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Dedication 

Thanks Mom, Dad, Chels, and Tiff. You know what all for. Dad: Quantum materiae materietur marmota 

monax si marmota monax materiam possit materiari? Yadaouisi?  Just kidding. Nietnienno. But probably 

about 6 cords. Cords, not chords. Or the other kind of cords. Or the other other kind of cords. Or the 

other kind of chords, you know, different than the first kind of chords. Mom: Don’t worry about the 

penny if you read this. It was in his pants pockets when he left. That’s why you should always clean your 

pockets out when you do laundry – what would have happened if he’d pulled out some lint? Chels: So 

far as I can tell, there really is water at the bottom of the ocean, but I could be wrong on this of course. 

Tiff: Draco Dormiens Nunquam Titillandus, but I never would expect you to anyway. I hope. Please 

please please please please tell me you wouldn’t… 

Thank you too, Tailler. I miss you. 



Background 

The study of marine sediment cores can aid in deriving the recurrence interval of earthquakes within a 

study area. The record found in these cores reflects the disturbances created by earthquakes (and 

possibly other sources) via the presence of turbidites. Turbidites appear in cores as patterns of repeating 

layers of coarser materials that trend toward finer sediments while moving upward through the core. In 

the context of the Cascadia subduction zone, the signature that earthquake induced turbidites have left 

behind illustrates how the region off of the Washington, Oregon, and Northern California coasts is 

capable of producing ~Mw 9 earthquakes (Goldfinger et al., 2008). Estimates such as these have led to 

elevated concerns about the hazards faced along Pacific northwestern coasts, such as the potential that: 

“Damage, injuries, and loss of life from the next great earthquake … [is expected to] be great 

and widespread, and will impact the national economies of Canada and the United States for 

years or decades.” (Penrose, 2000).  

Off of the island of Sumatra, in the same region that encompasses the epicenter of the December 26th 

2004 Earthquake, there is a similar geologic regime in operation. The accompanying tsunami, also called 

the Boxing Day Tsunami, led to the deaths of over a quarter of a million people. This fact, as well as the 

fact that similar earthquake events occur off of our own shores here in the Pacific Northwest, gives us a 

great impetus to study the conditions that produce megathrust earthquakes. 

The caveat in using sediment cores for this type of research stems from the fact that turbidites may be 

initiated by a variety of triggers, which have the potential to produce turbidites with similar, or possibly 

identical, identifying characteristics (Edwards 1993, Nakajima 2000). In order to negotiate this obstacle, 

certain techniques have been established to winnow the non-earthquake induced turbidites from the 



http://walrus.wr.usgs.gov/tsunami/sumatraEQ/images/ionetec
_major_faultsm.jpg 

true earthquake produced turbidites that are being targeted within the sedimentalogical record for this 

research (Goldfinger et al. 2008; 2009).  

The purpose of this project is to determine the boundaries of all basins that were cored for the 2007 

OSU Sumatra cruise. Additionally, it was designed to help determine the connectivity between separate 

core sites throughout the study area, and whether or not these sites may potentially share the same 

sources of sediment materials during a 

turbidite event.  

If it can be shown that corresponding 

sequences of earthquakes are found in 

cores that do not share the same sources of 

sediment, this is a strong indication that 

the turbidite record is indeed displaying the 

results of past earthquakes, and not a 

random sequence of turbidites that were 

not related to each other across the entire 

range of the study site. 

 

Geology of Sumatra  

Roughly 90 million years ago, the Indian continent began to separate from the larger Gondwanaland 

continent. Large amounts of vertical elevation gain and thrusting later began around 36-37 million years 

ago at the end of the Eocene. At roughly 21 million years ago, the rate at which the Indian subcontinent 

was travelling northward declined sharply, probably indicating the impact between the Eurasian and 

Fig. 1 
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Fig. 1: Plate Motion 
Near Sumatra 



Indian plates. At some point around 17-19 million years ago, spreading began along the Mid Ocean 

Indian Ridge. Subduction of the Eurasian plate stopped, while the impact of the two plates began to 

produce the Himalayan mountain range we see today via the action of crustal shortening. This same 

mechanism began to close the Tethys Ocean, which had been the water body north of the Indian plate 

prior to its collision with the Eurasian plate.  

The Indian Ocean is home to a plethora of fracture zones, ridges, and basins. Until recently, the northern 

Sumatra-Andaman Subduction Zone was thought by some to be aseismic, having little or no earthquake 

activity due o the high obliquity of subduciton. The area that makes up Sumatra itself includes an “active 

belt” and a mountain range that sweeps through from Myanmar in the north to the Andaman-Nicobar 

Islands and ends off to the west past Java (Rao and Griffiths, 1998).  

 

 

The Boxing Day Earthquake produced a 

ruptured zone of roughly 1200-1400km along 

the plate boundary, extending to the south the 

island of Simeulue and along the Sunda Trench. 

The 2005 earthquake initiated a 300 – 400 km 

rupture off of Nias Island (Ladage et al 2006).  

 

 

Fig. 2: 2004 & 2005 
Rupture Zones 
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Turbidites 

In many respects, turbidites behave very similarly to landslides. They are a common mechanism that 

transports sediments off of the continental shelf, relocating a large amount of material compared to the 

amount moved tides, ocean currents, or waves. They can be triggered by a variety of means, for 

example, via density undercurrents comprised of suspension layers on shelves, from ashfall, tidal or 

storm produced surges, storm or tsunami wave loading, or river discharge (Edwards, 1993). Additionally, 

they may be initiated by volcanic eruptions, slope self-failures, sea level fall, tides, and tsunamis 

(Nakajima, 2000).  

A sediment flow is a “mixture of particles and water that move down slopes because mixtures have a 

greater density than that of the ambient fluid.” Turbidity or density currents remain intact so long as 

there is enough upward momentum remaining in the flow to keep sediments in suspension. Hence, a 

sediment flow holds much in common with a turbidity flow, which in turn produces turbidites (Edwards, 

1993). The flow will remain in motion if the shear stress produced by downslope gravity as related to the 

shear stress on the suspended grains remains greater than the “frictional resistance to flow”, and while 

the grains cannot easily settle because of the continued presence of a support mechanism (intergranular 

flow, grain interaction, turbulence, or matrix strength).  As evidenced by the Grand Banks Turbidite of 

1929 that traveled at least 648 km, these mechanisms may drive a flow for great distances. 
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 The Bouma Sequence is the most 

widely used model that describes 

the facies within a turbidite. Termed 

as both “intervals” and “divisions”, 

five different groupings are often 

used to describe the various facies 

that may be found in a complete turbidite record. These units include: A) graded, B) lower parallel 

laminae, C) current ripple laminae, D) upper parallel laminae, and E) pelitic intervals or divisions. In 

reality, it is not common to see all five intervals in contiguous order before the sequence begins again; 

however, these are the five potential divisions that may be found in a turbidite record (Edwards, 1993). 

The essential trend that these intervals display is consistent upward fining (or put another way, finding 

consistently finer grains higher up in the sequence than toward the bottom) a signal that can be used to 

help identify the presence of a turbidite within a sediment core. 

 

Types of Turbidites 

Turbidites have two end-members, coarse grained (sand rich), and fine grained (mud rich), with coarse 

grained turbidites being more predominant in active-margin systems. Coarse grained turbidites tend to 

prograde into basins at a slow rate, simultaneously decreasing in the thickness of their deposits. Fine 

grained turbidites occur at both active and passive margins, prograde at a more rapid rate than coarse 

grained cases, and form deposits in the distal fan. Tectonically active basins tend to have coarser 

turbidites filling them than passive ones (Bouma, 2004). Fine grained/mud rich turbidites are more 

common at passive margins that have efficient basin transport, a broad shelf, are often delta-fed, and 

Fig. 3: Bouma Sequence 



usually have long fluvial transport. Usually they display a higher sand to shale ratio at the base of the 

slope, shifting to a low ratio in the mid-fan region, and back to a high ratio at the outer fan. Coarse 

grained/sand rich turbidites often have inefficient basin transport systems, a narrow shelf, and have 

canyons as a source, which work together to produce a prograding fan. The higher ratio of sand to shale 

lowers as distance from the channel increases and the turbidite gets closer to the outer edge of the fan 

(Bouma, 2000). 

 

Affect of Terrain on Flow of Turbidites 

The terms ponding and containment are used to describe the situation when a turbidite is contained 

either completely or almost completely within a basin (Lomas 2004). The shape of the basins themselves 

is predominately dictated by four factors; sea-level fluctuation, sedimentary characteristics and 

processes, tectonics, and climate (Bouma 2004). Submarine basins appear to have a great impact on the 

manner in which turbidite deposits or laid down, or, as Lomas puts it,  

“… a wealth of case studies now available from many contrasting turbidite systems worldwide 

makes it clear that, in many basins, both sediment dispersal patterns and the geometries of 

depositional bodies have been profoundly affected by pre-existing or developing basin-floor 

relief.” (Bouma 2004). 

Furthermore, it is possible that portions of a turbidite could be “reflected” when they encounter an 

obstruction, such as outcrops or bounding slopes (Lomas 2004).  

 



Debris Flows vs. Turbidites 

Certain characteristics differ between debris flows and turbidites, as debris flows tend to maintain the 

same density throughout their deposit. This is not the case for turbidity currents, which may have 

shifting densities due to differing deposition, entrainment, and erosion rates throughout their 

emplacement. Debris flow will often (when started on the slope above a basin) build a deposit that 

starts near the beginning of the flow at one thickness and will thicken slowly as it spreads outward, 

coming to a sudden stop just before the head of the basin. Contrastingly, turbidity currents will deposit 

on basin floors almost exclusively and will exhibit a region of erosion between the scarp and the area 

material was deposited in. Additionally, the turbidite will be most substantial at the base of the slope 

and will thin as it spreads toward the basin (Pratson et al, 2000). Tsunamis produced by landslides can 

have long run-ups onto land, but usually they do not encroach onto land for a great distance, and are 

also generally found over a smaller range coastline than tsunamis produced by the subsidence of the 

seafloor during an earthquake. Subsidence is also paired with coseismic uplift on land that is usually on 

transoceanic or regional scales (Carver, 1996). 

 

Using Turbidites as Paleoindicators of Earthquakes 

Most turbidites start on the in submarine canyons, which act as a gateway servicing both shallow and 

deep water  regimes. Nonetheless, it is possible for the triggers that initiate turbidites to operate at 

greater depths (Nakajima, 2000). Due to these factors, Nakajima states that the recurrence intervals of 

earthquakes cannot be approximated via the examination of turbidites in coastal basin along narrow 



shelves. However, Nakajima suggests that it may be possible to apply this type of test where “structural 

highs”, such as ridges, separate the basin from the shelves (2000). 

In the case of Sumatra, there are a series of topographic features that help to reduce the chance of non-

earthquake induced turbidites creating a large impact on the sedimentological record of the region. The 

island of Sumatra, as part of this subduction zone’s forearc basin, creates a large and effective barrier 

against storm induced turbidites making their way into the study area situated south of Sumatra. 

Sumatra’s northerly presence also precludes outlets for the northern basins, as the result of the 

sedimentary material transported off of Sumatra filling the trench at a slower rate than uplift is 

occurring.  

The Bengal and Nicobar Fans were sources of sedimentary material up to the Pleistocene; however, 

from the beginning of the Holocene to current day (encompassing the period sediments sampled by 

OSU’s cores date from), it appears that transport may have been cut off from these sources, possibly 

due to either obstruction from the NinetyEast Ridge, or the occurrence of a large Pleistocene era slide 

that appears to have choked off transport to the north. Hyperpycnal flows are also unlikely to produce 

large amounts of turbidite activity, as there is a dearth of rivers in these islands capable of producing 

such flows in the areas that were cored.  

Mass self-failure is a possibility, but as with the previously listed potential triggers, is spread only over a 

discrete spatial domain and would not be responsible for turbidites produced over a large areal extent. 

The presence of hydrates or tectonic uplift may decrease the cohesiveness of the sedimentary units on 

site, but are not triggers in and of themselves, only producing conditions that may increase the ease of 

slide activity. 

Although it is still quite possible that certain specific turbidite events found in the study area could be 

attributed to other causes beside earthquakes, large scale, similar, synchronous turbidite records are 



best and most simply explained by earthquake inducement, rather than smaller scale discrete events 

(Dr. Chris Goldfinger, personal communication, August 22nd, 2009). 

 

Finding Flow in Study Site 

For the sake of clarity and brevity, details on the procedure used to produce the datasets in this analysis 

have been placed in Appendix A at the end of this report.  

The basin boundaries were decided on by examining various 

bathymetry datasets gathered on site. These datasets were 

then used to find the breaking points in the terrain where a 

turbidite would likely be able to traverse through, and 

where it would be halted by terrain.  

Terrestrially, a watershed is a tract of land over which any 

raindrop that falls within its boundaries will eventually 

make its way to a common outlet. Its edges are defined by 

ridgelines that separate adjacent watersheds. If one of 

these ridgelines were running north to south, and a raindrop fell slightly to the west of the ridge, it 

would flow into the watershed to the west. A raindrop that fell to the just to the east would find its way 

into the eastern watershed. At the ridge, this behavior produces flow directions that travel in opposite 

or nearly opposite directions.  

It would be unexpected to find a stream near the edge of a watershed on land, because there would not 

be the necessary distance traversed from the ridgeline to accumulate enough water to feed an 

Fig. 4: Core Site Basins 



organized stream. Additionally, one of the defining characteristics of a watershed is that a stream from 

one watershed never crosses into a neighboring one, since the water would have to find a way to flow 

uphill and over the ridgeline in order to do so. In a marine setting, basins are the corollary to 

watersheds. This being the case, the word “watershed” will be referred to as “basin” throughout the 

rest of this report. 

The results of two separate methods were compared and then used to confirm the basin boundaries for 

this project. Owing to the similarity of basins to watersheds, one method of determining these 

boundaries was via an ESRI tool called the Watershed Delineation Tool designed to define watersheds 

on land. In addition to the boundaries of the basins, this tool also produced a stream network based off 

of the main channel for each of the watersheds the tool rendered. The second tool was designed to 

approximate the boundaries of a basin through the selection and combination of characteristics from 

two other datasets, flow accumulation and flow direction. The resultant dataset was used to not only to 

verify the boundaries produced by the Watershed Delineation Tool, but also to ensure that the scale 

used by the ESRI tool was correctly selected.  

One of parameters the watershed tool takes into account is the minimum number of cells that must be 

inputted into a region before it can be considered a watershed, which translates into setting the 

minimum size of watersheds that will be produced in the dataset. This problem was addressed by 

comparing the results of both the Watershed Delineation Tool and the second tool that was designed 

for this project. The Watershed Delineation Tool was run iteratively while inputting progressively larger 

minimum watershed size parameters until it appeared that the size of the smaller basins were best 

reflecting the breaks in flow that were illustrated via the second tool.  

Fig. 4: Finding Basin Boundaries 

Agreement with Watershed Delineation Tool 

Fig. 5: Finding Basin Boundaries 

Agreement Between Tools 

Tool 2: Final Result 



The second tool was also 

used to check that the ESRI 

tool was producing 

reasonable results with 

respect to the terrain (see 

Fig. 4). Where the second 

tool disagreed with the 

basins drawn by the 

Watershed Delimination 

Tool the boundaries were 

examined more closely to 

decide if they were reasonable. Once these two means of obtaining boundaries had been executed and 

compared, a network based on the streams running through these basins was developed in order build a 

dataset that could be turned into a network capable of tracking the transport of materials throughout 

the basin.  

Streams may be modeled using a GIS by identifying 

cells that have a high amount of flow upstream 

coming into them. Two different sets of stream 

networks were built for this project. The first was built 

by the Watershed Delineation Tool, which projected 

one branch of stream for each individual basin.  Since 

a watershed has only one outlet, and the streams 

constructed by the GIS tool represent the sites that 

material can flow out of a watershed, or in this case, a basin. The second stream system was not used to 

Fig. 4: Finding Basin 
 

Tool 2 Final Result 

Final Agreement Between Tools 

Fig. 6: Stream Network 



describe the flow of streams throughout the basin, but instead was used to highlight regions where 

flows were high versus where flows were low. Its purpose was to aid in the detection of ridgelines and 

other features that could indicate a basin boundary. By selecting for cells that have, for example, 50 or 

more cells feeding into them from upstream, it is easy to visualize a sort of exaggerated stream network 

could be used to estimate where there is a potential for flow, and where there is not. A cell having 50 

cells upstream of it is not actually a high value in the context of this site, but when looking for ridgelines, 

it is helpful to see locations that have flow accumulating in them. Since the boundary cannot exist where 

there are more than a handful of cells (to take into account a reasonable window of error in the 

elevation data), if there is evidence of flow in a certain region, the basin boundary does not belong 

there. These streams were used in tandem with the results of the previous two tools in order to ensure 

that reasonable results were being produced. 

Topology of both basins and subbasins were considered for this project. The basins describe the 

ultimate extent over which materials could be the source for a core situated within them, but the 

smaller scaled subbasins help to look more closely within the basin and determine how flow is travelling 

on a finer level. The streams that service the subbasins were used to construct the data that ultimately 

became the stream network; however, the segments of the streams that were could be considered main 

tributaries on the basin-wide scale can still be used “stand alone” if the data on the subbasin scale is not 

desired. For further discussion on how the subbasins were constructed, please see Appendix A. 

This project required complete regional coverage of bathymetric data. While at sea, OSU gathered data 

at core sites via multibeam sonar. On a broader spatial scale, 90m British Institute data was also used; 

however, this dataset contained “holes” in it or places where there was no data coverage, meaning that 

lower resolution 1km data had to be used to “plug” those gaps through the mosaic function in ArcGIS. 

This approach proved to be problematic in that the edges between the low and high resolution data did 



not mesh well enough to run the needed analysis on the data – producing phantom harsh edges and 

changes in gradients. This caused ArcGIS to interpret these artifacts as steep valleys or ridges in places 

that there most likely was no marked change in topography. Another type of artifact in the data is “ship 

tracks”, or places in the data that are slightly disrupted due to additional bathemetric data gathered 

while the ship crossed over a previously surveyed region. A filter was used in an attempt to smooth 

some of these minor discrepancies in the data without changing its trends. A low-pass and high-pass 

filter, as well as a focal mean filter, were used on the original bathymetric data and compared to each 

other. The focal mean function and low-pass filter produced highly similar results, while the high-pass 

filter seemed only to exacerbate the imperfections in the data. The focal mean data was chosen to run 

the analysis, although the basins estimated by the watershed tool from the focal mean and high-pass 

filters were so similar that it is highly unlikely that it would have mattered in regard to the analysis which 

of these two filters were used. In order to check the effect of the filters, the watershed tool was run on 

the original data without a filter. While the majority (roughly 80%) of the boundaries were the same or 

quite similar, the remaining 20% percent or so displayed enough of a shift that the boundary drawn 

from either the filtered or unfiltered data would have been located a kilometer or more apart.  

 

NETWORK ANALYSIS 

Once the stream network from the Watershed Delineation Tool was constructed, the data was then 

available to build a network from this information. A network has the ability to track travel along 

pathways, such as streams, and can be instructed to recognize sources of flows as well as sinks. These 

sources and sinks can then be used to describe the routes and directions water, and ultimately a 

turbidite, would be inclined to traverse in a system. It then becomes possible to examine the basin as a 

whole, or to focus instead on certain portions of the network up or downstream from the location that 



is selected. Furthermore, it is possible to trace all connected points of a system above or below two 

selected points, as well as between two specified locations. Additional analysis may include isolating 

common reaches of the stream upstream of two or more cores, or to specify areas not to be included in 

a query.  

These capabilities, as well as many others, are useful in the context of studying turbidites because the 

network serves as a device that can track the areas upstream of a core that form the cummulative 

sources of the turbidite, and also can be used to indicate which cores are connected to the same sources 

upstream. Comparing the histories of these related cores can indicate whether or not flows are traveling 

as expected through the system, and can help ground truth whether or not the events that appear to 

display the same history of turbidites do or do not share the same sources of materials. 

Being able to track interactions 

between cores indicates whether 

or not similar signatures found in a 

core should be expected because 

of common source histories. If 

multiple cores in different basins 

illustrate similar sequences of 

turbidites, the fact that they had 

disparate sources greatly reduces 

the possibility that a string of 

smaller scale triggers happened to 

initiate a series of events across the entire extent of the study area that all left behind a similar pattern. 

It becomes much simpler to explain the patterns shared in the histories of these cores as being 

Upstream Accumulation 
of 2 Cores 

Upstream Accumulation of 
1 Core Only 

Fig. 7: Network Analysis 

Upstream Accumulation of 
1 Core Only With Barrier 



produced by broad scaled events, such as earthquakes, rather than being the results of random storms 

or slope failures that happened to leave behind similar repeating patterns throughout a study area. 

 

CONCLUSION 

Although care must be exercised when deciding which turbidites represent an earthquake versus a non 

earthquake induced turbidite, with proper precautions it is possible to use turbidites in sediment cores 

as paleoindicators of earthquakes. This project is meant to aid in the beginning of this overall process by 

helping to define the boundaries of basins that serve as sources of sediments for turbidites. A network 

based off of stream information derived from the basins in the study site was constructed to more easily 

investigate the flow of material within the basins themselves. If it can be shown that the same sequence 

of turbidites are occurring across multiple basins that do not share the same sources of materials, then it 

becomes evident that this pattern is not repeating simply due to chance. Such consistency is a good 

indicator of earthquakes serving as the cause of the turbidites examined in the sediment cores taken 

within the study area. 
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Appendix A 



Data Files Inputted: 

 -GPS Points of core locations 

 -Bathymetry data of site 

  -Spatial Reference: WGS_1984_Transverse_Mercator 

  -False Easting: 500,000 

  -Central Meridian: 97.5 

Program Used: 

 -ARCGIS 9.3 

Unless stated otherwise, tool settings were left at default.  

 

OPERATIONS 

Merge in lower resolution (1km SRTM) data to “plug holes” in higher (90m) data. 

-Merge (mosaic) operation in Map Algebra 

  Input 1: 90m data, Input 2: 1km data,  

Output: mos200_F 

Run Focal Mean to average out edges left by Merge operation. 

 -Focal Mean operation in Map Algebra 

  Command line: Outgrid = FocalMean (Ingrid, rectangle, 3,3) 



  Input: gbj_utm 

  Output: mos200_F 

 A high pass and low pass filter were also run on the mosaiced data; however, the high pass filter 

only seemed to exacerbate the edges, and the low pass filter produced results so similar to the focal 

mean operation that there was almost no difference between the resulting datasets.  

At this point, a mask was created to refine the area that was being studied and to reduce unnecessary 

file size. 

-A polygon of the appropriate shape was created in a new shapefile. This polygon was then used 

to act as a mask (specified area) to select the bathymetry data from.  

Input: mos200_F 

Output: focmeanmask 

Flow Direction 

 -Hydrology menu operation 

Input: focmeanmask 

  Output: flowd 

Flow Accumulation 

 Hydrology menu operation 

  Input: flowd 

  Output: flowa 



Finding Streams 

In order to determine streams, it is necessary to pinpoint which cells have a large number of cells 

upstream of them feeding into the original cell. The larger the number you put in as an input, the larger 

the amount of accumulation is needed before that cell is considered to be part of a stream. In the case 

of this operation, only cells that have a value equal to or greater than 100,000 cells feeding into them 

upstream are selected for the basin scale, or in other words, given a value of one. The subbasin scale 

was set at a 1,000 scale minimum. All others are disregarded, being assigned a value of zero. The larger 

scale was decided upon by experimenting with the scale set in the Watershed Delimination Tool and 

comparing the results with a second, independent tool that displayed the location of low flow 

accumulation and large changes in flow direction to be found at a ridgeline. The basin scale represented 

the overall extent that materials could have come from to feed a core that may fall within a basin. The 

subbasins were areas that fit within the basins that may have partly contained a turbidite, but through 

which there was still a path that material could potentially move through. The purpose of including the 

subbasins was to acquire a higher level of resolution for the stream network on a basinwide scale, 

especially for the case of examining a basin that contained more than one core within it. A more 

thorough description of both these tools is in the following two sections of this index. 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

Fig. 7: Basins and Subbasins (Both Tools) 

 Subbasins 

Nesting of Subbasins into Basins 

Large  Basins 

Small  Basins 

Large  Basins 



-In Map Algebra: 

  con(InRas >= 100,000, 1, 0) 

  Input (InRas): flowa 

  Output: st100 

   Command line: con(InRas >= 1000, 1, 0) 

    Input (InRas): flowa 

    Output: st1 

Note: numbers in file names are factors of 1/1,000 of number of cells inputted into operation (example: 

100 means 100,000 was the input). 

Watershed Delineation Tool 

Two tools were used to find the boundaries of the basins for this project. The results of both were 

compared after they had been run to serve as a check that results were reasonable. 

The first tool was downloaded from ESRI.com. It automatically generates a flow direction, flow 

accumulation, stream network, and watershed boundary dataset from an elevation dataset. 

 Input: gbj_utm 

 Scale: 100,000 

 Outputs: 

  fa100, fd100, st100, ws100 

Input: gbj_utm 



 Scale: 1000 

 Outputs:fa1, fd1, st1, ws1 

Tool 2 

Tool 2 was comprised of data extracted from areas of low focal accumulation and a large difference in 

flow direction over short distances, which are the conditions that would be expected at a watershed’s 

boundary. A greatly exaggerated stream network was also built, designed to show locations where even 

small amounts of flow could potentially occur. Originally, it had been planned to make a set of ring 

buffers around the streams at various distances and compare how far from the streams areas of low 

focal flow and large discrepancies in flow direction were to take a more gradational approach, but the 

buffers produced such large file sizes that the operation proved to be too cumbersome to be practical. 

Also, areas of low slope were initially intended to be extracted and compared to the focal flow and 

accumulation. Unfortunately, when areas of low slopes were included as originally planned, they began 

to introduce other areas besides basin boundaries, introducing error if the other conditions for flow 

accumulation and focal flow happened to be met there (for example, in the lower slope areas outside 

the trench or some slopes out toward the abyssal plane).  

The focal flow function was used here instead of flow accumulation because flow accumulation was 

dependent on what happened upstream of the cell in question, while focal flow is a type of 

neighborhood analysis and only takes into account what is happening on a cell by cell basis. Focal flow 

was selected over flow accumulation in order to better highlight what was occurring with the terrain on 

a smaller scale basis, hopefully avoiding the effect of abnormal flow accumulation upstream affecting 

the placement of the basin boundary. 



In the end, areas of low focal flow were extracted and assigned a value of one, with all other areas being 

assigned a value of zero. For flow direction, areas in close proximity to each other with flows pointing 

close to opposite directions were selected and also assigned a value of one, while the rest of the dataset 

was set to zero. Then, the two datasets were “added” together, and cells that produced a value of two 

indicated areas that were likely to be situated at a basin boundary, and all others receiving a value of 

zero. This new dataset was checked by comparing an overly developed stream system to the areas that 

were selected by the Euler maps (the new dataset). Where the areas indicated by the Euler map were 

clearly positioned separately from areas that showed heavy stream development, it appeared to be 

likely that there was a basin boundary nearby. 

Most of the resultant larger basins had smaller subbasins within them that apparently could have flow 

traveling through them on to the basin as a whole, but would have more difficulty traveling through. For 

that reason, two divisions were created, one for the basin scale, and the other for the subbasin level. As 

discussed earlier, these two scales were then approximated using the watershed tool by setting the 

100,000 cell and 1,000 scale inputs as the minimum basin or subbasin size, respectively. Using the 

streams produced by the watershed tool allowed for a shapefile of polygons, as well as an appropriate 

stream network with one outlet for each basin or subbasin, to be built automatically, instead of having 

to digitize these systems by hand. 

Focal Flow 

 -Neighborhood Analysis Focal Flow 

 Input: gbj_utm 

 Output: fflow 

Tool 2 Dataset 



-Map Algebra 

  “Value”>=245 OR “Value”<=15 

 Reclassify: selection = 1, not selected = 0 

  Input: fflow 

  Output: fflowsel 

 Reclassify: selection = 1, not selected = 0 

  Input: flowa 

  Output: flowasel 

 Raster Calculator 

 Sumrast = flowasel + fflowsel 

ID Basins and Subbasins onto Stream Segments 

The gridcode of the individual basins and subbasins was imprinted onto the streams along the stretches 

that they intersect with the respective basin and subbasin polygons. This operation makes it possible to 

disregard the stream segments that make up the subbasin level of detail to the subbasin scale data is 

not desired by selecting only line segments that have a basin level gridcode. 

 Identity Operation 

  Input 1: ws100 

  Input 2: st1 

  Output: stws 



 Input Operation 

  Input 1: ws1 

  Input 2: stws 

  Output: stbas 

 

Producing Geometric Network from Stream Data 

In order to make a geometric network, a new personal geodatabase has to be made, followed by a new 

empty feature class has to be built.  The stream network lines must be imported into the new feature 

class. Also, the points from the streams must be extracted through a tool such as X-tools or the Feature 

Vertices to Points Command in the Data Management Tools/Feature Vertices menu of the ArcGIS 

Toolbox menus. After that, in ArcCatalog, a new geometric database is produced via these feature 

classes. When the network was built, the defaults were selected, except for allowing complex edges, 

and snaps being set at roughly the resolution of the cell size (in this case, 100m) was also useful. Sinks 

are permitted, the source of those sinks being the points extracted from the stream network. 

After the network was produced, it must be edited. The lines that are not connected need to have a 

Union operation performed on them. The extra line segments that appear as either artifacts from raster 

conversion or other errors also need to be removed. The flow direction must be set by changing the 

ancillary role of the ultimate downstream point in the system to “sink”.  

If the portions of the network have too many sets of lines and points that were duplicated when the 

network was created, have been brought over as multipart edge features, or were in other ways 

corrupted, sometimes it is faster and more effective delete the old edges and to digitize new line 



features (note: they must be complex edges, not simple) directly on top of the stream by snapping lines 

to the points of the original streams. 

 

  


