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Chapter 1: Introduction

Image classification is the task of assigning a classification label (or set of labels) to an

image based on the objects and scene it depicts. This can take many different forms,

depending on the application. Algorithms can detect the presence or absence of objects

in an image, denote the specific location of an object, retrieve other images that contain

the same or similar objects, or even a combination of these. Whatever the application,

image classifcation has proven to be a difficult problem, often requiring a large amount of

training data to achieve satisfactory results. While it is relatively easy to obtain a large

database of images, labeling these images is still a time consuming process. With the

growing uses of computer vision in surveillance and security footage, facial recognition,

video analysis, and object recognition, it would be advantageous to find a way around

the need for large amounts of labeled data.

Despite the difficulties of doing image classification for machines, humans are very

good at it. Humans perform this task so well, that in [24] they use human stand-ins

for various components of their algorithm to identify how much it can be improved in

future work. Identifying the objects that we see is something we do constantly every

day. We are the experts in this domain, and any knowledge that we could pass on to

the computers that perform this task could improve accuracy without the need for more

and more labeled data.

User-in-the-loop systems like active learning and relevance feeback already exist for

image classifications [15, 34, 33, 19, 17, 20, 36, 1], but the user feedback obtained from

these systems is rather shallow. With these approaches users can tell the computer what

an object is or is not, but not why. For example, users can tell the system whether or

not an object is a car, but not the qualities that make up a car (such as having four

wheels, a windshield, metallic surface, etc). Telling the computer why an object is what

it is has been partially addressed in [3, 26] through the use of relative attributes. Here

the user feedback relates two classes through an attribute, such as saying that a meadow

should be more ”open” then a forest. This kind of relative information has been proven

to be beneficial for image classification, and it stands to reason that a more direct input,
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such as identifying features that objects possess, could improve accuracy as well.

Providing user feedback on features is something that has already been shown to

be beneficial in text classification [9], another domain where humans have a wealth of

experience to impart upon the system. Yet, this approach remains under utilized for the

task of image classification. In this paper, I take the first steps in showing that labeled

features can improve image classification algorithms, specifically in the case when little

training data is available.

To incorporate this feature feeback into parameter learning, I adapt a technique from

text classification known as generalized expectation [23, 10]. The generalized expection

criteria (or GE) is a regularization term that penalizes the model for deviating from a

target distribution. For the incorporation of labeled features, the target distribution is

defined as a skewed distribution that highly favors the provided feature labeling. GE was

chosen for the general nature of its formulation. While in this paper I work with feedback

at the feature level, the GE term could easily be extended in future work to use more

abstract feedback, such as high level attributes or user-defined feature combinations

previously unknown to the algorithm. This is because GE works on the conditional

distribution where a given feature is present. So as long as we can design a detector for

a feaure or attribute, we can use it in GE.

Due to the greater complexity present in image data, the original GE formulation

must be extended to work with CRFs with higher connectivity. The derivation of this

is shown in section 3.3, and is done in a way so as to be easily extendable to graphical

models with relatively large connectivity.

The contributions of this paper are two fold: 1. This paper demonstrates a proof

of concept implementation for incorporating labeled features into image classification

algorithms. 2. This paper expands the original formulation of generalized expectation

criteria to be applicable to more complex models. The hope is that with the ground work

laid by this paper, we can start to take steps towards incorporating labeled features and

richer forms of feedback into image classification algorithms, and making a system that

is as accurate as we are without being dependent on huge amounts of labeled data.
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Chapter 2: Related Work

With the challenges presented in image classification, there have been many different

methods proposed to reduce the number of training examples needed, often by including

some sort of external knowledge. Semi-supervised learning, like the method presented

in [5] is one such approach. These methods seek to leverage the information available in

unlabeled images, or in the case of [28], unlabeled videos. Other methods include adding

informative priors [30] and domain knowledge [25]. These are both one-shot approaches,

where the external information is collected before training. Under these systems, there

is no way to tailor results to specific users, or incorporate additional information post-

deployment.

Relevance feedback is a method that works directly with users as part of a feedback

loop for the task of image retrieval [33][19]. Here the user gives feedback on query

responses in an attempt to leverage additional information outside of the training data.

This kind of feedback is tuned to the user and collected after the algorithm is deployed.

Recent work [17] prompts users for relative attributes, where the machine asks if the

intended query should have more or less of a specific quality than an example image.

These are abstract qualities, such as a scene being open or crowded, that are human

understandable and require specific machine detectors. In contrast, the feedback used

in this paper is concrete features labels, where objects are specified as having certain

features. For example, with relative attributes we could specify that cars are shinier

than cows, where as with feature labels we can say that cars are metalic. Incorporating

these feature labels for abstract qualities is a subject for future work.

Active learning is another user feedback approach that seeks to get the most out of

labeled data by working directly with the user. This approach was explored in relation

to image classification in [15] and [35], as well as other approaches that work at the pixel

level [34] or region level [31] of images. Other varients include adaptive active learning

[20], crowd sourced active learning [36], and learning action detectors [1]. Most closely

related to feature labeling is the work in [26] and [3]. In these papers, when the user

corrects the machine’s labeling, they also specify why the label should be different, using
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the language of relative attributes. For example, if the machine presents an image of a

meadow and suggests that it is a forest, the user can correct it by saying that the image

is ”too open” to be a forest. Like the relevance feedback approach in [17], the attributes

are used in a relative way, and the computer can conclude that other images that are

more or equally ”open” as the presented image are also not forests. Again, the main

difference with the work presented here is that the labeling is done in a relational way.

Rather that the user specifying the attributes of a forest, they identify how it is different

from a meadow.

Outside of computer vision, there have been other attempts to incorporate external

knowledge into structured learning problems. In [4] the external knowledge is in the

form of a taxonomy. In a more general approach, [6] and [7] use knowledge for structured

learning in the form of contraints. These constraints guide the learning process, often in

a semi-supervised setting. This is similar to the use of Generalized Expectation Criteria.

The Generalized Expectation Criteria was introduced by Druck, Mann, and Mc-

Callum in [23] as a general method for incorporating preferences into learning model

parameters. Although GE is capable of influencing models to include constraints of

virtually any nature, the majority of this work revolved around using GE as a way to

incorporate labeled features into an algorithm. This proceedure forms the baseline of

the approach taken in this paper. The authors applied this regularizer to logistic regres-

sion [10] and conditional random fields [22] as a way of improving classification accuracy

when few training instances were available. An active learning approach was presented

as well in [11], again using conditional random fields. The formulation done for condi-

tional random fields was done for linear chain CRFs, not general ones like in this paper,

and only used labeled features for single nodes, rather than pairs of nodes as well.

Using GE to incorporate labeled features lends itself naturally to text based data

and natural language processing, which is where the majority of GE approaches have

been done. This includes document classification and annotation in the 2008 papers,

as well as more recent approaches in cross-language named entity recognition [38] and

language labeling in mixed-language documents [16]. This paper represents the first use

of generalized expectation for the use of image classification.

There are of course other methods for labeling features besides GE. Raghavan and

Allan proposed a method for using labeled features in support vector machines [27], and

[9] incorporates labeled features into a logistic regression model. The latter method can
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be considered a special case of GE, as can other methods that use maximum entropy

or transfer learning [23]. The end goal for a feature labeling algorithms is to solicit the

labels from users. With the domain of image classification to consider, these labels could

be on features, learned attributes, or even user-defined attributes. The formulation of

GE is general enough to handle all these cases, thus allowing the algorithm to easily

scale with future work. This paper represents a first step in this process for the vision

domain, using feature labels obtained from an oracle as a proof of concept.
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Chapter 3: Methodology

In this section, I will go over the formulations for the algorithms presented in this thesis,

along with their specific implementations. I will start with an overview of Conditional

Random Fields, along with notes on the vision specific CRF used in experiments. Then I

will discuss the generalized expectation regularizer, both in terms of a general formulation

and an approximate version for use with more complex data. I will conclude with some

notes about the data sets and experimental methodology.

3.1 Conditional Random Fields

A Conditional Random Field (or CRF) is a discriminative classification algorithm. It

is a more general application of logistic regression, where we allow multiple class labels

for a single data instance. In general, the CRF model consists of a set ~X of observed

variables, which we can derive features from, a set ~Y of output variables which we try

to predict, and an edge set ~E denoting the connections between variables.

A CRF models the conditional distribution P (~Y | ~X) as a product of factors, where

each factor is the exponent of a weighted sum of features over a subset of ~X and ~Y .

P (~Y | ~X) =
1

Z( ~X)

∏
A∈Ψ

exp(

K(A)∑
k=1

λAkfAk(~yA, ~xA)) (3.1)

Here Ψ is the set of all factors, f is a feature function for a given factor A and feature

index k, K(A) is the number of features for factor A, and λ is a feature weight. Each

factor A represents a subset of related variables from ~X and ~Y , denoted as ~yA, ~xA. Z( ~X)

is a normalization term. The goal of training a CRF is to learn the parameter values λ.

In practice, it is often desirable to have several factors share the same parameter

values, either to enforce similar distributions or to simplify the model by reducing the

number of parameters needed. When this is the case we use clique templates, sets of

factors that have the same values of λ, in the model formulation.
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P (~Y | ~X) =
1

Z( ~X)

∏
c∈C

∏
Ψc∈c

exp(

K(c)∑
k=1

λckfck(~yΨc , ~xΨc)) (3.2)

Here C is the set of all clique templates, c a specific clique template, and Ψc is a

factor (or clique) in c. This is different from the previous formulation in that the λ

and f terms are indexed by their clique template, rather than factor. Cliques are often

defined as fully connected subgraphs, with a size equal to the number of nodes in the

subgraph. For example, a clique of size one is a single node, a clique of size two is two

nodes connected together, and a clique of size three is a cycle of three nodes. If we define

our clique templates to be over clique sizes of one and two, then we will have a factor

for every individual node, and a factor for every pair of connected nodes.

3.2 CRF for Image Classification

For the purpose of image classification, we define a specific type of CRF based on the

segmentation graph (see Figure 3.1). Each segment of an image has several descriptors

extracted from it, namely SIFT[21], HOG[8], color histogram[32], and shape context[2].

These vector descriptors are clustered using k means (k set at 200), with each cluster

index representing a binary feature. For example, if a segment has a SIFT vector s, and

it is clustered into group j, then we say that the feature SIFTj is present in the segment.

Each segment has only one SIFT, HOG, color, and shape feature present, making for

a very sparse feature vector representation. These features make up the set ~X in the

model, and the object labels of each segment make up the set ~Y . For this paper, we

assume that each segment or region has only one label.

In the graphical model, each set of segment features is connected to its segment label.

We also define two segment labels to be connected if the segments are adjacent to each

other. This kind of connection in the graph allows adjacent segments to influence each

other during inference, which captures the important spatial relationships and informa-

tion found in image data (for example, a cow would be more likely to be adjacent to

grass than to be adjacent to an airplane). This also makes the image data much more

complex, as we have cycles in the graph (making exact inference techniques impractical)

and a potential for cliques of many different sizes.

For our purposes, we define our clique templates to be over clique sizes of one and
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(a) Image (b) Image Segmentation (c) CRF Graph

Figure 3.1: An example image (a), its segmentation (b), and the corresponding CRF
in graphical notation (c). The Y nodes correspond to segment labels, and the X nodes
represent observed features extracted from segments. The lines and boxes represent
factors in the CRF, which occur between label and feature nodes (unary factors) and
pairs of label nodes (binary factors). Note that there is no connection between Y1 and
Y4, as segments 1 and 4 do not share any edges. Here the ground truth labeling of
{Y1, Y2, Y3, Y4} is {background, car, tree, tree}.

two. This means that the CRF will have a factor for every segment, and a factor for

every pair of adjacent segments. Using these two clique templates allows our CRF to

still capture some spatial information while remaining tractable to learn. The features

for factors over single nodes will be the ones extracted from the corresponding segments

(called unary features), and the features for factors over pairs of nodes will be the union

of their unary features.

Knowledge is incorporated into the CRF using the framework of generalized expec-

tation, or GE. GE is a regularizer based on labeled features. That is, we provide a list of

features and the classes that they should belong to, and the GE regularizer pushes the

CRF parameters to match this input. Training the CRF is done using gradient ascent,

which involves calculating the gradient. Calculating the gradient of the likelihood term

is a solved problem, however finding the gradient of the GE regularizer is trickier, and

is explained further in the next section.
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3.3 GE Regularizer

The generalized expectation regularization term introduced by Druck et al [10], is of the

form

−GE(P T , P̂θ) = −
∑
f∈F

KL(P T (~y|xf > 0)||P̂θ(~y|xf > 0)) (3.3)

where P T is a target distribution that the algorithm is trying to match, P̂θ is an empirical

distribution based on available data instances, F is the set of labeled features, and KL

stands for Kullback Leibler divergence. This regularizer is simply the distance between

our target distribution, which is user defined, and the empirical distribution, which is

estimated using current model parameters. The distance is conditioned on the presence

of a set of label features which have been designated as highly informative. We follow

a similar formulation in this paper, but with considerations taken to apply to a general

CRF graph.

For our formulation, labeled features consist of the set [xf , yf , Cf ], where xf is the

feature index, yf is the label, and Cf is the clique template of the feature. The dimensions

of yf will depend on the size of the clique template. If the feature belongs to cliques

of size one, then yf is a single label. If it belongs to cliques of size two, yf is a pair of

labels. In line with this, we define our target and empirical distributions based on the

average distribution of all the factors in Cf .

P̂θ(~yCf = ~yf |xf > 0) =
1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)Pθ(~yψ = ~yf |~x) (3.4)

Zf =
∑
~x∈U

∑
ψ∈Cf

I(xf > 0) (3.5)

Here Zf is a normalization term, U a pool of unlabeled data used to estimate the

model distribution, and Pθ(~yψf = ~yf |~x) is found through marginalization of the CRF

using its current parameter values. Note that in this distribution we are looking at

a subset of the labels, denoted as ~yCf . Since each clique template is a set of factors

with the same parameter values, we calculate one empirical distribution for each clique

template, averaged over all these factors. This is to stay consistent with the clique

template representation, where factors in a template are regarded as different draws

from the same underlying distribution. The marginalization term, Pθ(~yψ = ~yf |~x), can
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be further expanded using the CRF formulation.

Pθ(~yψ = ~yf |~x) =
∑

~y:~yψ=~yc

Pθ(~yψ = ~yf , ~y−ψ = ~y−|~x)

=
∑

~y:~yψ=~yc

1

Z(~x)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt)) (3.6)

Z(~x) =
∑
~y

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt)) (3.7)

Where ~y : ~yψ = ~yc is the vector of all Y ’s except ~yψ. Note that we have defined our

feature function for the exponent simply as a pair of indicator functions for the presence

of xk in ~xψc and the value of ~yψc . The target distribution is created using a Schapire

distribution[29] over the possible labels[10] of the assigned clique template, with the

majority of the weight being put on the label assigned to the feature, yf .

P T (~yCf = yf |xf > 0) = qmax (3.8)

P T (~yCf 6= yf |xf > 0) =
1− qmax

|~yCf : ~yCf 6= yf |
(3.9)

qmax is generally set to something high, like 0.9 or 0.8, but is not overly sensitive to

the exact value. For the results reported here, I use the value 0.9.

In order to perform gradient ascent on the regularized CRF, we will also need to

calculate the partial derivative of our regularizer. The partial derivative is with respect

to the parameter values, which are indexed by clique template (Ct), feature index (j),

and factor label (~yL).

∂

∂λ(Ct,j,~yL)
(−4(P T , P̂θ)) =

∂

∂λ(Ct,j,~yL)
[−

∑
f∈F

∑
~yc

P T (~yCf = ~yc|xf > 0) log(
P T ( ~yCf = ~yc|xf > 0)

P̂θ(~yCf = ~yc|xf > 0)
)] (3.10)

The KL divergence term is expanded out, with the summation over labels restricted

to the clique template for each labeled feature. Remember that in our labeled features,
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a y label is assigned along with a clique template. Thus we only worry about the feature

being present within the specified cliques.

=
∂

∂λ(Ct,j,~yL)
[−

∑
f∈F

∑
~yc

P T (~yCf = ~yc|xf > 0)

[log(P T (~yCf = ~yc|xf > 0))− log(P̂θ(~yCf = ~yc|xf > 0))]] (3.11)

The terms without P̂θ cancel out, since they do not depend on λ, leaving us with

∂

∂λ(Ct,j,~yL)

∑
f∈F

∑
~yc

P T (~yCf = ~yc|xf > 0) log[P̂θ(~yCf = ~yc|xf > 0)] = (3.12)

∑
f∈F

∑
~yc

P T (~yCf = ~yc|xf > 0)
∂

∂λ(Ct,j,~yL)
log[P̂θ(~yCf = ~yc|xf > 0)] = (3.13)

∑
f∈F

∑
~yc

P T (~yCf = ~yc|xf > 0)

P̂θ(~yCf = ~yc|xf > 0)

∂

∂λ(Ct,j,~yL)
P̂θ(~yCf = ~yc|xf > 0) = (3.14)

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

∂

∂λ(Ct,j,~yL)
[

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)Pθ(~yψ = ~yc|xf > 0)] = (3.15)

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)
∂

∂λ(Ct,j,~yL)
Pθ(~yψ = ~yc|xf > 0) = (3.16)

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)
∂

∂λ(Ct,j,~yL)

[
∑

~y:~yψ=~yc

1

Z(~x)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))] (3.17)

The term I(~yψc = ~yt) in the above equation is to specify the value of ~yψc , since the

parameters are indexed by y values. This will be important to keep track of later on.
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The partial derivative now needs to be applied to 1
Z(~x) and the exponential term. Using

the product rule, we can look at these two calculations separately.

∂

∂λ(Ct,j,~yL)
[

∑
~y:~yψ=~yc

1

Z(~x)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))] = (3.18)

∑
~y:~yψ=~yc

1

Z(~x)

∂

∂λ(Ct,j,~yL)
[
∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))]+

∑
~y:~yψ=~yc

∂

∂λ(Ct,j,~yL)
[

1

Z(~x)
]
∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt)) = (3.19)

∑
~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]
1

Z(~x)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))+

∑
~y:~yψ=~yc

∂

∂λ(Ct,j,~yL)
[

1

Z(~x)
]Ψ (3.20)

Here Ψ is used to represent the un-normalized CRF equation. Some explanation on

the previous step: in calculating the partial of our product of exponentials, only some of

the terms will contain the parameter of interest. Recall that λ is indexed by Ct, which

specifies either unary or binary clique templates, the feature index xj , and the factor

label ~yL. Only the terms in the product with matching λs will count, while the rest

will drop off. The derivative of each term in the remaining product will just be the

indicator functions in the exponential. Using the product rule, we would end up with a

summation of these indicator functions for as many factors as are in Ct, indicated as the

sum of ψa ∈ Ct.

∑
~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]
1

Z(~x)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))+
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∑
~y:~yψ=~yc

∂

∂λ(Ct,j,~yL)
[

1

Z(~x)
]Ψ

=
∑

~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]P (~y|~x)+

−
∑

~y:~yψ=~yc

1

Z(~x)2

∂

∂λ(Ct,j,~yL)
[Z(~x)]Ψ (3.21)

=
∑

~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]P (~y|~x)+

−
∑

~y:~yψ=~yc

1

Z(~x)2

∂

∂λ(Ct,j,~yL)
[
∑
~y

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))]Ψ (3.22)

=
∑

~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]P (~y|~x)+

−
∑

~y:~yψ=~yc

1

Z(~x)2
[
∑
~y

∂

∂λ(Ct,j,~yL)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))]Ψ (3.23)

=
∑

~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]P (~y|~x)+

− 1

Z(~x)
[
∑
~y

∂

∂λ(Ct,j,~yL)

∏
c∈C

∏
ψc∈c

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψc)I(~yψc = ~yt))]
∑

~y:~yψ=~yc

Ψ

Z(~x)

(3.24)

=
∑

~y:~yψ=~yc

∑
ψa∈Ct

[I(xj ∈ ~xψa)I(~yψa = ~yL)]P (~y|~x)+

− 1

Z(~x)
[
∑
~y

Ψ
∑

ψa∈Ct
[I(xj ∈ ~xψa)I(~yψa = ~yL)]]P (~yψ = ~yc|~x) (3.25)

=
∑

~y:~yψ=~yc

P (~y|~x)
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL)−

P (~yψ = ~yc|~x)
∑
~y

P (~y|~x)
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL) (3.26)
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= [
∑

~y:~yψ=~yc

P (~y|~x)− P (~yψ = ~yc|~x)
∑
~y

P (~y|~x)]
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL) (3.27)

= [
∑
~y

P (~y|~x)I(~yψ = ~yc)−P (~yψ = ~yc|~x)
∑
~y

P (~y|~x)]
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL) (3.28)

=
∑
~y

P (~y|~x)[I(~yψ = ~yc)− P (~yψ = ~yc|~x)]
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL) (3.29)

Plugging this into our full gradient equation, we get

∂

∂λ(Ct,j,~yL)
(−4(P T , P̂θ)) =

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)

∑
~y

P (~y|~x)[I(~yψ = ~yc)− P (~yψ = ~yc|~x)]
∑

ψa∈Ct
I(xj ∈ ~xψa)I(~yψa = ~yL) (3.30)

The problem here is that summing over all ~y is intractable to do for any CRF with

more than a few nodes. This comes from having to take the partial derivate of the

marginal probability.

One possible solution to this is to use a variational approximation for the distribution

of Pθ(~y|~x). A simple approximation to make is the Mean Field approximation.

Pθ(~y|~x) =
∏
yi

Q(yi) (3.31)

Here we are approximating the full distribution with a product of independent dis-

tributions over single nodes. These Q distributions are functions of the exponential

form (much like the orginal factors in the model) which are as close as possible to the

approximated distribution. Each Q is locally optimal if it is of the form
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Q(yi) =
1

Zi
exp[

∑
φ:~yi∈φ

E~y\~yi|Q(lnφ)] (3.32)

Where the inner term is the sum of the expectations given Q of the log of all the

factors (φ) that ~yi appears in, over the remaining set of variables, denoted as ~y\~yi. That

is, for each factor we sum out the other variables using the expectation with respect to

Q. Zi is a local normalizer.

For the CRF we have defined, there are two kinds of terms in the summation.

Qt(yi) =
1

Zi
exp[lnφ(yi) +

∑
φ(yi,yj)

∑
yj

Qt−1(yj) lnφ(yi, yj)] (3.33)

The first is simply the parameters from the factor for this node. There are no other

variables to sum out from this factor, so we can take it’s values as they are. The second

is a summation over the pairs in which yi appears, summing out the values of the other

nodes using the distribution of Q. Once they are calculated, each Q term ends up being

just like a single CRF factor, with new values for the parameters λ.

We can now substitute this approximation in for Pθ when doing the gradiant calcu-

lation. We pick up the derivation from equation 3.16.

∂

∂λ(Ct,j,~yL)
(−4(P T , P̂θ)) =

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)
∂

∂λ(Ct,j,~yL)
Pθ(~yψ = ~yc|xf > 0) ≈

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)
∂

∂λ(Ct,j,~yL)
Q(~yψ = ~yc) = (3.34)

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)
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∂

∂λ(Ct,j,~yL)

1

Zf
exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc)) (3.35)

The exponent above is an expansion of the Q term, which we have defined to be in

exponential form. It should be noted that the λ parameters in this exponential do NOT

correspond to the parameters of the true CRF model. They are instead the parameters

of the approximated Q distributions, making them a combination of the true parameters.

Continuing with the derivation,

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)

∂

∂λ(Ct,j,~yL)

1

Zf
exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc)) =

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)

1

Zf

∂

∂λ(Ct,j,~yL)
[exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc))]+

∂

∂λ(Ct,j,~yL)
[

1

Zf
] exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc)) (3.36)

This is similar to the where we were in equation 3.19. Following similar steps, we

can arrive at

1

Zf

∂

∂λ(Ct,j,~yL)
[exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc))] =

1

Zf
exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc))I(xj ∈ ~xψ)I(~yψ = ~yL) (3.37)

= Q(~yψ = ~yc)I(xj ∈ ~xψ)I(~yψ = ~yL) (3.38)

and
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∂

∂λ(Ct,j,~yL)
[

1

Zf
] exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc)) =

− 1

(Zf )2
exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc))

∂

∂λ(Ct,j,~yL)

∑
~yt

exp(
K∑
k=1

λ(c,k,~yt)I(xk ∈ ~xψ)I(~yψ = ~yt)) = (3.39)

− 1

(Zf )2
exp(

K∑
k=1

λ(c,k,~yc)I(xk ∈ ~xψ)I(~yψ = ~yc))

∂

∂λ(Ct,j,~yL)
exp(

K∑
k=1

λ(c,k,~yL)I(xk ∈ ~xψ)I(~yψ = ~yL)) = (3.40)

−Q(~yψ = ~yc)Q(~yψ = ~yL)I(xj ∈ ~xψ)I(~yψ = ~yL) (3.41)

Plugging these into equation 3.36 we get

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)I(xj ∈ ~xψ)I(~yψ = ~yL)

[Q(~yψ = ~yc)−Q(~yψ = ~yc)Q(~yψ = ~yL)] = (3.42)

∑
f∈F

∑
~yc

P T (~yc|xf > 0)

P̂θ(~yc|xf > 0)

1

Zf

∑
~x∈U

∑
ψ∈Cf

I(xf ∈ ~xψ)I(xj ∈ ~xψ)I(~yψ = ~yL)

Q(~yψ = ~yc)[1−Q(~yψ = ~yL)] (3.43)

This does not involve any summation over the label space and can be tractably

computed for any reasonable CRF, since the marginals of Q are easy to compute. This

mean field approximation also allows the GE formulation to be extended to CRFs with

even larger connectivity. Since we are no longer summing over the label space, the use of

the GE regularizer is limited only by the number of factors in the model and tractability

of calculating the mean field approximation.
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3.4 Datasets

Three datasets were used to test the GE extention to CRFs. The Pascal 2010 dataset[12],

the ICCV09 dataset [14], and the MSRC-v2 1 dataset.

The ICCV09 and MSRC-v2 datasets have a ground truth, pixel level segmentation

included, where as the Pascal dataset does not. For the Pascal data, segmentation was

done using the Berkely Segmentation Engine[13]. As such, we expect the segmentation on

the Pascal data to be much noisier than the other two datasets, and also more indicative

of real world data.

Features are extracted from each segmentation region in the images, making up

the unary features. For each region, the four closest regions (measured as the distance

between the centers of mass) are defined as being adjacent. For the Pascal segmentation,

there is also the notion of a child region, since the segmentation has a tree structure. A

child region is a subsection of a larger parent region. Our set of binary factors is then

over every pair of regions that are either adjacent, or have a parent-child relation. The

binary features for these factor are the union of the unary features for the two regions.

To make the data easier to work with, and to reduce the time of training and inference,

subsets where chosen to respresent a set number of classes from each data set. In the

Pascal dataset, the classes car, motorcycle, person, bus, and background are present. In

ICCV09 we have the classes mountain, tree, grass, road, and background. The MSRC

data has six classes, namely building, grass, tree, sign, airplane, cow. The classes in each

subset were chosen to give the largest number of images in the reduced set. A sixth class

was added to MSRC to increase the subset to a more resonable size.

For the Pascal and ICCV09 datasets data is split into 5 images for training, 50 for

validation, and 100 for testing. The training and validation sets are ensured to have at

least 1 (for training) or 10 (for validation) images for each class. 245 images are left over

in the unlabeled set for Pascal, and 272 for ICCV09.

MSRC has 6 images for training, again with at least one image for each class. Due

to the smaller amount of data available, only 12 images are set aside for validation (2

for each class). This leaves 30 for testing and 39 for the unlabeled set.

1http://research.microsoft.com/en-us/projects/objectclassrecognition/
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3.5 Experimental Methodology

We are interested in testing the hypothesis of whether labeled features can improve the

classification of vision CRFs using a GE regularizer. As such, we will only be dealing with

high quality labeled features. These labels are calculated using all-vs-one information

gain on the unlabeled set as an oracle to identify the most informative features for each

class. For unary feature labels, information gain is calculated over each region of the

images, with none of the between region information being included. This can also

be viewed as calculating information gain on the set of unary factors. Binary feature

labels, which gives a pair of labels for features that appear in the union of two regions, are

calculated over the set of binary factors. More specifically, we make a dataset where each

instance represents two adjacent regions with features combined from both regions. The

label for each instance is the concatenation of the labels from the regions. Information

gain is calculated on this dataset to find the features that are most informative for the

pair of labels. In all casese, I take the top 5 features with highest information gain for

each label (or pairs of labels) to be in the labeled feature sets.

Our information gain is calculated as one-vs-all, for each class, and can include

negative labels as well. That is, if the most informative feature for Class 1 is the absence

of Feature 2, then we get the labeling of (Class 1, NOT Feature 2). Negative labels

are easy to incorporate into the GE formulation. Instead of doing indicator checks for

the feature being present in a factor, we instead check if it is absent. The rest of the

formulation is unchanged.

For the experiments performed in this paper, the datasets are split into training,

testing, validation, and unlabeled sets, with 10 different splits for cross validation. Fea-

ture labels for each split are calculated using the unlabeled data. Training sets are kept

small because GE has the best gains on small training sets. Care is taken to ensure that

each class is still present in these small sets.

Experiments consist of running the baseline Conditional Random Field (CRF) against

the CRF with GE regularizer for unary (GECRF Unary), binary (GECRF Binary),

and unary and binary feature labels (GECRF) for each split of each dataset. The GE

regularized CRFs are run with 3 random restarts, with the validation set used to chose

the best of the 3. The experiments are then evaluated using the averaged Macro-F1 over

each class. All CRF algorithms are trained using gradient ascent.
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These experiments are repeated for two different inference algorithms, loopy belief

propagation and mean field. These inference algorithms are used during the testing phase

of the algorithm, and also during training to evaluate gradient directions. Loopy is a

standard approximate inference algorithm used for CRFs, while the mean field inference

algorithm better matches the assumptions of the GE regularizer term, which uses a mean

field calculation in its derivation for both choices of inference algorithm. Comparing these

two inference algorithms will illustrate how important it is for the assumptions of the

GE term to match the assumptions of the likelihood term.
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Chapter 4: Results

4.1 Experiment Results

In this section I report the outcome of the GECRF experiments. These experiments

were done using the regular CRF as the baseline, with different levels of feature feedback

for the GECRF algorithm. GECRF Unary has labeled features for single regions. There

are 5 labeled features for each class in this set. GECRF Binary has labeled features for

pairs of regions. There are 5 labeled features for each combination of labels in this set.

Finally, GECRF uses all of the unary and binary features from the previous algorithms.

The experiments were done using two different approximate inference algorithms,

loopy belief propagation and mean field. Loopy BP is the standard for CRFs with high

connectivity, where as mean field better follows the assumptions of the GE regularizer

formulation. The test is to see if following these assumptions improves the performance

of using GE.

Results are reported using macro-averaged F1 scores. The F1 score for a single

class is the formula 2 ∗ precision∗recall
precision+recall . Averaging these values across all classes gives

the macro-F1. This measure is chosen over regular accuracy because in the case of

class imbalanced data accuracy can be misleading. In the Pascal and ICCV09 datasets,

the background class has many more instances than the others. A classifier that just

predicted background for every region could still get a relatively high accuracy. Macro-

F1 takes into account both precision and recall, and averages the score between classes

equally. Thus, it gives high score values to classifiers that can more reliably predict all

classes.

Figure 4.1 has the results of using loopy belief propagation and Figure 4.2 has the

results for mean field. Unfortunately, some of the GE results have not yet finished at

this time. Of the finished results, we can see that the GECRF results for the ICCV09

dataset are significantly better than the CRF baseline for both inference algorithms.

The MSRC GECRF results are only significantly better for the mean field inference

algorithm. Baseline scores are quite poor in general. This is to be expected, since the
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Loopy BP Results

Pascal ICCV09 MSRC

CRF 0.166 0.148 0.350

GECRF Unary 0.187 0.209 0.356

GECRF Binary 0.206 0.352

GECRF 0.189 0.323

Figure 4.1: Macro-F1 results using loopy belief propogation. Results are averaged over
10 different training splits. Bold values are significantly different from the CRF baseline
at the .05 level, using a paired value t-test.

Mean Field Results

Pascal ICCV09 MSRC

CRF 0.171 0.138 0.138

GECRF Unary 0.186 0.209 0.204

GECRF Binary 0.229

GECRF 0.239

Figure 4.2: Macro-F1 results using mean field inference. Results are averaged over 10
different training splits. Bold values are significantly different from the CRF baseline at
the .05 level, using a paired value t-test.

training set sizes are so small.

4.2 Timing Results

In this section I report the training time for each of the different algorithms. These are

averaged over the 10 data splits used in the experiments. Because the GE algorithms

use three random restarts during training, I only report the training time for the best

restart, i.e. the one used for the F1 results in the previous section. On average, we can

expect the training times for N random restarts to be N times longer. I do not report

any timing results for classification because the GE regularizer only affects parameter

learning and therefor does not change the classification time between the algorithms.

Figure 4.3 has the training time using loopy belief propagation and Figure 4.4 has the

timing results using mean field. In both cases, the time to train is significantly increased
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Loopy BP Timing

Pascal ICCV09 MSRC

CRF 6.8 min 8.3 sec 15.6 min

GECRF Unary 1.2 days 7.5 hr 2.3 hr

GECRF Binary 21.9 hr 4.2 days

GECRF 14.0 hr 4.5 days

Figure 4.3: Training time using loopy belief propagation. Results are averaged over 10
training splits.

Mean Field Timing

Pascal ICCV09 MSRC

CRF 37 min 24.7 sec 1.2 hr

GECRF Unary 3.7 days 4.6 hr 2.7 days

GECRF Binary 17.3 hr

GECRF 19.0hr

Figure 4.4: Training time using mean field inference. Results are averaged over 10
training splits.

when labeled features are included. The reasons and ramifications of this are touched

on in section 5.1.

4.3 Learning Curves

In the experiments illustrated in the previous sections, we saw how the baseline CRF

algorithm with a small amount of training data can be improved through the addition

of labeled features and a set of unlabeled images. This begs the question, how do these

improvements compare to those gained from just adding more training data?

To get an idea of this, we can compare the GECRF results to a CRF trained with

incrementally increasing training data. This is done for the ICCV09 data in figure

4.5. Here we are looking at the best baseline CRF (trained with loopy BP) compared

to the best GECRF algorithm (mean field inference algorithm, with unary and binary

features). The results indicate that we can expect roughly the same improvement by
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Figure 4.5: Comparison of an incrementally trained CRF to GECRF for ICCV09. The
CRF is trained using loopy BP with an increasing number of training examples. GECRF
is trained with mean field and includes unary and binary features. Results are averaged
over 10 training splits.

adding 20 labeled images to the training set. Keep in mind however that labeling a

single image involves labeling all the regions in the image. In the ICCV09 dataset there

are approximately 20 regions per image, so this would be an additional 400 labelings in

total. This is compared to the 150 features labeled in the GECRF algorithm.
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Chapter 5: Discussion

In the experiment results, we can see that the improvement over the baseline CRF algo-

rithm is greater for the mean field inference algorithm than for loopy belief propagation.

The improvement using loopy BP is only significant for the ICCV09 dataset, and essen-

tially zero for MSRC. On the other hand, mean field shows substantial improvement for

ICCV09 and MSRC, with negligable improvement on the Pascal dataset.

As stated in section 3.5, the purpose of testing these two inference algorithms was

to test the importance of matching assumptions of the GE regularizer term. The GE

regularizer uses a mean field assumption when calculating the gradient for gradient

ascent, so using mean field inference would ensure that the likelihood term agrees with

the regularizer. The results indicate that this agreement is important to maintain, as

the loopy BP inference algorithm struggled to improve over the baseline CRF.

In terms of absolute performance, using loopy BP produced a more accurate baseline

CRF. Changing the mean field approximation in the GE formulation to one that better

matches loopy BP, or some other more accurate inference algorithm, could bolster the

algorithm by giving it a better starting point. How much effect this might have is hard

to tell though, as the the mean field results for ICCV09 did eventually surpass the

loopy results with the addition of more features. This would also involve re-deriving

the approximation for GE to match the inference algorithm, and is left as a subject for

future work.

5.1 Training Time of GECRF

The substantial increase in training time for the GECRF algorithm is an obvious issue

that needs to be resolved. The training bottleneck comes from having to evaluate the

KL divergence, which requires calculating the empirical distribution over the entire unla-

beled dataset. As illustrated in equation 3.43, calculating the gradient of the regularizer

involves performing inference on ever factor in ever image in the unlabeled set. This

calculation is done as an inner loop for gradient ascent, causing the large increase in
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training time. This increase will only get worse as more unlabeled instances are added

to the pool, which is another incentive for finding a solution. Unlabeled data is cheap,

and we would like to be able to add a large amount of it to the algorithm without having

to pay such a steep time penalty.

One possible solution to this could be using parallelization. The inference for each

image in the unlabeled set is done independently of the other images, so this calculation

could be optimized by distributing the unlabeled data over multiple processors. On

average, this should give a speed up factor equal to the number of processors used.

Because this bottleneck accounts for the majority of training time, the overall speed up

should be similar, particularly when there is a large amount of unlabeled data being

used. As a proof of concept, I ran one split of the parallelized code for MSRC with

unary features and loopy BP inference algorithm on a machine with 8 processors. The

algorithm took 47.2 minutes to train, compared to the average training time of 2.3 hours.

We would expect this speed up to be even greater for the other two data sets, which

have much larger pools of unlabeled data.

Another simple solution would be to abondon the gradient ascent approach and use a

different algorithm for parameter learning. There have been many methods proposed for

speeding up CRF parameter learning [37, 18], any of which could help the GECRF run

in a more feasible time frame. The choice of gradient ascent was done for convenience

as it is a common out of the box approach, and there are many more options that could

be tried for the sake of fast parameter learning. It is also worth mentioning that the GE

regularizer does not affect classification time, so any trained algorithm will perform as

fast as the CRF baseline once deployed.

5.2 Incorporating User Feedback

The work in this paper shows that oracle labeled features can improve image classification

with the right inference algorithm. The next step is to test the effect of feedback from real

users. Unlike the text domain that GE has been used in previously, having users label

features for images would likely not yield useful results. This is because the features used

for image classication (particularly the ones used in this implementation) are extremely

unintuitive. Most users are not going to be able to specify the SIFT vector that best

identifies cars. In order to use human feedback, the labeling is going to have to be on
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attributes, not features.

Attributes are higher level qualities of objects that are human interpretable, such as

the concepts of ”soft”, ”metalic”, ”wet”, etc. This is the level of feedback used in [3],

and usually requires an identifier for each attribute, to classify each object as having

the property or not. The GE framework is easily extendable to work at the level of

attributes instead of features. This is because the empirical distribution is defined as the

conditional distribution where the labeled feature (or attribute) is present. So long as the

labeled quality is detectable for an image region, it can be an input to GE. This opens

the door to users labeling attributes, combinations of attributes, relational properties of

objects, or any other image quality that can be automatically detected.

It would be useful to test the benefits of using the GECRF in an active learning

scenario, similar to [3] and [11], where the machine prompts the users for labels on

attributes. In the text experiments, Druck et al found that having users label features

rather than instances produced better classification algorithms given the same amount

of annotation time. It is possible that this may be the case with providing attribute

labels for images as well.
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Chapter 6: Conclusion

In this paper I derived a new version of generalized expectation to incorporate labeled

features into image classification. Experiments were run with oracle feature labelings to

provide a proof of concept for the potential benefit of gathering this feedback from users.

Results indicate that, with the correct choice of inference algorithm, the labeled feature

feedback improves classication over the baseline algorithm. With further improvements

made to optimize the training time, the algorithm could be easily extended to solict

attribute feedback from users in an active learning environment. Previous experiments

in feature labeling for text documents showed that soliciting labels for features gives

better results for the same amount of time spent labeling instances. The preliminary

work done here supports the claim that this could be the case for image classification as

well, and encourages extending this work to include human feedback in the future.
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