
AN ABSTRACT OF THE T'AE3IS

Jorge F. Martinez-Carballido for the degree of Doctor of

Philosophy in Electrical and Computer Engineering

presented on November 12, 1982.

Title: PRONTO: A Product Term Reduction Approach

Abstract approved:
Redacted for privacy

V. Michael Powers

Regular structures such as PLA's are very

important to reduce VLSI design time. Interest in CAD

tools such as a practical reducing PLA generator is high.

This dissertation presents PRONTO as a practical, near-

optimal product term reduction method, whose general

heuristic approach consists of the following four steps.

First, select a base product term. Second, find for the

base product term a set of expandable directions; so that

when the base is expanded, it can cover "most" of the

uncove p: duct terms. Third, expand the base product

term in *hose previously found directions to find a

"best" expanded product term. Fourth, update the state of

the uncovered product terms affected by the inclusion

expanded base product term in the solution. These

four steps are repeated until no product terms are left

unco ered.

Results of eight examples (including one with

235 terms, 12 inputs and 25 outputs) show that PRONTO

gives up to 21% better solutions (fewer product terms)

than a previously published method. PRONTO has three

characteristics which simplify the expected calculation.

First, PRONTO only expands in those possible directions

that cover "most" of the uncovered product terms. Second,

PRONTO does not seek prime terms during expansion. Third,

PRONTO can reach better solutions faster because its time

to solution depends linearly on the number of product

terms in the solution. With these three characteristics,

a programmed implementation of PRONTO is expected to

faster than previously published product term reducers.

o Copyright by Jorge F. Martinez-Carballido

November 1982

All Rights Reserved

PRONTO: A Product Term Reduction Approach

by

Jorge Francisco Martinez-Carballido

A THESIS

submitted to

Oregon State University

im partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Commencement June 1933

APPROVED:

Redacted for privacy
Associate Professor of Electrical and Computer Engineering

in charge of major

Redacted for privacy

Head of gepartment-rbf Electrical and Computer Engineering

Redacted for privacy

Dean of Gradua School d

Date thesis is presented November 12, 1982

Typed by Jorge F. Martinez-Carballido

ACKNOWLEDGEMENT

"The fear of the Lord is the

begining of wisdom;

a good understanding have

all those who practice it.

His praise endures for ever!"

Psalm 111:10

To my beloved wife Cristina and my children Georginna and

Jorge Ricardo for their love in Jesus Christ our Lord.

To my parents Jorge and Maria de la Luz for all their effort

and love they devoted to me.

To all those professors who unselfishly help me through all

my education.

TABLE OF CONTENTS
page

1. INTRODUCTION 1

A. Overview 1

B. Objective 2

C. Impact 2

2. BASIC CONCEPTS AND DEFINITIONS 4

3. REDUCING THE PLA AREA 15

A. PLA Area Reduction Approaches 15
B. PLA Product Term Reduction Methods 17

4. RECENT APPROACHES 21

A. Limitations of Near-optimal Approaches 21
B. MINI 23
C. PRESTO 26
D. Brief Comparison 28
E. ESPRESSO 30
F. Order Independence in Reduction and

Irredundant Covering Procedures 32

5. A ONE-PASS HEURISTICALLY GUIDED DIRECT SEARCH METHOD 34

A. PRONTO 34
B. Selecting a Base Product Term 35
C. Selecting an "easiest" to Merge Set 37
D. Expanding a Base Product Term 42
E. Updating the State of the Product Terms 44
F. Example 44
G. PRONTO's Complexity 48

6. SUMMARY/RESULTS/CONCLUSIONS 51

A. Summary 51
B. Results 52
C. Conclusions 53

7. BIBLIOGRAPHY 56

Figure

5.1

5.2

LIST OF FIGURES

Selecting an easiest to merge set

PRONTO's example

page

41

46

PRONTO: A Product Term Reduction Approach

1. INTRODUCTION

A. Overview

Very Large Scale Integrated technology has been

largely restricted to general purpose rather than custom

designs. Three recent developments have dramatically

reduced costs and design times. First, methodologies such

as the one developed by Mead and Conway [MEAD]. Second,

computer-aided-design tools that allow implementation of

such methodology. Third, a silicon foundry service that

provides advanced wafer processing in large or small

volumes and with good, previously unheard-of turnaround

times [FAIRBAIRN]. Now it has become cost-effective to

create high density circuits for specialized short-run

applications. One of the techniques championed by people

such as Mead and Conway [MEAD] helps the designer through

the use of regular structures such as Programmable Logic

Arrays (PLA's) and Read Only Memories (ROM's). The fewer

individual transistors a designer must work with, the

more efficient he/she can be.

The use of a PLA as a regular structure in VLSI

design can significantly improve design time for digital

logic chips. The chip's real estate is precious in VLSI

design. Thus, a switching function reducer is attached to

a PLA generato . The use of an optimal reducer would be

rather expensive and impractical; thus, near-optimal

reducers giving good, fast results are of great

importance for a practical reducing PLA generator.

ROM is another useful regular structure often

found in VLSI design. Thus, ROM reducers will

significantly aid the area usage. Here, too, suboptimal

solutions are generated in an attempt to keep the

algorithm's complexity modest [MARTINEZ].

B. Objective

The objective of this research is to develop a

practical, one-pass heuristically guided direct search

algorithm for the reduction of product terms of a given

large switching function specification.

The aim of this dissertation is to present

results of research on PRONTO; a practical one-pass

heuristically guided direct search method which can

provide significant improvements in results as compared

to a previous method.

Near-optimum reduction methods giving good,

fast results are a significant part of reducing PLA

generators, which are of great importance for VLSI

design.

C. Impact

With the use of PRONTO we can expect fast, good

results for practical problems, due to the following

three characteristics. First, PRONTO tries to expand only

truly expandable directions. Second, PRONTO seeks

coverage of "most" uncovered product terms and does not

require the expanded product terms to be prime. Third,

PRONTO tends to be faster when it reaches better

solutions because its complexity linearly depends on the

number of product terms in a solution.

PRONTO is a practical near-optimal PLA

reduction method which has taken the one-pass

heuristically guided search approach. PRONTO consists of

the following four steps. First, it selects a convenient

uncovered product term from the specification. Second, it

finds a set of truly expandable directions biased

(guided) to cover "most" of the uncovered product terms.

Third, it expands the selected product term to "best"

expand it on the previously found directions. Fourth, it

updates the state of any fully covered product terms and

modifies any partially covered product terms. These four

steps are the body of the main loop whose ending

condition is that of no product terms are left uncovered.

Thus, PRONTO directs its search towards those product

terms that when expanded cover "most" of the uncovered

product terms. PRONTO does not require that the expanded

product terms be prime.

The following chapter presents a new

nomenclature for product term reduction methods.

4

2.BASIC CONCEPTS AND DEFINITIONS

This chapter establishes sufficient

mathematical background for a clear and precise

understanding of the following chapters' contents. We

present a nomenclature which defines the necessary

concepts and a notation for representing instances and

examples. The new nomenclature simplifies the explanation

of reduction algorithms for multiple-output switching

functions. For those readers without current familiarity

with multiple-output switching function concepts, the new

nomenclature and notation in this chapter promotes a full

understanding of the concepts. The purpose of the new

nomenclature and notation is to ease understanding of

concepts. However, the new notation for switching

literals and variables (see definitions below) has the

drawback of becoming cumbersome to use in large practical

problems. Once the concepts have been understood and the

purpose of this part of the new notation has been

achieved, we can simplify to the less cumbersome

traditional switching algebra notation of '0' and '1' for

switching literals and ' - ' or 'd' for switching

variables, but still keep the rest of the notation and

the nomenclature defined in this chapter.

Definition 2.1 A switching literal is a symbol

representing one of the two implementation values

(asserted low, asserted high) of the switching set P2.

We will use primed (asserted low) and unprimed

(asserted high) lower .case letters for switching

literals. Thus, P =00,x1={y

Definition 2.2 A switching variable is a symbol

representing a variable whose value can be either of the

switching literals.

We will use upper case letters for switching

variables. Thus, X = { ,x}, y = {ys,y}, etc.

Definition 2.3 A switching symbol is a q-tuple

of switching literals. For each of q switching variables,

exactly one of the two switching literals appears.

Example : say q=4, then w'xy'z and wxyz are

switching symbols, but ww'xy and wxx z are not.

Definition 2.4 A switching alphabet, P2 is

the set of 2q distinct switching symbols, of some q

switching variables.

A switching alphabet is also known as a

universe, and can be represented by a q-tuple of

switching variables (i.e.,WXYZ).

Definition 2.5 A subalphabet is any of the 3g

elements of Sq=BX. .BXB, where B is the set of three

elements; a switching variable and both of its literals.

A switching alphabet or subalphabet is said to

contain the corresponding switching symbols.

6

Example: For the switching alphabet XYZ, we

have Xyz, x'YZ, xyZ as sample subalphabets;

x'YZ contains xty'z, z', x'yz }.

Definition 2.6 A switchin1 function is a

function from a switching alphabet of n switching

variables, P2n, called the input alphabet, to a switching

alphabet of m switching variables, P2m, called the output

alphabet.

We will use boldface upper case letters to

represent switching functions. Thus, F, FDC, etc.

Example: F is a switching function with AB as

input alphabet and XY as output alphabet. Its

specification is as follows:

F={(a'b' xy),(eb,x'y),(abi,x1y),(ab,xy1)}.

For convenience F is also represented as

F=E ibl xy,a'b x'y,a x'y, ab xy' }.

A symbol from the input (output) alphabet is

called an input (output) symbol. Thus, a switching

function is a mapping that assigns to each input symbol

an output symbol.

From now on we will assume the obvious

input/output format for function specifications in our

examples.

Traditionally, a switching function is defined

as one with an output symbol of one literal, and called a

single-output switching function. For m>1 a system of

single output switching functions is defined and called a

multiple-output switching function.

Originally, a minimization algorithm was

developed for single output switching functions and later

extended for multiple output switching functions. The

minimization algorithm for multiple output switching

functions saw the problem as one of a system of single

output switching functions. Thus, multiple output

switching functions became naturally expressed as a

system of single output switching functions. The

representation used here becomes natural when defining

the (multiple-output) switching function as a set of

ordered pairs.

Example:The switching function,F, from the

above example, traditionally would be

represented as the following two single output

switching functions:

Fl= E (a'b',ab) and F2=E (a'b',a'b ab'), or for

convenience decimal, octal or hexadecimal

equivalents of the input symbols are used.

Thus, Fl= E(0,3) and F2= E(0,1,2).

Definition 2.7 A minterm(minimum term), MT, is

a subfunction from an input symbol to an output symbol,

where the latter has a single unprimed literal.

Example: in the

previous example

specification of F in the

a'b x'y, ab' x'y and ab

are minterms whereas a'b' xy is not.

Definition 2.8 An input term is a set of input

symbols forming a subalphabet.

We will use n-tuples of switching variables

and/or literals to represent input terms,

Example : with n=5,

vwxyz represents the 2 0 symbol subalphabet,

{vwxyz },

Vw'xyz represents the 2 1 symbol subalphabet,

{v'w'xyz,vw'xyz }, and

VWXyz represents the 23 symbol subalphabet;

vwxlyz,vwxyzI, all three

examples are input terms.

Whenever corresponding inputs of two inpUt

terms have different literals (primed, unprimed), it is

said to be a disjoint input.

Definition 2.9 A product term is a subfunction

from an input term to an output symbol where the latter

has at least one unprimed literal.

Traditionally, product terms are represented

only by their literals and whenever a variable is

involved either it is replaced by a '-' or it is simply

left out.

9

Example: vWxyz' abcd' is a product term with

vWxyz' as input term and abcd' as output

symbol.

Definition 2.10 A simple product term is a

special product term with a single unprimed literal in

the output symbol.

Example: The product term of the above example

has the following three simple product terms:

vWxyz' ab'c'd',

vWxyz' a'b'cd'.

v W x y z ' a ' b c ' d ' a n d

Definition 2.11 An output term is a set of

output symbols forming a subalphabet.

We will use mtuples of switching variables

and/or literals for output terms. Thus, Yiy2ym,

yiy12...Ym, etc.

For two output terms OT
1
and OT

2, it is said

that OT1 is a noncovering output term with respect to

output term OT2, if for any unprimed literal in OT2 its

corresponding output in OT1 is a primed literal.

Definition 2.12 An incomEletely specified

product term, ISPT, is an ordered pair of an input and an

output term, where the latter has at least two output.

symbols.

Definition 2.13 A term is either a product term

or an incompletely specified product term.

10

Example: Here we give a sample specification of

a four input, two output function with two

ISPT's.

a'b'c'D x'Y

a'Bcd

Ab'cd'

Abcd' xy

aBCd xy

aBc'd' x'y'

a'bc'd' xy'

a'bc'd x'y.

When a term is split into two disjoint terms,

each of these two is said to be a half term.

A switching function can be specified by its

set of minterms or by an equivalent set of product terms.

For practical purposes, a specification which lists all

the minterms is prohibitively long. In practice, a

designer naturally specifies a problem using product

terms and/or incompletely specified product terms. We

must bear in mind that the presence of output variables

in the ISPT's of the function specification gives us

freedom of choice among several realizable switching

functions. That is, an ISPT violates the switching

function definition in that the function is a many-to-one

symbol relation and an ISPT is a (many-input)-to-(many-

output) symbol relation. The presence of an output

variable in a ISPT is known as a "don't care" condition

Xy'

11

and either a '-' or a d is commonly used in place of

the switching variable in the output term. However, the

use of upper case letters for switching variables is an

attempt to more clearly represent the concept involved,

than the use of a '-' or a 'd' or simply the switching

variable absence (commonly used in the input term instead

of the switching variable).

The presence of ISPTs in a specification leads

us to a set of switching functions that can be

implemented. The following definitions will help to

clarify the range of realizable functions for

particular specification.

Definition 2.14 A minimum (maximum) function

Fmin (Fmax), is formed by converting each output term to

an output symbol, where each switching variable in the

output term is assigned its primed (unprimed) literal.

In other words the minimum (maximum) function

is the function with a minimum (maximum) number of

minterms among the set of possible functions from a

given specification.

Definition 2.15 A solution, F1, is a switching

function with at least the minterms in Fmin, and at most

the minterms in Fmax.

Fmin Fi Fmax

A set, G, of product terms is said to cover a

set, H, of product terms iff each minterm in H, is also

in G (i.e., H c G).

12

Example: for the above specification the

minimum function is:

a'b'c'D x'y'

a'Bcd x'y'

Ab'cd' x'y'

Abcd' xy

aBCd xy

aBc'd'

a'bc'd' xy'

a'bc'd

The maximum function is:

a b'c D x'y

a'Bcd xy'

Ab'cd' x'y'

Abcd' xy

aBCd xy

aBc'd'

a'bc'd' xy'

a'bc'd

Definition 2.16 An expansion procedure, is one

that takes a given product term, PT, front a solution, Fk,

and finds a product term, PT*, such that PT* covers PT,

and yet PT* is covered by the maximum function
PT c Fk PT* c Fmax and PT c PT*

Fmax.

13

Definition 2.17 A prime term or prime

implicant, PI, is a product term, such that PI has at

least one minterm from Fmin, and no larger product term,

PT, exists, such that PT covers PI, and yet PT is covered

by the maximum function, Fmax.

Definition 2.18 A base term is a term selected

as the starting point for an expansion procedure to find

an (expanded) product term which will cover it.

Definition 2.19 The distance between two terms

is given by the sum of the number of inputs that differ

in the terms and one if any corrresponding outputs of

their output terms have different literals (conflict).

Definition 2.20 Two terms are adjacent if they

are distance one apart.

Example:

TI = Vwx'y Abc'

T2 = Vwxy abc'

T3 = vw'x'y abc'

T4 = Vwx'y' Ab'c'

Input terms Vwx'y and Vwxy differ in one input

but their corresponding output terms Abc' and

abc' have no conflicting literals so the

distance d(T1,T2) = 1. d(T1,T3) = 2 and

d(T T) = 1+1+2. So both T
1
and T

2
merge to

VwXy abc'.

14

It is our belief that the use of switching

variables in input and output terms, does clearly

represent the concepts involved. Thus, we hope the novice

reader will easily understand the concepts presented in

this chapter.

Our switching literal concept is equivalent to

W. Fletcher's assertion levels (FLETCHER]. Some of our

other concepts are similar to the ones used by S.J. Hong,

et. al. [HONG]. Logic operators are of no particular

interest in this paper. Therefore, we assume a function

specification is in a form equivalent to the one

presented here.

The next chapter will describe the PLA area

reduction problem.

15

3. REDUCING THE PLA AREA

One particularly important computer-aided-

design tool is a PLA generator. The use of PLA's in VLSI

design can dramatically reduce the design time for

digital logic chips [RIHERD]. However, chip area is at a

premium in VLSI design. Thus, a switching function

reduction method is implemented as part of a PLA

generator.

The PLA area is basically computed as follows:

A= (2*Nii-N0)*Np+r*Ni+s*No+t*Np, where NI N0 and NP are

the number of inputs, outputs and product terms

respectively, and r, s, t are overhead factors. The

reduction in any of these dimensions reduces the PLA

area. Among the above dimensions, the number of product

terms gives a larger reduction in the PLA area.

A. PLA Area Reduction Approaches

Often, the original PLA specification results

in redundant (inefficient) real estate usage; thus, any

real estate redundancy reduction techniques might prove

to be useful. The real estate redundancy reduction

techniques can be divided into the following: input or

output reduction, folding, simple or multiple level

partitioning, external logic at the inputs and/or

outputs, and product term reduction.

Input (output) reduction techniques aim to

16

reduce the number of redundant inputs (outputs). Martinez

and Powers give techniques which can be used to find a

reduced set of inputs and/or outputs in an effective way

[MARTINEZ). Kambayashi stressed the importance of

reducing the number of PLA inputs (KAMBAYASHI). His

approach assumes that for each distinct output pattern

there are several input terms; thus, we need only to

distinguish among input terms with distinct outputs.

Folding is a technique which finds a peculiar

way of sharing space for columns and/or rows, thus

reducing the number of physical columns and/or rows

needed to implement the original PLA (PAILLOTIN,

HACHTELJ. Seventy-five percent of area reduction is the

upper limit for the simple fOlding technique [HACHTEL].

Partitioning is a technique that breakes a PLA

into several smaller ones. This could be in single level

parallel [BRAYTON,GRASS, KANG] or multilevel serial

(MARTINEZ] partitioning, or any combination thereof.

The addition of external logic is aimed to

reduce the number of product terms and yield an overall

real estate reduction. One has to consider the extra

delay introduced by the external logic, which might in

some cases be unacceptable. The use of PLA's for external

logic is similar to serial partitioning. However the

possible reduction in area due to partitioning comes

from breaking the implementation into several smaller

ones, whereas the possible reduction in area due to using

17

external logic comes from the reduction in the number of

product terms. J.P. Roth and T. Sasao describe their own

techniques to find simple external logic at the inputs

[ROTH,SASA01. No formal techniques for external logic at

the outputs has been published. However, one can see that

simple logic, like inverters, at the outputs might reduce

the number of product terms, or that some redefinition of

the outputs will yield a reduced number of product terms;

thus, to restore the original outputs some external

decoding logic is needed.

An examination of the area formula shows that

the most important factor for reduction is Np (number of

product terms). In this dissertation, we consider the PLA

product term reduction problem as the most important step

to PLA area reduction. Methods for PLA product term

reduction is the subject of the next section.

B. PLA Product Term Reduction Methods

Optimum PLA product term reduction is a

simplification to the classical sum-of-products

minimization of (multiple-output) switching functions.

The cost function for the PLA product term reduction is

simplified to be the number of product terms; whereas,

the cost function for the classical minimization combines

the products with their size (number of literals). This

change in the cost function allows us to concentrate on

the number of product terms without regard to their

18

shapes. There are optimum and near-optimum switching

function reduction methods.

Optimum product term reduction methods are

based on classical methods from switching theory of:

first, generating all prime implicants, and second,

finding a minimum cover. Research on optimum reduction

methods over three decades has found this to be one of

the Non Polynomial (NP) complete class (GIMPEL,GAREY).

This is to say, so far no polynomial time algorithm (its

execution time in a deterministic Turing machine can be

expressed as a polynomial in the number of inputs and

outputs) has been found for finding the optimum, and it

is thought very unlikely that one will ever be found.

Furthermore, the known algorithm for an optimal solution

is equivalent to a large class of similarly difficult

problems in the sense that, if a polynomial time

algorithm can be found for one of the class; by

transformation the entire class can be solved in

polynomial time However, no proof exists stating that no

algorithm with polynomial time is possible. It is very

unlikely that an optimum reduction method for a PLA

generator will be justified due to the prohibitively

large requirements in memory and computation time.

Near-optimum product term reduction methods

give good, fast solutions while seeking but not

guaranteeing an optimal solution. The search for an

optimal solution is done with the help of heuristic

19

methods. The heuristic methods aim to use affordable

amounts'of memory and computational time. Near-optimum

reduction methods can be divided into three classes.

First, some reduction methods use an internal minterm

level description (AREVALO,BRICAUD]. The use of

minterm-level description is limited to small problems

due to the prohibitively large exponential increase in

memory and computation requirements for practical (large)

problems. Second, some other reduction methods use a

compact description and the final solution is reached

through iterative improvement rather than the classical

two step approach of completely generating prime

implicants, and then covering the functions. Hong,

et. al. in their MINI (HONG] give generally better

solutions than Svoboda's PRESTO. However, MINI requires

significantly larger amounts of memory and computation

than even Brown's modified PRESTO (BROWN). Third, there

are reduction methods using a compact description which

heuristically approach a solution throughout a one-pass

guided search rather than improving the solution through

successive iterations. R.K. Brayton, et. al., in their

ESPRESSO (BRAYTON] describe the procedure MINIMAL as a

one-pass heuristically guided search approach to product

term reduction.

One-pass heuristically guided search procedures

can be further divided into direct and indirect. One-pass

heuristically guided indirect search procedures are those

20

which generate a prime term for each product term and

then find an irredundant solution. One-pass heuristically

guided direct search procedures are those that

sequentially find the actual product terms of a solution.

The next chapter describes some recent

approaches to product term reduction.

21

. RECENT APPROACHES

For some recent approaches to near-optimum

product term reduction, this chapter describes the

expected success of obtaining solutions. Afterwards,

three recent approaches to product term reduction are

described followed by a proposed method to solve an order

dependence problem in some of the recent approaches.

A. Limitations of Near-optimal Approaches

As mentioned in Section 3.8, for practical

purposes a near-optimum product term reduction method

must accept as input a compact specification of the

problem; otherwise, the complexity would be unacceptable.

In what follows, we use the nomenclature developed in

Chapter 2.

The search for a solution among the set of all

solutions, PS, of a switching function could be attempted

as a two step process. First, we could find all the prime

implicants of the function. Second, we could find a

minimal cover of prime implicants.

Say for the sake of understanding, that we were

to find a solution in two steps. First, for every product

term in the specification generate, through expansion,

all prime implicants covering it. Second, find a minimum

cover. The first step will only generate a subset of all

prime implicants of the function because the product

22

terms may not all be minterms. Thus, we are limited to a

subset of reachable solutions, RS1, of all possible

solutions -(RS lc PS). The generation of all prime

implicants for every product term in the specification is

in general impractical. Thus, a heuristic. expansion

selects a "best" prime implicant for each product term.

This further limits us to a subset RS2 of RS1. Now, we

are limited to a solution in RS2; that is, we are bound

to find at best an optimum in RS2, which might or might

not be an optimum in PS. This is to say there are

specifications from which a global optimum is not

reachable, when a two step method consisting of a

heuristic expansion and a minimum cover is used. The use

of a minimum cover makes the latter method

computationally intensive and the heuristic expansion

step can severely limit the likelihood of finding an

optimal solution.

In an attempt to diminish the above mentioned

problems, the minimum cover step can be replaced with

either one of two approaches. If we are content with a

reduced irredundant cover, we replace the minimum cover

step with an irredundant cover step. In the event that we

wish to seek minimization, we replace it with a

reduction step. This reduction step is one of eliminating

redundant product terms and trimming. Trimming reduces a

non redundant term to a smaller term so that the cover

remains proper. This allows for further expansion through

23

another iteration. This replacement has changed our

two step method to an iterative one. Trimming allows for

a selection of different subsets of reachable solutions.

Thus, trimming allows a more extensive set of reachable

solutions, which in turn increases the probability of

finding a better solution. Furthermore, we can improve

the method by adding a reshaping step after reduction.

The reshaping step allows further expansion through the

selection of a different subset of reachable solutions.

The procedures MINI, PRESTO and ESPRESSO are

described in the following sections.

B. MINI

The iterative improvement procedure, MINI, was

developed by S.J. Hong, et. al. for minimizing "shallow

switching functions",or those functions whose minimal

solutions contain at most a few hundred product terms

regardless of the number of variables (HONG].

MINI accepts as input a switching function

expressed as a list of product terms and incompletely

specified product terms, thus avoiding a prohibitively

long minterm specification. MINI starts by making the

minimum function (don't cares set to their primed

literals) of the specification one of mutually disjoint

product terms. A disjoint specification results in a

larger set of smaller product terms. By changing the

initial specification to a disjoint one, MINI increases

24

the number of reachable solutions. This in turn makes it

more likely to find an optimal solution among the

reachable solutions. The disjoint specification

introduces further merging freedom through its larger set

(but not prohibitively numerous such as a minterm list)

of smaller terms.

MINI takes the disjoint specification as the

initial solution to the following algorithm:

Expand_solution;

Compute_solutionsize;

REPEAT

Reduce solution;

Reshape_solution;

Expand solution;

Previous size:= solution size;

Compute_solution_size

UNTIL solution size not < previous_size;

MINI's expansion process starts ordering the

terms using a simple heuristic algorithm, which tends to

put on the top of the list those terms that are hard to

merge with others. Once the terms are ordered, expansion

proceeds from top to bottom, each time finding a prime

term covering the term under expansion and perhaps many

of the other terms in the solution. This is accomplished

by the use of heuristics biased towards a prime term that

25

"looks" the best (one that covers more terms of the

solution). Any covered terms are deleted and the new term

is appended to the bottom of the solution. The expansion

process terminates when no more unexpanded terms are

left.

MINI's reduction process starts reordering the

terms of the solution using a heuristic algorithm which

tends to put on top of the list those terms that are

large, thus hard to reduce. The reduction process

proceeds down the list. For each term, T, it takes those

terms in T and not in any other term of the current

solution to form the set of unique terms, SUT, and finds

the product term, ST, covering SUT. No product term, PT *,

exists such that ST covers PT*, and PT* is covered by

Fmax. Once ST is found by the reduction process, ST

replaces T, because ST covers all the terms that are

unique to T. In the event that the set of unique terms,

SUT, is empty, T is simply removed from the list. Thus,

the solution size is reduced by one because the redundant

term T is removed.

Paraphrasing S.J. Hong, et. al., we say that,

after an expansion and reduction step the nature of the

product terms in the solution is that there is no product

term covered by Fmax which covers more than one product

term in the solution, [HONG].

MINI's reshaping process reorders the terms in

the solution with more "splittable" terms at the top of

26

the list. Reshaping then finds each pair of terms that

can be rewritten as another pair of disjoint terms with

the same covering. This increases the probability of

further merging through another expansion step. Actually,

the reshaping process allows the possibility to search

through otherwise unreachable solutions because of

specification dependencies (as explained in Section 4.A).

C. PRESTO

The iterative improvement procedure, PRESTO,

was reported by Brown as developed by A. Svoboda, who

chose a minimal set of operations which were fast and

required little computer memory [BROWN].

In what follows, we will consider F to be a

switching function of input variables, (X1,..Xn),

and 'm' output variables (Y1,...,Ym).

PRESTO accepts as input a term specification of

the switching function, F, thus avoiding any

prohibitively long specifications such as a minterm list.

PRESTO starts by forming the two extreme

functions, Fmin and Fmax, from its original

specification. PRESTO works iteratively on Fin by adding

minterms from Fmax that reduce the number of terms in the

solution. Thus on each iteration, we have an

Fi such that Fmin c Fi c Fmax, and the number of product

terms in Fi is less than or equal to the number of

product terms in Fmin PRESTO iteratively executes the

27

expansion and reduction processes until no change in the

size of the solution happens.

The expansion process transforms each product

term, PT, in F1 to a prime term, PI, such that

Fmax m PI m PT. For a given product term, PT, the

expansion process finds one of its PL's as follows.

First, it selects the input literals in turn , xj or xj1

given by the arbitrary order (left to right). Second, it

tries to expand PT by changing xj or xj to its switching

variable X., and checks if this newly formed product term,

TPT, is covered by Fmax. Third, if TPT is covered by Fmax

then PT is replaced by TPT; otherwise, no change is

made. The above three steps are repeated until no more

input literals are left to be considered for expansion.

The reduction process in PRESTO is its only

means to reduce the number of terms in a solution. This

process tests for elimination of each product term, PT,

in the solution. The reduction process selects one simple

product term, SPT, from the product term PT. Next, the

reduction process tests if SPT is covered by the

remainder of the solution Fi. If SPT is covered then SPT

is eliminated by replacing its unprimed with its primed

output literal in PT, the corresponding unprimed output

literal of SPT; otherwise, no change is made. Next, the

reduction process selects another SPT and repeats until

all SPTs from PT have been considered. If at this point

the output symbol of PT has only primed literals, then

28

the reduction process eliminates PT reducing the solution

size by one.

For the reduction process, one can easily see

that for each product term the processing order of its

simple - product -terms is immaterial. However, the number

of product terms in the solution depends on the order the

product terms are tested for elimination.

To see the product term order dependence,

consider the case when a product term, PTk, after going

through the reduction process, is transformed to PTT and

not deleted. Later on, the reduction process finds a

product term, PTA, covered by the original PTk, but

because PTk was transformed to PTT the reduction process

is unable to eliminate PTA. In this case, no product term

is eliminated, whereas if the reduction process

transforms PT1 before PT
k, PT., is eliminated.

D. Brief Comparison

We have said in the above sections that the

results of both MINI and PRESTO depend on the function

specification. MINI tries to lessen this difficulty by

making a larger set of solutions reachable because it

uses a specification of mutually disjoint product terms.

Thus, a more extensive search for a solution can be done

by making the specification closer to one of minterms

"but not prohibitively numerous such as a minterm list"

29

[HONG]. PRESTO does nothing to change the original

specification.

By looking to the processes in PRESTO, one can

expect that the computer memory required to implement

PRESTO be significantly smaller than MINI'S.

MINI uses ordering heuristics for each

expansion, reduction, and reshaping step. Thus, a

significant amount of reordering is done. PRESTO, on the

other hand, uses no ordering.

Both MINI and PRESTO provide trimming in the

reduction process to allow further merging through

another expansion.

MINI has a reshaping step which makes other

solutions reachable, while PRESTO does not.

PRESTO has a procedure to check if a product

term is part of a function. This procedure does minterm

level checking which is computationally expensive.

However, D. Brown modified it to a tree method making

PRESTO more efficient [BROWN]. This cover checking

procedure does not consider don't cares, so solutions

with redundant terms due to don't cares may result. On

the other hand, MINI checks for don't cares.

All steps in MINI and PRESTO have some kind of

order dependence.

ESPRESSO

30

A divide and conquer (partitioning) approach

was taken by R.K. Brayton, et. al. in ESPRESSO [BRAYTON)

to significantly reduce the computational complexity of

product term reduction. In this, they shared an

intellectual outlook with S. Kang in SPAM [KUNG]. The use

of partitioned complementation in ESPRESSO helped

significantly to reduce the computational complexity. The

divide and conquer approach was achieved by tree-

partitioning the function. In this way, they deal with

several partial covers of the function instead of a

single cover. After finding a set of "best" disjoint

partial covers, they find a minimal cover for each

disjoint partial cover. These are merged to form a single

cover. ESPRESSO can be summarized as a three-step

procedure.

Find a "best" partition tree for the function;

Find a minimal cover for each of the leaves;

Merge the reduced leaves;

MINIMAL as named in ESPRESSO is the basic

procedure applied in the above second step. This is the

part most closely related with PRONTO as a product term

reduction procedure. MINIMAL can be seen as taking a

function specification as input to the following

procedure.

31

Do single product term containment;

Do "distance-one" merging;

Do ordering product terms by descending size;

Solution:= empty;

For each product term in order Do

Begin

Find a "best" prime term;

Solution:= Solution + prime term;

End;

Make Solution Irredundant;

In order to find a "best" prime term, MINIMAL

heuristically selects an order of variables with which to

expand the product term. MINIMAL provides the user with

three possible ways to do cover checking. These are

intersect complete or partial complement and a tree

algorithm. In the reported experiments with ESPRESSO, the

partial complement cover checking option showed to be

best. In order to make the solution irredundant, MINIMAL

has a procedure named IRRCOVER as its last step. This

procedure deletes any prime implicant found to be covered

by the remainder of the solution. The result of IRRCOVER

can be seen to depend on the order in which the prime

implicants are tested for covering. MINIMAL can be

summarized as a procedure which does some preprocessing

to the function, then for each product term finds a

"best" prime implicant and gives as solution an

irredundant set of prime implicants. MINIMAL is thus a

one-pass heuristically guided indirect search approach to

product term reduction.

F. Order Independence in Reduction and Irredundant

Covering Procedures

This section presents a proposed approach to

solve the relative order dependence of product terms for

the reduction step in PRESTO and for the irredundant

cover (IRRCOVER) step in MINIMAL.

Let us examine why the reduction and

irredundant covering procedures are dependent on the

order in which each product term is tested for redunction

or irredundancy. Each time a product term is found

reduceable or irredundant, it has the effect of changing

the enviroment (set of product terms) for the next

product term; therefore, there is a potentially negative

effect on the next product term when testing for

reduction or irredundancy.

An approach to guarantee order independence can

be done in a two-step solution. First, guarantee the same

enviroment for each product term regardless of its

relative position. This allows us to identify all

possible (regardless of its position) redundant product

terms.. Second, guarantee an order independent selection

of those product terms actually redundant. The first step

can be achieved by changing a redundant product term to a

33

don't care. In this way, we guarantee the same enviroment

and identify those possibly redundant product terms in a

solution. The second step can be done as follows:

a). Identify the set of uncovered product terms

when all the possibly redundant product terms are deleted

from the solution.

b). If the set of uncovered product terms is

nonempty, then find an order independent reduced cover of

this set by using the possibly redundant product terms;

otherwise, all possibly redundant product terms are

actually deleted from the solution.

An order independent reduced cover can be found

with a heuristic criteria. This finds a cover of the

uncovered product terms with an order independent

selection of the possibly redundant product terms. Order

independence is ensured by making each criterion one

which is based only upon order independent properties.

The above approach can be summarized as one

that delays the decision to delete a redundant product

term until all product terms have been considered. Then a

reduced set of the possibly redundant product terms is

selected to keep a proper function cover.

The next chapter presents PRONTO as a one-pass

heuristically guided direct search approach to product

term reduction.

34

5. A ONE-PASS HEURISTICALLY GUIDED

DIRECT SEARCH METHOD

This chapter presents PRONTO as a practical

approach to product term reduction. This approach is a

one-pass, heuristically guided direct search procedure

with the following three characteristics. First, it only

attempts to expand product terms in directions which can

possibly cover some other uncovered product terms.

Second, it does not seek primality (prime terms) in

expansion; however, PRONTO seeks to cover "most"

uncovered product terms. Third, its complexity is

linearly dependent on the number of product terms in the

solution.

A. PRONTO

As it has been previously mentioned, PRONTO is

a one-pass, heuristically guided direct search approach

procedure that sequentially chooses the elements of a

solution. The search for the elements in a solution is

done with the help of some heuristic criteria. For the

selection of each of the elements in the solution,

simplicity and effectiveness of the procedures were kept

in mind. With this approach in mind, a four-step

selection criteria for the, product terms in the solution

is followed. These four steps are as follows: First,

select an uncovered product term (one of those yet needed

35

to attain a solution) to serve as the base product term

for expansion. Second, find a set of uncovered product

terms that can possibly merge, in full or in part, with

the base product term. Third, among the possible

expansions of the base product term, select one that can

cover "most" of the uncovered product terms. Fourth,

update the state of each product term after the base

product term has gone through expansion. PRONTO has the

following procedure:

REPEAT

Step 1: Select a Base Product Term;

Step 2: Select an "easiest" to Merge Set;

Step 3: Expand the Base Product Term;

Step 4: Update the State of Product Terms;

UNTIL No Uncovered Product Term is Left;

A description of each of the above four steps,

with selection criteria follow:

B. Selecting a Base Product Term

The aim of the Step 1 procedure is to find

among the uncovered product terms, one that is highly

unlikely to be covered by expansions of other uncovered

product terms. To achieve this, we present a selection

criteria which assumes we have computed; first, for each

output column j of the specification, the number of

36

unprimed output literals uj and the number of switching

variables v4 and second, for each row i the number of

unprimed output literals oi. The criteria first select an

output column and then among the uncovered product terms

having an unprimed literal on the selected output column,

the selection criteria choose a single uncovered product

term. A description of the column selection criteria

follows:

Criterion CS1. Of the output columns not yet

selected, we choose a column J with a minimum number Uj

of unprimed literals but greater than zero.

U =min uj u
3
> 0

J

Criterion CS2. Among the candidates from CS1,

we choose a column with the minimum number Nix of

switching variables in it.

VK =minv
J

Criterion CS3. Of the candidates from CS2, we

select one arbitrarily.

Once a column K has been selected, choose among

the uncovered product terms having an unprimed literal in

column K, the first uncovered product term with a minimum

number 0
I

(greater than zero) of unprimed output

literals. No new column is selected until all the product

terms with unprimed literals in the present column are

covered. The next section deals with the selection of a

set of uncovered product terms that possibly can fully or

37

partially merge with the base product term.

C. Selecting an "easiest" to Merge Set

The goal for Step 2 is to provide a set of

uncovered product terms that can "easily" merge with the

base product term and after expansion give a "best"

coverage of uncovered product terms. In other words, we

are selecting a set of possible directions to expand with

a high possibility to cover "most" of the mergeable

uncovered product terms. The approach to achieve the goal

in this section is through first, classifying each

uncovered product term with respect to the base product

term and second, selecting an "easiest" to merge set of

uncovered product terms. The uncovered product terms can

be grouped into those that intersect (share some term)

the base product term and those which do not intersect

(share no term) the base product term. Each uncovered

product term of the intersecting group falls into either

a covered, covering or partially covered class, and each

uncovered product term of the non intersecting group

falls into either a mergeable directly or mergeable

indirectly class. These five classes are described as

follow:

The uncovered product terms in the covered

class are those terms covered by the base product term.

Those uncovered product terms that properly

cover the base product term are in the covering class.

38

The portion./ covered class of uncovered

product terms are those uncovered product terms that

intersect the base product term and those that are

neither properly covered nor properly covering.

The mergeable directly class of uncovered

product terms are those non-intersecting uncovered

product terms having a single disjoint input or a non-

covering output term with respect to their corresponding

output term or input in the base product term.

The mergeable indirectly class of uncovered

product terms are those non-intersecting uncovered

product terms having more than one disjoint input, or a

non-covering output term and a disjoint input with

respect to their corresponding output term or input in

the base product term.

Let us consider each of the classes and examine

them for their usefulness in finding an "easiest" to

merge set of uncovered product terms.

For the covered class of uncovered product

terms, its members are completely covered and obviously

redundant; thus, they should be left out from further

consideration (changed from uncovered to a covered

state).

A member of the covering class is an uncovered

product term which includes the base product term. Thus,

if this class is nonempty, the state of the current base

product term is changed to the covered state and the

39

procedure starts over by selecting a new base product

term.
For the partially covered class of uncovered

product terms, its members are partially covered by

part of the base product term. Among the members of this

class, select those which can split in two product terms

where one is covered by the base product term and the

other is mergeable directly. Thus, any uncovered product

term meeting the above conditions can be replaced by its

mergeable directly half. Any other partial covering is

considered as too expensive to carry on.

The members of the mergeable directly class are

uncovered product terms that can be either fully or

partially merged with either the full base product term

or part of it. Thus, there are four possibilities. First,

the full uncovered product term can be merged with the

full base produ-t term. This kind of uncovered product

term certainly is the easiest to merge with the base

(adjacent to the base); thus, these uncovered product

terms are made members of the "easiest" to merge set.

Second, the full uncovered product term can be merged

with part of the base product term (properly covered by

a product term adjacent to the base). The question here

is, what part of the base? a half?, a fourth?...; PRONTO

limits the selection for the "easiest" to merge set to

those that can be merged with a half of the base product

term. This can save a great deal of computational

complexity (fewer calls to the cover checking procedure).

40

Even with these limitations, the results show no

reduction in the quality of the solution as presented in

Section 6.B. Third, part of the uncovered product term

can be merged with the full base product term; again,

limiting the part to be a half can save complexity; thus,

the uncovered product terms of which a half can be merged

with the full base product term belong to the "easiest"

to merge set. Fourth, part of the uncovered product term

can be merged with part of the base product term; for the

same kind of reasons as above, PRONTO limits the parts to

both being a half and adds them to the "easiest" to merge

set.

A member in the indirectly mergeable class is

one which can be merged only if two or more other terms,

each adjacent to the base product term, can also be

merged. Thus, no member of this class is in the "easiest"

to merge set.

The above selection of the easiest to merge set

is summarized as follows. The members of the "easiest" to

merge set are those uncovered product terms in the

mergeable directly class which are adjacent to the base

product term or a half of a product term adjacent to the

base product term, and those uncovered product terms with

a half which is either equal to or a half of a product

term adjacent to the base product term.

41

Example:

This example shows how an easiest to merge set

is found. Let us consider the term Ti from Figure 5.1 as

the base product term for the specification T1,T2,..., S.

In order to find the easiest to merge set, we first

classify each uncovered product term with respect to the

base as follows: T2 as mergeable directly because it has

a single disjoint input with the base; T3 as partially

covered because it shares the term 0101- 010 with the

base but half of T3 (0101- 001) is mergeable directly; T4

as mergeable directly because it has a single disjoint

input; T6 as mergeable indirectly because it has more

than one disjoint input; T7 and T8 as mergeable

indirectly because they have a single disjoint input and

a non-covering output term. Second, the easiest to merge

set is selected from the mergeable directly class. The

mergeable directly class is formed by T2, T4, and

Ti 0101- 110

T2 11011 110

T3 0101- 011

T4 0111- 110

T5 11010 --0

T6 1111- 111

T7 11-1- 001

T3 0111- 001

Figure 5.1 Selecting an easiest to merge set

42

0101- 001. All three are easiest to merge because T2 is

half of a product term adjacent to the base, and both T4

and 0101- 001 are product terms adjacent to the base.

The next section describes the base product

term expansion step of PRONTO.

D. Expanding a Base Product Term

The aim in Step 3 is to provide for the current

base product term an expanded base product term that can

cover "most" of the uncovered product terms in the

"easiest" to merge set. Here, a two-part approach is

taken. The first part finds those members of the

"easiest" to merge set having a half covered by a product

term adjacent to the base product term and each of their

covered halves can be expanded to be a product term

adjacent to the base product term. At this point, a set

of product terms adjacent to the base product term is

available. These are those members of the "easiest" to

merge set which are adjacent to the base product term and

those found by expansion to be adjacent.

The second part of Step 3 expands the base

product term by considering only those directions where

adjacent product terms were found. Now, in order to find

an expanded version of the base product term, we use a

tree expansion algorithm like the one used by V.T. Rhyne,

et. al. [RHYNE]. As for the cover checking procedure any

of the ones in MINIMAL can be used. However, due to the

43

restrictions imposed on selecting the adjacent product

terms and the nature of practical problems, we do not

expect on the average to have a "large" number of product

terms adjacent to the base product term. Thus, the above

imposed restrictions limit the number of branches in the

expansion tree, which in turn will cause a reduction of

the usage of time-consuming cover checking procedures.

For the example in Section 5.0 we found the

easiest to merge set to be T2, T4 and 0101- 001. Now, let

us expand the base product term (T1). First, we check if

T2 can be expanded to be a product term adjacent to the

base and indeed it can be expanded to 1101- 110 so, we

have a total of three product terms adjacent to the base.

Next, we expand and find through a tree expansion that Ti

can be expanded in all three adjacent directions and

yield the term -1-1- 111 as the expanded base product

term.

One could fairly easy see that because we are

limiting expansion to a selected set of directions, we

are bound to end up with product terms which are not

prime. Not seeking prime terms (primality) not only can

save complexity but also can improve results as our

experimental results in Section 6.8 show.

The resulting expanded base product term has

been guided to cover "most" uncovered product terms.

Thus, we only have to record the change in state of those

product terms affected by the expansion of the base

44

product term. This is the subject of the next section.

E. Updating the State of the Product Terms

As the title of this section reflects, here the

purpose is to update the state of the product terms which

are covered fully or in half by the expanded base product

term. It is quite simple to find out what uncovered

product terms have been covered completely or in half, if

when expanding the base product term a record of this

data is kept; thus, this data is readily available after

the previous step has been completed. Given this data,

any product term completely covered by the expanded

product term is changed to be in its covered state and

any product term covered in half is replaced by its

uncovered half.

At this point, all four steps of PRONTO have

been described. Next, an example to help clarify how

PRONTO works is presented.

F. Example

We have chosen to present as example a PLA

description given by S. Kang, [KANG]. This particular

example is well suited for the partitioning developments

done by S. Kang in SPAM. The PLA description is given in

Figure 5.2 (a) and the solution (developed below) is in

Figure 5.2 (b).

45

Let us follow the steps of PRONTO for this

example. In Step 1, CS1 finds the third (from left to

right) output column as its only candidate. Thus, among

the three uncovered product terms (PT3, PT5 and PT6)

having unprimed output literals in Column 3, PT3 is

selected because is the first uncovered product term

found with minimum number (2) of unprimed output

literals. Therefore, Step 1 selects PT3 as the first base

product term. Step 2 looks for an "easiest" to merge set

from the directly mergeable class for PT3. Uncovered

product terms 1,4,5,6 are mergeable indirectly because

each is found to be disjoint with the base in at least

two inputs; uncovered product terms 2 and 7 have one

disjoint input and non-covering output terms, thus they

also are mergeable indirectly. For product terms 8

through 18 all the output terms are found to be non-

covering and they have no disjoint inputs with respect to

the base; thus, they are mergeable directly, but none of

them is adjacent nor can it be expressed as two product

terms where one of them is covered by a product term

adjacent to the base product term, so the "easiest" to

merge set is empty. Thus, Step 3 does not expand PT3 and

the first product term, Sl, in the solution is PT3; Step

4 changes its state to the covered one (marking it, in

the right-hand column of Figure 5.2 (a), as the base for

the first product term selected for the solution, Bi).

For the following three selections, PRONTO goes through

S
8
=

46

PT

1 001000 0001000 B9

2 001001 0001000 C9

3 001101 0011000 Bi

4 010001 0001000 B10

5 010110 0011000 B2

6 011001 0011000 B3

7 001111 - -- 0001000 Bll

8 1011001000 0101000 B5

9 -0011001000 0101000 C5

10 0101001000 0101000 B6

11 ------0111001000 0101000 C6

12 0001001000 0101000 C5

13 1101001000 0101000 B7

14 1001001000 0101000 C5

15 0001101000 0101000 B8

16 111110000 0001000 B12

17 -------001110000 0001000 813

18 0110101000 0100000 B4

PT
15'

a). Original specification

= PT6, S4 = Inn,

7, S12=S10 PT4' S11= PT PT16,

S5= 0-1001000 0101000

S
6

01- 1001000 0101000

S9= 00100 0001000

b). Solution

S7 =

S13=

PT13,

PT17'

Figure 5.2 PRONTO's example

47

similar choices and finds S2=PT5, S3 =PT6 and S 4=PT18'

Next, Step 1 finds PT8 as the fifth base product term;

Step 2 finds that PT9 and PT14 are the "easiest" to merge

set; Step 3 finds an expansion that covers PT8, PT9, PT12

and PT14, thus S
5
is equal to the expanded base product

term covering the above four product terms; Step 4

changes their states to the covered one (a B5 for PT8 and

a C5 for the PTs covered by the expansion from B5 to S5

marking it in the right-hand column of Figure 5.2 (a)).

As the base for the sixth product term in the solution,

PTio is chosen; Step 2 finds PT11 and PT13, but Step 3

finds no expansion covering the base plus both of the

"easiest" to merge product terms found in Step 2 so, S6

is the product term having the same cover as PT10 and

PT 11 (note that S6 is not prime). For the seventh and

eighth base product terms, it finds PT13 and PT15

repectively; these two were not expanded by PRONTO. As

the ninth base selects PT1 is found to be mergeable only

with PT2, which makes S9 equal to the product term having

the same cover as PT]. and PT2. For each of the remaining

product terms, Step 2 finds no "easiest" to merge product

terms. Thus, PRONTO makes S1en4, S 11=PT7' Si2=PT16 and

S 13 =PT 17* The size of the solution found with PRONTO is

13.

S. Kang reported the solution to the above

example when applying SPAM. SPAM gave a solution with the

same size as the one obtained by PRONTO. However, the

48

expected computational complexity in PRONTO can be

better. Furthermore, there is no reason that prevents us

from using PRONTO with the partitioning idea for even

better results.

The next section discusses the "worst and the

expected complexity in PRONTO.

G. PRONTO's Complexity

In this section PRONTO's complexity is briefly

described. We shall start by individually analysing its

four steps.

Step 1 is obviously linearly dependent on the

number of uncovered product terms, NUPT since it only

goes once through each uncovered product term in order to

find a base product term. Therefore, the complexity of

Step 1 is O(NUPT).

Step 2 classifies each uncovered product term

with respect to the current base product term. The

classifying operation depends linearly on the number of

inputs and outputs, N10. Thus, the complexity in Step 2

is 0(NupTNI0).

Step 3 first finds a set of product terms

adjacent to the base product term. This can cause up to

NI-I-1 calls to the cover checking procedure. Second, the

actual expansion takes place and when using a tree

expansion the worse case would be to call the cover

checking procedure 2(NI+1)-(N +1) times. Thus, the

49

complexity for Step 3 is 0(2(NI+1) C
c '

) where C is the

complexity of the cover checking procedure used.

Step 4 is the updating step which depends

linearly on the number of uncovered product terms, which

have been fully or partially covered by the expanded base

product term NCPT. Therefore, the complexity for Stept 4

is °(NCPT)*

So far we have analysed the worst case

complexity which varies exponential with the number of

inputs. However, the expected complexity is far better.

To establish expected complexity we make the

following assumptions which are satisfied in practice.

Al. The number of uncovered product terms

adjacent to the base product term is less than a constant

K ADJ and it is independent of NI.

A2. In order to find a "best" expanded base

product term, only a portion of the expansion tree is

searched. This portion calls the cover checking procedure

,.no more than (,NADJ1,
4 times, where NADJ is the number of

adjacencies found for the base product term.

Given Al and A2 the complexity of Step 3 is

0((KADJ)4*cc) rather than 0(2(NI+1)*C
c
). I t follows that

the expected complexity of all four steps is

C(NUPT+NUPTNI0-4-(KADJ)4*Cc+NCPT"

Hence, the expected complexity of PRONTO is

°(NstNuP Nio cc NcpT) , where N is the number of

product terms in a solution.

50

From the expected complexity formula of PRONTO,

two characteristics can be seen. First PRONTO depends

linearly on the number of product terms in a solution.

Second, the developments in PRONTO minimize the expected

number of calls to the cover checking procedure. These

two characteristics of PRONTO give an expected speed

improvement over

reducers.

previously published product term

After presenting PRONTO, there is only one more

chapter left to present. It contains the summary, results

and conclusions.

51

6. SUMMARY/RESULTS/CONCLUSIONS

A. Summary

A new appropriate nomenclature for product term

reduction methods was presented. Also, a modification to

solve the order dependence of the reduction procedure in

PRESTO and the irredundant cover in MINIMAL was given.

The major contribution of this research has been the

development of PRONTO as a practical product term

reduction approach. PRONTO is a one-pass, heuristically

guided direct search method using four steps to provide

the guided direct search for the selection of the

solution's elements. These four steps are as follows.

First, select an uncovered product term as a

base term for expansion.

Second, find a set of "easiest" to merge

uncovered product terms.

Third, properly expand the base product term so

as to cover "most" uncovered product terms which are

directly mergeable plus any additional uncovered ones.

Fourth, do the housekeeping to record any

covered and modify any half-covered product terms as

result of the expanded base product term being part of

the solution.

PRONTO can be very useful as part of a reducing

PLA generator.

52

. Results

The results of applying PRONTO, as described in

this dissertation, to eight examples has been provided by

D.W. Brown as summarized in Table 1. Each of the rows in

Table 1 represents an example. The number in the leftmost

column is the example number; the second column's number

is the number of inputs in the example; the number in the

third column represents the number of outputs in their

corresponding example; the fourth column provides the

number of terms in the example's specification; the fifth

column is the size (number of product terms)of the

solution when applying PRESTO [BROWN] and the last column

gives the size of the solution obtained when PRONTO was

used.

TABLE 1. Summary of Results

Example Inputs Outputs Terms Reducing with

PRESTO PRONTO

6 6 31 14 12

2 10 9 26 15 14

9 8 33 18 17

4 14 5 85 47 47

9 14 47 23 22

6 16 16 103 39 39

15 23 105 42 33

8 12 25 235 69 58

53

In all examples, PRONTO gave no worse results

than PRESTO and in six of them PRONTO improved the

results. PRONTO can be expected to be faster due to its

complexity.

C. Conclusions

As an approach to the product term reduction

problem, PRONTO improves results of a previously

published method. PRONTO has three characteristics which

make us believe it is faster than some previously

published methods. These characteristics are:

1) The expansion of a base product term is

limited to a set of possibly mergeable directions.

2) Expansion does not seek prime terms, only

"best" coverage of uncovered product terms.

3) The complexity is linearly dependent on the

number of product terms in a solution. Thus, we can

expect faster results for better solutions.

PRONTO's expected complexity tells us that

this ,pproach minimizes the use of the cover checking

procedure.

PRONTO can be tuned to the user's needs by

relaxing the requirements for the "easiest" to merge set

members and allowing a more extensive search for coverage

of uncovered product terms, and with the use of more

effective approches to cover checking procedures like the

ones used in MINIMAL.

54

To help show that our results are not

restricted to a unique class of functions, a function

which clearly belongs to the easily partitionable class

was presented as an example in Chapter 5. Of course, one

could also contemplate the use of PRONTO in a divide and

conquer (partitioning) scheme, where PRONTO reduces the

product terms for each partition.

PRONTO is simple enough as to be a practical

manual method for reasonably large functions.

More work remains to be done. It is highly

desirable to have a very cost-effective procedure for

cover checking, since it is a most often called procedure

in product term reduction. For those functions whose

minimal sum-of-products solution require a large number

of small product terms, one might be better off by using

external logic at the inputs and/or the outputs of the

PLA. The purpose of this logic is to reduce the number of

product terms in the PLA such that an overall savings in

real estate results. Thus, a cost-effective technique to

find appropriate external logic is desirable. The extra

delay and random logic introduced can pay off when

substantial savings in real estate result. Of course,

techniques for combining different PLA reduction methods

(product term reduction, folding, etc.) to give a better

overall area reduction are very much desirable. A

specially interesting combination is a method for product

term reduction giving highly foldable solutions, which

55

could be combined with a folding procedure and lead to a

substantial reduction in real estate.

Our experience makes us believe that PRONTO can

prove to be useful when applied to large practical

problems.

56

7. BIBLIOGRAPHY

AREVALO,Z. and BREDESON J.G.,"A Method to Simplify a
Boolean Function into a Near Minimal Sum-of-Products
for Programmable Logic Arrays," IEEE Trans. Comput.,
vol. C-27, pp. 1028-1039, Nov. 1978.

BRAYTON,R.K., et. al., "A Comparison of Logic
Minimization Strategies Using ESPRESSO: An APL
Program Package for Partitioned Logic Minimization,"
Proceedings of ISCAS82, pp 42-48, May 1982, IEEE
Catalog number 82CH1681-6.

BRICAUD,P, and CAMPBELL, J.,"Multiple Output
Minimization: EMIN," WESCON 78, paper 33/3.

BROWN,D.W. "A State Machine Synthesizer- SMS," 18th
Design Automation Conference, pp. 301-305, Jun. 81.

FAIRBAIRN,D.G. and HAINES,A.L., "New techniques and tools
ease design of custom VLSI," Electronic Design, pp.
187-191, Jan. 21, 1982.

FLETCHER,W.I., AN ENGINEERING APPROACH TO DIGITAL DESIGN,
1980 Prentice-Hall, Inc., Englewood, New Jersey
07632.

GAREY,M.R. and JOHNSON,D.S. COMPUTERS AND INTRACTABILITY:
A Guide to the Theory of NP-ComEletnessr W.H.
Freeman and Company, San Francisco, 1979.

GIMPEL,J.F.,"A Method of Producing a Boolean Function
Having an Arbitrarily. Prescribed Prime Implicant
Table," IEEE Trans. Comput" vol. EC-13, pp. 485
488, Jun. 1965.

GRASS,W., "Implementing a Set of Switching Functions in
Terms of Programmable Logic Arrays (PLA)," Digital
Processes, vol. 6, no. 1, pp. 75-96, 1980.

HACHTEL,A.L. et. al . ,"Some Results in Optimal PLA
Folding," Proceedings of the IEEE International
Conference on Circuits and Computers ICCC80, Pt. II,
pp. 1023-7, Oct. 1980.

HONG,S.J. et al., "MINI: A Heuristic Approach for Logic
Minimization," IBM J. Res. Develop., Vol. 18, No. 5,
pp. 443-458, Sept. 1974.

KAMBAYASHI,Y., "Logic Design of Programmable Logic
Arrays," IEEE Trans. Comput., vol. C-28, pp. 609-
617, Sept. 1979.

57

KANG,S., "Synthesis and Optimization of Programmable
Logic Arrays," PhD Dissertation, Stanford
University, 1981.

MARTINEZ-CARBALLIDO,J.F. and POWERS,V.M., "General
microprogram Width Reduction Using Generator Sets,"
Proceedings of the 14th Annual Microprogramming
Workshop, pp. 144-153, Oct. 1981.

MEAD,C. and CONWAY,L., Introduction to VLSI Systems,
Addison-Wesley, Reading, PA., 1980.

PAILLOTIN,J.F., "Optimization of the PLA Area," 18th
Design Automation Conference, pp. 406-410, Jun.
1981.

RHYNE,V.T., et. al., "A New Technique for the Fast
Minimization of Switching Functions," IEEE Trans.
Comput., Vol.C-26, pp 757-764, August 1977.

RIHERD,F.T. et. al., "Mead-Conway designing: No IC
experienFe needed," Electronic Design, pp. 115-120,
March 4, 1982.

ROTH,J.P., "Decreasing the Size of Associative Logic
Arrays," IBM Technical Disclosure Bulletin, vol. 17
no. 4, Sept. 1974.

SASAO,T.,"Multiple-Valued Decomposition of Generalized
Boolean Functions and the Complexity of Programmable
Logic Arrays," IEEE Trans. Comput., vol. C-30, pp.
635-643, Sept. 1981.

