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We present a deterministic spectral method to predict equilibrium temperature

distributions, heat flux, and thermal conductivity in homogeneous and heterogeneous

media. We solve the Boltzmann transport equation in a second order spatial, self-

adjoint angular flux formulation. We implemented this method into the radiation

transport code Rattlesnake, built using the MOOSE (Multiphysics Object Oriented

Simulation Environment) framework. The spatial variable is discretized using

the continuous finite element method with unstructured meshes, and the angular

variable is discretized with the discrete ordinates method.

We implemented the diffuse mismatch model in a general geometry to simulate

phonon interfacial resistance, using the grey approximation of the Boltzmann

transport equation. Using material properties generated by density functional

theory and molecular dynamics methods, we were able to elucidate properties of

xenon (Xe) at temperatures and pressures experienced in irradiated nuclear fuel. We

found Xe to undergo phase change from liquid to solid, and were able to compute

coefficients of phonon transmission and reflection at the Xe-UO2 interface. We

found κ to decrease by about a factor of 4 with increasing temperature, agreeing

with other trends and research in the open literature.



We developed a new method for simulating deterministic, spectral phonon

transport to predict heat flux, thermal conductivity, and equilibrium temperature

distributions in homogeneous and heterogeneous materials. All the spectral phonon

groups are coupled through a local average material temperature, and a new term,

β, is derived and is used as a closure term in the phonon transport equation. β

acts to redistribute the fraction of total energy which is exchanged between the

transport system and equilibrium distribution of phonons. This method predicts

thermal conductivity trends in materials spanning geometric domain sizes from

nanometers to micrometers, and exhibits the correct asymptotic heat flux behavior

as domain size increases. We observed β to be the most influential at smaller

domain sizes, where equilibrium is difficult to establish due to the proximity of

the boundary phonon sources; as domain size increased, β diminished in size, and

nearly vanished at the maximum domain size of 10 µm. This further makes the

case to perform BTE simulations for nanometer to micrometer heat transfer, as

Fourier’s law will not accurately capture the heat transfer in such small domain

sizes, e.g., thermoelectric devices, heat transfer around defects and heterogeneities

in reactor fuel. Additionally, we developed a novel material property discretization

scheme which is consistent with the discretization of the angular variable in the

transport equation.

We performed convergence studies to test the efficiency of the spectral method,

which used a modified source iteration (MSI) to solve the linear system of equations.

We compare the performance of traditional source iteration (SI) of the uncoupled

self-adjoin angular flux method we previously implemented to the new method

and comment on the iterative performance of each. We capture ballistic and

diffusive phonon scattering, and are able to make comparisons between the accuracy

and efficiency of both methods. We find that MSI outperforms SI in most cases,



especially as the spatial domain becomes acoustically thick.
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Advanced Deterministic Phonon Transport Techniques for Predicting
Spectral Thermal Conductivity in Homogeneous and Heterogeneous

Media

1 Introduction

1.1 Motivation

The advent of nuclear reactors signaled the beginning of a new era in the realms

of power generation and scientific research. The prospect of a power source that

can contribute vast quantities of baseload power while emitting no carbon or

combustion byproducts, combined with safe, stable operation and minimal waste

products is a technology worthy of much consideration and continuous research.

Myriad complexities exist in nuclear power reactors and in the nuclear power cycle;

heat generation through nuclear fission, heat transfer to coolant, circulation of this

coolant around the reactor core, steam generation to drive turbines which produce

electricity, and the massive equipment which drives these processes [4–7].

A critical element in the entire process of nuclear power generation is the

mechanism of heat transfer from the nuclear fuel, which is typically uranium dioxide

(UO2) for all water-moderated nuclear reactors in the United States [8–10]. Heat

must be dissipated from the fuel into the coolant, such that it can perform work

and generate steam to drive the turbines. At the macroscopic scale, heat transfer

through a surface can be expressed through the empirical law of Fourier [7,11–14]:

q = −κ∇T, (1)

where q is heat flux in units of W ·m−2, κ is thermal conductivity, a second order

directionally dependent tensor, with units of W ·m−1 ·K, and ∇T is a temperature
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gradient, with units of K ·m−1. The minus sign signifies the transfer of heat from a

hot body to a cold body, in accordance with the second law of thermodynamics.

In Fourier’s law (Eq. (1.1)), κ, the thermal conductivity, is a measure of how well

a material conducts heat. Thermal conductivity is of critical interest to research

scientists and nuclear reactor operators because it dictates the rate of conduction

heat transfer through various structures in a reactor [8, 9, 15–17]. As an example,

when heat is generated through nuclear fission in UO2 it must then be dissipated

through the cladding and then into the coolant. Thermal conductivity drives this

process, and each material’s κ dictates how much heat is allowed to transfer through

the various components.

Historically, thermal conductivity for nuclear fuel has been obtained through

experiments [10,15,16]. Fuel is irradiated for a predetermined duration based on

the cycle of fuel in a power reactor – as the uranium undergoes fission, it generates

fission products which accumulate and potentially disrupt the ability of the fuel

to transfer heat. This process is known as ‘burnup’ [4, 8, 15]. Measurements to

determine burnup and thermal conductivity are destructive in nature – they involve

the physical sectioning of the fuel after time to allow for radioactive decay, and

thermal resistance measurements of the fuel are taken at various temperatures

mimicking operating conditions to determine the thermal conductivity at measured

concentrations of fission products and temperature [8–10]. This approach is sufficient

as it yields accurate measurements of κ for a variety of isotopic concentrations

and temperature, but the experimental data points can be limited to specific

operating conditions. Figure 1.1 [15] exhibits the dependence of κ on temperature

and theoretical density of UO2, but does not reflect the changing concentration of

isotopes in the fuel, which affect κ. Many of the older measurements of reactor
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Figure 1.1: Temperature dependent κ in UO2 (solid dots: experimental, solid line:
theoretical prediction)

fuel thermal conductivity do not properly reflect the influence of fission product

concentrations, and may not account for any non-standard operating conditions

such as reactor SCRAMs or low power operation and thus are subject to significant

interpolation error. In addition, uncertainty in experimental measurements of

κ also contribute to inconsistencies in the data [10, 15]. Reactor designers and

operators rely on interpolation to fill in the gaps, and this approach can generate

significant uncertainty in the predictions of reactor performance. Nuclear reactors

are built with this in mind, and inherently have a significant conservatism and

safety margin [4, 5, 18]. Safety margins are important, and the nuclear industry

prides itself on an excellent safety record. If reactor designers and operators could
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be better informed as to how thermal conductivity will behave inside an operating

reactor, uncertainties in the data could be reduced. This combination of metrics

could lead to improved reactor designs with possibly less required material, different

operating protocols, and an overall boost in efficiency.

The changes in fission product (defect) concentration in UO2 affects its mi-

crostructure – its elemental constituency and spatial structure. As the fission

products are continually generated during irradiation, they coalesce, migrate, trans-

mute, and change the microstructure of UO2. These products can form concentration

zones, voids (from the generation of gaseous species) and defect centers. This ‘zoo’

of microstructure defects can have a profound impact on the fuel performance,

and thermal conductivity of UO2 can decrease by up to a factor of four in light

water reactors over the fuel lifecycle. This degradation of fuel demands a more

sophisticated approach to the prediction and simulation of thermal conductivity.

In addition to accurate representation of κ, determination of the temperature

distribution inside nuclear fuel is also critical. Temperature dictates many different

phenomena within nuclear fuels, but one of the most important physics is that of the

Doppler broadening effect on neutron cross sections, which is a highly temperature

dependent phenomenon [4,5,19]. Heavy mass isotopes may have many lower energy

excited states known as resonances, where neutron capture is preferential [4, 5, 19].

This is shown in Fig. 1.2 for 238
92 U [20], where the excited states resemble singular

points in the continuum. Neutrons born from fission are energetic (neutron energy

typically ≥ 2 MeV), and in order to cause additional fission and maintain the chain

reaction which keeps the reactor critical, they must thermalize to an energy range

orders of magnitude lower than their initial energy. However, as these neutrons

slow down, it is possible for their capture and absorption to take place in the
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resonances. These resonances (which can physically thought of as a “capture area”)

are affected by changes in temperature, which widens the resonance as temperature

increases (though maintaining the same capture area) and affects the amount of

absorption, scattering, or fission of neutrons in a reactor. This effect can have a

significant impact on the control of an operating reactor if not properly understood

or predicted; Fig. 1.3 [5] shows the dependence of the resonance on increasing

temperature [4, 5, 19].

Figure 1.2: Resonances in the total cross section of 238
92 U
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Figure 1.3: Doppler broadening effect on the 6.67 eV resonance in 238
92 U

Thermal conductivity, historically being used as a parameter in reactor physics

calculations, has not had any intrinsic connection to the elemental disposition of

the fuel material. Aside from being taken as a temperature dependent parameter

gleaned from experiments performed at specific conditions and then interpolated

with significant uncertainty, κ has no dependence on any of the unique traits that

nuclear fuel develops as it ages and evolves during under irradiation. Thermal

conductivity of a material depends on both the material’s innate ability to transport

heat, and resistive effects caused by defects in the material. Processes which occur

at the atomic scale affect the behavior of heat transport at the microscale, which

leads to a shift in κ at the macroscale. An ab initio prediction of macroscopic

κ (which can be used in engineering calculations) requires simulating detailed

processes of heat transport at the nanoscale, and then calculating an effective κ in

the simulated material from the heat flux and temperature gradient. As geometric

domains shrink, a materials response to an applied temperature gradient changes as



7

well; the systemic interference of heat sources causes a departure from Fourier’s law

of heat transport, and the Boltzmann transport equation is necessary to adequately

describe thermal transport in these reduced length scale environments.

UO2 fuel is classified as a ceramic (dielectric), despite the presence of uranium

metal [8–10, 15]. As a result, the dominant portion of heat conduction in UO2

is not described by electrons, as it would be in a metallic substance [11–14].

This is due to the types of chemical bonds which form the crystalline lattice

structure. Electrons are tightly bound in an insulator and do not carry a majority

of the energy, as opposed to the “sea” of valence electrons present in conducting

materials [11, 12]. In dielectric materials at the nanoscale, the continual evolution

of the microstructure affects the way heat is transported, and in order to resolve an

image of the physics which reflect reality, one must resolve the full population of

heat carrying phonons. Phonon transport dominates heat transfer in UO2 fuels,

and is the primary heat transfer mechanism in semiconductors, insulators, and

thermoelectric devices. Phonon transport is complicated with diverse, challenging

physics; we will discuss and address some of those aspects in the proceeding sections,

which will motivate our research objectives.

In the atomic lattice of dielectrics, the dominant carriers of energy are vi-

brational modes described by wave vectors and frequencies, generated by atoms

oscillating at an equilibrium frequency. When a temperature difference is applied,

the atoms generating these waves are displaced from their equilibrium position. The

quantization of a packet of vibrational modes is called a phonon, and their behavior

(transport) may be described by the Boltzmann transport equation. Transport and

scattering of phonons is highly influenced by the dispersion relation (relating a

phonons’ frequency to its’ wavevector), group velocities, and density of states in
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the first Brillouin zone. Phonons are also highly sensitive to temperature, which

affects mean free path and phonon-phonon collisions; they are tightly coupled to

each other and to the total internal energy of the material.

The equilibrium statistical distribution of phonons can be described by the

Bose-Einstein (Planck) distribution:

〈nBE〉 =
1

e
~ω
kBT − 1

. (2)

Here, T is the average material temperature, ω is the angular frequency, ~ and kB

are the reduced Planck’s constant and Boltzmann constant, respectively [11,13,14].

When a temperature difference is induced in a material, atoms vibrating at their

lattice sites are displaced from their equilibrium position, and these displacements

give rise to planar waves which transport energy through the material. Though

these lattice waves are generated over a range of wavelengths, the dominant energy

transport takes place at lower wavelengths, and therefore the waves can be inter-

preted as sound waves in the material [11,12]. Physically, a crystalline lattice can be

thought of as an array of harmonic oscillators, chains of atoms connected by springs.

The motion of phonons results in the divergence of the lattice system from ther-

modynamic equilibrium. Phonon-phonon scattering, such as normal or Umklapp

processes, are restorative and aid in reestablishing thermal equilibrium [14,21–24].

Although Fourier’s law can characterize heat transport at the macroscopic

length scale (distances greater than 10−3 m), it does not accurately describe thermal

transport processes in the microscopic length domain (distances less than 10−3

m) [11,14]. After startup, it is desired that nuclear reactors achieve a steady-state

condition for stable operation [4,6]. However, the fuel microstructure is dynamic and

constantly changes during the fission process [8,9,15]. The steady creation of fission

product and material defects alters the fuel microstructure, impacts the scattering
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behavior of phonons and degrades heat flux and thermal conductivity [4, 7–11,13].

Bai et al. performed simulations of thermal conductivity in UO2 fuels in order to

characterize thermal diffusivity in regions of the fuel where high burnup structures

formed [25]. High burnup structure (HBS) is a fuel restructuring phenomenon

which takes place near the pellet rim region of UO2 pellets. Fresh UO2 fuel contains

grains about 10 µm in size, and pores may also be present due to the manufacturing

process. During fission, UO2 microstructure undergoes redistribution and formation

of new defects, fuel grains, and voids; near the pellet rim, as HBS forms, fuel grain

size becomes much smaller, fission gas bubbles and pores also form. The local bubble

and pore size is large compared to these grains. Thermal diffusivity and thermal

conductivity are both lowered in these regions. From their analysis, Bai et al.

determined heat transport from phonons were essential to include in the simulation

of thermal conductivity; scattering off large grain boundaries in the non-HBS

structure, and scattering against Xe reduced overall thermal conductivity [25].

The need for better characterization of reactor fuels using multiscale, hierarchical

modeling has been outlined as a directive in the Nuclear Energy Advanced Modeling

& Simulation (NEAMS) program [26, 27]. Including the effects of a material’s

microstructure to better understand UO2 fuel performance – that is, UO2 under

irradiation with a dynamic microstructure changing due to the fission process – is one

goal of the MARMOT and BISON codes [28,29]. These codes are coupled software

designed to integrate separate effects, such as neutron transport and heat conduction,

or fission gas migration through grain boundaries. By simulating phonon transport

to characterize temperature distributions, heat flux and thermal conductivity,

better predictive results for thermal transport modeling may be obtained, and

the effect of material microstructure on heat transport could be realized. For



10

example, if thermal conductivity as a function of defect concentration in UO2 could

be predicted, the resulting data could be coupled to BISON thermomechanical

simulations which characterize stress, strain, and thermal expansion in UO2 [29]. In

UO2 undergoing fission, the microstructure is constantly evolving and altering the

behavior of thermal transport; the capability to model this dynamic process instead

of relying upon empirical fits for thermal conductivity may provide a benefit to

reactor operators [8, 9, 15].

Given the motivation to improve data used in reactor physics simulations, the

development of a computational framework to model phonon transport would allow

researchers to more accurately characterize processes affecting heat transport in

UO2 fuel in nuclear reactors. This framework would allow the modeling of phonon

transport in any material where phonons are the dominant mechanism of heat

transfer, such as graphite, semiconductors, thermoelectric devices, or new types of

fuel under development for Generation IV nuclear reactors [30–34], and would not

be restricted only to nuclear fuels.

This framework would involve a variety of existing methods – in fact, one method

is not enough to capture the entire scope of the problem, and a multi-physics, multi-

software approach must be considered to obtain results usable at the engineering

scale [26–28,35–42]. For example, if the discretized Boltzmann transport equation

(a deterministic method) is used, material data would be necessary and could

be produced from molecular dynamics (MD). Molecular dynamics is a technique

which simulates systems of atoms based on the numerical integration of Newton’s

equation of motion, and describes interactions between atoms using a large array of

interatomic potential models [41,42]. Density functional theory (DFT) is another

such computational method of ab initio data prediction, quantum mechanical in
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nature, which is used to investigate the electronic structure in many-body systems,

by solving the Schrödinger equations for electron probability densities. In this

method, electronic potentials are leveraged and only the atomic structure and

composition is necessary to predict its electronic properties, from which data for

phonon transport simulations can be elucidated.

It becomes clear that a computational framework should be developed in order

to rapidly provide predictions of thermal conductivity in nuclear fuel, independent

of the operating history of the reactor and dependent only on the properties of the

fuel and its burnup history. This method of prediction must consider processes

which occur on an atomistic scale, the production of fission products, the formation

of defects in the microstructure of the fuel [4,5,11,13,14], the evolution of burned-in

plutonium [8–10,15], and the formation and migration of gas bubbles due to fission

or alpha decay of plutonium [43–46]. It is important to understand these phenomena

and model them accurately.

1.2 Elements of Phonon Transport

1.2.1 Interface Physics

Phonons encounter resistance when attempting to translate through a material

discontinuity. If two dissimilar materials are conjoined, as phonons transmit

across the border they encounter a resistive effect, known as thermal boundary

resistance [47, 48]. This is due to the difference in material properties (group

velocity, density of states and specific heat capacity). At this interface phonons

have a probability of being reflected or transmitted, determined by the available

and occupiable states. Two primary models have been developed to describe this

behavior, the acoustic mismatch model (AMM) and the diffuse mismatch model
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(DMM) [47]. These models have been applied to both deterministic and Monte

Carlo methods of phonon transport. A boundary physics model is essential to

describe phonon scattering and transmission at intra-material interfaces, which is

especially useful in simulating phonon transport in materials with defects [49,50].

As phonons flow across the interface they encounter a resistance which is due to the

availability of states for phonons to occupy and the change in lattice spacing and

phonon speed in the respective materials. Currently, researchers have developed

deterministic methods to simulate TBR in 1D and 2D spatial domains [51–53], but

to our knowledge there is no existing capability which simulates TBR in 3D, general

geometries.

In order to induce a heat flow Q̇ in a material, a temperature gradient ∇T must

be imposed. The radio of the heat flux per unit area A to the temperature gradient

is the definition of thermal conductivity

κ =
Q̇

A∇T
. (3)

For a heat flow to exist across a boundary between two materials, there must be

a temperature difference between the two sides of the interface, in addition to

the temperature gradients in the adjoining materials. This effect is subtle, and

the presence of the interface in addition to a heat flow presents a challenge in

defining a temperature [47]. A thermal boundary conductivity due to a temperature

discontinuity across an interface can be defined in a similar way to Eq. (3)

κBd =
Q̇Bd

Aint∆TBd

. (4)

The calculation of κBd is very similar to κ, κBd is determined by the number

of phonons incident on the surface, the energy carried by the phonon, and the

probability the phonon is transmitted across the interface. Difficulties arise for each
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quantity in that it is a challenge to accurately determine a mean free path Λ for κ,

and difficult to quantify the transmission probability for phonons contributing to

κBd.

Thermal boundary conductivity is a geometrically independent quantity, such

that doubling the area of an interface doubles the thermal boundary conductance,

but not the thermal boundary conductivity [47].

Figure 1.4: Black-body cavity experiment

Figure 1.4 shows two black-body cavities connected by a small orifice with an

area A [47]. One cavity is held at T2 and the other is at a lower temperature T1.

The heat flow between the two cavities is

Q̇ = σA
(
T 4

2 − T 4
1

)
, (5)

where σ is the Stefan-Boltzmann constant. In Fig. 1.4 there is no interface except

an imaginary one in between the cavities, and there is no temperature discontinuity

at that interface. However, the photons incident on the interface from above have

a frequency distribution characteristic of the temperature T1, and the photons
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incident from below have a frequency distribution characteristic of temperature T2.

The temperature difference used in the definition of thermal boundary conductivity

(or resistance) is that between photons (or phonons) incident on respective sides of

the interface.

The complexity of TBR lies in determining the transmission probability of

phonons, which generally depends on the side from which the phonon hits the

interface, the angle of incidence, its frequency and polarization, and the temperature

of both sides of the interface. In thermodynamic equilibrium, the number of phonons

of a given phonon state (at polarization p and wave vector k) leaving one side is

the same as the number of phonons returning from the other side into that state,

which is one of the principles of detailed balance.

Figure 1.5 [48] shows an Si/Ge interface, and in the absence of scattering within

the junction, the TBR is equal. However, with the inclusion of TBR, we see a

temperature discontinuity occur at the interface, shown in Fig. 1.6 [48].

Figure 1.5: Dissimilar material interface, no boundary scattering
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Figure 1.6: Si/Ge interface with inclusion of boundary scattering showing tempera-
ture slip

1.2.1.1 Acoustic Mismatch Model

Under the assumptions of the acoustic mismatch model (AMM), phonons are

governed by continuum acoustics, and the interface is treated as a plane. Phonons

are treated as planar waves and the materials that the phonons propagate through

assume no lattice (continuum). For phonons with a wavelength much greater than

the lattice constant, this approximation can be accurate [47]. The most simple

model for AMM is for an isotropic material, where each material is assigned an

acoustic impedance, which is the product Zi = ρici of the mass density ρi and

phonon velocity ci. To determine the transmission probability α1→2 of phonons

transmitted from material 1 into material 2

α1→2 =
4Z1Z2

(Z1 + Z2)2 . (6)
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The crystalline solids considered for this approach are assumed to be isotropic, with

phonon velocities differing in longitudinal and transverse directions. This approach

also ignores effects of elastic anisotropic scattering and the phonon dispersion

relation. The AMM is generally only considered for simulations and experiments

far below 300 K [47–49].

1.2.1.2 Diffuse Mismatch Model

The diffuse mismatch model (DMM) is typically employed for most phonon transport

simulations in real materials due to the temperatures of interest being at 300 K

or higher [48,51,52,54]. DMM assumes all phonons are assigned a probability of

transmission or reflection at an interface and have no memory of their origin, thus

becoming a diffuse flux which has contributions from the phonon flux on either side

of the interface [47,54]. Energy conservation and detailed balance are enforced, and

these coefficients are prescribed by

Tα→β =
Uβvg,β

Uαvg,α + Uβvg,β
, Rα→β = 1− Tα→β. (7)

Where U is internal energy, and we are simulating a phonon flux at an interface,

flowing from material α into material β. These coefficients are defined in a similar

way for phonons flowing from β into α. This approach has been taken by researchers

using deterministic and MD methods and results from these simulations tend to be

in good agreement with each other [48,51,52,54].

1.2.2 Spectral Phonon Transport

Phonon scattering and transport change drastically at different frequencies, as

a vibrational spectrum is generated by displacements to the atoms’ equilibrium
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harmonics. Method development is sometimes performed using the grey approxi-

mation [17], which is an effective development strategy but lacks the robustness

to characterize phonon behavior across a broad range of frequencies which would

be present in a real material under an imposed temperature difference. Harter et

al. [55,56] have previously predicted thermal conductivity in materials by simulating

phonon transport, integrating the entire dispersion relation and density of states

into one lumped term and prescribing phonon intensity using heat capacities and an

average group velocity. This approach is adequate initially, as it is computationally

inexpensive and allows for rapid development. In homogeneous, isotropic materials,

the grey approximation can appropriately predict bulk properties given a sufficiently

large spatial domain. However, if the derivatives of the curves in the dispersion

relation (which yield phonon group velocities) are rapidly changing, the grey model

will fall short.

Simulating phonon transport using the full range of dispersion and density of

states can finely characterize the phonon behavior and gives a unique perspective

into the primal coupling between phonon modes. The central limitation of the

grey approach is its inability to model transport in anisotropic materials or across

strongly frequency selective boundaries. The next level of approximation that can

address this is to model frequency dependent transport across the phonon spectrum,

including contributions from anharmonic phonon processes. Simulating frequency

dependent phonon transport is an effective way to characterize different scattering

mechanisms and understand the intrinsic coupling of temperature to the internal

energy in materials [11,13,57]. The phonon equilibrium radiance is connected to

temperature via the Bose-Einstein distribution, and simulating frequency dependent

transport can effectively introduce temperature feedback into its solution [57–59].
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The frequency spectrum can be partitioned into discrete groups, similar to the

multi-group treatment in neutron transport [4, 5, 57, 59]; Rattlesnake could be

leveraged to perform this task.

Allu [57] investigated frequency dependent phonon transport in 3D silicon slabs

with heat sources. Because phonons from different frequencies have different mean

free paths, they altered the Knudsen number (the mean free path divided by

the domain length) of a material; phonons fall into different transport ‘regimes’ –

ballistic and diffuse. Allu wrote a solver which determines which regime the mean

free path is in, and chooses to either solve a diffusion equation or a transport

equation, and this can provide a speed increase by solving a less computationally

expensive problem. By applying a frequency dependent formulation, they were able

to include effects from the phonon dispersion and polarization. This approach gives

a more holistic description, as phonon velocities are derived from the dispersion

relation and change with frequency. The polarization of a phonon is its orientation as

it travels through the lattice in the transverse or longitudinal direction. Polarization

should be included as was in Mazumder and Majumder [60], where transitions

between polarization and branches were included. This occurs in both phonon

scattering in host materials as well as in anharmonic interactions [21].

Other researchers have given attention to frequency dependent transport. Hua

derived the time and frequency dependent phonon transport equation using the

method of degenerate kernels in an attempt to increase efficiency compared to

traditional integral discretization methods [58]. They found they could reduce

required size of their matrix to an N×N , N = 20 system compared to an N = 1000

matrix for the same problem, and obtain a drastic increase in efficiency. However,

this was only done in 1-D, and they did not provide any spatial discretization, the
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solution method was primarily analytical [58]. As simulating frequency dependent

phonon transport allows for the characterization of the frequency spectra, it allows

for mode dependent contributions to the specific heat capacity and phonon velocity.

Minnich et al. [54] showed this effect in their simulations of aluminum and silicon

and calculated the spectral heat capacity from each frequency interval, explicitly

calculating their contributions to thermal conductivity. Zhang et al. [61] recently

developed a coupled approach using a reference temperature formulation which

efficiently simulates temperature distribution and thermal conductivity over the

nano- to micro-scale length range. However, they did not consider optical phonons

with short mean free paths in their simulations.

The true characterization of the phonon spectrum in materials relies on simulat-

ing frequency dependent phonon transport with the inclusion of thermal boundary

resistance effects and anharmonic phonon scattering. Temperature differences dis-

rupt the equilibrium frequency spectrum in the host material, and phonon velocities,

polarization, relaxation times, other material and transport properties change with

respect to frequency [57–59]. Simulating frequency dependent phonon transport is

an accepted approximation to the way a real frequency spectrum behaves under a

temperature difference [57–60,62].

Chernatynskiy and Phillpot developed PhonTS, a code which uses the BTE to

predict thermal conductivity in solids and interfaces with MD and DFT methods to

obtain data to aid in the transport simulation [63]. PhonTS is effective in predicting

lattice thermal conductivity and other phonon properties, but these simulations are

based on very small geometries, systems of approximately 104 atoms and are very

resource intensive. PhonTS works well with prediction of thermal conductivity in

pure crystals without defects, but has difficulties when simulating materials with
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real microstructures and isotopic defects. The code solves the linear form of the

BTE under the RTA. Anharmonic oscillations are approximated by considering

anharmonicity to be a perturbation of the harmonic term in the Hamiltonian.

Interatomic force constants (IFCs) are required for the anharmonic model, these

are third derivatives of the interatomic potential which PhonTS can calculate. The

authors state their solution methods are variational and iterative in nature, but do

not give any details. The code uses LAPACK as a linear algebraic solver system,

which solves matrices in the forms of SPD, symmetric, Hermitian, etc. Some of

the drawbacks with PhonTS are the physical size of the system itself; as PhonTS

seeks to reproduce MD results very exactly, material systems are Brillouin zones

must be chosen to be the exact same size and order as MD studies, which are

limited. Their transport regimes are unreliable for temperatures as high as 1
3
Tm

or 1
2
Tm, which a limiting feature when considering the operating conditions of

nuclear fuel. The authors also note their approach not appropriate in modeling

phonon scattering off material impurities. Because of the variation in the BTE

and MD approaches, PhonTS requires a careful match of transport data to MD

data. Specifically, thermal expansion: the phonon modes are extremely sensitive to

the volume and shape of the primitive cell; the same primitive cell geometry must

be used in both BTE and MD simulations. ShengBTE is another package which

solves the BTE and takes input from third party codes; the code computes three

phonon scattering rates using the RTA, and certain types of isotopic disorder, but

this is heavily dependent on the materials being simulated and has its own set of

limitations [64]. Both ShengBTE and PhonTS are composed of subroutines which

handle particular aspects of phonon transport, but neither is a pristine transport

engine optimized for solving the phonon BTE efficiently.
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Phonons are neutral ‘quasiparticles’, and phase space distributions may be

used to describe their population density [11, 13, 65]. Neutrons are also neutral

particles, represented by the same phase space distributions. As a result, we

are able to simulate their transport in real media through application of the

Boltzmann transport equation (BTE) [11,65]. We have previously demonstrated

the effectiveness of a neutron transport code, Rattlesnake [66,67], which we had

modified to simulate phonon transport [55, 56, 68]. Rattlesnake solves the Self-

Adjoint Angular Flux [69] (SAAF) form of the BTE for neutrons, written in the

Multiphysics Object Oriented Simulation Environment (MOOSE) [70] framework.

MOOSE is is a powerful C++ oriented framework for solving coupled systems of

partial differential equations using unstructured continuous finite element grids, is

massively parallel, and leverages state of the art numerical solvers. The SAAF form

of the BTE yields a transport equation with an elliptic, second order operator which

generates systems of linear equations upon discretization, which can be solved via

the GMRES [71] solver, an efficient numerical method for solving linear systems of

equations.

The numerical procedures for computing the contribution from each frequency

group in reciprocal space to the total thermal conductivity in phonon transport are

similar to the procedures used for multi-group neutron or radiation transport [4,72].

With neutron or radiation transport, the energy spectrum is partitioned into

discrete groups and considers within-group and group to group scattering based

on the interaction cross sections. Rattlesnake [73] employs a multi-group energy

discretization scheme, solves the BTE for neutrons and allows for simple construction

of particle group scattering profiles. This approach can, and has been adapted to

simulate multi-group phonon transport [57,59,61].
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1.2.3 Convergence Acceleration

The development of methods to solve a spectrally-dependent phonon transport

simulation have led to high-fidelity outputs which compare well with experimental

results, heralding an era of improved heat transport predictions for many devices

used in engineering applications. The drawback of these high-fidelity simulations

is the requirement of large amounts of computational resources to converge the

problem. To converge a simulation, we require that the error between iterations

to be reduced by a certain amount, generally on the order of 10−6 or less. The

convergence properties of a simulation imply how rapidly the error between iterations

is reduced. In a quickly convergent simulation, the error is reduced rapidly between

iterations, and in a slowly convergent simulation, it may take hundreds or thousands

of iterations to converge, as the error is not reduced appreciably between iterations.

The generation and discretization of material properties within the first Brillouin

zone for a simple, isotropic material such as silicon is relatively trivial, as the

dispersion relation of Si has symmetries which allow for simplifications and a

relatively coarse wave vector group discretization. However, as materials gain

in complexity, e.g., multi-atomic systems such as LiAlO2, anisotropy (simulating

Jahn-Teller distortions in oxygen [30]), or acoustic thickness (simulation of large

sections of a UO2 fuel pin, or a micrometer scale thermoelectric device). All of

these phenomena may degrade the convergence properties of phonon transport

simulations, but the critical offender is generally the “acoustic thickness” of the

problem, ζ, defined as

ζ =
D
Λ
, (8)

where D is the length of the geometric domain. When the Λ is discretized into

groups, certain groups are ballistic or diffuse, and the diffuse groups are generally
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optically thick; phonons undergo many collisions before reaching a boundary.

The history of numerical acceleration methods for particle transport is a diverse

and rich one. One of the earliest techniques used to solve the neutron transport

equation is known as “source iteration” (SI) [74], which is described by the following

iteration scheme

Ω̂ · ∇ψ(`+1/2) + σtψ
(`+1/2) =

1

4π
σsφ

(`), (9a)

φ(`+1/2) =

∫
4π

ψ(`+1/2)dΩ, (9b)

φ(`+1) = φ(`+1/2). (9c)

In the SI algorithm, the angular flux from the previous iteration is used to calculate

a new source for the next iteration, and so on. This algorithm used by myriad

software to solve the neutron transport equation, but breaks down when problems are

diffusive (and therefore “optically thick”, the neutron analog of acoustic thickness).

This can lead to inordinately high computation times.

One of the most difficult classes of neutron transport problems are those where

no absorption exists, e.g., pure scattering cases in which the total cross section σt

equals the scattering cross section σs, and the scattering ratio c is equal to 1.

It can be shown that the reduction in error from one iteration to the next one

using source iteration is characterized by ρ, the spectral radius [75].

Traditionally, the majority of phonon transport simulations and predictions

are done on relatively small geometric domains (sub 500 nm) and computational

efficiency was not a primary consideration, rather the correct answer was. However,

as more researchers and research directives are recognizing and leveraging the

benefits of performing phonon transport to simulate heat transport in dielectrics,

the geometric domain sizes considered are increasing. As these domains become
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more acoustically thick, acceleration techniques could be applied to drive efficiency

in parallel with accuracy. Other researchers have applied acceleration techniques; a

popular choice is a hybrid “ballistic-diffuse” solver, where a predetermined tolerance

on acoustic thickness is chosen [57, 59, 76, 77]. If phonons have a mean free path

which falls within this tolerance, a diffusion, rather than transport, equation is

solved; this is an attempt to limit the influence of diffuse modes, which generally

carry much less heat than their ballistic counterparts. Lei et al. [78] derived a

synthetic iterative scheme dependent on the method of moments for the steady

state phonon BTE, which is rapidly convergent. However, their heat flux was not

conserved and parabolic, suffering from edge effects; temperature profiles did not

show the full temperature slip. Acceleration is a very new facet of phonon transport

methods and has much potential for development.

1.3 Research Objectives

Each of the three components of phonon transport we discussed in Sec. 1.2 play

an integral role in phonon transport simulations; in order to develop an accurate

and efficient method for predicting materials properties (thermal conductivity),

temperature distributions and heat flux, a phonon transport framework must

possess all of these components, at a minimum. Therefore, this dissertation is

concerned with the work performed, motivated by the necessity of including each of

these components. To achieve a goal in predicted thermal conductivity in nuclear

fuels with isotopic defects, an interface physics model must be developed for the

transport software, which allows for the accurate representation and conservation of

particle flow at internal material interfaces. In order to capture the detailed physics

contained in the phonon frequency-wavevector spectrum, a spectral transport
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method must be developed which allows for the simulation of both an angular

flux intensity and an equilibrium phonon radiance, which are coupled through

temperature. Finally, as the physical domains which we desire to predict these

properties on can be large compared to a phonon’s mean free path, and because the

standard choice of iterative method used to solve these equations drastically slows

down in large domains, some form of convergence acceleration must be introduced

to speed up these calculations, while maintaining solution accuracy.

In light of these goals, distilled from our motivation to better predict material

properties in nuclear fuels, our objective is thus: to use deterministic, frequency

dependent phonon transport simulations to characterize heat flux, thermal con-

ductivity, and temperature distributions in heterogeneous structures in an efficient

manner. We plan to use data generated by ab-initio methods to inform our

mesoscale BTE simulations to generate thermal conductivity distributions which

may eventually be used in engineering-scale reactor physics calculations. Due to

the physical size of the materials we simulate, and the desire to have an efficient

transport engine, we must also include some form of convergence acceleration, to

reduce the computational burden of our spectral transport method. Therefore, our

research objectives are as follows:

1. Develop, implement, and test a interface physics model for general geometries

2. Develop, implement, and test a spectral, implicitly coupled phonon transport

method for general geometries

3. Develop, implement, and test a convergence acceleration scheme for phonon

transport for general geometries
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1.4 Dissertation Overview

The remainder of this dissertation is organized as follows: Chapters 2 to 4

are each self contained journal papers composing one of the elements of phonon

transport theory contained in Sec 1.2. Chapters 2 and 3 are published, whereas

Chapter 4 is a draft. Each of these chapters is separate from the other, e.g., the

equations, figures, and tables in Chapter 2 are independent of similar items in

Chapter 3, and so on.

I. Chapter 2 contains the journal paper presenting the SAAF equations in a

grey formulation as applied to a heterogeneous system of UO2 and xenon,

develops and implements a 3D interface physics model to capture phonon

scattering effects at a xenon bubble interface. The material properties were

generated via ab-initio methods.

II. Chapter 3 contains the journal paper presenting a spectral method for solving

deterministic, fully coupled, temperature dependent phonon transport in 2D

grids of silicon, and introduces a closure term to conserve energy lost between

the angular phonon intensity and equilibrium phonon radiance. Silicon

material properties are generated via ab-initio methods, and we develop a new

discretization scheme which gives the material properties angular dependence

inside the first Brillouin zone. We perform angular and spatial mesh refinement

studies and leverage adaptive mesh refinement techniques to address boundary

scattering effects.

III. Chapter 4 contains the draft paper which presents a convergence study. In

this paper, we compare the efficiency and performance of the new method

(modified source iteration) with the traditional method of source iteration. We
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performed these convergence studies for a 2- and 4- group phonon transport

problem with various angular and spatial discretization refinements.

IV. Chapter 5 is where we make some concluding remarks and establish direction

and motivation for future research.
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2.1 Abstract

We present a method for solving the Boltzmann transport equation (BTE)

for phonons by modifying the neutron transport code Rattlesnake which provides

a numerically efficient method for solving the BTE in its Self-Adjoint Angular

Flux form. Using this approach, we have computed the reduction in thermal

conductivity of uranium dioxide (UO2) due to the presence of a nanoscale xenon

bubble across a range of temperatures. For these simulations, the values of group

velocity and phonon mean free path in the UO2 were determined from a combination

of experimental heat conduction data and first principles calculations. The same

properties for the Xe under the high pressure conditions in the nanoscale bubble

were computed using classical molecular dynamics. We compare our approach to

the other modern phonon transport calculations, and discuss the benefits of this

multiscale approach for thermal conductivity in nuclear fuels under irradiation.

2.2 Introduction

One of the fundamental quantities of interest in the safe and efficient operation of

nuclear reactors is thermal conductivity (κ) of the fuel, which greatly influences heat

transfer throughout the structure of the nuclear core and into the coolant [6,79]. In

addition to heat transfer, thermal conductivity is coupled to many other processes

in the reactor core. Shifting thermal gradients have a strong influence on the

macroscopic cross sections of interaction for neutrons [79]. These cross sections are

of high importance since they dictate rates of nuclear fission, neutron absorption and

scattering within the fuel. As temperatures increase, so do the effects of Doppler

broadening, which alter neutron scattering and absorption. While this is not a new

phenomenon, reactor operators must be keenly aware of the effect temperature has
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on the absorption and scattering behavior of neutrons. The focus of our work is

to develop a predictive computational tool which simulates thermal transport in

heterogeneous nuclear fuel in service and under irradiation, with fission product

defects.

Thermal conductivity in nuclear fuel is currently obtained through empirical

relationships which have been experimentally determined from measurements made

during the past 60-70 years [15]. Thermal resistance measurements are performed on

nuclear fuel with operating histories, i.e. irradiated fuel and values are obtained at

specific temperatures and isotope concentrations. This approach does not consider

the constantly changing concentration of isotopic byproducts in the fuel, nor has it

historically provided appropriate values across a wide range of reactor operating

conditions without significant interpolation error [10, 15]. Reactor designers and

operators, however, rely on interpolation to fill in the gaps which can be a significant

source of uncertainty in predictions of reactor performance. Nuclear reactors are

constructed conscious to this attribute and thus have a significant conservatism

and safety margin [6].

A better predictive approach to the computation of thermal conductivity could

reduce these margins, creating improved performance and economics without com-

promising safety. A predictive simulation tool could also reduce the reliance on

experiment for the development of new fuels for advanced reactors.

Development of nuclear reactors is an ongoing process. The current generation

of power reactors are light water moderated and use uranium dioxide (UO2) fuel. In

the future, generation IV nuclear reactors will continue to use solid fuel. Uranium-

based TRISO particles are used in prismatic block high temperature gas reactors

(HTGRs), while other fuels such as uranium-molybdenum (UMo) and uranium-
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carbide (UC) are in development for a plate or pellet based application [80, 81].

Experimental measurements of thermal conductivity will likely be performed on

these new fuels, and could result in more empirical correlations used to predict

their performance under irradiation. The need for a predictive computational tool

to reduce the reliance on destructive thermal conductivity measurements is steadily

increasing.

We are developing a deterministic computational framework for simulating

phonon transport. When supplied with appropriate information (temperature,

isotopic concentration of fission products, material properties) this framework

would predict thermal conductivity in heterogeneous nuclear fuel with an operating

history. The fission product significantly hindering thermal transport in UO2

is widely accepted as xenon [3], a noble gas which accumulates in UO2 over its

operational life-cycle. The bulk of thermal conductivity characterization is done

with MD methodology, which models energy flow explicitly through atomic motion.

MD is effective in predicting thermal conductivity, but is only able to model small

systems of atoms due to the significant computational cost of the method.

To this end we leverage the code Rattlesnake, which solves a second-order form

of the BTE using the Self-Adjoint Angular Flux (SAAF) formulation [82] using

continuous or discontinuous finite element (CFEM and DFEM) spatial discretiza-

tion [83]. Rattlesnake is a member of the Multi-physics Object Oriented Simulation

Environment (MOOSE) [70] architecture developed and maintained by Idaho Na-

tional Laboratory. We have shown Rattlesnake may be adapted to simulate phonon

transport, and demonstrates promise in connecting transport phenomena at the

nanoscale to properties which may be used at the macroscale [84]. We motivate the

use of the SAAF formulation of the transport equation and discuss the advantages
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and disadvantages of the numerical solution of this equation in comparison with

solvers for the traditional first-order integro-differential form of the equation.

Our numerical solution technique involves traditional source iteration (SI, a

Richardson iteration) methods combined with a robust linear algebraic solver to

solve the systems of discretized equations generated by the second-order BTE. With

the application of preconditioning we are able to rapidly solve these systems with

tremendous savings in computational cost relative to traditional methods. Addition-

ally we have the capability to apply nonlinear diffusion acceleration (NDA) as these

simulations become very acoustically thick to yield an even greater convergence

acceleration. As such this approach opens the door for BTE simulation to model

heat transport in relatively large systems that contain realistic and statistically

representative material microstructures. This approach can potentially become a

truly practical and predictive tool to nuclear engineers and material scientists.

2.3 Methods

The generalized Boltzmann transport equation is used widely by the transport

community. Phonons follow Bose-Einstein statistics in thermodynamic equilibrium

and are uncharged like neutrons, which greatly simplifies the mathematical descrip-

tion of their behavior. The BTE for a frequency dependent phonon distribution fω

is

∂fω
∂t

+ vgΩ · ∇fω = ḟω|scatt. (1)

For brevity, we have suppressed the independent variables in many of the terms

of the equations. The phonon phase space density is fω = f(r,Ω, ω, p), r is the

spatial coordinate r ≡ (x, y, z), Ω is the unit vector denoting the direction of travel

Ω = (φ, θ), and ω is angular frequency. p is polarization; the geometrical orientation
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of phonon travel and is transverse in two directions (T) or longitudinal (L). Group

velocity vg is related to the propagation speed of phonons, which can have either

acoustic (A) or optic (O) modes. However, for this work we assume a single phonon

speed averaged over the acoustic modes and polarizations at varying temperatures,

an assumption for the transport of gray phonons which is addressed in Sec. 2.4.2.

In a steady state nuclear heat generation environment (nuclear fuel at operating

temperatures) we assume no external electrical or magnetic field and Eqn. (1)

simplifies to

vgΩ · ∇fω = ḟω|scatt. (2)

The scattering kernel ḟω|scatt contains nonlinear operators and includes contributions

from processes such as anharmonic phonon interactions or material defect scattering.

Other contributions to Eqn. (2) can include thermal boundary resistance (TBR) or

defect scattering. We use a weak formulation of the phonon transport equation,

in which we include upwinding terms to describe the interface condition of TBR,

which we develop later.

We apply the single mode relaxation time approximation (SMRTA) to simplify

the scattering kernel in Eqn. (2) – we assume phonons to occupy a single mode, with

their scattering contributions collected into a single, effective “relaxation” time, τeff

which is on the order of 10−12 s, and describes the response time between phonon

scattering events. The kernel is now effectively a measure of the displacement about

equilibrium of the phonon distribution function fω [11]

ḟω|scatt =
f 0
ω − fω
τeff

, (3)

here f 0
ω = f 0

ω(r) has been shown to be purely spatially dependent [84]. For small

deviations of the phonon distribution function the scattering term may be expressed

by Eqn. (3). If a temperature gradient is not present, f 0
ω−fω = 0 and the scattering
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term vanishes. In solving for the phonon distribution fω at spatial location r, fω

only shifts a small amount from its local equilibrium distribution f 0
ω, fixed by the

local temperature at r. Substituting Eqn. (3) into the right hand side of Eqn. (2)

yields

Ω · ∇fω =
f 0
ω − fω

Λ
, (4)

where vg has been brought to the right hand side to obtain Λ, the phonon mean

free path (the product of group velocity and relaxation time).

2.3.1 Transport of Gray Phonons

We apply an isotropic gray approximation to the BTE for phonons, yielding a

frequency independent formulation. This approach combines the contribution to

transport from all phonon frequencies and polarizations, and can be averaged into

a single effective radiant energy intensity of phonons with a single effective mean

free path that accounts for all scattering processes across the phonon frequency

spectrum. This is the simplest approach for capturing the ballistic nature of

phonon transport over short distances, and provides an adequate description of heat

transport physics providing there is no strong heterogeneity in frequency selective

scattering. Equation (5) defines the phonon radiant intensity operator

M =
1

4π

∫ ωlimit

0

∑
p

vg~ωD (ω)dω, (5)

and can be applied to a phonon frequency distribution to yield phonon radiant

intensity I(r, Ω̂) which has units of W·m−2 ·sr−1. The phonon frequency distribution

is multiplied by vg~ωD (ω), summed over all phonon branches and polarizations

and integrated over all possible frequencies (limited by the vibrational frequency

of the medium). Here, ~ is the reduced Planck’s constant, and D (ω) is phonon

density of states.
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Operating on Eqn. (4) with M yields

ΛΩ · ∇I (r,Ω) = I0 (r,Ω)− I (r,Ω) . (6)

Equation (6) is the equation of phonon radiative transfer (EPRT) [85]. The allure

of the gray phonon EPRT is that the consequences of ballistic transport between

geometric scattering features are determined explicitly but the entirety of the local

intrinsic and extrinsic scattering physics is lumped into a single parameter that may

be obtained empirically, from first principles, or some hybrid mixture of both. The

next level of approximation is to model transport explicitly including the spectrum

of participating phonon frequencies.

The central limitation of the gray approach is its inability to model transport

in anisotropic materials or across strongly frequency selective boundaries. The next

level of approximation that can address this is to model frequency dependent trans-

port across the phonon spectrum, but to still treat collision terms through the single

relaxation approximation. From the point of view of our efficient SAAF solution

method the two approaches are numerically identical with independent equations

coupled only through a single integral term. For simplicity of demonstrating the

SAAF approach we limit the scope of this work to the gray phonon model. While

we have chosen to demonstrate the effectiveness and efficiency of our numerical

approach in the context of frequency-independent transport, the extension to the

solution of the frequency-dependent BTE with the relaxation time approximation

is trivial since frequency appears as a parameter in the equation; i.e. the solution

in each frequency group is decoupled from all other groups.
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2.3.2 Self-Adjoint Form of the Phonon BTE

Morel and McGhee [82] outline an algebraic technique for the derivation of

the self-adjoint form of the neutron transport equation. From a computational

perspective the SAAF formulation is advantageous, since the full angular flux

becomes the unknown. Using reflecting boundary conditions becomes easier with

the availability of the full angular flux, as the incoming and outgoing directions

are coupled in the same manner as the first order form of the transport equation.

Through the application of a continuous finite element (CFEM) spatial discretization,

the matrices are symmetric positive definite (SPD), which allows for the use of

solution techniques such as the preconditioned Krylov family of solvers [70]. The

MOOSE framework uses CFEM as a spatial discretization and by default employs

Jacobian-free Newton Krylov (JFNK) [86] with preconditioning as a nonlinear

iterative solution method.

Through a straightforward algebraic technique, the phonon BTE may be ma-

nipulated into the SAAF formulation. Solving Eqn. (6) for I(r, Ω̂) yields

I (r,Ω) = I0 (r,Ω)− ΛΩ · ∇I (r,Ω) . (7)

Substituting Eqn. (7) back into Eqn. (6), distributing and collecting like terms gives

the SAAF form of the EPRT. The self-adjoint component of Eqn. (8) is the second

term, which contains a second-order operator and is symmetric positive definite:

−Ω · ∇ [ΛΩ · ∇I (r,Ω)] +
1

Λ
I (r,Ω) = −Ω · ∇I0 (r,Ω) +

1

Λ
I0 (r,Ω) . (8)

From Eqn. (8), the change in the phonon intensity at a point has two contributions:

a streaming term from the spatial variation in intensity, and a collision term due to
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the deviation of the radiance from the equilibrium phonon radiance I0 (r). Due to

the implication of the SMRTA, the phonon radiative equilibrium intensity will be

defined with a condition of zero heat generation, ∇ · q = 0. This suggests that a

phonon radiative equilibrium could exist at all possible frequencies and provides

some justification for the gray media formulation [85].

We employ two forms of boundary condition in this work: radiant emitting

boundaries and reflecting boundaries. The angular phonon radiance at an emissive

boundary may be defined as

Ib (r,Ω) =
CvvgTb

4π
, (9)

where Tb is a constant driving boundary temperature. For reflecting conditions,

outgoing angular phonon radiance is defined as the reflection of the incoming angular

phonon radiance, merely undergoing a directional change, i.e., I(r,Ω) = I(r,Ω′)

where we map Ω to Ω′.

The angular variable Ω is discretized via the discrete ordinates method, some-

times referred to as the “SN method”. The transport equation becomes a set of N

equations for the radiant intensity in each discrete angle. Solutions to the EPRT gen-

erate angular phonon radiative intensity, and Rattlesnake employs Level-Symmetric

quadrature to numerically integrate this quantity over solid angle, to obtain “mo-

ments” of the radiance. The SN method has advantages in heterogeneous media

over the spherical harmonics method (PN), in that the (PN) angular moments are

tightly coupled and their solution requires more computational resources [67]. The

recent application of a hybrid SN − PN scheme to discretize the angular variable in

the frequency-dependent phonon BTE has been shown to exhibit slow convergence

in homogeneous silicon [87] which suggests the PN angular discretization approach

may not be optimal for this type of problem.
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The discrete ordinates SAAF transport equation has the feature that in each

quadrature direction, a linear system of equations arising from the spatial dis-

cretization of an elliptic operator is solved for the angular intensity. This means

that software for solving the diffusion approximation to transport can be readily

converted to solve the transport equation. The treatment of voids and certain

boundary conditions require special care, however. In contrast, the solution of the

first-order form of the transport equation involves transport “sweeps” [67], where

incident intensities from the problem boundary, and interior sources along the way,

are propagated through the spatial mesh along the direction of travel to the exiting

mesh boundary. The ordering of this mesh sweep is angle and problem dependent,

and in multiple dimensions cyclic graphs are possible. Developing sweep algorithms

that scale to large numbers of processors is an active research area, whereas efficient

parallel solvers for elliptic equations are much more mature.

The zeroth angular moment of phonon radiance I(r) is proportional to temper-

ature, phonon speed, and volumetric specific heat capacity:∫
4π

I (r,Ω) dΩ =
CvvgT

4π
. (10)

The first angular moment is the heat flux:

q (r) =

∫
4π

I (r,Ω) Ω dΩ. (11)

Other researchers have taken different approaches to computing heat flux, incorpo-

rating quantities obtained through MD simulations (phonon group velocity, wave

vectors, and angular frequencies [88–90]).

We compute an effective thermal conductivity by taking the ratio of the average

heat flux to the end-to-end temperature gradient (which includes effects at the
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boundaries) in the system

〈κeff,z〉 =

∫
ez · q (r) d3r∫

ez · ∇T (r) d3r
. (12)

Though heat flux and temperature gradient are computed over the entire domain,

the dimension of interest is one where a temperature gradient is applied. This

methodology is used in MD simulations and is repeated here.

2.3.3 A Test Problem

To evaluate the effectiveness of Rattlesnake as a deterministic transport engine,

we compared our numerical solutions of temperature and thermal conductivity in

room temperature, homogeneous silicon to the work of Yilbas and Bin Mansoor, who

performed deterministic phonon transport simulations in silicon under equivalent

conditions [1]. They used a forward and backwards finite difference discretization

scheme to solve the BTE for phonons.

Yilbas and Bin Mansoor modeled a thin film of silicon, a common configuration

which is used in many phonon transport simulations (with both deterministic and

Monte Carlo methodologies) as a benchmark problem. Material properties of room

temperature silicon are well known and transport behavior at the nanoscale has

been studied [85]. Material properties for this model were obtained from the open

literature [7, 85], and are listed in Table 2.1.

We construct a finite element mesh for a cube of silicon with side lengths of 3Λ

(equivalent to 3 acoustic lengths) using CUBIT [91] with both a coarse and fine

mesh of 1000 and 12000 hexahedral elements, respectively. We apply a temperature

difference of 1 K to the yz planar boundaries to simulate phonon emission sources

and placed reflecting boundary conditions on the remaining planes. We define the
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Table 2.1: Silicon material data

Parameter Value

Cv
(
J ·m−3 ·K−1

)
1.653 · 106

vg (m · s−1) 8430
Λ (m) 33.9 · 10−9

TL (K) 301
TR (K) 300

non-dimensional temperature Θ as:

Θ =
T (x)− TR

TL − TR

. (13)

We use the generalized minimum residual (GMRES) [92] method preconditioned

with algebraic multigrid (AMG) [93] to solve the linear system, with an iterative

convergence criteria of ε = 10−6, and an S8 angular quadrature. Computation

times for coarse and fine mesh cases were approximately 8 and 57 seconds each.

Simulations were performed on a single core 2.8 GHz Intel i7 CPU with 16 GB RAM.

The coarse and fine mesh solutions are within 10−5 of each other; for simulations

of homogeneous media it may be appropriate to use a more coarse spatial mesh

to decrease computation time. The behavior of the non-dimensional temperature

solution for coarse and fine mesh cases obtained with Rattlesnake agree well with

those from Yilbas and Mansoor, shown in Fig. 2.1. The temperature profile has a

slight curvature, which is influenced by spatial discretization. Improperly scaled

finite elements do not produce the desired solution behavior. As the acoustic

thickness increases, phonon scattering regimes shift from ballistic to diffuse. In an

acoustically thin medium, where L ≈ Λ, phonons leaving a colder boundary are in

the ballistic scattering regime, and propagate far across the medium to reach the
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Figure 2.1: Comparison to reference [1] for silicon test problem. Coarse and
fine meshes give nearly identical solutions.
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hotter boundary causing the material temperature to be smaller than that associated

with the prescribed incident intensity. In an acoustically thick medium, where

phonons are in the diffuse scattering regime, this effect is significantly diminished.

These are boundary scattering effects, and are well characterized in simulations of

phonon transport [1, 85].

2.4 Uranium Dioxide with Xenon Bubble

Du et al. [3] investigated the effects of xenon presence on thermal conductivity

of UO2. MD methods were used to simulate the effect of various concentrations and

geometric configurations of xenon in the UO2 lattice for a range of temperatures.

They concluded that randomly dispersed xenon in the fuel matrix has a more

significant impact on thermal conductivity than quantized xenon bubbles. At

higher temperatures, phonon-phonon scattering from normal and Umklapp processes

becomes a main contributor to the suppression of thermal conductivity, and heat

transport is locally disrupted at the xenon defect. The phonon mean free path

(Λ) in UO2 becomes shorter at high temperature and diffuse scattering dominates.

Xenon concentration was limited to about 1% of volume in the simulations.

We model a selected problem from Du et al., computing temperature, heat flux

and thermal conductivity in a cell of UO2 with a bubble of xenon in the center, in

the absence of grain boundaries. The behavior of xenon in a UO2 lattice at high

temperature and pressures has been reported to vary widely, and available experi-

mental data is minimal. Computational studies have been performed to investigate

expected temperatures and pressures of xenon using various methodologies which

drew varying conclusions [94–96]. We performed MD simulations to determine the

properties of xenon at specific pressure and temperatures; these data are used to
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compute Λ in the bubble. Bates [2] performed thermal conductivity measurements

on stoichiometric, unirradiated UO2 for a large array of temperatures. We extract

Λ from measured thermal conductivity in the Bates study, and perform simulations

using the same bubble geometry to determine the impact of xenon on κ using values

of Λ from Bates. We compare these results to the bulk κ of pristine UO2 measured

by Bates, and to κ computed using parameters from Du et al.

The role of thermal boundary resistance at the UO2-Xe interface is investigated,

as incoming delocalized waves may reflect diffusely or specularly off the xenon

bubble and have a significant effect on the local thermal conductivity. We introduce

the diffuse mismatch model and present a method to characterize thermal boundary

resistance at heterogeneous defects in 3D.

2.4.1 Problem Description

We use Rattlesnake to simulate phonon transport in a cell of UO2 with a xenon

bubble in the cell center and no grain boundaries. The spatial domain D is a

rectangular cell, 25 nm along the z-axis with a cross section of 3.8 nm by 3.8

nm, consistent with the geometry used by Du et al. The xenon bubble has a

radius of 1 nm and accounts for approximately 1% of the total volume. The finite

element geometry is constructed with CUBIT, an unstructured mesh consisting

of 100689 tetrahedral elements (Fig. 2.2). The linear system is solved with the

AMG-preconditioned GMRES method with convergence criteria of ε = 10−6. We

performed simulations with an angular quadrature order of S30, a large amount of

ordinates helps to mitigate ray effects [74], which are can occur in deterministic

phonon transport simulations.

Du et al. reported κ in UO2 with Xe at 300 K, 800 K and 1500 K. Where possible,
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we replicate their simulation conditions and report dimensionless temperature, heat

flux and thermal conductivity. We extract Λ from values of thermal conductivity for

unirradiated UO2 as documented by Du et al. In each simulation, a 1 K temperature

difference is applied along the z-axis. We use the same mesh to perform additional

simulations for different values of temperature using Λ extracted from experimental

values of thermal conductivity measured by Bates [2]. Simulations using the mean

free path from Bates are performed independently the Du et al. simulations in

order to gain insight into the effect Λ has on overall heat flux, temperature gradient

and thermal conductivity.

2.4.2 Material Properties

The only materials property entering into the gray BTE in Eqn. (8) is the

phonon mean free path, Λ, and so we need to determine these for UO2 and Xe.

However, it is also necessary to determine each material’s phonon radiance, I0 (T ),

as a function of temperature in order to impose the correct scalar flux at the external

boundaries, and to set the transmission coefficients at the internal boundary.

To set the effective mean free path for the gray phonons in both the UO2 and

Xe we use the standard kinetic equation for thermal conductivity [11]:

κ =
1

3
CvvgΛ. (14)

For the UO2, vg, and Cv of acoustic modes are computed from first principles

calculations and then Λ is chosen so as to reproduce the experimentally measured

values of κ in unirradiated UO2 [2]. The calculation of vg and Cv in UO2 is described

in detail in the next section. For Xe the κ, vg, and Cv are computed from classical

molecular dynamics simulations, and similarly used to infer Λ in the Xe.
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The effective group velocity and effective mean free path of the gray phonons

were assumed to be isotropic in both the UO2 and the Xe. In order to understand

the degree to which transport is ballistic in ether region we consider the acoustic

thickness, ζ, in each domain. This is the domain size scaled by the material’s effective

phonon mean free path. Acoustic thickness of UO2 is the ratio ζUO2 =
DUO2,z

ΛUO2
, where

DUO2,z is the distance between the hot and cold sides of the UO2 cell. Similarly,

the acoustic thickness of the Xe, ζXe = DXe

ΛXe
, describes the diameter of the bubble

relative to the effective (gray) phonon mean free path in Xe; acoustic data and

mean free path for simulations using values from Du et al. are contained in Tab. 2.2.

The transport properties of Xe are strongly tied to the Xe pressure, which in

turn is set by the surface tension of the UO2/Xe interface and the bubble size. In a 2

nm diameter bubble of Xe in UO2 the pressure is estimated to be between 2-5 GPa,

and so in this work the Xe pressure was assumed to be 3 GPa at all temperatures

studied. At this pressure Xe is either solid or liquid across the temperature range

that we study here and so the use of a gray phonon model of transport is justified

in the Xe. Across the range of temperatures we study we hold the size of the

bubble fixed (with radius of 1 nm), meaning that as the temperature is changed the

number of Xe atoms in the bubble is not constant. This means that our sweep of

simulations does not represent the change in thermal conductivity due to heating

UO2 containing Xe bubbles from 300 to 1500 K. However, it does provide us insight

into the ballistic versus diffusive contributions to thermal resistance from 1 nm

bubbles at different temperatures.
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Figure 2.2: 25 nm cell of UO2 with xenon bubble; 100379 tetragonal mesh
elements.

2.4.3 UO2 Calculations

For UO2, the effective group velocity, volumetric specific heat, and radiance

of gray phonons was computed by averaging the properties of the three acoustic

branches of the phonon dispersion over the entire Brillouin zone. The phonon

dispersion was computed on a 50×50×50 q-point grid using Phonopy [97] based on

the structure symmetry of UO2 (Fd-3m) with interatomic force constants computed

from first principles. The UO2 simulations were executed with the plane-wave basis

projector augmented wave method within the density functional theory framework

as implemented in the Vienna Ab-initio Simulation Package (VASP) [98–100]. A

plane-wave energy cutoff of 600 eV was employed in the local density approximation

(LDA) [101], with a 6×6×6 Monkhorst-Pack k-point grid. A 2× 2× 2 super-cell of

the UO2 unit cell (with 4 O and 8 U atoms) was used for all calculations, including
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calculation of the force constants. The perfect super-cell was found to be relaxed

to a 1 × 10−3 eV/Å ionic tolerance and a 1 × 10−5 eV electronic tolerance. UO2

is anti-ferromagnetic, but there exist ferromagnetic solutions to the Kohn–Sham

equation and VASP can get trapped into a ferromagnetic state. To prevent this from

happening, the MAGMOM tag was selected to ensure that alternating uranium

atoms in the structure had opposing spins, and the spin of the oxygen atoms was

set to zero. We further used a Hubbard parameter, U , of 4.50 eV, and a Hund’s

exchange parameter, J , of 0.50 eV. The resulting electronic density of states

(Fig. 2.3) agrees with that of Wang et al. [102]. The phonon dispersion (Fig. 2.4),

also in good agreement with that obtained in the same reference [102].

The effective transport properties of the gray phonons in UO2 were computed

from the following expressions:

I0 (T ) =
1

4π
×

3∑
p=1

∫
BZ

dk3 |vg (p,k)|
2π3a3

~ω (p,k) nBE (ω (p,k) , T ) , (15)

where nBE (ω, T ) is the Bose-Einstein distribution, a is the lattice parameter of

UO2, and p is the phonon polarization. The volumetric specific heat capacity is

computed using a similar integral:

Cv =
1

2π3a3
×

3∑
p=1

∫
BZ

dk3 ~ω (p,k)
∂nBE (ω (p,k) , T )

∂T
. (16)

Using these integrated quantities we can define an effective group velocity for gray

phonons as:

vg (T ) =
4πI0 (T )

CvT
. (17)

This velocity and the heat capacity are only very weakly temperature dependent

over the temperature range of interest and thus we approximate it by their average

values of 1764 m · s−1 and 1.007 × 106 J · m−3 · K−1, respectively. Note that this
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effective velocity of the gray phonon bath is approximately 0.45 of the mean speed

of sound obtained from the same UO2 calculations. It is in effect the average group

velocity of acoustic phonon modes weighted by the thermal energy in the mode.

Similarly the effective specific heat is not the true specific heat of UO2, but only the

contribution to its specific heat from the acoustic modes and the computed value

for this is is close to the high temperature limit for the acoustic modes of 12kB/a
3.

Figure 2.3: Total and partial (for the orbitals listed in the legend) electronic
density of states for UO2 with U correction.

2.4.4 Xenon Calculations

The thermal conductivity and transport properties of xenon under high pressure

were computed from classical molecular dynamics simulations performed using the

LAMMPS package [103]. Interatomic forces were modeled using a Lennard-Jones

potential with LAMMPS parameters ε = 0.00425 eV and σ = 4.29 Å, with all
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Figure 2.4: Phonon dispersion relations for UO2.

interactions truncated after 20 Å.

Simulated systems of 10,000 Xe atoms under 3 GPa where prepared at a series

of temperatures from 300 to 1700 K. This was achieved by equilibrating the system

over a 500 ps simulation in the NPT ensemble before turning of the thermostat and

barostat and simulating for a further 50 ps in the microcanonical ensemble. In these

simulations it was found that the Xe was solid at temperatures below ∼ 600 K,

and above that, remains liquid up to 1700 K. Once the systems were prepared, the

system was simulated in for a further 1 ns in the microcanonical ensemble, during

which the thermal conductivity was computed using the Green-Kubo method [104].

The Green-Kubo method is founded on the fluctuation dissipation theorem to

determine the thermal conductivity of a system from the lifetime of its natural

thermal fluctuations during a simulation of the system at equilibrium. A minimum
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Table 2.2: Mean free path data for pristine UO2 [3] and Xe (this work)

T (K) ΛUO2 (nm) ΛXe (nm) ζUO2 ζXe

300 31.9 1.10 0.78 1.82
800 14.3 0.77 1.75 2.6
1500 7.6 0.8 3.3 2.5

of six simulations were performed using different random starting configurations

and the results averaged to obtain each thermal conductivity datum.

For vg of Xe we use the speed of sound computed at each temperature from

the Xe’s density and isentropic compressibility. The isentropic compressibility was

computed by simulating adiabatic expansion. At each temperature the system

was first cycled in an NVE ensemble after which system dimensions were slightly

increased, followed by another NVE cycling step. The compressibility was calculated

from the differences in systems volume and pressure before and after expansion.

This set of simulations also served as the source of density data. The Xe density was

also used to compute Xe’s volumetric specific heat capacity at each temperature.

The computational approach for determining both thermal conductivity and

speed of sound where validated by computing the pressures at slightly lower pressures

for which there exists experimental data [105] and finding the properties to be in

reasonable agreement. The computed density, thermal conductivity, vg, and ΛXe

are plotted in Fig. 2.5, and clearly show a transition in properties between the solid

and liquid Xe.
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Figure 2.5: Xenon properties from MD simulations. Clockwise from top
left: density, thermal conductivity, mean free path, phonon speed. Xenon
experiences a phase change with increasing temperatures.
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2.4.5 Thermal Boundary Resistance

We must consider the resistive effect at material interfaces, the phenomenon of

thermal boundary resistance (TBR), the ratio of a temperature discontinuity at an

interface to the heat flux across that interface, due to a material difference at the

junction. TBR is an extraordinarily subtle phenomenon and has some consideration

in other deterministic phonon transport studies [106, 107]. However, it is very

important to consider in simulating phonon transport, and has been characterized

in a number of other MD and MC studies [48,50,53].

The physics of TBR are important to phonon transport because of how phonons

behave when they encounter a physical interface between two adjacent materials.

At this junction, phonons become subject to a phenomenon which manifests as a

transmissive and resistive effect for phonons penetrating an interface into another

material. This physical effect occurs as the intrinsic properties of material change.

Phonons define the internal energy of a material; when they cross a boundary from

one material into the next, the change in their contribution to internal energy as

well as change in their velocity must be considered.

We develop the diffuse mismatch model (DMM) [108] in a deterministic frame-

work for 3D general geometries. We assume all phonons are diffusely scattered

at the interface, with outgoing radiance emitted isotropically, and that scattering

destroys the correlation between the wavevectors of incident and outgoing phonons;

the probability that a phonon will scatter into a given side of the interface is

independent of the phonon origin. Enforcing these conditions makes the probability

of scattering into a given side proportional to the phonon density of states on that

side, additionally constrained by the principle of detailed balance.
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We can write a balance equation for the flow of phonons between two materials

Uαvg,αTα→β = Uβvg,βTβ→α, (18)

where Uα, Uβ, vg,α, vg,β are internal energies and phonon speeds of materials α and

β, respectively. We define Tα→β as the probability of transmission from material α

into material β, and Tβ→α as the probability of transmission from material β into

material α. It follows that

Tα→β + Tβ→α = 1, (19)

to uphold conservation of energy and detailed balance. We solve for the transmission

probabilities, which are

Tα→β =
Uβvg,β

Uαvg,α + Uβvg,β
(20)

Tβ→α =
Uαvg,α

Uαvg,α + Uβvg,β
, (21)

it follows that the probabilities of reflectance are defined as Rα→α = 1− Tα→β and

Rβ→β = 1− Tβ→α, where Rα→α is the reflectance of phonons in material α incident

on the interface back into material α, and Rβ→β is the reflectance of phonons in

material β incident on the interface back into material β.

We take the first order form of the steady-state, one-speed phonon transport

equation to derive balance relations for phonons incident on and leaving a spatially

discontinuous interface

Ω · ∇I (r,Ω) +
1

Λ
I (r,Ω) =

1

Λ
I0 (r) . (22)

In Fig. 2.6 we denote “-” as the upwind radiant flux and “+” as the downwind

radiance. The scalar radiance is identified by I±α;β (rint). We must solve for the

upwind and downwind scalar radiance at the interface rint to characterize the effects
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Figure 2.6: Upwind and downwind phonon radiance at a physical interface between
two materials

of TBR in our transport simulation. In the transport equation we solve for the

angular radiance, which is integrated over solid angle to solve for scalar radiance.

At the location rint with its unit vector normal to the interface which points

from material α to material β denoted as nα→β, we can write conservation equations

which define the flow of phonons immediately at both sides of the interface. On the

β side of the interface, phonons which flow away from the interface into material β

come from two sources: they are transmitted through the interface from material

α, and reflected from those incident on the surface from the β side.

On the β side of the interface, each angular radiance corresponding to a particular

ordinate Ωm is assigned the new diffuse flux, an angular redistribution of the

transmitted portion of phonons from side α and reflected phonons from side β. This

diffuse flux is now the effective source of phonons flowing away from the interface

into material β. An analogous procedure holds for phonons flowing into material

α. We identify the new flux with its contributions from α and β side phonons as

Iα;β

(
r±int

)
. The conservation equation expressing the flow of phonons away from

the interface into material α is then developed as
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∫
nα→β ·Ω̂>0

I
(
r+

int,Ω
)
|nα→β ·Ω| dΩ =

Iβ
(
r+

int

) ∫
nα→β ·Ω>0

|nα→β ·Ω| dΩ =

Tα→β

∫
nα→β ·Ω>0

I
(
r−int,Ω

)
|nα→β ·Ω| dΩ

+Rβ→β

∫
nα→β ·Ω<0

I
(
r+

int,Ω
)
|nα→β ·Ω| dΩ, (23)

such that we solve for the downwind diffuse radiance flowing into material β from

material α,

Iβ
(
r+

int

)
=

1∫
nα→β ·Ω>0

|nα→β ·Ω| dΩ
×

[
Tα→β

∫
nα→β ·Ω>0

I
(
r−int,Ω

)
|nα→β ·Ω| dΩ

+Rβ→β

∫
nα→β ·Ω<0

I
(
r+

int,Ω
)
|nα→β ·Ω| dΩ

]
. (24)

A similar expression describes the upwind diffuse radiance of phonons flowing from

material β into material α. These new expressions for the scalar radiance are now

the isotropic emission sources on either side of the interface and are distributed at

each direction of outgoing angular radiance at the interface Iα;β

(
r±int,Ω

)
.

The effective implementation of this model allows for the description of localized

heat flux and temperature around defects in heterogeneous structures. The DMM

is a relatively crude descriptor of TBR, an improved model of interface physics

would necessitate the inclusion of anharmonic effects, and would also need to be
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Figure 2.7: Transmission coefficients TUO2→Xe and TXe→UO2 as functions of material
properties U , vg for 300 to 1500 K.

adaptive to phonon frequency selection over the interface itself [109]. We computed

transmission and reflection coefficients for UO2 and Xe from the material properties

determined in Sec. 2.4.3 and 2.4.4; these are shown in Fig. 2.7. At all temperatures

the phonon radiance is approximately two orders of magnitude larger in the UO2

than in the Xe; the boundary is highly resistive to phonons flowing from UO2 into

the Xe bubble with approximately 40% transmitted at 300 K, decreasing sharply

as temperature increases.

2.4.6 Results and Discussion

We report simulated heat flux and thermal conductivity for an array of temper-

atures with two sets of values for ΛUO2 ; one generated from the MD results of Du

et al. (denoted ΛDu), the other extracted from experimentally measured values of κ

in unirradiated samples of UO2 from Bates (denoted ΛBates). In both cases we use

material properties for Xe based on MD simulations we performed, as well as the
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same spatial mesh. We observe the effects of thermal boundary resistance at the

Xe bubble, which play a role in the amount of overall thermal resistance the bubble

provides. In all cases, the presence of xenon lowers the thermal conductivity in the

UO2.

Figure 2.8 shows all values of simulated κ and the measured pristine κ. In the

upper half of Fig. 2.8 we compare to Bates and follow a similar trend showing

decreased thermal conductivity with increasing temperature. This is further affected

by the presence of the xenon bubble; κ is reduced by approximately 30 – 55 % over

the temperature range with the sharpest difference occurring at lower temperature.

In the lower half of Fig. 2.8 we compare our κ to that of Du et al.; while we

follow a loose trend in the shape of the curve, we experience a large discrepancy in

simulated values. We under-predict κ in simulations with and without a Xe bubble,

which may have multiple causes. Our computed group velocity in UO2 is lower by

approximately a factor of 2 compared to Du et al.; it is no surprise that our κ with

Xe is also lower by approximately the same factor. We justify this exclusively for a

gray approach in that we assume all phonons do not travel at the speed of sound

in UO2; indeed from the calculations in Sec 2.4.3 is it clear that group velocity is

averaged, but has contributions from phonons with varying Λ lumped into a single

term. Some phonon modes may be highly sensitive to frequency and this detail

is washed out in the gray approach. This assumption may explain some of the

underestimation in the ballistic effects. In addition, we may not be capturing some

intrinsic phonon scattering, and we currently do not have anharmonicity built into

the relaxation time; there is no way to discern these effects. The relaxation time τeff

has many contributions; Umklapp processes, defect scattering, boundary scattering

and the resonant scattering of phonons. Classic MD can be used to characterize
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many of these processes, but MD is not able to capture certain quantum effects

at low temperatures, such as specific heat [110], and this may be a reason for the

discrepancy.
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Figure 2.8: Upper plot: κ computed with ΛBates; magenta triangle – κ with
xenon bubble; yellow square – κ from unirradiated UO2 [2]. Lower plot: κ
computed with ΛDu; green diamond – κ with xenon bubble; magenta triangle –
κ with no xenon; blue star – κ with no xenon [3]; red circle – κ with xenon
bubble [3].

Dimensionless temperature for all simulated temperature is shown in Fig. 2.9.

The influence of the xenon bubble is clear, jumps at the interface are observed;

these are more pronounced at lower temperatures when phonon scattering is highly

ballistic. This effect results in localized negative temperature gradients, which

was also observed by Yang in Si nanowires [53], and the gradient monotonically

shifts towards zero with increasing temperature. Note that while the temperature

gradient becomes negative, the net flux in this region is still positive (see Fig. 2.10)
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— heat is apparently flowing uphill. This result is counter intuitive when thinking of

heat flow in the diffusive limit, but is entirely consistent with a ballistic picture of

transport in which the energy of the phonon gas at any point contains non-local

information.
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Figure 2.9: Dimensionless temperature Θ for all simulation temperatures. The
presence of the xenon bubble is clear, as the gradient in the center region
becomes steeper. This simulation was conducted using ΛBates.

The centerline heat flux q (r) shown in Fig. 2.10 has been normalized to the 300

K value; q (r) is inversely proportional to temperature and experiences a steady

decline as temperatures increase. As temperature increases, ΛUO2 decreases and

diffuse scattering becomes more prevalent, which contributes to the reduction in

heat flux. As a result of TBR, large portions of the phonon radiance are reflected

at the xenon bubble, decreasing local q (r) by resisting the flow of phonons.

Heat flux in the UO2 region remains approximately constant along the tempera-
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ture gradient and changes drastically at the Xe bubble. We observe this effect in

Figs. 2.10 and 2.11, where heat flux is severely depressed in the region local to the

Xe bubble. The presence of a single xenon bubble does not significantly impact

average q (r) in the domain, but it does affect the behavior of the local heat flux.

Du et al. established this by performing MD simulations which include multiple Xe

bubbles and Xe randomly dispersed in the UO2 matrix [3]. Ray effects are observed

at lower temperatures when phonon scattering is highly ballistic (slight oscillations

in q (r)) but vanish as scattering becomes diffuse. With increasing temperature,

the heat flux is gradually suppressed and the effects of Xe on the local heat flux

become less significant. ΛUO2 decreases by approximately a factor of 3 between

the temperature extremes, and this decrease is more detrimental to heat flux than

compared to the presence of a singular bubble of Xe. Additional Xe bubbles would

have a greater negative effect on bulk thermal conductivity.

Table 2.4 contains the number of Richardson (source iterations) iterations

required for convergence, and total acoustic thickness of the spatial domain over

the range of temperatures. As ζ increases, required iterations decrease; this

is counterintuitive as purely scattering thermal radiation and phonon transport

simulations tend to require more iterations for convergence with increasing ζ. This

effect is potentially related to the oscillations experienced in the ballistic scattering

regime, where Λ is on the order of the entire spatial domain (Casimir limit).
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Figure 2.10: Heat flux along z-axis normalized to the 300 K value, which shows
the presence of the xenon bubble and its effect on the local heat flux. Heat flux
steadily decreases with increasing temperature as phonon transport becomes
gradually more diffuse. This simulation was conducted using ΛBates.
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Table 2.3: Thermal conductivity
(
W ·m−1 ·K−1

)
simulated using ΛUO2

T (K) Pristine UO2 [3] UO2 + Xe [3] UO2 + Xe

300 15.97 11.64 5.3
800 7.81 6.97 3.8
1500 4.29 4.06 2.6

Table 2.4: Iteration details: source iterations (SI) and acoustic thickness ζ for
simulation using ΛBates.

T (K) Source its. ζUO2 + ζXe

300 116 3.4
500 85 4.2
800 82 6.3
1000 76 6.8
1100 79 7.2
1200 77 7.5
1300 75 7.8
1400 75 8.2
1500 76 8.5
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2.5 Conclusions

We have presented the features of a 3D, generalized geometry radiation transport

code modified to simulate phonon transport in a gray formulation. We have

implemented the physics for thermal boundary resistance in 3D to describe phonon

transport behavior at localized defects in the material. We have presented our

deterministic transport results for a simulation of a 3D domain of UO2 with a

Xe impurity and compared them against MD results for similar geometry and

simulation parameters [3]. Additionally, we use ΛUO2 extracted from experimentally

measured pristine UO2 for the same simulation setup, and mimic the shape of the

κ curve in Bates [2] but with lower values of κ due to the Xe presence.

The transport method we have presented is trivially extendable to simulate a

multi-frequency phonon spectrum using input variables derived from DFT simula-

tions, consistent with our discussion in this present work (Sec. 2.4.3 and 2.4.4). The

use of deterministic methods to simulate phonon transport is an underdeveloped

aspect of the phonon transport community. Classical molecular dynamics simula-

tions and DFT electronic structure calculations can provide detailed information

about material properties, dispersion relations, and thermal conductivity but do so

only at a local or nanometer scale. It is well understood that resistive processes

also arise from the mesoscale structure of materials and these cannot be captured

efficiently from atomistic calculations (a point that is reinforced by the results in

this work).

By coupling Rattlesnake to MD and DFT methodologies, we show a way to

bridge the gap between the atomistic and engineering scales. This multiscale

method provides a framework for rapid prediction of the engineering scale thermal

conductivity in materials with evolving microstructures. Such a tool is particularly
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imperative for modeling nuclear fuels and their surrounding structural materials

in which the thermal conductivity of the materials is a central component of the

system performance.
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3.1 Abstract

We present a new method for predicting effective thermal conductivity (κeff) in

materials, informed by ab initio material property simulations. Using the Boltz-

mann transport equation in a self-adjoint angular flux formulation, we performed

simulations in silicon at room temperatures over length scales varying from 10 nm

to 10 µm and report temperature distributions, spectral heat flux and thermal con-

ductivity. Our implementation utilizes a Richardson iteration on a modified version

of the phonon scattering source. In this method, a closure term is introduced to the

transport equation which acts as a redistribution kernel for the total energy bath

of the system. This term is an effective indicator of the degree of disorder between

the spectral phonon radiance and the angular phonon intensity of the transport

system. We employ polarization, density of states and full dispersion spectra to

resolve thermal conductivity with numerous angular and spatial discretizations.

3.2 Introduction

In many applications a material’s propensity for conducting heat is an im-

portant factor in its overall performance. For thermal management applications,

having high or low thermal conductivity is of principal importance, but thermal

conductivity makes an auxiliary contribution to a material’s figure of merit in many

other applications such as batteries, high frequency electronics, and thermoelectric

materials.

In order to accelerate the discovery, design, and selection of application-driven

materials, it is desirable to efficiently compute a thermal conductivity from first

principles. The past decade has seen considerable progress towards this goal in

semiconductors and ceramics, where heat transport is dominated by phonons [111,
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112]. Methods have been developed which make routine the computing of second

order interatomic stiffness matrices of a crystal from density functional theory

(DFT) calculations, and from them, the phonon dispersion [35,36,39,40,113,114].

More recently, methods have been developed for computing third and fourth order

stiffness matrices from which the rates of intrinsic three- and four-phonon scattering

processes may be derived. The use of these methods is becoming commonplace, as

together they enable one to compute the intrinsic phonon thermal conductivity, κ,

using the equation derived from the Boltzmann transport equation for a phonon

gas:

κ =
1

8π3

∑
p

∫
BZ

τpkvpk ⊗ vpkωpk~n (ωpk, T ) dk3, (1)

which integrates the contributions to thermal transport from all phonons at all

polarizations p and wave vectors k in the crystal’s first Brillouin zone. Here, ω and

vp,k are the phonon angular frequency and group velocity, respectively, which are

obtained from the phonon dispersion relation.

The equation above gives a material’s inherent capacity for transporting heat

under the assumption that the perturbation in the phonon population that gives rise

to a net heat flux is spatially homogeneous. However, in most practical applications

materials contain defects and impurities in addition to micro and nano-structured

morphology; these all present additional resistance to phonon transport. Predicting

the macroscale thermal conductivity in these heterogeneous materials is more

complicated, but is of profound technological importance as the hierarchy of defect

structure and morphology can be central to the material’s functionality. For example,

in thermoelectric devices, dopants, impurities, inclusions, and nano-structuring are

engineered into materials in order to optimize the electrical and thermal properties.

In other applications where materials are under irradiation, it is essential to predict
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the evolution of thermal conductivity during the accumulation of radiation-induced

damage.

In materials where atomistic to micro-scale heterogeneity impacts thermal

conductivity, the phonon population is also not spatially uniform, and so predicting

the macroscopic thermal conductivity requires an understanding of the full phonon

population distribution within some representative microstructure. This can be

done by simulating the spectrally-dependent phonon distribution as governed by the

Boltzmann transport equation (BTE) using phonon transport properties derived

from DFT calculations of atomic interactions. The BTE describes the evolution of

a distribution of particles as a function of their position, frequency and direction of

travel, making the BTE a six-dimensional equation (or seven-dimensional, in the

time-dependent case).

Advances have been made in the simulation of spectrally-dependent phonon

transport, providing important insights into the spectral contribution to heat

transport, but to date the computational burden associated with BTE solutions

have limited the size, dimensionality, and/or physics of the systems considered.

Allu et al. [57] investigated frequency dependence of the BTE in silicon slabs and

reported spectral thermal conductivity based on Knudsen number (the mean free

path divided by the domain length). However, the trade-off of this approach was

their reported high computational expense, and the discrete phonon groups had no

coupling. Mazumder and Majumdar [60] demonstrated polarization dependence

of phonons in Monte Carlo transport simulations and showed the importance of

the branch dependence; polarization transitions occur for background scattering

as well as anharmonic interactions [21]. Hua derived the time and frequency

dependent phonon transport equation using the method of degenerate kernels in
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an attempt to increase computational efficiency compared to traditional integral

discretization methods [58]. This was only done in 1-D, did not provide any spatial

discretization, and was primarily analytical. As simulating frequency dependent

phonon transport allows for the characterization of the frequency spectra, it allows

for mode dependent contributions to the specific heat capacity and phonon velocity.

Minnich et al. [54] demonstrated this mode dependence in their simulations of

aluminum and silicon thin films, and calculated the spectral heat capacity from each

frequency interval, explicitly illustrating the contribution of each mode to thermal

conductivity. Rather than discriminating phonons by frequency and polarization,

Romano has developed an approach that separates phonon modes into groups by

discretizing the spectrum of phonon mean free path (MFP) [115,116]. This provides

considerable computational savings as the MFP is the only spectrally relevant

phonon property that appears in the BTE. Most recently, Zhang et al. [61] developed

a coupled approach using a reference temperature formulation which efficiently

simulates temperature distribution and thermal conductivity over the nano- to

micro-scale length range. However, they did not consider optical phonons with short

mean free paths in their simulations. We discuss the results of Zhang et al. in greater

detail below, but taken together, these prior works highlight that for simulating

phonons it is imperative that the phonons are spectrally-resolved, and that however

one defines the phonon spectrum, one cannot cavalierly disregard portions of it. This

makes fully self-coupled calculations of large systems computationally challenging.

In this manuscript we present an alternative approach for solving the spectrally-

dependent phonon BTE that draws on numerical methods developed for neutron

transport in the software package Rattlesnake [73]. The method solves the BTE in

the self-adjoint angular flux (SAAF) formulation, which is computationally efficient,

making it possible to simulate phonon transport in relatively large systems.
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The numerical procedures for simulating the collective transport of phonons

occupying a spectrum of vibrational modes is similar to the procedures used in

nuclear engineering for simulating multi-group neutron or radiation transport [4,72].

With neutron or radiation transport, the energy spectrum is partitioned into discrete

groups and the transport simulation accounts for within-group and group-to-group

scattering of neutrons based on the interaction cross sections. Rattlesnake [73]

employs a multi-group energy discretization scheme to solves the BTE for neutrons.

It is developed in the Multi-physics Object Oriented Simulation Environment

(MOOSE) framework [70] at Idaho National Laboratory (INL) and solves the

SAAF-BTE using a finite element spatial discretization and a discrete ordinates

angular discretization. Having previously adapted Rattlesnake to model one-group

(grey) phonon transport [55,56,117] in both homogeneous and heterogeneous media,

in the work presented here we have further developed Rattlesnake to simulate

spectrally-dependent phonon transport.

The remainder of the manuscript is organized as follows: In the next section

we develop the methods used to derive the SAAF-BTE for spectral transport,

temperature coupling between discrete phonon groups, and the energy redistribution

function used in closing the system of equations. Following this, we describe the

methods used to compute a material’s phonon properties and the methods we

have developed to convolve these data into the collective properties of a set of

discrete transport groups simulated in the SAAF-BTE. Finally, to demonstrate

the computational efficiency of our multi-group, temperature coupled approach,

simulations are presented of phonon transport in silicon of varying thickness. For

these we report spectrally-resolved temperature, heat flux, and thermal conductivity.

We discuss each of these quantities, how they are affected by spatial and angular
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resolution, the effect of the new closure term, and how convergence is affected by

the simulation of all phonon modes.

3.3 Methods

The generalized Boltzmann transport equation is used widely by the transport

community to model the evolution of a distribution of particles or carriers. The

modes of atomic vibration of crystal are traveling waves with well defined wave

vectors. These waves extend across the entirety of the crystal; however, if uncer-

tainty is applied to the wavevector the vibrations become propagating localized

wavepackets. As the energy of vibrations comes in discrete quanta proportional to

their vibrational frequency, individual wavepackets can be treated as quasiparticles

– phonons – that collectively follow Bose-Einstein statistics. The total vibrational

energy of the crystal can thus be modeled as a phonon quasiparticle gas and so can

be described by the Boltzmann transport equation for uncharged particles:

df (r,k, p)

dt
= −v (k, p) · ∇f (r,k, p) +

[
df

dt

]
coll.

. (2)

Here f (r,k, p) is the number of phonons at location r occupying the phonon mode

with wavevector k and polarization p. The term v is the group velocity of a phonon

wavepacket and is given by v = v (k, p) = ∇kω (k), the derivative of the vibration’s

angular frequency, ω, with respect to k. The group velocity is a vector normal to

the isofrequency surface for the dispersion relation which is not necessarily parallel

to k. While the natural parameter for enumerating the phonon modes of a crystal

is the wavevector and polarization (4 quantum numbers are required), for transport

simulations it is more natural to parameterize the particle/carrier population by

the particles’ direction of travel, and then by their speed, and to treat these two

parameters separately. This is particularly true for neutron transport as their
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dispersion relation is isotropic. To put the phonon transport problem in to a form

where it can leverage the numerical power of existing transport solvers such as

Rattlesnake, and restricting our interest to the time independent case, in what

follows we write the Boltzmann transport

∣∣∣v (Ω̂, η, p
)∣∣∣ Ω̂ · ∇f (r, Ω̂, η, p) =

df
(
r, Ω̂, η, p

)
dt


coll.

, (3)

where f = f(r, Ω̂, η, p) has been parameterized by the phonons’ direction of propa-

gation, Ω̂, and spectral variable η. The spectral metric η could be energy, frequency,

wave number, mean free path, or any other descriptor or quantum number for

enumerating the phonon modes.

The term on the right hand side (RHS) of Eq. (3) is the rate of change of the

population of due to the creation/annihilation of phonons and events that change a

phonon’s direction of travel. We model this using the single mode relaxation time

(SMRT) approximation [11] which assumes that the net rate of loss/gain of phonons

in a single mode is described by a single relaxation time, τ = τ(Ω̂, η, p), and is

proportional to the deviation of the population from thermodynamic equilibrium.

Defining the mean free path (MFP) of phonons Λ(Ω̂, η, p) = |v| τ , the simplified

BTE is written as

Ω̂ · ∇f =
f 0
(
T (r) , Ω̂, η, p

)
− f

Λ
, (4)

where the equilibrium phonon distribution f 0 is described by Bose-Einstein statistics

f 0 = f 0
(
T (r) , Ω̂, η, p

)
= 〈nBE〉 =

1

exp

[
~ω(Ω̂,η,p)
kBT (r)

]
− 1

.

Here T (r) is the local temperature, ~ is the reduced Planck constant and kB is

Boltzmann’s constant.
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The population f gives the number of phonons in the mode characterized by

Ω̂, η, and p and is thus dimensionless. As we are interested transport of heat

rather than phonon number is more useful to weight the population by the modes’

contribution to energy flux, and solve for the angular flux intensity, ψ, which has

dimensions of power per area per steradian, and is defined as

ψ
(
r, Ω̂, η, p

)
= ~ωvfDdη. (5)

Here the term, D = D(Ω̂, η, p) is the phonon density of states (DOS) per increment

of solid angle Ω̂ and spectral descriptor. It has dimensions of number per unit

volume per steradian per η, and it satisfies the relationship

3Nv =
∑
p

∫
dη

∫
4π

D
(
Ω̂, η, p

)
dΩ, (6)

where Nv is the number of atoms per unit volume. The BTE in terms of angular

radiance is

Ω̂ · ∇ψ =
φ0 − ψ

Λ
, (7)

where φ0 is the radiance of the mode at equilibrium given by

φ0 = φ0
(
T (r) , Ω̂, η, p

)
=

~ω v Ddη

exp
[

~ω
kBT (r)

]
− 1

, (8)

and is discretized into partitions with dependency on Ω̂ within the Brillouin zone;

this method is discussed in a proceeding section. The local temperature is defined

as the temperature that a system at equilibrium would have in order to have the

same thermal energy, UT , as the phonon bath

UT (r) =
∑
p

∫
dη

∫
4π

dΩ̂
~ω f D

exp
[

~ω
kBT (r)

]
− 1

=
∑
p

∫
dη

∫
4π

dΩ̂
φ0

|v|
. (9)
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The numerical approach to extract T (r) from this relationship is described in detail

later in the manuscript, but we first address the issue of energy conservation.

The SMRT approximation for the collision term that appears in the BTE in

Eqs. (4) and (7) assumes that modes which are out of equilibrium exchange energy

with an implied phonon reservoir at the local temperature to relax them back into

equilibrium. However, as the rate of this energy exchange is different for all modes

for any arbitrary phonon population, it is likely that there will be a net flow of

energy to or from the phonon bath, resulting in a lack of local energy conservation.

The problem is that the flow of energy into the implied phonon bath in the SMRT

is not reflected in the explicit phonon bath used to compute temperature in Eq. (9),

and so we must include an additional source term to correct this.

The net energy flow per unit volume, U̇I , to the implied phonon bath is

U̇I (r) =
∑
p

∫
dη

∫
4π

dΩ
φ0 − ψ

Λ
. (10)

To conserve energy, we must return this energy to the explicit phonon bath, and to

do that we must first decide how to distribute the energy over the phonon modes.

The most obvious choice for this is to add the energy back proportional to the

equilibrium distribution of energy across the modes. Applying this correction to

the BTE to close the coupling of SMRT with the phonon bath gives:

Ω̂ · ∇ψ =
φ0 − ψ

Λ
− β φ

0

|v|
,

where β is a rate and is given by

β = β (r) =
U̇I
UT

.

This residual energy projection is a measure of the balance of the equilibrium

phonon population to the transport system population; β is tightly coupled to
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temperature, the transport and equilibrium systems, and is the closure required

to ensure energy conservation. In our framework, both the temperature and β

are functionals of the entire phonon population. The energy flow U̇I can be either

positive or negative depending on the phonon population. The most ballistic groups

tend to have the strongest non-equilibrium condition occurring near isothermal

boundaries and these are the regions in which we find β to be the largest.

3.3.1 SAAF-BTE for Phonons

In our previous work [55, 56, 117], we modified the SAAF-BTE for transport of

grey neutrons to make it treat grey phonon transport, and then solved it to model

heat conduction in UO2 containing Xe bubbles. In grey transport the particles

of interest are resolved in direction but the spectral properties are averaged over

the entire distribution making a “grey” spectrum. In spectrally-resolved transport

the grey approximation is equivalent to coupling the particle distribution evolution

over angle, but having no coupling between the different portions of the property

spectrum as in the first and second order equations

Ω̂ · ∇ψ
(
r, Ω̂

)
+

1

Λ
ψ
(
r, Ω̂

)
=

1

4πΛ
φT (r) , (11)

−Ω̂ · ∇
[
ΛΩ̂ · ∇ψ

(
r, Ω̂

)]
+

1

Λ
ψ
(
r, Ω̂

)
=

1

4π

[
1

Λ
φT (r)− Ω̂ · ∇φT (r)

]
. (12)

Here the coupling term, φT, is the zeroth angular moment

φT = φT (r) =

∫
4π

ψ
(
r, Ω̂

)
dΩ, (13)

which we refer to as the transport scalar flux. The total scalar flux is defined as the

integral of the zeroth angular moment over all spectral groups and polarizations

ΦT = ΦT (r) =
∑
p

∫
η

∫
4π

ψ
(
r, Ω̂

)
dΩdη,
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and φT and ΦT both have units of W · rad−1 ·m−2. In the BTE, the phonon angular

intensity is defined along a direction of travel Ω̂, a function of polar and azimuthal

angles θ and φ; Ω̂ is an independent variable of ψ, which itself is the dependent

variable, ψ(r, Ω̂).

The weak form of Eq. (12) was then solved with Rattlesnake. In this current

work, we introduce a new form of the SAAF-BTE specifically for phonons, which

relies on implicit temperature coupling to better represent the subtle physics of

phonon transport. We return to Eq. (4), with phonon state variables multiplied

through and the addition of the non-equilibrium bath source correction to the right

hand side

|v| Ω̂ · ∇ψ
(
r, Ω̂

)
=

1
4π
φ0 (T (r))− ψ

(
r, Ω̂

)
τ

− β (T (r))φ0 (T (r))

4π
,

and rearrange

Ω̂ · ∇ψ
(
r, Ω̂

)
+

1

Λ
ψ
(
r, Ω̂

)
=

1

4πΛ
φ0 (T (r))− β (T (r))

4π |v|
φ0 (T (r)) , (14)

where the terms on the left are the streaming and collision operators, respectively,

with source terms on the right hand side. We have included temperature dependent

notation (T (r)) in Eq. (14) as a reference point to show the terms where temperature

is coupled in our approach. For much of the remainder of this section, we drop the

independent variables (r, Ω̂).

The vacuum and reflecting boundary conditions for this transport equation are

defined as:

ψ (rb) =

ψ
vac
(
rb, Ω̂

)
, Ω̂ · n̄b < 0

ψref
(
rb, Ω̂r

)
, Ω̂ · n̄b < 0

,

here, n̄b is the outward unit normal at a point rb on the boundary. In neutron

transport space, ψvac implies a vacuum boundary (ψ(rb, Ω̂) = 0). However, in this
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implementation, we leverage the vacuum boundary as an adiabatic boundary to

specify an incident source of phonons, e.g., ψ(rb, Ω̂) = φ0 (rb). The reflective angle

Ω̂r in ψref is

Ω̂r = Ω̂− 2
(
Ω̂ · n̄b

)
n̄b.

The derivation of the SAAF form of the phonon BTE is based on a straightforward

algebraic technique. From a computational perspective the SAAF formulation is

advantageous as the full angular flux intensity is the unknown. Upwinding is a

common numerical discretization of advection operators in partial differential equa-

tions, and is frequently used with the traditional first-order form of the Boltzmann

transport equation, particularly in one and two spatial dimensions. The (primarily)

lower triangular linear algebra problem in each quadrature direction is solved via

a “transport sweep” - forward propagation of information through spatial cells in

the direction of particle travel. The SAAF equations have an elliptic streaming

term, and the resulting linear algebraic equations for the intensity in each angular

ordinate are then solved via preconditioned GMRES methods on unstructured

spatial grids – this is the primary numerical advantage to using the SAAF equa-

tions; boomerAMG-preconditioned GMRES is massively parallelizable. In contrast,

sweeping algorithms (especially on unstructured grids in 3D) are challenging to

implement in parallel; the development of an efficient parallel sweep algorithm is

an active area of interest in the neutron transport community [118]. The use of

reflecting boundary conditions is easier with the availability of the full angular

flux, as the incoming and outgoing directions are coupled in the same manner as

the first order form of the transport equation [69]. Through the application of a

continuous finite element (CFEM) spatial discretization, the matrices are symmetric

positive definite (SPD), which allows for the use of solution techniques such as the
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preconditioned Krylov family of solvers. To obtain the SAAF form of the BTE, a

simple algebraic approach is followed, solving Eq. (14) for the angular intensity:

ψ =
φ0

4π
− Λβφ0

4π |v|
− ΛΩ̂ · ∇ψ,

and substitute this expression back into the streaming term in Eq. (14)

Ω̂ · ∇
(
φ0

4π
− Λβφ0

4π |v|
− ΛΩ̂ · ∇ψ

)
+

1

Λ
ψ =

φ0

4πΛ
− βφ0

4π |v|
, (15)

rearranging yields the SAAF form of the phonon BTE

−Ω̂ · ∇
[
ΛΩ̂ · ∇ψ

]
+

1

Λ
ψ =

1

4π

[
φ0

Λ
− Ω̂ · ∇φ0 − βφ0

|v|
+ Ω̂ · ∇Λβφ0

|v|

]
. (16)

We use the discrete ordinates method [74] to discretize the angular variable. In the

discrete ordinates approach, we represent the independent variable Ω̂ by a discrete

set of directions, {Ω̂m,m = 1, . . . ,M}. The functions of Ω̂ are represented only by

their values at each of their directions on the spatial mesh, e.g.,

f
(
r, Ω̂

)
→ f

(
r, Ω̂m

)
≡ fm (r) , m = 1, . . . ,M. (17)

Consider the angular flux intensity as a function of the direction variable Ω̂. There

exists a set of complete orthogonal functions in Ω̂, much like Legendre polynomials;

these are the spherical harmonics functions. To compute the total scalar flux in

a group at the end of an iteration, the angular flux intensity is integrated over

direction using Eq. (13). However, we make the approximation that the angular

flux intensity ψ(r, Ω̂) can be represented by these spherical harmonics functions

(termed Y ) and we expand the angular flux in terms of these functions

ψ
(
r, Ω̂

)
≈ 1

4π

∞∑
k=0

n=k∑
n=−k

ψk,n (r)Yk,n

(
Ω̂
)
, (18)

where

ψk,n (r) =

∫
4π

Y ∗k,n

(
Ω̂
)
ψ
(
r, Ω̂

)
dΩ. (19)
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This approach involves expanding the angular dependence of the flux intensity

in a finite series of spherical harmonics Yl,m(Ω̂) = Yl,m (θ, ϕ), a familiar sight in

quantum mechanics. Coupling for the angular flux intensity and the transport flux

exists in the angular moments alone

φl,n (r) =
1

4π

L∑
l=0

l∑
n=−l

M∑
m=1

wmψm (r)Y ∗l,n

(
Ω̂m

)
Yl,n

(
Ω̂m

)
,

here, L is the truncated spherical harmonics, l is the degree of spherical harmonics

and n is the order, and weights sum to 2π in 2D

M∑
m=1

wm = 2π.

The total heat flux q (r) is the sum of the first angular moments (φ1,0 and φ1,1 for

two spatial dimensions) over all spectral groups and polarizations

q (r) =
∑
p

∫
η

∫
4π

ψ
(
r, Ω̂

)
Ω̂dΩdη,

and has units of W · m−2. In this way we solve the transport equation for each

angular direction Ω̂m. At the end of each iteration, the numerical integration is

performed to represent the scalar flux with these angular moments. Then, φT is

used to determine the local temperatures in the transport system, and are then

passed into the equilibrium radiance relations. Now that we have represented the

angular flux intensity by this quadrature, the discrete form of Eq. (16) for any

direction Ω̂m with an associated weight wm in the angular quadrature set is:

− Ω̂m · ∇
[
ΛΩ̂m · ∇ψ(`+1)

m

]
+

1

Λ
ψ(`+1)
m =

1

4π

[
φ0,(`)

Λ
− Ω̂m · ∇φ0,(`) − β(`)φ0,(`)

|v|
+ Ω̂m · ∇

Λβ(`)φ0,(`)

|v|

]
, (20)
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where we have assigned iteration indices to Eq. (20); we solve for the value of angular

flux intensity, ψ(`+1) using sources from the previous iteration (`). This resembles

source iteration, a well known solution technique in neutron transport [74,119,120].

This procedure is outlined in Algorithm 1.

The transport calculation assumes that all of the spectral groups are decoupled;

each system of equations is solved separately and no information is passed between

them. We have demonstrated this capability previously with Rattlesnake [56,117].

It is possible to solve each system of equations separately and then compute an

average material temperature for the domain. However, this only considers isolated

group contributions to temperature and heat flux. Explicit simulation of group-

to-group phonon scattering foregoes the SMRT approximation, is computationally

demanding, and is an active research area [13, 54]; this work does not consider

explicit scattering processes.

The physics dictate that phonon modes are coupled as they become excited

through phonon collisions and temperature changes. The amount of heat flowing

through each phonon mode in the system must ‘see’ the others – even forsaking

an explicit collision model, individual modes must feel the effects of the material

temperature; Bose-Einstein statistics assert this, and the phonon groups must

be globally coupled in some manner. A material temperature is determined by

prescribing a temperature gradient between spatial boundaries, giving rise to

blackbody phonon emission into the material. Phonon scattering in each of the

groups are driven by this temperature gradient, but again no coupling exists. This

decoupled approach fails to consider the temperature in the Bose-Einstein statistics

which must be extended to all phonon modes – the true equilibrium distribution is

an integration coupling all spectral zones. Temperature is defined by the phonon
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phase space distributions, spanning all modes and polarizations. Phonons are

coupled via the internal energy of the crystal system, and we can leverage this detail

to derive a set of self-consistent equations where an average material temperature

is shared between each of the discrete phonon groups.

The total phonon radiance of the system is defined as

Φ00 = Φ00 (T (r)) =
∑
p

∫
η

~ω |v|D

exp
[

~ω
kBT (r)

]
− 1

dη, (21)

which is just the contribution of φ0 over all modes. We make the assumption that

the total equilibrium radiance Φ00 can be related to the total transport scalar flux

in the domain, such that the two must be in radiative equilibrium. This treatment

uses the Bose-Einstein distribution as the phonon source for each of the spectral

groups as opposed to the transport scalar flux; we still perform an integration of

the angular intensity at the end of each linear iteration to obtain transport scalar

flux. Equating Φ00 to the sum of the transport flux, we have

Φ00 (r) =
∑
p,η

φT =
∑
p,η

~ωp,η |vp,η|Dp,η

exp
[

~ωp,η
kBT (r)

]
− 1

, (22)

where the (p, η) index denotes a double summation over the polarizations and

spectral property indices. Now we may carry out the solution for T (r), which

involves summations over the angularly dependent material properties (index m)

and group index g, both described in proceeding Sec. 3.3.2.

T (r) =
∑
g,m

~ωg,m
kB ln

[
~ωg,mvg,mDg,m

φT
g (r)

+ 1
] . (23)

Equation (23) is used to compute an average temperature for the entire spatial

domain. T (r) is what couples the phonon groups together – they now depend on a

global average temperature. The resulting value of T (r) is used to compute a new

value of φ0 using Eq. (8).
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Equation (20) in the discrete ordinate method generates a linear system of

equations arising from the spatial discretization of an elliptic operator, and is solved

for angular intensity ψp,η,m in each quadrature direction. This means that software

for solving the diffusion approximation to transport can be exploited to implement

acceleration techniques, which will be part of a future study. The Galerkin weak

form of Eq. (20) using weighted residual formulation with CFEM is then solved

with Rattlesnake. The derivation of the weak form of the SAAF-BTE for phonons

is similar to that of the weak form of the SAAF-BTE for neutrons and can be

followed in the Rattlesnake theory [73]. Algorithm 1 is outlines the technique used

to solve the system of equations.

Algorithm 1: Temperature coupled iteration

1 initialize φ0 (rb),ψ
(`)
m (r),φT,(`) (r),φ0,(`) (r), Φ00,(`) (r), ΦT,(`) T (`) (r)

2 set convergence tolerance ε
3 for g = 1 to G do
4 for m = 1 to M do

5 solve SAAF-BTE (Eq. 20) for ψ
(`+1)
m

6 end

7 compute φT,(`+1) (r) and solve for T (`+1) (r)

8 compute φ0
(
T (`+1)

)
9 end

10 compute Φ00,(`+1), ΦT,(`+1), β(`+1)

11 if
∣∣∣φT,(`+1)(r)−φT,(`)(r)

φT,(`+1)(r)

∣∣∣ < ε then

12 break
13 else
14 go to 3

3.3.2 Phonon Transport Properties of Silicon

For the purposes of demonstrating and testing the use of Rattlesnake to simulate

spectrally-resolved phonon transport we use silicon as a model material system.

The thermal conductivity of Si is isotropic and well characterized, and there are
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a wealth of experimental and computational data against which to compare our

model. Silicon has cubic crystal symmetry; to simplify our model and to enable

us to use a standard set of transport ordinates akin to neutron transport (which

does not have cubic symmetry), we simplify the transport spectrum to make it

spherically symmetric. The discussion that follows describes first the process we

used to compute ab initio the phonon properties of Si, and the metric we have

developed for grouping the phonon modes of Si into a discrete set of transport

groups with aggregated transport properties.

3.3.2.1 Calculation of Phonon Properties

The frequency and group velocity of phonons with a given wave vector and polar-

ization are computed from the dispersion relation obtained from the dynamical

matrix of second order force constants. The probability of three phonon scattering

processes, the dominant intrinsic scattering process at high temperature, are com-

puted from the matrix of third order stiffness interactions. The 2nd and 3rd order

force constants for Si at 0 K were obtained from the AlmaBTE database [113]. In

this data set the 2nd order force constants were computed via the frozen phonon

method as implemented using phonopy [39] using a large 5× 5× 5 supercell in order

to accurately capture the contributions from long ranged interatomic interactions.

The 3rd order force constants were calculated using a 5× 5× 5 supercell using the

package thirdorder.py [114] and considered all three-atom interactions of atoms less

than five neighbours removed from one another. The complexity of the unit cell

does not directly affect computational cost, but it can have indirect influence on the

computational cost. The main source of computational expense comes from how

finely one resolves the phonon spectrum, which depends on the span of frequencies

and mean free paths. However, the CPU time is impacted by the acoustic thickness
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of a particular angle-group; if the unit cell has many optical modes with low velocity

and short lifetime, these diffusive modes will take longer to converge. We discuss

this further in a proceeding section. The full details of the DFT calculations are

given in reference [114].

Starting with these stiffness matrices we used AlmaBTE to compute the full

phonon dispersion and group velocities on a 24×24×24 Brillouin zone mesh. The 0

K velocities and frequencies were assumed to be unchanged at higher temperatures.

The phonon-phonon scattering times were computed on the same mesh at a tem-

perature of 300 K. All of the phonon modes in the Brillouin zone are represented in

the transport groups, albeit in an approximate way. In this work, this was done to

make the transport spectrum spherically symmetric; however it is no extra work to

include all the modes in the Brillouin zone in a non-approximate way, and to model

anisotropic materials. For this, one would need to use a set of ordinates which

match the crystal symmetry, and we would not be able to decouple the transport

group’s properties and directions.

3.3.3 Decomposition of Phonon Spectrum into Transport Groups

Discretization of the BTE in Eq. (20) means solving for the heat flux in a set

of transport groups where each group represents the combined contribution to

transport from a collection of phonon modes with similar direction of propagation

and spectral character. The task is to determine the effective transport properties of

each group such that all phonon modes are accounted for, and that the temperature

in Eq. (23) may be inverted.

In discretized form, the angular and spectral distribution of a quantity A(Ω̂, η, p)
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of the population is approximated as a sum of piece-wise basis functions:

A
(
Ω̂, η, p

)
≈

NΩ∑
m=1

Nη∑
g=1

Am,g,pχm

(
Ω̂
)
χg (η) .

Here m is the index over discrete ordinates in Ω̂, and g is the index over control

points (groups) in p and η. The functions χm(Ω̂) and χg (η) are element shape

functions — non overlapping boxcar functions that satisfy the relationships∫
η

dη

∫
4π

dΩχm

(
Ω̂
)
χg (η) = wm∆ηg,

where ∆ηg is the width of the g-th spectral group, and∫
η

dη

∫
4π

dΩ χm

(
Ω̂
)
χg (η) χm′

(
Ω̂
)
χg′ (η) =

{
w2
m∆η2

g , if m = m′ and g = g′

0, otherwise
.

The transport group quantities Am,g represent the combined contribution to trans-

port from all of the phonon modes that fall into the m, g-th group. To perform this

calculation we define the group integration operator

Gm,g

{
A
(
Ω̂, η, p

)}
=
∑
d

∫
η

dη

∫
4π

dΩA
(
Ω̂, η, p

)
χm

(
Ω̂
)
χg (η) .

Using this operator we define the groups’ mean free path as the average of the

mean free paths of the phonon modes in the group weighted by their contribution

to the phonon flux

Λm,g =
Gm,g

{
Λφ0

(
T
)}

Gm,g

{
φ0
(
T
)} .

Where T is the expected average temperature of the system to be simulated.
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Similarly, for computing radiance from temperature we define:

φ0
m,g

(
T
)

=
1

wm
Gm,g

{
φ0
(
T
)}

=
1

wm
Gm,g

 ~ω |v|D

exp
(

~ω
kBT

)
− 1

 ,

φ0,′

m,g

(
T
)

=
1

wm
Gm,g

{
dφ0

(
T
)

dT

}
,

φ0,′′

m,g

(
T
)

=
1

wm
Gm,g

{
d2φ0

(
T
)

dT 2

}
.

The only material properties in the discretized BTE (Eq. (20)) are the groups’

effective mean free path and radiance, however the transport simulation needs to be

able to compute the local temperature and so it also requires the weighting terms

to obtain this from the sum over fluxes. To compute the energy in a group from

the angular flux, we define the group velocity as the averaged velocity weight by

mode energy

vm,g =
Gm,g

{
φ0
(
T
)}

Gm,g

{
φ0(T)
|v|

} .
For the local temperature calculation we need to know the total of the product of

frequency, density of states and velocity

ωvDm,g = Gm,g {ω |v|D} ,

and the average frequency

ωm,g =
Gm,g {ωD}
Gm,g {D}

.

The approach developed up to this point is quite general; we have not yet

specified a choice of spectral parameterization, and the method can be applied to

anisotropic materials if one uses a set of transport ordinates with the appropriate

symmetry. In the remainder of the manuscript we limit ourselves to one choice for
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parameterization of the dispersion in Si, in which we approximate the dispersion

relation to be spherically symmetric enabling us to use a standard set of non-

symmetric transport ordinates. In this approach we used just the dispersion for Si

along the (100) crystal direction, and we collapsed the three optical branches and

the two transverse acoustic branches into a single branch with averaged frequency

as shown in Fig. 2.4. The dispersion was parameterized in wave number, k, and

this condensed (100) dispersion was used as the dispersion along all directions. The

density of states was defined as

D
(
Ω̂, k, p

)
m,g

=
3dpk

2

πk3
maxa

3
Si

,

where dp is the degeneracy that accounts for the merged branches and aSi is the

lattice parameter of the Si unit cell. The integral of this accounts for all the phonon

modes of Si
3∑
p=1

∫
4π

dΩ

∫ kmax

0

dk
3dpk

2

πk3
maxa

3
Si

=
3× 8

a3
Si

= 3Nv,

The approximated dispersion was split into between three and 20 groups in k of

equal size; we used a discretization of 9 groups in our simulation, split up amongst

the polarizations (see Table 3.1).

Using these data, we can compute radiant emission sources on the boundaries,

driven by a prescribed temperature boundary condition,

φ0
p,η (T (rb)) =

~ωp,η |vp,η|Dp,η

exp
[

~ωp,η
kbT (rb)

]
− 1

. (24)

Equation (24) is used by the vacuum condition at a boundary rb to supply an

incident source of phonons for a given group and polarization. We compute an

effective thermal conductivity along a direction by taking the ratio of the total heat

flux to the end-to-end temperature gradient (which includes boundary effects) in
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Figure 3.1: Dispersion relation in silicon.
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Figure 3.2: Mean free paths for dispersion branches vs. group velocity. Units
are consistent for inset figure.
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Table 3.1: Silicon material properties.

G Λ [nm] ω · 1013 [s−1] v [m · s−1] D · 1027 [m−3] τ [ps] ωvD [m−2 · s−2]

1 (LA) 3120 1.49 8079 0.0736 386 12.9 · 1042

2 (LA) 155 4.25 6926 0.515 22.4 156 · 1042

3 (LA) 28.7 6.46 5152 1.4 5.6 458 · 1042

4 (TA) 898 0.99 5076 0.147 177 9.4 · 1042

5 (TA) 79.5 2.3 2063 1.03 38.5 42.2 · 1042

6 (TA) 11.1 2.75 721 2.8 15.4 51.8 · 1042

7 (O) 3.15 9.43 786 0.22 4 24.9 · 1042

8 (O) 3.8 8.92 1651 1.55 2.3 219 · 1042

9 (O) 4.58 8.43 1126 4.2 4.1 397 · 1042

the system

κx (r) =
1

[T (xL)− T (xR)]

1

LyLz

∫
ex · q (r) d3r. (25)

3.4 Results

We performed spectrally resolved phonon transport simulations in two-dimensional

planes of silicon of varying geometric size. We report heat flux, thermal conductivity,

and the equilibrium temperature distribution. We used full phonon dispersion and

density of states computed at room temperature from ab initio DFT simulations.

Spatial domain sizes varied from 10 nm to 10 µm and were spatially discretized

using coarse (C) and fine (F) triangular finite element meshes (Fig. 3.3). We

employed S4, S8, and S16 Gauss-Legendre angular quadratures. We simulate a 1 K

temperature gradient along the x-axis, with boundary temperatures of TL = 301 K,

TR = 300 K. Reflecting conditions are placed on remaining boundaries. We use

AMG-preconditioned GMRES [71,121,122] to solve the linear system of equations,

with convergence criteria set to ε = 10−8. The selected four cases we discuss in this

section were all simulated using S8 quadrature with the fine spatial mesh.
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Figure 3.3: Coarse (left, 926 elements) and fine (right, 5770 elements) spatial
meshes.

In centerline temperature profiles (Fig. 3.4), it is clear that non-equilibrium

behavior arises when the domain is small, and this occurs because radiative equi-

librium cannot be established. The incident phonon radiance from opposing sides

encounter interference due to their proximity – the distance between hot and cold

sources is less than the mean free path of the majority of phonons. This feature is

prominent in smaller geometric domain sizes, exacerbated by the presence of ballis-

tic phonons, which may undergo very few collisions before reaching the opposite

side of the domain. An equilibrium solution to the temperature distribution exists

upon numerical convergence of the simulation as the temperature distribution in

each phonon mode is identical. However, if an equivalent transient simulation was

conducted, the modal temperature distributions may not be identical. The temper-

ature profiles produced from this work may provide a basis for the benchmarking

of temperature distributions in molecular dynamics (MD) simulations, which rely

on the careful selection of fitting parameters; the temperature profiles computed by
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our method may aid in the accurate fitting of these parameters [123].
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Figure 3.4: Centerline temperature distribution for four cases. Temperature
slips at the boundaries are observed, and their magnitude diminishes in propor-
tion to increasing domain size, as phonon boundary emission sources become
further separated.

The closure term β (Fig. 3.5) provides a glimpse into the non-equilibrium

behavior of the simulation at various domain sizes; β tightly couples the total

phonon radiance (Φ00) and total flux (ΦT). We have shown β multiplied by the

average relaxation time τ in order to understand the fraction of total energy

exchanged into the bath in one scattering event. The total amount of energy

exchanged in β between ΦT and Φ00 is infinitesimal relative to the total energy of

the system, but without the presence of β conservation is broken, and a parabolic,

rather than constant heat flux is observed.

ΦT and Φ00 are not equivalent at small domain sizes; this occurs due to the

disparity between the boundary emission source and the localized transport flux,
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and it is no surprise that the majority of the curvature exhibited by β exists near

the boundaries of Fig. 3.5. This artifact is a direct consequence of the system

size, where emitting boundaries are in competition with each other. β exhibits a

sign change, beginning negative at TL and turning positive at TR. In cases where

β < 0, φT > φ0; φT is strongly influenced by the boundary conditions, where

the incident angular intensity ψ is specified by the phonon radiance relation in

Eq. (24). As phonons flow from hot to cold sides, the sign of β tends positive as

φ0 > φT, after the spatial midpoint. This is because the local radiance φ0 is now

stronger than local transport flux φT – the cold boundary can not overcome the

flow of phonons from the hot side, which results in a positive β, but also elevates

the temperature away from the cold boundary shown on the profiles in Fig. 3.4.

Blackbody phonon emission is very strong in proportion to the transport flux, and

although overall convergence is achieved the localized non-equilibrium effect is very

apparent, especially in smaller domain sizes.

Centerline total heat flux profiles for the S8,F case are shown in Fig. 3.6. As

system size increases, heat flux decreases. Because of the flat heat flux profiles

observed in all cases, it is clear that including β to close the transport equation is a

necessity. Without β, energy leaks out of the system and yields a non-conserved

heat flux. However, inspecting group heat flux paints a clear image of which groups

carry the most heat in the system. It is, of course, the groups with the largest Λ,

and those which remain the most ballistic over the entire geometric domain range.

Figure 3.7 shows group heat flux for the S8,F case for all domain sizes. It is clear that

larger values of Λp,η are responsible for a higher heat flux; ballistic phonons carry

energy further between collisions. The LA phonons are the dominant carriers due

to their higher velocities and mean free path whereas TA and O phonons contribute
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Figure 3.5: β ·τ distributions along the x-axis for four domain sizes. As domain
size increases, the behavior of β in the bulk tends toward zero as the total
radiance (Φ00) and total flux (ΦT) come into balance and the influence of the
heated boundaries subsides. The left boundary emits phonons at a higher
temperature than the right boundary and so locally, φT > φ0. The opposite is
true on the right side of the figure, in proximity of the colder phonon source.
The influence of β is directly affected by the size of the domain; with smaller
domain sizes, the emissive sources are in greater competition with each other
and radiative equilibrium can not be established.
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lesser quantities. Acoustic phonons are generated by atomic displacements moving

in phase, which is responsible for their higher velocity. Conversely, optic phonon

motion is out of phase and are shorter range carriers. This phenomenon can be

traced to Fig. 3.2, where larger magnitudes of the derivatives of the dispersion

curves equate to higher wave propagation speed. Heat flux flattens out as geometric

size increases, shown in Fig. 3.7; in this way we can analyze the degree to which the

heat-carrying groups are affected by the change in domain size. If phonon groups

were decoupled, the relation between heat flux and domain length would remain

fixed in each group, as individual groups are not influenced by the average energy

of the domain. However, in a coupled simulation the equilibrium distribution of

each phonon channel is impacted by the average material temperature. Results for

heat flux and thermal conductivity vary by approximately 3% between all angular

and spatial resolutions. Thus, for a homogeneous material, a moderate angular

and spatial resolution is sufficient for accurate results. This will likely change in

heterogeneous environments such as porous materials, bulk material with dopants

or inclusions (e.g. UO2 with Xe bubbles), where ray effects have been observed in

grey simulations [117].

Normalized spectral heat flux is shown in Fig. 3.8, giving insight into how

rapidly each of the groups approach the ballistic limit. It is clear that q1 (with

Λ1 = 3120 nm) carries the dominant portion of energy throughout the entire range

of domain sizes, as it barely begins to approach the asymptotic limit at a length

of 10 microns. However, it is overtaken early on by groups 2-5, until the domain

sizes reaches about 1000 nm. As expected, the diffuse groups do not contribute

appreciably to the overall heat flux.

Thermal conductivity for all cases is shown in Fig 3.9. The increasing angular
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Figure 3.6: Centerline total heat flux for the S8,F case. Heat flux is approxi-
mately constant across the domain, with very minor fluctuations occurring at
the hot and cold emitting boundaries. With increasing domain size, heat flux
decreases.
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Figure 3.7: Group heat flux for each geometric domain size for the S8,F case.
Groups 1-3 are LA, 4-6 are TA, and 7-9 are O. Diffuse groups (7, 8, 9) always
carry low amounts of heat and remain relatively flat independent of domain
size.
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Figure 3.8: Normalized group heat flux (S8,F case); the ballistic limit is achieved
rapidly by most of the phonon groups, with the exception of group 1 (largest
Λ in the system).
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refinements reduce heat flux and thermal conductivity by minute amounts, caused

by additional information present due to a higher number of streaming directions.

The sizes of the domains span 10 nm to 10 µm and κeff is proportional to this

size. As domain size increases, κeff asymptotically approaches a bulk value of

about 165 W ·m−1 ·K−1, and many researchers have reported values for κeff with

variation on the order of 100% [124]. As spatial and angular discretizations change,

so do the values of spectral κeff. On smaller spatial meshes, Λp,η tends to be

ballistic per cell, even if they would be diffuse on the global domain. The coarse

spatial discretization is acoustically thicker (more diffuse) where the fine spatial

discretization is acoustically thinner (more ballistic). It is only as global domain

increases in size that these groups become acutely diffuse, and their contribution to

total heat flux becomes quite negligible; this trend is shown in Figs. 3.7 and 3.8.

Table 3.2 contains the contributions from optic phonons to κeff, and they have a

stronger effect in smaller global domains. For simulations with large (greater than

1 µm) domain sizes, omitting optic phonons would cause a dramatic decrease in

the amount of iterations required to converge the solution, with negligible loss of

accuracy (Table 3.2). Overall, it is more important to finely resolve spatial cell

(finite element) size in comparison to angular resolution.

Comparisons of Φ00 and ΦT are shown in Fig. 3.10. The distance between Φ00

and ΦT are related to the magnitude of β, and intuitively, as domain size increases

and the magnitude of β decreases, Φ00 and ΦT should converge. However, for the

100 nm domain this is not the case; the two fluxes are further apart. Looking back

to Fig. 3.7, there is a slight bump for groups 1 and 4, where heat flux experiences a

slight rises rather than a monotonic decrease. Modal dominance of heat flux has an

affect on the magnitude between Φ00 and ΦT at 100 nm, where the system is still
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Figure 3.9: Thermal conductivity for various angular and spatial (F = fine,
C = coarse) discretizations up to 10 µm. The overall difference between the
extreme cases is about 3%.
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sufficiently far from equilibrium. The same effect is present in domains up to 600

nm, after which the heat flux contribution from group 4 at 700 nm finally becomes

less than the heat flux at 50 nm. This lag is caused by phonons in group 1 finally

overtaking those from group 4; this transition happens in between 600 and 700 nm,

and is observed in Fig. 3.8. As the geometric domain increases to the micrometer

scale, Φ00 and ΦT become increasingly convergent and their respective difference

reduces to < 1%. These criteria lead to the system being thrust into a state of

equilibrium, compared to differences in the distributions on the nanometer scale

where the system is far from equilibrium.
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Figure 3.10: Total radiance (Φ00) and transport flux (ΦT) comparisons domain
sizes between 10 nm and 10 µm using an S8 quadrature. As the domain size
increases, the systems relax to a more equilibrate state.

Phonon transport suffers from boundary scattering effects, and in systems

which have strong non-equilibrium behavior, the boundaries can have a profound
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influence on solution behavior a finite distance into the geometric domain. In our

method, β has a strong gradient near any emitting boundary; both the equilibrium

radiance and transport scalar flux are rapidly changing a finite distance away

from a boundary. The magnitude of ΦT near a boundary is a direct result of the

boundary emission, where each outgoing ordinate of the angular intensity at an

emissive boundary is assigned an incident phonon radiance (the adiabatic boundary

condition). In turn, the magnitude of Φ00 depends on the solution of ΦT, but will

not be equivalent near a boundary at short geometric domains due to the influence

of an opposing boundary emission. To combat the strong boundary effects, we

applied adaptive mesh refinement (AMR) using a gradient jump indicator. The

gradient jump criteria takes the gradient norm of any specified solution quantity

(in this case, we chose β) at the face between a mesh element and its’ neighbor

element. The elements are sorted by increasing error, and the elements which fall

into a specified tolerance are refined. As we used triangular finite elements, a single

level of refinement splits one element into four smaller elements of equivalent area,

and so on; we specified a maximum of two refinement levels. All refinement took

place a finite distance from the emissive boundaries, shown in Fig. 3.11, where the

gradient of β changes rapidly. The strongest boundary effects are observed in the

10 nm and 100 nm simulations, which is expected as phonons will nearly all be in

the ballistic scattering regime at those domain sizes.

The planar temperature distribution for four length scale (10 nm, 100 nm, 1

µm, 10 µm) cases are shown in Fig. 3.12; domain size increases from (a) - (d). In

small domain sizes, equilibrium is difficult to establish. Phonon flux on the hot side

is suppressed by phonons incident from the cold side, which reduces temperature.

As the geometric domain increases in size, the Fourier limit is recovered and heat
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Figure 3.11: Normalized error from the AMR process. Differences in the
solution gradient of β for various domain sizes. The strongest gradient jumps
are observed near the edges, a result of the fixed boundary condition. For the
10 nm case, equilibrium is difficult to establish and the gradient of β continues
to quickly change over most of the spatial domain. In larger domains, this
effect persists about 10% of the distance away from the emitting boundaries.



104

transport exists in an almost purely diffusive regime.
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Figure 3.12: The temperature distribution for four length scale (10 nm, 100
nm, 1 µm, 10 µm) cases in the x-y plane; domain size increases from (a) - (d).
In small domain sizes, equilibrium is difficult to establish. Phonon flux on the
hot side is suppressed by phonons incident from the cold side; in turn this
reduces temperature. All legend scales are equal.

In Figure 3.13 the distribution of β is shown for various domain sizes. The

relationship between a system unable to establish equilibrium (Fig. 3.13a) to one in

an equilibrate state (Fig. 3.13d) is stark – β is nearly constant in large systems as the

difference between Φ00 and ΦT reduces. β also shows the effect of the fixed boundary

temperature and the slight curvature effect present in the temperature distribution.

The magnitude and sign of β also affect the convergence of the transport problem.

Phonon transport simulations are classified as “purely scatterering” meaning the

ratio of the mean free paths on the left and right hand sides of Eq. (20) are unity,

and these physics cause convergence to lag in acoustically thick problems. The
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presence of β affects the balance of Eq. (20), and in simulations where β is not

approximately constant in the bulk, the disparity between Φ00 and ΦT is also large,

in correlation with Fig. 3.10. This energy redistribution was required to close the

transport system – without its presence, we observed a non-conserved heat flux.

The inclusion of β projects the residual energy; the phonon groups are analogous

to networks of siphons drawing from a central plenum, the energy bath.

Figure 3.13: β distributions for four length scale (10 nm, 100 nm, 1 µm, 10
µm) cases in the x-y plane; domain size increases from (a) - (d). A measure
of local thermodynamic equilibrium, β is nearly zero at large domain sizes,
indicative of an established equilibrium. All legend scales are equal.

The ratio ζp,η = D
Λp,η

is the acoustic thickness of the domain (D) with respect to

mean free path per polarization and spectral group. The value of ζp,η changes in each

group and polarization; certain group and mode polarizations are acoustically thick
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and affect the convergence of the numerical simulation. Table 3.3 contains required

iterations for each simulation and bounding values of ζp,η for the polarization and

mode simulated. An increasing domain size requires more iterations to converge

the solution, shown in Table 3.3. This is a consequence of the acoustic thickness;

in the set {p,Λη}, the minimum value of Λη is the limiting factor. Due to the

coupled nature of the transport simulation, the convergence performance of ballistic

phonons is hindered by the diffuse phonons; in a decoupled simulation ballistic

phonons converge much faster than diffuse phonons. The acoustic thickness in each

polarization and mode are of primary interest in the numerical transport simulation.

Depending on mode and polarization, Λp,η can vary greatly due to its associated

vp,η and τp,η, affecting the acoustic thickness and causing significant degradation of

numerical convergence, shown in Table 3.3. As optic phonons do not contribute

significantly to thermal conductivity in these simulations, elimination of optic modes

would reduce the overall amount of iterations; the simulation converges only as fast

as its’ slowest converging group. For the TA phonons, the implementation of an

acceleration scheme such as diffusion synthetic acceleration (DSA) could reduce

the required number of iterations.

One of the drawbacks of the coupled temperature method is the implicit depen-

dency of all phonon channels; that is, if one or more of the channels is very diffuse,

the simulations require many iterations to converge, if convergence is achieved at

all. We have demonstrated convergence on domains ranging from 10 nm to 10

µm, but encountered significant decrease in efficiency when domain size increases

to thousands of times the smallest value of Λη (large ζp,η). This is expected, as

phonons in diffuse channels are highly scattering. We have observed similar, slowly

convergent behavior in previous decoupled transport simulations where Λ was small
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compared to the domain size [56,117]. The distinction in a coupled implementation

is that ballistic phonons are throttled by the presence of diffuse phonons, and

convergence behavior is significantly affected. The involvement of a numerical

acceleration scheme such as nonlinear diffusion acceleration (NDA) may improve

convergence properties; with NDA, the solution of a lower order (with no angu-

lar variable) diffusion problem informs a source term in a higher order transport

problem. This is a proven technique in neutron transport [73,74,119,125], but may

require significant revision for use in a phonon transport simulation and is planned

in a future study.

Zhang et al. simulate a similar temperature coupling through informing each

discrete phonon group by the overall temperature of the domain, and were able

to simulate large spatial domains, up to 100 µm [61]. However, they neglected

optic phonons in their coupled simulations, and so convergence properties of their

approach may be artificially positive as convergence of phonon transport problems

is limited by the smallest value of Λ, e.g., the most diffuse phonon groups. Multiple

researchers [112,126–128] have cited the necessity in simulating optic phonons due

to the acoustic-optic coupling effect found in various materials – all phonons are

coupled through the total energy of the domain. The inclusion of optic phonons

effectively places a muzzle on the TA and LA phonons and prevents them from

carrying their maximal potential of heat. While we study Si, as did Zhang et al.,

the development of this transport framework is desired to be general enough in its

approach to be used in simulating materials which may have strong acousto-optic

coupling effects.

We performed simulations isolating LA and TA phonons to gain insight into how

much optic phonons contribute to κeff depending on the size of the geometric domain.
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Table 3.2: Difference in κeff with and without optic phonons for S8,F simulation.
Thermal conductivity is in units of

[
W ·m−1 ·K−1

]
.

L [nm] κLA,TA,O κLA,TA ∆κ (%)

10 6.1 5.2 14.8
100 30.3 28.2 6.9
1000 90.8 88.4 2.6
10000 168.6 166.7 1.1

Table 3.3: S8,F with LA, TA, O phonons.

L [nm] GMRES Iterations min (ζp,η) max (ζp,η)

10 29 0.0032 3.175
100 59 0.032 31.75
1000 1276 0.32 317.5
10000 46600 3.2 3175

Table 3.2 shows the difference in κeff with and without optic phonon contribution.

There is a nontrivial difference in κeff when domain size is small, but this effect

diminishes as the simulation becomes more diffuse with increasing acoustic thickness.

It is important to recognize the contribution of optic phonons in smaller spatial

domains; at these sizes, optic phonons can exist “agnostically” between the ballistic

and diffuse regimes. The presence of optic phonons causes significant degradation

in the performance of the solver when comparing iterations between Table 3.3 and

3.4. While optic phonons may not be required in large simulation cells due to

overshadowing influence of LA and TA phonons, it is nonetheless important to

consider their contribution κeff, and subsequent effect on solver performance.
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Table 3.4: S8,F with LA and TA phonons.

L [nm] GMRES Iterations min (ζp,η) max (ζp,η)

10 28 0.0032 0.901
100 41 0.032 9.01
1000 114 0.32 90.1
10000 3306 3.2 901

3.5 Conclusions

We have developed a temperature coupled, spectral method for simulating effective

thermal conductivity from nano- to micro-scale using material properties for homo-

geneous silicon obtained from ab initio density functional theory. In this study we

simulated 2D geometric domains to characterize algorithmic and transport perfor-

mance. The extension of this method to simulate three-dimensional structures is

trivial, but will demand additional spatial and angular degrees of freedom. Angular

degrees of freedom scale as N(N + 2) for 3D and N(N + 2)/2 for 2D, where N is

the chosen order of the discrete ordinates angular discretization. Spatial degrees of

freedom scale with the nodal count in the selected finite element type, e.g., 3 nodes

in 2D for a triangular element, 4 nodes in 3D for a tetragonal element. Compu-

tational cost will scale proportional to degrees of freedom in the equation system.

We demonstrated correlation between the geometric dependency of heat flux and

thermal conductivity, and our results for κeff in Si are in good agreement with those

available in the open literature. Convergence properties are negatively impacted by

the presence of optic phonons; the diffuse characteristics of optic phonons increase

the acoustic thickness of simulations. A closure term, β, was developed to conserve

the local system energy, and this fraction is projected as a source term in each

phonon group, providing additional systemic coupling through the energy bath.
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The range and sign of β indicates the degree of disorder between the transport

system and the total energy of the phonon bath. In small geometric domains, the

importance of using BTE simulations to model heat transport cannot be overstated;

the difference between ΦT and Φ00 is large where equilibrium cannot be established,

and spatial effects dramatically change temperature distributions and heat flux.

Previous works have shown optic phonons to contribute little to overall heat flux in

silicon [17,51,61,129]. However, geometric domains less than 100 nm in size (Table

3.2), and in devices where precision is critical, optic phonons should be included in

simulation to accurately compute κeff. This work focused on purely homogeneous

materials to characterize a new method, but our approach can be extended to bulk

systems with voids (porous materials for thermoelectric devices) and heterogeneous

systems (systems with inclusions, nuclear fuel with fission product defects) quite

readily with the addition of an interface physics model. Subsequent improvement on

this work would include simulation of transference between polarization branches,

and the additional modeling of 3-phonon scattering through the relaxation time

parameter included in the total relaxation time via Matthiessen’s rule. We are cur-

rently developing diffusion acceleration techniques adapted from neutron transport

methods in order to speed up convergence properties as domains become extremely

acoustically thick.

Detailed thermal transport requires development of high precision tools with

which to perform modeling and simulation efforts. In turn, these efforts can guide

the design of nano- and micro-scale devices, and the prediction of thermal behavior

at the engineering scale. Perturbations at the atomic-molecular scale drive changes

in the microstructure; ab initio driven BTE simulations are a promising development

in a scale-bridging framework, representing one element in the larger problem of



112

informing engineering scale simulations.
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4.1 Abstract

We have recently developed a deterministic, spectral phonon transport method,

with temperature coupled Bose-Einstein source terms, implemented in the Rat-

tlesnake code at Idaho National Laboratory. This method predicts thermal conduc-

tivity and equilibrium temperature distributions in homogeneous and heterogeneous

materials using data generated by ab initio density functional theory methods. The

equations associated with this method are solved via a modification of traditional

source iteration. In this report, we compare the performance of source iteration

applied to an existing uncoupled, traditional SAAF method to our new method and

comment on the iterative performance of each. We observe ballistic and diffusive

phonon scattering as acoustic thickness of the domain changes, and are able to

make comparisons between the accuracy and efficiency of both methods.

4.2 Introduction

The rapid modernization of technology has seen an increased demand for micro-

and nanoscale devices – apparati which can perform under extreme conditions

at very small length scales. Computer processors (CPUs), cell phone technology,

and thermoelectric devices all have the potential to be designed and machined

to small length scales, but the limiting factor which constrains these devices is

the dissipation of the heat they generate. With the desire to run large electrical

currents through CPUs to yield high processor clock speeds [130, 131], or using

thermoelectrics to generate electricity from waste heat [132], the ability of these

devices to properly mitigate their generated heat is absolutely critical to their

integrity, efficiency, and performance. The dominant energy carrier in the materials

which compose these devices is the phonon, a lattice vibration induced by a
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temperature perturbation [12, 14]. In addition to these semiconductor materials,

phonons are also responsible for the majority of heat transfer in uranium dioxide

(UO2) nuclear fuel under irradiation, the fuel in nuclear power plants (NPPs). The

size of the fuel in NPPs is generally much larger than the micro- and nanoscale

dimensions of CPUs or thermoelectrics, and these materials are also more challenging

in that isotopic defects – products generated by the nuclear fission process – are

generated in the fuel and create obstacles for the scattering of phonons.

The Monte Carlo (MC) method is most commonly used for this purpose, as

the random walk nature of the method can easily treat scattering physics and the

phonon dispersion relation. However, a challenging aspect of the MC method is

the Central Limit Theorem, as well as the small time step requirement if transient

simulations are to be performed [60,62,133–135]. Because the phonon dispersion

is nonlinear and varies over a wide range of frequencies, it can be difficult to

incorporate into numerical solutions.

Bulk property prediction can be achieved using molecular dynamics (MD) or

density functional theory (DFT) numerical models. These methods assume a known

electronic potential and use this in either a fluctuation model (Green-Kubo method

with MD or non-equilibrium MD [31,34, 42]) or solve the full Schrödinger equation

(DFT) [35, 36, 39, 40, 113, 114] and resolve the full phonon dispersion and density of

states. MD and DFT methods are effective in predicting bulk properties, but are

limited to very small problems; because of the computational restraint imposed by

solving all the degrees of freedom in a perturbed atomic lattice, simulations are

restricted to about 100,000 atoms, nowhere near enough to simulate a macroscopic

quantity of interest.

By contrast, deterministic methods can provide an accurate answer in an efficient
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manner by considering discrete phase space densities in place of individual particle

tracking (as performed in MC methods) and discretizing the angular variable via the

discrete ordinates method. The fully resolved phonon BTE is a function of 7 variables

and is considerably difficult to solve, but these spatial and angular approximations

can substantially reduce computation times. Deterministic methods have yielded

accurate results for heat flux and thermal conductivity, and are efficient [57, 59,61,

136,137], but can be inaccurate in heterogeneous media if a sophisticated interface

physics model is neglected. The full nonlinear phonon scattering source is also, in

general, dealt with via the relaxation time approximation [11], as explicit collisions

are difficult to model. Additionally, there have been no reliable developments

for polarization branch transference. The relaxation time approximation is a

reliable alternative to modeling the nonlinear scattering processes, but some loss

of resolution is experienced as detailed scattering events are washed out through

the use of this approximation. Deterministic phonon transport methods are an

area of active development and, in general, yield results which are physical and in

agreement with other methods [17,51,52,57,59,61,129,138,139].

We have previously developed a fully coupled method for predicting spectral

thermal conductivity in dielectric materials [140], which uses the self-adjoint angular

flux (SAAF) formulation of the phonon BTE, a second-order spatial method which

possesses an elliptical streaming operator and implements a modified scattering

source, the analytical phonon equilibrium radiance informed by a numerical tem-

perature generated by the phonon angular intensity. We derived a new closure

term, a residual energy projection, which preserves conservation of energy and

generates a constant heat flux in the spatial domain [140]. Although our method

produces a constant, conserved heat flux, we encountered a significant reduction
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in numerical convergence properties as the geometric domain size (L) increased

relative to the phonon mean free path (Λ) in homogeneous silicon [140]. We desire

to apply our transport framework to simulate heterogeneous systems with models

of thermoelectric devices and nuclear fuels with many defects and inclusions – at

large (1 to 100 micron) scales – then pass an effective thermal conductivity to

fuels performance codes to resolve engineering scale calculations. In these larger

systems, numerical convergence was extremely slow and would be intractable in

a development setting where thousands of parameterized simulations would be

required in order to generate accurate predictions of fuel performance [29]. Thus, we

seek numerical methods to accelerate our transport simulations. Because phonons

are similar to neutrons and x-rays, we look to methods developed by the neutron

and thermal radiation transport communities as a baseline.

In neutron and thermal radiation transport, the BTE is used to model nuclear

reactors, experimental apparati, atmospheric transport and stellar particle trans-

port [72,73,141]. The BTE is generally formulated to be solve via the method of

source iteration (SI) [74], in which the solution of the left hand side of the equation

for a primal, angular variable (such as the angular neutron or photon flux) is used to

construct the particle scattering source term on the right hand side of the equation

for the next iteration step. The standard SI method for the solution of the neutron

transport equation is represented as

µ
∂ψ(`+1/2)

∂x
+ σtψ

(`+1/2) = σsφ
(`) (1a)

φ(`+1/2) =
1

2

∫ 1

−1

ψ(`+1/2)dµ (1b)

φ(`+1) = φ(`+1/2), (1c)

where ` represents an iteration index, and the values are `+1/2 are used to update the



118

source term for the following iteration. This procedure is repeated until convergence

is reached. Traditional source iteration methods have been proven to work well

in neutron and radiation transport, but break down when the scattering ratio, c,

the ratio of the scattering cross section (σs) to total cross section (σt) approaches

unity. Additionally, when the optical thickness of a material (the ratio of the spatial

domain size D to the neutron or photon mean free path λ = 1
σt

) is large, convergence

may also slow, as these particles are highly diffuse, meaning they will have many

scattering events before being absorbed or leaking out of the system. A large

scattering ratio and large optical thickness are significant barriers to convergence

using the traditional SI method.

The acoustic thickness (ζ) of a material in phonon transport is analogous to

the optical thickness, except that we use the phonon mean free path in place of

the neutron or photon mean free path. The acoustic thickness is the inverse of the

Knudsen (Kn) number, commonly associated with many phonon transport or fluid

transport research. When ζ is large, it indicates that the phonon scattering regime

will be diffuse, e.g., a phonon emitted by a hot material will scatter many times

before it is absorbed by a colder material. Depending on the magnitude of ζ, this

diffuse scattering will slow the numerical convergence of these simulations. Because

of the complexity of the dispersion relation (and the presence of optic phonons), some

phonon modes may be very diffuse and can severely impede numerical convergence

on large spatial domains [140]. Phonon transport problems are also purely scattering,

or c = 1: all phonon interaction events are treated as elastic or inelastic scattering

(though in this current work, we treat only elastic scattering events) through the

interaction term Λ.
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4.3 Methods

4.3.1 First Order Form

The steady-state first (spatial) order form of our modified phonon BTE [140] under

the relaxation time approximation [11] (RTA) is

Ω̂·∇ψ
(
r, Ω̂, ω, p

)
+
ψ
(
r, Ω̂, ω, p

)
Λ (ω, p)

=
φ0 (T (r) , ω, p)

4π

[
1

Λ (ω, p)
− β [φ0, φT]

|v (ω, p)|

]
. (2)

The angular flux intensity, ψ, is a parameterized function of the phonon’s direction

of propagation, Ω̂, polarization p and frequency ω. The phonon polarization is its

geometric orientation within the crystalline lattice, and can have either transverse

(T) or longitudinal (L) modes. We study silicon (Si) in this manuscript, and

therefore average the polarizations to three as a result of the crystal symmetry of

Si. The phonon’s mean free path, Λ = Λ (ω, p) is the product of the group velocity

v = |v (ω, p)| and relaxation time τ = τ (ω, p); it describes the average distance

traveled by a phonon before a collision.

The steady-state, uncoupled first (spatial) order form of the traditional phonon

BTE with the RTA applied is

Ω̂ · ∇ψ
(
r, Ω̂, ω, p

)
+
ψ
(
r, Ω̂, ω, p

)
Λ (ω, p)

=
φT (r, ω, p)

4πΛ (ω, p)
, (3)

and the variables described are exactly the same as those in Eq. (2). The transport

scalar flux (zeroth angular moment) is obtained by integrating the angular intensity

over the 2D unit sphere

φT (r, ω, p) =

∫
4π

ψ
(
r, Ω̂, ω, p

)
dΩ. (4)

The domain scalar flux is the angle and frequency integrated angular flux intensity
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summed over polarization

ΦT (r) =
∑
p

∫
4π

∫
ω

ψ
(
r, Ω̂, ω, p

)
dωdΩ, (5)

and the total heat flux (first angular moment) is

q (r) =
∑
p

∫
4π

∫
ω

Ω̂ ψ
(
r, Ω̂, ω, p

)
dωdΩ. (6)

The average material temperature is the integral over the spectral variable ω of all

transport scalar flux inserted into an inverted Bose-Einstein distribution,

T (r) =

∫
ω

~ω

kB ln
[
~ωvD
φT(r)

+ 1
]dω. (7)

The equilibrium radiance is the integral of the temperature dependent Bose-Einstein

distribution over the spectral variable ω, and describes the number of phonons at a

certain mode and at a temperature

φ0 (T (r)) =

∫
ω

~ωvD

e
~ω

kBT (r) − 1
dω (8)

The residual energy projection term, β [φ0 (T (r)) , φT (r)] was developed with the

assumption of local thermodynamic equilibrium (LTE) [140] and is represented as

the following

β [φ0 (T (r)) , φT (r)] =

∫
ω

∫
4π

φ0(T (r))
4π

−ψ(r,Ω̂)
Λ

dΩdω∫
ω
φ0(T (r))

v
dω

, (9)

We discretize Eqs. (2) and (3) in the spectral variable ω and collate the polarization

index p into the group index g, giving a total number of discrete spectral groups

G, and yielding the multigroup form of the coupled and uncoupled phonon BTE,

respectively

Ω̂ · ∇ψg
(
r, Ω̂

)
+
ψg

(
r, Ω̂

)
Λg

=
φ0,g (T (r))

4π

[
1

Λg

− β [φ0, φT]

vg

]
, g = 1, . . . , G,

(10)
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Ω̂ · ∇ψg
(
r, Ω̂

)
+
ψg

(
r, Ω̂

)
Λg

=
φT,g (r)

4πΛg

, g = 1, . . . , G. (11)

In subsequent derivations and sections, we drop variable notation to conserve

space, but retain the temperature notation to describe where angular intensity and

equilibrium radiance exhibit coupling.

4.3.2 SAAF Form

We derive the SAAF form of the coupled and uncoupled equations, beginning

with the coupled version. Solve Eq. (2) for angular intensity

ψg =
φ0,g (T (r))

4π
− Λgβ [φ0, φT]φ0,g (T (r))

4πvg
− ΛgΩ̂ · ∇ψg, (12)

and substitute this expression into the gradient term of Eq. (2),

Ω̂ · ∇
[
φ0,g (T (r))

4π
− Λgβ [φ0, φT]φ0,g (T (r))

4πvg
− ΛgΩ̂ · ∇ψg

]
+

1

Λg

ψg =

φ0,g (T (r))

4πΛg

− β [φ0, φT]φ0,g (T (r))

4πvg
, (13)

− ΛgΩ̂ · ∇
[
Ω̂ · ∇ψg

]
+

1

Λg

ψg =
1

4π

[
φ0,g (T (r))

Λg

− Ω̂ · ∇φ0,g (T (r)) +

Ω̂ · ∇Λgβ [φ0, φT]

vg
φ0,g (T (r))− β [φ0, φT]

vg
φ0,g (T (r))

]
. (14)

We follow a similar process for Eq. (11) to derive

−ΛgΩ̂ · ∇
[
Ω̂ · ∇ψg

]
+

1

Λg

ψg =
1

4π

[
φT,g (r)

Λg

− Ω̂ · ∇φT,g (r)

]
. (15)

Now that the SAAF forms of the equations have been derived, we will show how

these equations are solved using Source Iteration (SI) [74] and a modified SI (MSI).
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When a transport solve is performed, the angular flux intensity is updated, ψ(`+1/2),

and so is the transport scalar flux

Ω̂ · ∇ψ(`+1/2)
g +

1

Λ
ψ(`+1/2)
g =

φ
(`)
T,g (r)

4πΛg

(16)

φ
(`+1/2)
T,g (r) =

∫
4π

ψ(`+1/2)
g

(
r, Ω̂

)
dΩ (17a)

φ
(`+1)
T,g (r) = φ

(`+1/2)
T,g (r) , (17b)

and this process is repeated until convergence is achieved.

With the coupled formulation of the BTE, we have a modified approach to the

traditional SI method. Instead of directly simulating scattering using φT on the

RHS of the transport equation, we use the transport scalar flux to determine a local

system temperature, which we use to set the strength of the equilibrium radiance,

and the residual energy projection. The flux intensity is updated the same way

as in Eq. (17a). Once this is obtained, the average material temperature (which

depends on the transport scalar flux) is expressed as

T (`+1) (r) =
1

G

~
kB

G∑
g=1

ωg

[
ln

[
~ωgvgDg

φ
(`+1)
T,g

+ 1

]]−1

, (18)

the in-group equilibrium radiance

φ
(`+1)
0,g (T (r)) =

~ωgvgDg

exp
[

~ωg
kBT (`+1)(r)

]
− 1

, (19)

and finally the residual energy projection β

β(`+1) [φ0, φT] =

∑
g

φ
(`+1)
0,g (T (r))−φ(`+1)

T,g

Λg∑
g

φ
(`+1)
0,g (T (r))

vg

. (20)

It is imperative to understand that the updated values of temperature T (`+1), source

φ
0,(`+1)
g and redistribution β(`+1) all depend on the previous iteration’s value of
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ψ(`+1/2). In this way, there is a complex dependency of variables. Ordinarily, this

would seem like a very simple problem in a neutron transport simulation; a fixed

source problem without a scattering interaction. However, a complication here is

that the source terms are dependent on the solution of the left hand side, which is

why we must iterate. The key quality in the modified SI method is that we do not

use φT, but instead used terms derived from it, in the source.

4.3.3 Boundary Conditions

The incident angular flux and reflecting boundary conditions for this transport

equation are defined as:

ψ (rb) =

ψ
inc
(
rb, Ω̂

)
, Ω̂ · n̄b < 0

ψref
(
rb, Ω̂r

)
, Ω̂ · n̄b < 0

,

here, n̄b is the outward unit normal at a point rb on the boundary. In neutron

transport space, ψinc implies an incident neutron flux boundary condition. In this

implementation, we use this boundary as an adiabatic boundary to specify an

incident source of phonons, e.g., ψ(rb, Ω̂) = φ0 (rb) (for the coupled equations) or

ψ(rb, Ω̂) = φT (rb) (for the uncoupled equations). The reflective angle Ω̂r in ψref is

Ω̂r = Ω̂− 2
(
Ω̂ · n̄b

)
n̄b.

Using the material properties, we compute radiant emission sources on the

boundaries, driven by a prescribed temperature boundary condition,

φ0,g (T (rb)) =
~ωg |vg|Dg

exp
[

~ωg
kBT (rb)

]
− 1

. (21)

Equation (21) is used by the incident flux condition at a boundary rb to supply

a source of phonons for a given group and polarization. We compute an effective
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thermal conductivity along a direction by taking the ratio of the total heat flux

to the end-to-end temperature gradient (which includes boundary effects) in the

system

κx (r) =
1

[T (xL)− T (xR)]

1

LyLz

∫
ex · q (r) d3r. (22)

4.3.4 Iteration Algorithms

Algorithm 2: Temperature coupled, modified source iteration (MSI) algo-
rithm

1 initialize φ
(`)
0,g (rb),ψ

(`)
m,g (r),φ

(`)
T,g (r),φ

(`)
0,g (r),T (`) (r), set convergence ε

2 while

∣∣∣∣φ(`+1)
T,g (r)−φ(`)

T,g(r)

φ
(`+1)
T,g (r)

∣∣∣∣ > ε do

3 for g = 1 to G do
4 for m = 1 to M do

5 solve coupled SAAF-BTE (Eq. 14) for ψ
(`+1/2)
m,g

6 end

7 end

8 compute φ
(`+1)
T,g (r) and solve for T (`+1) (r)

9 compute φ
(`+1)
0,g (T (r)),β(`+1)

10 end

Algorithm 3: Traditional source iteration (SI) algorithm

1 initialize ψ
(`)
m (r), set convergence ε

2 while

∣∣∣∣φ(`+1)
T,g (r)−φ(`)

T,g(r)

φ
(`+1)
T,g (r)

∣∣∣∣ > ε do

3 for g = 1 to G do
4 for m = 1 to M do

5 solve uncoupled SAAF-BTE (Eq. 15) for ψ
(`+1/2)
m,g

6 end

7 end

8 compute φ
(`+1)
T,g (r)

9 end

In both methods, convergence is tested by comparing the successive values of



125

the scalar flux in each group∥∥∥φ(`+1)
T − φ(`)

T

∥∥∥
∞
< ε (1− ρ)

∥∥∥φ(`+1)
T

∥∥∥
∞
, (23)

where ε is a prescribed convergence criteria, set in this study to be ε = 10−6, and ρ

is the spectral radius of the problem,

ρ ≈

∥∥∥φ(`+1)
T − φ(`)

T

∥∥∥
∞∥∥∥φ(`)

T − φ
(`−1)
T

∥∥∥
∞

, (24)

which is shown in Adams [119]. The infinity norm ‖‖∞ is the maximum value in an

arbitrary vector x

|x|∞ = max
i
|xi| (25)

The spectral radius (the magnitude of the largest eigenvalue in an iteration matrix)

tells us how fast an iteration converges; the error is reduced by a factor of ρ each

iteration, with asymptotic behavior – a measure of the convergence rate. Applying

this criteria helps guard against “false convergence”, where in slowly convergent

simulations, two successive iterates may be close enough to exhibit the illusion of

convergence. The SI scheme has been used in the nuclear engineering community

for decades, and is a reliable, efficient method of solution for problems for which

particles are in the ballistic regime, and optically (acoustically) thin, meaning the

particles are likely to exit the system (“leak”) after a few collisions. As systems

become more diffuse (acoustically thick), the SI scheme converges very slowly and

is inefficient [119].

4.3.5 Four Group Data Set

We computed material properties for silicon from density functional theory, dis-

cretized in four groups of spectral properties to simplify and test the iterative
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Table 4.1: Four-group silicon material properties.

G Λ [nm] ω · 1013 [s−1] v [m · s−1] D · 1018 [m−3] τ [ps]

1 (LA) 3120 1.49 8079 0.0736 386
4 (TA) 898 0.99 5076 0.147 177
5 (TA) 79.5 2.3 2063 1.03 38.5
9 (O) 4.58 8.43 1126 4.2 4.1

performance of our methods. The original data set was 9 groups, and is from

our earlier work [140]. The group descriptions cover all phonon modes, with the

fundamental property of interest (Λ) spanning 3 orders of magnitude. By selecting

these data, we will be able to comment on the iterative performance of the methods

and the effectiveness of the coupling in the modified SI method. Phonons with

larger group velocity and mean free path carry more energy; the opposite is true

for phonons with a lower group velocity and mean free path.

4.4 Results

To characterize the performance of the two methods, we generated two test

problems. It is not expected that the two methods will yield the same solutions to

these test problems, as governing equations are different. However, the governing

equations and methodology are similar, and the results of each method (SI and

MSI) should also be similar.

4.4.1 Test Problem A

Problem A is defined as follows: 2D geometric domains varying between 10 nm

and 10 µm, with continuous finite element spatial discretizations of 1, 10, 100, and

1000 QUAD4 finite elements in the x and y direction, yielding a total element count
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of 1, 102, 104, and 106 equally spaced cells per mesh, respectively. For all variations

of this problem, the S8 level symmetric angular quadrature was used, which contains

40 angular ordinates per simulation. The iterative convergence criteria is ε = 10−6,

with a temperature difference imposed by boundary temperatures of TL = 301K and

TR = 300K. Scalar flux and equilibrium radiance in each group are initialized to 1.

Two phonon groups (groups 1 and 4) were used in this simulation. The notation SI

means “source iteration” and MSI means “modified source iteration”. The goal of

this effort is to understand the performance of the two computational methods as

the spatial mesh cells change size, and the mean free path of the phonons per cell

varies.

The MSI scheme takes fewer iterations and less CPU time to converge compared

to the SI scheme, most likely due to the coupling of the groups; iterations and

CPU time are shown in Figs 4.1 and 4.2, respectively. The convergence properties

are improved due to the coupling, because the Λ are essentially averaged over the

groups — where one group might be exceptionally slow to converge (due to its

acoustic thickness). We believe there is phonon ‘throttling’ occurring when the

Λg becomes highly disparate and ranges over two to three orders of magnitude.

This phenomenon can be beneficial depending on the scattering regime and the

size of the system. This effect has a twofold contribution: the phonon source is a

proper non-equilibrium Bose-Einstein distribution, coupled in temperature through

the angular flux intensity of the transport system; and because of the inter-group

communication, convergence may be improved in a system with a large range in

the spectral Λ, which we will report more on for test problem B. Traditional SI will

converge slower because the phonon groups are completely uncoupled, and only

within group scattering is simulated. The physics of β induce a feedback effect into
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the simulation; β tells us how far out of equilibrium we are locally, and if so, that

fraction of energy is injected back into the system, which helps bring the system

back into balance.

In Figs. 4.3 – 4.5, an anomaly is present for the Nmsi case with 106 elements –

the average heat flux exhibits a much different trend, and much higher value, than

the other cases with a more coarse spatial discretization for the MSI algorithm. We

believe all results for the Nmsi case with 106 elements to be incorrect, and an outlier

to our suite of tests. This occurs even though the data are consistent across all

input files. Table 4.2 shows overall acoustic thickness of the problem for each group,

for each domain size. As size increase, the problem becomes more acoustically thick

and requires more iterations to converge. The MSI algorithm outperforms SI for a

2 group problem, requiring fewer iterations and less CPU time to converge. MSI

has the most benefit at larger acoustic thicknesses, but is comparable to SI when

problems are acoustically thin, as well.

We show CPU time and iterations against MFP/cell for Λ1 and Λ2, Figs. 4.6

- 4.8. As the MFP/cell increases for each domain size, so do the total amount of

iterations – this is expected. However, the MSI method converges in fewer iterations

than the traditional SI method.
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Figure 4.1: Iteration comparison between
SI and MSI methods for various spatial
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Figure 4.2: CPU time comparison be-
tween SI and MSI methods for various
spatial discretizations.

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2
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Figure 4.4: Average heat flux in group
1 for all spatial discretizations over all
geometric domain sizes
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Figure 4.5: Average heat flux in group
2 for all spatial discretizations over all
geometric domain sizes
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Figure 4.6: CPU time vs. cell size (in
MFP per geometric domain for Λ1)
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Figure 4.7: CPU time vs. cell size (in
MFP per geometric domain for Λ2)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

Figure 4.8: Iterations vs. cell size (in
MFP per geometric domain for Λ1)
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Figure 4.9: Iterations vs. cell size (in MFP per geometric domain for Λ2)



132

Table 4.2: 2-group: ζg, iterations, qSI
avg./qMSI

avg.. Case: S8, N = 100

L [nm] ξ1 ξ2 ItsSI ItsMSI
qSI

avg./qMSI
avg.

10 0.003 2.2 20 30 0.9871
25 0.008 5.5 31 41 0.9359
50 0.016 11 44 53 0.8442
100 0.032 22 73 102 0.7405
200 0.064 44 169 132 0.6830
300 0.096 66 217 131 0.6724
400 0.128 87 238 166 0.6724
500 0.160 109 229 185 0.6759
600 0.192 131 212 198 0.6806
700 0.224 153 294 206 0.6860
800 0.256 175 284 203 0.6916
900 0.289 197 300 187 0.6957
1000 0.321 218 333 293 0.7025
2000 0.641 437 767 354 0.7500
3000 0.96 655 1637 520 0.7822
4000 1.28 873 1832 761 0.8050
5000 1.60 1092 2525 1025 0.8238
6000 1.92 1310 3442 1363 0.8390
7000 2.24 1528 3526 1249 0.8514
8000 2.56 1747 6133 1228 0.8625
9000 2.89 1965 8928 1492 0.8706
10000 3.21 2183 8912 2678 0.8793
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4.4.2 Test Problem B

Problem B is setup as follows: 2D geometric domains varying between 10 nm

and 10 µm, with continuous finite element spatial discretizations of 1, 10, 50, and

100 QUAD4 finite elements in the x and y direction, yielding a total element

count of 1, 100, 2500, and 10000 equally spaced cells per mesh, respectively. The

angular quadratures were varied between S4, S8, and S16 discrete ordinates, which

involve 12, 40, and 144 angular ordinates respectively. All four phonon groups

were used in this simulation. The iterative convergence criteria is ε = 10−6, with

a temperature difference imposed by boundary temperatures of TL = 301K and

TR = 300K. Scalar flux and equilibrium radiance in each group are initialized to 1.

The goal of this effort to to understand the performance of the method as the spatial

mesh cells change size, angular discretization varies, and the mean free path of the

phonons per cell changes between all the groups. We also have broader coupling in

this problem, which should help characterize performance against the two-group

problem. Table 4.3 shows overall acoustic thickness of the problem for each group,

for each domain size. As size increase, the problem becomes more acoustically thick

and requires more iterations to converge. The MSI algorithm outperforms SI for

a the four group problem, requires less iterations and less CPU time to converge.

MSI has the most benefit at larger acoustic thicknesses, but performs consistently

against SI when the problems are acoustically thin, as well.

Overall, the iterative performance of the MSI method is better than traditional

SI for the four-group problem, with CPU times and iterations for all domain sizes

and all three angular discretizations shown in Figs. 4.10 – 4.15. This is due to the

inter-group coupling, where ballistic phonons feel the effects of diffuse phonons, and

conversely diffuse phonons get encouraged by ballistic phonons. This result follows
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similar trends from the two-group problem.

The total average heat flux (Figs. 4.16 – 4.18) and the per-group average heat

fluxes (Figs. 4.19 – 4.30) are in general, slightly higher in MSI than in SI, but this

behavior is expected as MSI simulates more realistic physics; because of coupling

and feedback, heat fluxes in each group are influenced by every other group. In SI

there is no coupling whatsoever, and the data in each group are the same for SI as

in MSI; SI converges slower and does not represent phonon transport physics as

well as MSI.
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Figure 4.10: CPU time versus domain
size for all S4 cases.
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Figure 4.11: CPU time versus domain
size for all S8 cases.
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Figure 4.12: CPU time versus domain
size for all S16 cases.
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Figure 4.13: Iterations versus domain size
for all S4 cases.
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Figure 4.14: Iterations versus domain size
for all S8 cases.
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Figure 4.15: Iterations versus domain size
for all S16 cases.
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Figure 4.16: Average total heat flux ver-
sus domain size for S4 case.

10
1

10
2

10
3

10
4

10
-3

10
-2

Figure 4.17: Average total heat flux ver-
sus domain size for S8 case.
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Figure 4.18: Average total heat flux ver-
sus domain size for S16 case.
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Figure 4.19: Average heat flux in group
1 versus domain size for S4 case.
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Figure 4.20: Average heat flux in group
1 versus domain size for S8 case.
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Figure 4.21: Average heat flux in group
1 versus domain size for S16 case.
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Figure 4.22: Average heat flux in group
2 versus domain size for S4 case.
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Figure 4.23: Average heat flux in group
2 versus domain size for S8 case.
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Figure 4.24: Average heat flux in group
2 versus domain size for S16 case.
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Figure 4.25: Average heat flux in group
3 versus domain size for S4 case.
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Figure 4.26: Average heat flux in group
3 versus domain size for S8 case.
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Figure 4.27: Average heat flux in group
3 versus domain size for S16 case.
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Figure 4.28: Average heat flux in group
4 versus domain size for S4 case.
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Figure 4.29: Average heat flux in group
4 versus domain size for S8 case.
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Figure 4.30: Average heat flux in group 4 versus domain size for S16 case.
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Table 4.3: 4-group: ζg and iterations for SI and MSI. Case: S8, N = 10000

L [nm] ξ1 ξ2 ξ3 ξ4 ItsSI ItsMSI

10 0.0032 0.011 0.13 2.2 22 32
25 0.008 0.028 0.31 5.5 32 37
50 0.016 0.056 0.63 11 45 45
100 0.032 0.111 1.26 22 82 54
200 0.064 0.222 2.5 44 137 97
300 0.096 0.334 3.77 66 182 103
400 0.128 0.445 5.03 87 254 119
500 0.16 0.556 6.29 109 335 136
600 0.192 0.668 7.54 131 422 153
700 0.224 0.78 8.8 153 358 169
800 0.256 0.89 10 175 883 184
900 0.289 1.002 11 197 554 200
1000 0.321 1.11 13 218 1181 224
2000 0.64 2.22 25 437 4250 625
3000 0.96 3.34 38 655 10968 814
4000 1.28 4.5 50 873 19466 1793
5000 1.6 5.6 63 1092 22917 3161
6000 1.92 6.7 75 1310 33507 7443
7000 2.24 7.8 88 1528 33874 11805
8000 2.56 8.9 101 1747 44133 17852
9000 2.89 10 113 1965 54256 26799
10000 3.21 11 126 2183 64213 33732
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4.5 Conclusions

We have compared the performance of traditional SI applied to an uncoupled

spectral phonon transport solver to the new, coupled MSI method, and found

the iterative performance of MSI to be superior. MSI converges more rapidly

than SI in acoustically thick domains, for all cases. The coupling introduced

by MSI not only allows the system of equations to converge faster, the coupling

between phonon groups better models the physics of phonon transport. Problems

involving acoustically thick materials still suffer from slow iterative convergence,

and acceleration techniques may be valuable to achieve greater efficiency.
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5 Conclusions

In this research, we investigated deterministic phonon transport in real media.

We developed and implemented the diffuse mismatch model in 3D geometries for

capturing the physics of phonon interfacial transport, in a thermal conductivity

simulation for UO2 bulk with Xe impurities. We developed a fully coupled method

for simulating spectral thermal transport in real media, using a coupled temperature

to generate equilibrium phonon distributions, and derived a new closure term for the

BTE to conserve energy. We performed convergence studies to test the efficiency of

the new method, and compared against the uncoupled SAAF method. We discuss

the conclusions for each of these separately in the following sections. We discuss

some future work in Sec. 5.4.

5.1 Interface Physics

Interfacial physics effects in phonon transport is still an open research topic.

There is much that is unknown about the true physical effects which phonons

experience as they scatter from one material into another [108]. The DMM we

implemented in a 3D general geometry, and used in a heterogeneous, one group

simulation of Xe bubbles in UO2 confirmed that the presence of Xe degrades thermal

conductivity of UO2 by approximately a factor of 4 [117]. Though we followed the

trends of Du et al., we did not exactly match their results [3]. However, this is

acceptable in the sense that there is not a unified, accepted model for resolving

interfacial scattering physics.

We found that the presence of Xe bubbles decreases local heat flux by pro-

viding additional geometric scattering centers – the two phenomena are inversely

proportional. As phonon scattering increases, heat flux decreases, especially in the
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vicinity of the bubble. While generating material properties of Xe, we found that

Xe undergoes a phase change at a temperature threshold when held at a pressure

of 3 GPa. This is consistent with other simulations in the literature; however, it

is difficult to experimentally predict or observe this phenomenon in Xe contained

with UO2, as other researchers have commented on this as well [44–46].

5.2 Spectral Phonon Transport

We developed a new method for simulating deterministic, spectral phonon

transport to predict heat flux, thermal conductivity, and temperature distributions

in dielectric and insulating materials [140]. This method is unique in that all the

spectral phonon groups are coupled through a local average material temperature,

and a new term, β, was derived to conserve the fraction of total phonon energy

lost in the exchange between the transport and equilibrium systems. This method

predicts thermal conductivity trends in materials spanning geometric domain sizes

from nanometer to micrometer, and exhibits the correct asymptotic behavior in

heat flux as domain size increases.

We observed β to be the most influential at smaller domain sizes, where equilib-

rium is difficult to establish due to the proximity of the boundary phonon sources;

as domain size increased, β reduced in size, and nearly vanished at the maximum

domain size of 10 µm. This further makes the case to perform BTE simulations for

nano- to micro-meter heat transfer, as the Fourier law will not accurately capture

the heat transfer in such small domain sizes, e.g., thermoelectric devices, heat

transfer around defects and heterogeneities in reactor fuel.

As domain size increases, the regimes of phonon scattering shift from a mixture

of ballistic and agnostic scattering events to primarily diffuse, increasing the acoustic
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thickness of the simulation. In turn, these problems converge slower. The coupling

between the groups distributes effects from the ballistic and diffuse carriers into

every group, and so ballistic phonons are throttled by the presence of diffuse

phonons. Conversely, diffuse phonons are “encouraged” (positively interfere) by the

presence of ballistic phonons, and these groups have their convergence properties

improved somewhat.

5.3 Convergence Study

From our convergence studies, we found that the new method, a modified

source iteration (MSI) with coupling and feedback, is more efficient than traditional,

uncoupled source iteration (SI). For both a 2- and 4- frequency group problem, we

found that required iterations were reduced by a factor of 4 to 10, depending on

the spatial, angular, and frequency discretization of the problem. Not only does

MSI solve the problem more efficiently, it also yields more physical results due to

the coupling of the phonon groups through a local temperature. The uncoupled SI

method does not incorporate any coupling, and is less efficient.

5.4 Future Work

The work performed in this dissertation is only a small contribution to the

complex, multiphysics challenge of predicting thermal conductivity in on-line nuclear

reactors. There are more research areas that could be addressed.

Introducing an uncertainty quantification (UQ) step into the workflow. Every

computational simulation needs to include some sort of UQ analysis, because of

the many areas in the overall organizational flow of the process that may introduce

some uncertainty. Specifically, we would want to analyze at the uncertainty in
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the group velocity and phonon lifetimes, as these have the highest impact on the

solutions. We performed a UQ analysis for the grey-transport case [56] using a

polynomial chaos expansion method, but this was limited to a single mean free

path in homogeneous silicon. The number of statistical configurations increases

quite drastically with the number of uncertain variables (specifically, Λ). It may

be possible to leverage RAVEN [142] (an uncertainty quantification code in the

MOOSE framework) to perform this task.

Coupling phonon transport to phase field simulations would take us away

from creating static meshes to simulate our physical domain. Through the use of

microstructural evolution simulations, we could create a seed cell of UO2 in which we

could simulate fission to model the nucleation and migration of xenon bubbles. This

could be done by coupling to MARMOT, another code in the MOOSE family [28].

Because the Xe bubbles would no longer be static (as we have approached this

in previous work), we could see how conductivity might change locally in an

operational cycle of a reactor. As we hope to expand our simulation domain to fuel

pins, we could couple the temperature gradients generated from phonon transport

to neutron transport simulations in Rattlesnake to include temperature feedback in

neutron cross sections. This may be challenging to implement, as the timescales of

nucleation and material diffusion are many orders of magnitude larger than phonon

scattering events.

Developing a transient scheme which uses a first law balance relation to the

internal energy, and so naturally includes a temperature dependence due to a

decaying heat flux. This will change how we approach the problem and force

us to solve time dependent equations. This could be useful in the modeling and

simulation of certain types of experiment, such as Time Domain Thermoreflectance
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(TDTR), used to measure thermal conductivity by heating a sample and measuring

the change in the reflectance at a surface over time, which could predict thermal

properties [111].

Nano- and micro-scale thermal transport are a critical area of study. Modern

computational infrastructures possess the resources to run these detailed simula-

tions to try and predict and understand the underlying physics which govern heat

transport at such small length scales. It is clear that relying on Fourier’s law for

mesoscale heat transfer fails to account for the wealth of detail hidden in microstruc-

ture of materials. By developing methods to simulate microscale heat transport,

specifically to determine thermal conductivity and temperature distributions in

real materials with defects, we may be able to increase our understanding, and the

safety, of nuclear fuels and reactors.
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