AN ABSTRACT OF THE DISSERTATION OF

David A. Schiedler for the degree of Doctor of Philosophy in Chemistry presented on December 2, 2014.

Title: The Development of Aminal Radicals for the Synthesis of Nitrogen-Rich Natural Products.

Abstract approved:

Christopher M. Beaudry

Abstract

Organic compounds which contain one or more nitrogen atoms are especially important as they are disproportionately represented among biologically active molecules. As a result, significant effort has been focused on the development of methods for the synthesis of nitrogenous molecules. We identified the aminal as an under-explored functional group. Despite the presence of the aminal functional group in several biologically active natural products which have attracted the attention of the synthetic community, no bond forming reactions of the aminal functional group had been described in the literature.

This dissertation describes the development of two new carbon-carbon bond forming reactions utilizing aminal radical intermediates (carbon-centered radicals wherein the radical bearing carbon atom has two nitrogen substituents). Additionally, this document describes progress towards the application of aminal radicals in the context of the total synthesis of the alkaloid leuconoxine.

The preliminary investigations centered on the generation of aminal radicals under peroxide initiated conditions similar to those previously reported for the generation of α-aminoalkyl radicals. The treatment of aminal containing molecules with di-tertbutyl peroxide in the presence of a radical acceptor (e.g. 1-octene) produced either a complex mixture of products, or no reaction.

Aminal radicals were successfully formed from 2-iodobenzyl substituted N-acyl aminals by radical translocation reactions using AIBN and either $\mathrm{Bu}_{3} \mathrm{SnH}$ or $(\mathrm{TMS})_{3} \mathrm{SiH}$ as a stoichiometric hydrogen atom donor. It was found that aminal radicals participate in inter- and intramolecular $\mathrm{C}-\mathrm{C}$ bond forming reactions with electron deficient alkenes. Reactions in the presence of electron rich or unactivated alkenes did not lead to the desired bond formation, instead giving products of dehalogenation. The reaction of N-acyl aminals which contained carbon atoms bearing only one nitrogen atom were shown to selectively give the product of bond formation at the aminal carbon. Chemical yields of the radical translocation reactions were as high as 91%.

It was demonstrated that the SmI_{2} reduction of N-acyl amidines or amidinium ions in the presence of a proton source and an electron deficient alkene yielded products of C-C bond formation. Chemical yields of these transformations were as high as 99% and can lead to diastereoselectivities in excess of 20:1. Mechanistic investigations of this reactivity indicated that the reactions likely proceed through an aminal radical intermediate.

The application of aminal radicals to the total synthesis of the alkaloid natural product leuconoxine has been investigated. It was envisioned that the SmI_{2} induced reductive alkylation reaction of a simple bicyclic N-acyl amidine would rapidly construct the fully substituted aminal stereocenter present in the natural product. While similar amidines have been reported in the literature, no general strategy to access amidines
of this type was known. Three distinct synthetic strategies towards the preparation of the desired bicyclic N-acyl amidine substrate were developed and investigated.

The first strategy relied on the formation of the amidine using the intramolecular azaWittig reaction of an imide and an azide. Unexpectedly, these reactions produced a bis-amide product. Attempts to induce an intramolecular condensation reaction of the bis-amide to give the desired amidine were unsuccessful. The second strategy disconnected the desired bicyclic N-acyl amidine through an intramolecular N acylaiton reaction of an N-aryl amidine. It was envisioned that the amidine could be prepared from a bimolecular condensation reaction of an aniline and a lactam derivative. All attempts to form the desired amidine functionality were unsuccessful. The third strategy depended upon an N -arylation reaction for the conversion of a known bicyclic N-acyl amidine to the desired substrate for the synthesis of leuconoxine. While the desired substrate has remained elusive, a model system of the key N -arylation reaction has successfully given the desired N -aryl- N -acyl bicyclic amidine product.
©Copyright by David A. Schiedler
December 2, 2014
All Rights Reserved

The Development of Aminal Radicals for the Synthesis of Nitrogen-Rich Natural Products.
by
David A. Schiedler

A DISSERTATION

submitted to

Oregon State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Presented December 2, 2014
Commencement June 2015

Doctor of Philosophy dissertation of David A. Schiedler presented on December 2, 2014.

APPROVED:

Major Professor, representing Chemistry

Chair of the Department of Chemistry

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

ACKNOWLEDGEMENTS

I would like to express my thanks to my wife, Mindy, for all of the sacrifices she has made in order for me to complete this degree. She has sacrificed career advancement, spent many months living alone, and has endured much emotional and financial hardship during my time in graduate school. I am grateful to family for their continued support of my education. I would also like to thank the members of the Beaudry research group, both past and present for their support. Jessica Vellucci and Yi Lu were instrumental in the completion of this work and I am greatly appreciative of their excellent lab skills and their willingness to collaborate with me on these projects. Finally, I would like to thank my advisor, Professor Chris Beaudry, for his guidance over the last five years. Professor Beaudry has pushed me to learn fundamental chemical principles, to think critically about my research, and has been a constant encourager.

CONTRUBUTION OF AUTHORS

Jessica Vellucci assisted with data collection for chapter 2 and with the writing of chapters 1 and 2. Yi Lu assisted with the data collection for chapter 3 and the writing of chapters 1 and 3 .

TABLE OF CONTENTS

Page
1 Introduction, Background, and Preliminary Investigations 2
1.1 Biologically Active Nitrogen Rich Natural Products 2
1.2 Radicals in the Synthesis of Heteroatom Containing Molecules 3
1.3 Aminal Radicals as Synthetic Intermediates 4
1.4 Preliminary Investigations Using Peroxide Initiated Conditions7
1.5 Radical Translocation Reactions of Non-Acylated Aminals 9
1.6 Experimental Section 13
2 Formation of Carbon-Carbon Bonds Using Aminal Radicals 31
2.1 Introduction 32
2.2α-Amino Radicals and Protective Radical Translocaiton 33
2.3 Results and Discussion. 34
2.4 Conclusion 38
2.5 Experimental Section 38
3 Reductive Synthesis of Aminal Radicals for Carbon-Carbon Bond Formation 119
3.1 Introduction 120
3.2 Results and Discussion. 121
3.3 Conclusion 129
3.3 Experimental Section 129
4 Application of Aminal Radicals in Total Synthesis: Progress Towards the Total Synthesis of Leuconoxine 251
4.1 Isolation and Previous Syntheses 251
4.2 Retrosynthetic Analysis 253

TABLE OF CONTENTS (Continued)

Page
4.3 Progress Towards the Total Synthesis of Leuconoxine 257
4.4 Experimental Section 267
5 Conclusion and Future Direction 328
5.1 Conclusion 328
5.2 Future Directions 331

LIST OF FIGURES

Figure Page
1.1 Nitrogen-Rich Natrual Products and Pharmaceuticals which Contain Aminals 2
2.1 Selected Nitrogen-Rich Alkaloids 31
2.2 Scope of the Aminal Radical Reaciton 36
4.1 Leuconoxine and its Biologically Acvtive Congeners 248

LIST OF TABLES

Table Page
1.1 Reactions using Peroxide-Initiated Conditions 8
1.2 Attempted Optimization of Radical Translocation 10
2.1 Reactivity of Aminal 60 34
3.1 Development of the Amidine Reduction Reaction 120

LIST OF SCHEMES

Scheme
1.1 Clive's Formal Synthesis of (-)-Epibatidine 3
1.2 C-C bond Forming Reactions of Acetal Radicals 4
1.3 Proposed Reaction of an Aminal Radical with an Alkene 4
1.4 C-C Methods for the Generation of α-Amino Radicals 6
1.5 The Attempted Extension of Juveland's Method 7
1.6 Extension of Radical Translocation for the Generation of Aminal Radicals 9
1.8 Deuterium Incorporation in the Dehalogenated Side Product 12
2.1 Radical Translocation 32
2.2 Initial Investigations of Aminal Radical Reactivity 33
2.3 Plausible Model for Formation of 71 37
3.1 Formation of $\mathrm{C}-\mathrm{C}$ Bonds with Aminal Radicals 119
3.2 Scope of the Amidine Reduction Reaction. 121
3.3 Scope of the Amidine Reduction Reaction (continued). 122
3.4 Scope of Amidine Substrates. 123
3.5 Amidinum Reduction 124
3.6 Mechanistic Investigation 125
3.7 Mechanistic Investigation (continued) 126
3.7 Possible mechanism for the formation of $\mathbf{1 4 0}$ 126
4.1 Zhu's Enantioselective Total Synthesis of (-)-Leuconoxine 249
4.2 Tokuyama's Synthesis of ($\mathbf{\pm}$)-1 250
4.3 Retrosynthetic Analysis of $\mathbf{1}$ with an Aminal Radical Disconnection 250
4.4 Known Methods for the Preparation of Bicyclo[4.4.0]amidines 251

LIST OF SCHEMES (Continued)

Scheme Page
4.5 The First Generation Retrosynthetic Analysis of $\mathbf{1 6 6}$ 253
4.6 Attempted Synthesis of the Amine $\mathbf{1 8 1}$ 254
4.7 Second-Generation Rtrosynthetic Analysis of the Key Intermediate 166 255
4.8 Synthesis of the Amido Lactam 191 256
4.9 Plausible Mechanism for the Formation of the Amido Lactam 191 257
4.10 The Attempted Dehydration of the Amido Lactam 191 257
4.11 Lewis-Acid Catalyzed Amidine Formation 258
4.12 Reactions of the Dithioimide Model Systems 260
4.13 An Alternate Retrosynthetic Analysis of $\mathbf{1 6 6}$ 260
4.14 Attempts to Form the DesiredAmidine From 209 261
4.15 Attempted Addition of Anilines to Activated Lactams 262
4.16 Retrosynthetic Analysis of $\mathbf{1 6 6}$ from Wamhoff's Amidine $\mathbf{1 7 8}$ 263
4.17 Reactions of Wamhoff's Amidine $\mathbf{1 7 8}$ 264
5.1 Future Work on the Synthesis of $\mathbf{1}$ 330
5.2 Additional Reactions to be Developed 331

The Development of Aminal Radicals for the Synthesis of Nitrogen-Rich Natural Products

Chapter 1: Introduction, Background, and Preliminary Investigations

1.1 Nitrogen Rich Natural Product Synthesis

Many biologically active molecules, including pharmaceuticals, contain one or more nitrogen atoms. As a result, nitrogen rich compounds, such as alkaloids and pharmaceuticals, make compelling synthetic targets (Figure 1.1, 1-7). ${ }^{1}$ However, the complex reactivity of nitrogen can be problematic in synthesis. The ability to quaternize, the Lewis basic lone pair, and the weakly acidic $\mathrm{N}-\mathrm{H}$ protons found in nitrogen-containing molecules often give rise to undesired reactivity.

leuconoxine 1

goniomitine 4

saxitoxin 2

palau'amine 3

Figure 1.1. Nitrogen-rich natural products and pharmaceuticals which contain aminals

In order to mask the complex Lewis acid-base reactivity of nitrogen, synthetic chemists often resort to the use of protective groups. ${ }^{2}$ Other strategies which have proven successful for the synthesis of nitrogen-containing structures include opting to install nitrogen late in the synthesis ${ }^{3}$ or in the form of a less reactive functional group (e.g., as a nitro ${ }^{4}$ or nitrile ${ }^{5}$ group).

1.2 Radicals in the Synthesis of Heteroatom Containing Molecules

An alternative means to circumvent the pitfalls of alkaloid synthesis is the use of single electron reactivity (i.e., free radical reactions). Free radicals are known to tolerate heteroatom lone pairs, and $\mathrm{N}-\mathrm{H}$ bonds are resistive to homolytic cleavage. ${ }^{6}$ The addition of carbon-centered radicals bearing heteroatoms to $\mathrm{C}-\mathrm{C}$ multiple bonds has been known for over fifty years. ${ }^{7}$ For example, Clive and coworkers generated the α-amido radical intermediate $\mathbf{8}$ from the N, S-acetal $\mathbf{9}$ to construct the bicycle $\mathbf{1 0}$ in their formal synthesis of (-)-epipatidine 11 (Scheme 1.1). ${ }^{8} \alpha$-Aminoalkyl and α-amido radicals, such as $\mathbf{8}$, gain stability from the electron lone pair on the adjacent nitrogen atom and react with unsaturated carbon atoms to give products of $\mathrm{C}-\mathrm{C}$ bond formation. ${ }^{9}$ This reactivity has proven useful for the synthesis of heterocycles and alkaloid natural products as it allows for the strategic disconnection of bonds which would be difficult to form using standard cationic or anionic reaction conditions. ${ }^{10}$

Scheme 1.1. Clive's formal synthesis of (-)-epibatidine

Carbon-centered radicals bearing two adjacent heteroatoms are also known to undergo $\mathrm{C}-\mathrm{C}$ bond forming reactions with $\mathrm{C}-\mathrm{C}$ multiple bonds. Homolytic $\mathrm{C}-\mathrm{H}$ bond cleavage of acetal $\mathbf{1 2}$ was induced by photosensitized benzophenone to give the aceal radical 13. Radical 13 then added across the enone 14 to give the observed product 15 after propagation (Scheme 1.2, eq. 1). Reactions of 2-bromobenzoyl enamides $\mathbf{1 6}$ with AIBN and $\mathrm{Bu}_{3} \mathrm{SnH}$ were presumed to proceed through N, S - and N, O - acetal radical intermediates (17) during $\mathrm{C}-\mathrm{C}$ bond forming reactions to give the ring-fused products 18 (Scheme 1.2, eq. 2). ${ }^{11}$

Scheme 1.2. $\mathrm{C}-\mathrm{C}$ bond forming reactions of acetal radicals

Carbon-centered radicals bearing two adjacent nitrogen atoms (i.e. aminal radicals) have been implicated as intermediates in the free radical and radiative damage of DNA nucleotide bases, ${ }^{12}$ they have been experimentally generated and studied spectroscopically, ${ }^{13}$ and long-lived aminal radicals have been isolated. ${ }^{14}$ Applications of aminal radicals include their use as photochromic dyes ${ }^{15}$ and as tools for mechanistic investigations. ${ }^{16}$ Although there are reports of fragmentation, ${ }^{17}$ protonation, ${ }^{18}$ and dimerization reactions of aminal radicals, there had been no reports of their synthetic utility prior to recent work from our laboratory. ${ }^{19}$

1.3 Aminal Radicals as Synthetic Intermediates

Scheme 1.3. Proposed reaction of an aminal radical with an alkene

Having considered the known reactivity of acetal and α-aminoalkyl radicals, the creation of a new reaction was envisioned wherein a nitrogen-rich starting material
(19) would be converted into an aminal radical intermediate (20) and would undergo addition to an alkene to give the product of $\mathrm{C}-\mathrm{C}$ bond formation (21, Scheme 1.3). Computational studies predicted that aminal radicals are $1-2 \mathrm{kcal} / \mathrm{mol}$ more stable than analogous α-aminoalkyl radicals. ${ }^{20}$ This suggested that it would be possible to selectively generate aminal radicals in the presence of carbon atoms bearing a single nitrogen atom as depicted in Scheme 1.3. Based on these considerations, we postulated that aminal radical intermediates would be well suited for the construction of the carbon framework in nitrogen-rich molecules.

It was predicted that aminal radical intermediates would react in a manner similar to α-aminoalkyl and α-amido radicals. Following from this prediction, it was reasoned that aminal radicals might be accessible by an extension of a method previously reported for the generation of α-amino radicals. Scheme 1.4 gives a summary of the known methods for the generation of α-amino radicals. One of the most common ways in which α-amino radicals have been generated is by the homolytic cleavage of a $\mathrm{C}-\mathrm{X}$ bond on the carbon which bears nitrogen $\left(\mathrm{X}=\mathrm{SR}, \mathrm{SeR}, \mathrm{Cl}, \mathrm{Br}, \mathrm{SiMe}_{3}\right.$, or $\mathrm{C}(\mathrm{O}) \mathrm{R})$. For example, Zhang reported the conversion of the selenide 22 to the spirocyclic compound 23 which presumably results from the 6 -exo-trig radical cyclization of the aminal radical 24 (eq. 1). ${ }^{21}$ While this strategy allows for completely regioselective radical generation, it was deemed unattractive for the extension to the generation of aminal radicals as it required the synthesis of pre-functionalized aminal substrates.

Another means to generate α-amino radicals involves the addition of a carboncentered radical to an enamine. Renaud reported the conversion of enamine $\mathbf{2 5}$ to the alkylated product 26 by addition of an alkyl radical to give the α-amino radical intermediate 27 followed by hydrogen atom abstraction from $\mathrm{Bu}_{3} \mathrm{SnH}$ (eq. 2). ${ }^{22}$ The single electron reduction of iminium ions in the presence of a proton source has been reported for the generation of α-amino radicals. Martin reported the conversion of the
iminium ion 28 to the fused bicyclic compound 29 by way of the α-amino radical 30 (eq. 3). ${ }^{23}$ This method was attractive for extension to the generation of aminal radicals as it had the potential to generate an aminal radical in a regioselective manner without the poor atom economy exhibited by the $\mathrm{C}-\mathrm{X}$ bond homolysis strategy.

26
29
28

31

Scheme 1.4. Methods for the generation of α-amino radicals
α-Amino radicals have also been obtained from the homolysis of a $\mathrm{C}-\mathrm{H}$ bond on the carbon bearing nitrogen. One such method, termed protective radical translocation, ${ }^{24}$ involves the use of a halogen-substituted protecting group. Undheim reported the conversion of 2-iodobenzyl protected amine $\mathbf{3 1}$ to the alkylated amine product $\mathbf{3 2}$ (eq. 4). ${ }^{25}$ The reaction proceeded through a phenyl radical which then underwent a 1,5-
hydrogen atom abstraction to produce the aminal radical intermediate 33. In 1958, Juveland reported the generation of α-aminoalkyl radical intermediate $\mathbf{3 4}$ under peroxide initiated conditions (eq. 5). ${ }^{26}$ Treatment of piperidine (35) with di-tertbutylperoxide in the presence of 1-octene yielded 2-octyl piperidine (36). Similar transformations using $\mathrm{Et}_{3} \mathrm{~B} / \mathrm{O}_{2}{ }^{27}$ or a transition-metal catalyzed photo-redox process ${ }^{28}$ to generate the radical species have also been reported. Reactions of this type were particularly attractive for extension to the generation of aminal radicals because they would not require any pre-functionalization of the aminal substrates.

1.4 Preliminary Investigations Using Peroxide Initiated Conditions

Extension of Juveland's peroxide initiated method for the generation of α-amino radicals to the generation of aminal radicals was chosen for the preliminary investigations. This extension could involve the treatment of an aminal with di-tertbutylperoxide in the presence of a suitable radical acceptor (Scheme 1.5). Tetrahydroisoquinazoline (37) was chosen because it was easy to prepare, it was chromatographically stable, and it contained a chromophore which allowed for facile monitoring of reaction progress.

Scheme 1.5. The attempted extension of Juveland's method

Following Juveland's procedure, 37 was heated in the presence of di-tertbutylperoxide and 1-octene in a sealed tube (Table 1, entry 1). The reaction produced an intractable mixture of products and none of the desired product 40 was observed. The ${ }^{1}$ NMR spectrum of the product mixture showed additional aryl protons with no additional signals in the alkyl region of the spectrum. In an effort to affect cleaner reactivity, modified reaction conditions were investigated. Increasing the equivalents
of the radical acceptor and adding benzene as a solvent had no effect (entry 2). The benzyl protected aminal 41 was subjected to the reaction conditions with methyl acrylate as a radical acceptor, but also gave a mixture of products and none of the desired compound 42 was observed (entry 3). The ${ }^{1} \mathrm{H}$ NMR spectrum of the product mixture showed new peaks in the aryl region. Lowering the reaction temperature resulted in no reaction (entry 4). The aminal substrate 43 was prepared and subjected to the reaction conditions with carbon tetrachloride, benzene, or solventless conditions (entries 5-7). None of the desired spirocycle 44 was obtained in any case. ${ }^{1} \mathrm{H}$ NMR analysis of the product mixture revealed that a number of new compounds containing alkenyl signals had formed. This indicated that the newly formed products were not the result of the desired radical cyclization event.

Table 1.1. Reactions using peroxide-initiated conditions

Based on these results, two plausible explanations were formulated. Either the desired aminal radical 39 was generated, and it was reacting in an unselective manner to give the observed decomposition, or aminal radical 39 had not been generated and the observed degradation was arising from other reaction pathways. Unable to easily distinguish between these possibilities, an alternative method for the generation of aminal radicals was sought. Ideally, this method would incorporate a functional handle that could be used to determine whether aminal radicals were being generated.

1.5 Radical Translocation Reactions of Non-Acylated Aminals

Evaluation of the known methods for the generation of α-amino radicals previously discussed led us to consider a radical translocation strategy for the generation of aminal radicals. ${ }^{29}$ The application of radical translocation as a means to generate aminal radicals was particularly attractive because it would provide a functional handle through which problematic reactivity might be diagnosed. Specifically, the loss of iodide is diagnostic for the formation of a phenyl radical (45) (Scheme 1.6). Deuteration experiments could be used to determine whether the desired $1,5-\mathrm{H}$ atom abstraction event had occurred to yield the desired aminal radical 46. Additionally, the necessary 2-iodobenzyl substituted starting material 47 could be easily prepared by alkylation of 37 . The product of the reaction, proceeding through the radical intermediate 48 after addition to methyl acrylate and subsequent propagation, would be a benzyl protected aminal (42).

Scheme 1.6. Extension of radical translocation for the generation of aminal radicals

N -2-Iodobenzyl-tetrahydroquinazoline (47) was prepared from 37 and 2-iodobenzyl iodide. Treatment of the protected aminal with AIBN and $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of methyl acrylate yielded some of the desired aminal radical product 42 (Table 1.2, entry 1). This indicated that the desired aminal radical is synthetically competent. However, in addition to the desired product, isomeric product 49, ${ }^{30}$ over addition product 50, and dehalogenated product 51 were also observed. Formation of the undesired product 49 is competitive with the formation of desired product 42 as a result of the stability of the α-aminobenzylic radical from which it presumably arises. The formation of dehalogenated 51 was not surprising given that similar reaction conditions have been used to perform radical dehalogenation. ${ }^{31}$ Although Curran reported the oxidation of 2-iodobenzyl ethers under similar reaction conditions, ${ }^{32}$ no amidine formation was observed.

Table 1.2. Attempted optimization of radical translocation

Having successfully demonstrated that aminal radical intermediates are generated and add to alkenes using the radical translocation method, efforts were turned to reaction optimization. Variation of the $\mathrm{Bu}_{3} \mathrm{SnH}$ equivalents had little effect on the product distribution; however, the yield of $\mathbf{4 2}$ decreased when less than two equivalents were added (Table 1, entries 1-3). Adjustment of the acrylate equivalents showed that only trace amounts of the desired products were formed when less than two equivalents were used (entry 4). Increasing the stoichiometry of the acrylate up to five equivalents showed little effect on the product distribution or isolated yield (entries 5, 6). However, using a large excess of the acceptor resulted in a decrease in yield (entry 7). Decreasing the time of addition from 10 hours to 1 hour was found to partially suppress the formation of the over addition product 50 (entries 8, 9). Systematic variation of the reaction concentration showed that the optimal yield was obtained with a concentration of 0.1 M with respect to the aminal, but the reaction remained unselective (entries 10-12). A solvent screen showed that toluene and cyclohexane were also amenable to the desired reactivity while use of carbon tetrachloride resulted in decomposition (entries 13-15). Benzene was chosen as the optimal solvent as it was easily removed by rotary evaporation, provided superior yields, and possessed favorable solubility properties. In total, more than one hundred conditions were screened but all failed to cleanly produce $\mathbf{4 2}$ in high chemical yield.

Of the undesired side products formed in the reaction of 47, the dehalogenation product 51 was always the most abundant. Presumably, 51 results from the reaction of either the phenyl radical 45 or the aminal radical 46 with $\mathrm{Bu}_{3} \mathrm{SnH}$ before it has had sufficient opportunity to react with the acrylate. A deuteration experiment was performed in order to probe whether this undesired reduction was occurring before or after the $1,5-\mathrm{H}$ atom transfer event. After homolysis of the $\mathrm{C}-\mathrm{I}$ bond, the phenyl radical 45 is generated. If the $1,5-\mathrm{H}$ atom transfer is slow and $\mathbf{4 5}$ radical reacts with $\mathrm{Bu}_{3} \mathrm{SnD}^{33}$, then a deuterium atom should be incorporated at the ortho-position of the benzyl group (Scheme 1.7, pathway A). However, if the $1,5-\mathrm{H}$ atom transfer event occurs rapidly, then the deuterium would be incorporated on the aminal containing
ring after reaction of either the aminal radical 46 or the α-amino radical 52 with $\mathrm{Bu}_{3} \mathrm{SnD}$ (pathway B).

Scheme 1.7. Deuterium incorporation in the dehalotenated side product

A solution of aminal 47 and methyl acrylate was heated to reflux while a solution of $\mathrm{Bu}_{3} \mathrm{SnD}$ and AIBN in benzene was added over a period of one hour. Deuterium NMR analysis of the dehalogenated product (53) revealed that 79% of the deuterium was incorporated at the ortho position of the benzyl group while only 21% was incorporated on the tetrahydroquinazoline ring. Assuming that the $1,5-\mathrm{H}$ atom transfer is irreversible, this result suggested that the aminal radical, once formed, reacted smoothly with the acrylate acceptor and proceeded to the desired product. However, the rate of D atom abstraction from $\mathrm{Bu}_{3} \mathrm{SnD}$ was competitive with that of $1,5-\mathrm{H}$ atom abstraction from the aminal.

Based on this result, it was reasoned that the use of a terminal reductant which undergoes H -atom abstraction at a slower rate than $\mathrm{Bu}_{3} \mathrm{SnH}$ would likely decrease the amount of undesired dehalogenation observed. (TMS) ${ }_{3} \mathrm{SiH}$, a common substitute for tin hydrides in radical processes, ${ }^{34}$ is known to undergo H -atom abstraction at a rate approximately one fifth than that of $\mathrm{Bu}_{3} \mathrm{SnH}_{.}{ }^{35}$ Unfortunately, substitution of $(\mathrm{TMS})_{3} \mathrm{SiH}$ for $\mathrm{Bu}_{3} \mathrm{SnH}$ in the reaction mixture resulted in no reaction. It was reasoned that the rate of H atom abstraction from $(\mathrm{TMS})_{3} \mathrm{SiH}$ may have been
insufficient to sustain the radical chain. $\mathrm{Ph}_{3} \mathrm{GeH}$ is known to undergo H -atom abstraction at a rate slower than that of $\mathrm{Bu}_{3} \mathrm{SnH}$ and faster than that of $(\mathrm{TMS})_{3} \mathrm{SiH}^{36}$ However, use of $\mathrm{Ph}_{3} \mathrm{GeH}$ as a terminal reductant also failed to give any product formation.

1.6 Experimental Section

General Experimental Details:
All reactions were carried out under an inert Ar atmosphere in oven-dried glassware. Flash column chromatography (FCC) was carried out with SiliaFlash P60, 60 Å silica gel. Reactions and column chromatography were monitored with EMD silica gel 60 F254 plates and visualized with potassium permanganate, iodine, ninhydrin, or vanillin stains. Tetrahydrofuran (THF) was dried by passage through an activated alumina column. Benzene (PhH) was dried over CaH_{2}, distilled under an atmosphere of argon, and degassed by three freeze - pump - thaw cycles. Methyl acrylate was purified by washing with aqueous NaOH , drying over MgSO_{4}, and calcium hydride. It was then distilled under vacuum prior to use. $\mathrm{Bu}_{3} \mathrm{SnH}$ and BnSH were dried over CaH_{2} and distilled under vacuum prior to use. All other reagents and solvents were used without further purification from commercial sources. FT-IR spectra were measured using NaCl plates. Multiplicities are abbreviated as follows: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet. Melting points are uncorrected.

2-(pent-4-en-1-yl)-1,2,3,4-tetrahydroquinazoline (43). To a solution of hex-5-enal ${ }^{37}$ $(0.2041 \mathrm{~g}, 2.08 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(0.0185 \mathrm{~g}, 0.346 \mathrm{mmol})$ in EtOAc $(10 \mathrm{~mL}, 0.1 \mathrm{M})$ was added 2-aminobenzylamine $(0.2109 \mathrm{~g}, 1.7262 \mathrm{mmol})$. The mixture was stirred at room temperature for 0.5 h . At this time, TLC indicated the consumption of 2aminobenzylamine. The reaction mixture was filtered through celite and was then concentrated. A light yellow oil resulted. Flash column chromatography (3:1 Hexanes : EtOAc) gave $43(0.2501 \mathrm{~g}, 1.236 \mathrm{mmol}, 72 \%)$ as a colorless oil.

Data for 43: $\mathrm{R}_{f} 0.16$ (1:1 hexanes : EtOAc); IR (thin film) 2928, 2849, $1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01(\mathrm{td}, J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.68(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dddd}, J=23.6,10.0$, $6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.07$ (m, 2 H), 4.11-4.16 (m, 2 H), 3.95 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.13(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3},) $\delta 143.8,138.4,127.3,126.3,121.7,118.1,115.1,66.9,46.7,46.7,36.1,33.7$, 24.3; HRMS (EI+) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2}[\mathrm{M}+]$: 202.14700, found 202.14632.

3-(2-iodobenzyl)-1,2,3,4-tetrahydroquinazoline (47). To a solution of 2iodobenzyliodide ${ }^{38}(0.2301 \mathrm{~g}, 0.690 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.1819 \mathrm{~g}, 1.32 \mathrm{mmol})$ in a mixture of water ($0.5 \mathrm{~mL}, 1.4 \mathrm{M}$) and THF ($2 \mathrm{~mL}, 0.35 \mathrm{M}$) was added 1,2,3,4tetrahydroquinazoline ${ }^{39}(0.1800 \mathrm{~g}, 1.34 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h . At this time, TLC indicated the consumption of 2 iodobenzyliodide. The reaction mixture was concentrated. Flash column chromatography (9:1 Hexanes : EtOAc) gave 47 ($0.2202 \mathrm{~g}, 0.629 \mathrm{mmol}, 91 \%$) as a yellow oil.

Data for 47: $\mathrm{R}_{f} 0.36$ (4:1 hexanes : EtOAc); IR (thin film) 2928, 2847, $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.47(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1$ H), $7.34(\mathrm{td}, J=7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{td}, J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73$ (td, $J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.94$ (s, 2 H), 3.79 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) $\delta 142.8,141.0,139.6,130.4$, 128.9, 128.2, 127.7, 127.3, 120.1, 118.4, 115.3, 100.7, 63.0, 61.0, 53.2; HRMS (TOF MS ES+ + calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 351.0358$, found 351.0347.
methyl 3-(3-benzyl-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (42), methyl 3-(3-benzyl-1,2,3,4-tetrahydroquinazolin-4-yl)propanoate (49), dimethyl 3,3'-(3-benzyl-1,2,3,4-tetrahydroquinazoline-2,4-diyl)dipropionate (50), and 3-benzyl-

1,2,3,4-tetrahydroquinazoline (51). (Representative procedure for the radical translocation reactions of 47$) .47(0.2030 \mathrm{~g}, 0.580 \mathrm{mmol})$ and methyl acrylate (0.16 $\mathrm{mL}, 1.8 \mathrm{mmol})$ were dissolved in $\mathrm{PhH}(4.6 \mathrm{~mL}, 0.13 \mathrm{M})$ and the mixture was heated to reflux. A PhH solution (1.2 mL) containing AIBN ($0.0198 \mathrm{~g}, 0.121 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{SnH}(0.31 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added by syringe pump to the refluxing solution over a period of 1.2 h . After 15 h , the mixture was cooled to rt, concentrated, and redissolved in MeCN. The MeCN solution was washed with hexanes, concentrated, and purified by flash column chromatography ($8: 1$ Hexanes : EtOAc) to give a $1: 1$ mixture of $\mathbf{4 2}$ and $49(0.0542 \mathrm{~g}, 0.1748 \mathrm{mmol}, 30 \%)$ as a colorless oil, $50(0.0155 \mathrm{~g}$, $0.0391 \mathrm{mmol}, 6.7 \%$) as a colorless oil, and 3-benzyl-1,2,3,4-tetrahydroquinazoline (51) ($0.0462 \mathrm{~g}, 0.206 \mathrm{mmol}, 36 \%)$.

Data for 42: $\mathrm{R}_{f} 0.28$ (4:1 hexanes:EtOAc); IR (thin film) 2920, $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (br s, 1 H), 3.97 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60-3.73 (m, 6 H), 2.44-2.53 (m, 2 H), 2.04-2.09 (m, 1 H), 1.89-1.94 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) $\delta 174.1,142.2$, 139.4, 128.9, 128.4, 127.9, 127.4, 127.1, 118.3, 117.8, 114.4, 69.4, 55.2, 51.8, 48.1, 30.0, 29.7; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 311.1760$, found 311.1770.

Data for 49: $\mathrm{R}_{f} 0.28$ (4:1 hexanes : EtOAc); IR (thin film) 2950, 1732, $1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, J=11.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (dd, $J=11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55 (ddd, $J=16.8,7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (ddd, $J=14.7$, $7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$) 1.99-2.08 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $) \delta 174.5,142.6$, $139.3,129.3,128.9,128.3,127.4,127.2,122.9,117.9,114.8,59.0,57.1,56.0,51.6$,
33.0, 30.92; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]: 311.1760$, found 311.1750.

Data for 50: $\mathrm{R}_{f} 0.14$ (4:1 hexanes : EtOAc); IR (thin film) 2950, 2851, 1735, 1692, $1493 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{td}, J=8.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{dt}, J=16.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.32(\mathrm{~m} 1 \mathrm{H})$, $2.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) δ $174.1,173.7,143.2,139.5,129.1,128.9,128.3,127.1,126.1,123.0,118.4,114.7$, 64.1, 58.0, 51.8, 51.4, 49.1, 32.2, 30.4, 29.4, 27.6; HRMS (CI+) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]: 397.2127$, found 397.2129.

modd	0	$0 Z$	$0 ヵ$	09	08	001	$0 Z L$	$0 ヶ \vdash$	091	081	$00 Z$

JEt
T080TSKC

1 Hesse, M. Alkaloid Chemistry; Wiley: New York, 1981; pp 175-200.
2 Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis; $4^{\text {th }}$ Ed. Wiley: Hoboken, NJ, 2007; pp 696-926.

3 For example: (a) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419-4420. (b) Ge, H. M.; Zhang, L.-D.; Tan, R. X.; Yao, Z.-J. J. Am. Chem. Soc. 2012, 134, 12323-12325.

4 Tennant, G. in Comp. Org. Synth., Vol 2. (Eds: Barton, D.; Oates, W. D.); Pergamon Press: Oxford, 1979; pp 383-590.

5 Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
6 For examples, see (a) Urry, W. H.; Juveland, O. O.; Stacey, F. W. J. Am. Chem. Soc. 1952, 74, 6155. (b) Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. J. Org. Chem. 1986, 51, 4905-4910. (c) Sibi, M. P.; Ji, J.; Wu, J. H.; Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200-9201.

7 Walling, C.; Huyser, E. S. Org. Reactions 1963, 13, 91.
8 For selected recent examples of radical reactions as key steps in alkaloid synthesis, see: (a) Atarashi, S.; Choi, J.-W.; Ha, D.-C.; Hart, D.-J.; Kuzmich, D.; Lee, C.-S.; Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226-6241. (b) Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D. J. Am. Chem. Soc. 2006, 128, 8678-8693. (c) Movassaghi, M.; Schmidt, M. A. Angew. Chem. Int. Ed. 2007, 46, 3725-3728. (d) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 10376-10378. (e) Palframan, M. J.; Parsons, A. F.; Johnson, P. Tetrahedron Lett. 2011, 52, 1154-1156. (f) Clive, D. L. J.; Yeh, V. S. C. Tetrahedron Lett. 1998, 39, 4789-4792.

9 Giese, B. Radicals in Organic Synthesis: Formation of Carbon-Carbon bonds; Pergamon: Oxford, 1986.

10 (a) Aurrecoechea, J. M.; Suero, R. ARKIVOC 2004, 14, 10-35. (b) Renaud, P.; Giraud, L.; Synthesis 1996, 913-926. (c) Bowman, W. R.; Bridge, C. F.; Brookes, P. J. Chem. Soc. Perkin Trans. 1 2000, 1-14. (d) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Cem. Eur. J. 2012, 18, 10092-10142.

11 Zhou, A.; Njogu, M. N.; Pittman, C. U. Tetrahedron 2006, 62, 4093-4102.

12 (a) Dogan, I.; Steenken, S.; Schulte-Frohlinde, D.; Icli, S. J. Phys. Chem. 1990, 94, 1887-1894. (b) Novais, H. N.; Steenken, S. J. Am. Chem. Soc. 1986, 108, 1-6. (c) Novais, H. N.; Steenken, S. J. Phys. Chem. 1987, 91, 426-433. (d) Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. Am. Chem. Soc. 1992, 114, 4701-4709. (e) Vieira, A. J. S. C.; Steenken, S. J. Am. Chem. Soc. 1987, 109, 7441-7448. (f) Novais, H. M.; Telo, J. P.; Steenken, S. J. Chem. Soc. Perkin Trans. 2. 2002, 1412-1417. (g) Vieira, A. J. S. C.; Steenken, S. J. Phys. Chem. 1991, 95, 9340-9346. (h) Cullis, P. M.; Malone, M. E.; Podmore, I. D.; Symons, M. C. R. J. Phys. Chem. 1995, 99, 9293-9298. (i) Vinchurkar, M. S.; Rao, B. S. M.; Mohan, H.; Mittal, J. P. J. Chem. Soc. Perkin Trans. 2. 1999, 609-617. (j) Pramod, G.; Mohan, H.; Manoj, P.; Manojkumar, T. K.; Manoj, V. M.; Mittal, J. P.; Aravindakumar, C. T. J. Phys. Org. Chem. 2006, 19, 415-424.

13 (a) Marcinek, A.; Zielonka, J.; Gebicki, J.; Gordon, C. M.; Dunkin, I. R. J. Phys. Chem. A. 2001, 105, 9305-9309. (b) Shi, Z.; Thummel, R. P. J. Org. Chem. 1995, 60, 5935-5945. (c) Sabanov, V. K.; Kibizova, A. Y.; Klimov, E. S.; Berberova, N. T.; Okhlobistin, O. Yu. J. Gen. Chem. USSR Engl. Trans.1987, 57, 155-157. (d) Sabanov, V. K.; Klimov, E. S.; Bogdanova, I. V.; Trub, E. P.; Berberova, N. T.; Okhlobistin, O. Yu. Chem. Heterocyclic Compounds 1986, 22, 780-787.

14 Tanaseichuk, B. S.; Pryanichnikova, M. K.; Burtasov, A. A.; Dolganov, A. V.; Tsyplenkova, O. A.; Lukin A. M. Russ. J. Org. Chem. 2011, 47, 1723-1726.

15 (a) Iwahori, F.; Hatano, S.; Abe, J. J. Phys. Org. Chem. 2007, 20, 857-863. (b) Fujita, K.; Hatano, S.; Kato, D.; Abe, J. Org. Lett. 2008, 10, 3105-3108.

16 Ikeda, H.; Matsuo, K.; Matsui, Y.; Matsuoka, M.; Mizuno, K. Bull. Chem. Jpn. 2011, 84, 537-543.

17 (a) Yao, C.; Cuadrado-Peinado, M. L.; Polášek, M.; Tureček, F. Angew. Chem. Int. Et. 2005, 44, 6708-6711. (b) Cabrera-Riveria, F. A.; Ortĭz-Nava, C.; Escalante, J.; Hernández-Pérez, J. M.; Hô, M. Synlett 2012, 23, 1057-1063. (c) Qin, X.-Z.; Liu, A.; Trifunac, A. D. J. Phys. Chem. 1991, 95, 5822-5826.

18 Candeias, L. P.; Steenken, S. J. Phys. Chem. 1992, 96, 937-944.
19 (a) Schiedler, D. A.; Vellucci, J. K.; Beaudry, C. M. Org. Lett. 2012, 14, 60926095. (b) Schiedler, D. A.; Lu, Y.; Beaudry, C. M. Org. Lett. 2014, 16, 1160-1163.

20 Song, K.-S.; Liu, L.; Guo, Q.-X. Tetrahedron 2006, 60, 9909-9923.
21 Koreeda, M.; Wang, Y. M.; Zhang, L. M. Org. Lett. 2002, 4, 3329-3332.
22 Renaud, P.; Schubert, S. Angew. Chem. Int. Ed. 1990, 29, 433-434.

23 Martin, S. F.; Yang, C. P.; Laswell, W. L.; Rüger, H. Tetrahedron Lett. 1988, 29, 6685-6687.

24 (a) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988, 110, 5900-5902. (b) Schwartz, C. E.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 9272. (c) Snieckus, V.; Cuevas, J. C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896. (d) Curran, D. P.; Abraham, A. C.; Liu,H. T. J. Org. Chem. 1991, 56, 4335. (e) Curran, D. P.; Liu, H. T. J. Chem. Soc., Perkin Trans. 1 1994, 1377. (f) Curran, D. P.; Yu, H. S.; Liu, H.T. Tetrahedron 1994, 50, 7343. (g) Yamazaki, N.; Eichenberger, E.; Curran, D. P. Tetrahedron Lett. 1994, 35, 6623. (h) Denenmark, D.; Hoffmann, P.; Winkler, T.; Waldner, A.; De Mesmaeker, A. Synlett 1991, 621. (i) Denenmark, D.; Winkler, T.; Waldner, A.; De Mesmaeker, A. Tetrahedron Lett. 1992, 33, 3613. (j) Esker, J. L.; Newcomb, M. Tetrahedron Lett. 1992, 33, 5913. (k)

Esker, J. L.; Newcomb, M. J. Org. Chem. 1994, 59, 2779. (1) Murakami, M.; Hayashi, M.; Ito, Y. J. Org. Chem. 1992, 57, 793. (m) Brunckova, J.; Crich, D.; Yao, Q. W. Tetrahedron Lett. 1994, 35, 6619. (n) Curran, D. P.; Shen, W. J. Am. Chem. Soc. 1993, 115, 6051. (o) Curran, D. P.; Xu, J. J. Am. Chem. Soc. 1996, 118, 3142-3147. (p) Rancourt, J.; Gorys, V.; Jolicoeur, E. Tetrahedron Lett. 1998, 39, 5339-5342. (q) Giraud, L.; Renaud, P. J. Org. Chem. 1998, 63, 9162-9163. (r) Weinreb, S. M. J. Heterocycl. Chem. 1996, 33, 1437. (s) Ikeda, M.; Kugo, Y.; Sato, T. J. Chem. Soc., Perkin Trans. 1 1996, 1819-1824. (t) Ikeda, M.; Kugo, Y.; Kondo, Y.; Yamazaki, T.; Sato, T. J. Chem. Soc., Perkin Trans. 1 1997, 3339-3344. (u) Andreukiewicz, R.; Loska, R.; Prisyahnyuk, V.; Staliński, K. J. Org. Chem. 2003, 68, 1552-1554. (v) Sakaguchi, N.; Hirano, S.; Matsuda, A.; Shuto, S. Org. Lett. 2006, 8, 3291-3294.

25 Williams, L.; Booth, S. B.; Undheim, K. Tetrahedron 1994, 50, 13697-13708.
26 Urry, W. H.; Juveland, O. O. J. Am. Chem. Soc. 1958, 80, 3322-3328.
27 Yoshimitsu, T.; Atsumi, C.; Iimori, E.; Nagaoka, H.; Tanaka, T. Tetrahedron Lett. 2008, 49, 4473-4475.

28 (a) McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114-1117. (b) Angioni, S.; Ravelli, D.; Emma, D.; Dondi, D.; Fagnoni, M.; Albini, A. Adv. Synth. Catal. 2008, 350, 2209-2214.

29 (a) Snieckus, V.; Cuevas, J. C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 896-898. (b) Denenmark, D.; Hoffmann, P.; Winkler, T.; Waldner, A.; De Mesmaeker, A. Synlett 1991, 621-624. (c) Denenmark, D.; Hoffmann, P.; Winkler, T.; Waldner, A.; De Mesmaeker, A. Tetrahedron Lett. 1992, 33, 3613-3616.

30 Because the isomeric addition products 42 and 49 were inseparable by flash column chromatography, we have reported combined yields. The ratio of $\mathbf{4 2 : 4 9}$ was approximately $1: 1$ in all cases.

31 Wakchaure, P. B.; Easwar, S.; Aryade, N. P. Synthesis 2009, 1667-1672.
32 (a) Curran, D. P.; Yang, F.; Cheong, J.-h. J. Am. Chem. Soc. 2002, 124, 1499315000. (b) Curran, D. P.; Yu, H. S. Synthesis 1992, 123-127.

33 Green, F. D.; Lowry, N. J. Org. Chem. 1967, 32, 882-885.
34 (a) Giese, B.; Kopping, B. Tetrahedron Lett. 1989, 30, 681-684. (b) Studer, A.; Armen, S. Synthesis 2002, 7, 835-849.

35 Chatgilialoglu, C. Helv. Chim. Acta 2006, 89, 2387-2398.
36 Chatgilialoglu, C.; Ballestri, M. Organometallics 1999, 12, 2395-2397.
37 Delso, I.; Merino, P.; Sadaba, D.; Tejero, T.; Delso, I. Tetrahedron Lett. 2011, 52, 5976-5979.

38 Duffault, J. M. Synlett 1998, 33-34.
39 Maryanoff, B. E.; McComsey, D. F.; Nortey, S. O. J. Org. Chem. 1981, 46, 355360.

Chapter 2: Formation of Carbon-Carbon Bonds Using Aminal Radicals

David A. Schiedler, Jessica K. Vellucci, and Christopher M. Beaudry

Organic Letters
http://pubs.acs.org/doi/abs/10.1021/ol3029912
Issue 23

2.1 Introduction

Nitrogenous molecules are ubiquitous in Nature. Pharmaceuticals, molecular catalysts, and secondary metabolites often contain nitrogen. As a result, nitrogenous molecules, such as alkaloids, make compelling targets for synthesis. However, alkaloid synthesis is inherently complicated by the nitrogen atom. ${ }^{40}$ The Lewis basic lone pair found on amines, the presence of weakly acidic $\mathrm{N}-\mathrm{H}$ hydrogens, and the readiness of amines to quaternize often lead to undesired reactivity. These factors conspire against the synthetic chemist.

Figure 2.1. Selected nitrogen-rich alkaloids; aminals indicated by *

Traditional strategies used to circumvent the Lewis acid-base reactivity of nitrogen include: using protecting groups, ${ }^{41}$ installing nitrogen at the end of a synthesis, ${ }^{42}$ or packaging the nitrogen in a less reactive functional group (e.g. as a nitrile ${ }^{43}$ or nitro ${ }^{44}$ group). Such strategies have enjoyed widespread success in synthesis. However, a conceptually different approach to avoid the acid-base properties of nitrogen is to use single electron processes (i.e. radical reactions) to build the $\mathrm{C}-\mathrm{C}$ bonds of alkaloid molecular architectures. ${ }^{45}$

Figure 2.1 shows a selection of alkaloids that has attracted considerable interest from the synthetic community. ${ }^{46,47}$ Although more than half of the 55 carbons depicted in Figure 2.1 bear heteroatoms, only five are disubstituted with nitrogen (i.e. diamino- or aminal carbons). Harnessing reactivity specific to the aminal carbon in the presence of heteroatom-bearing carbons could be useful in alkaloid synthesis. Toward this end,
we envisioned creating an aminal radical intermediate that could be used in the formation of $\mathrm{C}-\mathrm{C}$ bonds. We expected such a radical would be unreactive toward acidic $\mathrm{N}-\mathrm{H}$ bonds and Lewis basic lone pairs, ${ }^{48}$ and it would be well suited to forging $\mathrm{C}-\mathrm{C}$ bonds in nitrogen-rich molecular architectures. Aminal radicals have been generated, and their spectral and physical properties have been studied. ${ }^{49}$ However, to the best of our knowledge, they have not been used in synthesis. ${ }^{50}$ Herein, we describe bond-forming reactions of aminal radicals for the first time.

2.2α-Amino Radicals and Protective Radical Translocation

Carbon-centered radicals bearing one nitrogen (α-amino radicals) are well known. ${ }^{51} \mathrm{~A}$ convenient method for their generation is by radical translocation (Scheme 2.1). For example, homolytic cleavage of a C-I bond in $\mathbf{5 4}$ generates intermediate 55, which undergoes hydrogen-atom transfer to generate stabilized α-amino radical 56. ${ }^{52}$ The stability provided by the neighboring nitrogen atom is $11 \mathrm{kcal} / \mathrm{mol} .{ }^{53}$ Addition to a radical acceptor such as methyl acrylate leads to 57 , which receives a hydrogen atom from $\mathrm{Bu}_{3} \mathrm{SnH}$ to form the product (58). Use of iodobenzyl to initiate radical translocation results in a benzyl-protected amine product.

Scheme 2.1. Radical Translocation

Computational methods estimate the stabilization of an aminal radical to be approximately $2 \mathrm{kcal} / \mathrm{mol}$ relative to the α-amino radical. ${ }^{53}$ Thus, it should be possible to selectively form an aminal radical in the presence of other nitrogenbearing carbons.

2.3 Results and Discussion

The first substrate chosen to evaluate this hypothesis was aminal 47, prepared in two steps from diamine 59 (Scheme 2.2). Reaction of aminal 47 with methyl acrylate as a radical acceptor led to the formation of the desired addition product 42, presumably via the route shown. Unreacted starting material, isomer 49, over-addition product 50, and the product of deiodination (51) were present in the reaction mixture. Attempts to improve the yield of 42 by adjusting reagent stoichiometry, concentration, or hydrogen-atom source were unsuccessful. We suspect that competitive formation of 49 is the result of the additional stabilization at the benzylic position (vide infra).

Scheme 2.2. Initial Investigations of Aminal Radical Reactivity

We next prepared substrate 60 in order to block reactivity at the benzylic position and simplify the product mixture (Table 2.1, entry 1). Substrate 60 is prepared in two steps and 70% overall yield from inexpensive anthranilamide. Gratifyingly, 60 showed cleaner reactivity giving 61% yield of the desired products (49% yield of $\mathbf{6 1}$, accompanied by 12% of the corresponding lactam 62). The increased yield may be
partially attributable to the capto-dative effect: one nitrogen is relatively electron poor, and one nitrogen is relatively electron rich. ${ }^{54}$

Table 2.1. Reactivity of aminal 60. ${ }^{\text {a }} 5$ equiv of methyl acrylate used. ${ }^{\mathrm{b}}$ AIBN was omitted from the reaction mixture.

Thiols are used as polarity-reversal catalysts in radical reactions, and may assist in hydrogen atom transfer events, ${ }^{55}$ and the addition of BnSH increased reaction yields (entry 2). Further increasing the stoichiometry of the thiol had little effect on the overall yield (entry 3), but $\mathbf{6 1}$ was formed as the sole product. No product formation occurs in the absence of stannane (entry 4), suggesting the thiol is not the terminal hydrogen atom donor. We also performed a control experiment by omitting the AIBN and observed only modest product formation (entry 5). We speculate that in hot benzene some homolytic cleavage of the $\mathrm{C}-\mathrm{I}$ bond may occur. The aminal radical reaction is also successful using (TMS) $3_{3} \mathrm{SiH}$ as a hydrogen atom donor (entry 6). The yield of the reaction is improved by adding BnSH (entries 7 and 8).

Based on a comparison of the data in entries 2, 3, 6, 7, and 8, it appears that BnSH may also serve to suppress the formation of the imide product 62. As the loading of BnSH was increased, the ratio of the 61:62 also increased. This hypothesis is
bolstered by the fact that the result shown in entry 3 was obtained after heating at reflux for 15 hours while the result shown in entry 2 was obtained after just 4 hours of heating at reflux. This suggested that the increased formation of $\mathbf{6 2}$ observed was not simply the result of increased heating times.

The aminal radical reaction was examined with various aminals and radical acceptors. The aminals were made by condensing the corresponding amino amide with formalin (see Experimental Section). Use of acrylonitrile, tert-butyl acrylate, and acrolein as radical acceptors in the reaction with $\mathbf{6 0}$ results in good yields of the addition products 63, 64, and 65, respectively (Figure 2.2). Use of $\mathrm{Bu}_{3} \mathrm{SnH}$ as a hydrogen atom source gives superior yields compared with $(\mathrm{TMS})_{3} \mathrm{SiH}$. However, use of the silane often gives synthetically useful yields without the use of heavy metals, and we report yields with both reagents. Attachment of the iodobenzyl group at the amide nitrogen also resulted in productive reactions with methyl acrylate, acrylonitrile, or tert-butyl acrylate to give products 66,67 , and 68 , respectively.

Aliphatic six-membered ring aminals participated in the reaction, provided one nitrogen bears an electron-withdrawing group. The acetamide-derived aminal added to methyl acrylate to give 69 in good yield. We found that trifluoroacetamides also participate in the reaction giving 70. Note that the aminal radical is generated in the presence of the amino-substituted carbon. In these cases, products derived from formation of the α-amino radicals are not observed. It appears that in the absence of benzylic stabilization (vis-à-vis with substrate 47), aminal radicals selectively form in the presence of amino-substituted carbons. Substrates that lacked electronwithdrawing carbonyl groups did not participate in the reaction; they gave only complex intractable product mixtures.

Intramolecular reactions were possible, and compound 71 was produced as a single diastereomer, whereas 72 was formed as a diastereomeric mixture. Bicyclic 5-
membered aminals are competent substrates in the reaction. Pipecolic acid-derived aminals react with methyl acrylate and acrylonitrile in good yields and selectivities to form 73 and 74, respectively. Finally, proline-derived aminals undergo diastereoselective reactions giving 75 and 76, respectively.

Figure 2.2. Scope of the aminal radical reaction. ${ }^{\text {a }}$ Method A: 5.0 equiv alkene, 2.0 equiv $\mathrm{Bu}_{3} \mathrm{SnH}$, 0.1 equiv $\mathrm{BnSH}, 0.2$ equiv AIBN, 0.10 M PhH , reflux, 3 h ; ${ }^{\mathrm{b}}$ Method B: 5.0 equiv alkene, 2.0 equiv (TMS) ${ }_{3} \mathrm{SiH}, 0.1$ equiv $\mathrm{BnSH}, 0.2$ equiv $\mathrm{AIBN}, 0.10 \mathrm{M}$ PhH , reflux, $12 \mathrm{~h} ;{ }^{\mathrm{c}} 0.9$ equiv $\mathrm{BnSH} ;{ }^{\text {d }} 3.0$ equiv of methyl acrylate; ${ }^{\mathrm{e}} 10$ equiv methyl acrylate; ${ }^{\mathrm{f}} 0.2$ equiv BnSH .

The relative stereochemistry of 71 was determined by ${ }^{1} \mathrm{H}$ NMR methods. First, methyne hydrogen H_{a} is positioned axial as evidenced by NOESY crosspeaks to the indicated hydrogens (Scheme 2.3). The small (2 Hz) coupling constant between H_{a} and H_{b} suggests H_{b} is equatorial. The diastereoselectivity in the formation of $\mathbf{7 1}$ may be a result of the model shown in Scheme 2.3. The favored conformation positions the ester away from the benzyl substituent, giving rise to 71. As the aminal-containing ring becomes more planar, the benzyl substituent should block both faces of the aminal radical equally and the selectivity should decrease. This hypothesis is consistent with the observation that the bicyclic product 72 was produced with only modest diastereoselectivity. ${ }^{56}$ The favored diastereomer of the bicyclic aminal products 73-76 likely results from addition to the convex face of the bicycle. The relative stereochemistry was confirmed using NOESY methods.

Scheme 2.3. Plausible model for formation of $\mathbf{7 1}$

2.4 Conclusion

In conclusion, aminal radicals are formed via radical translocation reactions. These carbon-centered radicals react with radical acceptors in $\mathrm{C}-\mathrm{C}$ bond-forming reactions in good yields with both $\mathrm{Bu}_{3} \mathrm{SnH}$ and (TMS) $)_{3} \mathrm{SiH}$ as hydrogen atom donors. Aminals can be formed from aromatic or aliphatic diamines, provided that one nitrogen bears an electron-withdrawing carbonyl group. The reactivity of the aminal radical is different than the α-amino radical; specifically it can be formed in the presence of amino-substituted carbon atoms. We believe this reactivity will be useful in the
synthesis of nitrogen-rich alkaloids, and efforts to apply this chemistry in synthesis are underway in our laboratory.

2.5 Experimental Section

General Experimental Details:
All reactions were carried out under an inert Ar atmosphere in oven-dried glassware. Flash column chromatography (FCC) was carried out with SiliaFlash P60, 60 A silica gel. Reactions and column chromatography were monitored with EMD silica gel 60 F254 plates and visualized with potassium permanganate, ceric ammonium molybdate, molybdate, ninhydrin, or iodine stains. Tetrahydrofuran (THF), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, acetonitrile (MeCN), benzene (PhH), dimethylformamide (DMF), ethanol (EtOH), and methanol (MeOH) were dried by passage through activated columns. Dimethylsulfoxide (DMSO) was stored over $3 \AA$ molecular sieves. Acrylonitrile, acrolein, methyl acrylate, tert-butyl acrylate were distilled under reduced pressure to remove BHT and stored under inert atmosphere. Tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ was dried over calcium hydride, distilled under reduced pressure and stored under inert atmosphere. All other reagents and solvents were used without further purification from commercial sources.

Instrumentation: FT-IR spectra were obtained on NaCl plates with a PerkinElmer Spectrum Vision spectrometer. Proton and carbon NMR spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise noted on a Bruker 700 MHz Avance III Spectrometer with carbon-optimized cryoprobe and Bruker 400 MHz DPX-400 spectrometer and calibrated to residual solvent peaks. Multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet. Melting points were determined with a ColeParmer instrument and are uncorrected.

1-(2-iodobenzyl)-2,3-dihydroquinazolin-4(1H)-one (60). To a solution of known 2,3-dihydroquinazolin- $4(1 \mathrm{H})$-one ${ }^{57}(2.77 \mathrm{~g}, 18.7 \mathrm{mmol})$ in THF ($43 \mathrm{~mL}, 0.4 \mathrm{M}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(7.07 \mathrm{~g}, 51.1 \mathrm{mmol})$ and known 1-iodo-2-(iodomethyl)benzene (5.86 g , 17.0 mmol). The reaction mixture was heated to reflux for 25 hours. At this time, TLC indicated the consumption of the iodide. The reaction mixture was cooled to rt, diluted with EtOAc , washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated. The resulting solids were recrystallized from EtOAc (30 mL) to give $\mathbf{6 0}$ $(4.45 \mathrm{~g}, 12.2 \mathrm{mmol}, 72 \%)$ as a white solid.

Data for 60: $\mathrm{R}_{f} 0.31$ (3:1 EtOAc:Hexanes); $\mathrm{mp}=149.9-151.1^{\circ} \mathrm{C}$; IR (thin film) 3207, 3057, 2885, 1669, 1606, 1494, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.44$ (s, 2 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,148.5,139.8,138.1,134.1,129.5,129.1$, 128.7, 128.5, 119.4, 117.5, 113.4, 98.2, 60.7, 58.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OI}[\mathrm{M}+\mathrm{H}]: 365.0151$, found 365.0138.
methyl 3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (61) and 4-benzyl-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazoline-1,9-dione (62). To a solution of $60(0.168 \mathrm{~g}, 0.461 \mathrm{mmol})$ in benzene $(4.9 \mathrm{~mL}, 0.1 \mathrm{M})$ were added methyl acrylate ($0.13 \mathrm{~mL}, 1.4 \mathrm{mmol}$), benzyl thiol ($0.05 \mathrm{~mL}, 0.4 \mathrm{mmol}$), $1,1,1,3,3,3-$ hexamethyl-2-(trimethylsilyl)trisilane $(0.30 \mathrm{~mL}, 0.97 \mathrm{mmol})$, and AIBN $(0.0168 \mathrm{~g}$, 0.102 mmol). The reaction mixture was heated to reflux for 16 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. The reaction mixture was cooled to rt, diluted with MeCN, washed with hexanes, and concentrted. Purification by FCC to give $\mathbf{6 1}$ $(0.108 \mathrm{~g}, 0.333 \mathrm{mmol}, 72 \%)$ as a white foam and $62(0.0233 \mathrm{~g}, 0.0797 \mathrm{mmol}, 17 \%)$ as a yellow solid.

Data for 61: $\mathrm{R}_{f} 0.50$ (3:1 EtOAc:Hexanes); IR (thin film) 2951, 1733, 1665, 1492, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) 4.72(\mathrm{dt}, J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.11$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98-2.02 (m, 1 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,164.3,146.6,136.9,134.1,128.9$, 128.6, 127.7, 127.5, 119.1, 117.5, 115.0, 68.5, 53.9, 51.8, 29.0, 28.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 325.15523$, found 325.15497.

Data for 62: $\mathrm{R}_{f} 0.21$ (2:1 EtOAc:Hexanes); $\mathrm{mp}=146-147^{\circ} \mathrm{C}$; IR (thin film) 2926, $1768,1385,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37-7.40 (m, 3 H), 7.31-7.34 (m, 3 H), $6.96(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.67 (ddd, $J=17.5,9.8,1.4 \mathrm{~Hz} 1 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 1 \mathrm{H})$, 2.45-2.49 (m, 1 H), 2.24-2.30 (m, 1 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,160.8,149.1,136.6,135.5$, 130.4, 129.1, 127.7, 126.2, 119.8, 116.7, 113.7, 72.6, 49.0, 30.6, 25.3: HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]:$ 293.12901, found 293.12867.
methyl 3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (61). To a solution of $\mathbf{6 0}(0.167 \mathrm{~g}, 0.459 \mathrm{mmol})$ in benzene $(3.9 \mathrm{~mL}, 0.12 \mathrm{M})$ were added methyl acrylate ($0.13 \mathrm{~mL}, 1.4 \mathrm{mmol}$), benzyl thiol $(0.05 \mathrm{~mL}, 0.4 \mathrm{mmol})$. This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.26 \mathrm{~mL}, 0.97$ $\mathrm{mmol}), \operatorname{AIBN}(0.0155 \mathrm{~g}, 0.0944 \mathrm{mmol})$, and benzene $(0.9 \mathrm{~mL}, 1.1 \mathrm{M})$. The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 1 hour. The mixture was heated at reflux for an additional 14 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. After cooling to rt , the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC (2:3 hexanes:EtOAc) to give $\mathbf{6 1}(0.112 \mathrm{~g}, 0.344 \mathrm{mmol}, 75 \%)$ as a white foam.

3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (63). To a solution of $60(0.176 \mathrm{~g}, 0.482 \mathrm{mmol})$ in benzene $(2.9 \mathrm{~mL}, 0.17 \mathrm{M})$ were added acrylonitrile $(0.16 \mathrm{~mL}, 2.4 \mathrm{mmol}), 10 \%$ benzyl thiol in benzene $(0.06 \mathrm{~mL}, 0.05$ mmol). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.26 \mathrm{~mL}, 0.97 \mathrm{mmol})$, AIBN ($0.0177 \mathrm{~g}, 0.108 \mathrm{mmol}$), and benzene $(1.9 \mathrm{~mL}, 0.51 \mathrm{M})$. The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. After cooling to rt , the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC (1:2 hexanes:EtOAc) to give $63(0.110 \mathrm{~g}, 0.378 \mathrm{mmol}, 79 \%)$ as a white foam.

Data for 63: $\mathrm{R}_{f} 0.44$ (3:1 EtOAc:hexanes); IR (thin film) 2928, 2250, 1666, 1606, 1492, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 , (s, 1 H), 7.44 (dddd, $J=9.1,8.4,7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39-7.41 (m, 4 H), 7.34-7.36 (m, $1 \mathrm{H}), 7.00(\mathrm{td}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dddd}, J=10.5$, $7.0,6.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=14.7,1 \mathrm{H}), 2.37(\mathrm{td}, J=$ $8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 (sextet, $J=7.0,1 \mathrm{H}$), 2.02 (sextet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}(176$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,146.5,136.5,134.4,129.0,128.5,128.0,127.7,120.1,118.9$, $117.9,116.3,67.9,55.1,30.0,13.0$ HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}$ [M+H]: 292.1450, found 292.1448.

3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (63). To a solution of $60(0.162 \mathrm{~g}, 0.446 \mathrm{mmol})$ in benzene ($4.5 \mathrm{~mL}, 0.1 \mathrm{M}$) were added acrylonitrile ($0.15 \mathrm{~mL}, 2.3 \mathrm{mmol}$), a 10% solution of benzyl thiol in benzene (0.04 $\mathrm{mL}, 0.034 \mathrm{mmol}$), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane ($0.28 \mathrm{~mL}, 0.91$ $\mathrm{mmol})$, and AIBN $(0.0165 \mathrm{~g}, 0.100 \mathrm{mmol})$. The reaction mixture was heated to reflux for 16 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. The reaction mixture was cooled to rt, diluted with MeCN , washed with hexanes, and concentrted.

Purification by FCC (1:2 hexanes:EtOAc) to give $63(0.0727 \mathrm{~g}, 0.250 \mathrm{mmol}, 56 \%)$ as a white foam.
tert-butyl 3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (64). To a solution of $\mathbf{6 0}(0.165 \mathrm{~g}, 0.453 \mathrm{mmol})$ in benzene $(2.5 \mathrm{~mL}, 0.18 \mathrm{M})$ were added tert-butyl acrylate $(0.33 \mathrm{~mL}, 2.3 \mathrm{mmol}), 5 \%$ benzyl thiol in benzene $(0.10 \mathrm{~mL}, 0.043$ mmol). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.24 \mathrm{~mL}, 0.89 \mathrm{mmol}$), AIBN ($0.0155 \mathrm{~g}, 0.0944 \mathrm{mmol}$), and benzene ($2.0 \mathrm{~mL}, 0.45 \mathrm{M}$). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. After cooling to rt , the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC (1:2 hexanes:EtOAc) to give $64(0.108 \mathrm{~g}, 0.295 \mathrm{mmol}, 65 \%)$ as a white foam.

Data for 64: $\mathrm{R}_{f} 0.63$ (3:1 EtOAc:hexanes); IR (thin film) 2977, 1724, 1668, 1492, 752 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 6$ H), $6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.66-4.72 (m, 2 H), $4.33(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.10(\mathrm{~m}$, $1 \mathrm{H}), 1.19-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,164.4,146.6$, $136.9,134.0,128.9,128.6,127.7,127.3,118.7,117.3,114.5,80.8,68.9,53.5,30.3$, 29.0, 28.1; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 367.2022$, found 367.2012 .
tert-butyl 3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (64). To a solution of $\mathbf{6 0}(0.164 \mathrm{~g}, 0.450 \mathrm{mmol})$ in benzene $(4.5 \mathrm{~mL}, 0.1 \mathrm{M})$ were added tert-butyl acrylate ($0.33 \mathrm{~mL}, 2.3 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene ($0.10 \mathrm{~mL}, 0.043 \mathrm{mmol}$), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (0.28 mL , $0.91 \mathrm{mmol})$, and $\operatorname{AIBN}(0.0147 \mathrm{~g}, 0.0895 \mathrm{mmol})$. The reaction mixture was heated to reflux for 23 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. The reaction
mixture was cooled to rt , diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC ($2: 1$ hexanes:EtOAc) to give $64(0.0369 \mathrm{~g}, 0.101 \mathrm{mmol}, 22 \%$) as a white foam.

4-benzyl-1-hydroxy-2,3,3a,4-tetrahydropyrrolo[2,1-b]quinazolin-9(1H)-one (65a

 and $\mathbf{6 5 b}$). To a solution of $60(0.160 \mathrm{~g}, 0.440 \mathrm{mmol})$ in benzene ($2.4 \mathrm{~mL}, 0.18 \mathrm{M}$) were added acrolein ($0.15 \mathrm{~mL}, 2.2 \mathrm{mmol}$), 5% benzyl thiol in benzene $(0.10 \mathrm{~mL}$, $0.043 \mathrm{mmol})$. This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.24 \mathrm{~mL}, 0.89 \mathrm{mmol}$), AIBN ($0.0150 \mathrm{~g}, 0.0913 \mathrm{mmol}$), and benzene ($2.0 \mathrm{~mL}, 0.45 \mathrm{M}$). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. After cooling to rt , the mixture was diluted with MeCN, washed with hexanes, and concentrated. Purification by FCC (2:3 hexanes:EtOAc) to give a $1: 1$ mixture of $\mathbf{6 5 a}$ and $\mathbf{6 5 b}(0.0735 \mathrm{~g}, 0.250 \mathrm{mmol}, 57 \%)$ as a colorless oil.Data for 65a and 65b: $\mathrm{R}_{f} 0.25$ and $\mathrm{R}_{f} 0.43$ (3:1 EtOAc:Hexanes); IR (thin film) as a mixture of diastereomers $2949,1645,1605,1485,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{td}, J=6.41 .2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 12 \mathrm{H}), 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.66$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{td}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (dd, $J=5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.34(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=10.0,5.2 \mathrm{~Hz}, 1$ H), 4.39-4.71 (m, 3 H), $4.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.25$ (quintet, $J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,163.0$, $149.0,148.8,137.0,136.9,134.1,133.9,128.9,128.4,127.4,127.3,126.6,126.4$, $118.9,118.8,117.9,117.1,113.0,112.9,112.8,81.9,80.2,73.9,73.8,72.5,72.4,50.2$, 31.3, 29.6, 29.3; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 317.1266, found 317.1277.
tert-butyl 3-(1-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (65a and $\mathbf{6 5 b}$). To a solution of $\mathbf{6 0}(0.166 \mathrm{~g}, 0.456 \mathrm{mmol})$ in benzene $(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$ were added acrolein ($0.15 \mathrm{~mL}, 2.2 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene (0.10 $\mathrm{mL}, 0.043 \mathrm{mmol}$), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane ($0.28 \mathrm{~mL}, 0.91$ $\mathrm{mmol})$, and AIBN $(0.0151 \mathrm{~g}, 0.0920 \mathrm{mmol})$. The reaction mixture was heated to reflux for 5.5 hours. At this time, TLC indicated the consumption of $\mathbf{6 0}$. The reaction mixture was cooled to rt , diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (2:3 hexanes:EtOAc) to give a mixture of 65a and 65b (0.0265 $\mathrm{g}, 0.0900 \mathrm{mmol}, 20 \%$) as a colorless oil.

3-(2-iodobenzyl)-2,3-dihydroquinazolin-4(1H)-one (S1). To a solution of known 2,3-dihydroquinazolin-4(1H)-one ($2.84 \mathrm{~g}, 19.2 \mathrm{mmol}$) in THF ($58 \mathrm{~mL}, 0.3 \mathrm{M}$) were added $\mathrm{NaOH}(0.806 \mathrm{~g}, 20.2 \mathrm{mmol})$ and known 1-iodo-2-(iodomethyl)benzene (5.97 $\mathrm{g}, 17.4 \mathrm{mmol})$. The reaction mixture was heated to reflux for 34 hours. At this time, TLC indicated the consumption of the iodide. The reaction mixture was cooled to rt, diluted with EtOAc , washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated. The resulting solids were recrystallized from EtOAc (20 mL) to give $\mathbf{S 1}$ $(3.01 \mathrm{~g}, 8.27 \mathrm{mmol}, 48 \%)$ as a white solid.

Data for S1: $\mathrm{R}_{f} 0.45$ (1:2 EtOAc:Hexanes); $m p=134.5-135.5^{\circ} \mathrm{C}$; IR (thin film)3295, $1636,1462,750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.45 (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (td, $J=8.8,1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.00 (td, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=$ $8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.8,147.5,139.6,138.7,133.4,129.3,129.2,128.7,128.6,119.6,117.4,115.0$, 98.8, 59.3, 53.1; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OI}[\mathrm{M}+\mathrm{H}]: 365.0151$, found 365.0139.
methyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (66). To a solution of $\mathbf{S 1}(0.195 \mathrm{~g}, 0.534 \mathrm{mmol})$ in benzene $(4.5 \mathrm{~mL}, 0.12 \mathrm{M})$ were added methyl acrylate ($0.15 \mathrm{~mL}, 1.7 \mathrm{mmol}$), benzyl thiol ($0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}$). This solution was heated to reflux. In a separate flask were combined tributyltin hydride $(0.30 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$, AIBN $(0.0186 \mathrm{~g}, 0.113 \mathrm{mmol})$, and benzene $(1.1 \mathrm{~mL}, 1.0 \mathrm{M})$. The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 1 hour. The mixture was heated at reflux for an additional 13 hours. At this time, TLC indicated the consumption of $\mathbf{S 1}$. After cooling to rt , the mixture was diluted with MeCN, washed with hexanes, and concentrated. Purification by FCC (3:1 hexanes:EtOAc) to give $66(0.126 \mathrm{~g}, 0.387 \mathrm{mmol}, 72 \%)$ as a colorless oil.

Data for 66: $\mathrm{R}_{f} 0.21$ (3:1 EtOAc:hexanes); IR (thin film) 2950, 1733, 1628, 1495, 756 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 6$ H), $6.91(\mathrm{td}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1$ H), $4.66(\mathrm{dt}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1$ H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}(176$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,162.5,144.5,137.1,133.5,128.8,128.7,128.0,127.6,119.6$, 117.0, 115.6, 67.1, 51.9, 47.4, 29.7, 27.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 325.1552$, found 325.1554.
methyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (66). To a solution of $\mathbf{S 1}(0.168 \mathrm{~g}, 0.461 \mathrm{mmol})$ in benzene $(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$ were added methyl acrylate ($0.21 \mathrm{~mL}, 2.3 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene $(0.10 \mathrm{~mL}$, 0.043 mmol), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane ($0.28 \mathrm{~mL}, 0.91$ $\mathrm{mmol})$, and AIBN $(0.0154 \mathrm{~g}, 0.0938 \mathrm{mmol})$. The reaction mixture was heated to reflux for 18 hours. At this time, TLC indicated the consumption of $\mathbf{S 1}$. The reaction mixture was cooled to rt, diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (3:1 hexanes:EtOAc) to give $66(0.111 \mathrm{~g}, 0.342 \mathrm{mmol}, 75 \%)$ as a colorless oil.

3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (67). To a solution of $\mathbf{S} 1(0.160 \mathrm{~g}, 0.439 \mathrm{mmol})$ in benzene $(2.4 \mathrm{~mL}, 0.18 \mathrm{M})$ were added acrylonitrile ($0.14 \mathrm{~mL}, 2.1 \mathrm{mmol}$), 10% benzyl thiol in benzene $(0.05 \mathrm{~mL}, 0.04$ mmol). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.24 \mathrm{~mL}, 0.89 \mathrm{mmol}$), AIBN ($0.0143 \mathrm{~g}, 0.0871 \mathrm{mmol}$), and benzene ($2.0 \mathrm{~mL}, 0.45 \mathrm{M}$). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{S 1}$. After cooling to rt , the mixture was diluted with MeCN, washed with hexanes, and concentrated. Purification by FCC (2:1 hexanes:EtOAc) to give $67(0.0916 \mathrm{~g}, 0.314 \mathrm{mmol}, 72 \%)$ as a colorless oil.

Data for 67: $\mathrm{R}_{f} 0.16$ (1:2 EtOAc:hexanes); IR (thin film) 2930, 2250, 1632, 1497, 756 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36-7.39 (m, 5 H), 7.31-7.34 (m, 1 H), $7.00(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.42(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{ddd}, J=9.8,4.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.17$ $(\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,143.3,136.8,133.8,129.0,128.9,128.1,127.9,120.7$, 118.7, 117.9, 116.9, 66.5, 47.8, 28.2, 13.6; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]:$ 292.1450, found 292.1436.

3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (67). To a solution of $\mathbf{S} 1(0.169 \mathrm{~g}, 0.464 \mathrm{mmol})$ in benzene $(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$ were added acrylonitrile ($0.15 \mathrm{~mL}, 2.3 \mathrm{mmol}$), a 5\% solution of benzyl thiol in benzene (0.11 mL , 0.047 mmol), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane ($0.29 \mathrm{~mL}, 0.94$ $\mathrm{mmol})$, and AIBN $(0.0160 \mathrm{~g}, 0.0974 \mathrm{mmol})$. The reaction mixture was heated to reflux for 23 hours. At this time, TLC indicated the consumption of $\mathbf{S 1}$. The reaction mixture was cooled to rt, diluted with MeCN , washed with hexanes, and concentrted.

Purification by FCC (2:1 hexanes:EtOAc) to give $67(0.0342 \mathrm{~g}, 0.117 \mathrm{mmol}, 25 \%)$ as a colorless oil.
tert-butyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (68). To a solution of $\mathbf{S} 1(0.159 \mathrm{~g}, 0.437 \mathrm{mmol})$ in benzene ($2.4 \mathrm{~mL}, 0.18 \mathrm{M}$) were added tert-butyl acrylate ($0.32 \mathrm{~mL}, 2.2 \mathrm{mmol}$), 5% benzyl thiol in benzene $(0.10 \mathrm{~mL}, 0.043$ mmol). This solution was heated to reflux. In a separate flask were combined tributyltin hydride $(0.24 \mathrm{~mL}, 0.89 \mathrm{mmol})$, AIBN $(0.0147 \mathrm{~g}, 0.0895 \mathrm{mmol})$, and benzene ($2.0 \mathrm{~mL}, 0.45 \mathrm{M}$). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of \mathbf{S}. After cooling to rt, the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC (4:1 hexanes:EtOAc) to give $68(0.1071 \mathrm{~g}, 0.292 \mathrm{mmol}, 67 \%)$ as a colorless oil.

Data for 68: $\mathrm{R}_{f} 0.52$ (1:1 EtOAc:hexanes); IR (thin film) 3305, 2978, 1722, 1632, 755 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.39(\mathrm{~m}, 6$ H), $6.91(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.65(\mathrm{dt}, J=9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23-2.29 (m, 2 H), 2.10-2.14 (m, 1 H), 1.96-2.01 (m, 1 H$), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}(176$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,162.6,144.8,137.2,133.5,128.8,128.7,127.9,127.5,119.3$, 116.7, 115.4, 81.0, 67.3, 47.4, 31.1, 28.1, 26.0; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 367.2022$, found 367.2026.
tert-butyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (68). To a solution of $\mathbf{S 1}(0.166 \mathrm{~g}, 0.457 \mathrm{mmol})$ in benzene $(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$ were added tert-butyl acrylate ($0.33 \mathrm{~mL}, 2.3 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene ($0.11 \mathrm{~mL}, 0.047 \mathrm{mmol}$), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (0.28 mL , $0.91 \mathrm{mmol})$, and AIBN $(0.0155 \mathrm{~g}, 0.0944 \mathrm{mmol})$. The reaction mixture was heated to reflux for 19 hours. At this time, TLC indicated the consumption of $\mathbf{S 1}$. The reaction
mixture was cooled to rt , diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (4:1 hexanes:EtOAc) to give $68(0.0731 \mathrm{~g}, 0.199 \mathrm{mmol}, 44 \%)$ as a colorless oil.
$\boldsymbol{N}^{\mathbf{1}}$-(2-iodobenzyl)propane-1,3-diamine (S2). To a solution of known 1,3propanediamine ($10 \mathrm{~mL}, 120 \mathrm{mmol}$) in THF ($20 \mathrm{~mL}, 6.0 \mathrm{M}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(3.30$ $\mathrm{g}, 23.9 \mathrm{mmol}$), and 1-iodo-2-(iodomethyl)benzene ($4.09 \mathrm{~g}, 11.9 \mathrm{mmol}$) dropwise as a solution in THF ($20 \mathrm{~mL}, 0.60 \mathrm{M}$). The reaction mixture was stirred at rt for 0.5 hours. At this time, TLC indicated the consumption of the iodide. The reaction mixture was diluted with EtOAc , washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated to give $\mathbf{S 2}$ ($3.36 \mathrm{~g}, 11.6 \mathrm{mmol}, 97 \%$) as a colorless oil.

Data for S2: $\mathrm{R}_{f} 0.31$ (4:1 EtOAc:10\% $\mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2933,1464, $749 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=$ $7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 2 H), $2.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ (quintet, $J=7.0 \mathrm{~Hz}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.9,139.5,129.8,128.9,128.4,99.8,58.2,47.1,40.3$, 32.0; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{IN}_{2}[\mathrm{M}+\mathrm{H}]:$ 291.03585, found 291.03462.

1-(2-iodobenzyl)hexahydropyrimidine (S3). To a solution of $\mathbf{S 2}(3.98 \mathrm{~g}, 13.7 \mathrm{mmol})$ in $95 \% \mathrm{EtOH}(35 \mathrm{~mL}, 0.4 \mathrm{M}$) were added 30% aqueous $\mathrm{NaOH}(0.36 \mathrm{~mL}, 2.7 \mathrm{mmol})$, and 36% aqueous formaldehyde $(1.95 \mathrm{~g}, 23.4 \mathrm{mmol})$. The reaction mixture was heated to reflux for 1 hour. At this time, TLC indicated the consumption of the diamine. After cooling to rt, the reaction mixture was diluted with EtOAc, washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated. Purification by FCC (9:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to give $\mathbf{S 3}(2.86 \mathrm{~g}, 9.48 \mathrm{mmol}, 69 \%)$ as a colorless oil.

Data for S3: $\mathrm{R}_{f} 0.48$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1$ H), $7.33(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.45$ $(\mathrm{s}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}) 1.63$ (quintet, $J=5.2 \mathrm{~Hz}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,139.5,130.2,128.7,128.0,100.6,69.6,63.6$, 53.1, 45.2, 27.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{IN}_{2}[\mathrm{M}+\mathrm{H}]: 3030358$, found 303.0353.

1-(3-(2-iodobenzyl)tetrahydropyrimidin-1(2H)-yl)ethanone (S4). To a solution of $\mathbf{S 3}(0.112 \mathrm{~g}, 0.369 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.25 \mathrm{~mL}, 0.3 \mathrm{M})$ were added pyridine (0.06 $\mathrm{mL}, 0.7 \mathrm{mmol})$, and acetic anhydride ($0.10 \mathrm{~mL}, 1.1 \mathrm{mmol}$). The reaction mixture was stirred at rt for 22 hours. At this time, TLC indicated the consumption of S3. The reaction mixture was concentrated. Purification by FCC (1:3 hexanes:EtOAc) to give $\mathbf{S 4}(0.119 \mathrm{~g}, 0.344 \mathrm{mmol}, 93 \%)$ as a clear colorless oil.

Data for S4: $\mathrm{R}_{f} 0.46$ (EtOAc); IR (thin film) 2945, 2812, 1646, 1433, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a 1.7:1 mixture of rotational isomers $\delta 7.85(\mathrm{dd}, J=7.7$, $1.4 \mathrm{~Hz}, 0.6$ of 1 H), $7.81(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 0.4$ of 1 H$), 7.47(\mathrm{dd}, J=7.7,2.1 \mathrm{~Hz}$, 0.4 of 1 H$), 7.41(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 0.4$ of 1 H$), 7.33(\mathrm{qd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ $(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 0.6$ of 1 H), $6.94(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 0.4$ of 1 H$), 4.33(\mathrm{~s}, 0.7$ of 2 H), $4.05(\mathrm{~s}, 1.3$ of 2 H$), 3.63(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1.3$ of 2 H$), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 0.7$ of 2 H$), 2.82(\mathrm{t}, J=5.6 \mathrm{~Hz}, 0.7$ of 2 H$), 2.79(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1.3$ of 2 H$), 2.13$ ($\mathrm{s}, 1.1$ of 3 H), $1.95(\mathrm{~s}, 1.9$ of 3 H), 1.72-1.74 (m, 0.7 of 2 H), 1.68 (quintet, $J=5.6$ $\mathrm{Hz}, 1.3$ of 2 H$), ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4(0.6$ of 1 C$), 169.1(0.4$ of 1 C$)$, 140.3 (0.4 of 1 C), 119.9 (0.6 of 1 C), 139.7 (0.6 of 1 C), 139.4 (0.4 of 1 C), 130.4 (0.4 of 1 C), 130.1 (0.6 of 1 C), 129.2 (0.6 of 1 C), 128.9 (0.4 of 1 C), 128.3 (0.4 of 1 C), 128.2 (0.4 of 1 C), 100.6 (0.4 of 1 C), 100.5 (0.6 of 1 C), 67.6 (0.6 of 1 C), 62.7 (0.4 of 1 C), 61.9 (0.6 of 1 C), 61.4 (0.4 of 1 C), 52.5 (0.6 of 1 C), 51.6 (0.4 of 1 C), 46.2 (0.4 of 1 C), 41.7 (0.4 of 1 C), 23.7 (0.4 of 1 C), 23.6 (0.6 of 1 C), 21.5 (0.4 of 1
C), 21.2 (0.6 of 1 C); HRMS (TOF MS ES+) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{O}$ [M+]: 344.03860, found 344.03787 .
methyl 3-(1-acetyl-3-benzylhexahydropyrimidin-2-yl)propanoate (69). To a solution of $\mathbf{S 4}(0.172 \mathrm{~g}, 0.501 \mathrm{mmol})$ in benzene ($3.0 \mathrm{~mL}, 0.17 \mathrm{M}$) were added methyl acrylate ($0.22 \mathrm{~mL}, 2.4 \mathrm{mmol}$), 10% benzyl thiol in benzene ($0.06 \mathrm{~mL}, 0.05 \mathrm{mmol}$). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.27 \mathrm{~mL}, 1.0 \mathrm{mmol}$), AIBN ($0.0163 \mathrm{~g}, 0.0993 \mathrm{mmol}$), and benzene (2.0 mL , 0.50 M). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. The mixture was heated at reflux for an additional 10 hours. At this time, TLC indicated the consumption of $\mathbf{S 4}$. After cooling to rt, the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC (1:4 hexanes:EtOAc) to give $69(0.118 \mathrm{~g}, 0.386 \mathrm{mmol}, 77 \%)$ as a colorless oil.

Data for 69: $\mathrm{R}_{f} 0.43$ (EtOAc); IR (thin film) 2949, 1736, $1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, DMSO D ${ }_{6}$) $\delta 7.34-7.52(\mathrm{~m}, 5 \mathrm{H}), 3.91(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69-3.79 (m, 4 H$)$, 3.25-3.31 (m, 1 H$), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.45$ (m, 2 H), 2.03-2.12 (m, 4 H), 1.44-1.47 (m, 1 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0(0.5$ of 1 C), 173.4 (0.5 of 1 C), $169.5,139.1$ (0.5 of 1 C), 138.7 (0.5 of 1 C), 129.0 (0.5 of $1 \mathrm{C}), 128.7$ (0.5 of 1 C), 128.5 (0.5 of 1 C), 128.3 (0.5 of 1 C), 127.5 (0.5 of 1 C), 127.1 (0.5 of 1 C), 70.4 (0.5 of 1 C), 67.3 (0.5 of 1 C), 57.2 (0.5 of 1 C), 56.8 (0.5 of $1 \mathrm{C}), 51.6,44.0(0.5$ of 1 C), 42.4 (0.5 of 1 C), 41.4 (0.5 of 1 C), 35.8 (0.5 of 1 C), 30.7 (0.5 of 1 C), 29.9 (0.5 of 1 C), 24.6 (0.5 of 1 C), 24.0 (0.5 of 1 C), 21.6 (0.5 of 1 C), 21.1 (0.5 of 1 C), 20.0 (0.5 of 1 C), 19.6 (0.5 of 1 C); HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 305.1865$, found 305.1876.
methyl 3-(1-acetyl-3-benzylhexahydropyrimidin-2-yl)propanoate (69). To a solution of $\mathbf{S 4}(0.188 \mathrm{~g}, 0.545 \mathrm{mmol})$ in benzene $(5.4 \mathrm{~mL}, 0.1 \mathrm{M})$ were added methyl
acrylate ($0.25 \mathrm{~mL}, 2.8 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene $(0.13 \mathrm{~mL}$, 0.055 mmol), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane ($0.34 \mathrm{~mL}, 1.1 \mathrm{mmol}$), and AIBN ($0.0178 \mathrm{~g}, 0.108 \mathrm{mmol}$). The reaction mixture was heated to reflux for 18 hours. At this time, TLC indicated the consumption of $\mathbf{S 4}$. The reaction mixture was cooled to rt, diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (1:4 hexanes:EtOAc) to give $69(0.0471 \mathrm{~g}, 0.155 \mathrm{mmol}, 28 \%)$ as a colorless oil.

2,2,2-trifluoro-1-(3-(2-iodobenzyl)tetrahydropyrimidin-1(2H)-yl)ethanone (S5).

To a solution of $\mathbf{S 3}(0.126 \mathrm{~g}, 0.417 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL}, 0.3 \mathrm{M})$ were added triethylamine ($0.07 \mathrm{~mL}, 0.5 \mathrm{mmol}$), and trifluoroacetic anhydride ($0.07 \mathrm{~mL}, 0.5$ $\mathrm{mmol})$. The reaction mixture was stirred at rt for 10 minutes. At this time, TLC indicated the consumption of $\mathbf{S 3}$. The reaction mixture was concentrated. Purification by FCC (4:1 hexanes:EtOAc) to give $\mathbf{S 5}(0.126 \mathrm{~g}, 0.316 \mathrm{mmol}, 76 \%)$ as a colorless oil.

Data for S5: $\mathrm{R}_{f} 0.61$ (1:2 EtOAc:hexanes); IR (thin film) 2952, 1694, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a 1.2:1 mixture of rotational isomers $\delta 7.86$ (ddd, $J=7.7$, $3.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 0.6$ of 1 H), 7.35-7.39 (m, 1.4 of 2 H), $7.00(\mathrm{qd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1.2$ of 2 H$), 4.35(\mathrm{~s}, 0.8$ of 2 H$), 3.76(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 0.8$ of 2 H$), 3.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1.2$ of 2 H$), 3.72(\mathrm{~s}, 1.2$ of 2 H$), 3.70(\mathrm{~s}, 0.8$ of $2 \mathrm{H}), 2.96(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1.2$ of 2 H$), 2.85(\mathrm{t}, J=5.6 \mathrm{~Hz}, 0.8$ of 2 H$), 1.82($ sextet, $J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.8(\mathrm{q}, J=35.2 \mathrm{~Hz}, 0.6$ of 1 C$), 155.6(\mathrm{q}, J$ $=35.2 \mathrm{~Hz}, 0.4$ of 1 C$), 139.8(0.4$ of 1 C$), 139.7(0.6$ of 1 C$), 139.6(0.6$ of 1 C$)$, 139.4 (0.4 of 1 C), 130.4 (0.6 of 1 C), 130.1 (0.4 of 1 C), 129.2 (0.4 of 1 C), 129.1 $(0.6$ of 1 C$), 128.3(0.6$ of 1 C$), 128.2$ (0.4 of 1 C), $116.5(\mathrm{q}, J=288.6 \mathrm{~Hz}, 0.6$ of 1 C), $116.3(\mathrm{q}, ~ J=288.6 \mathrm{~Hz}, 0.4$ of 1 C$), 100.6(0.6$ of 1 C$), 100.3(0.4$ of 1 C$), 66.8(\mathrm{q}$, $J=3.52 \mathrm{~Hz}, 0.4$ of 1 C), $64.1(0.6$ of 1 C$), 61.2(0.4$ of 1 C$), 60.7(0.6$ of 1 C$), 51.7$ (0.6 of 1 C), 50.9 (0.4 of 1 C), 45.9 (0.4 of 1 C), 45.8 (0.6 of 1 C), 45.3 (1 C), 23.2
(0.6 of 1 C), 22.6 (0.4 of 1 C); HRMS (TOF MS ES+) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{IN}_{2} \mathrm{O}$ [M+]: 398.01033, found 398.00872.
methyl 3-(1-benzyl-3-(2,2,2-trifluoroacetyl)hexahydropyrimidin-2-yl)propanoate (70). To a solution of $\mathbf{S 5}(0.1902 \mathrm{~g}, 0.478 \mathrm{mmol})$ in benzene ($2.8 \mathrm{~mL}, 0.17 \mathrm{M}$) were added methyl acrylate ($0.43 \mathrm{~mL}, 4.8 \mathrm{mmol}$), 10% benzyl thiol in benzene $(0.05 \mathrm{~mL}$, 0.04 mmol). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.27 \mathrm{~mL}, 1.0 \mathrm{mmol})$, AIBN ($0.0158 \mathrm{~g}, 0.0962 \mathrm{mmol}$), and benzene ($2.0 \mathrm{~mL}, 0.50 \mathrm{M}$). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{S 5}$. After cooling to rt, the mixture was diluted with MeCN, washed with hexanes, and concentrated. Purification by FCC (7:1 hexanes:EtOAc) to give $70(0.118 \mathrm{~g}, 0.329 \mathrm{mmol}, 69 \%)$ as a colorless oil.

Data for 70: $\mathrm{R}_{f} 0.46$ (1:2 EtOAc:hexanes); IR (thin film) 2955, 1738, 1693, 1437, 756 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotational isomers $\delta 7.19-7.36(\mathrm{~m}$, $5 \mathrm{H}), 6.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.64(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $1.5 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~m}, 1.5 \mathrm{H}) 3.02(\mathrm{td}, J=13.34 .2 \mathrm{~Hz} ; 0.5 \mathrm{H})$, 2.32-2.84 (m, 3.5 H), 1.89-1.97 (m, 0.5 H), 1.28-1.78 (m, 0.5 H), 0.89-0.96 (m, 2 H); ${ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1,173.9,173.2,167.0,138.1,137.5,130.5,129.5$, $129.0,128.5,128.4,128.4,128.0,127.4,127.2,129.3,126.2,64.3,60.0,56.2,56.1$, $55.5,55.3,52.0,51.7,51.6,51.1,50.9,43.8,43.4,40.5,35.5,35.8,34.7,31.6,30.6$, 30.5, 29.1, 27.8, 27.6, 27.0, 26.6, 25.6, 24.7, 23.3, 23.0; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 359.1583$, found 359.1575 .
methyl 3-(1-benzyl-3-(2,2,2-trifluoroacetyl)hexahydropyrimidin-2-yl)propanoate (70). To a solution of $\mathbf{S 5}(0.2001 \mathrm{~g}, 0.504 \mathrm{mmol})$ in benzene $(5.0 \mathrm{~mL}, 0.1 \mathrm{M})$ were added methyl acrylate ($0.23 \mathrm{~mL}, 2.6 \mathrm{mmol}$), a 5% solution of benzyl thiol in benzene ($0.12 \mathrm{~mL}, 0.051 \mathrm{mmol}$), 1,1,1,3,3,3-hexamethyl-2-(trimethylsilyl)trisilane (0.31 mL ,
$1.0 \mathrm{mmol})$, and $\operatorname{AIBN}(0.0168 \mathrm{~g}, 0.102 \mathrm{mmol})$. The reaction mixture was heated to reflux for 19 hours. At this time, TLC indicated the consumption of $\mathbf{S 5}$. The reaction mixture was cooled to rt , diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (7:1 hexanes:EtOAc) to give 70 ($0.0176 \mathrm{~g}, 0.0491 \mathrm{mmol}, 10 \%$) as a colorless oil.
tert-butyl (3-((2-iodobenzyl)amino)-3-oxopropyl)carbamate (S6). To a solution of known 3-((tert-butoxycarbonyl)amino)propanoic acid ${ }^{\text {s8 }}$ ($0.332 \mathrm{~g}, 1.75 \mathrm{mmol}$) in DCM $(4.4 \mathrm{~mL}, ~ 0.4 \mathrm{M})$ were added HOBt ($2.66 \mathrm{~g}, 1.97 \mathrm{mmol}$), DCC ($0.398 \mathrm{~g}, 1.93 \mathrm{mmol}$), and known (2-iodophenyl)methanamine ($0.451 \mathrm{~g}, 1.94 \mathrm{mmol}$). The reaction mixture was stirred at rt for 7 hours. After filtration though celite to remove the solids, the reaction mixture was washed with 1 M aqueous citric acid, saturated aqueous NaHCO_{3}, and saturated aqueous NaCl . The organics were dried over MgSO_{4} and concentrated. Purification by FCC (1:1 EtOAc:hexanes) to give S7 ($0.289 \mathrm{~g}, 0.715$ $\mathrm{mmol}, 41 \%$) as a white solid.

Data for S6: $\mathrm{R}_{f} 0.44$ (2:1 EtOAc:Hexanes); $m p=147.8-149.0^{\circ} \mathrm{C}$; IR (thin film) 3308, 3062, 2975, 2930, 1693, 1651, 1525, 1169, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{bs}, 1 \mathrm{H})$, 5.18 (br s, 1 H), 4.49 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{q}, J=6.3 \mathrm{~Hz} 2 \mathrm{H}), 2.48(\mathrm{t}, J=4.9 \mathrm{~Hz}$ $2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,156.1,140.2,139.6,129.8,129.5$, 128.7, 99.1, 79.4, 48.3, 36.7, 36.2, 28.4: HRMS (TOF MS ES+) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{IN}_{2} \mathrm{O}$ [M-Cl+H]: 305.0151, found 305.0155.

3-((2-iodobenzyl)amino)-3-oxopropan-1-aminium chloride (S7). To a solution of $\mathbf{S 6}(0.156 \mathrm{~g}, 0.512 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL}, 0.1 \mathrm{M})$ was added $\mathrm{TMSCl}(0.40 \mathrm{~mL}, 3.2$ mmol). The reaction mixture was stirred at rt for 47 hours. At this time, TLC indicated the consumption of $\mathbf{S 6}$. The reaction mixture was concentrated to give $\mathbf{S 7}$ $(0.156 \mathrm{~g}, 0.512 \mathrm{mmol}, 82 \%)$ as a white solid.

Data for S7: $\mathrm{R}_{f} 0.58\left(10 \% \mathrm{NH}_{4} \mathrm{OH}\right.$ in MeOH$) ; \mathrm{mp}=161-163^{\circ} \mathrm{C}$; IR (thin film) 1627, 1108, $748 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{4} \mathrm{O}$) $\delta 7.89(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36-7.41 (m, 2 H), $7.04(\mathrm{td}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2$ H), $2.72(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,140.0,139.3,128.9$, 128.5, 128.2, 97.8, 48.1, 35.7, 31.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{IN}_{2} \mathrm{O}$ [M+]: 305.0151, found 305.0155.

3-(2-iodobenzyl)tetrahydropyrimidin-4(1H)-one (S8). To a solution of 3-((2-iodobenzyl)amino)-3-oxopropan-1-aminium chloride (S7) ($0.322 \mathrm{~g}, 0.946 \mathrm{mmol}$) in EtOH ($3.2 \mathrm{~mL}, 0.3 \mathrm{M}$) were added 30% aqueous $\mathrm{NaOH}(0.20 \mathrm{~mL}, 1.5 \mathrm{mmol}$), and 36% aqueous formaldehyde $(0.993 \mathrm{~g}, 1.19 \mathrm{mmol})$. This mixture was heated to reflux for 22 hours. After cooling to rt, the mixture was diluted with EtOAc and washed with saturated aqueous NaCl prior to drying with MgSO_{4}. Purification by FCC (19:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH) to give $\mathbf{S 8}(0.180 \mathrm{~g}, 0.510 \mathrm{mmol}, 54 \%)$ as a colorless oil.

Data for S8: $\mathrm{R}_{f} 0.52$ (EtOAc:10\% $\mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2924, 2855, 1634, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (dt, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.24(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}, 1$ H), $4.66(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=6.4 \mathrm{~Hz} 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,139.7,138.7,129.2,128.7,128.4,99.0,63.2,52.0,42.6$, 33.4; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OI}[\mathrm{M}+\mathrm{H}]$: 317.0151, found 317.0138.
(E)-ethyl 6-(3-(2-iodobenzyl)-4-oxotetrahydropyrimidin-1(2H)-yl)hex-2-enoate ($\mathbf{S 9}$). To a solution of $\mathbf{S 7}(0.426 \mathrm{~g}, 1.35 \mathrm{mmol})$ in DMF ($4.0 \mathrm{~mL}, 0.3 \mathrm{M}$) were added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.510 \mathrm{~g}, 3.69 \mathrm{mmol})$, tetrabutylammonium iodide ($0.0894 \mathrm{~g}, 0.242 \mathrm{mmol}$), and known (E)-ethyl 6-bromohex-2-enoate ${ }^{59}(0.827 \mathrm{~g}, 7.74 \mathrm{mmol})$. The reaction
mixture was heated to $80^{\circ} \mathrm{C} 17$ hours. At this time, TLC indicated the consumption of S7. The reaction mixture was cooled to rt, diluted with EtOAc, washed with saturated aqueous LiCl , washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated. Purification by FCC (EtOAc) to give $\mathbf{S 9}$ ($0.3836 \mathrm{~g}, 0.0841 \mathrm{mmol}, 62 \%$) as a colorless oil.

Data for S9: $\mathrm{R}_{f} 0.50$ (9:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2951, 1733, $1666,1492,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.35(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.7,2.1 \mathrm{~Hz}, 1$ H), $6.91(\mathrm{dt}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2$ H), $2.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.21$ (qd, $J=8.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.54 (quintet, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,166.5,148.1,139.6,138.6,129.2,128.7,128.4$, 121.9, 98.9, 67.9. 60.3, 52.3, 51.7, 48.4, 29.7, 29.6, 25.8, 14.3 HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 457.0988$, found 457.0999.

ethyl 2-(1-benzyl-2-oxooctahydro-1H-pyrido[1,2-a]pyrimidin-9-yl)acetate (71).

 To a solution of $\mathbf{S 9}(0.1884 \mathrm{~g}, 0.413 \mathrm{mmol})$ in benzene $(2.1 \mathrm{~mL}, 0.20 \mathrm{M})$ were added 10% benzyl thiol in benzene ($0.05 \mathrm{~mL}, 0.04 \mathrm{mmol}$). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.22 \mathrm{~mL}, 0.82 \mathrm{mmol}$), AIBN $(0.0133 \mathrm{~g}, 0.081 \mathrm{mmol})$, and benzene $(2.0 \mathrm{~mL}, 0.41 \mathrm{M})$. The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of S9. After cooling to rt, the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC ($4: 1$ hexanes:EtOAc) to give $71(0.0737 \mathrm{~g}, 0.223 \mathrm{mmol}, 54 \%)$ as a colorless oil.Data for 71: $\mathrm{R}_{f} 0.42$ (EtOAc); IR (thin film) 2938, 2812, 1729, 1654, 1447, $703 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{~d}, J=$
$15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=15.4,1 \mathrm{H}), 3.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1$ H), $2.88(\mathrm{dt}, J=11.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.51$ (m, 3 H), 2.33 (ddd, $J=16.8,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=23.8,11.9,2.8 \mathrm{~Hz}, 1$ H), 1.72-1.79 (m, 2 H), 1.34-1.42 (m, 2 H), $1.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(176 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 173.3,169.9,136.8,128.6,128.1,127.2,60.4,55.5,49.7,44.2,33.2,32.0$, 30.6, 26.5, 19.8, 14.3; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+]$: 331.2022, found 331.2006.
ethyl 2-(5-benzyl-11-oxo-5a,6,7,8,9,11-hexahydro-5H-pyrido[2,1-b]quinazolin-6$\mathbf{y l})$ acetate (71). To a solution of $\mathbf{S 9}(0.155 \mathrm{~g}, 0.340 \mathrm{mmol})$ in benzene ($3.4 \mathrm{~mL}, 0.1$ M) were added 10% benzyl thiol in benzene ($0.04 \mathrm{~mL}, 0.03 \mathrm{mmol}$), $1,1,1,3,3,3-$ hexamethyl-2-(trimethylsilyl)trisilane $(0.21 \mathrm{~mL}, 0.68 \mathrm{mmol})$, and AIBN $(0.0120 \mathrm{~g}$, 0.0730 mmol). The reaction mixture was heated to reflux for 2 hours. At this time, TLC indicated the consumption of $\mathbf{S 9}$. The reaction mixture was cooled to rt, diluted with MeCN, washed with hexanes, and concentrated. Purification by FCC (4:1 hexanes:EtOAc) to give $71(0.0556 \mathrm{~g}, 0.168 \mathrm{mmol}, 50 \%)$ as a colorless oil.

(E)-ethyl 6-(1-(2-iodobenzyl)-4-oxo-1,2-dihydroquinazolin-3(4H)-yl)hex-2-enoate

 (S10). To a solution of $\mathbf{6 0}(1.00 \mathrm{~g}, 2.75 \mathrm{mmol})$ in DMF $(9.0 \mathrm{~mL}, 0.3 \mathrm{M})$ were added $57 \% \mathrm{NaH}$ in mineral oil ($0.234 \mathrm{~g}, 5.55 \mathrm{mmol}$) and known (E)-ethyl 6-bromohex-2enoate ($1.22 \mathrm{~g}, 5.50 \mathrm{mmol}$). The reaction mixture was heated to $80^{\circ} \mathrm{C} 46$ hours. The reaction mixture was cooled to rt , diluted with EtOAc , washed with saturated aqueous LiCl , washed with saturated aqueous NaCl , dried over MgSO_{4}, and concentrated. Purification by FCC (4:1 EtOAc:hexanes) to give $\mathbf{S 1 0}$ ($0.2212 \mathrm{~g}, 0.439 \mathrm{mmol}, 16 \%$) as a colorless oil.Data for S10: $\mathrm{R}_{f} 0.43$ (1:1 EtOAc:Hexanes); IR (thin film) 2929, 1714, 1651, 1494, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.53(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.26(\mathrm{qd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71$ (quintet, J $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,136.7$, $148.0,147.8,140.0,138.1,133.4,129.6,129.3,128.7,128.6,121.9,119.6,118.3$, 113.05, 98.4, 64.3, 60.3, 58.2, 44.7, 29.5, 26.2, 14.3; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 505.0988$, found 505.0984.
ethyl 2-(5-benzyl-11-oxo-5a,6,7,8,9,11-hexahydro-5H-pyrido[2,1-b]quinazolin-6yl)acetate (72a and 72b). To a solution of $\mathbf{S 1 0}(0.0520 \mathrm{~g}, 0.103 \mathrm{mmol})$ in benzene ($0.40 \mathrm{~mL}, 0.26 \mathrm{M}$) were added 5% benzyl thiol in benzene ($0.03 \mathrm{~mL}, 0.01 \mathrm{mmol}$). This solution was heated to reflux. In a separate flask were combined tributyltin hydride ($0.06 \mathrm{~mL}, 0.2 \mathrm{mmol}$), AIBN $(0.0039 \mathrm{~g}, 0.024 \mathrm{mmol})$, and benzene $(0.6 \mathrm{~mL}$, 0.3 M). The tributyltin hydride solution was then added to the refluxing mixture via syringe pump over a period of 3 hours. At this time, TLC indicated the consumption of $\mathbf{S 1 0}$. After cooling to rt, the mixture was diluted with MeCN , washed with hexanes, and concentrated. Purification by FCC ($3: 1$ hexanes:EtOAc) to give a 1:1.6 mixture of 72a (minor isomer) and 72b (major isomer) ($0.0238 \mathrm{~g}, 0.0629 \mathrm{mmol}, 61 \%$) as a colorles oil.

Data for 72a: $\mathrm{R}_{f} 0.11$ (2:1 Hexanes:EtOAc); IR (thin film) 2935, 1728, 1647, $754 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30-7.37 (m, 5 H), 7.20 (ddd, $J=8.4,7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{td}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.91(\mathrm{~m}, 1 \mathrm{H})$, 2.63-2.65 (m, 1 H), 2.57-2.61 (m, 2 H), $2.33(\mathrm{dd}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.77(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7$, $163.5,145.9,137.2,133.5,128.8,128.7,127.7,127.6,120.0,118.6,117.0,78.9,60.6$,
57.7, 45.5, 38.7, 37.3, 31.4, 24.5, 14.1; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]: 379.2022$, found 379.2015 .

Data for 72b: $\mathrm{R}_{f} 0.11$ (2:1 Hexanes:EtOAc); IR (thin film) 2933, 1730, 1646, 750.3 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25-7.35 (m, 6 H), $6.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.69-4.74 (m, 1 H), 4.34-4.38 (m, 2 H), 3.97-4.15 (m, 2 H), $2.58(\mathrm{td}, J=12.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.78$ $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(176$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,161.5,145.8,136.5,133.8,129.0,128.9,127.5,126.6,117.2$, $113.8,110.9,77.3,60.6,50.6,44.1,36.2,31.2,31.4,29.2,19.9,14.0$; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 379.2022$, found 379.2015.

ethyl 2-(5-benzyl-11-oxo-5a,6,7,8,9,11-hexahydro-5H-pyrido[2,1-b]quinazolin-6-

 $\mathbf{y l})$ acetate ($\mathbf{7 2 a}$ and 72b). To a solution of $\mathbf{S 1 0}(0.0619 \mathrm{~g}, 0.123 \mathrm{mmol})$ in benzene $(1.2 \mathrm{~mL}, 0.1 \mathrm{M})$ were added benzyl thiol ($0.01 \mathrm{~mL}, 0.1 \mathrm{mmol}$), $1,1,1,3,3,3-$ hexamethyl-2-(trimethylsilyl)trisilane ($0.08 \mathrm{~mL}, 0.3 \mathrm{mmol}$), and AIBN (0.0059 g , $0.036 \mathrm{mmol})$. The reaction mixture was heated to reflux for 18 hours. At this time, TLC indicated the consumption of $\mathbf{S 1 0}$. The reaction mixture was cooled to rt, diluted with MeCN , washed with hexanes, and concentrted. Purification by FCC (3:2 hexanes:EtOAc) to give a $1: 1.6$ mixture of 72a and $72 \mathrm{~b}(0.0227 \mathrm{~g}, 0.0600 \mathrm{mmol}$, 49%) as a colorless oil.(S)-tert-butyl-2-((2-iodobenzyl)carbamoyl)piperidine-1-carboxylate (S11). To a solution of commercially available (S)-1-(tert-butoxycarbonyl)piperidine-2carboxylic acid ($700 \mathrm{mg}, 3.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.90 \mathrm{~mL}, 6.42 \mathrm{mmol}$) and isobutylchloroformate $(0.44 \mathrm{~mL}, 3.36 \mathrm{mmol})$ dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for one hour then 2-iodobenzylamine ($783 \mathrm{mg}, 3.36$ mmol) was added. The solution was warmed to rt and stirred for 10 hours. The
mixture was washed with 1 M HCl , saturated sodium bicarbonate solution, and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification by FCC (8:1 Hexanes:EtOAc) afforded S11 (1.26 $\mathrm{g}, 2.83 \mathrm{mmol}, 93 \%$) as a white foam.

Data for S11: $\mathrm{R}_{f} 0.24$ (6:1 Hexanes:EtOAc); IR (thin film) 3327, 2975, 2937, 1684, $1665,1410,1366,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1$ H), 7.35 (m, 2 H), 7.01 (t, $J=7.35 \mathrm{~Hz}, 1 \mathrm{H}$), 6.56 (br s, 1 H), 4.80 (br s, 1 H), 4.50 (br $\mathrm{s}, 2 \mathrm{H}$), 4.08 (br s, 1 H), $2.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 5 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,156.0,140.4,139.5,129.6,129.4,128.6,99.0$, 80.7, 55.9, 54.0, 48.2, 42.6, 41.5, 28.4, 25.3, 24.9, 20.6; HRMS (TOF MS ES+) calcd for $[\mathrm{M}+\mathrm{Na}]: \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IN}_{2} \mathrm{O}_{3} 467.0802$, found 467.0808; $[\alpha]_{\mathrm{D}}{ }^{24}=-60.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.
(S)-tert-butyl 2-((2-iodobenzyl)carbamoyl)piperidine-1-carboxylate (S12). S11 $(1.25 \mathrm{~g}, 2.82 \mathrm{mmol})$ was dissolved in 20% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.9 \mathrm{~mL}, 0.48 \mathrm{M})$. The mixture was stirred at rt for 17 hours and diluted with 2 mL CH 2 Cl 2 . The mixture was made basic with 1 M NaOH until $\mathrm{pH}>9$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over Na2SO4, and concentrated to give $\mathbf{S 1 2}$ (929 mg, $2.70 \mathrm{mmol}, 96 \%$) as a yellow oil.

Data for S12: Rf 0.19 (EtOAc); IR (thin film) 3283 (br), 3058, 2934, 1662, 1552, 1523, $1013 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.83$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (s, 1 H), 7.31 (m, 2 H), $6.97(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=15.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,140.2,139.4,129.1,128.8,128.5,98.5,59.2,48.0$, 44.8, 29.3, 24.4, 23.0; HRMS (EI+) calcd for [M+]: $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{O}$ 344.0373, found $344.0386 ;[\alpha]_{\mathrm{D}}{ }^{24}=-27.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(S)-2-(2-iodobenzyl)hexahydroimidazo[1,5-a]pyridin-1(5H)-one (S13). To a solution of (S)-N-(2-iodobenzyl)piperidine-2-carboxamide (S12) $(928 \mathrm{mg}, 2.70$ mmol) in formalin (36% in water, $11 \mathrm{~mL}, 0.668 \mathrm{M}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($447 \mathrm{mg}, 5.6$ mmol) and stirred for 12 hours at rt . The mixture was diluted with EtOAc and washed with NaHSO_{3} and brine and dried over sodium sulfate. Purification via FCC (10:1 EtOAc: MeOH) afforded $\mathbf{S 1 3}(1.39 \mathrm{~g}, 4.06 \mathrm{mmol}, 87 \%)$ as a yellow oil.

Data for S13: $\mathrm{R}_{f} 0.58$ (10:1 EtOAc:MeOH); IR (thin film) 2936, 1707, 1438, 1012 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$), 7.84 (dd, $J=7.9,1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 (ddd, $J=8.4$, $7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=9.1,7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{dd}, J=52.5,15.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=5.4,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.85(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H}), 1.63$ $(\mathrm{m}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,139.6,138.5,129.5$, 129.3, 128.8, 98.9, 67.7, 63.2, 49.9, 49.6, 24.8, 24.3, 23.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{I} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 357.0458$, found 357.0464; $[\alpha]_{\mathrm{D}}{ }^{24}=+13.9$ (c 1.0, CHCl_{3}).

Methyl-3-((8aS)-2-benzyl-1-oxooctahydroimidazo[1,5-a]pyridin-3-yl)-

propanoate (73). To a solution of $\mathbf{S 1 3}(105 \mathrm{mg}, 0.296 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$ were added methyl acrylate ($0.13 \mathrm{~mL}, 1.478 \mathrm{mmol}$) and benzyl thiol (5% solution in $\mathrm{PhH}, 0.62 \mathrm{~mL}, 0.266 \mathrm{mmol}$) and heated to reflux. To the refluxing miture was added a solution of $\operatorname{AIBN}(9.7 \mathrm{mg}, 0.059 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(0.16 \mathrm{~mL}, 0.591 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$ via syringe pump over 3 hours. After the addition was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC (3:2 Hex:EtOAc then EtOAc only) afforded 73 ($64 \mathrm{mg}, 0.201 \mathrm{mmol}, 68 \%$ as a single diastereomer) as a yellow oil.

Data for 73: $\mathrm{R}_{f} 0.48$ (1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: EtOAc); IR (thin film) 2924, 2849, 1735, 1553, $1440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~d}, J=$
$15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 173.9,173.8,136.3,128.8,128.3,127.8,74.3,58.5,51.7,46.6,43.8,27.9$, 24.4, 24.0, 22.5, 22.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 317.1858, found 317.1865; $[\alpha]_{\mathrm{D}}{ }^{24}=+13.6\left(c 0.45, \mathrm{CHCl}_{3}\right)$.

Methyl-3-((8aS)-2-benzyl-1-oxooctahydroimidazo[1,5-a]pyridin-3-yl)-

propanoate (73). To a solution of $\mathbf{S 1 3}(97 \mathrm{mg}, 0.272 \mathrm{mmol})$ in $\mathrm{PhH}(2.7 \mathrm{~mL}, 0.1 \mathrm{M})$ were added AIBN ($9 \mathrm{mg}, 0.054 \mathrm{mmol}$), methyl acrylate ($0.12 \mathrm{~mL}, 1.360 \mathrm{mmol}$) and benzyl thiol (5% solution in $\mathrm{PhH}, 0.57 \mathrm{~mL}, 0.245 \mathrm{mmol}$) and (TMS) $)_{3} \mathrm{SiH}(0.17 \mathrm{~mL}$, 0.544 mmol) and heated to reflux. After the reaction was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC (3:2 Hex:EtOAc then EtOAc only) afforded 73 ($24 \mathrm{mg}, 0.075 \mathrm{mmol}, 28 \%$ as a single diastereomer) as a yellow oil.

3-((8aS)-2-benzyl-1-oxooctahydroimidazo[1,5-a]pyridin-3-yl)propanenitrile (74).

 To a solution of $\mathbf{S 1 3}(99 \mathrm{mg}, 0.278 \mathrm{mmol})$ in $\mathrm{PhH}(1.3 \mathrm{~mL}, 0.21 \mathrm{M})$ were added acrylonitrile ($0.09 \mathrm{~mL}, 1.391 \mathrm{mmol}$) and benzyl thiol (5% solution in $\mathrm{PhH}, 0.07 \mathrm{~mL}$, 0.028 mmol) and heated to reflux. To the refluxing mixture was added a solution of AIBN ($9 \mathrm{mg}, 0.0556 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{SnH}(0.15 \mathrm{~mL}, 0.556 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.2$ M) via syringe pump over 3 hours. After the addition was complete, the mixture was cooled to room temperature and the ! S23! solvent evaporated. Purification via FCC (1:1 EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $74(53 \mathrm{mg}, 0.188 \mathrm{mmol}, 68 \%$ as a single diastereomer) as a yellow oil.Data for 74: $\mathrm{R}_{f} 0.52\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EtOAc); IR (thin film) 2939, 2860, 2248, 1702, $1439 \mathrm{~cm}^{-1} ;{ }_{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.36(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.0(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.8$
$(\mathrm{m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 4 \mathrm{H})$, $1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,136.0,129.0,128.2,128.1$, 119.6, 73.3, 58.4, 46.1, 44.2, 24.9, 24.3, 22.2, 22.1, 10.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]:$ 284.1763, found 284.1763; $[\alpha]_{\mathrm{D}}{ }^{24}=+5.4$ (c 0.5, CHCl_{3}).

3-((8aS)-2-benzyl-1-oxooctahydroimidazo[1,5-a]pyridin-3-yl)propanenitrile (74). To a solution of $\mathbf{S 1 3}(85 \mathrm{mg}, 0.238 \mathrm{mmol})$ in $\mathrm{PhH}(2.4 \mathrm{~mL}, 0.1 \mathrm{M})$ were added, acrylonitrile $(0.08 \mathrm{~mL}, 1.189 \mathrm{mmol})$, benzyl thiol $(10 \%$ solution in $\mathrm{PhH}, 0.02 \mathrm{~mL}$, $0.024 \mathrm{mmol}), \operatorname{AIBN}(8 \mathrm{mg}, 0.048 \mathrm{mmol})$, and (TMS) $)_{3} \mathrm{SiH}(0.15 \mathrm{~mL}, 0.476 \mathrm{mmol})$ and heated to reflux. After the reaction was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC (1:1 EtOAc: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 74 ($11 \mathrm{mg}, 0.039 \mathrm{mmol}, 16 \%$, dr not determined) as a yellow oil.
(S)-2-(2-iodobenzyl)hexahydro-1H-pyrrolo[1,2-c]imidazol-1-one (S14). To a solution of known (S)- N-(2-iodobenzyl)pyrrolidine-2-carboxamide ($1.54 \mathrm{~g}, 4.67$ mmol) in formalin (36% in water, $19 \mathrm{~mL}, 0.668 \mathrm{M}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(774 \mathrm{mg}, 5.6$ mmol) and stirred for 12 hours at room temperature. The mixture was diluted with EtOAc and washed with NaHSO_{3} and brine and dried over sodium sulfate. Purification via FCC (10:1 EtOAc:MeOH) afforded $\mathbf{S 1 4}$ (1.39g, $4.06 \mathrm{mmol}, 87 \%$) as a light yellow oil.

Data for S14: $\mathrm{R}_{f} 0.17$ (10:1 EtOAc:MeOH); IR (thin film) 3464 (br), 2966, 2874, 1693, 1443, $1287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.88(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1$ H), 7.36 (ddd, $J=8.7,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (ddd, J $=9.3,7.7,1.7,1 \mathrm{H}), 4.74(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H})$, $2.56(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 175.0$,
139.8, 138.3, 129.6, 129.2, 128.8, 98.9, 69.9, 65.2, 56.3, 50.0, 27.7, 25.3; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 343.0315$, found 343.0307; [$\left.\alpha\right]_{\mathrm{D}}$ ${ }^{24}=-14.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Methyl-3-((3R,7aS)-2-benzyl-1-oxohexahydro-1H-pyrrolo[1,2-c]imidazol-3-

yl)propanoate (75). To a solution of $\mathbf{S 1 4}$ ($101 \mathrm{mg}, 0.295 \mathrm{mmol}$) in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.2$ M) were added methyl acrylate ($0.13 \mathrm{~mL}, 1.48 \mathrm{mmol}$) and benzyl thiol (5% solution in $\mathrm{PhH}, 0.07 \mathrm{~mL}, 0.0295 \mathrm{mmol}$) and heated to reflux. To the refluxing mixture was added a solution of $\operatorname{AIBN}(9.7 \mathrm{mg}, 0.059 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(0.16 \mathrm{~mL}, 0.591 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$ via syringe pump over 3 hours. After the addition was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC (10:1 EtOAc:MeOH) afforded 75 ($41 \mathrm{mg}, 0.135 \mathrm{mmol}, 46 \%$ as a single diastereomer) as a yellow oil.

Data for 75: $\mathrm{R}_{f} 0.32$ (4:1 EtOAc:CH2Cl2); IR (thin film) 2944, 1735, 1694, 1438, $1259,1166 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25$ (m, 2 H), $5.04(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dd, J = 9.1, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.03 (dd, J $=9.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.42 (t, J = 7.4 Hz, 2 H), 2.40 (m, 1 H$), 2.15(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.6,173.6,136.1,128.8,128.1,127.8,78.8,64.0$, 56.2, 51.7, 44.0, 29.0, 29.0, 28.1, 25.1; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]: 303.1715$, found 303.1709; $[\alpha]_{\mathrm{D}}{ }^{24}=+10.9\left(c 0.55, \mathrm{CHCl}_{3}\right)$.

Methyl-3-((3R,7aS)-2-benzyl-1-oxohexahydro-1H-pyrrolo[1,2-c]imidazol-3-

$\mathbf{y l})$ propanoate (75). To a solution of $\mathbf{S 1 4}(102 \mathrm{mg}, 0.299 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}, 0.1$ M) were added AIBN ($9 \mathrm{mg}, 0.060 \mathrm{mmol}$), methyl acrylate ($0.13 \mathrm{~mL}, 1.49 \mathrm{mmol}$) and benzyl thiol (5% solution in $\mathrm{PhH}, 0.07 \mathrm{~mL}, 0.030 \mathrm{mmol}$), and (TMS) $)_{3} \mathrm{SiH}(0.18$ $\mathrm{mL}, 0.60 \mathrm{mmol}$) and heated to reflux. After the reaction was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC
(10:1 EtOAc:MeOH) afforded 75 ($13 \mathrm{mg}, 0.041 \mathrm{mmol}, 4 \%$, dr not determined) as a yellow oil.

3-((7aS)-2-benzyl-1-oxohexahydro-1H-pyrrolo[1,2-c]imidazol-3-

yl)propanenitrile (76). To a solution of $\mathbf{S 1 4}(107 \mathrm{mg}, 0.311 \mathrm{mmol})$ in $\mathrm{PhH}(1.5 \mathrm{~mL}$, $0.2 \mathrm{M})$ were added acrylonitrile $(0.10 \mathrm{~mL}, 1.56 \mathrm{mmol})$ and benzyl thiol (10% solution in $\mathrm{PhH}, 0.06 \mathrm{~mL}, 0.062 \mathrm{mmol}$) and heated to reflux. To the refluxing mixture was added a solution of $\operatorname{AIBN}(10 \mathrm{mg}, 0.062 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(0.17 \mathrm{~mL}, 0.623 \mathrm{mmol})$ in $\mathrm{PhH}(1.6 \mathrm{~mL}, 0.2 \mathrm{M})$ via syringe pump over 3 hours. After the addition was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC (10:1 EtOAc: MeOH) afforded 76 ($59 \mathrm{mg}, 0.219 \mathrm{mmol}, 50 \%$ as a single diastereomer) as a yellow oil.

Data for 76: $\mathrm{R}_{f} 0.29\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: EtOAc); IR (thin film) 2956, 2925, 2246, 1690, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.97(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83 (dd, $J=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 1$ H), $2.08(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.4,135.7,129.0,128.1,128.0,119.1,78.3,64.0,56.4,44.3,29.9,28.2$, 25.1, 12.4; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 270.1595, found 270.1606; $[\alpha]_{\mathrm{D}}{ }^{24}=+14.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

3-((7aS)-2-benzyl-1-oxohexahydro-1H-pyrrolo[1,2-c $]$ imidazol-3-

yl)propanenitrile (76). To a solution of $\mathbf{S 1 4}(132 \mathrm{mg}, 0.386 \mathrm{mmol})$ in $\mathrm{PhH}(3.9 \mathrm{~mL}$, $0.1 \mathrm{M})$ were added acrylonitrile ($0.13 \mathrm{~mL}, 1.93 \mathrm{mmol}$) and benzyl thiol (10% solution in $\mathrm{PhH}, 0.04 \mathrm{~mL}, 0.039 \mathrm{mmol}$), AIBN ($13 \mathrm{mg}, 0.077 \mathrm{mmol}$), and (TMS) $)_{3} \mathrm{SiH}(0.24$ $\mathrm{mL}, 0.772 \mathrm{mmol}$) and heated to reflux. After the reaction was complete, the mixture was cooled to room temperature and the solvent evaporated. Purification via FCC
(10:1 EtOAc:MeOH) afforded $76(56 \mathrm{mg}, 0.208 \mathrm{mmol}, 45 \%$ as a $4: 1$ mixture of diastereomers) as a yellow oil.

N

40 Hesse, M. Alkaloid Chemistry, WILEY, New York, 1981, pp. 175-200.
41 Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, $4^{\text {th }}$ Ed. WILEY, Hoboken, NJ, 6807, pp. 696-926.

42 For example: (a) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419-4420; (b) Ge, H. M.; Zhang, L.D.; Tan, R. X.; Yao, Z.-J. J. Am. Chem. Soc. 6860, 134, 12323-12325.

43 Tennant, G. in Comp. Org. Synth., Vol. 2 (Eds: D. Barton, W. D. Oates), Pergamon Press, Oxford, 1979, pp. 383-590.

44 Ono, N. The Nitro Group in Organic Synthesis, WILEY-VCH, New York, 6801.
45 For selected recent examples of radical reactions as key steps in alkaloid synthesis, see: (a) Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D. J. Am. Chem. Soc. 6806, 128, 8678-8693. (b) Movassaghi, M.; Schmidt, M. A. Angew. Chem. Int. Ed. 6807, 46, 3725-3728. (c) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 6811, 133, 10376-10378. (d) Palframan, M. J.; Parsons, A. F.; Johnson, P. Tetrahedron Lett. 6811, 52, 1154-1156.

46 For review, see: (a) Köck, M.; Grube, A.; Seiple, I. B.; Baran, P. S. Angew. Chem. Int. Ed. 2007, 46, 6586 - 6594; (b) Heasley, B. Eur. J. Org. Chem. 2009, 1477-1489;
(c) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res., 2011, 44, 447-457.

47 (a) Bhonde, V. R.; Looper, R. E. J. Am. Chem. Soc. 6811, 133, 20172-20174; (b) Iwamoto, O.; Shinohara, R.; Nagasawa, K. Chem. Asian J. 6809, 4, 277-285; (c) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 6807, 129, 99649975; (d) Jacobi, P. A.; Martinelli, M. J.; Polanc, S. J. Am. Chem. Soc. 1984, 106, 5594-5598; (e) Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am. Chem. Soc. 1977, 99, 2818-2819; (f) Jessen, H. J.; Gademann, K. Angew. Chem. Int. Ed. 6810, 49, 2972-2974; (g) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. Angew. Chem. Int. Ed. 6810, 49, 1095-1098; (h) Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc. 6810, 132, 13226-13228; (i) Yang, J.; Wu, H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 6807, 129, 13794-13795; (j) Liu, P.; Seo, J. H.; Weinreb, S. M. Angew. Chem. Int. Ed. 6810, 49, 2000.
$48 \mathrm{~N}-\mathrm{H}$ bonds, $\mathrm{O}-\mathrm{H}$ bonds, and lone pairs are known to be spectators in radical reactions. For example, see: (a) Urry, W. H.; Juveland, O. O.; Stacey, F. W. J. Am. Chem. Soc. 1952, 74, 6155; (b) Bongini, A.; Cardillo, G.; Orena, M.; Sandri, S.; Tomasini, C. J. Org. Chem. 1986, 51, 4905-4910; (c) Sibi, M. P.; Ji, J.; Wu, J. H.; Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200-9201.

49 (a) Yao, C.; Cuadrado-Peinado, M. L.; Polášek, M.; Tureček, F. Angew. Chem. Int. Ed. 6805, 44, 6708-6711; (b) Novais, H. M.; Steenken, S. J. Am. Chem. Soc. 1986, 108, 1-6.

50 Fragementation and protonation reactions of aminal radicals have been reported. See: (a) Cabrera-Rivera, F. A.; Ortíz-Nava, C.; Escalante, J.; Hernández-Pérez, J. M.; Hô, M. Synlett 6860, 23, 1057-1063; (b) Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. Am. Chem. Soc. 1992, 114, 4701-4709.

51 For review, see: (a) Aurrecoechea, J. M.; Suero, R. Arkivoc 6804, 14, 10-35; (b) Renaud, P.; Giraud, L. Synthesis 1996, 8, 913-926

52 Williams, L.; Booth, S. E.; Undheim, K. Tetrahedron 1994, 50, 13697-13708.
53 Song, K.-S.; Liu, L.; Guo, Q.-X. Tetrahedron 6804, 60, 9909-9923.
54 Leroy, G.; Dewispelaere, J.-P. ; Benkadour, H.; Riffi Temsamani, D.; Wilante, C. Bull. Soc. Chim. Belg. 1994, 103, 367-378.

55 Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25-35.
56 Note that Scheme 3.3 updates and corrects the stereochemical model given in the original manuscript.

57 J. M. Khurana, G. Khkreja, J. Heterocyclic Chem. 6803, 40, 677-679.
58 J.-W. Shen, D.-G. Qin, H.-W. Zhang, Z.-J. Yao, J. Org. Chem. 6803, 68, 7479-7484.

59 K. Somekawa, H. Okuhira, M. Sendayama, T. Suishu, T. Shimo, J. Org. Chem. 1992, 57, 5708-5712.

Chapter 3: Reductive Synthesis of Aminal Radicals for CarbonCarbon Bond Formation

David A. Schiedler, Yi Lu, and Christopher M. Beaudry

Organic Letters
http://pubs.acs.org/doi/abs/10.1021/ol500024q
Issue 4

3.1 Introduction

Biologically active molecules commonly contain one or more nitrogen atoms. As a result, nitrogenous molecules, such as alkaloids, make compelling targets for synthesis. ${ }^{60}$ However, synthesis of molecules containing Lewis basic nitrogen atoms or Bronsted acidic nitrogenous functional groups is not trivial. For example, the Lewis basic reactivity of amines, the weakly acidic $\mathrm{N}-\mathrm{H}$ hydrogens, and the ability of amines to quaternize represent considerable challenges for the synthetic chemist.

Single electron processes (i.e. radical reactions) can be used to circumvent the acidbase reactivity of nitrogen. ${ }^{61}$ Carbon-centered radicals are generally tolerant of heteroatom lone pairs and $\mathrm{N}-\mathrm{H}$ bonds. Thus, chemoselective reactions of nitrogenrich functional groups would enjoy useful application in synthesis. The aminal functional group was identified as a particularly attractive substrate for radical-based bond forming reactions.

Aminals are conveniently prepared from condensation reactions of readily available starting materials. Furthermore, calculations suggested that carbon-centered aminal radicals could be prepared in the presence of other nitrogen-containing carbon atoms. ${ }^{62}$

We recently reported the first use of aminal radical intermediates in synthetic reactions (Scheme 3.1). ${ }^{63}$ Iodobenzyl-substituted aminals (60) undergo radical translocation ${ }^{64}$ (i.e. hydrogen atom abstraction) to give aminal radical intermediates such as 77. The aminal radicals add to electron poor alkenes to give products of carbon-carbon bond formation (67). Radical translocation selectively activates the aminal position in the presence of carbons bearing only one nitrogen atom. Intermolecular and intramolecular reactions are possible, and diastereoselectivities can be quite high.

Previous work:

This work:

Scheme 3.1. Formation of $\mathrm{C}-\mathrm{C}$ bonds with aminal radicals

Despite the potential of the aminal radical reaction in synthesis, a complementary approach for the formation of the aminal radical intermediates was desired. Such a reaction would avoid the use of toxic or foul-smelling reagents. Starting materials that are convenient to prepare and do not require an iodobenzyl group would be particularly useful. An amidine reduction reaction (Scheme 3.1; $78 \rightarrow 67$) satisfies these criteria and was selected for further study.

3.2 Results and Discussion

The success of substrate $\mathbf{6 0}$ in the translocation reaction indicated that if presumptive intermediate radical 77 was produced under different conditions, then the desired product 67 could be formed. Amidine 78 was prepared and subjected to reductive conditions in the presence of acrylonitrile (Table 3.1). Reductions with Zn and $L_{i D B B}{ }^{65}$ did not give the desired product (entries 1-4). Gratifyingly, treatment of 78 with the single-electron reducing agent $\mathrm{SmI}_{2},{ }^{66}$ camphor sulfonic acid (CSA), and acrylonitrile as a radical acceptor gave product 67 (entry 5). The reaction is operationally easy, requires no noxious reagents, is high yielding, and occurs rapidly at rt . The reaction yield decreased if an acid was not present (entry 6). After a screen
of several acids, ammonium chloride was identified as a convenient and effective proton source that generally gives higher yields than CSA (entry 7). ${ }^{67}$

entry	conditons	result
1	Zn (2.2 equiv), HOAc (0.1 M), rt	no reaction
2	Zn (2.2 equiv), $\mathrm{HOAc}(0.1 \mathrm{M}), 118{ }^{\circ} \mathrm{C}$	no reaction
3	LiDBB (2.5 equiv), CSA (1.1 equiv), THF (0.3 M), rt	decomposition
4	LiDBB (2.5 equiv), THF (0.3 M), rt	decomposition
5	SmI_{2} (2.5 equiv), CSA (1.1 equiv), THF (0.3 M), rt	90\%
6	SmI_{2} (2.5 equiv), THF (0.3 M), rt	57\%
7	Sml 2 (2.5 equiv), $\mathrm{NH}_{4} \mathrm{Cl}$ (1.1 equiv), THF (0.3 M), rt	99\%

Table 3.1. Development of the Amidine Reduction Reaction

The amidine reduction reaction was examined with various substrates and acceptors (Scheme 3.2). Quinazolinones have important medicinal properties, ${ }^{68}$ are easy to prepare, ${ }^{69}$ and have an acyl amidine substructure. Substrate 78 reacted with acrylates to form products 66 and 68 , respectively. In the amidine reduction reaction a benzyl group is not required. Thus, phenyl substitution is tolerated, and 79 reacts with acrylonitrile, methyl acrylate, and tert-butyl acrylate to give 80, 81, and 82, respectively. Unsubstituted quinazolinone 83 reacted to give $\mathbf{8 4}, \mathbf{8 5}$, and 86 in good yield. The presumptive aminal radical intermediate does not add to unactivated alkenes. Thus, substrate $\mathbf{8 7}$ preferentially undergoes bimolecular addition to acrylonitrile and acrylates giving 88, 89, and $\mathbf{9 0}$ rather than unimolecular 5-exo-trig cyclizations of the pendent alkene.

Gratifyingly, substituted amidines also participate in the reaction in good yields. Substrate 91 gave products 92-94 which contain fully-substitued carbon stereocenters. Benzyl-substituted amidine $\mathbf{9 5}$ reacted to give fully-substituted aminals 96-98. Even the tert-butyl substituted amidine 99 (Scheme 3.3) reacts to give product 100, which contains vicinal fully-substituted carbon atoms. Cyclopropyl groups are
tolerated in the substrate $\mathbf{(1 0 1)}$, provided they are distant from the carbon-centered radicals, to give product 102. A sterically hindered amidine appended with a cyclohexyl group (103) participated giving product 104. Electron rich arenes are tolerated in the reaction, and $\mathbf{1 0 5}$ reacts to form $\mathbf{1 0 6}$ in high yield.

96: $\mathrm{R}=\mathrm{CN} ; 96 \%$ 98: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{tBu}$; 64%

Scheme 3.2. Scope of the amidine reduction reaction. ${ }^{\text {a }}$ Reaction was preformed with CSA.

Disubstituted alkenes are reactive acceptors, and $\mathbf{7 8}$ added to ethyl crotonate to give 107 in good yield, but the diastereoselectivity was modest. ${ }^{70}$ However, intramolecular reactions proceeded in good yield and high diastereocontrol. Substrate $\mathbf{1 0 8}$ reacted to form a six-membered ring product 109. This reaction also demonstrates that the amidine can be substituted at either nitrogen atom. Compound $\mathbf{1 1 0}$ contains a trisubstituted alkene acceptor, and it reacts smoothly in high yield and high diastereoselectivity to give 111, which contains a quaternary carbon stereocenter. The relative stereochemistry was confirmed by NOE methods.

Scheme 3.3. Scope of the amidine reduction reaction (continued).

Acyl amidines that are not quinazolinones are suprisingly rare in the literature. Nevertheless, we found that they also participate in the reaction (Scheme 4). Spirofused amidine 112 reacted to produce 113. Substituted amidine substrate 114 reacted under the conditions to give $\mathbf{1 1 5}$. Bicyclic amidine 116 gave 117, which contains a fully-substituted stereocenter. The acyl substiutent may be present as an acetyl group on the amidine, and substrate 118 reacted with acrylonitrile to give 119. Pyrimidinone 120 underwent dearomatizative reductive bond formation to give substituted product 121.

Scheme 3.4. Scope of amidine substrates

The mechanism of the amidine reduction reaction may involve initial protonation of the amidine to form an amidinium ion, followed by single-electron reduction to give the aminal radical. If this is the case, then amidinium ions should participate in the reaction.

Various amidinium ions were formed using standard transformations of the corresponding amidine. ${ }^{10}$ Subjection of the amidinium ions to SmI_{2}, acid, and a radical acceptor led to carbon-carbon bond formation in good yields (Scheme 3.5). ${ }^{71}$ Quinazolinone-derived amidinium ion $\mathbf{1 2 2}$ participated in the reaction with standard radical acceptors to give 123-125. Substituted amidinium ion $\mathbf{1 2 6}$ also particpated in the reduction, giving a product (127) with a fully substituted carbon stereocenter. The monocyclic amidinium substrate $\mathbf{1 2 8}$ also participated in the reaction giving good yield of the desired product (129). Aliphatic amidinium ions also participated in the reduction. Known amidinium 130 underwent reductive bond formation with acryonitrile to form product $\mathbf{1 3 1}$. Phenyl-substituted amidinium 132 reacted to form 133.

Scheme 3.5. Amidinum reduction. ${ }^{\text {a }}$ Reaction was preformed with CSA.

Mechanistically, amidine 78 may receive a proton and an electron to form neutral aminal radical 77 (Scheme 3.6, eq. 1). The aminal radical could react with the electron poor acceptor to give radical 134. This radical would be further reduced and
protonated to give the product (67). Alternatively, the acrylate may be reduced to radical 135 (eq. 2). Addition to the amidine would give intermediate 136. This intermediate could be reduced and protonated to give the product (67). Related radical mechanisms have been proposed in the literature. ${ }^{72}$

Scheme 3.6. Mechanistic investigation

To distinguish between these mechanistic possibilities, amidine substrate $\mathbf{1 3 7}$ was prepared, which contains a cyclopropyl group attached directly to the amidine. Reduction of $\mathbf{1 3 7}$ by SmI_{2} in the absence of a radical acceptor leads to fragmentation of the cyclopropane and formation of $\mathbf{1 3 8}$ (Scheme 3.7, eq. 1). Reduction of $\mathbf{1 3 7}$ in the presence of an acceptor gave addition product 139 and formation of ringfragmentation product 140 (eq. 2). ${ }^{73}$ This product may arise by the mechanism given in Scheme 3.8 wherein the cyclopropane ring fragmented to give a primary radical which could then undergo tautomerization followed by radical cyclization to give an aminal radical. After addition to acrylonitrile, the product 140 was obtained.

Cyclopropyl-containing radical acceptors were also investigated. Amidine 78 reacted with cyclopropyl acrylate $\mathbf{1 4 1}$ to form addition product 142 (Scheme 3.7, eq. 3). The balance of the material was the reduction product 143 and unreacted starting material. Control experiments indicated the acrylate acceptors (acrylonitrile, methyl acyrlate, tert-butyl acrylate, and 141) did not react under the reaction conditions in the absence
of the amidine. This suggests that the amidine is reduced prior to reactions with the alkene acceptor. Reduction of the aminal radical such as 77 to carbanion intermediates is unlikely in the presence of strong acids (CSA and $\mathrm{NH}_{4} \mathrm{Cl}$). On the basis of these experiments, we believe the first mechanism is operative (i.e. $78 \rightarrow 77 \rightarrow$ $134 \rightarrow \mathbf{6 7}$, Scheme 3.6, eq. 1).

137

Scheme 3.7. Mechanistic investigation (continued)

Scheme 3.8. A possible mechanism for the formation of the product 140

3.3 Conclusion

In conclusion, aminal radicals are formed via reduction of the corresponding amidine and amidinium ions in the presence of a proton source. The putative radical intermediates react with radical acceptors in $\mathrm{C}-\mathrm{C}$ bond-forming reactions in good yields without the use of heavy metal hydrides or thiols. The reaction can be performed in inter- and intramolecular contexts in high yield. Furthermore, fully substituted aminal stereocenters are formed in good yields with this chemistry. We believe this reactivity will be useful in the synthesis of nitrogen-rich alkaloids, and efforts to apply this chemistry in synthesis are underway in our laboratory.

3.4 Experimental Section

General Experimental Details:

All reactions were carried out under an inert Ar atmosphere in oven-dried glassware. Flash column chromatography was carried out with SiliaFlash P60, 60 Å silica gel. Reactions and column chromatography were monitored with EMD silica gel 60 F254 plates and visualized with potassium permanganate, iodine, or vanillin stains. Toluene (PhMe) and methylene chloride (DCM) were dried by passage through activated alumina columns. Tetrahydrofuran (THF) was distilled from sodium and benzophenone and stored under an atmosphere of Ar. Methyl acrylate and tert-butyl acrylate were purified by washing with aqueous NaOH , drying over MgSO_{4}, and calcium hydride. These reagents were then distilled under vacuum prior to use. Acrylonitrile was distilled under vacuum prior to use. Samarium iodide solutions were prepared with THF distilled from sodium and benzophenone and were stored under an atmosphere of argon with vigorous stirring. ${ }^{74}$ The concentrations of the samarium iodide solutions were determined by iodometirc titration. All other reagents and solvents were used without further purification from commercial sources.

Instrumentation: FT-IR spectra were obtained on NaCl plates with a PerkinElmer Spectrum Vision spectrometer. Proton and carbon NMR spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ unless otherwise noted on a Bruker 700 MHz Avance III Spectrometer with carbon-optimized cryoprobe and Bruker 400 MHz DPX-400 spectrometer and calibrated to residual solvent peaks. Multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sept $=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet. Melting points were determined with a Cole-Parmer instrument and are uncorrected.

3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (67) (general reductive alkylation procedure). To a solution of 3-benzylquinazolin-4(3H)-one ${ }^{75}$ $(0.0327 \mathrm{~g}, 0.1390 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0089 \mathrm{~g}, 0.166 \mathrm{mmol})$, and acrylonitrile $(0.05 \mathrm{~mL}$, $0.76 \mathrm{mmol})$ in THF $(0.46 \mathrm{~mL}, 0.3 \mathrm{M})$ was added a THF solution of $\mathrm{SmI}_{2}(3.7 \mathrm{~mL}$, 0.35 mmol) via syringe pump over a period of 1 hour. At this time, TLC indicated the consumption of 3-benzylquinazolin- $4(3 \mathrm{H})$-one. The reaction mixture was diluted with half-saturated aqueous Rochelle salt. This biphasic mixture was extracted with ethyl acetate. The combined extracts were dried over MgSO_{4} and concentrated to give known adduct $67(0.0403 \mathrm{~g}, 0.1383 \mathrm{mmol}, 99 \%)$ as a colorless oil.

methyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (66).

Following the general reductive alkylation procedure, 3-benzylquinazolin-4(3H)-one $(0.0332 \mathrm{~g}, 0.141 \mathrm{mmol})$, CSA $(0.0358 \mathrm{~g}, 0.154 \mathrm{mmol})$, methyl acrylate $(0.065 \mathrm{~mL}$, $0.70 \mathrm{mmol})$ in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of SmI_{2} (3.45 $\mathrm{mL}, 0.35 \mathrm{mmol})$ to give known adduct $66(0.0261 \mathrm{~g}, 0.080 \mathrm{mmol}, 57 \%)$ as a colorless oil after purification by FCC ($4: 1$ hexanes:EtOAc).
one ${ }^{76}(0.0320 \mathrm{~g}, 0.144 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0086 \mathrm{~g}, 0.158 \mathrm{mmol})$, acrylonitrile $(0.05 \mathrm{~mL}$, $0.76 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.4$ $\mathrm{mL}, 0.36 \mathrm{mmol})$ to give $\mathbf{8 0}(0.0375 \mathrm{~g}, 0.135 \mathrm{mmol}, 94 \%)$ as a colorless oil.

Data for 80: $\mathrm{R}_{f} 0.40$ ($1: 1$ hexanes:EtOAc); $\mathrm{mp}=155-156{ }^{\circ} \mathrm{C}$; IR (thin film) 2929, 2246, 1638, 1496, 1154, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{dd}, J=7.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dt}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (m, 2 H), $2.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δC 161.8, 143.6, 140.1, 118.5, 118.2; CH 134.0, 128.9, 129.5, 129.2, 127.4, 127.0, 121.0, 117.0; CH_{2} 28.5, 13.7; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ [M+]: 277.1215, found 277.1227.
methyl 3-(4-oxo-3-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (81). Following the general reductive alkylation procedure, 3-phenylquinazolin- $4(3 \mathrm{H})$-one $(0.0312 \mathrm{~g}, 0.140 \mathrm{mmol})$, CSA $(0.0358 \mathrm{~g}, 0.154 \mathrm{mmol})$, methyl acrylate $(0.07 \mathrm{~mL}$, $0.70 \mathrm{mmol})$ in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of SmI_{2} (4.6 $\mathrm{mL}, 0.35 \mathrm{mmol})$ to give $81(0.0195 \mathrm{~g}, 0.0629 \mathrm{mmol}, 45 \%)$ as a colorless oil after purification by FCC ($4: 1$ hexanes:EtOAc).

Data for 81: $\mathrm{R}_{f} 0.44$ ($1: 1$ hexanes: EtOAc); $\mathrm{mp}=79-80^{\circ} \mathrm{C}$; IR (thin film) 2951, 1732, 1634, 1496, 1169, $756 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.19(\mathrm{dd}, J=8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C 173.3,162.3$, 144.8, 140.4, 117.4; CH 133.7, 129.3, 129.1, 127.1, 127.0, 119.8, 115.7, 71.3; CH_{2} 29.7, 28.5; $\mathrm{CH}_{3} 51.8$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 310.1318$, found 310.1304 .
tert-butyl 3-(4-oxo-3-phenyl-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (82). Following the general reductive alkylation procedure, 3-phenylquinazolin- $4(3 \mathrm{H})$-one ($0.0313 \mathrm{~g}, 0.141 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0083 \mathrm{~g}, 0.155 \mathrm{mmol})$, tert-butyl acrylate $(0.11 \mathrm{~mL}$, $0.71 \mathrm{mmol})$ in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of SmI_{2} (4.3 $\mathrm{mL}, 0.35 \mathrm{mmol})$ to give $\mathbf{1 0}(0.0367 \mathrm{~g}, 0.104 \mathrm{mmol}, 74 \%)$ as a colorless oil after purification by FCC ($3: 1$ hexanes:EtOAc).

Data for 82: $\mathrm{R}_{f} 0.65$ (1:1 hexanes:EtOAc); IR (thin film) 2977, 1724, 1685, 1495, 1152, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (m, 4 H), 7.34 (ddd, $J=8.1,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{tt}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2$ $\mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δC 172.1, 162.3, 145.0, 140.5, 117.2, 81.0; CH 133.7, 129.3, 129.1, 127.2, 127.0, 119.7, 115.5, 71.4; CH_{2} 31.1, 28.5; $C \mathrm{H}_{3}$ 28.0; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 375.1685 , found 375.1674 .

3-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (84). Following the general reductive alkylation procedure, 3-phenylquinazolin-4(3H)-one ${ }^{77}$ (0.0191 g, $0.131 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0079 \mathrm{~g}, 0.144 \mathrm{mmol})$, acrylonitrile $(0.05 \mathrm{~mL}, 0.76 \mathrm{mmol})$ in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.0 \mathrm{~mL}, 0.33$ $\mathrm{mmol})$ to give known ${ }^{78}$ adduct $84(0.0169 \mathrm{~g}, 0.0832 \mathrm{mmol}, 63 \%)$ as a colorless oil.
methyl 3-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (85). Following the general reductive alkylation procedure, quinazolin-4(3H)-one ($0.0218 \mathrm{~g}, 0.149$ $\mathrm{mmol})$, CSA ($0.0381 \mathrm{~g}, 0.164 \mathrm{mmol}$), methyl acrylate ($0.08 \mathrm{~mL}, 0.89 \mathrm{mmol}$) in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(3.8 \mathrm{~mL}, 0.37 \mathrm{mmol})$ to give $85(0.0195 \mathrm{~g}, 0.083 \mathrm{mmol}, 56 \%)$ as a colorless oil.

Data for 85: $\mathrm{R}_{f} 0.25$ (1:4 hexanes:EtOAc); IR (thin film) 2951, 1725, 1653, 1438, $1382,1155,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30 (ddd, $J=8.1,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{td}, J=7.51 .0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dt}, J=17.1,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{dt}, J=17.1,6.6, \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}, DEPT) $\delta C 173.9,165.3,147.2,115.6,81.1 ;$ CH 133.9, 128.5, 119.4, 114.8, 64.7; CH_{2} 29.9, 28.1, CH_{3} 52.1; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+]: 234.1005$, found 234.1016.
tert-butyl 3-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (86). Following the general reductive alkylation procedure, quinazolin- $4(3 \mathrm{H})$-one $(0.0238 \mathrm{~g}, 0.162$ $\mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0096 \mathrm{~g}, 0.178 \mathrm{mmol})$, tert-butyl acrylate ($0.12 \mathrm{~mL}, 0.81 \mathrm{mmol}$) in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(5.0 \mathrm{~mL}, 0.41$ $\mathrm{mmol})$ to give $86(0.0289 \mathrm{~g}, 0.105 \mathrm{mmol}, 65 \%)$ as a colorless oil after purification by FCC (1:3 hexanes:EtOAc).

Data for 86: $\mathrm{R}_{f} 0.48$ ($1: 2$ hexanes:EtOAc); $\mathrm{mp}=114-115{ }^{\circ} \mathrm{C}$; IR (thin film) 2978, 2830, 1728, 1677, 1469, 1367, 1154, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=$ $7.51 .0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H})$, $2.55(\mathrm{dt}, J=17.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=17.0,6.7, \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.13(\mathrm{~m}, 2 \mathrm{H})$, 1.44 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 172.8,165.5,147.4,115.5$, 81.1; $C H$ 133.8, 128.4, 119.1, 114.7, 64.8; $\mathrm{CH}_{2} 29.9,29.6, \mathrm{CH}_{3} 28.3$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]:$ 299.1372, found 299.1379.

3-(3-(but-3-en-1-yl)-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (88).

Following the general reductive alkylation procedure, 3-(but-3-en-1-yl)quinazolin$4(3 \mathrm{H})-\mathrm{one}^{79}(0.0276 \mathrm{~g}, 0.138 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0086 \mathrm{~g}, 0.160 \mathrm{mmol})$, acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.46 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of
SmI_{2} ($3.7 \mathrm{~mL}, 0.35 \mathrm{mmol}$) to give $\mathbf{8 8}(0.0307 \mathrm{~g}, 0.120 \mathrm{mmol}, 87 \%)$ as a colorless oil after purification by FCC ($1: 1$ hexanes:EtOAc).

Data for 88: $\mathrm{R}_{f} 0.31$ ($1: 1$ hexanes:EtOAc); IR (thin film) 2916, 2246, 1632, 1469, 1394, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 $(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddt, $J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dt}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dt}, J=$ $14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C 162.0,143.2,118.5$; $C \mathrm{H} 134.8,133.5,128.6,120.9,117.1$; $\mathrm{CH}_{2} 117.5,44.9$, 32.9, 28.5, 13.6; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]:$ 256.1450, found 256.1446 .

methyl 3-(3-(but-3-en-1-yl)-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate

 (89). Following the general reductive alkylation procedure, 3-(but-3-en-1-yl)quinazolin- $4(3 \mathrm{H})$-one ($0.0295 \mathrm{~g}, 0.147 \mathrm{mmol}$), CSA ($0.0375 \mathrm{~g}, 0.162 \mathrm{mmol}$), methyl acrylate $(0.07 \mathrm{~mL}, 0.78 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(3.6 \mathrm{~mL}, 0.37 \mathrm{mmol})$ to give $17(0.0264 \mathrm{~g}, 0.0916 \mathrm{mmol}, 62 \%)$ as a colorless oil after purification by FCC (3:1 hexanes:EtOAc).Data for 89: $\mathrm{R}_{f} 0.42$ (2:1 hexanes:EtOAc); IR (thin film) 2976, 2926, 1733, 1632, 1468, 1370, 1168, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84$ (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dd, $J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{brs}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=13.9$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (s, 3 H), 2.92 (dt, $J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) ~ \delta C 173.3,162.2,144.3,117.5 ; \mathrm{CH} 135.1$, 133.2, 128.5, 119.6, 115.7, 68.4; $\mathrm{CH}_{2} 117.0,44.8,32.7,29.6,28.5 ; \mathrm{CH}_{3} 51.8$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 289.1541$, found 289.1552.
tert-butyl 3-(3-(but-3-en-1-yl)-4-oxo-1,2,3,4-tetrahydroquinazolin-2-
$\mathbf{y l})$ propanoate (90). Following the general reductive alkylation procedure, 3-(but-3-en-1-yl)quinazolin-4(3H)-one ($0.0289 \mathrm{~g}, 0.144 \mathrm{mmol}$), CSA ($0.0368 \mathrm{~g}, 0.158 \mathrm{mmol}$), tert-butyl acrylate ($0.11 \mathrm{~mL}, 0.76 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(3.5 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $90(0.0364 \mathrm{~g}, 0.110 \mathrm{mmol}, 77 \%)$ as a colorless oil after purification by FCC (3:2 hexanes:EtOAc).

Data for 90: $\mathrm{R}_{f} 0.68$ (1:1 hexanes:EtOAc); IR (thin film) 2977, 2930, 1726, 1631, 1470, 1367, 1152, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1$ H), 5.84 (ddt, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.11 (dd, $J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=8.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (brs, 1 H$), 4.20(\mathrm{dt}, J=13.9,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{dt}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.09-1.91 (m, 2 H), 1.44 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δC $172.0,162.2,144.5,117.3,81.0 ;$ CH 135.1, 133.2, 128.4, 119.4, 115.4; $\mathrm{CH}_{2} 117.0$, 44.7, 32.7, 31.0, 28.6; CH_{3} 28.0; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 331.2022, found 331.2015

3-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile

Following the general reductive alkylation procedure, 2-methylquinazolin-4(3H)one ${ }^{80}(0.0229 \mathrm{~g}, 0.141 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0085 \mathrm{~g}, 0.155 \mathrm{mmol})$, acrylonitrile (0.05 mL , $0.76 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of SmI_{2} (3.6 $\mathrm{mL}, 0.35 \mathrm{mmol})$ to give $92(0.0247 \mathrm{~g}, 0.115 \mathrm{mmol}, 81 \%)$ as a white solid.

Data for 92: $\mathrm{R}_{f} 0.26$ ($1: 2$ hexanes:EtOAc); $\mathrm{mp}=113-114{ }^{\circ} \mathrm{C}$; IR (thin film) 2927, $2249,1655,1486,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}$, 1 H), $7.66(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=17.4,8.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=$ $17.3,8.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=14.5,8.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=14.5,8.7$,
6.3 Hz, 1 H), $1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 164.8,145.4$, 119.6, 113.9, 69.4; CH 134.4, 128.2, 119.3, 114.9; $\mathrm{CH}_{2} 37.3,12.3 ; \mathrm{CH}_{3} 28.5$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 216.1137, found 216.1129.
methyl 3-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (93). Following the general reductive alkylation procedure, 2-methylquinazolin- $4(3 \mathrm{H})$-one $(0.0211 \mathrm{~g}, 0.130 \mathrm{mmol}), \mathrm{CSA}(0.0333 \mathrm{~g}, 0.143 \mathrm{mmol})$, methyl acrylate $(0.04 \mathrm{~mL}$, $0.65 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.9$ $\mathrm{mL}, 0.33 \mathrm{mmol})$ to give know adduct $93(0.0179 \mathrm{~g}, 0.115 \mathrm{mmol}, 55 \%)$.
tert-butyl 3-(2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (94). Following the general reductive alkylation procedure, 2-methylquinazolin- $4(3 \mathrm{H})$-one $(0.0220 \mathrm{~g}, 0.136 \mathrm{mmol})$, CSA ($0.0348 \mathrm{~g}, 0.150 \mathrm{mmol})$, tert-butyl acrylate $(0.10 \mathrm{~mL}$, $0.68 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of SmI_{2} (3.3 $\mathrm{mL}, 0.34 \mathrm{mmol})$ to give $94(0.0227 \mathrm{~g}, 0.0782 \mathrm{mmol}, 58 \%)$ as a white solid after purification by FCC ($1: 1$ hexanes:EtOAc).

Data for 94: $\mathrm{R}_{f} 0.53$ ($1: 2$ hexanes:EtOAc); $\mathrm{mp}=116-117{ }^{\circ} \mathrm{C}$; IR (thin film) 2976, 2929, 1709, 1656, 1486, 1368, 1155, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86$ $(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=16.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.44 (dt, , $J=16.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11 (dt, $J=14.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (dt, $J=14.8$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δC 173.2, 164.4, 145.9, 114.0, 80.9, 70.0; CH 134.0, 128.3, 118.5, 114.5; $\mathrm{CH}_{2} 36.4,30.0$; CH_{3} 29.1, 28.0; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 291.1709, found 291.1697.

3-(3-benzyl-2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile

(96). Following the general reductive alkylation procedure, 3-benzyl-2-methylquinazolin- $4(3 \mathrm{H})$-one ${ }^{81}(0.0356 \mathrm{~g}, 0.142 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0093 \mathrm{~g}, 0.174$ $\mathrm{mmol})$, acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.47 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.7 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $96(0.0416 \mathrm{~g}, 0.136 \mathrm{mmol}$, 96%) as a white solid.

Data for 96: $\mathrm{R}_{f} 0.45$ ($1: 1$ hexanes:EtOAc); $\mathrm{mp}=148-149{ }^{\circ} \mathrm{C}$; IR (thin film) 3013, $2249,1625,1489,1397,1158,754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=$ $8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.91(\mathrm{dt}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~m}$, $2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) δ C 163.9, 143.8, 138.7, 119.2, 115.5, 73.4; CH 134.0, 128.9, 128.8, 127.4, 127.3, 119.8, 115.1; $\mathrm{CH}_{2} 45.4,34.5,12.3 ; \mathrm{CH}_{3} 25.6$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ONa}$ [M+Na]: 328.1426, found 328.1415.
methyl 3-(3-benzyl-2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (97). Following the general reductive alkylation procedure, 3-benzyl-2-methylquinazolin- $4(3 \mathrm{H})$-one $(0.0321 \mathrm{~g}, 0.128 \mathrm{mmol})$, CSA $(0.0328 \mathrm{~g}, 0.141 \mathrm{mmol})$, methyl acrylate $(0.06 \mathrm{~mL}, 0.92 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.2 \mathrm{~mL}, 0.32 \mathrm{mmol})$ to give $97(0.0199 \mathrm{~g}, 0.0588 \mathrm{mmol}, 46 \%)$ as a white solid after purification by FCC (5:1 hexanes:EtOAc).

Data for 97: $\mathrm{R}_{f} 0.66$ ($1: 1$ hexanes:EtOAc); $\mathrm{mp}=136-137{ }^{\circ} \mathrm{C}$; IR (thin film) 2950, 1734, 1624, 1489, 1397, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~m}, 2$ H), 2.12 (dt, $J=14.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{td}, J=10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, DEPT) $\delta C 173.8,164.2,144.5,139.1,115.2,74.1 ; C H$
133.6, 128.9, 128.5, 127.4, 127.0, 119.0, 114.4; $\mathrm{CH}_{2} 45.3,34.0,28.9 ; \mathrm{CH}_{3} 51.8,26.4$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 339.1709$, found 339.1693.

tert-butyl

3-(3-benzyl-2-methyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-
yl)propanoate (98). Following the general reductive alkylation procedure, 3-benzyl-2-methylquinazolin-4(3H)-one ($0.0331 \mathrm{~g}, 0.132 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.0080 \mathrm{~g}, 0.145$ mmol), tert-butyl acrylate ($0.10 \mathrm{~mL}, 0.66 \mathrm{mmol}$) in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(3.4 \mathrm{~mL}, 0.33 \mathrm{mmol})$ to give $98(0.0322 \mathrm{~g}$, $0.0847 \mathrm{mmol}, 64 \%$) as a white solid.

Data for 98: $\mathrm{R}_{f} 0.40$ (3:1 hexanes:EtOAc); $\mathrm{mp}=142-143{ }^{\circ} \mathrm{C}$; IR (thin film) 2977, 2930, 1726, 1625, 1489, 1394, 1154, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C 172.7,164.2,144.6,139.0,115.0,80.8,74.1$; CH 133.6, 128.8, 128.5, 127.3, 126.9, 118.7, 114.2; $\mathrm{CH}_{2} 45.2,33.8,30.2 ; \mathrm{CH}_{3} 27.9$, 26.4; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 339.1709$, found 339.1693.

3-(2-(tert-butyl)-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile

(100).

Following the general reductive alkylation procedure, 2-(tert-butyl)quinazolin-4(3H)one $^{82}(0.0280 \mathrm{~g}, 0.138 \mathrm{mmol})$, CSA $(0.0366 \mathrm{~g}, 0.158 \mathrm{mmol})$, acrylonitrile $(0.05 \mathrm{~mL}$, $0.76 \mathrm{mmol})$ in THF ($0.46 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of SmI_{2} (3.7 $\mathrm{mL}, 0.35 \mathrm{mmol})$ to give $100(0.0124 \mathrm{~g}, 0.0482 \mathrm{mmol}, 35 \%)$ as a white solid along with 0.0099 g of 2 -(tert-butyl)quinazolin-4(3H)-one after purification by FCC (1:1 hexanes:EtOAc).

Data for 100: $\mathrm{R}_{f} 0.65$ (1:2 EtOAc: Hexanes); IR (thin film) 3356, 2921, 2246, 1655 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.61-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.53-2.58 (m, 1 H$), 2.03-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1$, $146.5,134.9,128.3,120.0,118.2,12.8,111.6,43.2,33.5,29.9,24.6,12.8$; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 258.1606$, found 258.1599.

3-(3-cyclopropyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (102). Following the general reductive alkylation procedure, 3-cyclopropylquinazolin$4(3 \mathrm{H})-\mathrm{one}^{83}(0.0261 \mathrm{~g}, 0.140 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0086 \mathrm{~g}, 0.158 \mathrm{mmol})$, acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.47 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(3.7 \mathrm{~mL}, 0.35 \mathrm{mmol})$ to give $102(0.0340 \mathrm{~g}, 0.140 \mathrm{mmol}, 99 \%)$ as a colorless oil.

Data for 102: $\mathrm{R}_{f} 0.24$ (1:1 EtOAc: Hexanes); IR (thin film) 3294, 2929, 2246, 1636 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=8.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{ddd}, J=8.0,8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}$, $J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=9.6,6.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=8.0,6.4,4.4$ Hz, 2 H), 2.15-2.24 (m, 1 H) 2.01-2.10 (m, 1 H), 1.09-1.17 (m, 1 H), 0.79-0.89 (m, 2 H), 0.61-0.68 (m, 2 H$) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,143.4,134.0,128.6,120.3$, $118.9,117.4,116.4,68.9,28.5,27.9,13.8,10.2,6.0$; HRMS (EIt) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+]: 241.12152$, found 241.12128.

3-(3-cyclohexyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile

(104).

Following the general reductive alkylation procedure, 3-cyclohexylquinazolin-4(3H)one ${ }^{84}(0.0338 \mathrm{~g}, 0.148 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0089 \mathrm{~g}, 0.166 \mathrm{mmol})$, acrylonitrile $(0.05 \mathrm{~mL}$, $0.76 \mathrm{mmol})$ in THF $(0.49 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.9$ $\mathrm{mL}, 0.37 \mathrm{mmol})$ to give $104(0.0409 \mathrm{~g}, 0.144 \mathrm{mmol}, 97 \%)$ as a colorless oil after purification by FCC ($3: 1$ hexanes:EtOAc).

Data for 104: $\mathrm{R}_{f} 0.38$ (1:1 EtOAc: Hexanes); IR (thin film) 3284, 2932, 2856, 2245, $1622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=$ $8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95 (ddd, $J=8.4,8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (dd, $J=10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (tt, $J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34-2.44 (m, 2 H), 2.23$2.29(\mathrm{~m}, 1 \mathrm{H}) 1.78-1.92(\mathrm{~m}, 6 \mathrm{H}), 1.69(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{qd}, J=11.9,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{qt}, J=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.8,142.9,133.4,128.9,120.8,119.6,118.9,117.1,63.2,53.4,31.8,31.6,30.2$, 26.1, 25.9, 25.5, 14.0; HRMS (EI+) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+]$: 283.16847, found 283.16723.

3-(3-benzyl-6,7-dimethoxy-4-oxo-1,2,3,4-tetrahydroquinazolin-2-

yl)propanenitrile (106). Following the general reductive alkylation procedure, 3-benzyl-6,7-dimethoxyquinazolin-4(3H)-one ${ }^{85}(0.0425 \mathrm{~g}, 0.143 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0092$ $\mathrm{g}, 0.172 \mathrm{mmol}$), acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.48 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.7 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $106(0.0481 \mathrm{~g}$, $0.137 \mathrm{mmol}, 95 \%$) as a white foam after purification by FCC (1:2 hexanes:EtOAc).

Data for 106: $\mathrm{R}_{f} 0.36$ (4:1 EtOAc: Hexanes); IR (thin film) 3326, 2930, 2247, 1674, 1613, $1502 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 5 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~d}, 14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=17.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=14.8$ Hz, 1 H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 2.28-2.43 (m, 2 H), 2.09-2.18 (m, 1 H), 1.74$1.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,154.2,144.7,138.1,137.2,129.0$, 128.2, 128.0, 119.0, 111.3, 110.1, 101.5, 67.0, 56.4, 56.2, 47.9, 27.7, 13.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 352.1661$, found 352.1660.
(\pm)-ethyl 3-((R)-3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)butanoate (107) Following the general reductive alkylation procedure, 3-benzylquinazolin$4(3 \mathrm{H})$-one ($0.0327 \mathrm{~g}, 0.139 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0085 \mathrm{~g}, 0.159 \mathrm{mmol})$, ethyl crotylate
($0.86 \mathrm{~mL}, 6.9 \mathrm{mmol}$) in THF ($0.46 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.8 \mathrm{~mL}, 0.35 \mathrm{mmol})$ to give adduct $107(0.0369 \mathrm{~g}, 0.105 \mathrm{mmol}, 76 \%)$ as a light yellow oil.

Data for 107: $\mathrm{R}_{f} 0.51$ (1:1 hexanes:EtOAc); IR (thin film) 2919, 1730, $1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (dd, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.84$ (td, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=0.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.55 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-4.10 (m, 2 H), 3.96 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.63$ $(\mathrm{m}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=15.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=15.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,162.8$, $145.3,137.1,133.7,129.0,128.9,127.9,127.7,119.2,116.6,114.5,71.6,60.8,49.0$, 37.1, 35.5, 16.5, 14.3; HRMS (ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 353.1865$, found 353.1870 .
ethyl (E)-6-((2-carbamoylphenyl)amino)hex-2-enoate (S15). To a DMF (5.4 mL, $0.3 \mathrm{M})$ solution of 2-aminobenzamide ($0.6663 \mathrm{~g}, 4.89 \mathrm{mmol}$) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.4556 \mathrm{~g}, 3.30 \mathrm{mmol})$, tetrabutylammonium iodide $(0.1808 \mathrm{~g}, 0.490 \mathrm{mmol})$, and the known ${ }^{86}$ bromo ester ($0.3608 \mathrm{~g}, 1.63 \mathrm{mmol}$). This mixture was heated to $50^{\circ} \mathrm{C}$ with stirring for a period of 16 hours. After cooling, the reaction mixture was diluted with ethyl acetate and washed with half-saturated aqueous LiCl . The organics were dried over MgSO_{4}, concentrated, and purified by FCC (2:1 hexanes:EtOAc) to give $\mathbf{S 1 5}$ $(0.2425 \mathrm{~g}, 0.878 \mathrm{mmol}, 54 \%)$ as a colorless oil.

Data for S15: $\mathrm{R}_{f} 0.57$ (2:1 EtOAc: Hexanes); IR (thin film) 3345, 2936, 1711, 1648 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=$ $8.4,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.92(\mathrm{bs}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2$ H), $3.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (quin. $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,166.7,150.3,148.2$, 133.6,
128.5, 122.1, 114.6, 113.0, 111.8, 60.3, 42.2, 29.8, 27.6, 14.4; HRMS (EI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+]: 276.14740$, found 276.14666.
ethyl (E)-6-(4-oxoquinazolin-1(4H)-yl)hex-2-enoate (108). To a THF ($0.75 \mathrm{~mL}, 0.3$ M) solution of $\mathbf{S 1 5}(0.0621 \mathrm{~g}, 0.255 \mathrm{mmol})$ were added trimethyl orthoformate (0.12 $\mathrm{mL}, 1.097 \mathrm{mmol}$), and one drop of trifluoroacetic acid. The mixture was heated to reflux for 65 minutes. At this time, TLC indicated the consumption of S15. After cooling, the reaction mixture was concentrated and purified by FCC (19:1 hexanes: EtOAc) to give $\mathbf{1 0 8}(0.0559 \mathrm{~g}, 0.195 \mathrm{mmol}, 86 \%)$ as a colorless oil.

Data for 108: $\mathrm{R}_{f} 0.75$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2981, $1713,1648,1606,1546 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.32(\mathrm{bs}, 1 \mathrm{H}), 7.77(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.6,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1$ H), 4.18 (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.35(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.07 (quin, $J=7.2 \mathrm{~Hz}, 2$ $\mathrm{H}), 1.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,166.0,153.0,145.5$, $138.8,134.0,129.5,126.7,123.4,12.09,114.4,60.5,49.6,28.8,27.0,14.2$; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 287.1396, found 287.1392.

ethyl 2-((4R,4aR)-6-oxo-2,3,4,4a,5,6-hexahydro-1H-pyrido[1,2-a]quinazolin-4-

 $\mathbf{y l})$ acetate (109). To a solution of $108(0.0458 \mathrm{~g}, 0.1594 \mathrm{mmol})$ and CSA $(0.0412 \mathrm{~g}$, $0.177 \mathrm{mmol})$ in THF $(0.53 \mathrm{~mL}, 0.3 \mathrm{M})$ was added a THF solution of $\mathrm{SmI}_{2}(4.3 \mathrm{~mL}$, 0.40 mmol) via syringe pump over a period of 1 hour. At this time, TLC indicated the consumption of $\mathbf{1 0 8}$. The reaction mixture was diluted with half-saturated aqueous Rochelle salt. This biphasic mixture was extracted with ethyl acetate. The combined extracts were dried over MgSO_{4} and concentrated. Purification by FCC (1:1 hexanes:EtOAc) gave $109(0.0343 \mathrm{~g}, 0.119 \mathrm{mmol}, 75 \%)$ as a white solid.Data for 109: $\mathrm{R}_{f} 0.71$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 3201, 2939, 1730, $1675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{dd}, J=7.71 .4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (ddd, $J=8.4,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1$ H), 4.67 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14-4.21 (m, 2 H), 3.74 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=7.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{td}, J=3.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53($ sept. $J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.36 (dd, $J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75-1.82 (m, 2 H), 1.66-1.73 (m, 2 H), 1.26 (t, $J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,164.2,149.9,134.1,128.9,119.9$, 117.6, 113.2, 71.0, 61.2, 46.0, 34.0, 33.0, 27.5, 20.1, 14.3; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 289.1552, found 289.1556.
ethyl (E)-5-(2-aminobenzamido)-3-methylpent-2-enoate (S16). To a DCM (4.1 $\mathrm{mL}, 0.5 \mathrm{M})$ solution of the known^{87} ester $(0.5275 \mathrm{~g}, 2.05 \mathrm{mmol})$ was added trifluoroacetic acid ($0.80 \mathrm{~mL}, 10.4 \mathrm{mmol})$. The solution was stirred at room temperature for 18 hours. At this time, TLC indicated the consumption of the ester. The reaction was quenched with excess solid $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered, and concentrated to give the free aminoester. The aminoester was dissolved in THF ($7 \mathrm{~mL}, 0.3 \mathrm{M}$). To this solution were added Isatoic anhydride ($0.2787 \mathrm{~g}, 1.71 \mathrm{mmol}$) along with DMAP $(0.0420 \mathrm{~g}, 0.342 \mathrm{mmol})$ and the mixture was heated to reflux for 24 hours. At this time, TLC indicated the consumption of the isatoic anhydride. The reaction mixture was diluted with EtOAc, washed with brine, the organics were dried over MgSO_{4}, and concentrated. Purification by FCC (3:1 hexanes:EtOAc) gave S16 ($0.4703 \mathrm{~g}, 1.70$ mmol, 99%) as a colorless oil.

Data for S16: $\mathrm{R}_{f} 0.44$ (4:1 EtOAc : Hexanes); IR (thin film) 3461, 3353, 2981, 1707, $1693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23 (dd, J $=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{bs}, 1 \mathrm{H})$, $5.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3$, 133.5,
156.1, 148.0, 132.5, 127.2, 118.0, 117.9, 117.4, 116.6, 59.9, 40.7, 37.4, 18.8, 14.4;

HRMS (TOF MS ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 277.1552, found 277.1547.
ethyl (E)-3-methyl-5-(4-oxoquinazolin-3(4H)-yl)pent-2-enoate (110). To a THF ($2.0 \mathrm{~mL}, 0.3 \mathrm{M}$) solution of $\mathbf{S 1 6}(0.1613 \mathrm{~g}, 0.584 \mathrm{mmol})$ was added one drop of trifluoroacetic acid and trimethyl orthoformate ($0.32 \mathrm{~mL}, 2.92 \mathrm{mmol}$). This mixture was heated to reflux for 30 hours. The reaction mixture was concentrated and purified by FCC ($1: 1$ hexanes:EtOAc) to give $110(0.0384 \mathrm{~g}, 0.134 \mathrm{mmol}, 23 \%)$ along with 0.0904 g of recovered S16.

Data for 110: $\mathrm{R}_{f} 0.42$ (1:1 EtOAc : Hexanes); IR (thin film) 2981, 1714, $1676 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (dd, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96(\mathrm{~s}, 1 \mathrm{H}), 7.77$ (ddd, $J=8.4,8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{ddd}, J=7.7,7.7,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (quin, $J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2$ H), $2.26(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.2,161.1,154.2,148.2,146.2,134.5,127.7,127.6,126.8,122.2,118.8,59.9,45.3$, 40.1, 18.9, 14.4; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 287.1396, found 287.1387.
ethyl 2-((3R,3aR)-3-methyl-9-oxo-1,2,3,3a,4,9-hexahydropyrrolo[2,1-b]quinazolin-3-yl)acetate (111). To a solution of $110(0.0390 \mathrm{~g}, 0.136 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(0.0080 \mathrm{~g}, 0.150 \mathrm{mmol})$ in THF $(0.45 \mathrm{~mL}, 0.3 \mathrm{M})$ was added a THF solution of $\mathrm{SmI}_{2}(4.5 \mathrm{~mL}, 0.34 \mathrm{mmol})$ via syringe pump over a period of 1 hour. At this time, TLC indicated the consumption of $\mathbf{1 1 0}$. The reaction mixture was diluted with halfsaturated aqueous Rochelle salt. This biphasic mixture was extracted with ethyl acetate. The combined extracts were dried over MgSO_{4} and concentrated. Purification by FCC ($2: 1$ hexanes:EtOAc) gave $111(0.0308 \mathrm{~g}, 0.107 \mathrm{mmol}, 78 \%, 9.5: 1 \mathrm{dr})$ as a white solid.

Data for 111 (major diastereomer): $\mathrm{R}_{f} 0.29$ (1:1 EtOAc: Hexanes); IR (thin film) 3284, 2976, 1726, $1637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.68 (dd, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.84(\mathrm{bs}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{qd}, J=7.0,1.4 \mathrm{~Hz}$, 2 H), 3.76 (dt, $J=11.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.64(\mathrm{dd}, J=12.6,9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddd}, J=13.3,7.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ $(\mathrm{dt}, J=12.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(176 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.7,162.6,147.4,133.2,128.3,119.8,117.3,115.0,77.7,60.9,44.3$, 42.2, 38.7, 35.6, 22.4, 14.4; HRMS (EI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]:$ 289.1552, found 289.1539.

3-(3-benzyl-4-oxo-1,3-diazaspiro[4.4]nonan-2-yl)propanenitrile (113). Following the general reductive alkylation procedure, 3-benzyl-1,3-diazaspiro[4.4]non-1-en-4one ${ }^{88}(0.0294 \mathrm{~g}, 0.129 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0078 \mathrm{~g}, 0.146 \mathrm{mmol})$, acrylonitrile $(0.04 \mathrm{~mL}$, $0.61 \mathrm{mmol})$ in THF ($0.43 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of SmI_{2} (4.2 $\mathrm{mL}, 0.32 \mathrm{mmol})$ to give $113(0.0319 \mathrm{~g}, 0.113 \mathrm{mmol}, 87 \%)$ as a yellow oil after purification by FCC (3:2 hexanes:EtOAc).

Data for 113: $\mathrm{R}_{f} 0.68$ (EtOAc); IR (thin film) 3326, 2947, 2246, $1689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl_{3}) $\delta 4.87(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.46(\mathrm{~m}, 1 \mathrm{H}) 2.34-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.01$ (dddd, $J=16.8,14.0,8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.82-1.84 (m, 2 H) 1.74-1.80 (m, 2 H), 1.67$1.71(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.9,136.1,129.1,128.2,128.0,128.0,119.2,69.5,68.8,44.7,39.3,38.5,37.4$, 29.9, 25.5, 25.3, 12.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 284.1763$, found 284.1767.
(\pm) tert-butyl (1S,2S,5R,6R)-4-oxo-3-azatricyclo[4.2.1.02,5]nonane-3-carboxylate (S17). To a THF ($5.0 \mathrm{~mL}, 0.3 \mathrm{M}$) solution of known ${ }^{89}$ (1S,2S,5R,6R)-3-
azatricyclo[4.2.1.02,5]nonan-4-one was added $\mathrm{Boc}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 1.52 \mathrm{mmol})$ and DMAP ($0.0180 \mathrm{~g}, 0.147 \mathrm{mmol}$). This mixture was stirred at rt for 20 hours. At this time, TLC indicated the consumption of the (1S,2S,5R,6R)-3-azatricyclo[4.2.1.02,5]nonan-4-one. The mixture was diluted with EtOAc, washed with brine, dried over MgSO_{4}, and concentrated. Purification by FCC (9:1 hexanes:EtOAc) gave $\mathbf{S 1 7}(0.0874 \mathrm{~g}, 0.368 \mathrm{mmol}, 26 \%)$ as a white solid.

Data for S17: $\mathrm{R}_{f} 0.34$ (1:1 EtOAc: Hexanes); IR (thin film) 2973, 2877, 1796, 1720 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1$ H), $2.67(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9$ H), 1.24-1.28 (m, 1 H$), 1.07-1.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,147.8$, 83.0, 56.6, 56.5, 37.1, 34.8, 31.2, 28.2, 27.2, 24.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]: 260.1263$, found 260.1255.
(\pm) tert-butyl ((1S,2S,3R,4R)-3-(benzylcarbamoyl)bicyclo[2.2.1]heptan-2$\mathbf{y l})$ carbamate ($\mathbf{S 1 8}$). To a THF ($0.40 \mathrm{~mL}, 0.3 \mathrm{M}$) solution of $\mathbf{S 1 7}(0.0297 \mathrm{~g}, 0.125$ $\mathrm{mmol})$ was added benzylamine ($0.02 \mathrm{~mL}, 0.183 \mathrm{mmol}$). The mixture was stirred at rt for 22 hours. At this time, TLC indicated the consumption of S17. The mixture was concentrated to give $\mathbf{S 1 8}(0.0430 \mathrm{~g}, 0.125 \mathrm{mmol}, 99 \%)$ as a white solid.

Data for S18: $\mathrm{R}_{f} 0.28$ (3:1 Hexanes : EtOAc); IR (thin film) 3292, 2952, 1643, 1555 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 3 \mathrm{H})$, $5.94(\mathrm{bs}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=14.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=$ $14.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dddd}, J=16.1$, 12.6, 4.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.45-1.51 (m, 1 H), 1.42, ($\mathrm{s}, 9 \mathrm{H}$), 1.22-1.26 (m, 2 H), 1.12 (dddd, $J=14.0,8.4,2.8,2.8) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,156.0,138.3,128.8$, 127.9, 127.6, 79.4, 56.4, 53.9, 43.7, 42.6, 40.7, 35.3, 28.8, 28.6, 26.7; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 345.2178$, found 345.2164.
(\pm) (4aR,5R,8S,8aS)-3-benzyl-4a,5,6,7,8,8a-hexahydro-5,8-methanoquinazolin$\mathbf{4 (3 H})$-one (114). Gaseous HCl was bubbled through a DCM ($7.0 \mathrm{~mL}, 0.1 \mathrm{M}$) solution of $\mathbf{S 4}(0.2404 \mathrm{~g}, 0.698 \mathrm{mmol})$ while stirring at rt for a period of 1 hour. At this time, TLC indicated the consumption of $\mathbf{S 1 8}$. The reaction mixture was concentrated to give the HCl salt of the Boc-deprotected $\mathbf{S 1 8}(0.2006 \mathrm{~g}, 0.714 \mathrm{mmol}, 99 \%)$. This salt $(0.0846 \mathrm{~g}, 0.301 \mathrm{mmol})$ was dissolved in triethyl orthoformate $(3.0 \mathrm{~mL}, 0.1 \mathrm{M})$ and heated to reflux for 19 hours. The reaction mixture was concentrated and purified by FCC (1:1 hexanes:EtOAc to give $114(0.0270 \mathrm{~g}, 0.0762 \mathrm{mmol}, 35 \%)$ as a white solid.

Data for 114: $\mathrm{R}_{f} 0.38$ (2:1 EtOAc: Hexanes); IR (thin film) 3377, 2959, 2873, 1671 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.80(\mathrm{~d}, J=26.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=26.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 1.58-1.69(\mathrm{~m}, 2 \mathrm{H}) 1.22-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.4,144.0,136.4,129.1,128.1,127.8,65.0,48.7,48.1,46.1,43.7,34.6,29.9$, 26.4; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 255.1497$, found 255.1493.
(\pm) 3-((2R,4aR,5R,8S,8aS)-3-benzyl-4-oxodecahydro-5,8-methanoquinazolin-2yl)propanenitrile (115). Following the general reductive alkylation procedure, 114 $(.0234 \mathrm{~g}, 0.0920 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0056 \mathrm{~g}, 0.105 \mathrm{mmol})$, acrylonitrile ($0.03 \mathrm{~mL}, 0.46$ $\mathrm{mmol})$ in THF $(0.31 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(3.0 \mathrm{~mL}$, $0.23 \mathrm{mmol})$ to give $\mathbf{1 1 5}(0.0283 \mathrm{~g}, 0.0915 \mathrm{mmol}, 99 \%$, single diastereomer) as a yellow oil.

Data for 115: $\mathrm{R}_{f} 0.50$ (2:1 EtOAc: Hexanes); IR (thin film) 3317, 2953, 2246, 1633 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{bs}, 1 \mathrm{H}), 4.17$ (bs, 2 H), $3.24(\mathrm{~d}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.98-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1$ H), 1.21-1.34 (m, 4 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,137.3,129.1,128.2$, 127.9,
119.0, 68.6, 57.2, 49.4, 48.2, 42.6, 41.1, 34.2, 28.4, 27.7, 27.2, 14.3; HRMS (TOF MS $\mathrm{ES}+$) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 310.1919$, found 310.1933.

3-(6-oxohexahydropyrrolo[1,2-a]pyrimidin-8a(6H)-yl)propanenitrile
 (117).

Following the general reductive alkylation procedure, known ${ }^{90}$ 3,4,7,8-tetrahydropyrrolo[1,2-a]pyrimidin- $6(2 \mathrm{H})$-one $(.0187 \mathrm{~g}, 0.135 \mathrm{mmol}), \mathrm{CSA}(0.0343 \mathrm{~g}$, 0.148 mmol), acrylonitrile ($0.04 \mathrm{~mL}, 0.61 \mathrm{mmol}$) in THF ($0.45 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.5 \mathrm{~mL}, 0.34 \mathrm{mmol})$ to give $\mathbf{1 1 7}(0.0044 \mathrm{~g}$, $0.0228 \mathrm{mmol}, 17 \%$) as a colorless oil after purification by FCC (6:1 EtOAc:10\% $\mathrm{NH}_{4} \mathrm{OH}$ in MeOH$)$.

Data for 117: $\mathrm{R}_{f} 0.40$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 3358, 2933, 2247, $1674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.17(\mathrm{dd}, J=14.0,4.2 \mathrm{~Hz}, 1$ H), 2.92-3.04 (m, 3 H), 2.34-2.50 (m, 5 H$), 2.25(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{bs}, 1 \mathrm{H})$, 1.53-1.69 (m, 4 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,119.5,75.0,40.0,36.1,31.9$, 28.9, 28.1, 25.5, 12.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]:$ 194.1293, found 194.1294.

3-(3-acetyl-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (119). Following the general reductive alkylation procedure, known ${ }^{91}$ 1-(quinazolin-3(4H)-yl)ethan-1-one $(.0248 \mathrm{~g}, 0.142 \mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0087 \mathrm{~g}, 0.16 \mathrm{mmol})$, acrylonitrile ($0.05 \mathrm{~mL}, 0.76$ mmol) in THF ($0.47 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.7 \mathrm{~mL}$, $0.36 \mathrm{mmol})$ to give $119(0.0116 \mathrm{~g}, 0.0506 \mathrm{mmol}, 36 \%)$ as a colorless oil after purification by FCC (3:2 EtOAc:hexanes).

Data for 119: $\mathrm{R}_{f} 0.14$ (2:1 EtOAc: Hexanes); IR (thin film) 3346, 2930, 2245, 1639 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $3: 1$ mixture of rotational isomers $\delta 7.13(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1$ H), $5.90(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$,
2.39-2.52(m, 2 H$), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9$, 140.1, 128.5, 126.6, 120.1, 119.4, 118.7, 117.8, 59.4, 43.5, 29.0, 22.2, 13.7; HRMS (EI+) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+]$: 229.12152, found 229.12141.
tert-butyl 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydropyrimidin-2-yl)propanoate (121). Following the general reductive alkylation procedure, known ${ }^{92}$ 3-benzylpyrimidin$4(3 \mathrm{H})$-one ($.0293 \mathrm{~g}, 0.157 \mathrm{mmol})$, CSA ($0.0419 \mathrm{~g}, 0.180 \mathrm{mmol}$), tert-butyl acrylate $(0.11 \mathrm{~mL}, 0.75 \mathrm{mmol})$ in THF ($0.52 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(5.0 \mathrm{~mL}, 0.39 \mathrm{mmol})$ to give $121(0.0195 \mathrm{~g}, 0.0616 \mathrm{mmol}, 39 \%)$ as a colorless oil along with 0.0046 g of recovered starting material after purification by FCC (2:1 hexanes:EtOAc).

Data for 121: $\mathrm{R}_{f} 0.45$ (EtOAc); IR (thin film) 3283, 2977, 2920, 1726, $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{D}_{3} \mathrm{COD}$) $\delta 7.32-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=7.0$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.74(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.29(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,166.0,143.9,137.7,128.2,127.9,127.1,90.1,80.4,66.9$, 46.5, 29.8, 26.9, 25.7; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$: 339.1685 , found 339.1688 .

3-(1,3-dimethyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (123). Following the general reductive alkylation procedure, known ${ }^{93}$ 1,3-dimethyl-4-oxo-3,4-dihydroquinazolin-1-ium iodide ($.0430 \mathrm{~g}, 0.142 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.0085 \mathrm{~g}, 0.156$ mmol), acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.4 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $\mathbf{1 2 3}(0.0335 \mathrm{~g}, 0.138 \mathrm{mmol}$, 97\%) as a colorless oil.

Data for 123: $\mathrm{R}_{f} 0.18$ (1:2 hexanes:EtOAc); IR (thin film) 2938, 2245, 1646, 1495, $756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=$
$8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{DEPT}\right) ~ \delta C 162.2,146.1,118.5,118.2$; CH 133.7, 128.5, 120.0, 115.3, 76.6; $\mathrm{CH}_{2} 27.2,13.4 ; \mathrm{CH}_{3} 39.4,33.7$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 229.1215$, found 229.1220.
methyl 3-(1,3-dimethyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate (124). Following the general reductive alkylation procedure, known 1,3-dimethyl-4-oxo-3,4-dihydroquinazolin-1-ium iodide ($.0412 \mathrm{~g}, 0.136 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.0089 \mathrm{~g}$, $0.166 \mathrm{mmol})$, methyl acrylate ($0.06 \mathrm{~mL}, 0.68 \mathrm{mmol}$) in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(3.5 \mathrm{~mL}, 0.34 \mathrm{mmol})$ to give $124(0.0331 \mathrm{~g}$, $0.120 \mathrm{mmol}, 88 \%$) as a colorless oil.

Data for 124: $\mathrm{R}_{f} 0.27$ (1:2 hexanes:EtOAc); IR (thin film) 2950, 1735, 1648, 1494, 1162, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 $(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) \delta C 173.0,162.5,146.5,117.4$; CH 133.5, 128.5, 118.7, 113.3, 77.3; $\mathrm{CH}_{2} 29.2,26.5 ; \mathrm{CH}_{3} 51.8,37.9,33.8$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 262.1318$, found 262.1323.

tert-butyl 3-(1,3-dimethyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanoate

 (125). Following the general reductive alkylation procedure, known 1,3-dimethyl-4-oxo-3,4-dihydroquinazolin-1-ium iodide (. $0442 \mathrm{~g}, 0.146 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.0088 \mathrm{~g}$, $0.161 \mathrm{mmol})$, tert-butyl acrylate ($0.11 \mathrm{~mL}, 0.73 \mathrm{mmol}$) in THF ($0.50 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.5 \mathrm{~mL}, 0.37 \mathrm{mmol})$ to give $\mathbf{1 2 5}(0.0434 \mathrm{~g}$, $0.136 \mathrm{mmol}, 93 \%$) as a colorless oil.Data for 125: $\mathrm{R}_{f} 0.51$ (1:2 hexanes:EtOAc); IR (thin film) 2975, 1726, 1649, 1494, 1152, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (td, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H})$, 1.43 ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $\delta C 171.9,162.6,146.5,117.4$, 80.9; CH 133.5, 128.5, 118.5, 113.1, 77.2; $C_{2} 30.6,26.5 ; \mathrm{CH}_{3} 37.7$, 33.9, 28.1; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 304.1787, found 304.1796.

3-(1,2,3-trimethyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)propanenitrile (127).
Following the general reductive alkylation procedure, known ${ }^{94}$ 1,2,3-trimethyl-4-oxo-3,4-dihydroquinazolin-1-ium iodide ($.0450 \mathrm{~g}, 0.142 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}(0.0089 \mathrm{~g}, 0.166$ mmol), acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.47 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(4.7 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $127(0.0334 \mathrm{~g}, 0.137 \mathrm{mmol}$, 97%) as a colorless oil.

Data for 127: $\mathrm{R}_{f} 0.77$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2952, 2247, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (ddd, $J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.92 (ddd, $J=8.4,8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.79(\mathrm{~d}, J=8.4$ Hz, 1 H), 3.10 (s, 3 H), 2.86 (s, 3 H) 2.35-2.50 (m, 2 H), 2.22-2.34 (m, 2 H), 1.58 (s, 3 $\mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3,146.9,134.1,128.7,119.9,119.1,117.0,114.6$, 33.7, 33.0, 28.6, 20.8, 12.1; HRMS (EI+) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ [M+]: 243.13717, found 243.13734.

3-(1,3-dimethyl-4-oxo-1,2,3,4-tetrahydropyrimidin-2-yl)propanenitrile
(129).

Following the general reductive alkylation procedure, known ${ }^{95}$ 1,3-dimethyl-4-oxo-3,4-dihydropyrimidin-1-ium iodide (. $0343 \mathrm{~g}, 0.144 \mathrm{mmol}$), CSA ($0.0376 \mathrm{~g}, 0.162$ $\mathrm{mmol})$, acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.48 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(3.9 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $129(0.0173 \mathrm{~g}, 0.0965$
$\mathrm{mmol}, 67 \%$) as a yellow oil after purification by FCC (9:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{MeOH})$.

Data for 129: $\mathrm{R}_{f} 0.45$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2927, $2246,1627 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.53(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.82 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $4.66(\mathrm{td}, J=6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.43-$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.14(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.6, 145.7, 118.9, 93.9, 75.3, 40.9, 33.2, 25.6, 13.0; HRMS (EI+) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+]: 179.10587$, found 179.10647.

3-(1,3-dimesityl-5,5-dimethyl-4-oxohexahydropyrimidin-2-yl)propanenitrile

(131). Following the general reductive alkylation procedure, known ${ }^{66}$,3-dimesityl-5,5-dimethyl-4-oxo-3,4,5,6-tetrahydropyrimidin-1-ium chloride (. $0569 \mathrm{~g}, 0.143$ $\mathrm{mmol})$, CSA ($0.0401 \mathrm{~g}, 0.173 \mathrm{mmol}$), acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF $(0.48 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\operatorname{SmI}_{2}(3.8 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $131(0.0301 \mathrm{~g}, 0.0721 \mathrm{mmol}, 50 \%)$ as a white solid after purification by FCC (9:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH).

Data for 131: $\mathrm{R}_{f} 0.65$ (1:1 EtOAc:hexanes); IR (thin film) 2959, 2244, $1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.00(\mathrm{~s}, 1 \mathrm{H}$), 6.99 ($\mathrm{s}, 1 \mathrm{H}$), 6.93 ($\mathrm{s}, 1 \mathrm{H}$), 6.89 ($\mathrm{s}, 1 \mathrm{H}$), $5.29(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (s, 3 H), 2.45 (s, 3 H) 2.34 (s, 3 H), 2.29 (s, 3 H), 2.25 (s, 3 H), 2.19 (s, 3 H), 1.95$2.00(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7,142.7,139.4,138.6,138.5,137.9,137.7,136.1,135.6$, $132.1,131.3,131.1,130.6,119.9,76.7,61.0,49.4,49.2,49.1,49.0,48.9,48.8,48.6$, 42.0, 28.7, 26.5, 24.8, 21.0, 20.9, 20.7, 20.5, 19.0, 18.9, 14.7; HRMS (EI+) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 418.2858$, found 418.2842. $1.86 \mathrm{mmol})$ and 1 drop of DMF was added oxalyl chloride ($0.17 \mathrm{~mL}, 1.98 \mathrm{mmol}$). This solution was stirred at rt for 2 h . At this time, the solution of the acid chloride was added dropwise to a DCM ($3.7 \mathrm{~mL}, 0.2 \mathrm{M}$) solution of known ${ }^{98}(\mathrm{E})-N_{1}, N^{\prime}-$ diphenylformimidamide $(0.3004 \mathrm{~g}, 1.53 \mathrm{mmol})$ and triethylamine $(0.28 \mathrm{~mL}, 2.00$ mmol). After stirring at rt for 0.5 hours, the mixture was concentrated and extracted with PhMe . The PhMe extracts were filtered through celite and then refluxed for 28 hours. Filtration of the white precipitate gave $132(0.2815 \mathrm{~g}, 0.0894158 \%)$ as a white solid.

Data for 132: $\mathrm{R}_{f} 0.64$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 2972, 2873, 1671, $1594 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44$ ($\mathrm{s}, 1 \mathrm{H}$), 7.71-7.30 (m, 2 H), 7.59-7.68 (m, 6 H$), 7.51-7.54(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,156.1,140.8,135.3,130.4,130.4,130.3,128.2,123.5,60.4$, 38.1, 22.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ [M+]: 279.1497, found 279.1487.

3-(5,5-dimethyl-4-oxo-1,3-diphenylhexahydropyrimidin-2-yl)propanenitrile

(133). Following the general reductive alkylation procedure, 132 (. $0418 \mathrm{~g}, 0.133$ $\mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0081 \mathrm{~g}, 0.151 \mathrm{mmol})$, acrylonitrile $(0.04 \mathrm{~mL}, 0.61 \mathrm{mmol})$ in THF $(0.44 \mathrm{~mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.4 \mathrm{~mL}, 0.33 \mathrm{mmol})$ to give $61(0.0247 \mathrm{~g}, 0.0741 \mathrm{mmol}, 56 \%)$ as a colorless oil after purification by FCC (2:1 hexanes:EtOAc).

Data for 133: $\mathrm{R}_{f} 0.37$ (4:1 EtOAc: $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); IR (thin film) 3364, 2926, 2245, $1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-$ $7.38(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.46(\mathrm{~m}, 1 \mathrm{H})$, 3.73 (dd, $J=14.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.58(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.29(\mathrm{~m}, 4 \mathrm{H}), 1.28$
(s, 3 H), $1.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.8,149.6,140.2,130.0$, 129.9, 128.0, 127.9, 121.5, 118.8, 117.6, 74.7, 54.5, 40.6, 28.3, 27.4, 25.0, 13.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]: 334.1919$, found 334.1904.

3-benzyl-2-propylquinazolin-4(3H)-one (138). To a stirring THF ($0.48 \mathrm{~mL}, 0.3 \mathrm{M}$) solution of known ${ }^{99}$ amidine $137(0.0396 \mathrm{~g}, 0.143 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(0.0091 \mathrm{~g}, 0.170$ mmol) was added a THF solution of $\mathrm{SmI}_{2}(4.7 \mathrm{~mL}, 0.36 \mathrm{mmol})$ via syringe pump over 1 hour. The reaction mixture was then diluted with half-saturated aqueous Rochelle salt. This biphasic mixture was extracted with ethyl acetate. The combined extracts were dried over MgSO_{4} and concentrated to give known ${ }^{100}$ amidine 138 $(0.0114 \mathrm{~g}, 0.041 \mathrm{mmol}, 23 \%)$ as a white solid along with 0.0179 g of recovered 137.

3-(3-benzyl-2-cyclopropyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-

yl)propanenitrile (139) and 3-(4-benzyl-5-oxo-2,3,4,5-tetrahydropyrrolo[1,2-a]quinazolin-3a(1H)-yl)propanenitrile (140). Following the general reductive alkylation procedure, known ${ }^{101}$ amidine $137(.0391 \mathrm{~g}, 0.141 \mathrm{mmol})$, CSA (0.0371 g , 0.160 mmol), acrylonitrile ($0.05 \mathrm{~mL}, 0.76 \mathrm{mmol}$) in THF ($0.47 \mathrm{~mL}, 0.3 \mathrm{M}$) were reacted with a THF solution of $\mathrm{SmI}_{2}(3.8 \mathrm{~mL}, 0.36 \mathrm{mmol})$ to give $139(0.0074 \mathrm{~g}$, $0.0224 \mathrm{mmol}, 16 \%)$ as a colorless oil and $140(0.0069 \mathrm{~g}, 0.0208 \mathrm{mmol}, 15 \%)$ as a colorless oil after purification by FCC (2:1 hexanes:EtOAc) along with 0.0136 g of 137.

Data for 139: $\mathrm{R}_{f} 0.52$ (1:1 Hexanes: EtOAc); IR (thin film) 3330, 2929, 2247, 1625 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.31 (td, $J=7.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62$ (dd, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.30$ (dddd, $J=10.5,8.4,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.69-.73(\mathrm{~m}, 1 \mathrm{H}), 0.60-.64(\mathrm{~m}, 1 \mathrm{H}), 0.50-.54$ $(\mathrm{m}, 1 \mathrm{H}), .37-.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,144.3,139.2,134.2$,
129.0, 128.8, 127.8, 127.5, 119.6, 119.5, 114.4, 114.3, 75.8, 45.5, 34.2, 19.7, 12.5, 4.0, 1.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]$: 332.1763, found 332.1773.

Data for 140: $\mathrm{R}_{f} 0.42$ (1:1 Hexanes: EtOAc); IR (thin film) 3356, 2963, 2247, 1660 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=$ $8.4,7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.88(\mathrm{td}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=9.1$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.47(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=11.2,8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (ddd, $J=8.4,7.7,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.22(\mathrm{ddd}, J=12.6,7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=$ 14.7, $8.4,8.4,2.11 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6$, 144.7, 138.6, 134.4, 129.3, 128.9, 127.4, 127.2, 119.0, 118.9, 115.4, 114.4, 81.4, 49.0, 47.1, 37.2, 34.4, 21.9, 12.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]$: 354.1582 , found 354.1587 .
tert-butyl 2-cyclopropylacrylate (141). To a dry THF (10.2 mL, 0.4 M) solution of $(i \operatorname{Pr})_{2} \mathrm{NH}(0.06 \mathrm{~mL}, 0.43 \mathrm{mmol})$ and methyltriphenylphosphonium bromide $(1.6034 \mathrm{~g}$, 4.49 mmol) stirring at $-78^{\circ} \mathrm{C}$, was added a solution of n-butyl lithium in hexanes (2.8 $\mathrm{mL}, 4.11 \mathrm{mmol}$). The mixture was allowed to warm to rt . Once the solution had stirred at rt for 1 h , the solution was again cooled to $-78^{\circ} \mathrm{C}$ and the known ${ }^{102}$ tert-butyl 2-cyclopropyl-2-oxoacetate $(0.6970 \mathrm{~g}, 4.10 \mathrm{mmol})$ was added in a dropwise fashion. The solution was allowed to warm to rt over 16 hours. At this time, TLC indicated the consumption of the ketoester and the reaction was quenched with the addition of 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$. The mixture was then diluted with brine, extracted with EtOAc, and the organic extracts were dried over MgSO_{4}. After concentration, the oil was purified by FCC (19:1 hexanes:EtOAc) to give $141(0.4426 \mathrm{~g}, 2.65 \mathrm{mmol}, 64 \%)$ as a colorless oil.

Data for 141: $\mathrm{R}_{f} 0.80$ (1:1 hexanes: EtOAc); IR (thin film) 2926, 1716, $1629 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.19$ (d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.21(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-$ 1.73 (m, 1 H), 1.51 (s, 9 H), 0.76 (ddd, $J=6.3,4.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.21$ (ddd, $J=5.63$,
4.2, 4.2 Hz, 2 H$) ;{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,144.2,119.5,80.7,28.2,12.0,7.5$; HRMS (EI+) calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$ [M- $\left.t \mathrm{Bu}\right]:$ 112.05243, found 112.05274 .

tert-butyl
 3-(3-benzyl-4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)-2cyclopropylpropanoate (142) and 3-benzyl-2,3-dihydroquinazolin-4(1H)-one

 (143). Following the general reductive alkylation procedure, 78 (. $0347 \mathrm{~g}, 0.148$ $\mathrm{mmol}), \mathrm{NH}_{4} \mathrm{Cl}(0.0088 \mathrm{~g}, 0.164 \mathrm{mmol}), 141(0.1242 \mathrm{~g}, 0.7382 \mathrm{mmol})$ in THF (0.49 $\mathrm{mL}, 0.3 \mathrm{M})$ were reacted with a THF solution of $\mathrm{SmI}_{2}(4.9 \mathrm{~mL}, 0.37 \mathrm{mmol})$ to give $142(0.0291 \mathrm{~g}, 0.0716 \mathrm{mmol}, 49 \%, 1.4: 1 \mathrm{dr})$ as a colorless oil, $\mathbf{1 4 3}^{103}(0.0109 \mathrm{~g}$, $0.0460 \mathrm{mmol}, 31 \%$) as a colorless oil, and 0.0055 g of recovered 78 after purification by FCC (4:1 hexanes:EtOAc).Data for 142a: $\mathrm{R}_{f} 0.81$ (1:1 EtOAc:hexanes); IR (thin film) 3301, 2926, 2246, 1718, $1629 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.36$ (m, 6 H), $6.88(\mathrm{td}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (dd, $J=10.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (ddd, $J=14.7,11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=14.0,11.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}) 1.50(\mathrm{ddd}, J=$ $11.2,9.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.81-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.46-0.50(\mathrm{~m}, 1 \mathrm{H}), 0.42-$ $0.46(\mathrm{~m}, 1 \mathrm{H}), 0.26$ (sextet, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}),-0.08$ (sextet, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}(176$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,162.6,144.6,137.2,133.6,129.0,128.8,128.2,127.7,119.6$, $117.0,115.4,81.4,66.2,48.1,47.1,34.4,28.2,13.7,4.3,4.0$; TOF MS ES+) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{H}]: 407.2335$, found 407.2339.

Data for 142b: $\mathrm{R}_{f} 0.77$ (1:1 EtOAc:hexanes); IR (thin film) 3320, 2917, 2248, 1722, $1630 \mathrm{~m}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.35$ (m, 6 H), 6.89 (td, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=$ $14.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94 (ddd, $J=9.8,6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}) 1.46(\mathrm{ddd}, J=9.8,7.7,5.6$ Hz, 1 H), 1.41 (s, 9 H), 0.86-0.90 (m, 1 H), 0.74-0.79 (m, 1 H$), 0.43-0.52$ (m, 2 H),
0.28 (sextet, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.00$ (sextet, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $174.3,162.6,144.9,137.3,133.5,128.9,128.9,128.2,127.8,119.6,117.0,115.8$, 81.2, 67.2, 48.4, 47.9, 35.9, 28.3, 14.2, 4.9, 3.5; (TOF MS ES+) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]: 429.2154$, found 429.2134 .

- 161.75
$\begin{array}{r}143.57 \\ -140.07 \\ \hline\end{array}$ $\begin{array}{r}143.07 \\ 134.02 \\ 129.54 \\ 129.17 \\ \hline 127.11\end{array}$ 127.41
$\mathbf{1} 126.99$
-120.98
$\mathbf{1 1 8 . 5 4}$
118.22

modd $\quad 02 \quad$| 00 |
| :--- |

\cdots
 118.98
118.54
116.97
116.97

> 29.69 -28.51
-13.47

$\begin{array}{llllllllllll}\text { wdd } & 02 & 0 t & 09 & 08 & 001 & 021 & 001 & 091 & 081 & 00 z\end{array}$

\cap

$$
\begin{array}{lllllllllll}
\hline 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & \text { ppm }
\end{array}
$$

(

- 133.76 - 128.42 119.08
$\mathcal{F}_{114.70}^{115.54}$

| wdd | 08 | 00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- 144.51 135.06
-133.16 -128.43 119.38
$=116.99$
-115.41 81.01
$\times \quad 77.29$
$\mathbf{7 5 . 9 7}$
76.65
- 44.71 32.70
$\mathbf{3 1 . 0 1}$
-28.55
28.03

modd 0 | | 0 | $0 Z$ | 07 | 09 | 08 | 001 | $0 Z 1$ | 071 | 091 | 081 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

โع0tตS*ロ

$\begin{array}{lllllllllll}\text { madd } & 0 Z & 0 力 & 09 & 08 & 001 & 0 Z \mathrm{~L} & 0 \text { Ot } & 09 \mathrm{~L} & 08 \mathrm{~L} & 00 Z\end{array}$

	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\square}$
-172.99	$\sqrt{1}$
-162.54	

-146.46

- 133.46 - 128.49 118.66
$\mathbf{1 1 7 . 4 4}$
$\mathbf{1 1 3 . 3 3}$
- 51.76
37.90
$-\quad 33.79$
$\mathbf{2 9 . 1 9}$
$\mathbf{2 6 . 5 4}$

	\cdots
	易
\bigcirc	\％N NOH 置H N
菅鰠	
\bigcirc－${ }^{\text {O Now }}$	Oingio ${ }^{\circ}$

60 Hesse, M. Alkaloid Chemistry; Wiley: New York, 1981; pp 175-200.
61 Selected recent examples of radical reactions in alkaloid synthesis: (a) Baran, P. S.; Hafensteiner, B. D.; Ambhaikar, N. B.; Guerrero, C. A.; Gallagher, J. D. J. Am. Chem. Soc. 2006, 128, 8678-8693. (b) Movassaghi, M.; Schmidt, M. A. Angew. Chem. Int. Ed. 2007, 46, 3725-3728. (c) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 10376-10378. (d) Palframan, M. J.; Parsons, A. F.; Johnson, P. Tetrahedron Lett. 2011, 52, 1154-1156.

62 The aminal radical is predicted to be $1-2 \mathrm{kcal} / \mathrm{mol}$ more stable than the \square-amino radical. See: Song, K.-S.; Liu, L.; Guo, Q.-X. Tetrahedron 2004, 60, 9909-9923.

63 Schiedler, D. A.; Vellucci, J. K.; Beaudry, C. M. Org. Lett. 2012, 14, 6092-6095.
64 (a) Rowlands, G. J. Tetrahedron 2010, 66, 1593-1636. (b) Aurrecoechea, J. M.; Suero, R. ARKIVOC 2004, 14, 10-35. (c) Renaud, P.; Giraud, L. Synthesis 1996, 8, 913-926. (d) Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. J. Am. Chem. Soc. 1990, 112, 896-898.

65 (a) Freeman, P. K. Hutchinson, L. L. Tetrahedron Lett. 1976, 17, 1849-1852. (b) Donohoe, T. J.; House, D. J. Org. Chem. 2002, 67, 5015-5018.

66 (a) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13, 187-208. (b) Kagan, H. B. Tetrahedron 2003, 59, 10351-10372.

67 The reaction stoichiometry requires 2 equivalents of acid, but our optimized conditions use 1.1 equivalent of H^{+}. We speculate that upon aqueous work up an anionic intermediate (e.g. an enolate) is protonated.

68 (a) Chawla, A.; Batra, C. Int. Res. J. Pharm. 2013, 4, 49-58. (b) Rajput, R.; Mishra, A. P. Int. J. Pharm. Pharma. Sci. 2012, 4, 66-70. (c) Rajput, C. S.; Bora, P. S. Int. J. Pharma. Bio. Sci. 2012, 3, 119-132.

69 See Expermintal Section.
70 The configuration of the major diastereomer was not determined.
71 The amidinium reduction stoichiometry requires one equivalent of acid, and the reaction yield drops substantially if acid is omitted.

72 Ishida, T.; Tsukano, C.; Takemoto, Y. Chem. Lett. 2012, 41, 44-46.
$73 \mathrm{SmI}_{2}$ is known to induce fragmentation of strained rings with incorporation of iodide, likely giving intermediate 144, which would undergo intramolecular substitution to give 68. See: (a) Kwon, D. W.; Kim, Y. H. J. Org. Chem. 2002, 67, 9488-9491. (b) Park, H. S.; Kwon, D. W.; Lee, K.; Kim. Y. H. Tetrahedron Lett. 2008, 49, 1616-1618.

74 Szostak, M.; Spain, M.; Procter, D. J. J. Org. Chem. 2012, 77, 3049-3059.
75 Wang, S.-L.; Wang, X.-S.; Yang, K.; Yao, C.-S. Synth. Comm. 2012, 42, 341-349.
76 Wang, M.; Zhang, T.-T.; Song, Z.-G. Org. Prep. Proc. 2010, 42, 169-163.
77 Stevenson, T. M.; Kazmierczak, F.; Leonard, N. J. J. Org. Chem. 1986, 51, 616620.

78 Bell, Stanley C.; Conklin, George T. 3,3a-Dihydropyrrolo[1,2-a]quinazoline$1,5(2 \mathrm{H}, 4 \mathrm{H})$-diones and related intermediates, US Patent 3,707,468, December 26, 1972; SciFinder Scholar 1973:72188.

79 Kaneko, C.; Kasai, K.; Katagiri, N.; Chiba, T. Chem. Pharm. Bull. 1986, 34, 36723681.

80 Fu, H.; Fu, Y.; Huang, C.; Jiang, Y.; Zhao, Y.; Huang, C.; Jiang, Y. Chem. Commun. 2008, 47, 6333-6335.

81 Baghbanzadeh, M.; Dabiri, M.; Mohammadi, A. A.; Salehi, P.; Dabiri, M. Synth. Соттип. 2005, 35, 279-287.

82 Le Fur, N.; Mojovic, L.; Ple, N.; Queguiner, G.; Turck, A.; Metzner, P.; Perrio, S.; Reboul, V. Tetrahedron 2004, 60, 7983-7994.

83 De Meijere, A.; Lygin, A. V. Org. Lett. 2009, 11, 389-392.
84 Xu, L.; Jiang, Y.; Ma, D. Org. Lett. 2012, 14, 1150-1153.
85 Jacobi, A.; Schul, M. Process for Preparing Quinazolinone Derivatives, US Patent 319,194, December 25, 2008.

86 Somekawa, K.; Okuhira, H.; Sendayama, M.; Suishu, T.; Shimo, T. J. Org. Chem. 1992, 57, 5708-5712.

87 Qin, D.-G.; Shen, J.-W.; Yao, Z.-J.; Zhang, H.-W. J. Org. Chem. 2003, 68, 74797484.

88 Dias, H.V. R.; Du, H.; He, Y.; Lovely, C. J. Org. Lett. 2004, 6, 735-738.
89 Dener, J. M.; Fantauzzi, P. P.; Kelly, D. E.; Kshirsagar, T. A.; Wolfe, A. B. Org. Proc. Res. Dev. 2001, 5, 445-449.

90 Matsuyama, H.; Robinson, R. P.; Wasserman, H. H. Tetrahedron 2002, 58, 71777190.

91 Burdick, B. A.; Benkovic, P. A.; Benkovic, S. J. J. Am. Chem. Soc. 1977, 99, 5716-5725.

92 Khan, F. R. N.; Roopan, S. M.; Mandal, B. K. Tetrahedron Lett. 2010, 51, 23092311.

93 Bogert, M. T.; Geiger, G. A. J. Am. Chem. Soc. 1912, 34, 683-693.
94 Bogert, M. T.; Geiger, G. A. J. Am. Chem. Soc. 1912, 34, 683-693.
95 Tee, O. S.; Banerjee, S. J. Org. Chem. 1979, 44, 3256-3261.
96 Bielawski, C. W.; Blake, G. A.; Moerdyk, J. P. Organometallics 2012, 31, 33733378.

97 Kharasch, M. S.; Brown, H. C. J. Am. Chem. Soc. 1940, 62, 925-929.
98 Glorius, F., Hirano, K.; Urban, S.; Wang, C. Org. Lett. 2009, 11, 1019-1022.
99 Somasekhara et al. Indian J. Pharm.1972, 3, 121.
100 Rani et al. J. Indian Chem. Soc. 1953, 30, 331-333.
101 Somasekhara et al. Indian J. Pharm. 1972, 3, 121.
102 Wu, M.; Begley, T. P. Org. Lett. 2000, 2, 1345-1348.
103 Cabrera-Rivera, F. A.; Ortiz-Nava, C.; Roman-Bravo, P.; Escalante, J.; Leyva, M. A. Heterocycles 2012, 85, 2173-2195.

Chapter 4: Application of Aminal Radicals in Total Synthesis: Progress Towards the Total Synthesis of Leuconoxine

4.1 Isolation and Previous Syntheses

(-)-Leuconoxine (1), a monoterpene indole alkaloid, was isolated from the stems of Leuconotis eugenifolius, a leafy plant indigenous to Malaysia and Indonesia. ${ }^{104}$ While there have been no reports on the biological activity of 1, the latex of L. eugenifolius has been used in traditional medicine for the treatment of yaws. A number of structurally related natural products $\mathbf{1 4 5} \mathbf{- 1 4 7}$ (Figure 4.1) have been found to exhibit cytotoxicity toward human cancer cell lines. ${ }^{105}$

leuconoxine 1

nor-rhazinicine 145

leuconodine B 146

leuconodine D 147

Figure 4.1. Leuconoxine and its biological active congeners

The structure of $\mathbf{1}$ features a pentacyclic [5.5.6.6]diazafenestrane skeleton which contains three contiguous stereogenic centers including an all-carbon quaternary stereocenter and a fully substituted aminal stereocenter. The structural complexity of 1 has garnered the interest of the synthetic community resulting in two recent total syntheses from the groups of Zhu and Tokuyama. ${ }^{106}$

Zhu's enantioselective synthesis of $\mathbf{1}$ is outlined in Scheme 4.1. The sequence begins from the substituted cyclohexanone $\mathbf{1 4 8}$ which can be prepared in three steps from commercially available 1,7-heptanedioic acid. ${ }^{107}$ Using a procedure developed by Stoltz, 148 was converted to the enantioenriched ketone 149 bearing the necessary all-carbon quaternary stereocenter. ${ }^{108}$ Functional group manipulation of $\mathbf{1 4 9}$ yielded
the vinyl iodide $\mathbf{1 5 0}$ in 4 steps. Suzuki cross coupling of $\mathbf{1 5 0}$ with 2-nitrophenyl boronic acid (151) followed by oxidative cleavage gave the 1,2-dione 152. Hydrogenation of the nitro group in the presence of acetic anhydride followed by oxidation with molecular oxygen and subsequent treatment with KOH in ethanol resulted in the formation of the N, O-ketal 153. The fully substituted aminal stereocenter present in $\mathbf{1}$ was then constructed in an intramolecular iminium ion trapping event by treatment of $\mathbf{1 5 3}$ with acidic conditions to give the aminal 154. The pyrrolidinone ring was closed by an intramolecular aldolization reaction to give $\mathbf{1 5 5}$. Mesylation of the resulting tertiary alcohol followed by elimination and hydrogenation gave (-)-leuconoxine (1) in 16 steps (longest linear sequence) and 4.2\% overall yield.

Scheme 4.1. Zhu's enantioselective total synthesis of (-)-leuconoxine

Tokuyama's synthesis of (\pm)-1 is outlined in Scheme 4.2. The carboxylic acid $\mathbf{1 5 6}$ was prepared in five steps. The acid was coupled with the known iodoindole 157 to give the Mizoroki-Heck substrate 158. ${ }^{109}$ Intramolecular Heck reaction of $\mathbf{1 5 8}$ formed the necessary all-carbon quaternary stereocenter yielding the annulated product 159. Functional group manipulation gave the hydroxyindolenine 160 in eight steps. Treatment of $\mathbf{1 6 0}$ with TMSOTf and 2,6-lutidine induced an intramolecular aminal
formation to provide 161. Formation of the δ-lactam ring was accomplished under basic conditions to give the divinylallyl compound 162. Diastereoselective ring closing metathesis gave 163. Hydrogenation of the alkene and Barton-McCombie deoxygenaiton completed the synthesis of (\pm)-leuconoxine in 21 steps (longest linear sequence) and 5.7% overall yield.

Scheme 4.2. Tokuyama's synthesis of (\pm)-1

4.2 Retrosynthetic Analysis

Scheme 4.3. Retrosynthetic analysis of $\mathbf{1}$ with an aminal radical disconnection

While the previously reported routes to $\mathbf{1}$ all involved the late-stage installation of the aminal functional group by way of an intramolecular condensation reaction, we
envisioned the early installation of the aminal functionality and. In a retrosynthetic sense, the opening of the pyrrolidinone ring gives the amino ester $\mathbf{1 6 4}$ (Scheme 4.3). The structure of $\mathbf{1 6 4}$ exhibits all of the features found in the product of an aminal radical reaction. Specifically, the aminal is acylated and bears an electron withdrawing substituent located three carbon atoms away from the aminal stereocenter. We envisioned that 164 could be easily prepared by the 5-exo-trig radical cyclization of the aminal radical intermediate $\mathbf{1 6 5}$ with the appended cinnamate. The necessary aminal radical 165 could be accessed by the reaction of SmI_{2} with the bicyclic N-acyl amidine $\mathbf{1 6 6}$ under the conditions previously developed in our laboratory. Enticed by the simplifying nature of this synthetic strategy, we chose to pursue the total synthesis of $\mathbf{1}$ as a means to demonstrate the utility of aminal radicals in the synthesis of complex alkaloid synthesis.

(2)

178
Scheme 4.4. Known methods for the preparation of bicyclo[4.4.0]amidines

We next turned our attention to the retrosynthetic analysis of the key intermediate 166. A search of the literature revealed there have been no reports of bicyclo[4.4.0]N -aryl-amidines. However, methods for the preparation of unsubstituted amidines of this type were known. The three methods for the preparation of bicyclo[4.4.0]amidines are detailed in Scheme 4.4. Amidines of the type reported by Leffek (eq. 1, 167) were prepared by the double alkylation of propionitrile (168) with an allyl bromide (169) to give the all-carbon quaternary stereocenter containing nitrile prodouct $170 .{ }^{110}$ Subsequent addition of sodium amide to the nitrile produced the amidine 171. Heating 171 in the presence of gaseous HCl resulted in the formation of 167. While this method allowed for the preparation of a bicyclo[4.4.0]amidine bearing a quaternary stereocenter at the bridgehead position as is present in structure of 166, the method does not appear to be general. The cyclization was carried out under harsh reaction conditions and would likely be unsuccessful for a substrate that did not contain a functional group capable of forming a tertiary carbocation intermediate.

Smissman reported the synthesis of bicyclo[4.4.0]amidines such as 172 (eq. 2). ${ }^{111}$ These amidines contain both the desired quaternary stereocenter and the acyl substitution found in 166. The first step in the synthesis of $\mathbf{1 7 2}$ was the alkylation of phenyl acetonitrile 173 with the THP protected alcohol 174 to give the bis-nitrile 175. Selective alkylation of $\mathbf{1 7 5}$ at the benzylic position with acrylonitrile produced the quaternary stereocenter containing product 176. Deprotection of the alcohol followed by formation of the tosylate and displacement with ammonia gave the amine 177. Treatment of $\mathbf{1 7 7}$ with ethanolic HCl yielded the bicyclic amidine $\mathbf{1 7 2}$. This method relies on the phenyl substituent to provide selectivity in the second alkylation reaction, and an analogous sequence using butyronitrile as the substrate would likely be unsuccessful.

The third method was reported by Wamhoff to give amidines such as $\mathbf{1 7 8}$ (eq. 3). ${ }^{112}$ The synthesis of $\mathbf{1 7 8}$ began from the known δ-lactam $\mathbf{1 7 9}$, which was prepared in two steps from diethylmalonate. ${ }^{113}$ Imidate formation followed by addition of ammonia gave the ketene aminal 180. Treatment of $\mathbf{1 8 0}$ with methyl acrylate yielded the amidine 178. While this amidine bears the desired acyl substitution and the necessary quaternary stereocenter, the method of its preparation likely relied upon the presence of the electron-withdrawing ethyl ester functionality in order to successfully prepare the ketene aminal 180. An analogous reaction sequence beginning from 3-ethylpiperidin-2-one would likely fail to produce the necessary ketene aminal functionality

Having found no suitable procedure among the known methods for the synthesis of bicyclo[4.4.0]amidines, a new synthetic strategy was devised. We envisioned that $\mathbf{1 6 6}$ might be accessible from the intramolecular condensation of the amino imide $\mathbf{1 8 1}$ (Scheme 4.5). The amine could then be obtained from the thioester 182 by way of Fukkuyama reduction and reductive amination. ${ }^{114}$ The thioester 182 could then be prepared from the known tri-carboxylic acid $\mathbf{1 8 3}$ and the known ester 184. ${ }^{115}$

Scheme 4.5. The first generation retrosynthetic analysis of $\mathbf{1 6 6}$

4.3 Progress Towards the Synthesis of Leuconoxine

The thioester 182 was rapidly constructed using a one-pot sequence starting from the known tri-acid 183. Treatment of the acid with thionyl chloride resulted in the formation of the anhydride 185 (Scheme 4.6, not isolated). ${ }^{116}$ The solvent was exchanged for THF and AcOH was added in addition to the aniline 184. After refluxing the mixture for several hours, excess acetic anhydride and triethylamne were added and heating was continued to give a mixed acyl carbonate intermediate. Finally, the addition of ethane thiol gave the desired thioester $\mathbf{1 8 2}$ in 39% yield.

Scheme 4.6. Attempted synthesis of the amine 181

Reduction of the thioester proceeded cleanly in the presence of stoichiometric palladium to give the aldehyde 186. However, attempts to synthesize the amine $\mathbf{1 8 1}$ by reductive amination using $\mathrm{NaCNBH}_{4} / \mathrm{NH}_{4} \mathrm{OAc}$ resulted in decomposition, presumably by reduction of the imide. Reductive amination of $\mathbf{1 8 6}$ with tert-butyl carbamate and triethyl silane as described by Dubé also failed to install the desired nitrogen functionality (187). ${ }^{117}$

Unable to prepare the amine 181, we modified our retrosynthetic analysis (Scheme 4.7). We envisioned that 166 could be prepared by the aza-Wittig reaction of the imido azide 188. ${ }^{118}$ Intramolecular aza-Wittig reactions of imides were well precedented, and the necessary azido imide $\mathbf{1 8 8}$ might be easily prepared from the alcohol 189. ${ }^{19}$ The alcohol could likely be prepared from the tri-acid 183 and the ester 184.

Scheme 4.7. Second-Generation retrosynthetic analysis of the key intermediate 166

Preparation of the desired alcohol commenced with an analogous one-pot sequence from the known tri-acid $\mathbf{1 8 3}$ to give the carboxylic acid $\mathbf{1 9 0}$ (Scheme 4.8). Selective reduction of the carboxylic acid in the presence of the imide was accomplished by treatment with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ furnishing the alcohol $\mathbf{1 8 9}$ in 99% yield. While attempts to convert the alcohol directly to the azide $\mathbf{1 8 8}$ with DPPA were unsuccessful, the azide was readily obtained from a one-pot mesylation / displacement sequence.

Scheme 4.8. Synthesis of the amido lactam 191

With the azide in hand, we attempted the key intramolecular aza-Wittig reaction (Scheme 4.8). Unexpectedly, treatment of 188 with triphenylphosphine in anhydrous THF resulted in the formation of the amido lactam 191 as the sole isolable product. The same result was obtained upon treatment of the azide with zinc metal in methanol. We speculate that the amido lactam may form by the mechanism shown in Scheme 4.9. Staudinger reduction of the azide $\mathbf{1 8 8}$ with triphenylphospine gave the aza-ylide 192. Upon intramolecular addition of the aza-ylide to the imide carbonyl, the tetrahedral intermediate 193 was formed. Collapse of the tetrahedral intermediate to eject an aryl-amide anion followed by hydrolysis upon aqueous workup resulted in the formation of the amido lactam 191.

Scheme 4.9. Plausible mechanism for the formation of the amido lactam 191

A wide variety of conditions were examined in order to induce an intramolecular condensation reaction between the δ-lactam and the aryl amide (Scheme 4.10). Treatment with dehydrating reagents including Martin's sulfurane, phosphoryl chloride, phosphorus pentachloride, diphosphorus pentoxide, oxalyl chloride, thionyl chloride, mesyl chloride, and triflic anhydride ${ }^{120}$ all failed to produce the desired bicyclo[4.4.0]amidine. Heating 191 under acidic (AcOH or $p-\mathrm{TsOH}$) or basic ${ }^{121}$ $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ conditions also failed to yield any of the amidine. Heating 191 at $230^{\circ} \mathrm{C}$ and 0.2 torr, for an extended period gave no reaction. It is likely that both the poor nucleophilicity of the electron-poor aryl amide and the sterically hindered nature of the neopentylic lactam carbonyl conspire against this transformation.

Scheme 4.10. The attempted dehydration of the amido lactam 191

An expanded literature search indicated that it might be possible to induce the desired condensation reaction under Lewis-acidic conditions. In 2007, Zhou reported the total
synthesis of the alkaloid isoshizogamine wherein the amido lactam 194 was dehydrated to form an N-aryl- N-acyl bicyclo[4.3.0]amidine (195) by way of the imidate 196 (Scheme 4.11, eq. 1). ${ }^{122}$ Following this precedent, the lactam was selectively converted to the imidate 197 (eq.2). However, upon treatment with $\mathrm{Me}_{2} \mathrm{AlCl}$, the substrate decomposed yielding none of the desired amidine. Reasoning that the methyl ester may be the source of the observed decomposition, the analogous 2-iodo aryl compound 198 was prepared (eq. 3, see the Experimental Section for details). After selective imidate formation, the cyclization substrate 199 was obtained. Unfortunately, none of the desired amidine 200 was observed upon treatment of 199 with Zhou's conditions.

It was envisioned that the desired amidine $\mathbf{1 6 6}$ might accessible from the intramolecular condensation reaction of an amine onto a dithioimide (201, Scheme 4.12). While dithioimides are relatively rare in the literature and only a few reactions for the formation of an N-thioacyl amidine from a dithioimide were known, the condensation reactions of thioamides with amines have been well studied. ${ }^{123}$

191
197

Scheme 4.11. Lewis-acid catalyzed amidine formation

In order to probe this possibility, the model imido ester 202 was prepared from glutarimide and the aniline 184. Upon treatment of the dithioimide 202 with benzyl amine as a generic primary amine nucleophile, the cyclized product 203 was formed as a single diastereomer (relative stereochemistry not determined). Reasoning that removal of the unsaturated ester would prevent the intramolecular trapping of the presumed thiolate anion intermediate, the analogous iodo compound 204 was prepared (eq. 3). However, treatment of 204 with benzyl amine also resulted in the formation of a sulfur containing addition product (205). Reaction conditions with mercuric chloride or NBS also failed to produce the desired addition products. Based on these results, this line of research has suspended.

166
201

Scheme 4.12. Reactions of the dithioimide model systems

Having been unsuccessful in achieving the synthesis of 166, an alternate retrosynthetic analysis was performed. Disconnection of the N -acyl bond of the amidine through an intramolecular N -acylation reaction of an N -aryl amidine gave 206 (Scheme 4.13). It was envisioned that the amidine could be prepared from a
bimolecular condensation reaction of the aniline 184 and a δ-lactam derivative (207). The δ-lactam derivative could then be prepared from the known δ-lactam 208. ${ }^{124}$

Scheme 4.13. An alternate retrosynthetic analysis of $\mathbf{1 6 6}$

Starting from the known alkenyl lactam 208, the carboxylic acid 209 was synthesized by oxidative cleavage (Scheme 4.14). ${ }^{125}$ It was envisioned that 166 might be prepared by the treatment of $\mathbf{2 0 9}$ with oxalyl chloride to first give the chloroiminium ion 210 followed by the addition of the aniline $\mathbf{1 8 4}$. This reaction failed to produce the desired amidine, instead giving adducts of oxalyl chloride. Treatment of $\mathbf{2 0 9}$ with phosphoryl chloride gave only the amido lactam 191.

Scheme 4.14. Attempts to form the desired amidine from 209

In order to prevent the amide formation previously observed, the carboxylic acid 209 was protected as the ester 211 by methylation with TMSCHN_{2} (Scheme 4.15, eq. 1). Subsequent treatment of 211 with phosphoryl chloride followed by addition of the aniline $\mathbf{1 8 4}$ gave no reaction. Treatment of $\mathbf{2 1 1}$ with a variety of other reagents known
to give chloroiminium ions by their reactions with amides also failed to give amidine formation.

In order to activate the carbonyl carbon toward nucleophilic addition, the imidate $\mathbf{2 1 1}$ was prepared (eq. 2). Heating a 1:1 mixture of the imidate $\mathbf{2 1 1}$ and the aniline $\mathbf{1 8 4}$ to reflux in toluene resulted in no reaction. Analogous reaction conditions using AcOH resulted in decomposition. The thiolactam 212 was prepared by treatment of $\mathbf{2 0 7}$ with Lawesson's reagent (L.R.) (eq. 3). ${ }^{126}$ Treatment of the thiolactam 212 with mercuric chloride or NBS in the presence of $\mathbf{1 8 4}$ resulted in decomposition of $\mathbf{2 1 2}$ and no reaction respectively. The corresponding thioimidate 213 was prepared and treated with the aniline 184. However, its reactions also failed to produce the desired amidine 206 (eq. 4).

207

206
212
211

214
199

Scheme 4.15. Attempted addition of anilines to activated lactams

It was postulated that poor the nucleophilicity of $\mathbf{1 8 4}$ coupled with the steric hindrance provided by the quaternary stereocenter on the lactam, thiolactam, imidate, and thioimidate substrates were responsible for the of the lack of desired reactivity. Dimethylaluminium amides are known to have enhanced nucleophilic character when compared with their amine counterparts. ${ }^{127}$ While dimethylaluminium amides were known to react with esters, there had been no reports on their addition to imidates. However, other amine nucleophiles were known to react with imidates in the presence methyl esters. The dimethylaluminium amide of 2-iodoaniline (214) was generated in situ by the method reported by Weinreb in 1977 (eq. 5). ${ }^{128}$ Addition of a solution of 214 to the imidate 211 gave only the imidate 199 resulting from the selective addition to the methyl ester. The addition of a solution of $\mathbf{2 1 4}$ to mixture of the thiolactam 212 and mercuric chloride (not shown) gave no reaction.

Scheme 4.16. Retrosynthetic analysis of $\mathbf{1 6 6}$ from Wamhoff's amidine $\mathbf{1 7 8}$

Concluding that the bimolecular amidine formation strategy would be unsuccessful, we again revised our retrosynthetic analysis of $\mathbf{1 6 6}$ (Scheme 4.16). It was envisioned that the N-aryl bond could be forged by the coupling of the amidine previously reported by Wamhoff (178) and an aryl iodide, such as the known acyrlate 215 using cross coupling conditions. ${ }^{129}$ This strategy required the conversion of the undesired ethyl ester to the required ethyl substituent.

Preliminary investigations of this chemistry are currently under way and are detailed in Scheme 4.17. Attempts to selectively reduce the ester to the alcohol 216 in the presence of the amidine by treatment with diisobutylaluminium hydride or with
lithium aluminum hydride have resulted in no reaction (eq. 1). Using 178 as a model substrate, investigations on the reductive alkylation with samarium iodide have been carried out (eq. 2). Using ammonium chloride as the proton source and methyl acrylate or trans-methyl cinnamate as the radical acceptor, only starting material was recovered. Using CSA as the proton source in the presence of tert-butyl acrylate gave none of the desired addition product 217, instead yielding the corresponding aminal.

Scheme 4.17. Reactions of Wamhoff's amidine $\mathbf{1 7 8}$

Examining the N-arylation reaction, $\mathbf{1 7 8}$ was treated with Ullman coupling conditions using a variety of aryl iodides (eq. 3). ${ }^{130}$ The reactions with 2-iodophenyl methyl acrylate, 2-iodobenzaldehyde, and 2-iodostyrene all resulted in partial decomposition of the starting materials and no coupling products were detected. However, the reaction of iodobenzene gave the coupling product $\mathbf{2 1 8}$ in 35\% yield.

4.4 Experimental Section

General Experimental Details:
All reactions were carried out under an inert Ar atmosphere in oven-dried glassware. Flash column chromatography (FCC) was carried out with SiliaFlash P60, 60 Å silica
gel. Reactions and column chromatography were monitored with EMD silica gel 60 F254 plates and visualized with potassium permanganate, iodine, ninhydrin, or vanillin stains. Tetrahydrofuran (THF), methylene chloride (DCM), benzene (PhH), and toluene (PhMe) were dried by passage through an activated alumina column. 1,4dioxanne and 1,2-dichloroethane (1,2-DCE) were dried over calcium hydride and distilled under argon prior to use. N, N-dimethylfomamide (DMF) was dried over $3 \AA$ molecular sieves prior to use. Methyl acrylate was purified by washing with aqueous NaOH , drying over MgSO_{4}, and calcium hydride. It was then distilled under vacuum prior to use. tert-Butyl acrylate was distilled prior to use. All other reagents and solvents were used without further purification from commercial sources. FT-IR spectra were measured using NaCl plates. Multiplicities are abbreviated as follows: s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet. Melting points are uncorrected.
methyl (E)-3-(2-(3-ethyl-3-(3-(ethylthio)-3-oxopropyl)-2,6-dioxopiperidin-1yl)phenyl)acrylate (182). To a solution of the known acid 183 ($0.1185 \mathrm{~g}, 0.510$ mmol) suspended in 1,2-dichloroethane ($1.0 \mathrm{~mL}, 0.5 \mathrm{M}$) stirring at room temperature was added thionyl chloride ($0.04 \mathrm{~mL}, 0.55 \mathrm{mmol}$). The mixture was heated to reflux. After 11 hours, the solvent was removed under vacuum and the resulting anhydride was dissolved in THF. To this solution were added 2-iodoaniline ($0.0747 \mathrm{~g}, 0.422$ $\mathrm{mmol})$ and $\mathrm{AcOH}(0.03 \mathrm{~mL}, 0.52 \mathrm{mmol})$. This mixture was heated to reflux. After 8 hours, the mixture was cooled to room temperature and $\mathrm{Ac}_{2} \mathrm{O}(0.16 \mathrm{~mL}, 1.70 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 1.9 \mathrm{mmol})$ were added. The mixture was heated to reflux again. After 12.5 hours, the mixture was again cooled to room temperature and ethane thiol ($0.12 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added prior to heating to reflux. After an additional 2 hours, the mixture was cooled to room temperature, concentrated, diluted with EtOAc, washed with saturated sodium chloride solution, dried over MgSO_{4}, filtered, and concentrated. The resulting mixture was purified by flash column chromatography (1:2 EtOAc : hexanes) to give $\mathbf{1 8 2}(0.0679 \mathrm{~g}, 0.163 \mathrm{mmol}, 39 \%)$ as a light yellow oil.

Data for 182: $\mathrm{R}_{f} 0.35$ (1:1 EtOAc : hexanes); IR (thin film) 2950, 1716, 1668, 1639 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a $1: 1$ mixture of rotational isomers $\delta 7.70(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=16.1,4.2 \mathrm{~Hz}, 1$ H), 7.09 (dd, $J=7.0,1.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.02(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.39(\mathrm{dd}, J=$ $15.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (d, $J=14.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.84-2.98 (m, 4 H), 2.56-2.68 (m, 2 H), 1.96-2.22 (m, 4 H), 1.86-1.92 (m, 0.5 H$), 1.75-1.85(\mathrm{~m}, 1.5 \mathrm{H}), 1.24(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a $1: 1$ mixture of rotational isomers $\delta 199.1,198.9,176.2,176.1,171.89,171.85,167.0,166.8,138.9$, $138.8,135.44,135.36,132.46,132.42,131.2,131.1,129.7,129.5,129.38,129.36$, $127.3,127.2,121.0,120.7,52.0,51.9,45.2,45.1,38.7,30.4,30.3,29.32,29.30$, $28.48,48.45,25.7,25.3,23.6,23.5,14.8,8.13,8.10$; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]: 440.1508$, found 440.1492 .
methyl (E)-3-(2-(3-ethyl-2,6-dioxo-3-(3-oxopropyl)piperidin-1-yl)phenyl)acrylate (186). To a solution of $\mathbf{1 8 2}(0.0369 \mathrm{~g}, 0.0884 \mathrm{mmol})$ dissolved in DCM ($0.9 \mathrm{~mL}, 0.1$ M) stirring at room temperature were added triethylsilane ($0.10 \mathrm{~mL}, 0.63 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(0.0911 \mathrm{~g}, 0.086 \mathrm{mmol})$. The mixture was stirred at room temperature. After 0.5 hours, the reaction mixture was filtered through celite 535 and concentrated. The resulting mixture was purified by flash column chromatography (1:1 EtOAc : hexanes) to give $\mathbf{1 8 6}(0.03115 \mathrm{~g}, 0.087 \mathrm{mmol}, 99 \%)$ as a colorless oil.

Data for 186: $\mathrm{R}_{f} 0.37$ (2:1 EtOAc : hexanes); IR (thin film) 295, 1717, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a $1: 1$ mixture of rotational isomers $\delta 9.77(\mathrm{~d}, J=14.7$ Hz, 1 H), 7.71 (ddd, $J=9.8,8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48(\mathrm{td}, J=7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ 7.45 (m, 1 H), 7.38 (dd, $J=16.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (ddd, $J=26.6,7.7,1.4 \mathrm{~Hz}, 1$ H), $6.40(\mathrm{dd}, J=16.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.88-3.00(\mathrm{~m}, 2 \mathrm{H})$, 2.50-2.69 (m, 2 H), 2.08-2.18 (m, 1.5 H), 2.03-2.08 (m, 2 H), 1.89-2.01 (m, 1.5 H), $1.74-1.87(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{q}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a $1: 1$
mixture of rotational isomers $\delta 201.3,176.3,171.9,167.01,166.95,138.8,135.4$, $132.3,132.2,131.2,129.6,129.5,129.42,129.40,127.2,127.1,120.71,120.66,52.0$, 51.9, 44.9, 38.9, 38.7, 29.3, 28.7, 28.4, 27.0, 26.9, 25.9, 25.6, 8.09, 8.05; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]: 358.1654$, found 358.1659.

(E)-3-(3-ethyl-1-(2-(3-methoxy-3-oxoprop-1-en-1-yl)phenyl)-2,6-dioxopiperidin-

3-yl)propanoic acid (190). To a suspension of the known tri-acid 183 ($3.1230 \mathrm{~g}, 13.4$ mmol) in 1,2-dichloroethane ($27 \mathrm{~mL}, 0.5 \mathrm{M}$) stirring at room temperature was added thionyl chloride ($1.10 \mathrm{~mL}, 15.1 \mathrm{mmol}$). The mixture was heated to reflux. After 22 hours, an additional portion of thionyl chloride ($0.10 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added. After an additional 2 hours, thionyl chloride (0.10 mL , 1.4 mmol) was added. After an additional 12 hours, the reaction mixture was cooled and concentrated to give a white solid. This material was dissolved in THF ($45 \mathrm{~mL}, 0.25 \mathrm{M}$) and 2-iodoaniline (1.9890 $\mathrm{g}, 11.2 \mathrm{mmol})$ along with AcOH $(0.77 \mathrm{~mL}, 13.5 \mathrm{mmol})$ were added prior to heating at reflux. After 17 hours, the reaction mixture was cooled to room temperature and $\mathrm{Ac}_{2} \mathrm{O}$ ($3.2 \mathrm{~mL}, 33.9 \mathrm{mmol}$) along with $\mathrm{Et}_{3} \mathrm{~N}(4.7 \mathrm{~mL}, 33.7 \mathrm{mmol})$ were added. The mixture was again heated to reflux for one additional hour prior to cooling to room temperature and concentrating the mixture. Purification by flash column chromatography ($1: 1$ hexanes:EtOAc with $2 \% \mathrm{AcOH}$) gave $190(3.9317 \mathrm{~g}, 10.5$ mmol, 94%) as a colorless oil.

Data for 190: $\mathrm{R}_{f} 0.60$ (1:2 hexanes:EtOAc); IR (thin film) 3201, 2971, 1715, 1686 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotational isomers $\delta 7.71$ (ddd, $J=$ $9.2,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{ddd}, J=12.8,7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (dd, $J=16.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.84-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.53$ (m, 2 H), 1.93-2.18 (m, 4 H), 1.71-1.91 (m, 2 H), 0.97 (ddd, $J=7.6,7.6,0.4 \mathrm{~Hz}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotational isomers $\delta 178.4,177.5$, $176.3,176.1,172.1,172.0,167.6,167.0,139.3,138.9,135.5,135.4,132.42,132.38$, 131.24. 131.15, 129.6, 129.5, 129.4, 127.17, 127.15, 120.7, 120.6, 52.2, 51.9, 45.1,
45.0, 30.0, 29.6, 29.3, 29.2, 29.04, 28.96, 28.7, 28.4, 25.7, 25.5, 8.11, 8.05; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]: 396.1423$, found 396.1415.
methyl (E)-3-(2-(3-ethyl-3-(3-hydroxypropyl)-2,6-dioxopiperidin-1yl)phenyl)acrylate (189). To a solution of the acid 190 ($0.2743 \mathrm{~g}, 0.735 \mathrm{mmol}$) dissolved in THF ($2.5 \mathrm{~mL}, 0.3 \mathrm{M}$) stirring at room temperature was added borane dimethyl sulfide complex (2 M in THF $0.74 \mathrm{~mL}, 1.48 \mathrm{mmol}$). After 0.5 hours, the reaction mixture was diluted with EtOAc , washed with saturated aqueous sodium chloride, dried over MgSO_{4}, filtered, and concentrated. The resulting mixture was purified by flash column chromatography ($2: 1 \mathrm{EtOAc}$: hexanes) to give $\mathbf{1 8 9}$ ($0.2483 \mathrm{~g}, 0.691 \mathrm{mmol}, 94 \%$) as a colorless oil.

Data for 189: $\mathrm{R}_{f} 0.31$ (4:1 EtOAc : hexanes); IR (thin film) 2951, 1716, $1683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a 1:1 mixture of rotational isomers $\delta 7.72$ (ddd, $J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.04$ (ddd, $J=7.7,4.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=$ $29.4,16.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 3.73 (quintet, $J=5.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.62-$ $3.66(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.61(\mathrm{~m}, 0.5 \mathrm{H}), 2.86-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.93-$ $1.98(\mathrm{~m}, 0.5 \mathrm{H}), 1.81-1.89(\mathrm{~m}, 2.5 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.52-$ $1.57(\mathrm{~m}, 0.5 \mathrm{H}), 0.95(\mathrm{dt}, J=14.7,7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) as a 1:1 mixture of rotational isomers $\delta 176.9,176.7,172.4,172.2,167.8,167.0,139.6$, $138.9,135.8,135.8,135.5,132.4,132.2,131.4,131.2,129.5,129.33,129.29,127.2$, $127.0,120.6,120.1,62.8,62.7,52.2,51.9,45.3,31.9,31.2,29.43,29.35,28.6,28.5$, 27.5, 27.1, 25.5, 25.3, 8.3, 8.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}$ [M+Na]: 382.1630, found 382.1638 .
methyl
(E)-3-(2-(3-(3-azidopropyl)-3-ethyl-2,6-dioxopiperidin-1-
yl)phenyl)acrylate (188). To a solution of the alcohol $189(0.0976 \mathrm{~g}, 0.272 \mathrm{mmol})$ dissolved in THF ($2.7 \mathrm{~mL}, 0.1 \mathrm{M}$) stirring at room temperature were added MsCl (10% in THF, $0.25 \mathrm{~mL}, 0.32 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (10% in THF, $0.45 \mathrm{~mL}, 0.32 \mathrm{mmol}$).

After 1.5 h , the solvent was exchanged for DMF ($2.7 \mathrm{~mL}, 0.1 \mathrm{M}$) and $\mathrm{NaN}_{3}(0.0893$ $\mathrm{g}, 1.37 \mathrm{mmol}$) was added. After 17 hours, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed three times with saturated aqueous LiCl . $\mathrm{The}_{\mathrm{Et}_{2} \mathrm{O}}$ solution was then dried over MgSO_{4}, filtered, and concentrated. The resulting oil was purified by flash column chromatography ($7: 3$ hexanes: EtOAc) to give $\mathbf{1 8 8}$ ($0.0906 \mathrm{~g}, 0.236 \mathrm{mmol}$, $87 \%)$ as a colorless oil.

Data for 188: $\mathrm{R}_{f} 0.85$ (1:4 hexanes:EtOAc); IR (thin film) 2950, 2097, 1717, 1686 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotational isomers $\delta 7.72(\mathrm{dd}, J=$ $7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3 H), 3.30-3.38 (m, 2 H), 2.87-2.97 (m, 2 H), 2.01-2.10 (m, 2 H), 1.75-1.87 (m, 4 H), $1.57-1.67(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ as a mixture of rotational isomers $\delta 176.48$. 176.45, 172.0, 167.0, 166.9, 138.83, 138.77, $135.5,135.4,132.4,132.3,131.2,129.5,129.38,129.36,127.2,120.7,120.6,51.97$, 51.91, 51.74, 51.69, 45.34, 45.31, 32.5, 32.2, 29.3, 28.43, 28.40, 25.5, 23.7, 23.6, 8.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}$]: 407.1695, found 407.1704.
methyl (E)-3-(2-(3-(3-ethyl-2-oxopiperidin-3-yl)propanamido)phenyl)acrylate (191). To a solution of the azide $188(0.0210 \mathrm{~g}, 0.0546 \mathrm{mmol})$ dissolved in THF (0.55 $\mathrm{mL}, 0.1 \mathrm{M}$) stirring at room temperature was added triphenyl phosphine (0.0246 g , 0.094 mmol). The mixture was heated to $50^{\circ} \mathrm{C}$. After 3 hours, the reaction mixture was cooled to room temperature and concentrated. The resulting mixture was purified by flash column chromatography ($1: 4910 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH : EtOAc) to give 191 ($0.0166 \mathrm{~g}, 0.0463 \mathrm{mmol}, 85 \%$) as a white solid.

Data for 191: $\mathrm{R}_{f} 0.50$ (9:1 EtOAc : $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); $\mathrm{mp}=150-151{ }^{\circ} \mathrm{C}$; IR (thin film) 2925, 1717, $1683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (br s, 1 H), $7.96(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}$,
$J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{t}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68$ (quintet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (quintet, J $=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (quintet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.96 (quintet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.77$1.84(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.67(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.6,172.8,167.9,140.5,136.7,130.9,127.2,127.0,125.4,125.1,119.5$, 52.0, 44.8, 42.9, 33.6, 33.3, 30.5, 29.8, 19.5, 8.4; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]: 381.1790$, found 381.1787.
methyl (E)-3-(2-(3-(3-ethyl-2-methoxy-3,4,5,6-tetrahydropyridin-3-
yl)propanamido)phenyl)acrylate (197). To a solution of $191(0.0500 \mathrm{~g}, .140 \mathrm{mmol})$ dissolved in DCM ($1.4 \mathrm{~mL}, 0.1 \mathrm{M}$) were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.1346 \mathrm{~g}, 0.419 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(0.0325 \mathrm{~g}, 0.220 \mathrm{mmol})$. The mixture was stirred at room temperature. After 80 minutes, the reaction mixture was diluted with DCM, washed with saturated aqueous NaHCO_{3}, dried over MgSO_{4}, filtered, and concentrated. The resulting mixture was purified by flash column chromatography ($1: 1$ hexanes: EtOAc) to give 197 ($0.0422 \mathrm{~g}, 0.113 \mathrm{mmol}, 81 \%$) as a colorless oil.

Data for 197: $\mathrm{R}_{f} 0.33$ (1:2 hexanes : EtOAc); IR (thin film) 2943, 1717, $1667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.6$ Hz, 1 H), 3.77 (s, 3 H), 3.57 (br s, 3 H), 3.43 (br s, 2 H), 2.36-2.46 (m, 1 H), 2.24$2.34(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.63$ $(\mathrm{m}, 3 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,167.3,166.2,139.8,136.1,130.9,127.6,127.2,125.8,125.3,120.1,52.1$, 51.9, 47.3, 41.3, 34.1, 33.0, 31.4, 29.9, 20.7, 8.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 373.2127$, found 373.2145.

3-(3-ethyl-2-oxopiperidin-3-yl)-N-(2-iodophenyl)propanamide (198). To a solution of the acid $209(0.2102 \mathrm{~g}, 1.06 \mathrm{mmol})$ dissolved in THF ($2.1 \mathrm{~mL}, 0.5 \mathrm{M}$) stirring at
room temperature were added freshly chromatographed 2-iodoaniline $(0.4670 \mathrm{~g}, 2.13$ $\mathrm{mmol})$ and $\mathrm{POCl}_{3}(0.1 \mathrm{~mL}, 1.07 \mathrm{mmol})$. The mixture was heated to $60^{\circ} \mathrm{C}$. After 0.5 hours, the reaction mixture was cooled to room temperature and concentrated. The solids were extracted with chloroform and the combined organic extracts were washed with saturated aqueous sodium bicarbonate, saturated aqueous sodium chloride, dried over MgSO_{4}, filtered, and concentrated. The resulting oil was purified by flash column chromatography (1:4 hexanes: EtOAc) to give 198 ($0.2964 \mathrm{~g}, 0.741$ $\mathrm{mmol}, 70 \%$) as a white solid.

Data for 198: $\mathrm{R}_{f} 0.37$ (EtOAc); $\mathrm{mp}=125-126^{\circ} \mathrm{C}$; IR (thin film) 2962, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56 (br s, 1 H), 7.32 (td, $J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (br $\mathrm{s}, 1 \mathrm{H}), 3.31(\mathrm{td}, J=3.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.06$ (ddd, $J=14.0,11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=14.0,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.87$ (m, 2 H), 1.78-1.82 (m, 2 H$), 1.66-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (sextet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.92$ (t, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.6,171.6,139.0,138.5,129.3$, 126.0, 122.5, 90.3, 44.5, 42.9, 33.5, 33.2, 30.5, 29.8, 19.5, 8.5; HRMS (TOF MS $\mathrm{ES}+$) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 401.0726$, found 401.0739.

3-(3-ethyl-2-methoxy-3,4,5,6-tetrahydropyridin-3-yl)-N-(2-

iodophenyl)propanamide (199). To a solution of the lactam $198(0.0296 \mathrm{~g}, 0.0740$ $\mathrm{mmol})$ dissolved in $\mathrm{DCM}(0.75 \mathrm{~mL}, 0.1 \mathrm{M})$ stirring at room temperature were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.0741 \mathrm{~g}, 0.227 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(0.0170 \mathrm{~g}, 0.115 \mathrm{mmol})$. After 2 hours, the reaction mixture was diluted with DCM and washed with saturated aqueous sodium bicarbonate. The DCM solution was then dried over MgSO_{4}, filtered, and concentrated. The resulting solids were purified by flash column chromatography (1:1 hexanes: EtOAc) to give $199(0.0266 \mathrm{~g}, 0.0642 \mathrm{mmol}, 87 \%)$ as a white solid.

Data for 199: $\mathrm{R}_{f} 0.67$ (9:1 EtOAc : $10 \% \mathrm{NH}_{4} \mathrm{OH}$ in MeOH); $\mathrm{mp}=74-76{ }^{\circ} \mathrm{C}$; IR (thin film) $2938,1668,1519 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.33(\mathrm{td}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{td}, J=15.4,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.29 (ddd, $J=15.4,11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=13.3,11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89$ (ddd, $J=13.3,11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.49$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $0.85(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.3,165.9,138.9,138.3,129.4,126.0,122.0,90.0,52.2,47.5,41.3,34.2,33.9$, 31.4, 30.0, 20.8, 8.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]$: 415.0883 , found 415.0894 .
methyl (E)-3-(2-(2,6-dioxopiperidin-1-yl)phenyl)acrylate (S19). To a solution of 2aminophenyl methylcinamate $184(0.9930 \mathrm{~g}, 5.77 \mathrm{mmol})$ dissolved in THF (19 mL , $0.3 \mathrm{M})$ were added $\mathrm{AcOH}(0.07 \mathrm{~mL}, 1.22 \mathrm{mmol})$ and glutaric anhydride $(0.9838 \mathrm{~g}$, 8.62 mmol). The mixture was heated to reflux. After 20 hours, the reaction mixture was cooled to room temperature and $\mathrm{Ac}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 11.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}$, $17.2 \mathrm{mmol})$ were added. The mixture was heated to reflux again for an additional 20 minutes. After cooling, the reaction was dilluted with EtOAc, washed with saturated aqueous sodium chloride, dried over MgSO_{4}, filtered, and concentrated. The resulting mixture was purified by flash column chromatography ($1: 1$ hexanes: EtOAc) to give S19 (1.3983 g, 5.12 mmol, 89\%) as a white solid.

Data for S19: $\mathrm{R}_{f} 0.47$ (3:1 hexanes : EtOAc); $\mathrm{mp}=125-126.5^{\circ} \mathrm{C}$; IR (thin film) 2952, $1715,1689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.50(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3$ H), 2.94-2.78 (m, 4 H), 2.10-2.22 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5$, 167.1, 138.9, 134.9, 132.5, 131.1, 129.6, 129.5, 127.4, 120.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]$: 274.1079, found 274.1082.
methyl (E)-3-(2-(2,6-dithioxopiperidin-1-yl)phenyl)acrylate (202). To a solution of the imide $\mathbf{S 1 9}$ ($0.4122 \mathrm{~g}, 1.51 \mathrm{mmol}$) dissolved in toluene ($5 \mathrm{~mL}, 0.3 \mathrm{M}$) stirring at room temperature was added Laweson's reagent ($0.6730 \mathrm{~g}, 1.66 \mathrm{mmol}$). The mixture was heated to reflux. After 3 hours, the reaction mixture was cooled to room temperature and concentrated. The resulting mixutre was purified by flash column chromatography (9:1 hexanes: EtOAc) to give 202 ($0.4165 \mathrm{~g}, 1.36 \mathrm{mmol}, 90 \%$) as a bright red solid.

Data for 202: $\mathrm{R}_{f} 0.27$ (3:1 hexanes : EtOAc); $\mathrm{mp}=108-110{ }^{\circ} \mathrm{C}$; IR (thin film) 2949, $1715,1637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41$7.49(, \mathrm{~m} 2 \mathrm{H}), 7.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3$ H), 3.46 (qdd, $J=18.0,6.8,5.24 \mathrm{H}), 2.09-2.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.6,167.1,144.0,138.6,131.6,131.3,129.2,129.1,127.5,120.9,52.0$, 44.9, 19.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NS}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 347.9378$, found 347.9390 .
methyl
2-(4a-(benzylamino)-1-thioxo-2,3,4,4a-tetrahydro-1H,6H-benzo[d]pyrido[2,1-b][1,3]thiazin-6-yl)acetate (203). To a solution of 202 (0.0491 $\mathrm{g}, .161 \mathrm{mmol})$ dissolved in THF $(0.5 \mathrm{~mL}, 0.3 \mathrm{M})$ was added $\mathrm{BnNH}_{2}(0.04 \mathrm{~mL}, 0.37$ $\mathrm{mmol})$. The mixture was stirred at room temperature. After 25 minutes, the reaction mixture was concentrated. The resulting mixture was purified by flash column chromatography ($2: 1$ hexanes: EtOAc) to give 203 ($0.0608 \mathrm{~g}, 0.147 \mathrm{mmol}, 92 \%$) as a yellow solid.

Data for 203: $\mathrm{R}_{f} 0.11$ (3:1 hexanes : EtOAc); $\mathrm{mp}=96.5-98.5^{\circ} \mathrm{C}$; IR (thin film) 3318, 3206, 2948, $1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34$ (br s, 1 H), 7.34-7.42 (m, $5 \mathrm{H}), 7.22(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=7.7$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{qd}, J=14.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=$ $9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.70$ (ddd, J
$=14.7,10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9$, 170.3, 164.3, 141.4, 136.4, 129.0, 128.9, 128.3, 128.1, 126.9, 126.8, 121.3, 52.2, 50.9, 44.4, 43.0, 38.9, 38.2, 27.6; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]: 413.1357$, found 413.1345.

1-(2-iodophenyl)piperidine-2,6-dione (S20). To a solution of 2-aminophenyl methylcinamate $184(0.9930 \mathrm{~g}, 5.77 \mathrm{mmol})$ dissolved in THF ($19 \mathrm{~mL}, 0.3 \mathrm{M}$) were added $\mathrm{AcOH}(0.07 \mathrm{~mL}, 1.22 \mathrm{mmol})$ and glutaric anhydride $(0.9838 \mathrm{~g}, 8.62 \mathrm{mmol})$. The mixture was heated to reflux. After 20 hours, the reaction mixture was cooled to room temperature and $\mathrm{Ac}_{2} \mathrm{O}(1.1 \mathrm{~mL}, 11.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.2 \mathrm{mmol})$ were added. The mixture was heated to reflux again for an additional 20 minutes. After cooling, the reaction was dilluted with EtOAc, washed with saturated aqueous sodium chloride, dried over MgSO_{4}, filtered, and concentrated. The resulting mixture was purified by flash column chromatography (1:1 hexanes: EtOAc) to give S20 $(1.3983 \mathrm{~g}, 5.12 \mathrm{mmol}, 89 \%)$ as a white solid.

Data for S20: $\mathrm{R}_{f} 0.41$ (1:1 hexanes : EtOAc); $\mathrm{mp}=134-135^{\circ} \mathrm{C}$; IR (thin film) 1727, $1683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.27(\mathrm{~m}, 1 \mathrm{H})$, 2.04-2.14 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,139.7,138.5,130.4,129.7$, 129.5, 99.1, 33.2, 17.2; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]$: 315.9835 , found 315.9836 .

1-(2-iodophenyl)piperidine-2,6-dithione (204). To a solution of the imide S20 $(0.3203 \mathrm{~g}, 1.02 \mathrm{mmol})$ dissolved in toluene $(3.4 \mathrm{~mL}, 0.3 \mathrm{M})$ stirring at room temperature was added Laweson's reagent $(0.4574 \mathrm{~g}, 1.13 \mathrm{mmol})$. The mixture was heated to reflux. After 3.5 hours, the reaction mixture was cooled to room temperature and concentrated. The resulting mixture was purified by flash column
chromatography (9:1 hexanes: EtOAc) to give $204(0.2638 \mathrm{~g}, 0.760 \mathrm{mmol}, 75 \%)$ as a bright red solid.

Data for 204: $\mathrm{R}_{f} 0.41$ ($6: 1$ hexanes : EtOAc); $\mathrm{mp}=150-151^{\circ} \mathrm{C}$; IR (thin film) 2929, $1268,1260,1146 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (ddd, $J=8.4,7.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44(\mathrm{qq}, J=18.2,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.4,146.5,140.0,129.7,129.6,129.5,98.2$, 44.8, 19.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NS}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 347.9378$, found 347.9390 .

6-(benzylamino)-1-(2-iodophenyl)-6-mercaptopiperidine-2-thione (205). To a solution of $204(0.0498 \mathrm{~g}, .143 \mathrm{mmol})$ dissolved in THF $(0.7 \mathrm{~mL}, 0.2 \mathrm{M})$ was added benzylamine ($0.02 \mathrm{~mL}, 0.183 \mathrm{mmol}$). The mixture was stirred at room temperature. After 22 hours, the reaction mixture was concentrated. The resulting mixture was purified by flash column chromatography (3:1 hexanes : EtOAc) to give 205 (0.0565 $\mathrm{g}, 0.134 \mathrm{mmol}, 94 \%)$ as a colorless oil.

Data for 205: $\mathrm{R}_{f} 0.14$ (3:1 hexanes : EtOAc); IR (thin film) 3204, 2970, 1521, $1390 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 2$ H), 7.89 (dd, $J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.36(\mathrm{~m}, 5 \mathrm{H})$, $7.03(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42 (quin., $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.0, 204.2, 139.8, 139.5, 136.1, 129.2, 129.1, 128.9, 128.6, 128.3, 127.6, 95.5, 50.6, 45.8, 44.3, 28.6; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{I}[\mathrm{M}+\mathrm{H}]: 455.0113$, found 455.0134 .

3-(3-ethyl-2-oxopiperidin-3-yl)propanoic acid (209). To a solution of the known lactam $208(0.5461 \mathrm{~g}, 3.01 \mathrm{mmol})$ dissolved in 1,4-dioxane ($10 \mathrm{~mL}, 0.3 \mathrm{M}$) and water $(10 \mathrm{~mL}, 0.3 \mathrm{M})$ stirring at room temperature were added $\mathrm{NaIO}_{4}(2.5785 \mathrm{~g}, 0.12 .1$ $\mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(0.0311 \mathrm{~g}, 0.150 \mathrm{mmol})$. After 6 hours, the reaction mixture was concentrated. The resulting solids were extracted with EtOAc, filtered through celite 535, and concentrated. The resulting oil was purified by flash column chromatography (1:20:79 AcOH : hexanes: EtOAc) to give 209 ($0.4406 \mathrm{~g}, 2.21 \mathrm{mmol}$, 73%) as a lightly colored oil which produced colorless crystals upon standing.

Data for 209: $\mathrm{R}_{f} 0.37$ (49:1 EtOAc : AcOH); $\mathrm{mp}=124-125^{\circ} \mathrm{C}$; IR (thin film) 2944, 1697, $1626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.76$ (br s, 1 H), 7.75 (br s, 1 H), $3.23-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.44$ (ddd, $J=16.1,8.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (ddd, $J=14.7,7.7$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{ddd}, J=14.0,7.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.80$ $(\mathrm{m}, 3 \mathrm{H}), 1.63(\mathrm{ddd}, J=14.0,8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51($ sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.4,178.3,43.7,24.5,32.4,30.8,30.1,29.4$, 19.5, 8.5; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}$ [M+Na]: 222.1106, found 222.1116.
methyl 3-(3-ethyl-2-oxopiperidin-3-yl)propanoate (207). To a solution of the carboxylic acid 209 ($0.7505 \mathrm{~g}, 3.77 \mathrm{mmol}$) dissolved in $\mathrm{PhH}(7.5 \mathrm{~mL}, 0.5 \mathrm{M})$ and $\mathrm{MeOH}(3.8 \mathrm{~mL}, 1 \mathrm{M})$ stirring at room temperature was added $\mathrm{TMSCHN}_{2}(2 \mathrm{M}$ in hexanes, $2.8 \mathrm{~mL}, 5.6 \mathrm{mmol})$. After 10 minutes, the reaction was quenched by addition of glacial acetic acid until the yellow color was no longer visible. The reaction mixture was then concentrated. Purification by flash column chromatography (1:2 hexanes : EtOAc) gave $207(0.7141 \mathrm{~g}, 3.35 \mathrm{mmol}, 89 \%)$ as a white solid.

Data for 207: $\mathrm{R}_{f} 0.31$ (EtOAc); $\mathrm{mp}=48-50{ }^{\circ} \mathrm{C}$; IR (thin film) 2950, 1737, $1655 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11$ (br s, 1 H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{td}, J=6.3,2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.40(\mathrm{ddd}, J=21.0,10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, J=16.1,11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$,
1.92 (ddd, $J=14.0,11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=14.0,11.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-$ $1.81(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59$ (ddd, $J=11.9,7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.51$ (sextet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 176.5,174.4,51.7,44.1,42.7,32.8,30.5,29.7,29.5,19.7,8.5$; HRMS (TOF MS $\mathrm{ES}+$) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]:$ 236.1263, found 236.1272.
methyl 3-(3-ethyl-2-methoxy-3,4,5,6-tetrahydropyridin-3-yl)propanoate (211). To a solution of the lactam $207(0.106 \mathrm{~g}, 0.498 \mathrm{mmol})$ dissolved in DCM ($1.7 \mathrm{~mL}, 0.3$ M) stirring at room temperature were added $\mathrm{NaHCO}_{3}(0.252 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(0.222 \mathrm{~g}, 1.50 \mathrm{mmol})$. After 70 minutes, the reaction mixture was diluted with DCM and washed with saturated aqueous sodium chloride. The DCM solution was then dried over MgSO_{4}, filtered, and concentrated to give 211 ($0.1132 \mathrm{~g}, 0.498$ mmol, 99%) as a colorless oil.

Data for 211: $\mathrm{R}_{f} 0.52$ (2:3 EtOAc : hexanes); IR (thin film) 2942, 2860, 1739, 1671 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2$ H), 2.32 (ddd, $J=16.1,11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=16.1,11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89(\mathrm{td}, J=12.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{td}, J=12.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.54-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.41$ (sextet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.3,165.9,52.0,51.7,47.4,41.1,33.6$, 31.2, 29.99, 29.95, 20.8, 8.9; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]$: 228.1600 , found 228.1596 .
methyl 3-(3-ethyl-2-thioxopiperidin-3-yl)propanoate (212). To a solution of the lactam 207 ($0.4291 \mathrm{~g}, 2.01 \mathrm{mmol}$) dissolved in $\mathrm{PhMe}(6.7 \mathrm{~mL}, 0.3 \mathrm{M})$ stirring at room temperature was added Laweson's reagent ($0.9018 \mathrm{~g}, 2.23 \mathrm{mmol})$. The mixture was heated to reflux. After 2 hours, the reaction mixture was cooled to room temperature and concentrated. Purification by flash column chromatography (3:1 hexanes : EtOAc) gave $212(0.4394 \mathrm{~g}, 1.92 \mathrm{mmol}, 95 \%)$ as a white solid.

Data for 212: $\mathrm{R}_{f} 0.56$ (2:3 EtOAc : hexanes); $\mathrm{mp}=85-87{ }^{\circ} \mathrm{C}$; IR (thin film) 2952, $1735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67$ (br s, 1 H), 3.66 (s, 3 H), 3.29 (ddd, J $=5.6,5.6,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{ddd}, J=15.4,11.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{ddd}, J=15.4$, $11.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (ddd, $J=13.3,11.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.81-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.77$ (ddd, $J=11.9,7.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (sextet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.63 (ddd, $J=14.7,8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (176 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.5,174.2,51.8,48.2,45.4,36.4,35.0,29.8,27.6,19.4,8.7$; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 230.1215$, found 230.1207.

methyl 3-(3-ethyl-2-(methylthio)-3,4,5,6-tetrahydropyridin-3-yl)propanoate

 (213). To a solution of the thiolactam $212(0.0486 \mathrm{~g}, 0.212 \mathrm{mmol})$ dissolved in DCM $(0.7 \mathrm{~mL}, 0.3 \mathrm{M})$ stirring at room temperature were added $\mathrm{NaHCO}_{3}(0.0361 \mathrm{~g}, 0.430$ $\mathrm{mmol})$ and $\mathrm{MeI}(0.13 \mathrm{~mL}, 2.09 \mathrm{mmol})$. After 4.5 hours, the reaction mixture was diluted with DCM and washed with saturated aqueous sodium bicarbonate. The DCM solution was then dried over MgSO_{4}, filtered, and concentrated to give 213 (0.0485 g , $0.200 \mathrm{mmol}, 94 \%$) as a colorless oil.Data for 213: $\mathrm{R}_{f} 0.44$ (1:3 EtOAc : hexanes); IR (thin film) 2933, 1739, $1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{qt}, J=16.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.28-2.36 (m, 2 H), 2.20 ($\mathrm{s}, 3 \mathrm{H}$), 1.98 (ddd, $J=14.0,11.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.67-1.79 (m, 3 H), $1.48-1.62(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2$, 172.1, 51.8, 50.9, 44.4, 35.2, 33.4, 29.7, 29.1, 20.6, 12.1, 8.8; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]: 244.1371$, found 244.1360.

ethyl 2-oxo-1-phenyl-1,3,4,5,6,7-hexahydro-1,8-naphthyridine-4a(2H)-

 carboxylate (218). To a solution of $178(0.0309 \mathrm{~g}, .138 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.0980 \mathrm{~g}$, $301 \mathrm{mmol}), 1,10-\mathrm{phenanthroline}(0.0110 \mathrm{~g}, 0.056 \mathrm{mmol})$, and $\mathrm{CuI}(0.0055 \mathrm{~g}, 0.029$ mmol) dissolved in dry, degassed 1,4-dioxane ($0.6 \mathrm{~mL}, 0.25 \mathrm{M}$) was addediodobenzene ($0.04 \mathrm{~mL}, 0.36 \mathrm{mmol}$). The mixture was sealed in a bomb and heated to $100^{\circ} \mathrm{C}$. After 24 hours, the reaction mixture was diluted with CHCl_{3}, filtered through celite 353 , and concentrated. The resulting mixture was purified by preparative TLC (1:9 10\% $\mathrm{NH}_{4} \mathrm{OH}$ in MeOH : EtOAc) to give $218(0.0144 \mathrm{~g}, 0.048 \mathrm{mmol}, 35 \%)$ as a colorless oil.

Data for 218: $\mathrm{R}_{f} 0.30\left(1: 910 \% \mathrm{NH}_{4} \mathrm{OH}\right.$ in $\left.\mathrm{MeOH}: \mathrm{EtOAc}\right)$; IR (thin film) 2958, $1730,1661,1521 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.77(\mathrm{~m}, 1 \mathrm{H})$, 3.65-3.68 (m, 1 H), 2.53-2.57 (m, 1 H), 2.44-2.47 (m, 1 H), 2.35-2.40 (m, 2 H), $1.95-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{td}, J=12.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,171.9,170.0,143.9,129.7,127.7$, 126.3, 62.5, 52.0, 47.4, 32.2, 31.6, 30.6, 19.9, 14.3, ; HRMS (TOF MS ES+) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]: 301.1552$, found 301.1561.

104 Abe, F.; Yamauchi, T. Phytochemistry 1994, 35, 169-171.
105 Gan, C. Y.; Low, Y. Y.; Thomas, N. F.; Kam, T. S. J. Nat. Prod. 2013, 76, 957964.

106 (a) Xu, Z.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 19127-19130. (b) Umehara, A.; Ueda, H.; Tokuyama, H. Org. Lett. 2014, 16, 2526-2529.

107 Marinescu, S. C.; Nishimata, T.; Mohr, J. T.; Stoltz, B. M. Org. Lett. 2008, 10, 1039-1042.

108 (a) Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novák, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D. E.; Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem. Eur. J. 2011, 17, 14199-14223. (b) Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, 2745-2759.

109 Tokuyama, H.; Kaburagi, Y.; Chen, X.; Fukuyama, T. Synthesis 2000, 424-434.
110 Dwroniczak, M.; Leffek, K. T. Can. J. Chem. 1990, 68, 1657-1661.
111 Smissman, E. E.; Ayres, J. W. J. Org. Chem. 1972, 37, 1092-1094.
112 (a) Wamhoff, H.; Lichtenthaler, L. Chem. Ber. 1978, 111, 2813-2824. (b) Wamhoff, H.; Lichtenthaler, L. Synthesis 1975, 7, 426-427.

113 Michael, J. P.; De Koning, C. B.; Van der Westhuyzen, C. W.; Fernandes, M. A. J. Chem. Soc. Perkin Trans 1 2001, 17, 2055-2062.

114 Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050-7051.
115 (a) Bruson, H. A.; Riener, T. W. J. Am. Chem. Soc. 1943, 65, 23-25. (b) Park, S. B.; Alper, H. Org. Lett. 2003, 5, 3209-3212.

116 Waldvogel, S. R.; Pfleiderer, W. Helv. Chim. Acta 1998, 81, 46-58.
117 Dubé, D.; Scholte, A. A. Tetrahedron Lett.1999, 40, 2295-2298.
118 for a review, see Palacios, F.; Alonson, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. Tetrahedron 2007, 63, 523-575.

119 for examples, see (a) Cao, L.; Maciejewski, J. P.; Elzner, S.; Amantini, D.; Wipf, P. Org. Biomol. Chem. 2012, 10, 5811-5814. (b) Takeuchi, H.; Eguchi, S. J. Chem. Soc., Chem. Commun. 1989, 602-603. (c) Okawa, T.; Sugimori, T.; Eguchi, S.; Kakehi, A. Heterocycles 1998, 47, 375-382.

120 (a) Wang, J.; He, Z.; Chen, X.; Song, W.; Ping, L.; Wang. Y. Tetrahedron 2010, 66, 1208-1214. (b) Charaette, A. B.; Grenon, M. Tetrahedron Lett. 2000, 41, 16771680.

121 Ponda, T.; Lazar, S.; Coudert, G.; Guillaumet, G. Tetrahedron 1993, 49, 46194626.

122 Zhou, J.; Magomedov, N. A. J. Org. Chem. 2007, 72, 3808-3815.
123 for examples of reactions of thiolactams with amines see (a) Kato, E.; Kumagai, T.; Ueda, M.; Tetrahedron Lett. 2005, 46, 4865-4869. (b) Pozo-Rodrigalvarez, A.; Gradillas, A.; Serrano, J.; Fernandez, A. P.; Martinez-Murillo, R.; Perez-Castells, J. Eur. J. Med. Chem. 2012, 54, 439-446. (c) Williams, S. J.; Hoos, R.; Withers, S. G. J. Am. Chem. Soc. 2000, 122, 2223-2235. for examples of dithioimides with amines see
(d) Scherbakow, S.; Namyslo, J. C.; Gjikaj, M.; Schmidt, A. Synlett 2009, 12, 19641968. (e) Baguley, M. E.; Elvidge, J. A. J. Chem. Soc. 1957, 709-719. (f) El-Sharief, A. M. Sh.; Zaher, M. R.; Hammad, N. I. Indian J. of Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1981, 20,751-754.

124 Padwa, A.; Harring, S. R.; Semones, M. A. J. Org. Chem. 1998, 63, 44-54.
125 Fan, G.-T.; Lee, C.-C.; Lin, C.-C.; Fang, J.-M.; J. Org. Chem. 2002, 67, 75657568.

126 for a review of Laweson's reagent see Jesberger, M.; Davis, T. P. Synthesis, 2003, 13, 1929-1958.

127 Weinreb, S. M.; Anderson, G. T.; Nylund, C. S. Dimethylaluminium Amide Encyclopedia of Reagents for Organic Syntheiss. [Online] April 15, 2001, DOI: 10.1002/047084289X.rd296m (accessed Nov. 15 ${ }^{\text {th }}, 2014$).

128 Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 48, 4171-4172.
129 Grigg, R.; Santhakumar, V.; Sridharan, V.; Stevenson, P.; Teasdale, A.; ThorntonPett, M.; Worakun, T. Tetrahedron 1991, 47, 9703-9720.

130 For a review on the Ullman coupling see Sambiagio, C.; Marsden, S. P.; Blacker, J. A.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525-3550.

Chapter 5: Conclusion and Future Direction

5.1 Conclusion

The advancement of medicine relies greatly on the ability to efficiently construct new molecules for screening and derivatization. Because many biologically active molecules contain one or more nitrogen atoms, the development of new methods for their synthesis is an important endeavor. However, the complex reactivity of nitrogen can be problematic in synthesis. The ability to quaternize, the Lewis basic lone pair, and the weakly acidic $\mathrm{N}-\mathrm{H}$ protons found in nitrogen-containing molecules often give rise to undesired reactivity.

As a means to mute the reactivity of nitrogen, synthetic chemists often employ protective groups. Other strategies which have proven successful for the synthesis of nitrogen-containing structures include opting to install nitrogen late in the synthesis or in the form of a less reactive functional group.

Free radical reactivity avoids the complications inherent in the synthesis of nitrogenrich molecules. Radicals are known to tolerate heteroatom lone pairs, and $\mathrm{N}-\mathrm{H}$ bonds are resistive to homolytic cleavage. Free radical reactivity has proven useful for the synthesis of heterocycles and alkaloid natural products. This reactivity also allows for the strategic disconnection of bonds which would be difficult to form using standard cationic or anionic reaction conditions. For these reasons, free radical based methods are ideally suited to the synthesis of nitrogen containing molecules.

Despite the presence of the aminal functional group in several nitrogen-rich natural products which had attracted the attention of the synthetic community, very little
attention had been given to the development of reactions specific to the aminal. Although there were reports of fragmentation, protonation, and dimerization reactions of aminal radicals, there had been no reports of their synthetic utility prior to the work described in this dissertation. The goal of this work was to develop the reactivity of the aminal radical intermediate as a new tool for the construction of $\mathrm{C}-\mathrm{C}$ bonds in the context of nitrogen-rich molecular architectures.

As detailed in the first chapter of this dissertation, preliminary investigations centered on the generation of aminal radicals under peroxide initiated conditions similar to those previously reported for the generation of α-amino radicals. The treatment of aminal containing molecules with di-tert-butyl peroxide in the presence of a radical acceptor produced either a complex mixture of products, or no reaction. Unable to determine if aminal radicals were being generated, a new method was sought.

Treatment of 2-iodobenzyl substituted aminals with AIBN and a hydrogen atom donor in the presence of an electron-poor alkene resulted in the formation of the desired aminal radical addition product. However, efforts to optimize this reactivity with non-acylated aminals were unsuccessful.

The second chapter was taken from the published paper Formation of Carbon-Carbon Bonds Using Aminal Radicals, Schiedler, D. A.; Vellucci, J. K.; Beaudry, C. M. Org. Lett. 2012, 14, 6092-6095. This chapter described the further development of this reactivity. Aminal radicals were successfully formed from 2-iodobenzyl substituted N -acyl aminals by radical translocation reactions using AIBN and a either $\mathrm{Bu}_{3} \mathrm{SnH}$ or $(\mathrm{TMS})_{3} \mathrm{SiH}$ as a stoichiometric hydrogen atom donor. It was discovered that the installation of an acyl substituent on the aminal greatly enhances the reactivity of the aminal radical species, resulting in cleaner reactivity, increased reaction yields, and the ability to form aminal radicals in the presence of carbon atoms bearing a single
nitrogen atom substituent. Chemical yields of the radical translocation reactions were as high as 91%.

The third chapter was taken from the published paper Reductive Synthesis of Aminal Radicals for Carbon-Carbon Bond Formation, Schiedler, D. A.; Lu, Y.; Beaudry, C. M. Org. Lett. 2014, 16, 1160-1163. This chapter described the development of an alternative means to access aminal radicals. It was demonstrated that the SmI_{2} reduction of N -acyl amidines or amidinium ions in the presence of CSA or $\mathrm{NH}_{4} \mathrm{Cl}$ and an electron deficient alkene yielded products of $\mathrm{C}-\mathrm{C}$ bond formation. Chemical yields of these transformations were as high as 99% and diastereoselectivities were as high as $20: 1$. Mechanistic investigations of this reactivity indicated that these reactions likely proceed through an aminal radical intermediate.

The fourth chapter described our current investigations on the application of aminal radicals to the total synthesis of the alkaloid natural product leuconoxine. It was envisioned that the SmI_{2} induced reductive alkylation reaction of a simple bicyclic N acyl amidine would rapidly construct the fully substituted aminal stereocenter present in the natural product and could lead to an efficient synthesis of the target.

While similar amidines have been reported in the literature, no general strategy to access amidines of this type was known. Three distinct synthetic strategies towards the preparation of the desired bicyclic N-acyl amidine substrate were developed and investigated.

The first strategy relied on the formation of the amidine using the intramolecular azaWittig reaction of an imide and an azide. Unexpectedly, this reaction produced a amido lactam product rather than the desired N-acyl amidine. Attempts to induce an intramolecular condensation reaction of the amido lactam to give the desired amidine
were unsuccessful. It was concluded that the poor nucleophilicity of the electron-poor aryl amide and the sterically congested nature of the desired site of attack were to blame for the lack of desired reactivity.

The second strategy disconnected the desired bicyclic N-acyl amidine through an intramolecular N-acylation reaction of an N-aryl amidine. It was envisioned that the amidine could be prepared from a bimolecular condensation reaction of an aniline and a lactam derivative. All attempts to form the desired amidine functionality were unsuccessful. It was again concluded that the poor nucleophilicity of the electronpoor aryl nucleophile coupled with the sterically congested nature of the desired site of attack were to blame for the lack of desired reactivity.

The third strategy depended upon an N -arylation reaction for the conversion of the bicyclic N-acyl amidine reported by Wamhoff into the desired substrate for the synthesis of leuconoxine (1). While the key intermediate for the synthesis of leuconoxine (1) utilizing an aminal radical disconnection has remained elusive, a model system of the key N-arylation reaction has successfully produced an N-aryl $-N$ acyl bicyclic amidine product. The investigation of this synthetic route is still underway.

5.2 Future Directions

The immediate goals for the future of this project are related to the total synthesis of leuconoxine (1). In order to determine if the key aminal radical cyclization reaction is likely to be successful, it would be instructive to perform a few model reactions (Scheme 5.1). The amidine reported by Wamhoff (178) has not successfully participated in an aminal radical reaction (see chapter 4). However, the reactions investigated do not closely resemble the key aminal radical cyclization reaction
proposed for the synthesis of $\mathbf{1}$. The preparation of the alkylated amidine $\mathbf{2 1 9}$ and the investigation of its reactivity under the SmI_{2} reaction conditions will be performed (eq. 1). If $\mathbf{2 2 0}$ is not obtained from this reaction, then the reaction of analogous TBSprotected alcohol $\mathbf{2 2 1}$ to give the product $\mathbf{2 2 2}$ will be investigated to determine if the electron-withdrawing nature of the ester functional group is the cause of the problematic reactivity (eq. 2). Similarly, the bimolecular aminal radical reactions of 218 to give 223 will be examined (eq. 3). Additionally, the reactions 178 with the 1,2dihalogenated arenes (224 and 225) will be investigated in order to prepare the substrates $\mathbf{2 2 6}$ and $\mathbf{2 2 7}$ for further study (eq. 4).

223

Scheme 5.1. Future work on the synthesis of $\mathbf{1}$

The long-term goals of the project include the development of new modes of reactivity and their application in total synthesis (Scheme 5.2). The development of the reaction between aminal radicals and a C-1 radical acceptor, such as the aldehyde

228, to give the alcoholic product 229 is currently being investigated by Mr. Yi Lu (eq. 1). Once successfully developed, this reactivity will be applied in the total synthesis of saxitoxin (2).

The reactions of aminal radicals described in this dissertation both require prefunctionalization of the reaction substrate. It would be advantageous to develop a means to access aminal radicals directly from unsubstituted aminal substrates. For example, the extension of the method developed by Tanaka using triethylborane and molecular oxygen for the formation of α-amino radicals to the generaton of aminal radicals (eq 2) would be particularly useful.

228

Scheme 5.2. Additional reactions to be developed

The main limitation of the amidine reduction method we have developed is the lack of general and robust methods for the synthesis of N-acyl amidines. We envision the development of an oxidation reaction wherein an amidine (230) is oxidized to give an N -acyl amidine (231). Reactions of this type have been reported, but have not been investigated systematically. ${ }^{131}$ If fully realized, this reactivity could greatly increase
the utility of the amidine reduction chemistry described in chapter 3 of this dissertation.

131 for examples see (a) Hutchinson, J. H.; Halczenko, W.; Brashear, K. M.; Breslin, M. J.; Coleman, P. J.; Duong, L. T.; Fernandez-Metzler, C.; Gentile, M. A.; Fisher, J. E.; Hartman, G. D.; Huff, J. R.; Kimmel, D. B.; Leu, C.-T.; Meissner, R. S.; Merkle, K.; Nagy, R.; Pennypacker, B.; Perkins, J. J.; Prueksaritanont, T.; Rodan, G. A.; Varga, S. L.; Wesolowski, G. A.; Zartman, A. E.; Rodan, S. B.; Duggan, M. E. J. Med. Chem. 2003, 46, 4790-4798. (b) Shakhidoyatov, Kh. M.; Mukarramov, N. I.; Utaeva, F. R. Chem. Nat. Compounds 2008, 44, 625-629. (c) Zhang, C.; De, K. C.; Seidel, D. Org. Synth. 2012, 89, 274-282.

