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Many applications in surveillance, monitoring, scientific discovery, and data cleaning re-

quire the identification of anomalies. Although many methods have been developed to

identify statistically significant anomalies, a more difficult task is to identify anomalies

that are both interesting and statistically significant. Category detection is an emerg-

ing area of machine learning that can address this issue using a ”human-in-the-loop”

approach. In this interactive setting, the algorithm asks the user to label a query data

point under an existing category or declare the query data point to belong to a previously

undiscovered category. The goal of category detection is to discover all the categories

in the data in as few queries as possible. In a data set with imbalanced categories, the

main challenge is in identifying the rare categories or anomalies; hence, the task is often

referred to as rare category detection.

We present a new approach to rare category detection using a hierarchical mean

shift procedure. In our approach, a hierarchy is created by repeatedly applying mean shift

with increasing bandwidth on the entire data set. This hierarchy allows us to identify

anomalies in the data set at different scales, which are then posed as queries to the user.

The main advantage of this methodology over existing approaches is that it does not

require any knowledge of the dataset properties such as the total number of classes or the



prior probabilities of the classes. Results on real-world data sets show that our hierarchical

mean shift approach performs consistently better than previous techniques.
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Chapter 1 – Introduction

Many applications in surveillance, monitoring, scientific discovery, and data cleaning re-

quire the identification of anomalies. Ideally, these anomalies correspond to data points

or events of interest, such as a disease outbreak in biosurveillance or a network attack in

intrusion detection. Although many methods have been developed to characterize anoma-

lies as statistically unusual events, not all statistically significant anomalies are necessarily

useful. In fact, many anomalies are simply uninteresting, corresponding to known sources

of noise or known combinations of features that are irrelevant to actual events of interest.

Consider the following two examples. The first example, taken from [16], involves the

task of scientific discovery from the Sloan Digital Sky Survey (SDSS) [19], which is a 5

year survey of the northern skies by ground-based telescopes. Most of the images in the

SDSS capture known phenomena such as stars, comets, nebulae, etc. which have already

been discovered. Anomalies in the data correspond to unusual or unknown objects which

could potentially lead to new scientific discoveries. However, the majority of anomalies in

the SDSS are of no interest to astronomers. These anomalies include satellite trails and

diffraction spikes, which are artifacts of the telescope. Such anomalies clearly do not lead

to new discoveries in astronomy. The anomalies of interest, such as unusual galaxies, are

extremely rare and constitute a miniscule 0.001% of the entire data set. A similar task

exists in the analysis of network log files. The IT infrastructure of a company can contain

thousands of computers and devices networked together. These components are often

equipped with monitoring agents that generate log files that capture characteristics of the

network traffic. Statistical anomalies in these log files often correspond to uninteresting

events such as those arising from events that are already known or expected, such as

events arising from maintenance upgrades. A very small fraction of the log file anomalies
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correspond to actual network failures and attacks. Identifying these meaningful anomalies

would be beneficial for the diagnosis of faults and the prevention of malicious attacks.

Thus, a challenging new task has emerged for the field of anomaly detection – identi-

fying anomalies that are not only statistically significant but also interesting. Since the

“interestingness” of an anomaly is subjectively defined, a human-in-the-loop approach is

needed. Category detection is an emerging area of machine learning that can address this

issue. In category detection, the algorithm asks the user to label a query data point under

an existing category or declare the query data point to belong to a previously undiscov-

ered category. The goal of category detection is to discover all the categories in the data

in as few queries to the user as possible. The main challenge in this task is discovering

the rare categories, which appear as small, dense clusters or isolated outliers in the data

set. This task becomes especially challenging if the data set is dominated by a handful

of disproportionately large categories, which makes the rare categories become extremely

difficult to discover through manual inspection. As a result, category detection is often

referred to as rare category detection.

In this thesis we present a new approach to rare category detection using a hierarchical

mean shift procedure. Mean shift is a non-parametric clustering technique widely used in

the areas of image processing and computer vision. It is used in this thesis for discovering

clusters and cluster modes. By repeatedly calling mean shift with different bandwidths,

we can create a hierarchy of clusters at different scales and thus use this information to

score each cluster by how “anomalous” it is. This score can then be used to rank the

representative data points of each cluster for labeling by a user. The main advantage of

the proposed method over previous related work [16, 9] is that it does not require any

prior knowledge regarding the properties of the data set, such as the total number of

clusters present in the data or the prior probabilities of the clusters.
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Chapter 2 – Related Work

2.1 Problem Definition

Previous work has defined the problem of rare category detection in the following manner.

A set of unlabeled examples S = {x1, x2, ...., xn} where xi ∈ �d are from m distinct classes

labeled yi = {1, 2..., m}. The goal is to detect at least a single instance from each class

by requesting as few labels from the user as possible.

2.2 Rare Category Detection

2.2.1 Interleave

Pelleg et al. [16] proposed the Interleave algorithm in which they assumed the data

is generated by a mixture model. Interleave starts with an entirely unlabeled data set

and clusters it using a standard EM algorithm for mixture models. The EM algorithm

maintains, for every mixture component and data point, the “degree of ownership” that

the mixture component exerts over the data point. Interleave stores, for each mixture

component, a list of the points that it “most owns”, sorted in increasing order by the

“degree of ownernship” values. Intuitively, the algorithm queries data points that are

“least owned” by the components. It cycles through all the lists in a round robin fashion

and constructs an output list by picking the top data point from each list that has not

already been placed in the output list. This top data point is placed in the next position of

the output list. The data points in the output lists are the ones selected for user labeling.

The class membership values obtained from labeling data points from the previous step

are clamped to the user-supplied labels before the next EM run. These iterations go
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on until data points from all the classes have been discovered. Interleave is outlined in

Algorithm 1.

Algorithm 1: Interleave

Set Labels = {};1

while not all classes have been discovered do2

(PointOwnership[m][n]) = SemiSupervisedEM (S, Labels);3

where PointOwnership[i][j] is an estimate of the degree of ownership that ith4

component exerts over jth point;
for i← 1 to m do5

Sort(PointOwnership[i], ’IncreasingOrder’, Points[i]);6

where Points[i] is the list of all points ranked by the degree of ownership7

that ith component exerts over them;
end8

OutputList = ();9

for i← 1 to m do10

for j ← 1 to n do11

if Points[i][j] not in OutputList & Labels then12

OutputList.PushBack(Points[i][j]);13

break;14

end15

end16

end17

Labels += SelectTopK(OutputList,numHints);18

where SelectTopK(OutputList,numHints) selects the top numHints points19

from the OutputList;
end20

The advantage of this approach is that it is model independent. The algorithm does

not make any assumption that the data is noiseless like some of the existing active learning

methods and is resilient to noise. However, this algorithm needs to know, at the beginning,

an initial estimate of the number of classes in the data. Although the number of classes

changes as the user provides feedback to the Interleave algorithm, this initial estimate of

the number of classes is often not known in advance and an incorrect value at the outset

can adversely affect the algorithm. Furthermore, the Interleave algorithm converges to

a local optimum due to the EM clustering algorithm, thereby producing different results

for different starting conditions.
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2.2.2 Nearest-Neighbor-Based Rare Category Detection (NNDM)

He et al. [9] describe a nearest-neighbor based active learning for rare category detection

(NNDM). NNDM uses an unsupervised local density differential sampling strategy. It

makes use of nearest neighbors to measure the local density around each data point. The

algorithm starts with an entirely unlabeled data set. In each iteration, the algorithm

selects for labeling the data point with the largest change in local density. The algorithm

halts once a data point from each class has been selected for labeling. The main advantage

of this method is that it does not assume the separability of the classes. This property

is useful in case of real world data sets where the support regions of the majority and

minority classes often overlap. The pseudocode for NNDM is outlined in Algorithm 2.

Like Interleave, NNDM needs to know the number of classes in advance. NNDM also

requires the prior probabilities of the classes. While NNDM is effective at discovering

categories that overlap each other, we have noticed some undesirable behavior in which

NNDM repeatedly queries data points from the same already-discovered cluster if these

data points have a large local density differential value.

2.2.3 Active Sampling for Multiple Output Identification

Fine et al. [5] abstract the rare category detection problem as an output identification

task in a learning model. The learning model has an unknown target function f which

maps every input in χ to one of m output values. The output identification task is to find

m inputs, one for each output value. The algorithm knows that the target function f is

in a given function class F . The work assumes an unknown distribution over the inputs

and describes algorithms for many classes of functions. The algorithms are shown to have

an expected sample bound of the order of m and log(1/ε) where ε is the lower bound on

the probability of each output class. The work similarly reports sample bounds in special



6

Algorithm 2: Nearest-Neighbor-Based Rare Category Detection for Multiple
Classes (NNDM)

Let p1, p2...pm be the priors of m classes. Let n be the number of data points.;1

for i← 2 to m do2

Let Ki = npi;3

For each example, calculate the distance between this example and its Kth
i4

nearest neighbor;
Set r

′
i to be the minimum value among all the examples;5

end6

Let r
′
1 = maxm

i=2r
′
i;7

for i← 1 to m do8

∀xj ∈ S, let NN(xj ,r
′
i) = {x|x ∈ S, ‖x− xj‖ ≤ r

′
i}, and ni

j = |NN(xj ,r
′
i)|;9

end10

while not all classes have been discovered do11

Let r
′
= min{r′

i|1 ≤ i ≤ m, and class i has not been discovered}, and s be12

the corresponding index, i.e. r
′
= r

′
s;

for t← 1 to n do13

for each xi that has been selected and labeled yi,14

∀x ∈ S, s.t.‖x− xi‖ ≤ r
′
yi
, si = −∞;

for all other examples, si = maxxj∈NN(xi,tr
′)(n

s
i − ns

j);15

Query x = argmaxxi∈Ssi;16

If x belongs to a class that has not been discovered, break;17

end18

end19
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cases like binary outputs i.e. m = 2, specific distributions (the uniform distribution) and

a concept class defined over the Boolean hypercube {0, 1}n.

2.3 Semi-supervised Clustering

Semi-supervised clustering incorporates background knowledge about the domain or the

data set into the clustering process. This knowledge is in the form of pairwise must-link

or cannot-link constraints between data points. Bilenko et al.[1] propose approaches that

use labeled data or pairwise constraints on data in a semi-supervised clustering setup.

The pairwise constraints are used in constructing an objective function defined as the

sum total of the squared distances between the points and their cluster centroids with

an attached cost for violating any pairwise constraint. The clustering algorithm aims to

minimize this objective function. The work also highlights a metric learning approach

to further utilize the pairwise constraints obtained from the labeled data. The distance

metric is modified in such a way that the distance between the objects of the same cluster

is minimized and that of different clusters is maximized. The generally used Euclidean

distance is parameterized using a symmetric positive-definite weight matrix A. Using the

pairwise constraints, a weight matrix is learned for each cluster and the distance metric

is warped to best suit the constraints.

Another form of semi-supervised clustering is distance metric learning which is used to

learn the distance metric of the input space of the data given the label information of some

of the data points. Previous work has shown that distance metric learning can improve

the performance of various learning tasks like clustering, classification etc. Xing et al. [23]

present an algorithm which takes examples of similar and dissimilar points in the dataset

in the form of pairwise constraints and learns a distance metric which respects these

relationships. The learned distance metric will assign small distances between similar
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points and large distance between dissimilar points. The metric learning problem is

posed as a convex optimization problem of finding a distance metric which minimizes

the distance between similar points. They show that the learned metric significantly

improves clustering performance. Similarly Wagstaff et al. [21] modify the k-means

clustering algorithm to incorporate the pariwise constraints. The new algorithm named

constrained k-means clustering ensures that none of the constraints are violated while

updating the cluster assignments of the data points. An attempt to assign a point to its

closest cluster C will fail if there is another similar point assigned to C ′ or a dissimilar

point assigned to C. The next closest clusters are checked where the assignment can be

made without breaking any constraints. Both of these approaches output a global distance

metric which keeps all the points in the same class close together and those of different

classes well separated. In the scenario where classes in the dataset exhibit multimodal

behavior, these goals conflict and cannot be simultaneously satisfied. Yang et al. [25]

propose a local metric learning algorithm which aims to optimize local compactness and

local separability. The work learns the local distance metric in a probabilistic setup by

using eigenvector analysis and bound optimization. Instead of focusing on all the pairwise

constraints, the algorithm learns a metric which brings only pairs of the same mode of a

class closer and separates nearby pairs from different classes.

2.4 Active Learning for Object Categorization

Active learning has been applied for category recognition previously. Kapoor et al. [12]

describe a probabilistic model to categorize visual objects. They introduce an active

learning paradigm into the probabilistic model to optimally select unlabeled points for

interactive labeling. The strategy is to select the next point based on its level of uncer-

tainty. A point which has the maximum posterior mean (distance from the classification

boundary i.e. margin) and posterior variance is the most uncertain to categorize. The
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knowledge of its label is most likely to maximize the discriminatory capability of the

system and hence the best choice for interactive labeling. The work aims to learn as

accurate a classifier in as few queries as possible. It is to be noted that the focus is on

active learning rather than category detection.
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Chapter 3 – Mean Shift

3.1 Introduction

Mean shift is a non-parametric clustering algorithm proposed by Fukunaga and Hostetler

[6]. It is based on the concept of nonparametric estimation of probability density functions

in which the value of a density function at a point can be estimated using the sample

observations that fall within a small region around that point. The popular Parzen win-

dow technique generalized this concept for density estimation. The mean shift algorithm

remained fairly obscure until researchers in vision recognized its usefulness in image seg-

mentation [2, 3]. The subsequent sections follow the notations used in Dorin et al. [3].

3.2 Kernel Density Estimation

Let xi, i = 1, ..., n be n independent and identically distributed d-dimensional random

vectors. The multivariate kernel density estimator computed at point x is given by

f̂(x) = n−1
n∑

i=1

KH(x− xi) (3.1)

where

KH(x− xi) = |H|−1/2K(H−1/2x) (3.2)

H is a symmetric positive definite d x d bandwidth matrix. K(x) is d-variate kernel

that is non-negative and integrates to one. It satisfies the conditions for asymptotic

unbiasedness, consistency, and uniform consistency of the gradient of the density estimate
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[6]. One of the widely used kernels are the radially symmetric kernels obtained by rotating

a univariate kernel in Rd. The kernel is of the form

K(x) = ck,dk(‖x‖2) (3.3)

k(x) is called the profile of kernel K(x) for x ≥ 0 and ck,d is a normalization constant

that makes K(x) integrate to one [2]. In order to reduce the complexity of estimation, H is

assumed to be either of the form of a diagonal matrix H = diag[h2
1, ..., h

2
d] or proportional

to the identity matrix H = h2I where h > 0. Assuming H to be proportional to the

identity matrix, the multivariate kernel density estimator in 3.1 becomes

f̂(x) =
1

nhd

n∑
i=1

K(
x− xi

h
) (3.4)

Various multivariate kernel functions can be used for density estimation using the

above expression. Two commonly used kernels are the multivariate Gaussian kernel and

the Epanechnikov kernel. We will be using the Gaussian kernel function with zero mean

and identity covariance matrix.

KN(x) = (2π)−d/2 exp(−1

2
‖x‖2) (3.5)

whose profile is given by

kN(x) = exp(−1

2
x) x ≥ 0. (3.6)
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The density estimator expression based on the multivariate normal kernel will now

become

f̂(x) =
ck,d

nhd

n∑
i=1

k(‖x− xi

h
‖2) (3.7)

3.3 Density Gradient Estimation

The density gradient estimator can be obtained by the gradient of the density estimator

in 3.7 [3]. It is given by,

�f̂h,K(x) =
2ck,d

nhd+2

n∑
i=1

(x− xi)k
′
(‖x− xi

h
‖2)

= ck,gf̂h,G(x)

⎡
⎢⎢⎢⎢⎣

n∑
i=1

xig(‖x− xi

h
‖2)

n∑
i=1

g(‖x− xi

h
‖2)

− x

⎤
⎥⎥⎥⎥⎦

where g(x) = −k
′
(x), is the profile of kernel G(x). This makes kernel K(x) the shadow

of G(x) [2]. f̂h,K(x) is the density estimate with the kernel G. ck,g is the normalization

constant. The second term is the mean shift which is the difference between the weighted

mean, using the kernel G for weights, and x, the center of the kernel.

m(x) =

n∑
i=1

xig

(∥∥∥∥x− xi

h

∥∥∥∥2
)

n∑
i=1

g

(∥∥∥∥x− xi

h

∥∥∥∥
2
) − x (3.8)

Using the normal kernel, the mean shift vector becomes
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m(x) =

n∑
i=1

xi exp

(
−1/2

∥∥∥∥x− xi

h

∥∥∥∥
2
)

n∑
i=1

exp

(
−1/2

∥∥∥∥x− xi

h

∥∥∥∥2
) − x (3.9)

m(x) is proportional to the normalized density gradient and always points toward the

steepest ascent direction of the density function.

Fukunaga et al. [6] derive another mean shift formulation using a different kernel func-

tion which satisfies the conditions for asymptotic unbiasedness, consistency, and uniform

consistency of the gradient estimate. The kernel function is of the form

K(x) =

⎧⎪⎪⎨
⎪⎪⎩

c(1− ‖x‖2) ‖x‖2 ≤ 1

0 ‖x‖2 > 1
(3.10)

where c is the normalizing constant given by

c = π−n/2
(

n + 2

2

)
Γ
(

n + 2

2

)
(3.11)

The density gradient estimator will now be of the form

�f̂h,K(x) =
2ck,d

nhd+2

∑
xi∈Sh(x)

(xi − x)

=

(
m

nυh(x)

)
n + 2

h2

⎛
⎝1

k

∑
xi∈Sh(x)

(xi − x)

⎞
⎠
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where

υh(x) ≡
∫

Sh(x)
dy =

hnπn/2

Γ(n + 2/2)
(3.12)

is the volume of the region

Sh(x) ≡
{
y : ‖y − x‖2 ≤ h2

}
(3.13)

and m is the number of data points falling within the region Sh(x) about x. The

second term in the density gradient estimator is the mean shift given by

m(x) ≡ 1

k

∑
xi∈Sh(x)

(xi − x) (3.14)

The gradient estimator in 3.12 can be easily converted into a normalized gradient

estimator by taking the proportionality constant
(

m
nυh(x)

)
to the left side and using the

properties of the function ln y. The estimate of the normalized gradient is of the form

�lnf̂h,K(x) ≡ n + 2

h2
m(x) (3.15)

The standard mean shift algorithm iteratively performs computation of the mean shift

vector m(xk) and then updating the current position xk+1 = xk + m(xk) until reaching

the stationary point i.e. the cluster center.
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3.4 Clustering Applications

Fukunaga et al. [6] describe clustering using mean shift as assigning each data point

to the nearest mode along the direction of the gradient. To do this the data point is

shifted by some amount proportional to the gradient at the data point. Each data point

is transformed recursively according to the following formula

xi+1 = xi + a� lnf̂h,K(x) (3.16)

where a is an appropriately chosen positive constant to guarantee convergence. a is

selected to be equal to
(

h2

n+2

)
to get the next point to which the data point has to be

shifted. The new shifted point is given by

xi+1 =
1

m

∑
xi

j∈Sh(xi)

xi
j (3.17)

Comaniciu et al. [3] state and prove a theorem which shows that if the kernel K has a

convex and monotonically decreasing profile, the sequences {yj}j=1,2... and {f̂h,K(j)}j=1,2...

converge and {f̂h,K(j)}j=1,2... is monotonically increasing, where sequences {yj}j=1,2... are

successive locations of the kernel G given by

yj+1 =

n∑
i=1

xig

(∥∥∥∥x− xi

h

∥∥∥∥2
)

n∑
i=1

g

(∥∥∥∥x− xi

h

∥∥∥∥2
) j = 1, 2... (3.18)

yj+1 is the weighted mean at yj computed with kernel G and y1 is the center of the

initial position of the kernel.
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This theorem implies that the magnitude of the mean shift vector converges to zero

and that the trajectories of such gradient methods are attracted by local maxima if they

are unique stationary points. These implications indicate a practical algorithm for mode

detection:

Algorithm 3: Mode detection

Use mean shift algorithm to find the stationary points of f̂h,K ;1

Retain the local maxima and prune the rest of the points. The local maxima2

are the cluster modes;

3.5 Fast Mean Shift

Mean shift is a computationally expensive method. The calculation of the mean shift

vector for a given point requires a scan of the entire dataset to find out which points

are covered by the kernel centered at the point. This operation is repeated M times

until the mean shift vector for the point converges to zero. This procedure has to be

applied for all the points in the dataset. Thus the complexity of mean shift algorithm is

O(n2dM) where n is the number of points in the dataset and d is the number of dimen-

sions. Many algorithms have been proposed to speed up the mean shift computations.

For example, Georgescu et al. [7] propose an approximation technique named locality-

sensitive hashing (LSH) to reduce the computational complexity of mean shift especially

with high dimensional data. The work defines a data structure to improve the efficiency

of the neighborhood queries. The idea is to partition the data multiple times based on

different dimensions. The points which fall in the same partition as the query point are

considered its neighbors. To accomplish this, the data is tessellated L times with random

partitions each defined by K inequalities .Each partition maintains K pairs of random

numbers (dk, vk) which partitions the data according to the inequality xi,dk
≤ vk where

i = 1, ...n and xi,dk
is the selected coordinate for the data point xi. For each point xi a
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K dimensional boolean vector is generated by each partition. Each point simultaneously

belongs to L partitions and their union gives the neighborhood of the point. The optimal

L and K values are derived from the data by performing a numerical search procedure.

The values of K and L which minimize the query time on a subset of the data points are

chosen. This approach suffers from having too many tuning parameters like K and L.

Another algorithm which approximates the mean shift procedure is described by Yang

et al. [24]. The work puts forward an improved fast Gauss transform (IFGT) to efficiently

estimate sums of Gaussians in higher dimensions and in turn apply it to the mean shift

algorithm to obtain a run time of linear complexity. The dataset is first clustered to K

clusters using the simple greedy farthest-point clustering algorithm [8]. The algorithm

then loops over each point and its cluster center pair, evaluating the precomputed Taylor

coefficients for clusters whose distance from the point is within a threshold value. IFGT

is mainly restricted by the use of only Gaussian kernels.

3.5.1 kd-trees

kd-trees [17] can also be used to speed up mean shift by approximating the calculation of

mean shift vector. A kd-tree is a binary space partitioning tree that recursively splits the

whole input space into partitions. Each kd-tree node represents a partition of the input

space. Deng et al. [11] discuss kernel regression and use kd-trees for multi-resolution

hierarchical structuring of data to summarize the dataset. This permits to query the

data set with the same flexibility as a conventional linear search, but at greatly reduced

computational cost. Given the dataset of input points and their labels, kernel regression

aims to find the label (yest(xq)) for the given query point(xq). For this it needs to compute

the weighted average of all points in the dataset and the points closest to the query point
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are assigned the largest weights.

yest(xq) =

∑n
i=1 wixi∑n
i=1 wi

where wi is the weight of the ith data point. (3.19)

The use of kd-trees in kernel regression is based on the idea that if we have a group

with k datapoints in which we know that all the weights in the group with respect to

the query point xq are close to the same value w then approximate values of
∑

wixi

and
∑

wi can be used. This can be done in constant time without the need to sum the

individual members of the group. A kd-tree supplemented with extra cache information

is used as an implementation of this grouping idea. The nodes in the kd-tree act as

hyper-rectangles enclosing all the points of the node and are treated as groups. The parts

of the state space with a highly varying weight function provide limited opportunity for

accurate approximation. As a result, the leaves or lower-level nodes (i.e. the small-sized

partitions) are selected as groups. At the parts of the state space with little variance

in the weight function, we have more opportunities for accurate approximation and the

higher-level internal nodes are treated as groups. To compute
∑

wixi and
∑

wi a top-

down search of kd-tree is performed where at each node a decision is made either to treat

all the points in the node as a group (cutoff) or recursively continue the search of the

children (recurse). Considering xq and the hyper-rectangle of the node, the minimum and

the maximum distance of xq from the hyper-rectangle i.e. Dmin and Dmax can be easily

computed in turn, providing the maximum and minimum possible weights wmin and wmax

of any data points owned by the node. If the values of wmin and wmax are close enough

then the cutoff option is taken. The algorithm makes a cutoff if

(wmax − wmin)NB

weight so far in search
< τ (3.20)
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where τ is a system constant. This cutoff is similar to the simple cutoff rule wmax−wmin <

εmax and also makes sure that a larger total error will not occur if the node contains many

points than if the node contains only a few points.

Similar to kernel regression, finding the mean shift vector requires the calculation of the

weighted average of points within the bandwidth distance of the query point. Using the

above kd-tree methodology, the points within the bandwidth distance can be found quickly

using the minimum and maximum distances of query point from the hyper rectangles.

Their weights can be approximated based on cutoff value. Thus the computation of the

mean shift can be sped up.

3.5.2 Dual Trees

Wang et al. [22] introduce another fast way of computing mean shift using dual kd-trees.

The core idea is to compare groups of query-reference point pairs rather than the single

kd-tree strategy of comparing a single query point against a group of reference points.

Here, the reference points are simply the data points from the original data set while the

query points are locations that the mean shift operations are applied to; the query points

need not be actual data points. At each iteration of mean shift, the query points are

moved to according to the mean shift vector.

To accomplish the idea of dual trees, two kd-trees are built using query points and

reference points separately. These trees are traversed simultaneously and each reference

tree node’s weight contribution to a query tree node is recursively updated by comparing

these two nodes and their children. Once both trees have been traversed, the dual-tree

algorithm produces a memory-efficient cache of the mean shift values of all the query

points. Thus, for every iteration of mean shift, the query tree has to be rebuilt since

the query points have been changed while the reference tree remains fixed. When more
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mean shift iterations are needed to find the stationary modes of the data, the rebuilding

of the query tree takes up the majority of the run time of the algorithm. As a result, this

method is ideally suited for datasets which need a small number of mean shift iterations.

Image data sets where each datum represents the normalized CIE LUV color space are

good examples that require very few mean shift iterations.

3.6 Bandwidth Selection

The bandwidth parameter h plays an important role in the mean shift algorithm. An

optimal bandwidth value is necessary for the correct estimation of the density function.

Smaller h values produce a spiky estimate of the density function resulting in splitting

of larger clusters into smaller ones. Larger h values lead to over-smoothed estimates and

results in the grouping of several clusters together into one cluster. In fact, the bandwidth

choice is more critical than that of the kernel function K. Figure 3.1 - 3.4 show the effect

of using different bandwidth values with mean shift on a 3 class synthetic dataset. The

mean shift for each point (denoted by a + sign) is displayed by the lines and the cluster

modes are denoted by triangular shapes.

Different criteria have been used to evaluate the optimality of the bandwidth parameter

[10, 20]. All the criteria provide a measure of the distance between the true density f and

the estimated density f̂h. The value of h which minimizes the criteria is selected. The

criteria commonly used are Integrated Squared Error (ISE), Mean Integrated Squared

Error (MISE) and Asymptotic Mean Integrated Squared Error (AMISE) [10].

The bandwidth values obtained by any of the above criteria can be treated as optimal

for density estimation. However, all these criteria depend upon on the unknown density

f and hence cannot be used in practice. Several bandwidth estimation techniques have

be proposed to deal with this problem. One of the most commonly used heuristics is the

“Rule of Thumb”.
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Figure 3.1: 3 class dataset
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Figure 3.2: Mean shift using an ideal bandwidth
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Figure 3.3: Mean shift using too large a bandwidth
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Figure 3.4: Mean shift using too small a bandwidth
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3.6.1 Rule of Thumb

The Rule of Thumb (ROT) [18] methodology is based on AMISE. It replaces the unknown

density f with a reference distribution function which is rescaled to have a variance equal

to the sample variance. If the reference distribution function is a normal function and K

is a Gaussian kernel, then the Rule of Thumb yields

ĥrot = 1.06σ̂n1/5 (3.21)

where σ̂2 is the sample variance.

Other bandwidth selection techniques include Maximal Smoothing Principle, Likeli-

hood Cross Validation, Least Squares Cross Validation and Plug-in methods [10].
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Chapter 4 – Methodology

4.1 Mean Shift - Interleave

The Interleave algorithm has a number of drawbacks. First, it requires the user to specify

K, which is the number of components in the mixture model. Secondly, one typically

needs to impose a parametric form on the mixture components in order to perform an

EM-based clustering routine. For instance, a Gaussian mixture model assumes that the

clusters take on an elliptical shape. There is, of course, no apriori reason to believe that

the clusters in an arbitrary data set would take the form of a Gaussian.

To overcome these two problems, we initially approached the rare category detection

problem by proposing a nonparametric version of Interleave called MS-Interleave (for

Mean Shift Interleave). In this nonparametric version, we use mean shift instead of EM

as the underlying clustering algorithm. Pseudocode for MS-Interleave is presented in

Algorithm 4. In MS-Interleave, mean shift [3, 6] is first used to cluster the data set.

The bandwidth for mean shift is chosen by applying the “Rule of Thumb” for bandwidth

estimation. Mean shift outputs the cluster modes, the list of points belonging to each

cluster and the total distance each point moved during the mean shift procedure (which

we will call the total mean shift distance). Note that we are applying a blurring mean

shift procedure [2], in which the reference and query points are the same initially and the

converged query point locations serve as the reference data points in the next iteration.

As in the original Interleave algorithm, each cluster maintains a list containing the points

owned by that cluster. Each list is sorted in increasing order of the degree of ownership

that each cluster expresses over the data points in the list. The degree of ownership is

measured in terms of the total mean shift distance moved by each data point to the cluster
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mode; the further the total mean shift distance, the less the degree of ownership by the

cluster mode. The algorithm cycles through these sorted lists in a round-robin fashion

and constructs a query list by picking the top data point from the current list. This top

data point is placed in the next position of the query list. This process continues until

the query list contains all the points of the data set.

Algorithm 4: Mean Shift - Interleave approach to rare category detection

Let S = {x1, x2, ...., xn} be the data set where xi ∈ �d and h be the bandwidth1

parameter ;
h = GetBandwidth(S,′ RuleofThumb′);2

(ClusterCenters[m],MeanShiftDist[n],PointsList[m]) = MeanShift(S, h);3

where m is the number of clusters;4

for i← 1 to m do5

Sort(MeanShiftDist, ’DecreasingOrder’, PointsList[i]);6

where ’Sort’ sorts the PointsList[i] based on their mean shift distances to7

the ith cluster center;
end8

OutputList = ();9

for j ← 1 to n do10

for i← 1 to m do11

if If all points in PointsList[i] are added to OutputList then12

continue;13

end14

OutputList.PushBack(PointsList[i][j]);15

end16

if If all n points are added to OutputList then17

break;18

end19

end20

while not all classes have been discovered do21

Pick the top point in OutputList and select it for labeling;22

end23

The performance of MS-Interleave, and the quality of mean shift in general, is highly

dependent on the bandwidth parameter. A well-chosen bandwidth results in a very good

density estimate of the underlying data distribution. There are a variety of techniques for

data driven bandwidth selection [10]. Some of these techniques select a single scalar band-
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width parameter like Uniform Likelihood Cross Validation (ULCV) and Least Squares

Cross Validation (LSCV). Other techniques such as Rule of Thumb, Maximal Smooth-

ing Principle and plug-in bandwidth estimation produce a diagonal bandwidth matrix.

Many of these bandwidth estimates are expensive to compute. We selected the Rule of

Thumb technique as it can be computed quickly and the results using bandwidth esti-

mation from other techniques did not show much improvement in the performance of

MS-Interleave. Nevertheless, MS-Interleave does not perform well because it is difficult

to efficiently determine the right bandwidth for the density estimation. Typically, the

bandwidth selection techniques produce a large number of modes found by the mean shift

algorithm, which in turn results in poorly selected data points for queries to the user.

4.2 Hierarchical Mean Shift for Rare Category Detection

In order to avoid the problem of selecting a single optimal bandwidth, we turn to a rare

category detection method based on hierarchical mean shift. Hierarchical mean shift

is closely related to scale-space theory [13], which is a multi-scale data representation

framework designed to model how the human visual system sees details in an image as

the image is progressively smoothed. Leung et al. [13] develop a clustering approach

based on scale space theory in which a repeated blurring process creates a hierarchical

clustering.

Using the notation in [13], consider a two-dimensional data set given by a continuous

mapping p(x) : R2 → R. In scale space theory, p(x) is embedded into a continuous

family P (x, σ) of gradually smoother versions of the data. The scale σ = 0 corresponds

to the original data set. P (x, σ) is the convolution of p(x) with the Gaussian kernel

g(x, σ) = 1
2πσ2 e

−‖x‖2/2σ2
given by
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P (x, σ) =
1

N

N∑
i=1

1

2πσ2
e−

‖x−xi‖2
2σ2 (4.1)

The family P (x, σ) can be described as the Parzen estimation with the Gaussian

window function. At each σ, P (x, σ) is a smooth distribution function where the clusters

and their centers can be determined by finding the gradient �xP (x, σ). This is the same

methodology explained in the section 3.3 where σ is denoted as the bandwidth parameter

(h).

Each P (x, σ) represents a clustering where each data point is deterministically assigned

to a cluster. As the scale σ or the bandwidth parameter h is changed, we get a series

of clusters arranged in a hierarchical format. The output in our case is what Leung et

al. call a nested hierarchical clustering, in which a dendrogram-like hierarchy illustrates a

sequence of clusters with each cluster being a partition of the data set. In this clustering,

each small cluster either remains unchanged or is nested inside a larger cluster at each

level of the dendrogram. Once the assignment is made, each data point is not allowed

to change the cluster membership. DeMenthon et al. [4] use this technique for spatio-

temporal segmentation of video and call it hierarchical mean shift.

In this section we describe a hierarchical clustering approach for detecting rare cate-

gories. Mean shift is used as the clustering algorithm for nested hierarchical clustering of

the data. The procedure consists of 3 phases

• Data standardization

• Building the dendrogram

• Calculating the validity criterion for all clusters and querying data points.
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4.2.1 Data Standardization

The data sets are first standardized before being used to prevent one dimension dominat-

ing the distance calculations used in the analysis. Sphering is perfomed on the datasets

to achieve the standardization using the following transformation [14].

Zi = Λ−1/2QT (xi − x̄) i = 1, ..., n (4.2)

In the equation above, x̄ is the sample mean, the columns of Q are the eigen vectors

of the sample covariance matrix, Λ is a diagonal matrix of corresponding eigenvalues and

xi is the ith data point in the dataset. Note that the diagonal elements in the sample

covariance matrix with the value 0 are replaced with a small value 1e − 5 before the

eigenvectors and values are computed. This is done to prevent imaginary values in the

sphered data set.

4.2.2 Building the Dendrogram

In the first phase, a dendrogram is built from the data set by repeatedly blurring the data

set using mean shift. Initially, each data point is treated as a separate cluster and this

clustering forms the lowest level in the dendrogram. We compute the initial bandwidth

value for mean shift by computing the minimum non-zero distance between any two points

in the data set. The bandwidth matrix is computed by multiplying this minimum distance

with the identity matrix. For convenience, we will refer to the bandwidth as a scalar value.

Then, mean shift with this bandwidth matrix is applied to the individual data points at

the first level to produce clusters. The modes of these clusters now become the data points

for mean shift at the next level of the dendrogram. By summarizing the data points in

terms of their modes, we are in effect blurring the data. This blurring effect continues
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at each level, with the bandwidth increasing by multiplying the current bandwidth scalar

value by a constant factor k, where k = 1.1 is used in all of our experiments. The entire

process terminates when there is only one cluster left. The single kd-tree approach was

used in the computation of the mean shift vectors for the dataset as opposed to dual

kd-trees which required rebuilding the query tree for each mean shift iteration (refer to

Section 3.5). Figure 4.1 shows a dendrogram for a synthetic dataset with 30 examples

from 8 classes.
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Figure 4.1: Dendrogram for a synthetic dataset with 8 classes

The algorithm to build the dendrogram is described in Algorithm 5.

4.2.3 Cluster Validity Criterion

One of the advantages of hierarchical mean shift is its ability to preserve “the structure

and integrity of the outliers in the clustering process” [13]. Leung et al. define different

cluster validity metrics such as lifetime, compactness, isolation and outlierness to measure
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Algorithm 5: Hierarchical Mean Shift - Building the dendrogram

Let S = {x1, x2, ...., xn} be the data set where xi ∈ �d and h be the bandwidth1

parameter ;
Set h = minimum non-zero distance between any two points in the data set;2

Set Dendrogram[0].ClusterCenters = S;3

ht = 0;4

repeat5

ht = ht + 1; h = h ∗ 1.1;6

(ClusterCenters,MeanShiftDist,PointsList) =7

MeanShift(Dendrogram[ht].ClusterCenters,h);
Save (ClusterCenters, MeanShiftDist, PointsList) in Dendogram[ht++]8

while keeping track of cluster membership of all points at each level of
dendrogram;

until size(Dendrogram[ht].ClusterCenters) == 1 ;9

the “goodness” of a cluster in the dendrogram. This section describes two types of criteria,

each of which can be used with hierarchical mean shift resulting in two different approaches

to rare category detection. We refer to these two approaches as Hierarchical mean shift -

Outlierness (HMS-Out) and Hierarchical mean shift - CompactIsolation (HMS-CI).

4.2.3.1 Outlierness

The outlierness criterion is based on the concept of the lifetime of a cluster. The lifetime

of a cluster is defined as the range of logarithmic scales over which the cluster survives.

Similarly, we can define the lifetime in the hierarchical mean shift scenario as the range

of logarithmic bandwidths over which the cluster survives i.e. the logarithmic difference

between the point when the cluster is formed and the point when the cluster is absorbed

into or merged with other clusters. The outlierness metric helps in identifying outliers in

the data. The cluster which has a long lifetime and fewer points will have high outlierness

value. Intuitively, rare categories are more likely to have high outlierness value as they

tend to have fewer points and longer lifetime.
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outliernessi =
lifetime of Ci

number of data points in Ci

(4.3)

The dendrogram built in the first phase is traversed and the list of unique clusters

is formed. The same cluster can exist in more than one level of the dendrogram and all

the different occurrences are treated as one unique cluster. The outlierness value for each

cluster is calculated and the list is sorted in the decreasing order of their outlierness value.

To query a cluster, we ask the user to label its representative data point, which is the

data point closest to the mode of the cluster.

4.2.3.2 Compactness-Isolation

Compactness and isolation are another set of criteria that can measure the quality of a

cluster. Intuitively, a cluster is well-defined if the distance between the data points inside

the cluster is small (ie. it is compact) and those outside is large (ie. it is isolated). Given

pi is the cluster center of Ci and h is the scalar bandwidth parameter, the isolation and

compactness of Ci can be calculated as

isolation =

∑
x∈Ci

e−‖x−pi‖2/2h2

∑
x e−‖x−pi‖2/2h2

(4.4)

compactness =

∑
x∈Ci

e−‖x−pi‖2/2h2

∑
x∈Ci

∑
j �=i e

−‖x−pj‖2/2h2
(4.5)

The isolation and compactness metric are close to one for a good cluster. These two

criteria can be combined into one single Compactness − Isolation criterion (CI) for the

cluster which is simply the sum of isolation and compactness values of the cluster. This

criterion is calculated for each cluster in the dendrogram and stored in a list sorted in
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decreasing order. The lowest level of the dendrogram will provide the worst case run time

complexity of calculating this criterion value for all clusters at that level which is O(n2).

4.2.4 Querying Data Points

The list created by using any of the above two criteria is traversed in the third phase.

Clusters with higher validity criterion are selected first and the points which have the least

mean shift distance from the mode of the clusters are picked for labeling. If the point

has already been selected for labeling then the cluster is skipped. The entire algorithm is

described in Algorithm 6.

Algorithm 6: Hierarchical Mean Shift for rare category detection

Build dendrogram using hierarchichal mean shift. Let ht be its height.1

for i← ht to 0 do2

For each cluster C at height i calculate its validity criteria value if it is not3

done previously and add it to the list;
end4

Sort list in decreasing order of the validity criteria values of the clusters;5

while not all classes have been discovered do6

Let C be the next cluster to select in list;7

Let p be the data point which has least mean shift distance from the cluster8

center of Ci;
If p has not been selected for labeling then do so. Else continue.9

end10

4.2.4.1 Tiebreaker

The sorted list may contain cluster entries with the same criterion values. This can

happen for clusters at the lower levels of the hierarchy as low bandwidth values lessen the

effect of neighboring points for a given cluster resulting in high compactness and isolation

values. In such cases a tiebreaker condition can be applied. For each cluster with the

same criterion values, the distance between the cluster mode and each data point already
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labeled by the expert is calculated. Two different tiebreakers can be considered. The point

with the highest average of the distances can be picked first for labeling. This is highest

average distance tiebreaker (HAD). The point with the highest minimum distance can be

picked first for labeling. This is called highest minimum distance tiebreaker (HMD). The

time complexity for running the tiebreaker is bounded by O(ab) where a is the number

of clusters with the same criterion value and b is the number of points already labeled by

the expert. Both a and b are generally far less than n, the size of the dataset.



34

Chapter 5 – Results

5.1 Experimental Setup

5.1.1 Data

The data consists of various real data sets taken from the UCI data repository [15].

Table 5.1 has a summary of their properties. All the datasets except for Abalone and

Yeast are sub-sampled. This sub-sampling is done to create imbalanced data sets that

suit the rare category detection problem where some classes dominate the data and the

remaining classes have only a few records. Shuttle is randomly sub-sampled from the

original dataset to produce a smaller data set with 4000 examples. The original Optical

Digits, Optical Letters, Image Segmentation (Statlog) datasets contain almost the same

number of examples for each class. The class distributions for the Optical Digits and

Image Segmentation datasets have been changed into a geometric series with the largest

class owning half of the data and each subsequent class being half as small with the

smallest class containing 8 examples; this is the same sub-sampling technique used by

Pelleg and Moore [16]. The Optical Letters data set has been sampled in such a way that

the two largest classes own half the data and the subsequent pairs of classes being half as

small with the smaller class containing 8 examples. The data sets are first standardized

before running the experiments.

5.1.2 Experiments

All the algorithms are evaluated based on the number of hints requested from the expert

before being presented with at least one example from all the classes in the data set. The
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Name Dims Records Classes Smallest
class

Largest
class

Abalone 7 4177 20 0.34% 16%
Shuttle 8 4000 7 0.02% 64.2%
Optical Digits 64 1040 10 0.77% 50%
Optical Letters 16 2128 26 0.37% 24%
Image Segmenta-
tion (Statlog)

19 512 7 1.5% 50%

Yeast 8 1484 10 0.33% 31.68%

Table 5.1: Properties of the data sets.

assumption with this performance metric is that a single example would help the expert to

generalize about the class to which the example belongs. This evaluation technique is the

standard metric used in rare category detection [16, 9]. Intuitively, the metric measures

the effort the expert expends in order to discover all the classes in the data set.

We compare the results from the methods described in the previous chapters. The

performance of ’Hierarchical mean shift - Outlierness’ (HMS-Out), ’Hierarchical mean

shift - CompactnessIsolation’ (HMS-CI), ’Mean shift - Interleave’ (MS-Interleave) on the

6 real world data sets is compared with existing rare category detection techniques NNDM

[9] and Interleave [16]. The effect of the two tiebreakers ’Highest Average Distance’ (HAD)

and ’Highest Minimum Distance’ (HMD) on the Hierarchical mean shift methods is also

shown in the results. For Interleave we ran the experiment 10 times and reported the

best result. The performance of Interleave depends on the initial random point to cluster

assignments at the beginning of EM and Interleave can converge to a local optimum which

is why we ran the experiment 10 times.
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DATASET HMS-CI HMS-Out NNDM Interleave MS-
Interleave

Abalone 1195 603 124 193 1306
Shuttle 44 36 162 35 136
Optical Digits 100 160 576 117 174
Optical Letters 133 161 420 489 721
Image Segmentation (Stat-
log)

18 34 228 54 28

Yeast 73 103 88 111 83

Table 5.2: Number of hints needed to identify all classes

DATASET HMS-CI
+HAD

HMS-CI
+HMD

HMS-Out
+HAD

HMS-Out
+HMD

Abalone 93 387 385 1066
Shuttle 32 39 28 27
Optical Digits 100 100 118 119
Optical Letters 133 133 182 423
Image Segmentation (Stat-
log)

20 17 124 65

Yeast 91 73 77 114

Table 5.3: Number of hints needed to identify all classes for the HMS methods using
Highest Average Distance (HAD) and Highest Minimum Distance (HMD) tiebreakers
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Figure 5.1: Learning curves for Abalone
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Figure 5.2: Learning curves for Shuttle
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Figure 5.3: Learning curves for Optical Digits
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Figure 5.4: Learning curves for Optical Letters
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Figure 5.5: Learning curves for Image Segmentation (Statlog)
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Figure 5.6: Learning curves for Yeast



40

Chapter 6 – Discussion

Table 5.3 shows that the hierarchical mean shift (HMS) approaches perform well. In the

case of the Optical Letters and Image Segmentation data sets, both HMS-CI and HMS-

Out perform better than the existing methods NNDM and Interleave. For the Yeast and

Optical Digits datasets, it can be seen that HMS-CI produces better results than NNDM

and Interleave.

In general it can be said that HMS-CI outperforms HMS-Out with the exception of

Shuttle and Abalone. In case of the Shuttle dataset, both the HMS approaches perform

only slightly worse than best performing method for this dataset. For Abalone, the HMS

methods need more hints. From Figure 5.1 we see that the HMS methods find 18 of the

total 20 classes more quickly than NNDM and Interleave, but fail to find the last 2 classes.

Analyzing the Abalone dataset reveals that these classes are small compact clusters that

are very close to more than one large cluster. As a result, in the dendrogram, their lifetime

is low as they are merged into one of the larger clusters early on in the dendrogram build-

ing phase, resulting in low outlierness value. Hence HMS-Out fails to find these clusters

quickly. Similarly in case of HMS-CI, the points from nearby larger clusters contribute

substantially to the denominators of the compactness and isolation criteria of the small

cluster, resulting in lower value for compactness-isolation.

The value of h also plays a crucial role in the calculations of compactness and isolation

values. The smaller the value of h, the less the effect of neighboring points on the compact-

ness and isolation values and vice versa. Thus, at higher levels of the dendrogram where

h is large, the small compact clusters will have their criteria values affected widely by the
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nearby larger clusters resulting in smaller compactness-isolation. To identify these small

clusters, the lower level of the dendrogram where h values are small should be searched.

However, at the lower levels of the dendrogram the data set is divided into many smaller

sized clusters with higher compactness-isolation due to smaller h values, resulting in many

clusters that are tied in terms of the compactness-isolation criterion values.

In the case of clusters having the same criterion value in the sorted list, a tiebreaker

makes sure that we intelligently order the clusters with the same criterion values in the

query list. Our HAD tiebreaker condition places the cluster mode with the highest av-

erage distance from the queried points in the next position of the query list. Another

tiebreaker condition is to select the cluster mode with the highest minimum distance

from the queried points. This means that cluster modes near already queried points are

left to be queried later thus decreasing the possibility of picking hints from the classes

that have already been discovered. In this way, tiebreakers use the labels that have been

provided by the user to improve performance. The results show that the HAD tiebreaker

helps in improving the performance of HMS-CI for Abalone. On the other hand, the

HMD tiebreaker does not provide the same improvement. This is in accordance with the

previous explanation given for Abalone that the hard to find small clusters are closer to

many large clusters. The mode of the nearby large cluster is queried first and so the

HMD tiebreaker would not select the mode of the nearby small cluster as it takes only

the minimum distance into consideration. The highest minimum distance for the small

cluster will be less as the queried mode of the larger cluster is close. The HAD tiebreaker

avoids this pitfall as it takes all the queried points into consideration leading to better

results.

The MS-Interleave generally performs poorly. This is due to its dependence on the

value of the bandwidth parameter. It can be expected to perform well when the mean shift
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algorithm is able to identify nearly all the clusters in the original dataset using the band-

width obtained from one of the bandwidth selection techniques. For real-world datasets,

experiments show that the bandwidth output by the selection techniques is generally too

small. A small bandwidth results in mean shift identifying more clusters than the original

number of clusters present in the dataset, as a large cluster would be divided into a group

of separate small clusters by mean shift. For all the modes of these small clusters, the

points with the highest mean shift distance will be points that originally belong to the

same large cluster resulting in poor performance. The bandwidths returned for Abalone,

Shuttle, Optical Digits and Optical Letters are small values thus requiring MS-Interleave

to ask more hints to identify all the classes. For Yeast and Image Segmentation, mean

shift is able to identify all the original clusters in the datasets approximately using the

bandwidth returned by the selection technique. For these datasets, it can be seen that

the results are close to the best performance.

6.1 Conclusion

We have proposed a rare category detection method using hierarchical mean shift. A

dendrogram is built by successively running mean shift first on the dataset and then on

the cluster centers using a series of bandwidth values. The scale space theory acts as

theoretical basis for the hierarchical mean shift approach. Different criteria are used to

identify examples from rare categories from the dendrogram. Tiebreaker conditions have

also been defined to intuitively query the cluster modes in cases of criterion value ties

between clusters. Mean shift clustering or mode seeking is central to the methodology.

kd-trees or dual trees (for image datasets) can be used to speed up mean shift calculations

thus helping in scaling up the method. The main advantage of this methodology is that it

does not require any information regarding the datasets like the number of classes or the

prior probabilities of the classes. The dependence of mean shift on bandwidth values has
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been eliminated with the hierarchical mean shift approach. No assumptions about the

datasets are made. The methodology has been extensively tested with 6 real datasets and

the performance analyzed. The results show that an expert is asked only a few hints before

presented with examples from rare categories. The results also show that the approach

performs consistently better than the existing methodologies Interleave and NNDM.

6.2 Future Work

Currently, the labels provided by the expert during the querying of the data points are

only used by the algorithm to resolve ties between clusters having the same criterion

value. In cases when there are no ties the labels are totally ignored. It would be desirable

to use these labels in a more effective manner in such a way that the next cluster that

is selected for labeling is picked by taking into account both its criterion value and the

labels already provided by the expert.

All the experiments have been conducted on image data sets or continuous data with

less than 10 dimensions. It would be interesting to see the performance of the algorithm

on sequences or other structured data. More research needs to be done on how to build

a hierarchy for sequential data and ways to better find the anomalous sequences.

Non-parametric techniques are known not to scale well with the dimension of the

space. This is due to the empty space phenomenon by which most of the mass in a

high-dimensional space is concentrated in small regions of the space. Hence for high di-

mensional data the mean shift clustering algorithm should be used carefully. Most of the

datasets used in the experiments have dimensions less than 20. It would be interesting to

see how the rare category detection technique using hierarchical mean shift performs on

data sets with dimensions higher than 100.
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