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PERFORMANCE CONSIDERATIONS OF PARALLEL 
CONTROL SYSTEMS 

I. INTRODUCTION 

Control systems with two or more forward paths in 

parallel have been developed and applied to various 

control situations (4, p. 345 -354; $, p. 230 -231; 

12, p. 503 -509; 15, p. 3$4 -387; 17, p. 10 -16). The 

increase in complexity and variety of control systems 

has required the investigation of the performance 

characteristics of systems with two or more similar 

elements in parallel. 

The work on the feedback -feedforward control 

systems has been presented in many papers. In 

situations where the noise associated with the input 

signal is small, R. E. Graham found that it may be 

possible to reduce the dynamic errors obtained with a 

given servo systems by the use of forward- acting 

equalization external to the control loop (6, p. 649- 

650). The feedforward loops are applied to the design 

of the operational amplifier, based on the fact that the 

use of feedforward loops provides a means of adding 

zeros to the transfer function (7, p. 529 -536). A zero 

or a pole can be produced by the use of a differentiator 

or an integrator in feedforward loop thereby modifying 

the original system. The ideal differentiator or 
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integrator cannot be obtained easily, so the R -C lead, 

lag, and lead -lag networks have been developed for this 

purpose (3, p. 124 -129). 

A great deal of work on the feedback -feedforward 

systems has been carried out by J. R. Moore, in which 

the design of precision automatic control systems was 

attempted by a combination of coarse and fine 

adjustment. The coarse controller provides the major 

proportion of the output and acts as the open -cycle 

system, while the vernieracts as the closed cycle 

system (10, p. 1421 -1436; 14, p. 2$4 -2$6). The 

equivalent transfer function for the feedback - 

feedforward control systems is evaluated by the 

logarithmic frequency characteristic method (LFC) 

(1, p. 62 -67). 

As described above, the feedforward path includes 

unity, integration or differentiation for the purpose 

of improving the system performance. The high energy is 

applied to the open -loop and the low energy to the closed- -loop, 

respectively, of the open- and closed -loop cycles system. 

The parallel control systems to be considered in this 

thesis, however, consist of two or more control systems 

in parallel for controlling an output load. In 

Figure 1, two parallel control systems are illustrated, 

in which the completely parallel control system is 
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shown in Figure 1(a) and the partially parallel control 

system in Figure 1(b). 

This thesis attempts to study on the performance 

consideration of parallel control systems consisting of 

two elements in parallel. Hence each system element is 

specified as the type 1 positional control system which 

is most frequently used in servomechanisms. In order to 

combine these two systems in parallel, spur gears and 

differential gears are used in the completely parallel 

control system. The system using spur gears is defined 

as the completely parallel control system A, and the 

system using differential gears as the completely 

parallel control system B, and they are shown in Figures 

2 and 3, respectively. In the partially parallel control 

systems, control elements which produce a manipulated 

signal are combined in parallel. In cases where the 

compensating networks are included in control elements, 

a study on the partially parallel control systems can 

follow a realization procedure by using compensating 

networks as done by M. Smith (13, p. 332 -336). If only 

amplifiers are used as control elements, less 

significance is noted in the system performance of the 

parallel control system. (The work on the partially 

parallel open -cycle cloded -cycle system has been carried 

out by Moore (10, p. 10$9 -1094).) Consequently, this 
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thesis is concerned with completely parallel control 

system with realistic values for the time constants 

of the controlled systems. 

Various combinations of two control systems in 

which each system has four different motor and load 

time constants are used to investigate the transient 

response of the parallel control systems. The motor 

and load time constant is varied by changing the source 

impedance of motor power supply and the d -c motor 

design factors (9, p. 10$9 -1094). The figures of merit 

of system response for each parallel control system 

are evaluated by both the approximate equations 

(11, p. 516 -529) and the analog computer. 

The Appendices include a table of several combin- 

ations of the transfer functions of completely parallel 

control systems, derivations of the transfer functions 

of the completely parallel control systems A and B 

and the motor and load time constant in design terms. 
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H 

(a) 

(b) 

Figure 1. BLOCK DIAGRAMS OF THE PARALLEL CONTROL 
SYSTEMS 

(a) THE COMPLETELY PARALLEL CONTROL SYSTEM 

(b) THE PARTIALLY PARALLEL CONTROL SYSTEM 
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II. PARALLEL CONTROL SYSTEMS 

1. Completely Parallel Control Systems 

The general transfer function of the completely 

parallel control systems as shown in Figure 1(a) is 

derived below. 

The open -loop transfer function for the system 

shown in Figure 1(a) is 

G(s) = G1(s) G3(s) + G2(s) G4(s) (1) 

Then the closed -loop transfer function is 

C s G(s) G1(s)G3(s) + G2(s)G4(s) 

RÇs) 
_ 

1 +H(s)G(s) 1 +H(s)(G1(s)G3(s) + G2(s)G4(42) 

Assuming H(s) = K and assuming that each open -loop 

transfer function is as follows: 

G(s) = 
N1(s) 

G (s) = N2(s) G (s) - N3(s) (3) 1 D1(S) 2 D2(s) D3(s) 

and G4(s) = 
D4 s 

in which the individual terms on the right are analytic; 

they contain no poles and no zeros in the right half 

plane, and so G1(s), G2(s), G3(s) and G4(s) represent 

stable open -loop systems. By substituting equation (3) 

into equation (2), the closed -loop transfer function is 

N4(s) 

6 

obtained 
Ni(s) N3(s) N2(s) N4(s) 

C(s) 1(s) D3(s) D2(s) D4(s) 

Rk) R Nl(s) N3(s) N2(s) N4(s) 
1 K 

D1(s) D3(s) + D2(s) D4(s) 

(4) 

1. 

, 

+ 
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Hence, so far as stability concerned, the bracket term 

in the denominator of equation (4) only needs to be 

considered. In other words, the open -loop transfer 

function should be inspected for the system stability. 

It was specified that the individual transfer function 

is stable at equation (3), therefore the closed -loop 

transfer function is said to be stable. 

The open -loop, transfer function is 

N1(s) N3(s) N2(s) N4(s) 
G(s) - (5) 

Ni(s)N3(s)D2(s)D4(s) + N2(s)N4(s)Dl(s)D3(s) (6) 

Di(s)D2(s)D3(s)D4(s) 

In general, the individual transfer functions in control 

systems do not contain zero terms except when lead and 

lead -lag compensators are used. However, equation (6) 

contains new zero terms in the open -loop transfer function. 

As shown in Table 5 of Appendix I, these zeros are a 

function of the system gain and are located near poles. 

Consequently a more stable system could be achieved by 

adjusting the system gain to cancel a less stable pole. 

Since the range of system gain may be restricted to meet 

the specification of transient characteristics, the 

above procedure is not feasible. The fact that the zero 

of the transfer cuntion is a function of system gains 

prevents to use the root loci for obtaining the resultant 

system transfer function. The Frequency- response 

TI-57 

= 

D3 s D2 s D4(s) 



method is applicable in this case and is therefore used 

in this study. 

Table 5 in Appendix I shows various combinations 

of the transfer functions of completely parallel control 

systems. 

2. Mechanisms Combining Two Control Systems in Parallel 

In this thesis two mechanical components, differential 

gears and spur gears, combining two control systems in 

parallel, are used in the positional control systems of 

the completely parallel control systems. 

The spur gear and pinion are the most common type 

of gearing used in control application. When applied to 

the completely parallel control systems as shown in 

Figure 2, this gearing obviously is not to be used 

when it is necessary to add or subtract the controlled 

position outputs of the two systems. However, it is 

used to add the torques of the two motor shafts. 

Differential gears are used in control systems to 

add or subtract the positions or velocities of two shafts, 

mostly as a device to detect an actuating or error 

signal. In this thesis differential gears are used as 

a device to add the output positions of two control 

systems as shown in Figure 3. The output position is 

equal to the sum of the positions of two shafts. On the 

other hand, torque on load shat TL and toques on each 

B 
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motor shaft T1 and T2 are all the same (5, p. 315; 

334 -335). 

The relationships between the position, and torque, 

T, for spur gears and differential gears are as follows: 

For spur gears, 

e0 = 
611 

/nl = e2 /n2 (7) 

TL = n1T1 + n2T2 (8) 

For differential gears, 

e0 = e1 /n1 + e2 /n2 (9) 

T2 = n1T1 = n2T2 (10) 

On the basis of the above relationships, the system 

transfer function for each case is developed and the 

system performance is analyzed in the following sections. 

3. Completely Parallel Control System A 

Two type 1 positional control systems are used. 

Each has the following transfer function: 

KO G(s) - Ke s ( JZs/KTKe + FZ/KTKe + 1) 

In many cases of practical importance the armature 

circuit impedance may be considered to be resistive. 

The coefficient of mechanical friction, F, is also 

neglected. This can be done because in most motors 

the electrical damping is very much larger than the 

mechanical friction. Typical values of the ratio 

FR /KTKe are in the order of 0.01. Therefore, equation 

(11) becomes 

. 



K 
G(s) - s (Tm s + 1) 

10 

(12) 

where Tm = J R /KTKe in second, 

The motor and load time constant Tm is defined as 

the time required for motor to speed up 63.2 per cent 

of its final velocity, when supplied from a constant 

voltage source. In general, the motor and load time 

constant Tm in the type 1 positional control system has 

a value ranging from about 0.01 to 0.1 second in motors 

of standard design connected to a zero -impedance source 

(5, p. 209 -210). 

In completely parallel control system A using spur 

gear and two pinions, the system operation is based on 

the relationships given in equations (7) and (e), and 

the system transfer function is developed by referring 

to these equations and the electric equation for the 

d -c motor. Hence, from equation (8) 

TL (s)=n1T1(s) +n2T20) = JL 5260(s) (13) 

The =developed torques by two motors are shown as follows: 

Tdi(s) + Tdl(s) = JMls2 ßl(s) + T1(s) + Jm2s2A2(s) + T2(s) 

(14) 

The value of motor inertia for a minimum rms motor 

torque with the load inertia and gear ratio is fixed 

is (2, p. 111) 

JM = JL/n2 (15) 

According to equations (13) and (l4 }; the torque equation 
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is developed by: 

n1Td1(s) 
1 1 

+ n2Td2(s) 
2 2 

= n 1 J Ml s2e 1 
(s) + n2J M2 s262 . 

(s) + TL(s) 

(n12JMl + n22JM2 + JL)s480(s) 
(16) 

(17) 
JLMs2 = e0(s) (1$) 

from which Jul = n12 J111 + n22J + JL (19) 

Based on the transfer function of the type 1 

positional control system, equation (12), and above the 

relationships, the open -loop transfer function of 

completely parallel control system A is then shown as 

follows: 

Gcs)= 
9cs) (n,k,kT,/R,) + ( nZk:kY2Ra ) 
EC s ) s [c i.+.JM,n2+Jn= ) s + ) + C kukaZret/Ra) (20) 

or 
(n. k. klIRa +n..k )/ kaikaittn!* kyf CazR, ni ) 
sÍ(J..+J,,. nr +J M. 5 fl ) R, Rs 

J 

(21) 
kk..n2 RL + k, kaans R. 

A derivation of equation (20) is made in Appendix II 

and the block diagram for this sytem is shown in 

Figure 2(b). The open -loop transfer function is then 

known to be the type 1 system with one time constant 

according to equation (21). It should be noted, however, 

that the inductance term which will make another time 

constant is neglected here because of the small 

inductance in the d -c motor armature. In this thesis 

the basic performance considerations of the parallel 

control systems are given. The use of compensating net- 

work to improve the system performance is not considered. 

( ikan/R, 

, + 

^ ^W' 
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As a special case of system performance, consider 

first the either Tdl or Td2 becomes zero by an open 

circuit between the amplifier and motor. Accordingly, 

the load torque TL is only related to either Td2 or 

Tdl. On the other hand, if the input to amplifier 1 

is open circuited the motor armature circuit will permit 

current to flow when a voltage is produced by the 

rotation of motor 1 by motor 2. The developed torque 

of motor 1 is on the opposite direction to that of 

motor 2. This adds to the total load torque on motor 2 

and thereby reduces the performance of the system. The 

transfer function for the later case can be simply 

obtained by setting K2 = 0 in equation (21). 

4. Completely Parallel Control System B 

In the same manner as stated in the completely 

parallel control system A, operation of the completely 

parallel control system B using differential gears is 

also described on the basis of equations (9) and (10). 

The transfer function for this system consisting of two 

type 1 control systems in parallel is obtained by the 

following procedures. 

From equations (9) and (10), 

TL(s)=JLs2e0(s)=JL s2 (el + 92) ) (22) 

and n1 n2 

JLM = JL/n12 = J_/n92 (23) 



As a result, torque on each motor shaft is, 

Tdl,(s) =JM1 -JMl s2el(s) + Tl (s 
) 

= JMl s2el(s).s- 4 2ep (s ) 

Td2(s1r= JM2 s2e2 (s}+ T2 (s 

= JM2 s2e2(s)`-+-s2Qo ( s ) 

2 

14 

(24) 

(25) 

(26) 

(27) 

Based on the above relationships and the electric 

equation for d -c motor armature circuit, the open -loop 

transfer function of the completely parallel control 

system B is obtained as follows: 

RIJ,1 Ri J e 1 Kai Kae 

Cs) - ®o(S) IkTI + Koa K-121 s + [ ill Koa J 

E(S) 
K41 Ko2KTl 

K-Pm1Jma- fZ ñ 5 [ SZ + RI R I(J, JTMZ - 

R s JTMiKz ZKR 1 

p 
KTII KTaI 

Kai KIM 
/yr 'TLI Jt/F1, Ï1L RI R2lJTNJTML - Jy/ "IL' Y/ 

where JTMl 
JMl + JL/n12 

JTM2 = JM2 + JL/n22 

A derivation of the transfer function is given in 

(2$) 

Appendix III. The schematic diagram and block diagram, 

based on the above open -loop transfer function, are 

shown in Figure 3. 

As the open -loop transfer function shows, a zero 

term which is a function of the systemgain has appeared 

in the resultant transfer function. In evaluation of 

the figures of merit by the approximate equations as 

Ç1 

s KTI KT2 

) 

+ 

. - 

- 
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given in the following chapter, it is known that this 

zero lies near a pole. This makes it possible to neglect 

this zero for a first order approximation. 

It was shown that operation of two motors for this 

system is governed by equations (9) and (10). Consider 

a special case in which the motor 1 cannot develop 

torque, because the armature circuit is open, motor 2 

can develop torque, and the load requires a torque to 

rotate it. Equation (10) states that no torque will be 

transmitted by the differential gearing. Consequently, 

load torque also becomes zero, by which no change in 

the output position of load occurs. For this condition, 

differential gears act like spur gears, so that the 

output position of the motor 2 causes the opposite 

rotation of the output position of motor 1. Consider 

that the input to amplifier 1 is open and that the 

armature circuit is normal. Any rotation of motor 1 

by the gearing will produce a torque because of the 

generator action. Therefore some torque can be 

transmitted to the load and rotation will result. 

However, the rotation of the motor 1 is in the 

opposite direction to the motor 2, so that the output 

position of load is determined by the difference between 

the output positions of motors 1 and 2. 
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III. DETERMINATION OF MOTOR AND LOAD TIME CONSTANT 

In control system analysis whenever linear control 

theory is used, a basic assumption is made in which 

adequate power and torque, or force, are available in 

the control system power element to meet the require- 

ments of the desired controlled variable motion. Under 

this assumption, the selection and design of d -c 

motors have been carried out by Lebenbaum and Chestnut, 

respectively (9, p. 10$9 -1094; 2, p. $9 -11$). 

It is already known on page 10 that the time 

constant of the motor and load is defined as follows: 

Tm = R J /KTKe second (29) 

where KT = torque constant of motor in pound -feet per 

ampere, 

Ke = voltage constant of motor in volts per radian 

per second, 

J = motor and load inertia referred to motor shaft 

in slug -feet squared, 

R = armature resistance including external 

resistance of brushes, lines, and internal 

resistance of voltage source in ohms. 

The armature circuit inductance and steady -state load 

and friction torques have been neglected in this 

derivation. 



1$ 

When this equation is converted to design terms, 

which is given in Appendix IV, it is found that the 

time constant is directly proportional to functions of 

the ratios of armature diameter to armature length, 

load inertia to motor inertia, and commutating field 

conductor copper density to armature copper density; 

and inversely proportional to functions of the pole 

face flux density, and the ratios of pole pitch to 

pole arc, armature slot depth to armature diameter, 

and pole face flux density to armature tooth flux 

density at the tooth root. 

If these deisgn factors and ratios are so given 

that the time constant becomes a minimum, the following 

equation is obtained (9, 10$9 p )_ 

(Tm)min = [l.25 x KJ /Ks(1 + JL /JM) 1 + 
P cos 

(D /L) + 
M e 

(1.2Kc) (Bccp /Bca)(PL/PM) seconds at 75 degrees 

centigrade (30) 

From equations (29) and (30), it is known that the 

time constant of the motor and load is only changed by a 

variation in the armature circuit resistance and total 

motor inertia, because the values of the generated 

voltage and torque constants are fixed by the motor 

speed and voltage. Both of these factors are functions 

of the ratios of armature diameter to length. If the 

. 

. 
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motor and load inertias are shown separately, the motor 

time constant is rewritten as 

Tm _ 
K 
T 

(R JM + R JL) (31) 
T 

it can be seen that while the first term in the bracketed 

expression increases with increase in the ratio, as in 

the case for a motor negligible load inertia, the second 

term decreases. Therefore, at some point, the motor and 

load time constant will reach a minimum value as the 

armature diameter -to- length ratio is increased. It 

should be noted, however, that an increased ratio may 

result in larger motors as well as larger generators, 

so that, cost, size, and weight consideration must be 

weighed against the motor time constant requirement. 

Other factors which limit the minimum value of 

motor time constant are the maximum possible values of 

the flux density at the root of the armature tooth, 

the slot activity factor, the ratio of pole arc to pole 

pitch, and for larger size machines, the armature slot 

which can be used. The main reduction of motor and 

load time constant is then made by increasing the pole 

face flux density to a value equal to approximately one - 

half of the flux density at the root of the armature 

tooth. 

So far the possible method of changing the time 

constant of the motor and load by considering the design 

factor of motor itself has been considered. However, 
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when the d -c motor is fed from the electronic power 

source, the total armature circuit resistance can be 

changed by changing the power amplifier stage of the 

amplifier. For the fixed values of KT, Ke, J and 

Ra, the motor and load time constant can be increased 

by increasing the output impedance of motor power 

supply. 

In order to determine the various motor and load 

time constants,the following illustration is 

considered. It is desired to determine the position 

control system motor rating and gear ratio for an 

electric motor to meet the following requirement: 

Load inertia = 119,000 pound -feet squared, 

friction load = 900 pound -feet, 

and shock and unbalance load = none. 

The motor selection is based on a typical 115 V 1500 rpm 

d -c motor with voltage constant Ke = 2.0 volts /rad /sec 

and torque KT = 1.4 lb -ft /amps. The ratio of KT /Ke 

is a constant and equal to 550/746 = 0.737. Various 

d -c motors producing the same rms power Prms = 1.3$ HP 

are selected as shown in Table 1. The rms power, Prms, 

is defined as 

Prms - 
Trms x Vrms 

HP 
550 (32) 



where Trms = 

Vrms = 

T I. 
(torque)2 dt pound -feet 

I (speed)2 dt 

21 

radians per sec, 

in which T is the duration of the period over Bich the rms 

power is to be determined. Torque and speed are the 

instantaneous values of these quantities over the interval 

from 0 to T. A specific evaluation for these values 

is given in the reference by Chestnut (2, p. 103 -109). 

The motor and load inertia referred to the motor 

shaft, JTM, for spur gears has been shown in the 

previous section as 

JTM = JM + J]n2 (33) 

Based upon this equation, various inertia for each 

parallel control system can be evaluated. In case of 

differential gears, it should be noted that the motor 

selection will be different, because the fundamental 

equations are different. 

In case of the bevel gear differential, 

nl = n2 (34) 

then 

2 2 JL /n12 = JL n2 

From equation (16) on page 10, the following 

relationship can be shown: 

JTM1 JTM2 

(35) 

(36) 

- 

- 



In case of the spur gear differential, 

ni * n2 

then JLin12 JL/n22 

22 

(37) 

(3$) 

However, the instantaneous torque applied to the 

differentials must be the same (assume 1:1:1) according 

to the operational equation for differential gears. 

(Hence, the speeds do not need to be the same.) 

Therefore, the following relationship can also be shown 

in this case: 

JTM1 * JTM2 (39) 

In other words, if all motors to be used in the 

parallel control system B produce the same horse power, 

in this illustration, Prms = 1.3$ HP, the bevel 

differentials require to use motors which develop the 

identical motor torque, while the spur gear 

differentials can use motors which develop the 

different motor torques. In transient response study, 

the spur gear differentials are used to combine motors 

that have the different motor inertias, by which the 

various motor combinations are accomplished. 

* 



Table 1. TORQUE, SPEED, AND MOTOR AND LOAD TIME CONSTANT FOR LOAD INERTIA 119,000 
FT -LB SQUARED AND MOTOR RMS POWER 1.3$ HP. 

Applied Gear Maximum The rms Actual Inertia 
Voltage, Ratio, Motor Speed, Torque, of Motor, 
Volts n rpm Trms, JM, 

lb -ft lb-ft 2 

Total Inertia 
Referred to 
Motor Shaft, 
JTM, slug -ft' 

Voltage Constant 
of Motor, 

Ke, 
volt /rads /sec 

115 360 1$00 6.75 1.4 0.0725 1.50 
115 2$0 1400 9.00 2.5 0.1200 2.00 
115 260 1300 9.12 2.6 0.1350 2.02 
115 300 1500 7.90 2.0 0.1040 1.76 

Torque Constant Motor Armature Source Resistance Motor and Load Motor and Load Time 
of Motor, Resistance, of Motor Power Time Constant, Constant Without 

KT, 
lb- ft7amps 

Ra, 
ohms 

Supply, 
R0, ohms 

Tm, 
seconds 

Source Resistance 
To, second 

1.10 0.64 0.5 0.05 0.02$2 
1.47 0.94 1.5 0.10 0.03$4 
1.49 0.86 4.1 0.25 0.03$6 
1.29 1.20 $.0 0.40 0.0550 
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IV. TRANSIENT RESPONSE 

The transient response is a main feature to be 

considered in performance of control systems, and the 

improvement of response is achieved by the use of various 

compensators. In parallel control systems without 

including any compensator, several combinations of 

two motors which are specified by the different motor 

and load time constants show some interesting transient 

response characteristics. In the present section, the 

transient response of each parallel control system is 

investigated, in which the gain of the control element 

is fixed for the purpose of comparing the response of 

type 1 positional control system and parallel control 

system for the corresponding motor and load time 

constant. 

In evaluating the figures of merit of system 

response, the approximate equations derived from a pole - 

zero configuration of the s -plane are used, in which a 

pair of poles close to the imaginary axis are 

selected as the dominant poles for all cases (11, 

p. 516 -529). The transient response is obtained by 

simulating the system on an analog computer, from which 

the figures of merit are evaluated. 

The following figures of merit are used to judge 

the transient performance. 

. 
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1. Mp, peak overshoot (The amount of the first 

overshoot) 

2. Tp, peak time (The time to reach the peak of the 

first overshoot) 

3. Ts, settling time (The time for response to reach 

and remain within 2 per cent of final value) 

4. N, number of oscillations (Up to settling time) 

1. The Approximate Equations 

For a step input the transform of the system 

response is of the form w 

C(s) - 
K A(s) 

= 
K 1 (s - Zm) 

B(s) s (s - Pc) 
c = 1 

(40) 

The term K in the equation is the static loop sensitivity 

for a unity feedback system. Assume that the system 

represented by equation (40) has a dominant complex 

pole fo = -moo + jwo = - wn + jwn/ l-2 

Then the time to reach the peak of the first overshoot 

is; 

Tp W 7t/2 - /2 E6 + E cl) 
o all zeros all poles except dominant 

pair 
1 

75/2 -(sum of angles 
zeros to the 
dominant pole 

-Go -- jut)) 

from + (Sum of angles 
from the other 
poles to the 
dominant pole 

-6`0 + jwo) (41) 

Wo 

The amount of the first overshoot is therefore; 

K A(0) 2u)0 K A(p0) e -To Tp 
(42) B(0) 77 

I 
B'0%) 

I 

7 
m = 
Tit 

= 

Mp - 

r 

C 

+ 



The settling time is; 

Ts = 4/6-0 = 4/t w 
The number of oscillations is; 

N = 2 ` 0ic6o = 2 \Ii -L /. 
The above equations are only for stable system whose 

transfer functions contain no poles on the imaginary 

axis and no zeros at the origin, and contain first 

order pole only. 

The equation of the system response with unity 

feedback is 

C(s) G(s) 
R ( s ) 1 + G ( s ) 2 + 2 w 1 5 + 5 
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(43) 

(4-4) 

(45) 

Substituting equation (11) into equation (45), and 

comparing the characteristic equations of the resultant 

transfer function and equation (45), the following 

relationships are derived: 

= KT Ke /2 u)n JR, wn =1/2 Tm, and Ko= Tm wn Ke (46) 

in which the damping ratio and the undamped natural 

frequency can be changed by various values of the motor 

and load time constant and the amplifier gain K0. (This 

has been discussed in the previous section.) Based 

on these equations, the figures of merit of the type 1 

positional control system are calculated and given in 

Table 2. 

In order to compare the transient responses of the 

type 1 positional control system and the parallel control 

0 

Lon 

- 
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systems, the response equations for both the parallel 

control systems A and B are obtained from equations (20) 

and (27), respectively, as follows: 

eo(s) ( n, K, KT, Rz+n2 K2 KTZR// IV+JMInJM2n22.) R. RL 
R(s)= a Rz nl K1 KTIRZ+n:Kz IR1 

+(J+JIn; *JI,2 Ra )R, s+GJ+JMI 
nZ JZr) R1 az 

For the completely parallel control system B, from 

equation (27), 

RI JMI RZJMa ll f Kai 4. _1E2 
eo(s) l KoI KTI Ko2 Kr2. 1 S C oI K 0 J 
R c S)= R JT, K Ka RJ K K 

n`nL + 
I 

z R, RZCJTMnJTNe _ J J 

(47) 

Ko, Ko¿ I L2 `JTMIJTML L ) 53 I I T2 Z+ TMt TI 1[11 L 

2 . 
I 2 

KTI KTi Ka. Kaz .} R IKo:KT: JM I+ RZ Ko Z 
RIRz(JTM,JTMZ-,4a R1RZ(JTMIJ,,t-J n2 

(4$) 

The figures of merit of the parallel control systems 

A and B are evaluated by the approximate equations, by 

substituting each constant from Table 1 into the above 

equations, (47) and (48). They are given in Tables 3. 

and 4. 

. 

_ 

. 

-nt) n ) $ 

+ 

ll 

(k ,KO,._ +_K. K KKK l 
R,RzCJT.,, +,,- 5) 
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Figure 4. COMPUTER SIMULATION FOR THE COMPLETELY 
PARALLEL CONTROL SYSTEM A 

(a) BLOCK DIAGRAM FOR THE COMPUTER 
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(b) COMPUTER SIMULATION 
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Figure 5. COMPUTER SIMULATION FOR THE 
PARALLEL CONTROL SYSTEM B. 

(a) BLOCK DIAGRAM FOR THE 
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Table 2(A). FIGURES OF MERIT OF THE TYPE 1 POSITION CONTROL SYSTEMS EVALUATED 
BY APPROXIMATE EQUATIONS. 

Amount of Motor & Undamped 
the First Load Time Amplifier Natural The Peak The Settling 

Damping 
Ratio, 

5 

Overshoot, 
Mp, 

Per -Unit 

Constant, 
Tm, 

second 

Gain, 
K0, 

volts /rads.. second 

Frequency 
W r 1 

Time, 
Tp, 
second 

Time, 
Ts, 

second 

0.50 1.16 0.05 30.0 20.0 0.1$2 0.40 
0.50 1.16 0.10 20.0 10.0 0.362 0.$0 
0.50 1.16 0.25 $.1 4.0 0.904 2.00 
0.50 1.16 0.40 4.4 2.5 1.440 3.20 

Table 2(B). FIGURES OF MERIT OF THE TYPE 1 POSITION CONTROL SYSTEMS 
EVALUATED BY ANALOG COMPUTER 

Amount of 
the First 

Damping Overshoot, 
Ratio, Mp, 

Per -Unit 

Motor & 
Load Time 
Constant, 

Tm, 
second 

Amplifier 
Gain, 
K , 

volts /rads. 

The Peak 
Time, 
Tp 

second 

The Settling 
Time, 
Ts, 

second 

0.50 1.16 0.05 30.0 0.1$ 0.50 
0.50 1.16 0.10 20.0 0.36 0.90 
0.50 1.16 0.25 $.1 0.90 2.40 
0.50 1.16 0.40 4.4 1.20 3.70 

- 

5 



Table 3(A). FIGURES OF MERIT OF THE COMPLETELY PARALLEL CONTROL SYSTEM A EVALUATED 
BY APPROXIMATE EQUATIONS 

Motor & 
Load Time 
Constant 1, 

Tm 
second 

Motor & 
Load Time 
Constant 2, 

Tm 2 
second 

Peak Settling 
Time, Time, 
Tp, Ts, 

second second 

Amount of 
the First 
Overshoot, 

Mp, 
Per -unit 

Number of Damping 
Oscillation, Ratio, 

N, t, 
per- unit Per -unit 

Undamped 
Natural 
Frequency, 

uon, 
per second 

0.05 0.10 0.306 0.439 1.060 0.717 0.662 13.$0 
0.05 0.25 0.276 0.523 1.120 1.330 0.584 13.10 
0.05 0.40 0.292 0.533 1.12$ 0.970 0.547 12.70 
0.10 0.25 0.794 0.908 1.029 0.570 0.741 5.96 
0.10 0.40 0.747 1.060 1.059 0.710 0.667 5.67 
0.25 0.40 1.037 1.$$0 1.037 0.605 0.724 2.75 

Table 3(B). FIGURES OF MERIT OF THE COMPLETELY PARALLEL CONTROL SYSTEM B EVALUATED 
BY ANALOG COMPUTER 

Motor & Load Motor & Load Amount of the 
Time Constant Time Constant Settling First Number of 

1, 2, Peak Time, Time, Overshoot, Oscillation, 
Tm , 

second 
Tm2, 

second 
Tp, 
second 

Ts, 
second 

Mp, 
Per-unit 

N, 
Per -unit 

0.05 0.10 0.309 0.4$0 1.10 0.9 
0.05 0.25 0.2$0 0.550 1.1$ 1.3 
0.05 0.40 0.290 0.5$0 1.19 1.0 
0.10 0.25 0.$20 1.100 1.05 0.$ 
0.10 0.40 0.$10 1.120 1.10 1.0 
0.25 0.40 1.100 1.950 1.0$ 0.$ 

. 

-- 

. 

. 

- 

- 



Table 4(A). FIGURES OF MERIT OF THE COMPLETELY PARALLEL CONTROL SYSTEM B EVALUATED 
BY APPROXIMATE EQUATIONS. 

Motor & 
Load Time 
Constant 1, 

Tml , 
second 

Motor & 
Load Time 
Constant 2, 

second 

Peak Settling 
Time, Time, 
Tp, Ts, 

second second 

Amount of 
the First 
Overshoot, 

Mp, 
Per-Unit 

Number of Damping 
Oscillation, Ratio, 

N, 
Fr -Unit Per -Unit 

Undamped 
Natural 
Frequency 

second -1 

0.05 0.10 0.444 1.09 1.212 1.210 0.469 7.79 
0.05 0.25 0.567 1.05 1.106 0.401 0.$35 4.47 
0.05 0.40 0.737 1.5$ 1.210 0.502 0.7$8 3.22 
0.10 0.25 0.512 1.21 1.17$ 1.240 0.462 7.14 
0.10 0.40 1.190 2.29 1.160 0.$10 0.619 2.$3 
0.25 0.40 1.140 3.4$ 1.253 1.5$0 0.374 3.08 

Table 4(B). FIGURES OF MERIT OF THE COMPLETELY PARALLEL CONTROL SYSTEM B EVALUATED 
BY ANALOG COMPUTER. 

Motor & Load 
Time Constant 1, 

Tml, 
second 

Motor & Load Peak 
Time Constant 2, Time, 

Tm2$ Tp, 
second second 

Settling 
Time, 
Ts, 
second 

Amount of 
the First 
Overshoot, 

Mp, 
per-unit 

Number of 
Oscillation, 

N, 
Per -unit 

0.05 0.10 0.22 0.$5 1.2$ 1.6 
0.05 0.25 0.40 0.90 1.12 0.6 
0.05 0.40 0.52 1.35 1.14 0.7 
0.10 0.25 0.45 1.45 1.16 1.1 
0.10 0.40 1.25 2.25 1.12 0.$ 
0.25 0.40 1.15 4.10 1.32 1.4 

. 

wn 

.. 
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0. / 1: Tm = .05 
2: Tm = .10 

0.2 0.4 0.6 0.$ 1.0 1.2 
Time - sec. 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 $.0 
Time - sec. 

Figure 6. RESPONSE FOR THE TYPE 1 POSITIONAL CONTROL 
SYSTEM; WHERE DAMPING RATIO =0.5 

3: Tm = .25 
4: Tm = .40 
5: Tm = .$0 



1:Tm1=.05, Tm2=.10 
2:Tm1=.05, Tm2=.25 
3:Tm1=.05 Tm2=.40 

0.2 0.4 0.6 0.$ 1.0 1.2 
Time - sec. 

Figure 7(a). RESPONSE FOR VARIOUS COMBINATIONSOF 
THE COMPLETELY PARALLEL CONTROL 
SYSTEM A. 

., 

a 

o / 1:Tm1=.05, Tm2=.10 
0.5 2:Tm1=.05, Tm2=.25 

3:Tm1=.05, Tm2=.40 

a 

0.2 0.4 0.6 01$ 1.0 1.2 

Time - sec. 
Figure 7(b). RESPONSE FOR VARIOUS COMBINATIONS OF 

THE COMPLETELY PARALLEL CONTROL SYSTEM B 
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4:Tm1 .10, Tm2=.25 
5:Tm1=.10, Tm2=.40 
6:Tm1=.25, Tm2=.40 

0.5 1.0 1.5 2.0 2.5 3.0 
Time - sec. 

Figure $(a). RESPONSE FOR VARIOUS COMBINATIONSOF THE 
COMPLETELY PARALLEL CONTROL SYSTEM A. 
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Figure $(b). RESPONSE FOR VARIOUS COMBINATIONS OF THE 
COMPLETELY PARALLEL CONTROL SYSTEM B. 
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2. Simulation of an Analog Computer 

A representation of the dynamics of parallel 

control systems on the analog computer is based on the 

dynamic equations as shown below: 

For the completely parallel control system A, 

el(s) = Tdl(s)Rl /KT1 + Kels61(s) (49) 

e2(s) = Td2(s)R2 /KT2 + Ke2se1(s) 

For the completely parallel control system B, 

(50) 

el( s ) el(s) (R1JTM1s2 /KT1 + Kels ) el(s)+ (JLR1 /nln2KT1) s2e2 (s ) 

(51) 

e2(s) = (R2JTM2s2 /KT2 + Ke2s )e2(s) +(JLR2/nln2KT2)s2e1(s) 

(52) 

The use of differentiators in the inner feedback loop 

shown in Figures 2(b) and 3(b) is avoided in simulating 

the dynamic equation on the analog computer. 

Although the computer representation is usually 

such as to permit the identification of each component 

of the system as well as each physical variable 

characterizing the behavior of the component (12, 

p. 503 -509), the simulation for this thesis was carried 

out on a modified system in order to eliminate the use 

of differentiators which are very troublesome. As a 

result, many system parameters are combined into a 

single system term. 
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The analog simulations for both the completely 

parallel control systems A and B are shown in Figures 4 

and 5, respectively. 

The system transient response curves were taken 

from this computer simulation. The figures of merit 

for system response can be obtained directly from the 

curves. 

3. Transient Responses 

Various combinations of two motor and load time 

constants are used to investigate the transient response 

of the parallel control systems, whose figures of 

merit are evaluated by two methods discussed in the 

previous sections. Both evaluations show a similar 

result. 

The figures of merit of the type 1 positional 

control system given in Table 2 are referred, so that 

a comparison can be made with the transient response 

of the parallel control systems. All the transient 

responses for different motor and load time constants 

of type 1 positional control systems are so obtained 

that the damping ratio is maintained at 0.50 and the 

undamped natural frequency is changed. The damping 

ratio of 0.50 is generally a desirable value in system 

performance. At the same time, the gain corresponding 

to each system of the parallel control systems remains 
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the same as in the type 1 positional control system 

with corresponding motor and load time constant. 

Consequently, the figures of merit for the parallel 

control systems A and B are evaluated and given in 

Tables 3 and 4, respectively. The transient response 

curves are also shown in Figures 6, 7 and $. 

In the completely parallel control system A, which 

is expressed by a transfer function of the type 1 

system with one time constant, the significance of the 

transient response is mostly due to the smaller motor 

and load time constant. However, these combinations 

still show more increase in the settling time than the 

type 1 positional control system under the same 

conditions as before. The amount of the first overshoot 

is improved considerably over the type 1 positional 

control system. 

If there is a slight difference in two motor 

and load time constants, the peak time is specified by 

the system with the smaller motor and load time constant, 

while the settling time is determined by the system with 

the larger motor and load time constant. The amount of 

the first overshoot is determined by the difference 

between the two motor and load time constants. For 

small differences it is quite similar to the type 1 

positional control system, and for larger difference it 

becomes smaller. 
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In the completely parallel control system B, the 

peak time of system response is proportional to the sum 

of the peak time of each transient response for the 

type 1 positional control system with the corresponding 

motor and load time constant. The settling time is 

also approximately proportional to the settling time 

of each of the type 1 positional control system, 

except for a combination with a time constant of 0.4, 

for which the settling time of the system response is 

changed. As a whole, the first overshoot is improved, 

except for the following two sets of combinations, 0.05 

and 0.10, and 0.25 and 0.40. A numerical comparison 

can be made from the data given in Table 2 and 4. 

However, since there is no exact relation between the 

transient responses of the type 1 positional control 

system and the parallel control systems as described 

above, a general statement cannot be made. 

A comparison of the transient response of the 

completely parallel control systems A and B can be 

explained as follows; the peak time and settling 

time are improved in the completely parallel control 

system A over that of the system B; the amount of the 

first overshoot is improved in the completely parallel 

control system A over that of the system B, except for 

the combinations of 0.05 and 0.10, and 0.05 and 0.40, 

which are not improved. 
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It should be noted that it is difficult to determine 

the relationship between the factors to obtain the 

motor and load time constant, as studied in the previous 

section, so that the exceptions in the transient 

responses are due to the motor selection which is 

determined by the design view point. 

Stability of the parallel control systems is a 

function of the system gain; therefore, the transient 

response can be varied by adjusting the system gain 

within a certain range. However, more desirable 

response can be achieved by the use of a compensator, 

designed on the basis of the figures of merit given 

above. 
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V. CONCLUSIONS 

The method of combining two control systems in 

parallel determines the characteristics of the parallel 

control systems, and the application of these 

methods depends on the load control requirement. If 

the purpose of the control system is to obtain a higher 

torque and control a small range of position, the 

completely parallel control system A, using spur gears, 

is desirable. On the other hand, if the requirement 

is a small torque and a large range of position change, 

the completely parallel control system B, using 

differential gears, would be preferable. 

The open -loop transfer function of the completely 

parallel control system A is a type 1 system with one 

time constant. For the completely parallel control 

system B, the open -loop transfer function belongs to 

the type 1 system with one zero and two poles. However, 

since the zero lies near one of the poles, their 

separate effects might be cancel, so that the transfer 

function of this system could be thought as being of 

the type 1 system with one time constant. Stability 

of both parallel control systems A and B is a function 

of the system gain. 

A combination of two controlled systems in parallel 

is largely dependent on the design requirement of the 
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transient performance for the over -all system. As far 

as the response time is concerned, the completely 

parallel control system A is more advantageous than the 

system B, while the amount of the first overshoot is 

taken into consideration, both system A and B give 

improvement. In general within a system, the 

combination of a controlled system having a smaller 

motor and load time constant is desirable. However, 

it is difficult to obtain the smaller motor and load 

time constant in the d -c motor design considerations. 

The source impedance of motor power supply gives 

a certain range of variation in the motor and load time 

constant, in which the source impedance is approximately 

proportional to the motor and load time constant. 

One is reminded, however, that the design must be done 

from the economical view point so that a careful 

consideration should be given to changing the motor 

and load time constant. Based on the figures of merit 

of the parallel control system response obtained from 

the above procedure, a compensator is normally used to 

improvement of system performance. 

. 
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APPENDIX I 

THE OPEN -LOOP TRANSFER FUNCTIONS OF THE COMPLETELY 
PARALLEL CONTROL SYSTEMS 

The general form of the open -loop transfer function 

is given by: 

G(s) = K Sr fl (S 
- z ;) 

(S - PK) 
where K = the static loop sensitivity 

ìr = a negative integer including zero 

Two transfer functions which are specified by 

various types of system with one time constant term are 

chosen from equation (53) and combined. The resultant 

transfer functions are given in Table 5. 

(53) 

Table 5. VARIOUS COMBINATIONS OF TRANSFER FUNCTIONS OF 
COMPLETELY PARALLEL CONTROL SYSTEMS. 

Types of Resultant Transfer 
Functions Remarks Combinations 

TYPE 0 & 
TYPE 0 

(kl+k2)(s+zl) 
(s+pl) (s+p2) 

z1 = k1P2 +k2p1 

kl + k2 
kl: gain of type 0 

system 
k2: gain of type O 

system 

TYPE 0 & 
TYPE 1 

kl(s+zl)(s+z2) 

s (s+pl)(s+p2) 
kl: gain of type 0 

system 
k2: gain of type 1 

system 
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Table 5. (continued) 

Types of Resultant Transfer 
Functions Remarks Combinations 

TYPE 0 & 
TYPE 2 

k1(s +zl)(s +z2)(s +z3) kl: gain of type 0 
s2(5+131)(s +p2) system 

k2: gain of type 2 
system (2) 

TYPE 1 & 
TYPE 1 

(kl+k2)(s+z1) 
s(s+13,1)(s+101) z 

_ k1p2 +k2P1 k1: gain of 
kl +k2 type 1 

system 
k2: gain of 

type 1 
system 

TYPE 1 & 
TYPE 2 

k1(s+z1)(s+z2) 

s2(s+pl)(s+p2) 

kl: gain of type 1 
system 

k2: gain of type 2 

system 
*(3) 

TYPE 2 & 
TYPE 2 

(kl+k2)(s+z1) 
s2(s+p1)(s+P2) 

z = k1P2 +k2P1 
k1 +k2 

kl: gain of type 2 

system 
k2: gain of type 2 

system 

WHERE 

*(1) 

*(2) 

z1=i - (p2+k2) + 
1 

z2- (P2+k2) - 
1 

(s + zl),(s + z2) (s + z3) 

(p2+ki)2- 417ip1 

[cr2+172)2-4k2P1 
1 

k2 
s _ (s3 + p2s2+k+ 

1 

1 
2 

1 

pl) 

*(3) z1=i 

z2=i 

-(P2+ki) 

-(p2+k2) 
1 

+ 

± 

[cr2+ki)2 

(P2 +1)2 

1 

-4k1131 

-4P1 j 

l} 

J 

( 
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APPENDIX II 

DERIVATION OF THE OPEN -LOOP TRANSFER FUNCTION OF 
THE COMPLETELY PARALLEL CONTROL SYSTEM A 

The operational equations of spur gears that 

combine two systems in parallel are given by equations 

(7) and (e), 

00= 61/n1 = e2/n2 (7) 

TL = n1T1 + n2T2 (8) 

In derivation of the electric equations and 

torque equation for the d -c motor, the inductance 

term in the d -c motor armature circuit and the 

mechanical friction of the load are neglected because 

of the small value. 

The electric equations for the d -c motors, 1 and 2, 

are given by, 

e1(s) = E(s)K1 = Ia1(s) R1 + Ke1s&1(s) (54) 

e2(s) = E(s)K2 = Ia2(s) R2 + Ke2s82(s) (55) 

The developed torques by two motors are shown as follows: 

Td1(s) = JMl s201(s) + T1(s) (56) 

Td1(s) = 412 s2e2(s) + T2(s) (57) 

or 

Ial(s)KT1 = JMl s291(s) + T1(s) (5$) 

Ia2(s)KT2 = JM2 s2e2(s) + T2(s) (59) 



in which 

Tdl(s) = Ial(s)KT1 

Td2(s) = Ia2(s)KT2 

4$ 

(60) 

(61) 

Substituting equations (5$) and (59) into equations (54) 

and (55), respectively, we obtain the following 

equations for the transmitted torques of two motors: 
2 

T1(s) - 
K 

K1E(s) - (R1KMls + Kels)el(s) (62) 
T1 

T2(s) RT2 [K2E(s) (R2KM2s + 
Ke2s)e2(s) (63) 

2 T2 

or 
2 2 

n1T1(s) = 
nl KT1 K 

01 
E(s) - 

(R1KMls + Kels)e0(s) (64) 
R1 T1 

n22KT2 R J s2 

n2T2(s) R2 LKo2E ( s) - (.2K 2 + Ke2s)e (s) (65) 
2 T2 0 

where K1 = n1K01 

K2 = n2K02 

Substituting equations (64) and (65) into equation (s), 

equation (8) then becomes 
2 2 2 

j 
s280(s)_nl KRT1K01 E(S) + Kels) n1RKTleO(s) + 

1 T1 1 

n22KRT2K02 E(s) _ (R2JM2s2 + Ke s) n22KT2 e 0(s) (66) 
2 KT2 e2 s) 

- , 

(RKJM1s 

- 

2 

2 

_ 

[ 1 

r 

L 



And 

E(s) 
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n. KRK1 neKR2Ka) ea (s Js2+(KTM' KQ,sr2, 

r M2StQZsl1 kl\Tr 
J RL 

= CJ J Z 
J 

R, RZ 
+ H n Mzni)s+ 

(n, K,KT,+ n ( 67 ) 

Consequently, the open -loop transfer function of the 

parallel control system A can be shown as follows: 

G (S) - 90(5) 
E (s) 
(n, K1 K-r,Ra +naKZKyaRi)n? KT,KQ,Ra +nZKeK4ZRI ) 
s CJL +JMI +J..n time ns)R.R. Rl 

S 
Ra n Z 

KnK4, -* R. nz KraKaz 

The block diagram as shown in Figure 2(b) was based 

on equations (64) and (65). 

(68) 

The open -loop transfer function can also be 

derived by the following way. 

Substituting equations (60) and (61), into 

equations (54) and (55), the dynamic equations for the 

d -c motors can be shown by: 

el(s) = 
Rl 

Tdl(s) + Kel s el(s) 
KT1 

R2 

= 
K2 

Td2(s) + Ke2 s e2(s) 
T2 

from which 

Tdl(s) = KRl E(s)Ki - nlKeiseO(s) 
1 

Td2(s) = 
KR2 2 

E(s)K2 - n2Ke2s90(s) 

(69) 

(70) 

(71) 

(72) 

+ 
K- 

' 

e2(s) 

1 

+ i 

J 
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Hence, substituting equations (56) and (57), into the 

operational equation of spur gears (e), we obtained 

the following equation: 

n1Td1( s ) + n2Td2 ( s ) = JMls2 (s)+n2JM2s2e2(s) =n1Tl(s)+n2T2(s) 

where 

= (n12JMl + n22JM2 + JL)s200(s) (73) 

= JML s 280(s) = TML ( s ) 

2 2 

JML = n1 JM1 + n2 `TM2 + JL 

From equations (71), (72) and (73), the resultant 

equation is obtained as follows: 

n1KTl 
R 

[E(s)Ki - n1Ke1se0(s) + 
1 

n2KT2 
nR2 KT2 

2 
E(s) K2 - n2Ke2s80(s) 

(74) 

+ n12JM1 + n22JM2) 
s2 B0(s) (75) 

Therefore, the open -loop transfer function of the 

completely parallel control system A becomes the same 

equation as given by equation (6$). 

= 
(JL 
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APPENDIX III 

DERIVATION OF THE OPEN -LOOP TRANSFER FUNCTION OF THE 
COMPLETELY PARALLEL CONTROL SYSTEM B 

The operational equations for differential gears are 

given by: 

e =el e2 

0 nl n2 (9) 

TL = n1T1 = n2T2 (10) 

The torque equation of load is, in this case, shown as: 

TL(s) = JLs290(s) (76) 

J s2 
( 

+ 
e2(s) 

) L nl n2 

According to equation (10), equation (77) can be 

written as follows: 

T(s) - 1 J s2(el(s) e2(s)) 
1 L nl n2 

= JL2 s2 e 1(s) + nlñ s2e2(s) 
nl 2 

Similarly, 

T2(s) = 112 s2 92(s) + nJn s2e1(s) n2 ni n2 

Therefore, the equations for the developed torque by 

two motors are given by: 

Tdl(s) = JMls2el(s) + T1(s) 

= 
(JMl ñ2)s2el 

n 
(s) + 

JL 
s2e2(s) 

1 n ni n2 

(77) 

(7$) 

(79) 

= 

+ 

+ 



and 

= JTM1 s281(s) +n1n2 s2e2(s) 

JL 
Td2(s) = JTM2 s2e2(s) + nln2 s2e1(s) 
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($0) 

Furthermore, from equations (60) and (61), in Appendix II, 

the above two equations can be shown as: 

Ial(s) = 
KTl [JTM1 s2el(s) + nJn s26 

(s) ($2) 1 2 2 

Ia2(s) = KT2 JTM2 s2e2(s) + nln2 s2 ei(s)1 ($3) 

Substituting equations ($2) and ($3), into the electric 

equations of motors, 

el(s) = Ia1R1(s) + Kelsel(s) ($4) 

e2(s) = Ia2R2(s) + Ke2se2(s) ($5) 

we obtain the following two equations: 

R1 2 J Kels 
E(s) 

171717T.1 
[JTM1 sells) + nln2 s e2(s) + e1(s) K 

1 

R J 
+ 2 ( K1KT1 s2 

K11 
s)6 

1(s) + S2e2(S) ($6) 

R 

E(s) = K K2Jn s281(s) + (RgJ K K2 K 
2 

s2 + s)9 2(s) ($7) 2 T2 1 2 2 T2 2 

in which 

el(s) = E(s)K1 

e2(s) = E(s)K2 

(81) 

1 
*J14 

K 
1 Tl 1 K T1 n 

- 

[ 
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Therefore, 01(s) and 02(s) are: 

E(s) CR2JTM2 J 

el(s) 
- ` K2KT2 KiK 2 Tlln 2 

($$) 

LR1 ;.a 
/ 

s2]+ 
s 

tR1JTM1 JLR2 Ke1 
s E(s) 

K1KT1 K2KT2nln2 
02(s) Q 

where 2 
R1R2 JL 

(JTMIJTM2 - nln2`) s2 K1K2 KT1KT2 

R1JTM1KT2Ke2 + R2JTM2KT1Ke1 
s 2 s2 + 

2 - 
-L ) R1R2(JTMIJTM2 R1R2(JTMIJTM2 -J ) R1R2(JTM1JTM2 

n1n22 n12n22_ 

($9) 

KT1KT2Ke1Ke2 

From the operational equation (9) 

e 61 02 
o nl n2 

ep(s) becomes 

9oCs) - E(s)C ;R' , CJT.11 

n n2 RI RL (JrMI JTMz K1 Kr. K,-1 Kra 

(90) 

LCJTMZ- ñ J5 +(n +r1K4Z1 
s {[ V ( l _\552 , ITSfftRIJTMI K7ifß1TM2 

n. nL J R R CJ IIJTM t-Jy/n s ni ) S 

(91) Kr, Kra K 3/RI Ra(.JTM J` _) 

Therefore, the open -loop transfer function of the 

competely parallel control system B is obtained as 

follows: 

, 

A 

_ 

= 

Kl 

- 

-A) rnr 
RrRL 

¡ tf\T1 

) 

2 

s 

sl 

111111 

j 
J) 

l J J + 



R Rz 

GCS> = Ems) L Ko KTr M` KoL KTZ ( 

54 

E(S) - RL 
jTT11vTMt Js )S l SZ K-reKeeRJTM1+ 

KeI Ka.Kro Kra` n, n,. R1 R:(JTNiJTMt - JL` ) 

KT Kei RL.JTML S KTz KILO ' `cL 1 (92) 
R RZ (.n+J-rIZ. - ` ) \ n'i 

where K1 = n1K01 

K2 = n2 K02 

= - JL 
JM1 JTM1 n12 

JL 
JM2 = JTM2 - 

K 

1- --K-dz 
Rs 

K 

n22 

/1a 

+ + ) 

JII 
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APPENDIX IV 

THE MOTOR TIME CONSTANT IN DESIGN TERMS 

The time constant of the motor and load is converted to 

design terms as follows: (9, p. 1093 -1094) 

RJ 
Tm = KTKe 

Total motor armature circuit resistance R: 

(29) 

f'LZB D Bçcp Pç R ca 1 + 
PM cosa 

7t 
() + 

(1.2 Kc)(Bca )(p) ohms 
Ya aA 

(93) 

where Z = Total number of armature conductor 

Bca = Armature conductor copper density in ampere 
per square inch 

la = Armature current in amperes 

aA = Number of armature circuit 

Bpf = Pole face flux density in lines per square 
inch 

Total motor armature and load inertia J: 

J = JM + JL = 6 x 10 -6 KJ D4 L(1 + 41) 

Pound -feet per second squared (94) 

in which JM = 6 x 10 -6 KJD4L Pound -feet per second 
squared (95) 

where JM and JL are motor armature and load inertia 

referred to the motor shaft. 

Motor torque constant, KT: 

KT = 0.30$ x 10 
-$ BpF DST LZ 

aA 

Pound -feet per amperes (96) 



where T = pole arc /pole pitch 

d = armature slot depth in inches 

Motor generated voltage, Ke: 

BpFD T LZ 
Ke = 0.5 x 10 -$ x aA 

56 

Volts per radian 
per second 

(97) 

Motor time constant, Tm: 

If equations (94), (95), (96), (97) are substituted 

into equation (93),the motor and load time constant 

becomes 

Tm = $.5 x 104 KJ(1 + ) x 1 + 
M PM cos e 

(1.2 K0)(Bcap)(pM) / KSB2pFC2 

BPF 
- KPBT I (9$) 

In order to make the motor time constant to a minimum 

the denominator of equation (9$) should be a maximum. 

This can be done by use of the following values which 

are obtained from the design consideration: 

BPF = Ki BT (99) 

d = 1/$ (100) D' 

Pole force density BpF = 66.500 lines per square inch 

which is high by normal design standards, but which is 

theoretically possible. 

(2 () + 
L 

(i-10 1 - 

2(D) 

I 

L 



With a sufficient number of armature slots the 

ratio of pole arc to pole pitch can be made equal to 

0.7. The substituion of these values into equation 

(9$) gives a minimum value of time constant at 75 

degrees centigrades of 

(Tm) min = 1.25 x 10-3 ;1 (1 + j11 
KS JM 

) 1 + 
PM cos 6 (D) 

+ (1.2 K) (Bcap) (pM) I seconds 

57 

(101) 


