lbs of camelina or 

900,000 to 1.8 million acres would be needed to achieve the 50 million gallon biofuel 

goal annually.  
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Figure 4: Estimated Supply Curve for Camelina in Idaho, Montana, Oregon, and 
Washington 
 
 

This means that the “Farm to Fly” biofuel goal could be reached if the adoption 

rate of camelina was close to 100%. This seems unlikely considering that camelina is a 

new crop and farmers tend to be risk averse. 61 counties were excluded from the analysis 

because of the unsuitability of data, climate, and geographic location. Note, however, that 

only the counties most likely to convert acreage to camelina production were included in 

the analysis.  

The map in Figure 5 shows the predicted camelina planted acreage by county. 

This model predicts where camelina will be grown and the quantity produced at $0.15 per 

lb. The majority of camelina acreage is concentrated in southeastern Idaho, northern 

Montana, northeastern Oregon, and eastern Washington. At $0.15 per lb, 121,253 acres in 
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Figure 5: Camelina Acreage Composition by County Assuming 100% Adoption 
Rate and a Price of $0.15 per lb 
 

Idaho, 588,633 acres in Montana, 54,950 acres in Oregon, and 728,848 acres in 

Washington are converted to camelina.  

 

4.1.1. Model Validation 

The partial equilibrium model contains supply estimates for every county in all 4 

states. Ideally, these county estimates should be compared to a reference-dataset (Siegel 

2008). County level acreage data for camelina is available from the NASS website, but 

only for Montana (U.S. Department of Agriculture 2011b). Table 2 is a side-by-side  



 
 
 

35 
 

Table 2: Comparison of Camelina Planted Acreage by County, Montana, USA 
 

2009 NASS Camelina Planted 
Acresa 

Partial Equilibrium 
Model 

Acres Converted to 
Camelinab 

Big Horn 5,100 Big Horn 0 
Broadwater 500 Broadwater 0 
Chouteau 800 Chouteau 2,897 
Dawson 900 Dawson 0 
Garfield 600 Garfield 0 
Glacier 700 Glacier 0 
Golden Valley 0 Golden Valley 2,841 
Liberty 900 Liberty 2,951 
McCone 2,300 McCone 0 
Phillips 500 Phillips 0 
Pondera 1,800 Pondera 0 
Sheridan 1,500 Sheridan 0 
Stillwater 500 Stillwater 0 
Teton 1,400 Teton 4,751 
Toole 0 Toole 1,189 
Wheatland 0 Wheatland 8,379 
Other 3,300 Other 0 
Total 20,800 Total 23,008 

a Camelina acreage is drawn from the NASS website (U.S. Department of Agriculture 2011b). 
b These are the results from the partial equilibrium model with a camelina price of $0.09 per lb and an 
adoption rate of 100%. 
 

comparison of the 2009 NASS data and the partial equilibrium model estimates. In 2009 

there were 20,800 planted acres of camelina in Montana. The partial equilibrium model 

shows that if the price of camelina is $0.09 per lb and the adoption rate is 100% the 

number of acres converted to camelina is 23,008.  

The partial equilibrium model overestimates camelina production by only 2,200 

acres. At the county level, the model predicted camelina adoption in 3 of the 6 counties 

correctly. According to the 2009 NASS data, the total production of camelina in Montana 

was approximately 12 million lbs with an average yield of 615 lbs per acre. The model 

estimated that approximately 28 million lbs of camelina would be produced with an 

average yield of 1,184 lbs per acre, almost double the 2009 NASS data. However, in  
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2010 the average yield in Montana was 1,010 lbs per acre (U.S. Department of 

Agriculture 2011a). 

The partial equilibrium model seems to predict camelina acreage and total 

production accurately for Montana. However, in 2010 the price of camelina was between 

$0.09 and $0.12 per lb but only 9,900 acres were planted in Montana. The model predicts 

approximately 40,000 acres in Oregon and 200,000 acres in Washington would be 

converted to camelina at $0.09 per lb. It is obvious that the model must be modified in 

order to more accurately estimate the supply of camelina. 

 

4.1.2. Potential Supply of Camelina Using Varied Adoption Rates 

The supply curve presented in Figure 4 and the acres converted to camelina 

presented in Table 2 were estimated by assuming that if the wheat-camelina rotation is 

more profitable than the current crop rotation, then all of the acres will be converted to 

camelina. However, it is more likely that only a percentage of the available acres will be 

converted to camelina because farmers are risk averse and growing a new crop like 

camelina is perceived as a risk. To more accurately approximate the potential supply of 

camelina, adoption rates will be applied to the data to get a more pragmatic estimate. 

 Camelina is best suited for low rainfall cropland. For this reason, a higher 

adoption rate will be applied to counties in the low and intermediate rainfall zones. Data 

on the current production of camelina is available from the NASS website. The NASS 

data only has camelina production data for Montana. No data is available for the other 

states or Canadian provinces. The NASS data shows acreage declining from 2007 to 2008 
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from 22,500 to 12,200 acres. Similarly, from 2009 to 2010 acreage declined from 20,800 

to 9,900. It also shows yields considerably lower than those achieved in trials. From 2007 

to 2009 the average yield was approximately 600 lbs/acre but increased to 1,010 lbs/acre 

in 2010 (U.S. Department of Agriculture 2011a).  

Tomas Endicott, VP of Business Development at Willamette Biomass Processors 

in Rickreal, Oregon attributes some of the acreage reduction to the fact that Great Plains 

Camelina Company cancelled contracts with farmers. An article in the Western Producer 

states that Great Plains cancelled contracts it signed with growers due to financial 

difficulties and extreme weather conditions preventing delivery (Pratt 2012). According 

to Endicott, Willamette Biomass Processors has contracted 1,000 acres of camelina in 

Oregon and none in Idaho and Washington (T. Endicott, personal communication, 

February 2012). This means that in 2010 there was approximately 11,000 acres of 

camelina being grown in Idaho, Montana, Oregon, and Washington. 

At first glance, it seems that the partial equilibrium model overestimates the 

supply of camelina. In 2010 the price of camelina was between $0.09 and $0.12 per lb. At 

$0.09 per lb, the number of acres converted to camelina is 270,772. When a 5% adoption 

rate is applied to the low, 5% to the intermediate, and a 1% to the high rainfall zones the 

number of acres converted to camelina decreases to 11,988. This estimation is very close 

to the 11,000 acres that was produced in 2010. Figure 6 shows the number of acres 

converted to camelina using these adoption rates. 

 Approximately 1.3 to 1.6 billion lbs of camelina would be needed to achieve the 

“Farm to Fly” biofuel goal. Given the current price and expected yields of camelina, the  
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Figure 6: Estimated Acres Converted to Camelina in Idaho, Montana, Oregon, and 
Washington Using Varied Adoption Rates (5% for Low and Intermediate Rainfall 
Zones, 1% for High Rainfall Zones). 
 

biofuel goal could not be met unless 100% of farmers adopted camelina when the wheat-

camelina rotation is more profitable than the competing crop rotation. In order to meet 

the “Farm to Fly” biofuel goal, the profitability of camelina must increase either through 

government incentives or agronomic improvements. 

 

4.1.3. Policy and Agronomic Changes 

The government uses a variety of policy incentives including subsidies, tax 

credits, grants, loans, and crop insurance programs to stimulate biofuel production. The 

two most common policy incentives used to promote biofuel crop production are 

subsidies and crop insurance programs. Biofuel subsidies, when paid directly to the 
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grower, are equivalent to an increase in the price of the product. A camelina subsidy 

would increase the price of camelina thus making it more profitable to grow. A camelina 

subsidy may seem like an easy way to meet the “Farm to Fly” biofuel goal. However, 

even at a price of  $.80 per lb only 269 million lbs of camelina would be produced, 

assuming a 5% adoption rate. The adoption rate would have to increase to 25% in order 

for production to reach 1.3 billion lbs at a price of $0.80 per lb. Also, an increase in price 

would not reduce the yield risk associated with growing camelina. There would still be a 

chance of crop failure, which would leave the farmer with a huge loss in revenue. A 

camelina subsidy could be used to increase production, but is a costly and potentially 

ineffective approach. 

Another important issue regarding subsidies is the indirect costs that arise because 

subsidies are paid by taxpayers. Public finance economics recognizes that taxes introduce 

distortions and thus inefficiencies in the economy. This means that any government 

program funded with taxes has an additional cost associated with it. The cost is referred 

to as the “deadweight loss” or “excess burden” of the tax. To finance biofuel subsidies, 

governments must either raise funds through additional taxation or reduce funding for 

other programs. In either case, there is a cost of financing the program (Jaeger and Siegel 

2008).  

 Crop insurance is another approach used by governments to increase biofuel crop 

production. It is purchased by farmers to protect themselves against either the loss of 

their crops due to natural disasters or the loss of revenue due to a decrease in price. It is a 

type of economic incentive that would decrease the risk of growing camelina. Crop 
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insurance programs protect against specific crop losses and work by transferring the risk 

away from the farmer to both federal and private insurance companies. A crop insurance 

program could increase the adoption rate of camelina but is very costly. One of the major 

concerns of crop insurance is that it removes almost any financial risk for planting land 

where crop failure is almost certain. Farmers could take advantage of the program by 

farming on low-quality land knowing that it won’t produce and still make a profit (Nixon 

2012). A crop insurance program for camelina would likely increase adoption but could 

cost the government a lot of money if the yields remain low. 

A less costly way of increasing camelina adoption is through agronomic 

improvement and increased yields. If yields increased and the threat of crop failure 

decreased, camelina production would increase and adoption would likely expand. A 

50% increase in yield would result in approximately 272 million lbs being produced at 

$0.20 per lb, assuming an adoption rate of 5%. This is more than the amount that would 

be produced at $0.80 per lb given current yields. If yields increased and became more 

consistent, camelina would be a more profitable crop thus more farmers would be likely 

to grow it. Farmers won’t devote acreage to camelina if they are not confident in the crop. 

The “Farm to Fly” biofuel goal could be achieved if yields doubled, the adoption rate was 

25%, and the price was $0.18 per lb. Approximately 1.4 billion lbs of camelina would be 

produced at this price. Once again this is more than the amount produced given current 

yields at $0.80 per lb with an adoption rate of 25%. This would require yields of 1,500 to 

2,500 lbs per acre for low and intermediate rainfall zones. If these yields could be 

achieved consistently, the adoption rate of camelina would increase significantly, and the 
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“Farm to Fly” biofuel goal could be reached. However, how will the increased production 

affect the agricultural landscape? 

 

4.2. Land Use Change 

The debate over land use change caused by increased biofuel production in the 

U.S. is an important issue with two major concerns. First, increased biofuel crop 

production diverts land from natural ecosystems thus negating the direct reduction in 

GHG emissions caused by lower gasoline use. Second, when agricultural cropland is 

diverted to biofuel production rather than food production the price of food increases and 

there is a potential for food shortages. If camelina is grown on fallow land and does not 

divert significant acres from agricultural land devoted to food production, the negative 

externalities associated with changes in land use are avoided. 

In order to evaluate how the production of camelina affects the agricultural 

landscape, it is necessary to understand how total crop acreages change given the price of 

camelina. The results show that fallow land is the most affected by increased camelina 

production. As shown in Figure 7, camelina production first pressures fallow acres into 

production and then other crop acreage to switch. Crop acreage switches occur in barley, 

pea, canola, mustard, and lentil, in order of occurrence. At $0.15 per lb 1,081,319 fallow; 

371,442 barley; 35,853 pea; 2,701 canola; 1,474 mustard; and 895 lentil acres are 

converted to camelina assuming an adoption rate of 100%. This analysis assumes that 

camelina will not replace wheat acres, but if the profitability of camelina were to be 

greater than that of wheat, it is likely that some wheat acres will be converted to  
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Figure 7: Estimated Acres Converted to Camelina by Crop Type. 
 

camelina. However, the majority of acres will still come from fallow land thus making 

the impact of indirect land use change minimal. Table 3 shows the crop acreage 

composition for each crop as a % of total supply. At $0.15 per lb, 72% of the total supply 

comes from fallow cropland and 25% from barley. The remaining 3% comes from pea, 

canola, lentil, and mustard acres. One of the reasons camelina is considered to be an ideal 

energy crop is because it does not displace land from food crops. These results are 

consistent with that claim. When the price of camelina increases to $.20 per lb the crop 

acreage composition changes very little. Even at a price of $.40 per lb, 79% of the acres 

converted to camelina come from fallow acres. One of the most common criticisms of  
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Table 3: Crop Acreage Composition- % of Total Supply of Acres 
 

Camelina 
Price 

Fallow % 
 

Barley % 
 

Canola % 
 

Pea % 
 

Lentil % 
 

Mustard % 

$0.10 75.49 19.20 0.00 5.31 0.00 0.00 
$0.11 59.05 34.33 0.00 6.41 0.21 0.00 
$0.12 64.72 30.72 0.10 4.32 0.14 0.00 
$0.13 71.05 25.65 0.23 3.00 0.07 0.00 
$0.14 73.04 24.29 0.18 2.42 0.06 0.00 
$0.15 72.39 24.87 0.18 2.40 0.06 0.10 
$0.16 68.18 27.33 0.19 4.16 0.05 0.08 
$0.17 65.67 30.06 0.18 3.96 0.05 0.08 
$0.18 68.60 27.96 0.20 3.05 0.04 0.16 
$0.19 73.36 23.63 0.16 2.64 0.03 0.17 
$0.20 74.65 22.47 0.16 2.52 0.03 0.18 
- - -  - - - - - - - - - - - - - - - - - - 
$.40 79.28 17.45 0.37 2.01 0.77 0.12 

 

corn ethanol and soybean biodiesel is that it diverts farmland from food production. If 

camelina is grown as a rotation crop with wheat the food versus fuel debate is eliminated. 
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5. Conclusion 

  

This research shows that given current market conditions, the supply of camelina 

in Idaho, Montana, Oregon, and Washington will not be enough to meet the 50 million 

gallon biofuel goal state in the “Farm to Fly” initiative unless the adoption rate of 

camelina is between 75% and 90%2. Camelina can replace fallow land and be grown in 

rotation with other crops for exclusive use in the creation of biofuels for the aviation 

industry, but farmers must have an economic incentive before devoting significant 

acreage to it. Currently, the profitability of camelina is a major concern because the price 

and the observed yields of camelina are too low. Before farmers will adopt camelina, 

many improvements and changes must be made to make it a less risky and more 

profitable crop. 

First, the price of camelina must increase in order for camelina to be profitable 

enough for farmers to adopt. This can be achieved through a change in the competitive 

market or through government intervention.  Economic theory postulates that if the 

demand for a good increases and the supply remains unchanged, then it will lead to a 

higher price. This means that the price of camelina could increase due to the growing 

demand caused by the “Farm to Fly” initiative. However, as the price increases the 

supply will increase diminishing the price effect. The price of camelina would also 

increase if the government provided economic incentives through subsidies. As discussed 

in section 4.1.3, subsidies have indirect costs and result in a “deadweight loss”. Also, an 

                                                
2 Depending on yield and oil content 
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increase in price to $0.80 per lb would not increase production enough to meet the “Farm 

to Fly” biofuel goal and would not reduce the yield risk associated with growing 

camelina. 

Second, an increase in yield and a reduction in yield variability would increase 

camelina’s profitability and make it a less risky crop to grow. Yield improvements can be 

achieved through agronomic research. Research should focus on obtaining varieties of 

camelina that are high yielding, have low yield variability and contain disease resistance. 

If yields ranging from 1,500 to 2,500 lbs per acre could be achieved consistently, 

camelina production and the rate of adoption would increase. Without a significant 

improvement in yield, the “Farm to Fly” biofuel goal cannot be reached.  

 An alternative approach to reducing the yield risk associated with growing 

camelina is through crop insurance. If the government provided crop insurance for 

farmers growing camelina, the adoption rate would likely increase. However, without 

agronomic improvements the effect of the crop insurance programs on camelina adoption 

would not be enough to meet the 50 million gallon biofuel goal. If camelina yields do not 

improve, an adoption rate of nearly 100% would be required to achieve this goal. As 

stated in section 4.1.3, the biofuel goal could be achieved if yields doubled, the adoption 

rate was 25% and the price of camelina was $0.18 per lb. These changes will not occur 

without agronomic improvements and government intervention. 

 The results of this research can be used to draw important implications for state 

and federal policy makers. Without the help of policy makers, camelina and other 

biofuels are not cost-competitive with fossil fuels and thus aren’t produced on a large 
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enough scale to meet the growing demand. The enterprise budgets used in the partial 

equilibrium model could be used as a tool to determine the profitability of camelina and 

the other rotation crops examined in this study. This research shows the improvements 

and changes that must be made in order to meet the “Farm to Fly” biofuel goal. Camelina 

is a promising new energy crop, but without agronomic improvements and government 

intervention the supply of camelina will fall short of the growing demand. 
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Appendix A. Camelina Comparison to Other Crops 
 
 Table A.1 Biomass Advisors Camelina Comparison to Other Crops in Eastern 
Montana 

 Camelina Winter 
Wheat 

Spring 
Wheat 

Canola Barley 

Price ($/lb) 0.13 0.09 0.10 0.15 0.08 
Yield (lb/ac) 1,350 2,400 1,680 1,250 2,256 
Total Revenue 168.75 223.20 168.00 181.25 180.48 
Variable Cost ($/ac) 80.27 127.74 129.21 131.71 139.35 
Gross Margin ($/ac) 88.59 95.46 38.79 49.54 41.13 
Break-Even Price 0.06 0.05 0.08 0.11 0.06 

 
Table A.2 Camelina Comparison to Other Crops in Idaho 

 Camelina Barley Canola Peas Lentil Mustard 
Price ($/lb) 0.15 0.11 0.19 0.13 0.30 0.32 
Yield (lb/ac) 1,205 3,616 1,326 1,908 1,103 657 
Variable Cost ($/ac) 195.57 229.18 228.42 259.06 211.60 248.74 
Gross Margin ($/ac) -14.82 168.58 23.52 -11.02 119.30 -38.50 
Break-Even Price 0.16 0.06 0.17 0.14 0.19 0.38 

 
Table A.3 Camelina Comparison to Other Crops in Montana 

 Camelina Barley Canola Peas Lentil Mustard 
Price ($/lb) 0.15 0.10 0.18 0.12 0.26 0.32 
Yield (lb/ac) 1,336 2,088 1,262 1,626 1,059 819 
Variable Cost ($/ac) 204.80 252.97 242.95 244.36 195.51 253.57 
Gross Margin ($/ac) -4.40 -44.17 -15.79 -49.24 79.83 8.51 
Break-Even Price 0.15 0.12 0.19 0.15 0.18 0.31 

 
Table A.4 Camelina Comparison to Other Crops in Oregon 

 Camelina Barley Canola Peas Lentil Mustard 
Price ($/lb) 0.15 0.09 0.19 0.16 0.28 0.32 
Yield (lb/ac) 1,375 2,871 1,586 2,198 1,128 865 
Variable Cost ($/ac) 220.25 283.41 241.58 247.49 202.32 254.49 
Gross Margin ($/ac) -14.00 -25.02 59.76 104.19 113.52 22.31 
Break-Even Price 0.16 0.10 0.15 0.11 0.18 0.29 
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Table A.5 Camelina Comparison to Other Crops in Washington 
 Camelina Barley Canola Peas Lentil Mustard 
Price ($/lb) 0.15 0.08 0.19 0.13 0.31 0.32 
Yield (lb/ac) 1,451 2,732 1,707 2,004 1,250 856 
Variable Cost ($/ac) 216.82 279.66 246.13 260.83 208.31 246.10 
Gross Margin ($/ac) 0.83 -61.10 78.20 -0.31 179.19 27.82 
Break-Even Price 0.15 0.10 0.14 0.13 0.17 0.29 
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Appendix B. Acres Suitable for Camelina Production for Partial 
Equilibrium Model 
 
Table B.1 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Idaho Low Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Ada 3,764 552 1,063 - - - - - 
Bingham 73,434 5,163 13,980 - - - - - 
Canyon 19,810 2,389 2,627 - 1,082 - - - 
Cassia 54,893 15,825 28,785 - - - - - 
Elmore 6,571 1,408 2,281 - - - - - 
Gem 3,001 542 561 - - - - - 
Gooding 1,876 - 2,141 - - - - - 
Jerome 7,500 715 14,336 - 187 - - - 
Lincoln 2,387 1,030 3,023 - - - - - 
Minidoka 12,774 1,727 30,078 - 361 - - - 
Owyhee 4,654 1,698 1,917 - - - - - 
Payette 4,894 962 - - - - - - 
Power 48,716 31,712 1,280 - - - - - 
Twin Falls 19,470 695 23,235 41 1,830 - - - 

 
Table B.2 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Idaho Intermediate Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Bannock 18,838 16,185 5,656 - - - - - 
Bear Lake 298 2,182 3,996 - - - - - 
Caribou 21,881 14,889 53,578 - - - - - 
Franklin 16,354 7,331 5,573 - - - - - 
Oneida 22,282 22,604 3,002 - - - - - 
Teton 2,514 3,108 32,774 - - - - - 
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Table B.3 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Idaho High Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Benewah 29,635 1,756 4,414 - 1760 4,752 - - 
Boundary 10,813 882 3,352 2,636 - - - - 
Clearwater 7,315 499 1,094 - - - - - 
Fremont 2,284 702 54,392 - - - - - 
Idaho 63,581 18,543 18,374 5,826 911 536 - - 
Kootenai 7,774 3,004 1,022 - - - - - 
Latah 66,954 3,810 11,659 - 8095 18,475 - - 
Lewis 82,290 8,511 17,739 5,814 3514 4,286 - - 
Nez Perce 84,985 5,709 15,037 1,819 4767 7,724 - - 
Washington 5,565 1,840 1,249 - - - - - 
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Table B.4 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Montana Low Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Blaine 63,626 183,491 16,681 - 615 - - - 
Broadwater 12,093 20,331 3,723 - - - - - 
Chouteau 429,504 396,179 39,397 - 2,897 - - - 
Custer 11,350 28,441 3,454 - - - - - 
Daniels 2,562 57,676 2,145 2,430 49,000 6,764 3,613 4,762 
Dawson 26,899 73,765 14,361 - 3,902 1,570 - - 
Garfield 56,049 109,614 5,482 - 1,783 - - - 
Glacier 28,981 132,242 102,991 - 3,270 - - - 
Golden Valley 13,075 15,633 2,841 - - - - - 
Hill 268,806 384,820 23,787 - 2,338 895 - - 
Lewis and Clark 11,682 6,110 10,329 - - - - - 
Liberty 164,622 179,146 21,685 - 2,951 - - - 
McCone 34,820 107,503 14,729 - 5,102 - - - 
Madison 1,569 2,938 2,431 - - - - - 
Meagher 6,206 8,095 5,855 - - - - - 
Musselshell 22,302 9,894 1,295 - - - - - 
Petroleum 8,274 18,797 375 - - - - - 
Phillips 27,000 119,003 13,628 - 4,644 - - - 
Pondera 132,013 166,649 74,747 1,600 3,735 - - - 
Prairie 11,884 27,398 2,655 - - - - - 
Roosevelt 15,356 123,077 5,722 - 23,806 4,178 - - 
Rosebud 24,605 41,343 1,999 - - - - - 
Sheridan 6,015 47,723 9,390 - 50,007 58,365 2,480 4,084 
Teton 123,436 129,224 64,116 - 4,751 - - - 
Toole 89,089 206,972 52,425 2,033 1,189 - - - 
Treasure 2,180 - 4,130 - - - - - 
Valley 12,553 148,373 7,570 - 43,412 6,518 4,628 4,084 
Yellowstone 57,473 62,230 17,683 - 4,240 - - - 
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Table B.5 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Montana Intermediate Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Big Horn 87,729 82,269 18,048 - - - - - 
Carbon 2,777 5,959 6,840 - - - - - 
Carter 23,030 24,038 1,673 - - - - - 
Cascade 113,473 98,083 27,869 - - - - - 
Fallon 15,530 21,140 3,022 - 511 - - - 
Fergus 126,166 95,731 32,604 - 766 - - - 
Judith Basin 49,869 28,206 14,902 - 2,540 - - - 
Lake 2,491 3,562 2,266 - - - - - 
Powder River 10,749 13,097 1,759 - - - - - 
Richland 10,137 74,239 25,171 - 4,050 1,997 2,050 - 
Wheatland 24,363 16,987 8,379 - - - - - 
Wibaux 9,546 20,289 1,537 - 4,240 1,668 - - 

 
Table B.6 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Montana High Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Flathead 7,462 6,954 10,350 - 1,422 - - - 
Gallatin 19,409 27,749 25,140 - 1,507 - - - 
Stillwater 21,288 34,422 5,379 - 366 - - - 

 
Table B.7 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Oregon Low Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Baker 6,019 1,174 646 - - - - - 
Crook 650 762 0 - - - - - 
Gilliam 85,545 86,419 10,958 - - - - - 
Jefferson 3,904 5,640 284 - - - - - 
Malheur 20,852 7,082 958 - 93 - - - 
Morrow 141,979 99,940 3,822 - 488 - - - 
Sherman 109,183 116,260 10,861 - - - - - 
Wasco 52,562 32,829 1,211 - - - - - 

 
Table B.8 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Oregon Intermediate Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Umatilla 268,819 157,183 6,040 2,308 2,641 - 692 - 
Union 19,587 11,275 3,783 668 - - - - 
Wallowa 3,778 1,927 3,827 - - - - - 
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Table B.9 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Oregon High Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Benton 3,024 2,406 - - - - - - 
Clackamas 428 1,373 - - - - - - 
Klamath 1,132 1,603 9,383 - - - - - 
Lane 1,407 1,619 - - - - - - 
Linn 2,779 3,623 121 - - - 51 - 
Marion 2,702 5,797 168 - - - 152 - 
Polk 1,525 2,599 - - 71 - - - 
Washington 7,866 794 428 - - - - - 
Yamhill 1,701 1,095 - - - - - - 

 
Table B.10 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Washington Low Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Adams 234,604 222,098 1,957 3,228 532 - - - 
Benton 80,546 99,338 180 - - - - - 
Douglas 145,455 157,657 2,781 1,302 761    
Franklin 61,579 55,357 - - 1,034 - - - 
Grant 117,172 95,104 2,170 1,423 1,207 - - - 
Lincoln 236,314 233,465 39,870 1,144 588 - 1,062 - 
Okanogan 9,714 12,916 3,218 - - - - - 
Walla Walla 165,205 107,788 4,496 - 5,245 - - - 
Yakima 15,261 7,161 - - - - - - 

 
Table B.11 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Washington Intermediate Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Asotin 20,381 16,300 2,096 - - - - - 
Garfield 48,757 38,874 11,010 - - - - - 
Spokane 98,638 24,195 26,482 709 5,961 - 782 - 
Whitman 334,197 159,779 108,689 1,900 37,187 32,969 2,400 - 
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Table B.12 Acres Suitable for Camelina Production for Partial Equilibrium Model 
across Counties in Washington High Rainfall Zone 

 
Winter 
Wheat 

Summer 
Fallow Barley Canola Peas Lentil Mustard Flax 

Columbia 58,543 35,373 11,591 - 11,416 - 378 - 
Island 228 334 777 - - - - - 
Kittitas 195 579 - 37 - - - - 
Klickitat 16,401 17,808 1,786 - - - - - 
Skagit 4,385 487 1,100 - - - - - 
Snohomish 311 508 56 - - - - - 
Whatcom 430 25 - - - - - - 
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Appendix C. Assumed Yields for Partial Equilibrium Model 
 
Table C.1 Assumed Yields for Partial Equilibrium Model across Counties in Idaho 
Low Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Ada 6,831 5,085 742 - - - - - 
Bingham 6,309 5,026 742 - - - - - 
Canyon 6,707 5,208 742 - 2,496 - - - 
Cassia 5,246 5,503 742 - - - - - 
Elmore 5,513 4,795 742 - - - - - 
Gem 6,514 2,951 742 - - - - - 
Gooding 6,541 4,710 742 - - - - - 
Jerome 6,850 5,817 742 - 2,393 - - - 
Lincoln 6,466 5,517 742 - - - - - 
Minidoka 6,316 5,586 742 - 2,263 - - - 
Owyhee 6,672 4,479 742 - - - - - 
Payette 5,815 - 742 - - - - - 
Power 3,497 4,734 742 - - - - - 
Twin Falls 6,835 5,557 742 1,228 2,382 - - - 

 
Table C.2 Assumed Yields for Partial Equilibrium Model across Counties in Idaho 
Intermediate Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Bannock 2,766 2,375 1,205 - - - - - 
Bear Lake 1,359 1,922 1,205 - - - - - 
Caribou 2,861 1,811 1,205 - - - - - 
Franklin 2,403 2,964 1,205 - - - - - 
Oneida 1,740 1,496 1,205 - - - - - 
Teton 3,298 2,205 1,205 - - - - - 
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Table C.3 Assumed Yields for Partial Equilibrium Model across Counties in Idaho 
High Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Benewah 3,979 2,973 1,668 - 1,729 1,129 - - 
Boundary 4,735 3,314 1,668 2,007 - - - - 
Clearwater 3,420 1,582 1,668 - - - - - 
Fremont 4,609 2,988 1,668 - - - - - 
Idaho 3,942 2,289 1,668 1,407 1,230 1,079 - - 
Kootenai 3,957 2,764 1,668 - - - - - 
Latah 4,476 2,850 1,668 - 1,666 1,165 - - 
Lewis 3,127 2,492 1,668 799 1,385 919 - - 
Nez Perce 4,002 2,590 1,668 1,191 1,627 1,222 - - 
Washington 5,035 3,292 1,668 - - - - - 
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Table C.4 Assumed Yields for Partial Equilibrium Model across Counties in 
Montana Low Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Blaine 2,075 1,593 1,160 - 1,505 - - - 
Broadwater 1,680 3,092 1,160 - - - - - 
Chouteau 2,806 1,573 1,160 - 1,079 - - - 
Custer 1,698 2,344 1,160 - - - - - 
Daniels 1,277 1,428 1,160 873 1,851 753 363 383 
Dawson 2,034 1,935 1,160 - 1,207 1,281 - - 
Garfield 1,737 1,792 1,160 - 1,272 - - - 
Glacier 1,280 1,165 1,160 - 852 - - - 
Golden Valley 2,110 1,065 1,160 - - - - - 
Hill 2,107 1,524 1,160 - 1,640 443 - - 
Lewis and Clark 1,700 3,541 1,160 - - - - - 
Liberty 1,780 1,323 1,160 - 983 - - - 
McCone 1,734 1,602 1,160 - 1,895 - - - 
Madison 2,781 3,715 1,160 - - - - - 
Meagher 1,366 1,753 1,160 - - - - - 
Musselshell 1,595 1,533 1,160 - - - - - 
Petroleum 1,596 1,139 1,160 - - - - - 
Phillips 2,001 1,584 1,160 - 1,388 - - - 
Pondera 2,264 2,004 1,160 1,982 1,323 - - - 
Prairie 1,679 1,219 1,160 - - - - - 
Roosevelt 2,490 1,884 1,160 - 2,053 1,137 - - 
Rosebud 1,757 3,421 1,160 - - - - - 
Sheridan 2,662 1,489 1,160 - 2,153 1,265 513 562 
Teton 2,373 3,139 1,160 - 853 - - - 
Toole 1,678 1,338 1,160 930 1,021 - - - 
Treasure 1,534 4,248 1,160 - - - - - 
Valley 1,819 1,166 1,160 - 1,595 871 348 1,313 
Yellowstone 1,722 3,629 1,160 - 2,268 - - - 
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Table C.5 Assumed Yields for Partial Equilibrium Model across Counties in 
Montana Intermediate Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Big Horn 2,213 3,060 1,317 - - - - - 
Carbon 1,907 4,419 1,317 - - - - - 
Carter 2,217 1,744 1,317 - - - - - 
Cascade 2,512 2,073 1,317 - - - - - 
Fallon 1,880 968 1,317 - 1,600 - - - 
Fergus 2,595 1,484 1,317 - 1,858 - - - 
Judith Basin 2,315 1,383 1,317 - 1,239 - - - 
Lake 3,395 3,073 1,317 - - - - - 
Powder River 2,037 1,459 1,317 - - - - - 
Richland 1,748 2,805 1,317 - 2,316 1,180 640 - 
Wheatland 1,670 1,591 1,317 - - - - - 
Wibaux 2,555 1,353 1,317 - 2,268 1,540 - - 

 
Table C.6 Assumed Yields for Partial Equilibrium Model across Counties in 
Montana High Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Flathead 3,889 2,906 1,530 - 2,159 - - - 
Gallatin 2,963 2,515 1,530 - 2,536 - - - 
Stillwater 1,735 1,698 1,530 - 1,746 - - - 

 
Table C.7 Assumed Yields for Partial Equilibrium Model across Counties in Oregon 
Low Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Baker 5,285 3,812 1,224 - - - - - 
Crook 6,156 - 1,224 - - - - - 
Gilliam 2,493 1,146 1,224 - - - - - 
Jefferson 7,206 4,931 1,224 - - - - - 
Malheur 6,393 3,698 1,224 - 1,862 - - - 
Morrow 2,253 1,951 1,224 - 2,222 - - - 
Sherman 2,839 2,051 1,224 - - - - - 
Wasco 2,508 1,868 1,224 - - - - - 

 
Table C.8 Assumed Yields for Partial Equilibrium Model across Counties in Oregon 
Intermediate Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Umatilla 3,292 1,750 1,462 2,142 1,883 - 761 - 
Union 4,852 2,767 1,462 1,030 - - - - 
Wallowa 2,493 3,251 1,462 - - - - - 
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Table C.9 Assumed Yields for Partial Equilibrium Model across Counties in Oregon 
High Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Benton 6,430 - 1,438 - - - - - 
Clackamas 4,684 - 1,438 - - - - - 
Klamath 5,032 4,773 1,438 - - - - - 
Lane 6,310 - 1,438 - - - - - 
Linn 5,184 2,564 1,438 - - - 987 - 
Marion 4,539 2,830 1,438 - - - 847 - 
Polk 6,019 - 1,438 - 2,824 - - - 
Washington 5,667 2,806 1,438 - - - - - 
Yamhill 4,918 - 1,438 - - - - - 

 
Table C.10 Assumed Yields for Partial Equilibrium Model across Counties in 
Washington Low Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Adams 2,999 2,771 1,027 1,523 1,941 - - - 
Benton 3,058 2,324 1,027 - - - - - 
Douglas 2,677 1,804 1,027 1,196 1,932 - - - 
Franklin 3,647 - 1,027 - 2,364 - - - 
Grant 4,061 2,039 1,027 2,060 2,349 - - - 
Lincoln 3,533 2,330 1,027 2,048 2,118 - 692 - 
Okanogan 2,695 1,180 1,027 - - - - - 
Walla Walla 4,068 3,374 1,027 - 1,954 - - - 
Yakima 4,664 - 1,027 - - - - - 

 
Table C.11 Assumed Yields for Partial Equilibrium Model across Counties in 
Washington Intermediate Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Asotin 2,661 1,797 1,432 - - - - - 
Garfield 3,349 2,586 1,432 - - - - - 
Spokane 3,768 2,844 1,432 1,168 1,593 - 695 - 
Whitman 4,365 3,387 1,432 1,843 1,884 1,250 798 - 
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Table C. 12 Assumed Yields for Partial Equilibrium Model across Counties in 
Washington High Rainfall Zone 

 
Winter 
Wheat Barley Camelina Canola Peas Lentil Mustard Flax 

Columbia 4,393 3,447 1,894 - 1,898 - 1,239 - 
Island 4,823 4,817 1,894 - - - - - 
Kittitas 5,095 - 1,894 2,114 - - - - 
Klickitat 2,278 1,709 1,894 - - - - - 
Skagit 5,143 3,899 1,894 - - - - - 
Snohomish 3,712 3,402 1,894 - - - - - 
Whatcom 3,386 - 1,894 - - - - - 
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Appendix D. Enterprise Budgeting Procedure 
 
 The first step in constructing an enterprise budget is to estimate total production 

(output or yield) and expected output price. The estimated yields and prices should be 

what you expect under normal conditions (Baldree and Hinman 2003).  The yield 

estimates were estimated by talking with agronomists and agricultural economists.  Then, 

the average yield for each crop was calculated by using data obtained from the Census 

and NASS.  The census data was arranged by state and rainfall zone.  The final yield 

estimates took into account the input from agronomists/economists and the Census data.  

Since camelina is not included in the Census, average yield estimates were estimated by 

using various camelina yield trials preformed in each state. UI, MSU, OSU and WSU 

have all conducted camelina yield trials.  The expected prices, except camelina, were 

obtained from the NASS website.  The 2010 camelina price posted by Great Plains 

Camelina Company was used. 

 The second step is to estimate variable costs. These are associated with operating 

machinery, labor and purchasing services and materials. Variable costs vary directly with 

the crop grown and the number of acres produced. Variable costs include fuel, oil, 

repairs, fertilizer, chemicals, custom work, overhead and interest on operating capital. 

Labor, including that provided by the owner-operator, is also included as a variable cost.  

The price of inputs and the quantity of inputs used greatly affects the variable costs 

calculation (Baldree and Hinman 2003). 

 Fertilizer prices were taken from the USDA’s Economic Research Service (ERS) 

average U.S. farm prices spreadsheet (U.S. Department of Agriculture, Economic 
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Research Service 2011).  The spreadsheet contains average U.S. farm price of selected 

fertilizers3.  These prices were then converted into price per lb for N, P, S, and potassium 

(K)4 (Baldree and Hinman 2003).  The quantity of fertilizer and chemicals applied is 

based on the findings of studies estimating fertility/chemical requirements for each crop 

and input from various agronomists. Chemical input prices are based on January, 2011 

quotes from chemical and seed dealers.  

  The third step is to assess machinery and land fixed costs. Fixed costs will occur 

and will stay about the same no matter how much you produce, or, in most cases whether 

or not you produce at all.  Machinery fixed cost includes depreciation, interest on the 

investment, property taxes, insurance and housing. For the overall farm operation these 

costs do not vary with the crops produced, given the ownership of a specific machinery 

complement, and are incurred whether or not crops are grown. Machinery fixed costs 

were determined by multiplying the machine hours per acre times the hourly fixed cost. 

The hourly fixed costs were determined by dividing the total fixed cost by the annual 

hours of machinery use for the representative farm (Baldree and Hinman 2003). 

 Machinery interest costs were calculated on the average annual investment in the 

machine.  The formula used to calculate the average machine investment was: 

(Purchase cost + Salvage value)/2 

 A 4.5% interest charge made against this average investment represents an 

opportunity cost (returns forgone by investing in a given machine implement rather than 

                                                
3 $526/tonne for 46-0-0, $633/tonne for 0-46-0, $601/tonne for 0-0-60, and $423/tonne 
for 21-0-0-24 
4 $0.58/lb actual N, $.69/lb actual P, $0.50/lb actual K, and $0.38/lb actual S 
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in an alternative investment) or interest paid on money borrowed to finance machine 

purchases, or both. Machinery interest cost for one acre of the crop enterprise being 

analyzed was determined by multiplying the respective machine hours per acre times the 

per hour interest costs (Baldree and Hinman 2003). 

 Land fixed costs include taxes and net rent which is based on a one-third land 

owner and two-thirds tenant crop share with the land owner paying the land taxes and 

one-third the cost of fertilizer, chemicals and crop insurance. The tenant pays all other 

production costs. While the owner-operator will not actually experience a land rental 

cost, the cost represents the minimum returns the owner-operator must realize to justify 

growing the crop him or herself. This net rent return represents the income the owner-

operator forgoes by producing the crop rather than renting to a tenant who produces the 

crop. As a result of owning land, the farmer receives both current returns from the 

farming operation and any long-term appreciation in land value. However, the farmer 

would continue to realize land value appreciation even if the land is rented out. 

Consequently, the appropriate land charge for growing the crop is only the forgone net 

rent. As used in this study, for land that is owned and not rented, land cost was termed an 

opportunity cost to indicate that it was not an out-of-pocket expense, but rather a return 

that was forgone as a result of choosing to use the land to grow this crop. To determine 

the profitability of crop production relative to other activities, the owner-operator may 

want to consider these forgone returns, or opportunity costs, along with the usual 

production expenses (Baldree and Hinman 2003).  In this study, net land rental cost was 

calculated as: 
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1/3 Crop Value − 1/3 Fertilizer Cost − 1/3 Chemical Cost − 1/3 Crop Insurance Cost − 

Land Taxes 
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Appendix E. Summarized Crop Expenses from Various Enterprise 
Budgets for Partial Equilibrium Model5 
 
Table E.1 Summarized Crop Expenses for Idaho Low Rainfall Zone from Various 
Enterprise Budgets 

 
Table E.2 Summarized Crop Expenses for Idaho Intermediate Rainfall Zone from 
Various Enterprise Budgets 

 
 
 
 
 
 
 
 
 
 
 
                                                
5 Summarized crop expenses exclude land costs 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 14.00 0.00 13.20 16.00 30.00 66.00 22.50 12.50 9.20 
Fertilizer 48.95 0.00 40.25 39.50 32.05 20.35 14.40 32.05 32.05 
Pesticide 9.67 23.28 24.79 6.87 16.79 33.29 26.58 12.13 21.49 
Machinery 58.15 47.73 79.28 68.62 68.62 64.56 63.39 68.62 68.62 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 23.27 5.48 16.81 14.63 16.32 18.80 14.64 14.52 14.97 
Fixed Costs 32.53 22.52 38.80 36.38 36.38 34.81 34.81 36.38 36.38 
Total Costs 195.82 103.51 220.88 186.25 211.16 246.31 184.82 184.70 191.21 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 14.00 0.00 13.20 16.00 30.00 66.00 22.50 12.50 9.20 
Fertilizer 60.10 0.00 48.95 48.20 43.80 32.25 26.30 43.80 43.80 
Pesticide 9.67 23.28 24.79 6.87 16.79 33.29 31.58 12.13 21.49 
Machinery 58.15 47.73 79.28 68.62 68.62 64.56 64.56 68.62 68.62 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 24.23 5.48 17.44 15.26 17.17 19.65 15.95 15.38 15.82 
Fixed Costs 32.53 22.52 38.80 36.38 36.38 34.81 34.81 36.38 36.38 
Total Costs 207.93 103.51 230.21 195.58 223.76 259.06 204.20 197.31 203.81 
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Table E.3 Summarized Crop Expenses for Idaho High Rainfall Zone from Various 
Enterprise Budgets 

 
Table E.4 Summarized Crop Expenses for Montana Low Rainfall Zone from 
Various Enterprise Budgets 

 
Table E.5 Summarized Crop Expenses for Montana Intermediate Rainfall Zone 
from Various Enterprise Budgets 

 
 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 18.00 0.00 13.20 16.00 30.00 66.00 22.50 12.50 9.20 
Fertilizer 74.70 0.00 54.75 56.90 64.25 44.15 38.20 64.25 64.25 
Pesticide 9.67 23.28 24.79 6.87 16.79 33.29 26.58 12.13 21.49 
Machinery 58.15 47.73 79.28 68.62 68.62 64.56 64.56 68.62 68.62 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 25.83 5.48 17.86 15.90 18.65 20.52 16.45 16.86 17.30 
Fixed Costs 32.53 22.52 38.80 36.38 36.38 34.81 34.81 36.38 36.38 
Total Costs 228.13 103.51 236.43 204.92 245.69 271.83 211.60 219.24 225.74 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 14.00 0.00 18.70 24.00 24.00 66.00 22.50 12.50 11.50 
Fertilizer 63.00 0.00 43.00 27.00 58.45 20.35 20.35 58.45 45.90 
Pesticide 9.67 23.28 9.65 24.85 9.07 31.17 31.17 31.17 31.17 
Machinery 52.98 43.53 72.21 62.54 62.54 63.95 57.79 62.54 62.54 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 24.03 5.17 15.80 15.17 16.80 18.60 15.00 17.38 16.40 
Fixed Costs 30.90 21.39 36.85 34.56 34.56 33.06 33.06 34.56 34.56 
Total Costs 203.83 97.87 203.96 192.37 216.42 241.63 188.37 225.10 210.57 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 14.00 0.00 18.70 24.00 24.00 66.00 22.50 12.50 11.50 
Fertilizer 81.10 0.00 63.60 38.60 85.00 26.30 26.30 85.00 66.50 
Pesticide 9.67 23.28 44.59 24.85 9.07 31.17 31.17 31.17 31.17 
Machinery 52.98 43.53 72.21 62.54 62.54 63.95 57.79 62.54 62.54 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 25.59 5.17 19.83 16.01 18.72 18.66 15.51 19.30 17.90 
Fixed Costs 30.90 21.39 36.85 34.56 34.56 33.06 33.06 34.56 34.56 
Total Costs 223.49 97.87 263.53 204.81 244.89 247.64 194.83 253.57 232.67 
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Table E.6 Summarized Crop Expenses for Montana High Rainfall Zone from 
Various Enterprise Budgets 

 
Table E.7 Summarized Crop Expenses for Oregon Low Rainfall Zone from Various 
Enterprise Budgets 

 
Table E.8 Summarized Crop Expenses for Oregon Intermediate Rainfall Zone from 
Various Enterprise Budgets 

 
 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 14.00 0.00 18.70 24.00 24.00 66.00 22.50 12.50 11.50 
Fertilizer 98.25 0.00 89.60 50.20 106.15 32.25 32.25 111.55 89.60 
Pesticide 9.67 23.28 44.59 24.85 9.07 31.17 31.17 31.17 31.17 
Machinery 52.98 43.53 72.21 62.54 62.54 63.95 57.79 62.54 62.54 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 27.06 5.17 21.71 16.85 20.25 19.09 15.94 21.23 19.57 
Fixed Costs 30.90 21.39 36.85 34.56 34.56 33.06 33.06 34.56 34.56 
Total Costs 242.11 97.87 291.41 217.25 267.57 254.02 201.21 282.05 257.44 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 20.00 0.00 26.40 16.00 24.00 66.00 25.00 12.50 9.20 
Fertilizer 64.00 0.00 46.10 39.50 57.10 20.35 20.35 72.00 58.49 
Pesticide 17.07 23.28 30.27 18.63 9.07 17.21 25.35 12.13 21.49 
Machinery 64.33 53.98 87.05 75.65 75.65 71.59 70.44 75.65 75.65 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 26.25 5.93 19.15 16.00 17.65 18.14 15.68 17.93 17.39 
Fixed Costs 36.56 26.68 43.70 40.91 40.91 39.33 39.33 40.91 40.91 
Total Costs 237.46 114.37 260.42 210.94 235.38 241.12 204.65 239.62 231.63 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 20.00 0.00 26.40 16.00 24.00 66.00 25.00 12.50 9.20 
Fertilizer 73.25 0.00 56.85 48.20 62.90 26.30 26.30 81.25 82.35 
Pesticide 17.07 23.28 30.27 18.63 9.07 17.21 25.35 12.13 21.49 
Machinery 64.33 53.98 87.05 75.65 75.65 71.59 70.44 75.65 75.65 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 27.04 5.93 19.93 16.62 18.07 18.57 16.19 18.61 19.12 
Fixed Costs 36.56 26.68 43.70 40.91 40.91 39.33 39.33 40.91 40.91 
Total Costs 247.50 114.37 271.95 220.26 241.60 247.50 211.11 249.55 257.22 
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Table E.9 Summarized Crop Expenses for Oregon High Rainfall Zone from Various 
Enterprise Budgets 

 
Table E.10 Summarized Crop Expenses for Washington Low Rainfall Zone from 
Various Enterprise Budgets 

 
Table E.11 Summarized Crop Expenses for Washington Intermediate Rainfall Zone 
from Various Enterprise Budgets 

 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 20.00 0.00 26.40 16.00 24.00 66.00 25.00 12.50 9.20 
Fertilizer 79.60 0.00 63.20 56.90 74.05 32.25 32.25 90.50 93.10 
Pesticide 17.07 23.28 30.27 18.63 9.07 17.21 25.35 12.13 21.49 
Fungicide 13.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Machinery 64.33 53.98 87.05 75.65 75.65 71.59 70.44 75.65 75.65 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 27.59 5.93 20.39 17.26 18.87 19.00 16.62 19.27 19.90 
Fixed Costs 36.56 26.68 43.70 40.91 40.91 39.33 39.33 40.91 40.91 
Total Costs 267.40 114.37 278.76 229.60 253.55 253.88 217.49 259.46 268.75 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 18.00 0.00 18.70 16.00 24.00 66.00 22.50 12.50 9.20 
Fertilizer 76.70 0.00 43.15 39.50 74.05 20.35 20.35 72.00 71.60 
Pesticide 9.67 23.28 44.59 18.63 9.07 33.29 26.58 12.13 21.49 
Machinery 63.55 52.13 86.68 74.98 74.98 70.54 69.25 74.98 74.98 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 26.47 5.80 19.39 15.94 18.83 19.23 15.49 17.88 18.29 
Fixed Costs 34.16 23.64 40.73 38.19 38.19 36.54 36.54 38.19 38.19 
Total Costs 237.80 109.35 260.99 207.49 250.12 254.45 199.21 236.18 242.25 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 18.00 0.00 18.70 16.00 24.00 66.00 22.50 12.50 9.20 
Fertilizer 76.70 0.00 51.85 48.20 62.90 26.30 26.30 81.25 82.35 
Pesticide 9.67 23.28 44.59 18.63 9.07 33.29 31.58 12.13 21.49 
Machinery 63.55 52.13 86.68 74.98 74.98 70.54 70.54 74.98 74.98 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 26.47 5.80 20.02 16.58 18.02 19.67 16.39 18.55 19.07 
Fixed Costs 34.16 23.64 40.73 38.19 38.19 36.54 36.54 38.19 38.19 
Total Costs 237.80 109.35 270.32 216.83 238.16 260.84 212.35 246.10 253.78 
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Table E.12 Summarized Crop Expenses for Washington High Rainfall Zone from 
Various Enterprise Budgets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Crop 
Winter 
Wheat 

Summer 
Fallow Barley Camelina Canola Peas Lentil Mustard Flax 

Unit lb lb lb lb lb lb lb lb lb 
Seed 18.00 0.00 18.70 16.00 24.00 66.00 22.50 12.50 9.20 
Fertilizer 76.70 0.00 60.55 56.90 74.05 33.25 32.25 90.50 93.10 
Pesticide 9.67 23.28 44.59 18.63 9.07 33.29 26.58 12.13 21.49 
Machinery 63.55 52.13 86.68 74.98 74.98 70.54 70.54 74.98 74.98 
Custom & 
Consultants 9.25 4.50 7.75 4.25 11.00 8.50 8.50 8.50 8.50 
Other 26.47 5.80 20.65 17.20 18.83 20.09 16.45 19.23 19.85 
Fixed Costs 34.16 23.64 40.73 38.19 38.19 36.54 36.54 38.19 38.19 
Total Costs 237.80 109.35 279.65 226.15 250.12 268.21 213.36 256.03 265.31 
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Appendix F. Assumed Prices for Partial Equilibrium Model 
 
Table F.1 Assumed Prices for Partial Equilibrium Model Idaho 
 Unit Price 
Wheat $/lb $0.10 
Barley $/lb $0.11 
Camelina $/lb $0.15 
Canola $/lb $0.19 
Peas $/lb $0.13 
Lentil $/lb $0.30 
Mustard $/lb $0.32 
Flax $/lb $0.21 

 
Table F.2 Assumed Prices for Partial Equilibrium Model Montana 
 Unit Price 
Wheat $/lb $0.10 

Barley $/lb $0.10 

Camelina $/lb $0.15 

Canola $/lb $0.18 

Peas $/lb $0.12 

Lentil $/lb $0.26 

Mustard $/lb $0.32 

Flax $/lb $0.23 
 
Table F.3 Assumed Prices for Partial Equilibrium Model Oregon 
 Unit Price 
Wheat $/lb $0.11 
Barley $/lb $0.09 
Camelina $/lb $0.15 
Canola $/lb $0.19 
Peas $/lb $0.16 
Lentil $/lb $0.28 
Mustard $/lb $0.32 
Flax $/lb $0.21 
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Table F.4 Assumed Prices for Partial Equilibrium Model Washington 
 Unit Price 
Wheat $/lb $0.10 
Barley $/lb $0.08 
Camelina $/lb $0.15 
Canola $/lb $0.19 
Peas $/lb $0.13 
Lentil $/lb $0.31 
Mustard $/lb $0.32 
Flax $/lb $0.21 
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Appendix G. Estimated Supply Curves for Camelina  
 
Figure G.1 Estimated Supply Curve for Camelina in Idaho 

 
 
Figure G.2 Estimated Supply Curve for Camelina in Montana 
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Figure G.3 Estimated Supply Curve for Camelina in Oregon 

 
 
Figure G.4 Estimated Supply Curve for Camelina in Washington 

 
 
 


