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The Taylor–Goldstein (T–G) equation is extended to include the effects of small-
scale turbulence represented by non-uniform vertical and horizontal eddy viscosity and
diffusion coefficients. The vertical coefficients of viscosity and diffusion, AV and KV ,
respectively, are assumed to be equal and are expressed in terms of the buoyancy
frequency of the flow, N, and the dissipation rate of turbulent kinetic energy per unit
mass, ε, quantities that can be measured in the sea. The horizontal eddy coefficients,
AH and KH , are taken to be proportional to the dimensionally correct form, ε1/3l4/3,
found appropriate in the description of horizontal dispersion of a field of passive
markers of scale l. The extended T–G equation is applied to examine the stability
and greatest growth rates in a turbulent shear flow in stratified waters near a sill,
that at the entrance to the Clyde Sea in the west of Scotland. Here the main effect
of turbulence is a tendency towards stabilizing the flow; the greatest growth rates of
small unstable disturbances decrease, and in some cases flows that are unstable in the
absence of turbulence are stabilized when its effects are included. It is conjectured that
stabilization of a flow by turbulence may lead to a repeating cycle in which a flow
with low levels of turbulence becomes unstable, increasing the turbulent dissipation
rate and so stabilizing the flow. The collapse of turbulence then leads to a condition
in which the flow may again become unstable, the cycle repeating. Two parameters are
used to describe the ‘marginality’ of the observed flows. One is based on the proximity
of the minimum flow Richardson number to the critical Richardson number, the other
on the change in dissipation rate required to stabilize or destabilize an observed flow.
The latter is related to the change needed in the flow Reynolds number to achieve zero
growth rate. The unstable flows, typical of the Clyde Sea site, are relatively further
from neutral stability in Reynolds number than in Richardson number. The effects of
turbulence on the hydraulic state of the flow are assessed by examining the speed and
propagation direction of long waves in the Clyde Sea. Results are compared to those
obtained using the T–G equation without turbulent viscosity or diffusivity. Turbulence
may change the state of a flow from subcritical to supercritical.
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1. Introduction
Our purpose is to examine the effect of turbulence on the stability and hydraulic

state of stably stratified shear flows. This relates to the understanding of how mixing
takes places in naturally occurring flows, with particular application to the ocean.

The gradient Richardson number is defined as Ri = N2/S2, where N(z) is the
buoyancy frequency and S is the vertical gradient of a horizontal flow. The
Miles–Howard theorem (Howard 1961; Miles 1961; Drazin & Reid 1981) states
that if the Richardson number in a steady, parallel, horizontal, inviscid and non-
diffusive stratified shear flow is everywhere greater than 1/4, the flow is stable to
small disturbances of all wavenumbers. A sufficient condition for stability is therefore
that the minimum Richardson number, Rimin, in the flow exceeds 1/4 as has been
explained in mechanical terms by Baines & Mitsudera (1994). A critical Richardson
number, Ric, marks a transition from stable to unstable flow: for Rimin 6 Ric (which
must be 6 1/4) there exist small disturbances that grow and the flow is unstable.
A flow can be described as being in a state of ‘marginal’ stability when Rimin ≈ Ric.
The growth rates of unstable disturbances of given wavenumber are found by solving
the Taylor–Goldstein (T–G) equation (Thorpe 1969; Drazin & Reid 1981).

The Miles–Howard theorem has had an impact on the thinking about naturally
occurring flows beyond its strict range of application. In analysing data to determine
the state of such flows, it is often – incorrectly – assumed that flows will be
unstable if Rimin < 1/4, i.e. that Ric = 1/4. Critical values, Ric, for example of
mean flows measured in the seas of the UK continental shelf, are however often
substantially less than 1/4 (e.g. Liu 2010). Flows are rarely parallel or ‘unidirectional’;
currents usually change in direction as depth increases. It can be shown, however
(as in the Appendix), that a steady, inviscid and non-diffusive flow with horizontal
components, U(z) and V(z), is stable to small two-dimensional disturbances provided
that Ri = N2/[(dU/dz)2+ (dV/dz)2] exceeds 1/4 everywhere in the flow. (This is a
consequence of the fact that only the component of the flow in the horizontal direction
of a small disturbance appears in the equations governing its stability.) Several authors
have examined the stability of stratified flows in the ocean (e.g. Sun, Smyth & Moum
1998; Liu 2010) and in lakes (e.g. Thorpe & Hall 1977; Thorpe & Ozen 2007;
Zika 2008; Thorpe & Liu 2009), but generally set aside any effects of viscosity and
diffusion.

Some measures of these effects are, however, available. The T–G equation is
extended by Koppel (1964) to include the effects of constant viscosity and diffusivity.
Constant molecular viscosity and diffusivity may reduce Ric, tending to make flows
more stable, as found for example by Maslowe & Thompson (1971) for a flow with
constant N and hyperbolic tangent velocity profile at a Prandtl number, Pr , of 0.72,
while Gage (1971) shows that, in contrast to the Miles–Howard theorem, flows over a
plane boundary with constant N, Pr = 1 and with no inflection points, e.g. boundary
layer flows, are stable to small perturbations provided Rimin > 0.0554. (A corollary is
that, in a flow with constant N and Pr = 1, Ric can exceed 0.0554 only if the flow has
an inflection point.)

But natural flows are usually turbulent at small scales, turbulence often surviving
from earlier strong mixing events possibly caused by its instability or through the
breaking of internal waves. Turbulent Reynolds stresses vary in the vertical direction
and generally transfer momentum at rates far greater than molecular viscosity, and the
variable turbulent buoyancy fluxes transfer buoyancy faster than molecular diffusivity.
How great an effect has this residual or ‘background’ turbulence on the stability of
flows?
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Smyth, Moum & Nash (2011) is the only paper known to the authors in
which small-scale turbulence is taken into account in analysing the growth of
unstable disturbances in a measured, naturally occurring flow. Those authors represent
turbulence by introducing vertical eddy (or diapycnal) viscosity and diffusivity
coefficients set in an ad hoc manner to the constant value, 1 × 10−4 m2 s−1. No
study of the stability of an observed flow to small disturbances seems to have been
made to assess the effects of turbulence represented by vertical eddy coefficients that
vary in depth (selected, for example as in § 3, to accord with observed values of ε),
nor has attention been given to the horizontal effects of turbulence on the stability of
observed flows.

Our goal is to develop equations and a methodology through which to examine
such effects on the stability of a stratified shear flow and also, as described below,
on its hydraulic state. These are applied to measurements of a turbulent flow near
a sill in the Clyde Sea off the western Scottish coast. When supposed inviscid and
non-diffusive, the mean flow is found to be frequently unstable to small disturbances
and often in a marginal state (Liu 2010). We shall examine how turbulence may affect
Ric and hence the marginality of the flow.

The hydraulic state relates to the occurrence of shock waves or hydraulic jumps
(Baines 1995) and to mixing, particularly in deep ocean channels (Thorpe 2010)
and stratified fjords (e.g. Gregg & Pratt 2010), and is, like its stability to small
disturbances, determined by solution of the T–G equation, in this case by seeking
solutions for the speed of long waves, found by setting the wavenumber equal
to zero. In a stratified shear flow there are generally two wave speeds for each
internal wave mode (denoted below by + and − signs before their mode number).
Supercritical conditions are those in which no internal waves can travel in one
particular direction. This would be the upstream direction in the study of the
hydraulics of a uniform flow with a free surface. The meaning of the term ‘upstream’
is however often lost in stratified shear flows where the flow may reverse its
direction through the water column. In subcritical flows long waves can travel
in both directions. Bell’s (1974) theorem (not to be confused with the quantum
mechanical result of the same name) limits and orders the speed of internal waves
of different modes. The wave speeds, cn and c−n, of all modes, where n denotes
the mode number, lie outside the range of the basic flow, Umin 6 U(z) 6 Umax , but
are ordered within the ranges Umin − NmaxD/π < c−1 < c−2 < c−3 < · · · < Umin and
Umax < · · · < c3 < c2 < c1 < Umax + NmaxD/π determined by the maximum buoyancy
frequency, Nmax , and the depth, D, of the water column. The wave speeds approach the
limits Umin and Umax as the mode number tends to infinity. (Similar results apply for
waves in channels of arbitrary cross-section; Pratt et al. 2000.) The theorem, however,
is only proved by Bell to be valid when Rimin > 1/4. (At least one example is known
in which the speeds of long waves are mode ordered and bounded above by Umin

even though Rimin < 1/4: see Appendix E and figure 4 of Thorpe 2010 when the
parameter, η, defining the flow profile exceeds 2/3 and 8(1− η) < Fr < Frc.)

In practice, this condition is not always satisfied. The direction of propagation of
long waves in the flow near the Clyde Sea sill allows the flow to be categorised
as super- or subcritical, the former applying when waves can only propagate in one
direction relative to the sill. We examine the effects of turbulence on the speeds of
long waves of different modes, and hence on the flow hydraulics. (Hogg, Winters &
Ivey 2001 use Koppel’s 1964 extended T–G equation, including the vertical effects
of constant viscosity and diffusivity, to examine the criticality of an idealised flow
through a constriction.)
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In § 2 the equations of motion, with the effects of turbulence represented by non-
uniform eddy coefficients of viscosity and diffusion, are perturbed around a mean
state. Equations are derived that correspond to the T–G equation but extended to
include turbulent effects. They are later considered in three separate limits: Limit 1,
without viscous, diffusive or turbulent effects; Limit 2, with only the effects of vertical
transfers of momentum and mass; and Limit 3, with both vertical and horizontal
transfers. We explain in § 3 how values of the vertical and horizontal eddy coefficients
are selected in ways that can be determined from data to which the analysis is applied,
in particular to the data available in the Clyde Sea (§ 4). These consist of hourly
averaged vertical profiles of the horizontal velocity, the buoyancy frequency, N(z), and
the rate of dissipation of turbulent kinetic energy per unit mass, ε.

Methods adopted to find critical conditions in which the flow becomes unstable
(the critical Richardson numbers, Ric, of the mean flow and a measure, Θc, of the
dissipation rate required to stabilize flows) are described in § 5. A range of effects
are illustrated by selecting particular hourly periods in the Clyde Sea, and these are
presented in § 6 (Ric in § 6.1, Θc in § 6.2, and hydraulics in § 6.3). The examples show
that growth rates may be reduced, and flow completely stabilised, by the inclusion
of turbulent effects; increase in ε (or decrease in an effective Reynolds number) may
stabilize a flow. An example is found in which the hydraulic state of the flow is
changed from subcritical to supercritical by turbulence. The results are reviewed, and
their implications discussed, in § 7.

2. The equations of perturbed flow
The equations of motion are represented as

Du
Dt
=−∇p

ρ0
+ bz+∇H · (AH∇H u)+ ∂

∂z

(
AV
∂u
∂z

)
. (2.1)

Here D/Dt ≡ ∂/∂t + u · ∇, the flow velocity is u = (U(z, t) + u,V(z, t) + v,w),
buoyancy is b = −g(ρ − ρ0)/ρ0, where g is the acceleration due to gravity, the
density is ρ = Π(z, t) + ρ ′, and ρ0 is a reference density, p = P(x, y, z, t) + p′ is
the pressure, ∇ = (∂/∂x, ∂/∂y, ∂/∂z), ∇H = (∂/∂x, ∂/∂y, 0), z = (0, 0, 1), and AH(z, t)
is the horizontal eddy coefficient of turbulent viscosity (supposed independent of
horizontal direction) and AV(z, t) is the vertical eddy coefficient. The disturbances,
(u, v,w) and b′ = −gρ ′/ρ0, to the mean flow, (U,V, 0) and Π , and the consequent
disturbance to the pressure, p′, are taken to be small compared to the mean values. The
volume conservation relation is

∇ ·u= 0, (2.2)

and the equation for continuity of density of the fluid, supposed incompressible, is

Db

Dt
=∇H · (KH∇H b)+ ∂

∂z

(
KV
∂b

∂z

)
, (2.3)

where KH(z, t) and KV(z, t) are the horizontal (again supposed isotropic) and
vertical eddy coefficients of turbulent diffusivity, respectively. Equations (2.1)–(2.3)
are standard equations adopted to represent turbulence, in particular its transfers of
momentum and mass, but they involve assumptions about the homogeneity and nature
of turbulence (see e.g. Kantha & Clayson 2000). For example, by taking a single
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horizontal eddy coefficient different from the vertical coefficient it is supposed that,
because of stratification, the vertical effects of turbulence differ from the horizontal
but that the effects are isotropic in the horizontal direction. The selected forms of the
eddy coefficients are described in § 3. In using these equations to describe the effects
of a spatially periodic perturbation to a mean flow, it is implicit that there is a scale
separation between the small-scale three-dimensional turbulence and the perturbation.
We shall find in § 6.1 that, for the Clyde Sea data, the vertical scale of the fastest
growing disturbances exceeds the Ozmidov scale, LOz = ε1/2/N3/2, representing the
largest overturning turbulent eddies. There are, however, no observations available
from which to estimate the horizontal scale of turbulent eddies and to confirm that
they are substantially less than the horizontal scale (typically ∼20 m; § 6) of the
fastest growing disturbances.

The equations for the mean flow are

∂U

∂t
=− 1

ρ0

∂P

∂x
+ dAV

dz

∂U

∂z
+ AV

∂2U

∂z2
, (2.4)

∂V

∂t
=− 1

ρ0

∂P

∂y
+ dAV

dz

∂V

∂z
+ AV

∂2V

∂z2
, (2.5)

0=−∂P

∂z
− ρ0B, (2.6)

and

∂B

∂t
= dKV

dz

∂B

∂z
+ KV

∂2B

∂z2
, (2.7)

where the mean buoyancy B = −g(Π − ρ0)/ρ0. As noted by Smyth et al. (2011), the
mean flow, U and V , and density, Π , are therefore steady if the x- and y-pressure
gradients balance the action of turbulent viscosity on the mean flow, or, if both are
negligible, if the vertical pressure gradient is in hydrostatic balance, and if the action
of vertical turbulent diffusion is negligible, at least within the time scale of the growth
of instabilities. Assuming these conditions are valid, we henceforth assume that the
mean flow is steady so that U, V , Π (or B), AH , AV , KH and KV , are functions only
of z. Omitted from the present consideration is any modification of turbulence that
results from the presence of the disturbance to the mean flow; the eddy coefficients
are supposed independent of the amplitude of the perturbation, at least to first-order.
Any changes to turbulence, represented here by the eddy coefficients, caused by its
straining and shearing by the spatially periodic and temporally growing, but small,
disturbances are disregarded. This subject demands further study beyond our present
scope.

Linearized or first-order equations for the disturbances, u, v, w and b′, can now
be found. Henceforth, without loss of generality, designating U(z) as the mean flow
velocity component in the direction of a two-dimensional disturbance in the x-direction
(and with no variation in y so all the terms involving y-derivatives are now zero), the x-
and z-equations of motion reduce to

∂u

∂t
+ U

∂u

∂x
+ w

dU

dz
=− 1

ρ0

∂p′

∂x
+ AH

∂2u

∂x2
+ AV

∂2u

∂z2
+ dAV

dz

∂u

∂z
, (2.8)
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and

∂w

∂t
+ U

∂w

∂x
=− 1

ρ0

∂p′

∂z
+ b′ + AH

∂2w

∂x2
+ AV

∂2w

∂z2
+ dAV

dz

∂w

∂z
, (2.9)

with volume conservation

∂u

∂x
+ ∂w

∂z
= 0, (2.10)

and density conservation

∂b′

∂t
+ U

∂b′

∂x
+ w

dB

dz
= KH

∂2b′

∂x2
+ Kv

∂2b′

∂z2
+ dKV

dz

∂b′

∂z
. (2.11)

These are independent of the components, V and v, of the mean flow and disturbance
in direction y.

Eliminating p′ by subtracting the x-derivative of (2.9) from the z-derivative of
(2.8), and introducing a stream function ψ , where u = ∂ψ/∂z and w = −∂ψ/∂x,
so satisfying (2.10), we obtain(

∂

∂t
+ U

∂

∂x

)
∇2ψ − d2U

dz2

∂ψ

∂x

=−∂b′

∂x
+ AH

∂2

∂x2
∇2ψ + dAH

dz

∂3ψ

∂z∂x2
+ dAV

dz

(
∂2

∂x2
+ 2

∂2

∂z2

)
× ∂ψ
∂z
+ AV

∂2

∂z2
∇2ψ + d2AV

dz2

∂2ψ

∂z2
, (2.12)

while, noting that N2 = dB/dz, (2.11) becomes(
∂

∂t
+ U

∂

∂x

)
b′ − N2 ∂ψ

∂x
= KH

∂2b′

∂x2
+ KV

∂2b′

∂z2
+ dKV

dz

∂b′

∂z
. (2.13)

Expressing the perturbed terms as ψ = φ(z) exp(ikx+σ t) and b′ = β(z) exp(ikx+σ t)
where σ = σr + iσi is the complex frequency and k is the wavenumber of
the disturbance, and writing the vertical component of velocity w = −∂ψ/∂x =
−ikφ exp(ikx+ σ t)= ŵ exp(ikx+ σ t) so that φ = iŵ/k, (2.12) and (2.13) reduce to

σ

(
d2

dz2
− k2

)
ŵ=

[
−ikU

(
d2

dz2
− k2

)
+ ik

d2U

dz2
+ Fw

]
ŵ− k2β, (2.14)

and

σβ =−N2ŵ+ [−ikU + Fβ]β, (2.15)

since N2 = dB/dz, and where the operators, Fw and Fβ , involving the turbulent eddy
coefficients, are functions of z, and are given by

Fw = d2

dz2

(
AV

d2

dz2

)
− k2 d

dz

[
(AH + AV)

d
dz

]
+ k4AH, (2.16)

Fβ = d
dz

(
KV

d
dz

)
− k2KH. (2.17)

Equations (2.14) and (2.15), with boundary conditions ŵ= 0 and β = 0 at the lower
and upper boundaries, are in a form that can be solved by the matrix method, as in
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Smyth et al. (2011); the stability of the mean flow for disturbance wavenumber, k, can
be determined in the usual way by examination of the eigenvalues, c= cr + ici = iσ/k.

If the terms involving Fw and Fβ are set to zero, or equivalently if AV , KV , AH and
KH are set to zero, elimination of β between the two equations reduces them to a
single equation for φ, the conventional T–G equation from which, for a unidirectional
flow, the Miles–Howard theorem is derived. We shall refer to this as ‘Limit 1’. Two
other limiting cases are considered to gain insight into the effects of turbulence on the
stability of the flow. In ‘Limit 2’ the coefficients AH and KH are set equal to zero; only
the effects of vertical transfers of momentum and mass by turbulence represented by
the terms including AV and KV are included. In ‘Limit 3’, we include both vertical and
horizontal effects.

3. The turbulent eddy coefficients
3.1. The vertical eddy coefficients

To make the solution of (2.14) and (2.15) of practical value in interpreting the data
from the Clyde Sea, expressions for the eddy coefficients are required in terms of
quantities, e.g. N, U and ε, that can be measured. The conventional relations derived
from the steady-state energy balance in which the rate of dissipation of turbulent
kinetic energy is equal to the rate of production by the mean flow plus the buoyancy
flux, lead to

KV = Γ εN2
, (3.1)

where ε is the rate of loss of turbulent kinetic energy per unit mass and Γ is an
efficiency parameter (Osborn 1980). Selecting the commonly used value Γ = 0.2, and
since the turbulent Prandtl number, Prt = AV/KV ≈ 1 (Shih et al. 2005) over much of
the range of the observed values of I = ε/νN2, we have

KV = AV = 0.2ε
N2

. (3.2)

According to Shih et al. (2005), Γ ≈ 0.2 is valid in the range 7< I = ε/νN2 < 100,
but may possibly overestimate KV outside this range. The uncertainty in the value of Γ
is described by, e.g., Smyth, Moum & Caldwell (2001). Alternatively we might adopt
the relation between the flux Richardson number, Rf , and the gradient Richardson
number: Rf /Ri = KV/AV = q(1 − Rf /Rfc)/ (1− Rf )

2, given by Turner (1973, his
equation 5.2.23) with constant q ≈ 1.4. This equation has a best fit to laboratory data
when Rfc ≈ 0.15, and provides the means of finding Rf from measured values of Ri.
It follows that AV = [Ri/(1 − Rf )]ε/N2, but this, without some further relationship,
leaves the value of Rf unspecified by the available data. Zilitinkevich et al. (2008)
review meteorological, laboratory and numerical data showing Pr t ≈ 0.8 + 5Ri, with
an uncertainty of ∼±0.4, when Ri < 1. A further means of deriving scale-dependent
vertical (and horizontal) eddy coefficients in terms of LOz and Ri based on the use
of Langevin equations is described by Galperin, Sukoriansky & Anderson (2007). For
simplicity we use (3.2).

3.2. The horizontal eddy coefficients
There appear to be no accepted equations for AH and KH in parametric forms
expressed in terms of commonly measurable quantities, and we have therefore resorted
to devising plausible formulations. It is assumed that the horizontal eddy coefficients
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of turbulent viscosity and diffusivity can be expressed as the dimensionally correct
forms

AH = cAε
1/3l4/3 (3.3a)

and

KH = cKε
1/3l4/3, (3.3b)

respectively, where l is the horizontal scale at which turbulent viscosity or diffusivity
are acting (taken as the horizontal wavelength, 2π/k, of the disturbance, typically
∼20 m, in our subsequent analysis), and cA and cK are non-dimensional constants.

The forms (3.3) are chosen as being consistent with the variation of diffusivity
of patches of dye in the upper ocean with horizontal scale, l, found by Okubo
(1971). Okubo plots the logarithm of a dispersion coefficient, KD, against that of l,
showing that the data fit lines with 4/3 slopes (so that KD ∝ l4/3) over certain limited
ranges of horizontal length scale, the lowest being from ∼20 m (the smallest for
which measurements were available) to ∼1 km. The 4/3 power law for dispersion is
consistent with that proposed empirically by Richardson. (Ollitrault, Gabillet & De
Verdiere 2005, review the evidence for a 4/3 power law and refer to the possibility
of a l2 law at scales less than the internal Rossby radius, but provide no compelling
observational evidence for the higher power law at these scales. Lacking convincing
evidence to the contrary we therefore proceed to use the 4/3 law whilst noting the
need for further observational evidence. Ashford 1985 quotes the following from
Richardson 1952: ‘The atmospheric observations could have been fitted passably by
any index between 1.2 and 1.5. The 4/3 was chosen partly as a rough mean, and partly
because it simplifies some integrals.’) Okubo’s data are therefore consistent with

KD = Cε1/3l4/3, (3.4)

with a non-dimensional constant, C, provided that ε remains constant throughout
each of the limited range of length scales. The relation (3.4) fits data in a series
of ranges of larger and larger length scales with successively smaller constant values
of ε in each range. This suggests that there is an input of energy flux at the upper
end of each range of scales, one being at ∼1 km, enhancing the flux of energy
through the turbulent spectrum towards eventual dissipation at scales comparable to
the Kolmogorov scale. Okubo’s formulation of KD does not account for the spatial
and temporal variations in the variety of processes that may affect dispersion but it
does provide a rough measure of dispersion in many different parts of the ocean
(Thorpe 2005), including that of dye released by Sundermeyer & Ledwell (2001) into
the thermocline over the New England continental shelf where the water depth is
∼70 m, comparable to the 58 m depth in the Clyde Sea measurement area. (Although
the non-dimensional parameter f /N, where f is the Coriolis parameter, may appear in
the formulation of KD on the New England shelf at scales of 1–10 km as found by
Sundermeyer et al. 2005, the effect of the Earth’s rotation is unlikely to have an effect
at the present smaller scales of interest.)

Although horizontal turbulent viscosity, the horizontal turbulent diffusion of density
and the horizontal turbulent dispersion of dye are different entities, each depends on
the properties of the horizontal field of turbulent eddies. The scaling of the turbulent
dispersion coefficient on ε and l alone in (3.4) suggests (but does not prove) that these
two measures may also apply for turbulent viscosity and diffusion, providing the only
dimensional quantities through which the eddy coefficients are expressed, and hence
constraining their forms to those selected in (3.3). It is implicit in the formulation that
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the ‘horizontal’ density dispersion occurs mainly on isopycnal surfaces and not across
them; a criticism of (3.3) is that the selected forms do not account explicitly for the
buoyancy frequency, shear or Richardson number at the level of interest.

In the absence of information or empirical data to the contrary, we therefore adopt
the forms defined in (3.3) for scales, l, of ∼20 m. (In later taking l = 2π/k, where k
is the horizontal wavenumber of the two-dimensional disturbance, we do not intend to
imply that the small disturbances are those that lead to horizontal turbulent viscosity
or diffusion at this scale, although they may affect them – a disregarded effect,
see § 2 – but simply that the scale-dependent coefficients have the values assigned
when the scales under consideration are equal to the wavelength of the disturbances.)
Ledwell, Watson & Law (1998) note that the vertical coefficients of diffusion of
density measured by free-fall microstructure probes agree reasonably well with the
vertical coefficients of the dispersion of dye in the North Atlantic, and we shall
suppose that like their vertical counterparts, the horizontal coefficients are equal, i.e.
that KH = KD.

In the range of horizontal scales from ∼20 m to 1 km Okubo’s (1971) data are fitted
by

KD = (9.3± 1.4)× 10−5l4/3, (3.5)

where the diffusion coefficient, KD, is measured in m2 s−1 and l in m. Using (3.3) and
the observed mean value of ε in the Clyde Sea of ∼(4.2 ± 1.8) × 10−8 W kg−1 (§ 5),
putting KH = KD we find C = cK = (2.9 ± 0.8) × 10−2. The vertical and horizontal
diffusion coefficients are equal at a scale l∗ where KV = KH . Equality occurs at
l∗ = LOz (Γ/cK)

3/4, where LOz = ε1/2/N3/2 is the Ozmidov length scale. (The vertical
and horizontal eddy diffusion coefficients are equal at a horizontal scale, l∗, of ∼4LOz.
This appears much too large because isotropy is not expected at scales exceeding LOz.
This is discussed further in § 7.) If we assume that the horizontal and vertical viscous
transfer coefficients are also equal at this scale, so that AV = AH at l= l∗, then cA = cK .
In summary, we shall take

KH = AH = (2.9± 0.8)× 10−2ε1/3l4/3. (3.6)

4. The observations in the Clyde Sea
The site of the measurements used to examine the effect of turbulence in the

solutions of (2.14) and (2.15) is in a mean water depth of 58 m to at a distance
of approximately 12 km from the 40 m deep crest of a broad sill at the entrance to
the Clyde Sea. The flow is strongly affected by M2 baroclinic tides generated at or
near the sill, and its direction changes with depth. The crest of the sill is orientated
in a southeasterly direction; α ≈ 50◦ represents the direction of internal tidal wave
propagation into the Clyde Sea away from the sill. Data consist of vertical profiles
of the horizontal velocity from an acoustic Doppler current profiler (ADCP), together
with measurements from free-fall fast light yo-yo (FLY) microstructure probes of N(z)
and the rate of dissipation of turbulent kinetic energy per unit mass, ε. Temporally
averaged data obtained over 12–18 min are available from 24 sequential hourly periods
designated, as in Liu (2010), as Hr 0 to Hr 24 (except that no data are available for
Hr 20). Analysis is confined to the flow in the mid-water pycnocline, thus excluding
the turbulent boundary layer adjoining the seabed. The mid-water flow is generally
turbulent with a mean value of ε of ∼(4.2± 1.8)× 10−8 W kg−1.
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5. Critical conditions: Ric and Θc

The analysis follows that of Liu (2010) who examines the stability of the hourly
flow in the Clyde Sea but only when the flow is supposed to be inviscid and non-
diffusive, as in Limit 1. Solutions of (2.14) and (2.15) are found for a given real
wavenumber, k, and the growth rate, σr (or kci), is calculated as a function of the
direction, α, relative to the north of a small disturbance. Rotating axes, the mean
horizontal flow, U(z), in direction α becomes UE sinα + UN cosα, where the observed
hourly averaged flow components in the east and north directions are UE(z) and
UN(z), respectively. The maximum growth rate as α is varied, and the corresponding
eigenfunction, ŵ, is found as in Liu (2010). The variation of the maximum growth rate
determined as a function of k, and the value of k at which the growth rate is greatest,
(kci)max , can be found, provided the flow is unstable.

The size of the greatest growth rate, (kci)max , provides useful insight into the state
of the flow. Further information is given by determining a critical Richardson number,
Ric. How much must the speed of an unstable flow be reduced before it becomes
stable? To investigate this, following Thorpe & Liu (2009) and Liu (2010), the mean
flow is scaled by a factor (1 + Φ), and Φ is decreased in small steps when the
flow is unstable (or increased for stable flows) until, at a value Φ = Φc, the greatest
growth rate becomes zero. (This procedure is strictly invalid because of the violation
of the assumption that the mean flow described by (2.4) and (2.7) has a growth rate
that is relatively small compared to that of the disturbances.) The buoyancy frequency
is maintained at its original value, N(z). The minimum Richardson number in the
corresponding scaled flow is then equal to Ric:

Ric = Rimin
(1+Φc)

2 , (5.1)

where Rimin is defined as min{N2/[(dUE/dz)2+ (dUN/dz)2]}, as in the Appendix.
Values of the eddy coefficients are required, however, when finding the growth rates

in flows scaled with (1 + Φ). These, given by (3.2) and (3.6), depend on ε, and
it is not known how this may change as the mean flow is varied. We adopted two
alternatives: first to keep ε unchanged as Φ varies, and second to allow ε to vary
as (1+Φ)3, having in mind a scaling of ε proportional to (velocity)3 length−1, as in
Taylor’s inertial scaling (Taylor 1935). The results are found to be relatively insensitive
to the selection of the two alternatives, typical variations in Ric between the two cases
being less than 10 %, and for simplicity in the presented results (e.g. table 1) ε was
kept unchanged. As it later becomes evident (§ 6.2), larger changes in ε than result
from multiplication by (1+Φ)3 (typically less than ∼4) are required to cause much
variation in the growth rates of small disturbances.

Rather than scaling either the mean flow (or possibly the buoyancy frequency) to
determine the critical Ri, an alternative procedure to obtain insight into the state of
the flow is to scale the observed values of ε by a factor Θ . As in the laminar
case with viscosity and molecular diffusion studied by Maslowe & Thompson (1971),
the general effect of turbulence (momentum and mass transport) is to reduce the
maximum growth rates (§ 6.1). The value of Θ = Θc at which (kci)max becomes equal
to zero for flows that are unstable in Limit 1 therefore provides a measure of how
much the dissipation rate may have to be increased to stabilize the flow with no
variation in Ri; alternatively how much greater a flux of energy into the flow field
must be supplied with no change to Ri, and in a form that will contribute to and be
dissipated by turbulence, before the flow becomes stable. Since when keeping the S or
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velocity profiles constant, the ‘vertical’ Reynolds number of the flow, ReV , is inversely
proportional to AV = 0.2ε/N2 and the ‘horizontal’ Reynolds number, ReH , is inversely
proportional to AH = (2.9 ± 0.8) × 10−2ε1/3l4/3 (with appropriate averaging over the
fluid depth) variation of ε is equivalent to a variation of the flow Reynolds numbers,
an increase in ε corresponding to a decrease in ReV . (Variation in ReH depends on how
the wavelength l changes with ε.)

To summarize: values of Φc when ε is unchanged provide a measure of the
proximity of a flow to a critical Richardson number when the flow Reynolds number is
held constant, while Θc gives a measure of relation of the flow’s Reynolds number to
a critical Reynolds number when the Richardson number in the flow is held constant.
Both Φc and Θc provide measures of the marginality of the flow.

6. Application and results
6.1. Flow stability: Ric

Over the 24 hourly periods analysed, the average Rimin (derived as in the Appendix) is
0.087. All but 6 of the hourly periods are unstable with (kci)max > 0, and Rimin < Ric
in Limit 1 (with eddy coefficients set to zero). The effect of representing turbulence
through eddy viscosity and diffusivity coefficients in the equations of motion is a
tendency to stabilize the flow: adding the vertical coefficients (Limit 2) reduces the
maximum growth rate of unstable modes, (kci)max , by an average of 4.9 %, increases
the mean Φc by about 5.7 % from −0.335 to −0.316, and reduces the critical
Richardson number, Ric, from 0.140 in Limit 1 to 0.132, a reduction of 5.5 %. The
direction of the fastest growing disturbances is found to be the same in Limit 2 (and
in Limit 3) as it is in Limit 1. This direction does not coincide with that of the
maximum shear or smallest Richardson number based on the component of shear in
the disturbance direction, dU/dz, as in the Appendix, but (for the data examined) the
difference in the directions is generally less than 45◦.

The average wavelength of the fastest growing disturbances, λc, changes from
31.3 m in Limit 1 to 30.8 m in Limit 2. For Limit 3 the maximum growth rate,
(kci)max , is reduced from the Limit 1 values by an average of 19.0 %, and the mean
Φc is −0.259, an increase from Limit 1 of 22.7 % and a closer approach to flow
marginality at Φc = 0. The mean critical Richardson number, Ric, is 0.117, a reduction
of 16.2 % from Limit 1, and λc becomes 32.1 m.

Three hourly periods for which data are shown in figures 1 and 2 are selected to
illustrate how stability varies in the three limits. In the first example, Hr 16, the flow
is unstable (with Rimin < Ric and (kci)max > 0) in all three limits. The flow in the
second example, Hr 10, is however unstable in Limits 1 and 2, but is stabilized in
Limit 3, and in the final example, Hr 14, the flow is stable in all limits. The velocity
component in direction 050, U50, used in § 6.3, N, S = [(dUE/dz)2+ (dUN/dz)2]1/2
where UE and UN are the east and north components of velocity, together with log10ε,
in the three examples are shown in figure 1. There is no evident correlation of ε with
the other variables. Figure 2 shows the derived profiles of log10 Ri(=log10(N

2/S2)),
log10 I(=log10(ε/νN2)), log10 LOz, log10 AV = log10 KV and log10 AH = log10 KH . In each
example Rimin is less than 1/4 (see table 1). The value of l used to determine AH = KH

from (3.6) at Hr 16 is that of the maximum growth rate in Limit 3 (see figure 3a),
but in Hrs 10 and 14, stable in Limit 3, the values of l used are those determined
by modifying the velocity profiles by increasing Φ until the flows became unstable;
l = 17.5, 28.0 and 30.5 m, in Hrs 16, 10 and 14, respectively. Values of I = ε/νN2
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FIGURE 1. The measured profiles of (left to right) the velocity component U50 in direction
050◦ as in § 6.3, N, S = [(dUE/dz)2+ (dUN/dz)2]1/2 where UE and UN are the east and north
components of velocity, and log10ε in the flows at (a–d) Hr 16, (e–h) Hr 10, and (i–l) Hr 14,
all plotted versus height above the seabed.

generally exceed 200, indicating that turbulence is commonly isotropic (Gargett,
Osborn & Nasmyth 1984). The horizontal eddy coefficients exceed the vertical.

The growth rates, kci, of the most unstable mode in the three limits are plotted in
figure 3 as functions of kD, where D = 58 m is the water depth. The wavelengths
of the fastest growing disturbances are ∼16.8 m in Hr 16 and 27.7 m in Hr 10,
and do not vary significantly even though the modal structure of the disturbances
changes, as shown in figure 4. The vertical scale of the most unstable modes is ∼8 m,
substantially greater than the size, typically <1 m, of LOz (figure 2).

6.2. Flow stability: Θc, varying ε
Values of (kci)max are found with ε scaled by a factor Θ in cases in which the flow is
unstable in Limit 1. Linear interpolation gives the value of Θ = Θc at which (kci)max
becomes equal to zero. The mean value of Θc is 65.5 in Limit 2, but with values
ranging from ∼13.8 (in Hr 10) to 235.2: at least one order of magnitude increase
in the rate of dissipation observed in the unstable flow is required to stabilize it.
A change in ε by a factor of 65.5 implies that, keeping the velocity and buoyancy
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FIGURE 2. Profiles of log10 Ri = log10 (N
2/S2) (the dotted line marks Ri = 1/4), log10 I =

log10 (ε/νN2), log10 LOz, log10 AV = log10 KV and log10 AH = log10 KH in the flows in Limit
3, at (a–e) Hr 16, (f –j) Hr 10 and (k–o) Hr 14, all plotted versus height above the seabed.
(Hrs 10 and 14 are stable in Limit 3. The value of l used in (3.6) to derive AH = KH is that
determined by modifying the velocity profiles by increasing until the flows became unstable
and adopting the value of l for the maximum growth rate.)

profiles constant, the ‘vertical’ Reynolds number of the flow, ReV , must be reduced
by a multiplying factor of ∼0.015 before the flow becomes stable. In Limit 3 when
the horizontal effects of turbulence are included, the mean of Θc is 21.1 with a range
from ∼10.5 to 52.3. Stability is attained with an increase in ε by a factor of 21.1,
which corresponds to a reduction in ReV by multiplying factor of ∼0.05, accompanied
by a reduction in the ‘horizontal’ Reynolds number, ReH , inversely proportional to
ε1/3l4/3, by a multiplying factor of ∼0.36. (The wavelength of the fastest growing
disturbance, l, varies little in the three limits, § 6.1, nor therefore with ε.)

6.3. Hydraulics: the long waves
Although the currents at the site near the sill in the Clyde Sea are non-parallel,
the components transverse to an adopted direction normal to the ridge crest play no
part in the determination of the long-wave speeds nor of their size in relation to
the flow extrema, Umin and Umax ; the results are representative of the unidirectional
flows addressed in Bell’s theorem. The speed and stability of long waves (set in
the numerical calculations as k = 0.001 m−1, a wavelength of ∼6.3 km or 108 times
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greater than the water depth of 58 m) are found by solution of the T–G equation in
the three limits, taking the flows, U50(z), as the mean flow components in a direction
away from the sill of 50◦ to the north shown in figure 1. Two solutions, each stable,
are found for each of the first three modes, one travelling at a speed, cr, greater than
Umax (denoted as c+n, where n is the mode number), the other (c−n) with a speed less
than Umin.

The minimum and maximum flow and the long-wave speeds for 24 hourly periods
in the three limits are shown in figure 5. Figures 5(a), 5(c) and 5(e) show the speeds,
Umin−NmaxD/π, Umin, c−n for modes 1, 2 and 3 respectively, and figures 5(b), 5(d) and
5(f ) the speeds c+n, Umax and Umax+NmaxD/π, again for modes 1, 2 and 3 respectively,
and each for the 24 hourly periods in Limits 1–3. Referring to this figure, it may be
seen that:

(i) the speeds of the modes are ordered in accordance with Bell’s theorem, i.e.
c−1 < c−2 < c−3 and c3 < c2 < c1 (e.g. compare figures 5b, 5d and 5f, where the
symbols approach the curve Umax as the mode number increases);

(ii) the speeds, c−n, in each mode n generally increase with increased limit number
(e.g. figure 5a), and c+n decrease (figure 5b). The exception is at Hr 19 for
modes 1 and 2 (in figures 5a and 5c, respectively) when, for some unknown
reason, the wave speeds, c−n, in Limits 2 and 3 are less than in Limit 1;

(iii) in all three limits, the mode 1 speeds, c−1 and c1, are in Umin − NmaxD/π< c−1 <

Umin or Umax < c1 < Umax + NmaxD/π. Moreover:
(iv) the flow is always subcritical to mode 1; for each limit there are mode-1 long

waves that travel in both the positive (direction 050◦) and negative direction, i.e.
the speeds c−n are all negative and c+n are all positive. However:

(v) although all mode 2 and 3 waves lie within the ranges Umin − NmaxD/π< c−n and
cn < Umax + NmaxD/π,

(vi) some mode 2 and 3 waves lie within the range Umin to Umax , e.g. Umin < c−2 in
Limit 3, figure 5(c), Hr 6, or c2 < Umax in Limit 2, figure 5(d), Hr 15. This is
apparently contrary to Bell’s theorem, but we recall that here Rimin < 1/4;

(vii) at Hr 7, both long mode 2 wave speeds, c−2 and c2, are negative in all
three limits, and at Hr 13, both are positive (figures 5c and 5d), supercritical
conditions necessary for second mode hydraulic jumps. The same applies at these
times for mode 3 (figures 5e and 5f ): it therefore appears possible that the
increase in phase speed of the c−2 and c−3 waves at Hr 14 (figure 5c) when c2

and c3 are both positive (figure 5d) transforms a subcritical mode 2 and 3 state
into a supercritical modes 2 and 3 state;

(viii) in some cases (e.g. in mode 3 at Hr 0, figures 5e and 5f, where c−1 < 0 and
c1 > 0, but c−2, c−3, c2 and c3 are all positive) the flow is subcritical at Limit
1 but supercritical in Limits 2 and 3. Here the effect of turbulence is to change
the critical state of the flow. (Although fairly large and abrupt – within an
hour – changes in the depth of isotherms occur during the 24 h record, none
can definitely be identified as being associated with hydraulic jumps. Further
observations are required.)

With reference to (vi) above, although the majority of speeds calculated in Limit 1 by
Gregg & Pratt (2010) also lie outside the range, similar ‘entry’ into the range Umin to
Umax is sometimes found for the modes 2 and 3 even when Rimin > 1/4 and may be
a consequence of resolution, the solutions being based on a set of discrete measured
values in z. In addition, concentration of oscillations in the eigenfunctions near the
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levels where U = Umin or Umax , makes ascribing the mode number uncertain (Pratt,
private communication, 2011). The same is true here; the ordering of the modes by
zero crossing sometimes leads to ambiguity: in the numerical solutions, there may be
more than one mode with the same number of zero-crossing points.

7. Discussion and summary
The effect of turbulence on the stability and hydraulic state of stratified shear

flows is examined, making several assumptions about the nature and representation of
turbulence. Coefficients of eddy viscosity and diffusivity are used, expressed in terms
of quantities that can be measured in the ocean, including the rate of dissipation of
turbulent kinetic energy per unit mass, ε. Expressions for the horizontal coefficients,
supposed independent of horizontal direction, are adopted following the discussion in
§ 3.2, expressions at present untested by observations.

With these and other assumptions, the effects of turbulence on flow stability are
assessed by applying the analysis to data from the Clyde Sea. Smaller values of
Ri than predicted using the inviscid and non-diffusive T–G equation are required to
produce instability when the effects of turbulence are included (§ 6.1). Flows that are
stable in Limit 1, neglecting turbulent viscosity or diffusivity, become more so (Rimin
becomes even greater than Ric) in Limits 2 and 3 when turbulence is included. It is
concluded that the main effect of turbulence on the stability of the observed flows is
a reduction of the growth rates of small disturbances. The effect of vertical transfers
of momentum and density represented by AV and KV are, however, relatively small;
the effects of the horizontal transfers, represented by the coefficients, AH and KH , are
generally much greater. Adding the vertical coefficients (Limit 2) reduces the growth
rate, (kci)max , by an average of 4.9 %, increases Φc by ∼5.7 % and reduces the critical
Richardson number, Ric, found by imposing a variation (1+Φc) on the flow, by 5.5 %.
At Limit 3 the three measures, (kci)max , Φc and Ric are reduced from the Limit 1
values by 19.0 %, 22.7 % and 16.2 %, respectively. Some flows that are unstable in the
absence of the effects of turbulence are stabilized: at Hr 11, for example, turbulence is
sufficient to stabilize the flow that, in Limit 1, is unstable.

No cases are found in the data set from the Clyde Sea in which the critical
Richardson number of turbulent stratified shear flows exceeds 1/4; the Miles–Howard
theorem, valid when viscous and diffusive effects are negligible, appears to continue to
be valid when the effects of turbulent transfers of momentum and mass are represented
by eddy coefficients.

The mean values of Φc and Θc for the turbulent flows in the Clyde Sea provide
measures of the marginality of the observed flows, their proximity to neutral
conditions. Since Rimin = Ric (1+Φc)

2, with Φc = −0.316 in Limit 2 (§ 6.1), typical
values of Rimin would have to be increased by a factor of 2.14 to bring the flow to
stability at Rimin = Ric. The equivalent factor is 1.82 in Limit 3. In contrast when ε

is varied (§ 6.2), Θc = O(65) in Limit 2; the mean ‘vertical’ Reynolds number of the
flow, ReV , must be reduced by a multiplying factor of ∼0.015 for unstable flows to be
made stable at some value, say ReVc . In Limit 3 the corresponding factors are 0.05 and
0.36 for ReV and ReH , respectively. In this sense in the Ri, ReV , ReH space (where Ric,
ReVc , ReHc determines the surface of neutral stability), the unstable flows are relatively
further from neutral stability in Reynolds number, ReV , than in Richardson number.

We might, however, envisage a flow with moderate or small rates of dissipation
becoming unstable, resulting in enhanced turbulence that increases ε and stabilizes
the flow. The following collapse of turbulence and reduction in ε would lead to the
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flow again becoming unstable, repeating the cycle, and thus maintaining conditions in
a state of marginal stability. Whilst such a cycle is perhaps plausible, the discussion
does not account for any changes produced in the velocity and density by turbulent
mixing nor, in the natural environment, for the effects of other processes, such as
internal waves perhaps radiating from an unstable region. (The envisaged repetition
is not unlike that observed in a tilted tube filled with two layers of different density
reported by Mittendorf 1961; see also Turner 1973, § 5.3.2, the flows in that case
accelerating up and down slope, becoming unstable to Kelvin–Helmholtz instability,
the turbulent Reynolds stresses transferring momentum across the tube and so reducing
and restabilizing the flow, that again accelerates under the component of gravity
parallel to the tube. Mittendorf observed this cycle to repeat up to three times. This
repetition is discussed by Thorpe & Ozen 2007, in considering the possibly marginal
conditions of winter cascading flows down the sloping sides of Lake Geneva.)

We can compare the order of magnitude of the viscous terms ∇H · (AH∇H u)
and ∂/∂z(AV∂u/∂z) (or those in w) in the linearized version of (2.1) and of the
diffusive terms ∇H · (KH∇H b′) and ∂/∂z(KV∂b′/∂z) in the linearized (2.3). The
ratio of the magnitude of the viscous terms is (AH/AV) (lAz/l)

2, supposing that the
vertical scale lAz characterizes the length scale over which vertical gradients of the
eddy coefficient, AV , and u (or w) occur, while l is the corresponding scale of the
horizontal variation of u (or w). Now AH/AV = (2.9 ± 0.8) × 10−2ε1/3l4/3/(0.2ε/N2)=
(1.45 ± 0.4) × 10−1 (l/LOz)

4/3 after using LOz = ε1/2N−3/2, and so the ratio is equal to
(1.45± 0.4)× 10−1 (l/LOz)

4/3 (lAz/l)
2. Similarly, supposing that a scale lKz characterises

the length scale over which vertical gradients of the eddy coefficients and b′ occur,
while l is the corresponding horizontal scale of variation of b′, we find the ratio
of diffusion terms in (2.3) to be approximately (1.45 ± 0.4) × 10−1 (l/LOz)

4/3 (lKz/l)
2.

With typical values for the scale of the fastest growing disturbances, l ∼ 20 m, and
lAz = lKz ∼ 5 m and LOz ∼ 0.1 m (see figure 2), the ratio of each of the pairs of terms
is ∼10; horizontal viscosity dominates the contribution to the growth rates of the
velocity, u (or w) in (2.1), and horizontal diffusivity dominates the contribution to the
growth rates of the buoyancy, b′ in (2.3). This is quantitatively consistent with their
effects on the largest growth rates of small disturbances.

However the estimation of the constant C in (3.4) that determines the constant in the
formulation, (3.6), for the horizontal eddy coefficients requires further consideration.
Okubo’s (1971) data for KD as a function of scale, l, from l ∼ 1 km down to ∼20 m
are fitted by (3.5), but no estimates of the relation are available at smaller l. The
constant, C, in (3.4) (i.e. KD = Cε1/3l4/3) is found by equating the expressions (3.4)
and (3.5) for KD, taking a mean observed value of ε. Assuming KH = KD then leads
to an expression for KH . But if there is an input of energy, e.g. from breaking internal
waves, at scales less than 20 m that leads to an augmentation of the dissipation rate,
the value of ε appropriate in (3.4) at scales of 20 m will be less than the mean
value at the small scales measured by the FLY microstructure probe, and so C will
be underestimated. The ratio, l∗/LOz, is about 4 when KV = KH (see § 3.2), and will
therefore be too large. The values of AH and KH appropriate at the scales of ∼20 m
of the fastest growing disturbances should, however, be increased by increasing C
but proportionally reduced by decreasing ε in (3.6) to its value at 20 m scales; the
net effect on the eddy coefficients may be slight. Further information is required
about horizontal dispersion at scales <20 m and ∼AH and KH to improve the present
tentative formulation of the horizontal effects of turbulence.

Turbulence reduces the range of long-wave speeds in both directions, i.e. for each
mode, n, the speed, c−n, of the fastest negatively propagating long wave generally
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increases when the effects of turbulence are introduced, while the corresponding
positive c+n speed decreases (§ 6.3). Although the wave speeds generally fall within
the bounds defined by Bell’s theorem, a subcritical flow may become supercritical as a
consequence of the presence of turbulence: the presence of turbulence may change the
hydraulic state of a stratified shear flow.

At the site in the Clyde Sea, the turbulent state of the observed flow appears,
however, to have generally a relatively small effect on its stability or on the hydraulic
conditions. Whilst there the neglect of turbulent effects may consequently be justified,
it is not so in general: studies made of the stability of flow in the Equatorial Pacific
show a much greater influence of turbulence.
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Appendix. The minimum Richardson number and extended Miles–Howard
theorem

The Miles–Howard theorem, providing conditions for stable flow in terms of the
magnitude of a minimum of the Richardson number, Ri = N2/ (dU/dz)2, may be
derived from the T–G equation found by combining (2.14) and (2.15) in Limit 1
using the method described by Howard (1961). Here U is the velocity component
of the mean flow in the direction, say φ, of the disturbance relative to north. Flow
components normal to the direction, φ, do not appear in the governing equations. The
minimum Richardson number, Ri, varies with φ, and if its minimum exceeds 1/4 then,
by the Miles–Howard theorem, disturbances in this flow direction are stable.

We suppose that the mean horizontal flow direction varies in z and, at level z,
the flow speed is U∗ in direction α. Then the velocity component of the mean
flow in the direction φ is U = U∗ cos(φ − α) = U∗(cosφ cosα + sinφ sinα) =
UN cosφ + UE sinφ, where UE and UN are, respectively, the east and north components
of U∗. Hence dU/dz = dUN/dz cosφ + dUE/dz sinφ, which (e.g. by differentiation
with respect to φ) has a maximum value, S = [(dUE/dz)2+ (dUN/dz)2]1/2, when
φ = tan−1[(dUN/dz)/(dUE/dz)] (which, since it varies in z, is not identified as the
direction of the fastest growing disturbance). The minimum Richardson number at
level z, as φ is varied, is therefore N2/[(dUE/dz)2+ (dUN/dz)2]. This is the Richardson
number plotted in the left column of figure 2.

It follows that an extension to the Miles–Howard theorem is that a horizontal, steady,
inviscid and non-diffusive flow with components (U(z),V(z)), stably stratified with
buoyancy frequency, N(z), where z is the upward vertical coordinate, is stable to small
disturbances provided that Ri = N2/[(dU/dz)2+ (dV/dz)2] exceeds 1/4 everywhere in
the flow (i.e. at all z). Sun et al. (1998, in their Appendix B) come to the same
conclusion.
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