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The objective of this study is to propose control strategies for legged robots to walk 

and run naturally like humans and animals. To achieve this goal, we use the 

spring-mass model for the legged robots to be able to create the same dynamics in 

the leg as humans and animals. In this way, understanding the natural dynamics of 

the system plays the central role and the strategy is to manipulate the dynamics of 

the system in the favor of final goals. This research elaborates to follow the 

template-anchor-robot notion, therefore the process starts with reduced order 

model (template) and then shows the validity of the control policy on the full order 

model (anchor) and finally implements the policy on the robot. 

The study starts with analyzing the dynamics of the bipedal spring-mass model to 

find the workspace and the possible limit cycles in each energy level. After that, a 

deadbeat control strategy is proposed to pinpoint the system to the desired limit 

cycle. It is shown that two steps are necessary and sufficient for the deadbeat 

control but it turned out that the sensitivity of the system to the touch-down angle 



is a challenging issue for implementing on real robots. Therefore, unlike the 

deadbeat control technique that pinpoints the system to the desired states, four 

swing leg control policies are proposed to gradually approach the desired limit 

cycles. The large basins of attraction of these proposed control policies show that 

the system can be reliably controlled to the desired gaits after large perturbations. 

The implementation on the full order model of the robot as well as the robot itself 

confirms this conclusion. Furthermore, a time-based feed-forward control strategy 

for the stance phase of the bipedal spring-mass model is combined with one of the 

proposed swing leg control policies to stabilize the model and manages the energy 

of the system. The simulations show that this technique can stabilize the model 

and manages the energy level of the system and the rate of convergence would be 

higher for spring-mass system with some damping in parallel to the spring. By 

implementing this policy on the full order model of the robot, stable walking gaits, 

as were predicted by the reduced order model, were obtained. Finally, a flight 

phase control policy is proposed for spring-mass running robots through 

investigating birds’ running experiments. In this control policy, three objective 

functions were considered to fulfill safety and efficiency during running. It turned 

out that with a simple swing leg policy (constant leg angular acceleration), both 

goals of damage avoidance and energy efficiency can be fulfilled at once. 
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Chapter 1 – Introduction 

Despite of the recent remarkable advances in the field of legged robotics, animals can 

still outperform the legged robots in performance, efficiency and robustness during 

walking and running in natural environment. Part of this superiority is due to 

the difference in the actuator mechanisms, and part of it is due to the superior 

control policies that animals use during locomotion. The goal of this work is to 

elaborate to understand the principles of the dynamics of walking and running and 

then propose control policies based on the natural dynamics of the system to achieve 

stable locomotion. 

We use the spring-loaded inverted pendulum (SLIP) model as the passive model 

for running and its bipedal extension as the reduced order model for walking [6, 7]. 

Recent studies showed that these models have self-stabilizing characteristic [4, 7, 8], 

which implies that they do not require complicated control effort to become stable 

and hence is aligned with the concept of passive dynamics [9]. 

The actuated versions of the aforementioned models are also used in this work 

[10]. They are mathematically similar to our robot ATRIAS (figure 1.1). In the 

actuated model, a motor is used in series with the leg spring to add or remove 

energy and change the zero force leg length of the legs. When it is desired for the 

system to be conservative, the leg motor is kept locked during the stance phase to 

provide a passive and conservative gait. 
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ATRIAS 2.1 Actuated SLIP

Leg
Motor

Figure 1.1: ATRIAS 2.1 vs the actuated SLIP model. The leg motor allows the 
model to change the zero force leg length during the flight phase. The leg is assumed 
massless and position controller is used for the leg angle placement. 

1.1 Contributions 

The contributions of this research are: 

•	 Analyzing the dynamics of the bipedal spring-mass model and un

derstanding the relation of the limit cycles with respect to each other 

by determining the position of them in the workspace. By finding all 

the states in the state-space that can be used in the process of walking, the 

maneuverability of the bipedal spring-mass model is realized. The location of 

the equilibrium points in the workspace and with respect to each other explains 

how the behavior of the limit cycles (like the CoM trajectory and force profile) 

can be changed and the fact that the equilibrium gaits are not distinct gaits 
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and continuously evolve to each other to form different gaits. 

•	 Proposing deadbeat control for walking and investigating the appli

cability of this strategy for walking. It is demonstrated that two steps 

are necessary and sufficient to pinpoint the states of the system to the desired 

equilibrium point. The sensitivity of the system to the touch-down angle of 

the swing leg makes the deadbeat control strategy challenging for real world 

application. 

•	 Four swing leg control policies are proposed that stabilize the bipedal 

spring-mass model with large basins of attraction. The proof of con

cept is validated through implementing on full order model and on 

real platform. Two state-based control policies and one time-based control 

strategy that are proposed, exponentially stabilize the system to the desired 

limit cycles with large basins of attraction for most of the equilibrium points. 

Another state-based control technique that is proposed in this work can provide 

marginal stability for the system. 

•	 Proposing a feed-forward control strategy for the stance phase to sta

bilize the system and manages the energy. A feed-forward function based 

on time for stance phase combined with the proposed time-based technique, 

stabilizes the system to the desired limit cycle and energy level. The study uses 

undamped spring-mass model and the spring-mass model with some damping 

in parallel to the spring. For the bipedal spring-mass model with physical 

damping in parallel to spring, the convergence rate and stability enhances sig



4 

nificantly suggesting that adding additional damping through software in the 

control or actual physical damper can enhance the performance of the system. 

•	 Proposing a bio-inspired flight phase control policy for spring-mass 

running model over rough terrain. Inspired from animals’ running experi

ments, three objective functions to provide safety and efficiency are investigated 

for flight phase policy. It is shown that by a simple flight phase trajectory for 

the leg, the peak force in the leg can be regulated in the presence of ground 

level change and both safety and efficiency can be fulfilled together. 

1.2 Thesis outline 

Chapter 2 reviews the models that have been used for dynamic walking with the 

emphasis on the passive dynamics of the systems. The bipedal spring-mass model 

that is the focus of this study is also introduced and reviewed in this chapter. After 

that in chapter 3, the analysis of the bipedal spring-mass model is presented. The 

state space of this model for walking is investigated in more detail and the workspace 

for walking is introduced. Moreover, the equilibrium gaits are found in each energy 

level and the location and relation between the equilibrium points in the workspace 

are found. In chapter 4, a deadbeat control strategy based on the limitations and the 

control authority of the bipedal spring-mass model is proposed in one energy level and 

extended for different energy levels for walking on rough terrain. Four new control 

strategies for controlling the swing leg are proposed in chapter 5 to produce stable and 

robust walking. After presenting the stability analysis of the control policies, the size 
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and shape of the basin of attraction that each control policy creates, are calculated 

and compared against each other. Furthermore, to manage the energy level of the 

system, a feed-forward control strategy is presented in chapter 6 for stance phase 

control of the actuated bipedal spring-mass model. The study will be with and 

without the presence of damping in the system. Finally in chapter 7, three control 

strategies are proposed for the flight phase of running. Each of these control policies 

targets a different objective function to regulate during running and the only control 

parameter that is used in this chapter is the leg angle at the moment of touch-down. 

The objective functions are considered for damage avoidance and energy efficiency, 

bio-inspired control policies that are also important technical issues for real robots. It 

is concluded that by implementing either of the control policies that are proposed in 

chapter 7, both goals will be hit at once with a very simple implementation strategy 

for leg retraction. 
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Chapter 2 – Background 

There are two broad classes for the control of bipedal walking robots: static walk

ing and dynamic walking. In static walking, the robot walks with moderately low 

velocity such that it is statically stable at each instant of time. On the other side, 

in dynamic walking control strategies, robots are not stable at each moment of time 

individually and instead the stability is achieved over time. Therefore, dynamic walk

ing techniques impose less constraints to the system and hence allow more efficient 

and agile walking. In this study the emphasis will be solely on the dynamic walking 

models and control strategies. 

The story of dynamic walking robots started after McGeer [9] showed that having 

natural looking and efficient walking robot does not require complicated actuation 

and sensing. Instead, it requires proper design of mechanical mechanisms and passive 

elements. In mathematical language he showed that dynamical systems for walking 

can be stable as a whole over time and not necessarily locally stable at each moment 

individually. There are many improvements since then to the field of passive dynam

ics for walking robots inspired from his work [11, 12, 13, 14, 15, 16, 17, 18]. In the 

following sections, the models and the dynamics that have been used for dynamic 

walking robots are reviewed. 
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2.1 Models for walking robots 

In this section a review of the models that have been used for dynamic walking is pre

sented. In each part first the mathematical model is presented and then the dynamics 

of that model and the robots designed and built based on them are enumerated. 

2.1.1 Rimless wheel model 

The rimless wheel is one of the most elementary conceptual model for passive dynamic 

walking [9]. Due to the geometry of this model (figure 2.1), it has always one leg on 

the ground [9]. The angle between the legs (and consequently the number of the legs) 

can be adjusted to have different types of locomotion. The first idea from passive 

dynamic walking came from the movement of this model on an inclined surface. 

m

g

Figure 2.1: The rimless wheel model is a conceptual model for dynamic walking.
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2.1.2 Compass gait model 

The second basic and most inspiring model for passive dynamic walking is the com

pass gait model [11]. It is called compass gait because of the shape of this model 

that is similar to compass [15, 11, 19, 20]. Garcia et al. [11] found that there are 

stable gaits with respect to the surface slope and Wisse [15] showed that the stable 

gaits of this model have very narrow basin of attractions. To solve the geometric 

constraints, four-link compass gait was also investigated. The four-link model has a 

knee in each leg with a similar dynamics to the compass gait model [15]. 

The nonlinear behavior of this model was investigated by many researchers to 

find the bifurcation points and chaos behavior of that to understand the passive 

dynamics walking with this simple model [21, 22, 23, 24]. 

The first demonstration of purely passive walker was McGeer [9] passive walker 

robot. There was no actuation or sensor in his passive walker and the whole walking 

gaits were based on proper design of mechanical elements and passive dynamics of 

the system. One of the outstanding characteristics of the passive walker is its natural 

looking behavior during walking. Therefore, some researchers have used the passive 

walking control strategy even for fully actuated systems [25]. For example, Anderson 

et al. [25] controlled three fully actuated robots to walk like passive dynamic walker 

to take advantage of the natural way of walking properties of passive walkers. 

Inspired by the passive dynamic walkers, powered passive dynamic walkers were 

proposed [14, 26]. Iida et al. [27, 28] found control strategy for powered compass gait 

when it is walking on rough terrain. Byl et al. [29] included a torque as a control 

parameter at the hip of the compass gait model and investigated the optimal control 
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for this model. For the powered passive walkers, the controller is based on the passive 

dynamics of the system, but there exist some actuators mainly to just compensate 

for the lost of the energy due to impact and friction. The most important source of 

energy loss in passive walkers are the rigid impact of the striking leg with the ground. 

To reduce the effect of this problem, researchers used properly designed curved foot 

for legs that can reduce the energy loss at the time of impact [30, 31, 14, 26]. This 

idea is used in Cornell university’s robots [14, 26]. 

2.1.3 Compass gait with torso (three-link bipedal robot) 

In the compass gait model, the whole body mass is assumed as a concentrated mass 

at the hip. To consider the effect of the upper body inertia in the passive behavior 

of the system, a torso is added to the compass gait model [32] to be included in the 

dynamics of the system. 

The results of the analysis for this system showed that it is more efficient and 

slightly more robust compared to the compass gait model [15]. Moreover, in a more 

complicated model, it was shown that the existence of the spring between the two 

legs helped for providing stable walking [15]. Recently, Chen et al. [33] investigated 

the concept of this model on stochastically rough terrain. They compared the effec

tiveness of the upper body in the model to the original compass gait model. They 

found that with torso, the model can handle a five times bigger perturbation than 

the model without a torso. 

Gritfl et al. [34] investigated the chaotic behavior of this model but with a 
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control input between the stance leg and the torso and instead they did not assume 

the kinematic coupling. They showed that the system can walk stable on steeper 

slopes and hence reach higher velocities during walking. 

2.1.4 Five-link bipedal robot 

Another model is five-link bipedal robot which has a torso and knee in each leg. If 

the legs are assumed massless, the dynamics of the system is the same as the compass 

gait with torso, but if upper and lower parts of the leg (shin and thigh) have separate 

mass, the dynamics of the swing leg would be different and consequently it affects 

the dynamics of the whole system [35, 36]. The existence of the knee in each leg 

allows the swing leg to have some clear distance from the ground during walking. 

For the passive walker models (including compass gait, five-link bipedal robot 

and the more complicated version seven-link bipedal model), simple leg retraction 

during walking can enhance the disturbance rejection characteristic of the system 

[37, 16]. Even though the leg retraction is very simple control strategy, but it requires 

actuation for walking on level ground and therefore the model should be powered to 

provide the required swing-leg retraction [37, 16]. 

2.1.5 Three link walking model with hip springs 

Assuming the legs are connected to the torso with passive springs is another model 

for passive dynamic walking. This model can potentially be able to walk with zero 

energy cost [17] meaning that the energy loss due to impact can be vanished. The 
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idea is to walk such that the foot has zero velocity with respect to the ground to 

have zero energy cost. Walking pattern with this model to have zero impact energy 

lost is far from natural walking and the torso has huge oscillations during walking. 

Moreover, the authors [17] reported that, they did not find stable fixed point in the 

analysis of the system which means even though the fixed point to give zero energy 

cost does exist, but it may not be stable. Chyou et al. [38] have shown that adding 

torso connected to the legs with passive springs, improves the stability of the system 

in addition to efficiency. 

2.1.6 Bipedal spring-mass model 

The bipedal spring mass model (figure 2.2) is inspired by the dynamics and behavior 

of human walking gaits. The notion is that the locomotion of humans and animals 

are optimal in both mechanism and control. Therefore, one intelligent way of having 

optimal legged robots is to reproduce the dynamics of human CoM on the robots. 

The simplest model that can represent the same dynamics to the body is the spring-

mass model [39, 7, 40]. Studies have shown that the bipedal spring-mass model can 

capture important features of human locomotion like the forces applied to the CoM, 

the movement of the CoM and the change in the energy level during the gait which 

are not similar with other simple models. 

This model is the bipedal extension of the spring loaded inverted pendulum 

(SLIP) model which is one of the most accepted model for running [39, 40, 41, 4, 42, 

43, 44, 45, 46, 47]. For walking, the rigid inverted pendulum model has been used by 
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Figure 2.2: Bipedal SLIP model for walking is constituted of two massless legs and a 
point mass at the hip. The dynamics of the system is hybrid with two phases during 
walking. When both legs are on the ground, the system is in double support phase 
and when only one leg is on the ground the model is in single support phase. 

numerous researchers [9, 19, 11, 48, 14, 15, 37, 17]. The rigid inverted pendulum can 

well explain many features of walking [48, 49] and also it is simple to understand the 

principles of walking [15, 11, 9, 48]. But the ground reaction forces (GRF) between 

the rigid inverted pendulum model and human data are not consistent [40, 50] which 

lead to different dynamics between the two system. Also the vertical movement of 

the human center of mass (CoM) during walking is less than the amplitude that 

the rigid inverted pendulum model predicts [51, 52]. To match the dynamics of the 

CoM between human and robots, researchers added more details to the model (like 

leg segment and leg damping) to generate the double hump force profile of human 
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walking, but these systems are more difficult to understand and gain insights about 

the locomotion. 

Geyer et al. [6, 7] introduced the bipedal spring-mass model by adding a mass

less leg to the conventional monopod SLIP model that had been used for running. 

Therefore, the new model has two massless legs and a point mass at the hip. The 

dynamics of the model is still hybrid for walking [53] because it allows the two legs 

to be on the ground at the same time as well as one leg alone. When a single leg is 

on the ground the equations of motion is the same as the conventional SLIP model 

in stance phase [54, 45, 55, 56], and when two legs are on the ground, the model 

follows the double support dynamics [7, 53, 57] of the bipedal spring-mass walking 

model which will be investigated more in detail later. The model is shown in figure 

2.2 with the two phases during walking. 

This model is capable of generating the shape of the human walking force profile 

if the transition between single support phase and double support phase is defined 

properly. It should be noted that to get the double hump force profile (like human 

walking force profile), the double support phase is crucial [7]. Comparing the sim

ulation results from the bipedal spring-mass model and human experimental data 

reveals that by setting proper touch-down angles during the passive walk, similar 

force profile can be generated [7]. In addition to the shape of the force profile, other 

important dynamical features like the vertical movement of the CoM and the change 

in the energy during a gait are also compatible between the spring-mass walking 

model and human walking data [6]. 

Even though the bipedal spring-mass model was proposed to explain human 
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walking data, from mechanical and physics point of view, too, the bipedal spring-mass 

model has a huge advantage over other passive model counterparts. This advantage 

is related to the energy efficiency of this system [58] that makes it theoretically 

energy conservative and hence provides it the possibility to walk on a flat surface in 

theory without any need of actuator or ground level inclination to compensate for 

the energy loss during impact because there is no impact at the contact due to the 

existence of the spring in the leg. This part along with the inherent passive dynamics 

of the system, allow it to walk efficiently in comparison to other models that suffer 

from energy loss at each gait. From the practical point of view, there is some mass 

between the toe and the spring that are influenced by the impact, but since the mass 

in this region can be very small (depends on the mechanical design of the system), 

the loss of energy in the presence of the spring can be negligible [7, 59]. Another 

mechanical advantage of having spring in the system relates to the interaction of the 

actuators with environment. The existence of some compliance between actuators 

and environment would also enable us to measure the forces more accurately, design 

a safer mechanism and avoid possible mechanical damages that may occur in some 

situations. 

The spring-mass model (the monopod version and the biped version) has been 

the inspiration for many legged robots [60, 61, 62, 2, 63, 64, 65]. ATRIAS is one of 

the new robots that has been developed recently (figure 2.3) [2, 1] to have the same 

dynamics of this model as much as possible. 
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Figure 2.3: Different versions of ATRIAS [1]. a) the concept of ATRIAS, b) leg 
mechanism, c)ATRIAS 1.0 [2], d) ATRIAS 2.0 and e)ATRIAS 2.1 [1] . 

2.1.7 Spring-mass model with torso/trunk (TSLIP) 

By adding a torso to the SLIP model, a new reduced order model is obtained [66]. 

To keep the torso upright in this model, a torsional spring is used between the torso 

and the leg. One way of stabilizing the torso is to redirect the ground reaction force 

to a point above the CoM such that the torso behaves like a rigid pendulum [67] 

hanging from a point above its center of mass. 

Rummel et al. [66] used passive spring in the hip and investigated the effect 

of that on the robustness of the system when the virtual pivot point [67] strategy 

is implemented. They concluded that the hip spring reveals best robustness with 

moderate stiffness. 
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2.2 Dynamics and behavior of the bipedal spring-mass model 

In this section we investigate the state of the art knowledge of the behavior of the 

bipedal spring-mass model in more detail. As mentioned before, the bipedal spring-

mass walking model is a hybrid nonlinear system with two distinct phases: single 

support phase and double support phase. The interval that only one leg is on the 

ground is called single support phase and when both legs are on the ground it is 

called double support phase. The dynamics of the system in each of these phases are 

different. The equations of motion during the single support phase is: 

mr̈ = F1 − mg (2.1) 

And for double support phase, the equations of motion would be: 

mr̈ = F1 + F2 − mg (2.2) 

Where F1 and F2 in these equations are the force vector of the two legs and can 

be obtained as: 

l
Fi = k

r − 
0i 

rti
− 1 (r − rti), i = 1, 2 (2.3)

i | | 

In these equations k and l are the stiffness and the zero force length of leg i and
i 0i 

r and rti are the position vector of the CoM and the toe respectively. This is the 

cartesian representation of the dynamics of the system, there is also another repre

sentation of the dynamics of walking with this model that uses the polar coordinates 
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[53] which is very common for running [55, 45, 41, 54]. 

Since the spring-mass model is conservative by its nature, the states of the system 

are related through the constraint coming from the conservation of energy during 

walking. Therefore, at each instant of time during the single support phase the 

whole mechanical energy of the system can be obtained as: 

1 
E = k1(l r − rt1 )2 +

1 
m(v 2 + vy 

2) + mgy (2.4)
2 01 x− | |

2


And for double support phase:


1 1 
E = k1(l r − rt1 )2 + k2(l r − rt2 )2 +

1 
m(v 2 + vy 

2) + mgy (2.5)
2 01 02 x− | |

2 
− | |

2 

In these equations vx and vy are the horizontal and vertical components of the 

velocity vector and y is the height of the CoM with respect to the ground. 

We can simplify the analysis of this system by using the concept of Poincare 

section given the fact that walking is a periodic process [68, 69, 70]. One way of 

defining Poincare section for bipedal spring-mass walking to minimize the number of 

independent states is to define it during the single support phase and when the stance 

leg has vertical orientation (figure 2.4) it is also known as Vertical Leg Orientation 

(VLO) [8]. 

The behavior of the system between the Poincare sections can be studied based 

on the values of the independent states at the Poincare sections. The history of the 

states between two consecutive Poincare sections is defined as one gait or one step 
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Figure 2.4: Definition of vertical leg orientation (VLO) and the Poincare section for 
bipedal spring-mass walking system. 

[71]. Because of the conservation of energy for the whole gait, the number of the 

independent states shrink to two variables on the Poincare section. For example, the 

height of the center of mass and the orientation of the CoM velocity vector at the 

Poincare section are enough to find the behavior of the system given the touch-down 

angle of the swing leg (which is the control input). It should be noted that the 

magnitude of the velocity vector is obtained here from the conservation of energy. 

The energy equation at the defined Poincare sections can be written as follows: 

1 1 2E = k(l0 − y)2 + m(v 2 + vy ) + mgy (2.6)
2 x2 
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By defining the following variables, the constraint surface due to conservation of 

energy is obtained [53]. 

k 
w = (2.7) 

m 
vx 

v̂x = (2.8) 
w 

v̂y = 
vy 

(2.9) 
w 

mg 
ŷ = y − (l0 − ) (2.10)

k 
2 mg

R = (E − mg(l0 − )) (2.11)
k 2k 

Therefore, the energy equation can be rewritten in the following form at the 

Poincare sections which depicts a sphere surface. 

2R2 = v + ˆ2 + ˆ (2.12)ˆ2 v yx y 

In the above equation, to have the largest velocity magnitude, the deflection of 

the spring should be equal to the static deformation Δs = mg when the only force is 
k 

the weight of the system. 

Researchers have chosen different variables at the Poincare section as the inde

pendent states. For example, Salazar et al [53] used the height of the CoM and 

the vertical component of the velocity vector, but Rummel et al [8] chose height of 

the CoM and the angle of the velocity vector with respect to horizon. Geyer [7] 

assumed the Poincare section is at the time that the system goes to double support 
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and therefore the number of the independent variables at the Poincare section would 

be three. 

Salazar et al [53] analyzed the dynamics of this model and found the states with 

finite stability using the well-known and simple constant angle of attack control 

policy. Based on this control policy, the system keeps the angle of attack constant 

until it falls or walks for more than 25 steps that they considered as infinite stability 

(mathematical definition of stability). They analyzed the behavior of the system 

for three types of locomotion with bipedal spring-mass model: walking, grounded 

running and running. They showed that it is possible to travel between these three 

regions by controlling only the touch-down angle of the swing-leg. In [72], Salazar 

also investigated the evolution of the walking state space as the whole energy of the 

system changes. 

One deficiency of their study about state space is that since they found the states 

through constant angle of attack policy (CAAP), only the states that can start a 

walking gait can be found and the states that can be reached at the end of walking 

gaits cannot be captured. 

Rummel et al [8] considered the height of the CoM and the angle of the veloc

ity vector as the independent states at the Poincare section. They compared the 

robustness of the bipedal spring-mass model with respect to the leg stiffness. The 

control policy that they used is the constant angle of attack control policy. They 

found five types of equilibrium gaits with different CoM trajectories and reported 

that within three types of these five types, local stability (in the sense of constant 

angle of attack policy) was found. Among the stable gaits they found that one type 
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of asymmetric equilibrium gaits is stable and they did not find stable gaits for other 

asymmetric gaits. They concluded that the robustness of the bipedal spring-mass 

model increases with leg stiffness until a moderate value and after that the robustness 

decreases slightly with increasing the leg stiffness, meaning that there is an optimal 

leg stiffness for the robustness of the system in walking. It should be noted that 

the control policy that they used in their study is also the constant angle of attack 

policy and with different control policy, the results for the optimal leg stiffness and 

robustness would be different. 

Merker et al. [73] showed that even for asymmetric legs, achieving stable walking 

is possible and in some cases, the stability of the gaits are even improved. They 

investigated three types of asymmetries: asymmetry in the touch-down angle, in the 

leg stiffness and in the leg length. They concluded that leg asymmetries does not 

necessarily reduce the stable region of walking, for example the touch-down angle 

asymmetry can even enhance the stability of the equilibrium gaits. It should be 

noted that when the asymmetry in legs is considered, the Poincare section is defined 

from VLO of each leg until the VLO of the same leg meaning two steps (or one 

stride) until the same leg is in vertical orientation. 

Recently Maus et al [74] investigated the bipedal spring-mass model walking in 

circle by extending the 2D version of the model. They showed the gaits can be stable 

if the leg is aligned with the body (the velocity vector of the CoM for example) instead 

of a world reference frame. 

Geyer [7] found an interesting possible behavior for walking that can happen only 

in the presence of spring in the leg. Because of the existence of spring, different types 
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of oscillation may happen during the stance phase of each leg. For example, for low 

energy level that the velocity of the system is low, if the leg spring is stiff enough, 

the natural frequency of the leg is bigger than the duration of the stance phase and 

it lets the spring to oscillate several times while the leg is passing through its stance 

phase and he called this type of walking exotic walking. Depends on the leg spring 

stiffness and the energy of the system, different number of oscillations may happen 

and hence produce different walking force profiles. 

2.3 Control policies for the bipedal spring-mass model 

In this section the control strategies that are derived based on the dynamics of the 

bipedal spring-mass model are explained. These control policies are the direct result 

of the natural dynamics of the system to achieve the desired goal and not using 

control theory methods to shape the behavior of the system. 

2.3.1 Constant angle of attack policy 

The simplest control policy for the bipedal spring-mass model is the constant angle of 

attack control policy. Based on this strategy, the system keeps a constant touch-down 

angle each time the swing leg hits the ground [7]. One of the big advantages of this 

control policy is that it does not require any sensing from outside and the dynamics 

of the system corrects the error which is also known as self-stable characteristic of 

the system [7]. Later Rummel et al. [8] analyzed the constant angle of attack in 

more detail and investigated the robustness of this control policy with different leg 
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parameters. Salazar et al. [53] introduced the concept of finite stability and viability 

for this control policy and showed for human like parameters, there are equilibrium 

points that are finite stable. One problem with this control policy is that the stable 

gaits do not exist everywhere and at each energy level. The robustness of the stable 

gaits is another issue for the practical purposes. Furthermore, the rate of conver

gence can be very low inside the basin of attraction. Therefore, after an external 

perturbation and before recovering from the disturbance, the robot can encounter 

another perturbation and the accumulating effects of consecutive disturbances may 

lead to falling. 

2.3.2 Constant aperture angle 

Inspired by quails grounded running (walking with leg force profile similar to run

ning with no flight phase), Andrada et al. [75] showed that fixed angle between legs 

(which they called it aperture angle) can lead to finite stability with a large toler

ance of perturbation (which means a system with high robustness). Therefore, from 

engineering point of view, they proposed that grounded running gaits may be useful 

to avoid quick locomotor changes when facing perturbations. The simplicity of the 

controller is a remarkable characteristic of it, but since this control policy is very 

new, it is not still clear if this policy can also be useful for other types of walking 

gaits (like double hump force profile) or it is only useful for grounded running gaits. 

Also, they reported that this policy does not necessarily stabilize the gait, it leads 

to finite stability which means continuing walking for more than 25 steps after the 
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perturbation. This study is very recent, there would be useful to know lot more 

about this control policy, like the size of the basin of attraction, or if this policy 

really stabilizes some gaits and the effects of energy change on the behavior of a 

system under this policy and the sensitivity of the policy to the aperture angle. 
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Chapter 3 – Analysis of the dynamics of the bipedal spring-mass 

model 

The goal of this chapter is to analyze the behavior of the bipedal spring-

mass model for walking. To achieve this goal, the states that can be used 

as the initial conditions for walking gaits that can complete at least one 

step are found. After that, the states that are reachable at the end of 

walking gaits are sought in the state space. The intersection of these two 

sets contains the states that can be reached at the end of walking gaits 

and at the same time can start a new walking gait. This characteristic 

is required for transition states as well as equilibrium points since they 

come from walking gaits and are used as the initial conditions for the 

next gaits. This set is the workspace for spring-mass model since any 

state outside of this set either can not be reached or can not continue 

the walking process. Furthermore, the behavior of the equilibrium points 

in the workspace and the relative location of them with respect to each 

other are investigated. 

3.1 Introduction 

The bipedal spring-mass model is used as the template for control and design of 

walking and running robots [2, 1] and in this study the dynamics of this model is 
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investigated. The bipedal spring-mass model represents the system as a lumped mass 

attached to two massless elastic legs (Figure 3.1). Inspired by human locomotion, it 

captures key characteristics from the dynamics of human walking [6, 7] including the 

shape of the ground reaction force profile and the center of mass (CoM) oscillation. 

This model is a natural extension of the spring loaded inverted pendulum model 

(SLIP) which has been widely used in literature for modeling and controlling running 

systems [39, 40, 4, 76]. 

Using the bipedal spring-mass model, researchers have identified limit cycles for 

walking, analyzed the stability of these gaits, and investigated the transitions be

tween them. They have applied the resulting insights towards robot control and 

understanding animal locomotion. However, these existing techniques do not take 

full advantage of behavior that can be theoretically achieved through manipulating 

the landing angle. 

Rummel et al [8] investigated the role of the leg parameters of the bipedal spring-

mass model for robustness and efficiency. Using a constant angle of attack control 

policy, they found five types of equilibrium gaits with different basins of attraction 

and local convergence properties. 

Through defining the concepts of finite stability and viability, Salazar et al [53] 

analyzed the model under constant angle of attack policies to demonstrate stability 

of certain gaits and the ability to transition between gaits across many steps. 

The spring-mass model has also been used as a template for controlling full body 

model of robots [58], and Garofalo et al [77] applied this model to control a fully 

actuated robot in simulation. 
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Figure 3.1: The bipedal spring-mass model with single support phase and double 
support phase. The Poincare section is defined during the single support phase where 
the stance leg has vertical orientation. The states of the system at the Poincare 
section are y and ψ. One step is defined from one Poincare section to the next 
Poincare section and two consecutive steps constitute one stride. 

Andrada et al. [75] showed that keeping the angle between the two legs constant 

leads to robust and finite stable ground running gaits, which may explain how quails 

walk; while Maus et al [74] extended the model to 3D and investiagted walking in a 

circle to potentially explain how blindfolded or disoriented people walk. 

In this chapter, first by defining Poincare sections and tabulating the transitions 

in an appropriate state space, we identify a workspace that captures all possible 
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walking behaviors allowed by the model and the equilibrium gaits are found and in

vestigated in the workspace. The outcome of this chapter will allow us to understand 

the control authority that the swing leg touch-down angle control can provide for 

the model and where the equilibrium gaits with their specific behaviors are located 

in the workspace and for transitioning to the desired behavior how to move in the 

workspace. 

3.2 Dynamics of the bipedal spring-mass model 

In the bipedal spring-mass model two massless elastic legs are attached to a point 

mass body [6, 7, 53], and when only one leg is on the ground, the system is equivalent 

to a spring loaded inverted pendulum (Figure 3.1). The springs store and return 

energy, rendering the system theoretically conservative with no energy losses. While 

in this model there is no impact losses like other hybrid walking models [11, 70, 78, 

28, 79], this model still has hybrid dynamics due to the distinct single support and 

double support phases in which respectively only one or both legs are on the ground. 

In each phase, the dynamics are as follows: 

single support:
 ⎧ ⎪⎨ 
⎫ ⎪⎬ 

⎧ ⎪⎨ 
⎫ ⎪⎬
F1(x−xt1) 

m.l1 
ẍ


(3.1)
=
⎪⎩⎪⎭ÿ ⎪⎩ ⎪⎭
F1(y−yt1) 
m.l1 

− g 

double support:


⎧ ⎪⎨ 
⎫ ⎪⎬ 

⎧ ⎪⎨ 
⎫ ⎪⎬
F1(x−xt1) + F2(x−xt2) 

m.l1 m.l2 
ẍ


(3.2)
=
⎪⎩⎪⎭ÿ ⎪⎩ ⎪⎭
F1 (y−yt1) + F2(y−yt2) − g
m.l1 m.l2 
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where the spring compression force Fi and length li of each leg are given by 

Fi = k(l0 − li) ≥ 0 i = 1, 2 (3.3) 

li = (x− xti)2 + (y − yti)2 i = 1, 2 (3.4) 

In these equations, [x, y] are the coordinates of the center of mass (CoM), [xti, yti] 

are the coordinates of each toe, and the parameters m, k, l0, and g are respectively 

the mass, spring stiffness, rest length, and gravitational acceleration. 

Single support transitions to double support when the CoM has negative vertical 

velocity and the condition y = l0 sin(θ) is fulfilled where θ is the touchdown angle of 

the swing leg and we use this value, which parameterizes leg placement, as the single 

control input of the system. Double support transitions to single support when the 

spring deflection l0 − li of one leg returns to zero. 

3.2.1 State space 

The state space of the bipedal spring-mass model for walking is the set of all the 

independent states that the system can take in the process of walking. The state 

space of a system can be parameterized by any set of values that are sufficient to 

resolve the dynamics, and the representation can be further simplified by defining a 

Poincare section to convert the system into a series of discrete states [69, 68]. 

Similar to [8, 71], we define the Poincare section at the vertical leg orientation 
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θ

(VLO) in single support (illustrated in Figure 5.1). At this condition, the system 

dynamics and subsequent states can be computed from the height yn of the CoM 

and the orientation ψn of the velocity vector of the CoM, assuming a control input 

n for the landing angle of the free leg (subscript n is used to denote the indexing of 

the now-discretized system). This holds true because the system has constant energy 

E, so magnitude |vn| of the velocity is known given the height yn and are related 

through 
2mvnE = 

k(l0 − yn)2 

+ mgyn + . (3.5)
2 2 

Therefore, we define the discrete states at the Poincare sections as 

⎧ ⎪⎨

⎫ ⎪⎬
yn 

Xn = (3.6)⎪⎩
 ⎪⎭
ψn 

and express the state-to-state transitions as the following discrete mapping: 

Xn+1 = A(Xn, θn), (3.7) 

since Xn and θn provide sufficient information to integrate the equations of motion 

between Poincare sections. 

3.3 Workspace of walking and equilibrium gaits 

We start by defining the workspace as all the VLO states that the model can en

counter while continuously walking. To find the workspace, we look for two different 
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sets in the state space: the start states, which are all the initial conditions Xn from 

which a subsequent Poincare section (Xn+1) can be successfully reached for at least 

one value of θn; and the reachable states, which are all the subsequent states Xn+1. 

Here, we take “successfully reach” to mean entering the next Poincare section with

out falling or entering the flight phase. In the [y, ψ] plane of states, these two sets 

are reflections of each other across the ψ = 0 axis, since any trajectory from Xn 

to Xn+1 is also a legitimate trajectory from Xn+1 to Xn if played in reverse (i.e, 

Figure 3.1 from right to left), which effectively changes the sign of ψ. By definition, 

the workspace is simply the intersection of the start states and the reachable states. 

To find the aforementioned sets, we mesh the [y, ψ] plane of possible VLO states 

(as was mentioned in [53]) into grids of size (δy = 2.5mm, δψ = 1◦), scan over 

touchdown angles with an increment of δθ = 0.1◦, and integrate the dynamics from 

each set of initial conditions. Equilibrium points Xn, corresponding to a periodic 

limit cycle repeated between sequential single support phases, exist wherever 

X∗ = A(X∗, θ∗) (3.8) 

for some landing angle θ∗. Similar to [8], we use Newton-Raphson iteration to inter

polate equilibrium points between sampled grid points. 

To accomplish the simulations, the model was implemented in Matlab (R2012a, 

Mathworks Inc., Natick, MA, USA) and the following properties for the robot (table 

3.1) were assumed. To solve the differential equations, ode45 was used with relative 

and absolute tolerances equal to 1e-11. 
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Table 3.1: Properties of the spring-mass robot 
Parameter Description Value 

m robot mass 58.0kg 
k leg spring stiffness 12000 N 

m 
l0 initial leg length 0.85m 

3.3.1 Workspace in one energy level 

To find the workspace of the system, first all the states that can start and complete 

at least one walking gait are found (start states). After that, we find the reachable 

states that can be reached at the end of walking gaits. The intersection of these 

two sets is the workspace of the system and includes all the states that come from a 

walking gait and can continue the process of walking. 

In Figure 3.4 the aforementioned sets are shown in different colors (green for 

start states, blue for reachable states and gray to represent the workspace). The 

workspace has the elliptical shape and represents all the states that are useful for 

sequential walking. The equilibrium points are distinguished separately by the red 

color. There are both symmetric and asymmetric equilibrium points in the state 

space in one energy level. The force profiles for the various types of equilibrium gaits 

are shown along with their center of mass trajectories from grounded running type 

of gait to double hump human walking behavior. 

Comparing the results from figures 3.2 and 3.3, shows that the states that can 

start walking gaits and the states that can be reached at the end of walking gaits 

are mirror of each other. As previously Rummel et al. [8] reported five types for 

equilibrium points, these states can be shown in the state space of the system. 
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Figure 3.2: The states of the bipedal spring-mass walking model are the height of 
the CoM (y) and the velocity vector orientation (ψ). All the states that can start 
successful walking gaits are shown in green. The equilibrium points are highlighted 
in this region with the red color. The equilibrium points with ψ = 0 are symmetric 
and other equilibrium points (with ψ = 0) are called asymmetric. The states outside 
of this region can not start and finish a walking gait with any touch-down angle for 
the swing leg. 

We can find the equilibrium gaits in the state space. Because the equilibrium 

points return themselves at the end of a walking gait, these states are in both start 

states and reachable states. The symmetric equilibrium gaits are located on the line 

ψ = 0 in the state space. The equilibrium gaits are shown in figure 3.4. 

If due to some disturbances the states of the system are located outside of the 

workspace, the system can not continue walking. Therefore, the control authority of 

the bipedal spring-mass model with the touch-down angle control input is limited to 

the size of this region. 
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Figure 3.3: The blue region shows the states that can be reached at the end of 
walking gaits. The states of the bipedal spring-mass walking model are the height 
of the CoM (y) and the velocity vector orientation (ψ). The equilibrium points are 
highlighted in this region with the red color. The equilibrium points with ψ = 0 are 
symmetric and other equilibrium points (with ψ = 0) are called asymmetric. 

3.3.1.1 Characterization of the equilibrium gaits 

The equilibrium gaits in one energy level are shown in Figure 3.4 as a continuum 

changing behavior of the system. The force profiles of symmetric gaits evolve from 

a single hump in the middle of the workspace to a flat shape as it goes to the right 

and gradually to a double hump (like what we observe from typical human walking 

[6]) and finally at the far right side of the workspace it looks like hopping with both 

legs. The shapes of the force profiles for the equilibrium gaits are consistent with the 

results in [8]. The different behavior of equilibrium gaits provides various choices for 
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Figure 3.4: Three regions are shown in the state space. The blue region shows 
the states that can be reached at the end of walking gaits. Green region shows 
the states that can start walking gaits and gray region (the elliptical region) is the 
workspace of the system which is the intersection of the reachable states and start 
states. The equilibrium points are highlighted with the red color. The behavior of 
the symmetric equilibrium gaits evolve from left to right as a continuous change. For 
those equilibrium gaits with small CoM height, the COM trajectory is like a straight 
line and as the CoM height increases at the Poincare section, the behavior of the 
system becomes bouncier until it evolves to hopping with two legs. 

limit cycle walking gaits and can also be useful to explain different locomotion gaits 

in nature. For example, the schematic force profile of chimpanzee walking gait and 

the corresponding CoM trajectory of that, is located in the middle of the elliptical 

[80] while the behavior of human walking gait can be explained by another gait 

in the right side of the workspace [6], while for grounded running birds like quail 

the equilibrium gaits are in the left side of the ellipse [75]. Maybe the differences 
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between the types of walking gaits that are observed from different animals depend 

on the morphology and mechanism of their legs and each gait is optimized for its 

mechanism. 

3.3.2 Workspace in different energy levels 

Since the bipedal spring mass model is a conservative system, the workspace is defined 

assuming a constant system energy. However, on rough terrain, the changing level 

of the ground height changes the energy of the system, so the workspace and the 

equilibrium gaits within it across a range of energy levels can be identified. 

3.4 Conclusions 

In this chapter the dynamics of the bipedal spring-mass model was analyzed and 

the control authority of the system for walking was investigated. Even though the 

spring-mass model is energetically conservative and keeps its energy level constant, 

the analysis can be extended to different energy levels to simulate the cases that 

external disturbances like the ground level changes varies the energy level of the 

system. 

In each energy level, three regions in the state space were investigated: 1- the 

states that can start walking gaits (start states), 2- the set of the states that can 

be reached at the end of walking gaits (reachable states), and 3- the intersection of 

the aforementioned sets (the states that come from walking gaits and they can start 

new walking gaits). The Results showed that start states and reachable states are 
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similar in shape and size but mirrored in the shape about the y axis in the state 

space. The intersection of these two sets has the shape of the eclipse in the y − ψ 

plane and it is the workspace for walking. The length of the workspace along the y 

axis is approximately equal to two times of the static deflection of the spring under 

the weight which means the onset of hopping. 

If the state of the system is outside of the start state region, the touchdown angle 

control is not enough to finish the walking step (the system would fall or would go 

to flight phase). Similarly, the set of the reachable states shows the limitation of the 

touchdown angle to the states that it can reach. Therefore, if for any reason we are 

interested in reaching the states outside of the reachable set, it would not be possible 

by only controlling the touchdown angle of the swing leg and hence other control 

inputs are needed. 

Results show that the equilibrium gaits with different CoM trajectories and force 

profiles exist in the workspace of the spring-mass model. The symmetric equilibrium 

gaits continuously evolve with the CoM height at the Poincare section and it is 

possible to move between the equilibrium points. 

3.5 Future work 

For the future work, we plan to study the shape of the workspace in more detail as 

the parameters of the model change. We also intend to find out the characteristic 

of the point in the workspace that the asymmetric equilibrium gaits start branching 

from the symmetric equilibrium gaits. 
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Chapter 4 – Touch-down angle control for spring-mass walking 

In this chapter the fastest converging control policy (also known as dead

beat control) is proposed for walking with the bipedal spring-mass model, 

which serves as an abstraction of a robot on compliant legs. To fully 

leverage the passive dynamics of the system, the touchdown angle of the 

swing-leg is assigned as the only control input of the system. It is shown 

that two steps (or one stride) are necessary and sufficient to converge to 

target walking gaits. We present the two-step deadbeat control policy 

that guarantees stability with the fastest possible convergence rate for 

the system. For each equilibrium gait, the basin of attraction in which 

this two-step control exists is a measure of the robustness of the system. 

The simulation results show that human-like walking gaits (double hump 

ground reaction force profile) have relatively large basins of attraction. 

Finally, the policy is extended to various energy levels to accommodate 

walking on uneven ground that has height changes. It is shown in simula

tion that the system indeed rejects various disturbances and converges to 

the desired equilibrium gait in two steps. The study in this chapter was 

a collaboration with Dr. Hartmut Geyer and his graduate student Albert 

Wu in Robotics Institute in Carnegie Mellon University. The results in 

this chapter are benefited from conversation with them. 
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4.1 Introduction 

We use the bipedal spring-mass model as the template for control and design of 

walking and running robots [2, 1] and in this paper we derive control strategy from 

the dynamics of the model. The bipedal spring-mass model represents the system as 

a lumped mass attached to two massless elastic legs (Figure 5.1). Inspired by human 

locomotion, it captures key characteristics from the dynamics of human walking [6, 7] 

including the shape of the ground reaction force profile and the center of mass (CoM) 

oscillation. This model is a natural extension of the spring loaded inverted pendulum 

model (SLIP) which has been widely used in literature for modeling and controlling 

running systems [39, 40, 4, 76]. 

Using the bipedal spring-mass model, researchers have identified limit cycles for 

walking, analyzed the stability of these gaits, and investigated the transitions be

tween them. They have applied the resulting insights towards robot control and 

understanding animal locomotion. However, these existing techniques do not take 

full advantage of behavior that can be theoretically achieved through manipulating 

the landing angle. 

In this chapter, we systematically map out the dynamics of the bipedal spring-

mass model as state to state transitions using leg placement as a control input. 

From this mapping, we identify deadbeat control that converges to target gaits in 

the minimum number of steps, and the control is defined over explicit regions of 

attraction. First, by defining Poincare sections and tabulating the transitions in an 

appropriate state space, we identify a workspace that captures all possible walking 

behaviors allowed by the model. Within this workspace, any state has a non-zero 
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Figure 4.1: The bipedal spring-mass model with single support phase and double 
support phase. The Poincare section is defined during the single support phase where 
the stance leg has vertical orientation. The states of the system at the Poincare 
section are y and ψ. One step is defined from one Poincare section to the next 
Poincare section and the touchdown angle of the swing leg is shown by θ1 in the first 
step and θ2 in the second step. 

region of attraction from which the state can be reached in two steps. Specifically, 

we deadbeat stabilize the equilibrium gaits with a two-step policy in their regions of 

attraction, thus achieving the fastest possible convergence. The size of the region of 

attraction and the relative location of the equilibrium state describes the robustness 

of each gait. Finally, while the workspace is defined for a constant system energy, 
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we extend the control across different energy levels to demonstrate robust walking 

on simulated uneven ground. 

4.2 Dynamics of the bipedal spring-mass model 

In the bipedal spring-mass model two massless elastic legs are attached to a point 

mass body [6, 7, 53], and when only one leg is on the ground, the system is equivalent 

to a spring loaded inverted pendulum (Figure 4.1). The springs store and return 

energy, rendering the system theoretically conservative with no energy losses. While 

in this model there is no impact losses like other hybrid walking models [11, 70, 78, 

28, 79], this model still has hybrid dynamics due to the distinct single support and 

double support phases in which respectively only one or both legs are on the ground. 

In each phase, the dynamics are as follows: 

single support:
 ⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) 

m.l1 
ẍ 

(4.1)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1(y−yt1) 
m.l1 

− g 

double support: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) + F2(x−xt2) 

m.l1 m.l2 
ẍ 

(4.2)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1 (y−yt1) + F2(y−yt2) 
m.l1 m.l2 

− g


F

where the spring compression force Fi and length li of each leg are given by 

i = k(l0 − li) ≥ 0 i = 1, 2 (4.3) 
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li = (x− xti)2 + (y − yti)2 i = 1, 2 (4.4) 

In these equations, [x, y] are the coordinates of the center of mass (CoM), [xti, yti] 

are the coordinates of each toe, and the parameters m, k, l0, and g are respectively 

the mass, spring stiffness, rest length, and gravitational acceleration. 

Single support transitions to double support when the CoM has negative vertical 

velocity and the condition y = l0 sin(θ) is fulfilled where θ is the touchdown angle of 

the swing leg and we use this value, which parameterizes leg placement, as the single 

control input of the system. Double support transitions to single support when the 

spring deflection l0 − li of one leg returns to zero. 

4.2.1 State space and discrete dynamics 

The state space of the bipedal spring-mass model for walking is the set of all the 

independent states that the system can take in the process of walking. The state 

space of a system can be parameterized by any set of values that are sufficient to 

resolve the dynamics, and the representation can be further simplified by defining a 

Poincare section to convert the system into a series of discrete states [69, 68]. 

θ

Similar to [8, 71], we define the Poincare section at the vertical leg orientation 

(VLO) in single support (illustrated in Figure 4.1). At this condition, the system 

dynamics and subsequent states can be computed from the height yn of the CoM 

and the orientation ψn of the velocity vector of the CoM, assuming a control input 

n for the landing angle of the free leg (subscript n is used to denote the indexing of 
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the now-discretized system). This holds true because the system has constant energy 

E, so magnitude |vn| of the velocity is known given the height yn and are related 

through 
2mvnE = 

k(l0 − yn)2 

+ mgyn + . (4.5)
2 2 

Therefore, we define the discrete states at the Poincare sections as 

⎧ ⎪⎨

⎫ ⎪⎬
yn 

Xn = (4.6)⎪⎩
 ⎪⎭
ψn 

X

and express the state-to-state transitions as the following discrete mapping: 

n+1 = A(Xn, θn), (4.7) 

since Xn and θn provide sufficient information to integrate the equations of motion 

between Poincare sections. 

Using a feedback controller for the control input (θn = H(Xn)) and substituting 

it to the dynamics of the system, we will obtain the return map (f : χ → χ) 

Xn+1 = A(Xn, H(Xn)) = f (Xn), (4.8) 

where manifold χ contains all possible Poincare states Xn. 
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4.3 Workspace of walking and equilibrium gaits 

We start by defining the workspace as all the VLO states that the model can en

counter while continuously walking. To find the workspace, we look for two different 

sets in the state space: the start states, which are all the initial conditions Xn from 

which a subsequent Poincare section (Xn+1) can be successfully reached for at least 

one value of θn; and the reachable states, which are all the subsequent states Xn+1. 

Here, we take “successfully reach” to mean entering the next Poincare section with

out falling or entering the flight phase. In the [y, ψ] plane of states, these two sets 

are reflections of each other across the ψ = 0 axis, since any trajectory from Xn 

to Xn+1 is also a legitimate trajectory from Xn+1 to Xn if played in reverse (i.e, 

Figure 5.1 from right to left), which effectively changes the sign of ψ. By definition, 

the workspace is simply the intersection of the start states and the reachable states. 

To find the aforementioned sets, we mesh the [y, ψ] plane of possible VLO states 

(as was mentioned in [53]) into grids of size (δy = 2.5mm, δψ = 1◦), scan over 

touchdown angles with an increment of δθ = 0.1◦, and integrate the dynamics from 

each set of initial conditions. Equilibrium points Xn, corresponding to a periodic 

limit cycle repeated between sequential single support phases, exist wherever 

X∗ = A(X∗, θ∗) (4.9) 

for some landing angle θ∗. Similar to [8], we use Newton-Raphson iteration to inter

polate equilibrium points between sampled grid points. 

To accomplish the simulations, the model was implemented in Matlab (R2012a, 
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Mathworks Inc., Natick, MA, USA) and the following properties for the robot (table 

4.1) were assumed. To solve the differential equations, ode45 was used with relative 

and absolute tolerances equal to 1e-11. 

Table 4.1: Properties of the spring-mass robot 
Parameter Description Value 

m robot mass 58.0kg 
k leg spring stiffness 12000 N 

m 
l0 initial leg length 0.85m 

4.4 Control policy 

In this section, we introduce a deadbeat control policy for walking that vanishes the 

perturbations in the minimal number of steps. 

Deadbeat control means a policy that exactly corrects the perturbation in a finite 

amount of time (usually minimal) [81]. Mathematically, the return map f is called 

deadbeat on domain χd for a specific target X∗ if there exists a K ∈ N such that 

[82]: 

� 
K times�� � 

f ◦ f ◦ · · · ◦ f(X) = X∗ ∀X ∈ χd (4.10) 

The existence of the deadbeat control for running was shown for both 2D and 3D 

spring-mass models [81, 46]. In this section, we construct a deadbeat control policy 

for walking that pinpoints the target gait in the minimal number of steps. 

As discussed in [81] using the implicit function theorem, a single step would be 

insufficient for stabilizing an equilibrium gait (X∗, θ∗) in the bipedal spring-mass 
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model. By varying the single control input θ from a given initial condition Xn, the 

system can only reach a one-dimensional set of states Xn+1 in the two dimensional 

[y, ψ] plane. Likewise, only a one-dimensional set χd1 of states Xn can be mapped 

to X∗ through the choice of θn (In figure 4.2, each blue curve shows the states that 

can reach each target equilibrium in red). For a hypothetical one-step controller, 

this deadbeat domain χd1 has zero area; the single-step deadbeat control cannot be 

properly defined on a meaningful domain. 

X

χ

However, by increasing K to two steps, we can define a two dimensional subset 

d2 of the [y, ψ] plane as the region of attraction. For any X∗, χd2 is the set of states 

n such that 

A(Xn, θn) = Xn+1 ∈ χd1 (4.11) 

A(X

where 

n+1 ∈ χd1, θn+1) = X∗ (4.12) 

for some sequential pair of touchdown angles θn and θn+1. Therefore, χd2 is the set 

of states that can transition to some state in χd1, from which the target X∗ can then 

be reached. This gives us the green regions in Figure 4.2. For any Xn ∈ χd2, we 

solve for θn numerically, having tabulated representations of state-to-state mapping 

A and intermediate domain χd1(X
∗). In execution, we do not explicitly use θn+1, 

though if no disturbances are encountered after the first step, re-solving for θn at the 

next iteration yields the previous θn+1 that satisfies A(Xn+1, θn+1) = X∗. Thus, 
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our feedback controller is expressed as 

θn = H(Xn) = A−1
Xn (Xn+1 ∈ χd1), (4.13)|

where the existence of a valid intermediate state Xn+1 is guaranteed by construction 

of domain χd2. This policy yields the Poincare map f = A(Xn, H(Xn)) : χ χ→ 

deadbeat stable on the two-dimensional subset χd2. 

4.4.1 Properties and limitations of two-step control 

By construction, X∗ ∈ χd1 ⊂ χd2. The derived control gives the fastest possible 

convergence for any initial condition in χd2, and this region of attraction reflects the 

robustness of the stabilized gait. If the system is perturbed from the red point X∗ to a 

state within this region, the limit cycle will be restored in two steps. Otherwise, more 

steps are required. Dynamic programming would naturally extend the formulation 

to optimally solve as many steps as desired (or sequential composition [83] as an 

approximate method), but here we implement N = 2 for sake of simplicity as it is 

the minimum for a domain of attraction with non-zero area. 

Since χd2 exactly represents the region of attraction of the two-step control, the 

size of χd2 and the proximity of X∗ to its boundaries measures the disturbances 

that the stabilized gait can handle. As can be seen in Figure 4.2, human-like two-

humped walking gaits have large regions of attraction, and the nominal behaviors lie 

well within the boundaries. This shows that these gaits can handle relatively large 

disturbances in arbitrary directions. 
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Figure 4.2: Each of the figures above show the region (green area) in the workspace 
that can return to its equilibrium point (red point). The blue curve is the set of the 
states that can go to the equilibrium point in one step. When the equilibrium points 
(red points) are well inside the green region, they are less prone to disturbance. The 
leg force profile and the CoM trajectory of the red points are shown next to each 
part. 
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4.5 Simulation results 

In this section we show in simulation that the bipedal spring-mass model can accom

plish the two-step deadbeat control and fully recover from random perturbations. 

Furthermore, we extend the policy from a constant energy level to different energy 

levels and show that the system can walk on rough terrain that the energy of the 

system changes due to the change of the ground level change. 

We start by showing how to make transition from one equilibrium gait to an

other desired limit cycle using the two-step deadbeat control policy. In Figure 4.3, 

transition between the two equilibrium gaits is shown. The system starts from a 

limit cycle with Poincare state A(y, ψ) = (0.81m, 0◦) and goes to transition state 

B(y, ψ) = (0.817m, 12◦) and finally settles into C(y, ψ) = (0.835m, 0◦) using the 

deadbeat control policy. 

In the presence of small noises, the final outcome is not desirable. In the figure 

4.5 a small noise of magnitude about 0.5◦ is applied to the touch-down angle. Here, 

contrary to the ideal noise-free situation, the transition state is changed drastically 

to another location and the system can not go to the desired state from the transition 

state. 

It should be remembered that the sensitivity of the deadbeat control policy to 

the touch-down angle of the swing leg is not constant everywhere. Sometimes, the 

sensitivity is small and therefore the system can reasonably accomplish the transition. 

Figure 4.8 shows the stability of the system under different perturbations. As 

it can be seen in the figure, various different initial conditions all converge to the 

desired gait (y, ψ) = (0.83m, 0◦) in two steps although the horizontal position and 
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history of the CoM are different. The initial conditions are seen from the height and 

slope of the CoM trajectories (y, ψ) at the beginning. 

For walking on rough terrain, Figure 4.9 shows the model encountering an un

expected drop step with no prior information about the location and size of the 

disturbance. After the drop step, the preceding Poincare states as well as the system 

energy are changed. In the workspace of the new energy level, the two-step control 

to return to X∗ = [y = 0.84m, ψ = 0◦] is computed and applied. The drop step 

added energy to the system, so while X∗ preserved its values of relative height y 

and direction of motion ψ across ground levels, the new equilibrium gait moves at a 

faster horizontal speed at the VLO. As can be seen, the new limit cycle is reached 

in exactly two steps. 

4.6 Conclusions 

In this chapter we analyzed the dynamics of the bipedal spring-mass model and 

investigated the control authority of the system for walking. We identified the pe

riodic limit cycles and designed a deadbeat control policy to recover the system 

from perturbations in the fewest number of steps. We showed that at least two 

steps are necessary, and that two steps are sufficient to provide regions of attrac

tion that cover significant portions of the workspace. The region of attraction of 

each stabilized limit cycle reflects its robustness, thus providing useful information 

for selecting robot walking gaits. We also observed that the gaits most similar to 

human-like walking have larger regions of attraction with the equilibrium point far 
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away from the edges. Further, we extended the control to handle energy changes in 

the system from external disturbances like ground level changes and demonstrated 

its stability in simulation. 

4.7 Future work 

We showed in this chapter that sensitivity to the touch-down angle is a practical 

barrier to implementing this control policy on the robot. For the future work, we 

first intend to exclude the states that are very sensitive to the touch-down angle and 

then we intend to extend the concept of the deadbeat from a desired gait to a desired 

region in the workspace. With this modification small errors lead to a neighborhood 

of the desired gait which is also acceptable. The size of the acceptable region depends 

on the noises of the system. 
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Figure 4.3: Demonstration of the two-step deadbeat control policy for transitioning 
from A(y, ψ) = (0.81m, 0◦) to C(y, ψ) = (0.835m, 0◦) using B(y, ψ) = (0.817m, 12◦) 
as transition state. Part (a) shows the CoM trajectory of the system and in part (b) 
the leg force profiles are shown. The states at the Poincare section are demonstrated 
in part (c) and (d) shows the phase portrait of the system. 
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Figure 4.7: Example of the affect of noise in the touch-down angle of the swing leg. 
Here the noise applied to the system is around 0.5◦. The system finally settles in a 
state far from the desired state. 



57 

0.85

0.80

0.75

0.70
0 0.5 1.0

�
�=0.83
=0  

Y(m)

X(m)

Same outcoming state:Starting with various 
perturbed states

Double stance
Single stance

Figure 4.8: Center of mass trajectory of the bipedal spring-mass model starting 
from various perturbed initial conditions. For all the cases, the system settles into 
the desired state in two steps. The double stance phases are shown in solid red lines 
and the dashed black lines are the single stance phases. 



58 

0 1.5

Transition)state
Disturbed)state

Transition)
step)#)2

Transition
)step)#)1

Equilibrium)gait

Equilibrium)gait
in)new)energy)level

x)(m)

Drop step

y)
(m

)

1

0
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To pinpoint the desired equilibrium gait, the system first goes to a transition state 
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Chapter 5 – State-based and time-based switching policies 

In this chapter, new swing leg control policies are proposed for the bipedal 

spring-mass model and confirmed on the full order model of the robot as 

well as the real hardware. First, the proposed control policies are eval

uated for stability and robustness at the level of reduced order model 

and compared with the existing swing-leg control policies. After that 

the resulting behavior of the bipedal spring-mass model with the pro

posed control policies are compared with the behavior due to the current 

swing leg control policies. The comparison for different scenarios show 

the superiority of the proposed control policies over the existing strate

gies. Moreover, the basins of attraction that each control policy provides 

for different equilibrium points are calculated and compared. Several nu

merical examples show the significant robustness of the proposed control 

policies. Finally, the validity of the analysis on the reduced order model 

is shown through implementing one of the most successful proposed con

trol policies on the simulation of the full order model and on the real 

platform. It is shown that the proposed control policy can successfully 

stabilize the full order model as well as the robot itself with the expected 

behavior. This chapter will be submitted as a paper in collaboration with 

Dr. Hartmut Geyer in Robotics Institute, Carnegie Mellon University. 
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5.1 Introduction 

We use the bipedal spring-mass model as the template for control and design of 

walking and running robots [2, 1] and in this paper the focus is on control for walk

ing robots. The bipedal spring-mass model is inspired from the dynamics of human 

walking [6, 7] and is an extension of a more well-known model for running, called 

spring loaded inverted pendulum (SLIP) model [39, 40, 4, 76]. Geyer et al. [6, 7] 

showed that the bipedal spring-mass walking model can capture some of the impor

tant characteristics of human walking like the shape of the ground reaction force 

profile and the center of mass (CoM) oscillation during walking. This model has two 

massless elastic legs connected to a lumped mass (figure 5.1). The spring in the leg 

allows the system to maintain energetically conservative with no energy loss at the 

impacts with the ground, but the dynamics of this model is still hybrid due to the 

two phases that occur during walking: single support phase where only one leg is on 

the ground and double support phase where both legs are on the ground at the same 

time. 

Rummel et al [8] found different types of equilibrium points with different sizes 

for the basins of attraction using the constant angle of attack control policy. The 

results of the paper give very good insights about the various equilibrium points and 

their stability with respect to the chosen control policy (constant angle of attack 

policy). However, they did not address the rate of convergence of the equilibrium 

points when the perturbation is not very small. 

Salazar et al [53] analyzed the bipedal spring-mass model and defined concepts 

such as finite stability and viability. They considered constant angle of attack control 
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Figure 5.1: The bipedal spring-mass model with single support phase and double 
support phase. The Poincare section is defined during the single support phase where 
the stance leg has vertical orientation. The states of the system at the Poincare 
section are y and ψ. One step is defined from one Poincare section to the next 
Poincare section and the touchdown angle of the swing leg is shown by θ1 in the first 
step and θ2 in the second step. 

policy for studying the stability and viability of the system. Even though they showed 

that it is possible to change the gait in the same energy level, the gait transition in 

their method does not happen in a minimum number of steps and it can take a long 

time until the system converges to the desired state. 

Recently Maus et al [74], extended the 2D bipedal spring-mass model to 3D and 

investigated the walking in circle. They demonstrated that the model is capable of 

explaining certain behaviors that are observed from blindfolded or disoriented people 
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during walking. 

Andrada et al. [75] showed that keeping the angle between the two legs constant 

can lead to a robust and finite stable ground running gaits. 

The spring-mass model has been also used for controlling the full body model of 

robots [58], and very recently Garofalo et al [77] used this model to control a fully 

actuated robot. It should be noted that the advantage of the spring-mass model is 

more prominent on the robots with tuned springs in the legs. 

In this study, first the mathematical model of the bipedal spring-mass model 

is presented. Then the current control policies for the swing leg of the model are 

reviewed. After that, the new control strategies for the swing leg are presented. 

To show the stability of the proposed and current control policies, the magnitude 

of the eigenvalues are calculated and compared with each other. For the stable 

control policies, the resultant basins of attraction for different policies are calculated 

and then compared against each other. The behavior of the system subject to initial 

perturbation is presented for different scenarios and finally the behavior of the system 

when it is walking on rough terrain is demonstrated in simulation which the energy 

of the system changes. 

5.2 Mathematical model and formulation 

We use the bipedal spring-mass model [6, 7, 53] for our simulation. This model 

consists of a concentrated mass connected to two elastic massless legs such that when 

only one leg is on the ground, it looks like an inverted pendulum (figure 5.1). From 
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the engineering perspective, the existence of spring in the leg prevents any energy loss 

during impact and therefore walking with this mechanism would be energy efficient 

(theoretically no energy loss). It should be noted that even though with this model 

the leg impact does not instantaneously change the velocity of the system (contrary 

to other walking models [11, 70, 78, 28, 79]), the dynamics of this model is still 

hybrid due to the two possible phases during walking: single support phase and 

double support phase. Single support phase is the time that only one leg is on the 

ground and double support phase refers to the time when both legs are on the ground 

at the same time. 

Single support phase dynamics: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) 

m.l1 
ẍ 

(5.1)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1(y−yt1) 
m.l1 

− g 

Double support phase dynamics: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) + F2(x−xt2) 

m.l1 m.l2 
ẍ 

(5.2)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1 (y−yt1) + F2(y−yt2) 
m.l1 m.l2 

− g 

Where 

Fi = k(l0 − li) i = 1, 2 (5.3) 

li = (x − xti)2 + (y − yti)2 i = 1, 2 (5.4) 

In these equations, m, k and l0 are the mass, leg stiffness and zero force leg length 
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of the legs respectively and g = 9.81 m/s2 is the gravitational acceleration. The 

coordinates of the center of mass (CoM) are shown by x and y and the coordinates 

of the toes are (xt1, yt1) and (xt2, yt2). The leg forces are F1 and F2 which only can 

be in compression. 

The transition from single support phase to double support phase occurs when 

the condition y = l0 sin(θ) is fulfilled where (θ) is the touchdown angle of the swing 

leg which is determined from the control policy and it is the only control input for 

the system. The transition between the double support phase to single support phase 

occurs when the spring deflection of one leg returns to zero (the length of the leg 

becomes equal to its corresponding zero force leg length). 

5.3 Control strategies 

Considering that the bipedal spring-mass model is energetically conservative, the 

number of the independent variables during single support phase reduces to three. 

We can reduce the number of the states even more by using the concept of Poincare 

section and return map [69, 68]. One way of defining the Poincare section for walking 

is during the single support phase where the stance leg has vertical orientation (also 

known as vertical leg orientation (VLO) [8, 71]). Figure 5.1 shows the position of this 

Poincare section in the gait. By this definition, the number of the independent states 

at the Poincare section reduces to two (the height of the CoM (y) and the velocity 

vector orientation (ψ)). The magnitude of the velocity at the Poincare section can 

be calculated from the conservation of energy in the system. The whole mechanical 
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energy can be written as follows: 

1 
En = k(l0 − yn)

2 +
1 
mv 2 + mgyn (5.5)

2 n2 

The analysis of the system can be simplified by using the concept of return map 

f acting on the Poincare section χ: 

f : χ χ (5.6)→ 

Here, χ is the manifold that contains the states on the Poincare section. Therefore 

for the bipedal spring-mass model, the elements in χ for the nth step of walking are 

in the form of: 

⎧ ⎪⎨

⎫ ⎪⎬
yn 

Xn = (5.7)⎪⎩
 ⎪⎭
ψn 

Which the return map f returns the states on the next Poincare section: 

Xn+1 = f (Xn) (5.8) 

The return map can be obtained from the dynamics and the control input (here: 

θn). If the map of the dynamics is shown by A then: 

Xn+1 = A(Xn, θn) (5.9) 

Using a feedback controller for the control input (θn = H(Xn)) and substituting 
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it to the dynamics of the system, the return map is obtained: 

Xn+1 = A(Xn, H(Xn)) = f(Xn) (5.10) 

In these equations the function H defines the orientation of the swing leg at the 

moment of touch-down. By changing the touch-down angle at the time of contact, 

the initial conditions for the beginning of the double support phase are changed and 

since the dynamics of the system during the double support phase and the subsequent 

single support phase are solely passive, the effect of the control policy at the next 

Poincare section is determined through the change on the initial conditions at the 

beginning of the double support phase. To understand the effect of the change in 

the transition to the next Poincare section, figure 5.2 is considered. 

In this figure, the control input influences the initial conditions (x, y, ẋ and ẏ) at 

the beginning of the double support phase. Since the final goal is to use the control 

policy on the robot and given the fact that there are some mechanical components 

that are ignored in the level of reduced order model, the control policy needs to be 

as independent as possible from the states of the system like the concept of self-

stability [84, 85, 7]. For example policies like the constant angle of attack control 

policy [7] that provides the same touch-down angle for each step regardless of the 

states of the system would be less sensitive to the discrepancies in modeling than 

the control policies like deadbeat control that the touch-down angle depends on the 

states at the Poincare section. It should be noted, even for providing self-stable 

control policies like the constant angle of attack policy, we do require sensor data 

from the proprioceptive sensors, but it is important that the value of the control 
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input (like angle of attack) is not determined from feedback calculation of the states 

and this makes the control policy less prone to the simplifications in modeling. 

For the proposed control strategies, we investigate the switching policies between 

the single support phase and double support phase that are predefined functions 

between the initial conditions (x, y, ẋ and ẏ) at the moment of transition (figure 

5.2). It should be noted that among the four initial conditions at the beginning 

of the double support phase, due to the conservation of energy in the model, there 

are three independent variables. Also, from the practical point of view for using the 

initial conditions, the preference is on the control policy that requires minimal sensing 

from the system while providing stable and robust gaits. Therefore, we first look for 

control policies that require minimal proprioceptive information from the system 

that can create stable and robust gaits. Moreover, between the initial conditions, 

measuring the ẋ and the ẏ on the robot require differentiating the proprioceptive 

quantities which bring more noise and uncertainty to the transition. Therefore, 

using the velocity states to define the transition function is studied if we can not find 

transition functions based on only x and y that creates stable and robust gaits. 

5.3.1 Current control policies 

There are two swing leg control policies that currently are available for the control of 

the bipedal spring-mass model. The details of these control strategies are presented 

in this section. 
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Figure 5.2: The swing leg control policy determines the initial conditions at the 
beginning of the double support phase (x, y, ẋ and ẏ) and the effect of the swing 
leg control policy on the next Poincare section is determined through these variables 
because the double support phase is solely passive. 

5.3.1.1 Constant angle of attack policy 

The constant angle of attack control policy is the first control strategy that was 

proposed and investigated for the bipedal spring-mass model [7]. Inspired by the 

self-stable characteristic of the SLIP model for running, Geyer [7] was the first one 

that showed the bipedal spring-mass model can also be self-stable by keeping the 

angle of attack constant. Therefore, for the stable limit cycles, the system approaches 

the equilibrium point if it is subjected to a disturbance by only keeping the swing 

leg angle constant at the time of contact. The size of the basin of attraction and 
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the convergence rate can be different for different systems and different equilibrium 

points. Later Rummel et al. [8] analyzed the constant angle of attack in more detail 

and investigated the robustness of this control policy with different leg parameters. 

Salazar et al. [53] introduced the concept of finite stability and viability for this 

control policy and showed for human like parameters, there are equilibrium points 

that are finite stable. 

Based on this control policy the system goes to the double support phase when 

the height of the CoM satisfies y = l0sin(θTD) and therefore this control policy can 

be categorized as a state-based switching control policy for transitioning from single 

support phase to double support that regulates the height of the CoM (y in figure 

5.2) at the time of touch-down. 

5.3.1.2 Constant aperture angle policy 

Inspired by quails grounded running (walking with leg force profile similar to running 

with no flight phase), Andrada et al. [75] proposed that fixed angle between legs, 

which they called it aperture angle and is shown in figure 5.3, can lead to finite 

stability with a large tolerance of perturbation (which means a system with high 

robustness) [75]. 

Therefore, from engineering point of view, they proposed that grounded running 

gaits may be useful to avoid quick locomotor changes when facing perturbations. The 

simplicity of the controller is a remarkable characteristic of it, but since this control 

policy is very new, it is not still clear if this policy can also be useful for other types 
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Figure 5.3: The constant aperture angle control policy. The swing leg is adjusted 
such that the angle between the stance leg and the swing leg remains constant. 

of walking gaits (like double hump force profile) or it is only useful for grounded 

running gaits. Also, they reported that this policy does not necessarily stabilize 

the gait, it leads to finite stability which means continuing walking for more than 25 

steps after the perturbation. This study is very recent, there would be useful to know 

lot more about this control policy, like the size of the basin of attraction, or if this 

policy really stabilizes some gaits and the effects of energy change on the behavior 

of a system under this policy and the sensitivity of the policy to the aperture angle. 

The constant aperture angle policy can be interpreted as a policy that regulates 

a function between the x and y to define the transition from single support phase to 

double support phase. 
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5.3.2 Proposed control policies 

In this section the proposed control policies for the swing leg are presented. As was 

mentioned earlier, the focus is on the control policies that defines a function between 

the proprioceptive quantities and we do not consider the derivative of these quantities 

due to more uncertainty that differentiatiation brings in the calculcations. There are 

one time-based control policy that proposes to regulate the time for the touch-down 

and three state-based control policies that regulate some state-dependent parameters 

at the moment of transition from single support to double support. 

5.3.2.1 Constant CoM displacement 

The first proposed control policy directly targets the horizontal position of the CoM 

after the Poincare section. Contrary to the constant angle of attack control policy 

that regulates the hieght of the CoM for the transition to double support, in this 

control policy here, the horizontal position of the CoM is regulated for the transition. 

In this policy the system transitions to double stance from single support phase when 

the horizontal position of the CoM reaches a predefined value after the Poincare 

section. Therefore, this policy regulates the horizontal position of the CoM with 

respect to the toe that is on the ground as it is shown in figure 5.4. 
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Step # i Step # i+1

d

Figure 5.4: In the constant CoM displacement control policy, the transition to double 
support happens when the CoM reaches to a constant predefined position from the 
stance toe (here it is shown by d). In the presence of perturbation, the required 
touch-down angle of the swing leg is changed such that the toe reaches the ground. 

5.3.2.2 Constant stance leg angle 

θ

The second proposed control policy defines the transition from the single support to 

double support based on the state of the system. In the constant stance leg angle 

control policy, the transition from single support to double support is determined 

based on the angle of the stance leg. In this policy, the swing leg hits the ground 

when the stance leg reaches a specific angle with a constant reference like the VLO. 

Figure 5.5 shows this control policy when the switching angle for the stance leg is 

SL with respect to vertical orientation. 

Contrary to the constant angle of attack policy that the switching condition is 
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indirectly the height of the CoM, in this control policy, the system is defined to go 

to the double support phase when the line between the CoM and the contact toe on 

the ground reaches a predefined angle. For different equilibrium points, this angle 

varies therefore depends on the desired equilibrium point, the stance leg angle that 

determines the transition from single support to double support is adjusted. 

There is a practical benefit for this control policy because it makes the swing 

leg slave to the movement of stance leg which then automatically handles the leg 

trajectory for different velocities. 

Step # i Step # i+1

SL�  =Const. =Const.�
SL

Figure 5.5: The constant stance leg angle control policy regulates the angle of the 
stance leg at the moment of touch-down. 

In figure 5.6, the constant stance leg angle control policy is shown subjected to 

perturbation. If the system does not have any perturbation, the touch-down angle 
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of the swing leg and the angle of the stance leg both correspond to the values of the 

equilibrium point at the moment of touch-down. In the presence of perturbation, 

based on the constant stance leg angle control policy, the angle of the stance leg 

at the moment that the system transitions to double support is the same as the 

stance leg angle of the equilibrium point at the beginning of its double support, but 

the touch-down angle of the swing leg can be different based on the geometry of 

the system. Figure 5.6 shows how the touch-down angle of the swing leg can be 

determined from the geometry of the system. It should be reminded that the initial 

leg length of the swing leg is known and it is supposed to be equal to l0. 

5.3.2.3 Constant stride length 

The previous state based control policies use the states of the CoM to determine the 

beginning of the double support. In the constant stride length control policy, the 

step length or the distance between the toes is kept constant or regulated at each 

step. Therefore, the transition from single support to double support happens when 

the toe of the swing leg can be placed on a predefined constant distance from the toe 

of the stance leg. Figure 5.7 shows this control policy. Like other mentioned control 

policies, any perturbation at the Poincare section leads to change in the required 

touch-down angle for the swing leg to reach the ground. 
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Figure 5.6: Touch-down angle of the swing leg based on the constant stance leg angle 
policy. In the presence of perturbation at the Poincare section, the system reaches 
the switching boundary with some drift from the equilibrium gait. The touch-down 
angle of the swing leg is determined such that the swing leg hits the ground when 
the CoM reaches the switching manifold. 

5.3.2.4 Time-based switching policy 

The other variable that can be measured with reasonable accuracy is time. Therefore, 

another proposed control policy is time-based switching strategy. In this control 

policy, the system transitions from single support to double support after a predefined 

specific time after the Poincare section. Therefore, this control policy regulates the 

time after the Poincare section or VLO. Each equilibrium point has its unique time 

after VLO to go to double support phase and the idea of this control policy is that 

if the transition time is regulated for perturbed system, the perturbation decays in 
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Step # i Step # i+1

Stride=s Stride=s

Figure 5.7: In the constant stride length control policy, the system transitions to 
double support when the toe of the swing leg can be placed at a predefined distance 
from the toe of the stance leg (here the stride length is s). 

successive strides. 

5.4 Method 

To study the stability of the control policies, we first find the equilibrium points of 

the system and then find the eigenvalues of the Jacobian matrix. The equilibrium 

points are those states that can return themselves on the next Poincare section and 

satisfies the following condition: 

X� = f (X�) (5.11) 
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Step # i Step # i+1

time=tTD TD

Figure 5.8: The constant touch-down time control policy regulates the time after 
the Poincare section. The system transitions from single support to double support 
when a predefined and constant time passes after the VLO. 

In this equation X� is the equilibrium point and f is the return map. We inves

tigate the behavior of the equilibrium points of the bipedal spring mass model under 

different control policies and compare the results. 

To accomplish the simulations, the model was implemented in Matlab (R2014a, 

Mathworks Inc., Natick, MA, USA) and the following properties for the robot (table 

5.1) were assumed. To solve the differential equations, ode45 was used with relative 

and absolute tolerances equal to 1e-11. 
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Table 5.1: Properties of the spring-mass robot 
Parameter Description Value 

m robot mass 58.0kg 
k leg spring stiffness 14000 N 

m 
l0 initial leg length 0.9m 

5.4.1 Stability analysis 

Stability of a control policy can be determined from the eigenvalues of the Jacobian 

matrix. For nonlinear systems, the Jacobian matrix is obtained by differentiating 

the equations of motion with respect to the states around the equilibrium points. If 

the magnitude of the eigenvalues are all less than 1, the system is stable and if the 

maximum magnitude of the eigenvalues is greater than 1, the system is unstable. 

5.5 Simulation results and discussion 

Stability analysis starts by calculating the eigenvalues of the Jacobian matrix of the 

system under various control policies around the equilibrium points. For this purpose 

the eigenvalues of the bipedal spring-mass model in various energy levels are calcu

lated and compared. The energy levels are chosen such that slow walking, medium 

speed walking, fast walking and very fast walking can be achieved. It should be no

ticed that in the analysis here, transition from single support to double support can 

happen regardless of the direction of the velocity of the CoM. Therefore, grounded 

running (running force profile without flight phase and with double support) can 

happen in the analysis. Also, some equilibrium points can be repeated by different 

distinct control inputs and therefore the eigenvalues correspond to each of them are 
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different. For example there are two touch-down angles that return (y, ψ) = (0.88, 0) 

at energy level E = 510J . 
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Figure 5.9: The maximum eigenvalues of the Jacobian matrix for energy level E = 
510J with the control policies. The constant stance leg angle policy, the constant 
horizontal displacement policy and the constant time policy are stable for most of 
the equilibrium points. 

The first energy level that we investigate is E = 510J for the system parameter 

mentioned in table 5.1. This energy level is equivalent to average horizontal speed 

of around vx = 0.5 m . The symmetric equilibrium points are shown for this energy 
s 

level in figure 5.9 with the maximum eigenvalues of the Jacobian matrix. The shaded 

area in the figure distinguishes the unstable eigenvalues that are more than one. The 

maximum magnitude for the eigenvalues is assumed to be 2, meaning that if the 

magnitude of the eigenvalue is greater than 2, it is set to 2. As can be seen in this 
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figure, the constant angle of attack policy is only stable for one equilibrium point 

(y = 0.88). The proposed control policies are stable for most of the equilibrium 

points. The constant stride length policy is in the marginal stability region and with 

behavior like the constant aperture angle control policy. 
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Figure 5.10: The maximum magnitude of the eigenvalues of the Jacobian matrix for 
energy level E = 515J for the control policies. The constant angle of attack control 
policy is always unstable, but other strategies perform stable walking. 

In figure 5.10, the maximum eigenvalues are shown for slightly greater energy 

level (E = 515J ). In this energy level, like before, the three proposed control poli

cies (constant stance leg angle, constant touch-down time and constant CoM posi

tion) perform well while the constant angle of attack policy is always unstable and 

the constant aperture angle control policy is at the marginal stability and slightly 
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unstable. The stability of the constant stride length control policy is comparable 

to the constant aperture angle control policy. Even though most of the times the 

constant stance leg angle and the constant horizontal displacement control policies 

give smaller eigenvalue than the constant touch-down time policy, but sometimes 

(for example y = 0.885), the constant time control policy is the only stable strategy. 
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Figure 5.11: Stability analysis of the control policies through the magnitude of the 
eigenvalues of the Jacobian matrix for energy level E=520 J. 

As the energy level of the system increases, the advantage of the two of the 

proposed control policies highlights more. In figures 5.11 and 5.12, the maximum 

eigenvalues of the system are shown for medium speed walking. The advantage of 

the constant stance leg angle control policy and the constant horizontal displacement 

control policy are clearly shown in these figures. The same trend for the behavior 
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Figure 5.12: Magnitude of the eigenvalues of the Jacobian matrix for the stability 
analysis of the control policies for energy level E=525 J. The proposed control policies 
can stabilize the gait. 

of the constant aperture angle and constant stride length can be seen. The constant 

touch-down time control policy is appropriate for some of the equilibrium points. 

Very interesting behavior is that the constant touch-down angle control policy is 

nearly always unstable except in one equilibrium point. 
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For very fast walking gaits, energy levels in figures 5.13, 5.14 and 5.15 are studied. 

The equilibrium gaits in these energy levels can only be grounded running and the 

forward speeds are very high for regular walking (more than 3 m ). The constant 
s 

touch-down angle policy always fail at these energy levels. The constant aperture 

angle and the constant stride length control policies show similar eigenvalues and 

stay at the marginal stability. Other proposed control policies are very similar in the 

magnitude of the eigenvalue and as the energy of the system increases, they approach 

to marginal stability from the stable side. 
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Figure 5.13: The stability analysis of the control policies for high energy level E=800 
J. 
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Figure 5.14: The magnitude of the eigenvalues for high energy level E=1000 J. The 
magnitude of the eigenvalues are approaching 1 from stable side. 
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Figure 5.15: The magnitude of the eigenvalues are equal to 1 for very high energy 
level E=2000 J. 
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After investigating the magnitude of the eigenvalues for different equilibrium 

points and various control policies, here the basin of attraction of the control policies 

are investigated. The importance of the basin of attraction is that it shows why 

some of the control strategies can reject large perturbations and some of them are 

prone to disturbances. The domain in the state space that the control policy can 

successfully recover to the desired equilibrium point is called basin of attraction. 

Now, we investigate the size and shape of the basin of attraction that the proposed 

and current control policies create for some of the equilibrium points. We find the 

states that can continue walking for at least 50 steps. Therefore, if a state can 

continue walking for 50 steps without converging to the equilibrium point, it is still 

categorized as a state in the basin of attraction. For finding the basin of attraction, 

the states in the workspace are checked under the control policy. If the model can 

continue walking for more than 50 steps starting with a state in workspace, that 

state is considered as a point in the basin of attraction. The search starts from the 

desired equilibrium point and continues radially from that until a state that can not 

continue walking for 50 steps, therefore the states in the basin of attraction look like 

the shape of a spoke. 

The analysis starts with the constant stance leg angle control policy. The basin 

of attraction for this control policy is large with respect to the whole state space 

that walking can be defined. In figures 5.16 and 5.17 the basins of attraction for 

two equilibrium points with the constant stance leg angle control policy is shown. 

The area of the basins of attraction is at least about 70% of the whole walking 

state space. Therefore, even fairly large disturbances can be rejected by this control 
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Figure 5.16: The gray area with black boundary shows the whole state space for 
walking. The blue circles are the states that can return to the desired equilibrium 
point at (y, ψ) = (0.88, 0) using the constant stance leg angle control policy. The 
basin of attraction of this control policy is the region in the state space that contains 
all of these states. 

policy (within the domain that the disturbance can be rejected by touch-down angle 

control). 

After the constant stance leg angle control policy, the power of the constant touch

down time control policy is shown in figures 5.18 and 5.19. The size of the basins 

of attraction for this control policy are greater than the constant stance leg angle 

control policy. Therefore, the system can sustain bigger disturbances, but the size of 

the basin of attraction does not indicate how fast the system reject the perturbation. 

Figure 5.20 shows the basin of attraction for the constant horizontal position of 

the CoM. The size of the basin of attraction in this control policy with respect to 

the whole walking state space, shows that this control policy can reject even large 

disturbances. 
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Figure 5.17: The blue circles are the states that can return to the desired equilibrium 
point at (y, ψ) = (0.87, 0) using the constant stance leg angle control policy. The 
whole walking state space is the gray area with black boundary and the basin of 
attraction of the control policy is the region in the state space that contains all of 
the blue circles. 
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Figure 5.18: The basin of attraction of the constant touch-down time control policy 
for the equilibrium gait (y, ψ) = (0.88, 0). This region contains the blue circles in 
the state space. 
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Figure 5.19: The constant touch-down time control policy makes the blue circles to 
converge to the desired equilibrium gait which here is (y, ψ) = (0.87, 0). 
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Figure 5.20: The blue circles here are the states that can converge to the desired 
equilibrium point at (y, ψ) = (0.87, 0) using the constant CoM position control pol
icy. Compared to the whole walking state space which is the gray area with black 
boundary, the basin of attraction of the control policy is the region that contains the 
blue circles. 
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Figure 5.21: The constant stride length control policy returns the blue circles to the 
desired equilibrium point (y, ψ) = (0.87, 0) or keep the system walking for at least 
50 steps. 

The basin of attraction of the constant stride length control policy is shown in 

figure 5.21 for equilibrium point (y, ψ) = (0.87, 0). Even though the magnitude of 

the eigenvalue is not well below 1, but the size of the basin of attraction shows that 

this control policy can keep the system walking for several steps and not fall due to 

large disturbances. 

The constant aperture angle control policy can reject or sustain perturbations 

shown in figure 5.22. It was shown that the constant aperture angle control policy 

does not necessarily converge to the desired equilibrium gait, but the system can 

continue walking without falling with this control policy. 
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Figure 5.22: The constant aperture angle control policy returns the blue circles to 
the desired equilibrium point which is (y, ψ) = (0.87, 0) or keep the system to walk 
at least for 50 steps. 
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Here, the basins of attraction of the control policies are compared for two equi

librium points. The results show that the constant aperture angle control policy 

can not provide large basin of attraction for the equilibrium points. After that the 

constant stride length control policy provides the smallest basin of attraction for the 

equilibrium points, however the size of the constant stride length control policy is 

more than 3 times greater than the constant aperture angle policy. The proposed 

control policies like regulating the touch-down time and the stance leg angle and the 

CoM position provide similar and large basins of attraction that can assure most of 

the disturbances would be handled by the control policy. 
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Figure 5.23: The comparison of the size of the basins of attraction for the various 
control policies that return to the equilibrium point (y, ψ) = (0.87, 0). The constant 
aperture angle control policy has the smallest basin of attraction and for the other 
three control policies here, the size of the basins of attraction are close to each other. 
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Figure 5.24: The comparison of the basins of attraction. The constant aperture angle 
control policy has the smallest basin of attraction and the constant touch-down time 
control policy gives the larges basin of attraction for this equilibrium point. 
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After the stability analysis and investigating the basins of attractions of the 

control policies, now the behavior of the policies are studied for different equilibrium 

points in various energy levels. Even though the magnitude of the eigenvalue does 

not necessarily show the rate of convergence, in some cases it can be a good measure 

for the rate of convergence. 
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Figure 5.25: The constant stance leg angle control policy for equilibrium point 
(y, ψ) = (0.85, 0). The initial perturbation is (y, ψ) = (0.88, −5) and the system 
converges in about 4 steps. 

For the first example, the behavior of the system with the constant stance leg 

angle control policy is shown in figure 5.25. The analysis starts with an initial 

perturbed state (y, ψ) = (0.88, −5) that is far from the desired equilibrium point 

(y, ψ) = (0.85, 0), but the system converges to the desired equilibrium point in about 

4 steps. The desired equilibrium gait is located in the region of grounded running 
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gaits. The resultant force profile of the desired equilibrium gait confirms the grounded 

running gait and the CoM trajectory of the system shows the double support at the 

peak of the height of CoM in each gait. 
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Figure 5.26: The behavior of the constant aperture angle control policy. The initial 
perturbation is (y, ψ) = (0.85, −1) which is close to the desired equilibrium point. 
The system gradually diverges from the desired equilibrium point. 

The behavior of the constant aperture angle control policy is shown in figure 5.26. 

As the basin of attraction of this control policy shows, the domain in which the initial 

perturbed state can be chosen, is not as large as other control policies. Since the 

system can not recover from big perturbations, the initial perturbation in this case 

is chosen (y, ψ) = (0.85, −1) to show the behavior of the system. As can be seen in 

figure 5.26, the system gradually diverges from the desired equilibrium point as was 

expected from the eigenvalue of the system which is slightly greater than 1 but the 
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process takes some steps until failure. This result is compatible with the behavior 

that Andrada et. al [75] reported in their paper. 

Figure 5.27 shows the behavior of the constant stride length control policy. In 

this policy, the system does not converge to the desired equilibrium gait because the 

magnitude of the eigenvalue is about 1 and therefore it is marginally stable. The 

behavior of the system is like oscillating around the desired equilibrium point like 

1-DOF spring-mass system without damping around its fixed point. The advantage 

of this control policy over the constant aperture angle control policy is that in this 

strategy the system does not diverge from the desired equilibrium point. 
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Figure 5.27: In constant stride length control policy, the system is marginally stable 
and oscillates around the desired equilibrium point. 

The behavior of the constant touch-down time control policy is shown in figure 

5.28. Despite a large initial perturbation, the system recovers from the perturbation 
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Figure 5.28: The constant touch-down time control policy recovers from initial per
turbation in about 4 steps. 

in about 4 steps and settles to the desired equilibrium point (y, ψ) = (0.85, 0). The 

convergence rate is similar to the constant stance leg angle for this equilibrium point 

as the magnitude of the eigenvalues suggest. As can be seen in the CoM trajectory, 

the transition from the perturbed initial condition to the final equilibrium point is 

gradual and smooth. 

The constant horizontal displacement control policy also shows converging be

havior with large perturbations. Figure 5.29 shows the behavior of this policy under 

a large initial perturbation. This policy converges quickly to the desired equilib

rium point as was expected from the magnitude of its eigenvalues. The behavior 

of this control policy on the bipedal spring-mass model is similar to the constant 

stance leg angle policy, but the touch-down time and the conditions at the moment 
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Figure 5.29: The system converges fast to the desired equilibrium point using the 
constant CoM horizontal displacement. The CoM trajectory and the change in the 
force profile are gradual to the desired limit cycle. 

of touch-down are different for each control policy. 

For the constant angle of attack policy, we expect an unstable behavior from the 

stability analysis of the system as the magnitude of the eigenvalue for this policy 

suggests. In figure 5.30 the unstable behavior of the constant angle of attack control 

policy is well depicted. Even though the initial perturbation is chosen close to the 

desired equilibrium point, the system diverges very quickly from the equilibrium 

point and becomes unstable. In the CoM trajectory with this control policy, after 

few steps, the system diverges and becomes unstable. 

Now, we investigate the behavior of the control policies for another type of equi

librium points. So far, the examples were for grounded running equilibrium points. 



98 

0.84 0.85 0.86 0.87 0.88
−20

−10

0

10

20

y (m)

ψ
 °

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.82

0.84

0.86

0.88

0.9

x (m)

y 
(m

)

 

 

0.83 0.84 0.85 0.86 0.87 0.88 0.89
−0.5

0

0.5

y (m)
v y (

m
/s

)

0 0.5 1 1.5 2 2.5
0

200

400

600

800

time (s)

F
or

ce
 (

N
)

Single support phase
Double support phase

Figure 5.30: The constant angle of attack control policy diverges from the desired 
equilibrium point. 

Here, we investigate the behavior of the bipedal spring-mass model for equilibrium 

gaits with double-hump force profile. The energy level of the system is assumed to 

be equal to E = 525J , and we focus on the behavior of the symmetric equilibrium 

points (like (y, ψ) = (0.88, 0)) under various control policies. 

The analysis starts with the constant stance leg angle control policy. The behavior 

of this control strategy is shown in figure 5.31. As can be seen in this figure, the 

system recovers from the perturbation and converges to the desired equilibrium point. 

The convergence rate is not as fast as it was before for grounded running equilibrium 

gaits, but the transition is smooth and gradual and the system settles exactly on 

the desired equilibrium point. The behavior of the system under this control policy 

is like oscillating around the desired gait and gradually converges and settles to the 
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Figure 5.31: The constant stance leg angle control policy for the desired equilibrium 
gait (y, ψ) = (0.88, 0). 

desired equilibrium point. 

Figure 5.32 shows the behavior of the constant aperture angle policy under initial 

perturbation around a double-hump force profile equilibrium gait. The stability 

analysis showed that this policy is not asymptotically stable, but the system can 

walk for several steps before falling. Since the magnitude of its eigenvalues is greater 

then 1, in each step the error increases and the system gets further from the desired 

equilibrium point. If the magnitude of the eigenvalue is close to 1, it allows the 

system to walk for some steps before falling. As can be seen in figure 5.32, the CoM 

trajectory is not smooth during walking and the error increases gradually, but the 

system can walk for several steps before falling and therefore can be categorized as 

finite stable gait. 
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Figure 5.32: The constant aperture angle control policy is unstable but can walk for 
several steps before falling. The desired equilibrium point is (y, ψ) = (0.88, 0) and 
the system oscillates around that point and gradually diverges from that. 

As the stability analysis of the control policies showed, the stability behavior of 

the constant stride length control policy is similar to the constant aperture angle 

control policy. Since the magnitude of the eigenvalues is about 1, the system does 

not dissipate the perturbation and it does not converge to the desired equilibrium 

point and oscillates around it. In the constant stride length control policy as shown in 

figure 5.33, the system has marginal stability and therefore the perturbation remains 

unchanged or negligibly change after each step. This is the reason why the system 

can walk for several steps before falling and hence in the sense of stability for walking 

can be categorized as finite stable gait. The CoM trajectory of the system is not 

ideal, but it is smoother than the constant aperture angle control policy. 
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Figure 5.33: The constant stride length control policy is marginally stable and there
fore it oscillates around the desired equilibrium point but does not settle into the 
desired gait. 
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Figure 5.34: The constant touch-down time control policy for double-hump force 
profile equilibrium gait. The system does not converge to the desired equilibrium 
point and oscillates around it. 

The behavior of the system with the constant touch-down time control policy is 

shown in figure 5.34. Even though this control policy was stable very well for the 

grounded running gait, but as can be seen here, the stability of this control strategy 

is not well converging to the desired equilibrium point. The eigenvalue of the system 

for this control policy suggests that the system is unstable, but as can be seen in 

this figure, the system can accomplish several walking steps with descent behavior 

before falling. 

Figure 5.35, shows the behavior of the constant horizontal displacement control 

policy around a M-shaped force profile equilibrium point. After the initial pertur

bation in the state, the system recovers quickly from the disturbance and converges 
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Figure 5.35: The constant horizontal displacement control policy quickly recovers 
from the initial perturbation. 

to the desired equilibrium point. The transition from the perturbed state to the 

desired limit cycle is smooth and gradual, but the convergence rate is smaller than 

the grounded running equilibrium points. 

For the last example of studying the behavior of the system under the swing leg 

control policies, the response of the bipedal spring-mass model with the constant 

angle of attack control policy. In figure 5.36, the behavior of the constant angle of 

attack control policy is depicted. The eigenvalues of the system predict that the 

system is unstable and amplifies the perturbations in each step. The simulation 

shows that the system diverges very quickly from small initial perturbations. Even 

though the initial perturbation from the desired equilibrium point is small, but the 

system diverges very quickly and falls suggesting that using the constant angle of 
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Figure 5.36: The constant angle of attack control policy. The system diverges very 
quickly from very small initial perturbation and falls. 

attack control policy is not useful for these types of equilibrium gaits. 
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To show the capability of the proposed control polices for walking over rough 

terrain, an example of the bipedal spring-mass model waking on rough terrain is 

presented in figure 5.37. In this example, the switching manifold for the transition 

from single support phase to double support phase is the touch-down time. Therefore, 

the system regulates the time after the VLO until entering the double support phase 

regardless of the ground level without any prior information of the disturbances. By 

regulating the time the system converges to different types of equilibrium gaits in 

different energy levels. As can be seen in the figure, the control policy can handle 

the disturbances and makes it to converge to the corresponding equilibrium point 

at each energy level. The leg force profile of the system during walking over rough 

terrain is shown in figure 5.38. When the energy of the system increases due to the 

decrease in ground height, the desired equilibrium gait at the predefined touch-down 

time approaches grounded running type of equilibrium gait and as the energy of 

the system decreases, the desired equilibrium gait approaches the double-hump force 

profile type of equilibrium gait. 

5.6 Full body model simulation 

In this section one of the best proposed control policies is implemented on the full 

order model of the robot in the presence of moderately large noise. For the control 

policy, the constant stance leg angle is chosen for the implementation because this 

strategy showed a stable and very robust behavior at the level of the reduced order 

model (the bipedal spring-mass model). The full body model of the robot is shown 
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Figure 5.37: Center of mass trajectory of the bipedal spring-mass model during 
walking over rough terrain. 
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Figure 5.38: Leg force profiles during walking over rough terrain. 

in figures 5.39 and 5.40. In this model, all the details of the model and the behavior 

of the ground as well as the impact model are included and modeled. Moreover, to 

simulate the noises in the sensors, moderately big Gaussian noises are added to all 

the measurements. The Simulink model of the controller and the full order model is 

shown in figure 5.41. 
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Figure 5.39: The full order model of the robot in 3D view. 

5.7 Experimental results 

After showing the applicability of the control policies at the level of reduced order 

model and the success in controlling the full order model of the robot including sensor 

noise, the applicability of the constant stance leg angle control policy is investigated 

on our robot ATRIAS [1] with locked torso to the boom. The stance leg angle is 

chosen because in most of the analysis, this control policy was stable for most of the 

equilibrium gaits and the size of the basin of attraction for this control strategy is 

large. Moreover, the implementation of this control policy is simple and it can be 

easily implemented on the real platform by just slaving the swing leg to the stance 

leg angle such that when the stance leg reaches a predefined value, the swing leg hits 

the ground. Figures 5.47 and 5.48 show the results from the ground reaction forces 
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Figure 5.40: The full order model of the robot from a 2D view. 

with this control policy for two experiments. As can be seen in these figures, the 

strategy stabilizes the gait after few steps. The fact that in the experiment the robot 

walks in a circle creates difference in the force profiles of the two legs. The leg that 

is located inside the circle moves faster than the other leg during stance phase and 

therefore there is a slight difference between the force profiles. 

5.8 Conclusions 

In this chapter we started from theory and concept of template (the bipedal spring-

mass model) and successfully showed the applicability of the concept on real robot. 

We first derived the control policies at the level of reduced order model and then 

successfully applied one of the them (as an example) on the full order model of our 

spring-mass robot ATRIAS and after that we showed that it successfully stabilizes 

the real robot. 

Four new swing leg control policies were proposed and compared with the existing 
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Figure 5.41: The Simulink blocks for the full order simulation. There are noises that 
are added to simulate the noise in the sensors. 

swing leg control policies for the bipedal spring-mass model. The stability analysis 

of these control policies for different energy levels showed that the proposed control 

strategies are stable for most of the equilibrium gaits compared to the current con

trol policies. Moreover, the size of the basin of attraction for the proposed control 

policies are large which guarantees that the controllers can handle large disturbances 

as far as the disturbance can be handled by only touch-down angle control of the 
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Figure 5.42: The ground reaction force in the vertical direction. After the initial 
perturbation, the robot converges to the limit cycle after few steps. 

swing leg. The behavior of the system with the proposed control policies showed 

that for grounded running type of equilibrium points, the rate of convergence is 

faster than the equilibrium gaits with double hump force profile type. The reason 

is that for grounded running equilibrium gaits the double stance phase starts sooner 

and hence it does not allow the perturbations at the Poincare section to deviate 

the system significantly from the unperturbed CoM trajectory and since after the 

double stance phase the system is purely passive, the system with grounded running 

equilibrium gaits has smaller perturbations at the beginning of the double support 

phase. The simulation also showed that even though the bipedal spring-mass model 

is energetically conservative, it can be used for rough ground and converges to dif

ferent equilibrium gaits in different energy levels. After the full investigation of the 

control policies at the level of reduced order model, we chose one of the policies as 

an example and implemented on full order model (anchor) of our robot. Finally, the 
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Figure 5.43: The CoM height of the robot after the initial perturbation. The robot 
converges to the desired limit cycle after few steps. 

control policy was implemented on our spring-mass robot ATRIAS with locked torso 

and the same behavior that was predicted from the template and confirmed from the 

anchor, was observed on the robot. 

5.9 Future Work 

The control policies proposed in this chapter use the functions between the states 

of the system that have physical meaning like the stance leg angle or stride length. 

For the future work, an optimized function between the states for the moment of 

touch-down can be found to maximize the rate of convergence and the size of the 

basin of attraction. Moreover, the applicability of using the velocities of the CoM 

can also be investigated including the uncertainty that they bring to the policy. 
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Figure 5.44: The vertical and horizontal velocities of the CoM. The robot starts with 
a push in the beginning which is considered as the perturbed initial condition. 
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the signals and the magnitude of the noise in the simulation. 
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Figure 5.47: The force profile from the robot experiment using the constant stance 
leg angle control policy for the swing leg. 
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Figure 5.48: The force profile from the robot experiment using the constant stance 
leg angle control policy for the swing leg. 
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Chapter 6 – Feed-forward control technique 

In this chapter, a new control strategy is presented for the walking of 

spring-mass robots that stabilizes the system to the desired equilibrium 

gait and manages the energy level of the system. The control technique 

is a feed-forward function based on time for stance phase and for the 

swing leg the time of the touch-down after the Poincare section is kept 

constant. The feed-forward function changes the zero force leg length of 

the stance leg based on a predefined sinusoidal function of time which can 

be analogous to the central pattern generator (CPG) control policy. For 

the model two cases are assumed, the bipedal spring-mass system and the 

bipedal spring-mass model with damping in parallel to the spring in the 

leg. The results show that even though for the system with damping in 

the leg the efficiency of the system slightly decreases, the stability and the 

rate of convergence improves significantly. Since the effect of damping is 

significant in the stability of the gait, it can also be virtually created by 

the actuators as virtual damping in the system. 

6.1 Introduction 

Humans and animals can start walking in natural environment since very young 

age, but despite remarkable advances in the field of legged locomotion with very 



116 

advanced sensors and complicated control tools, robots do not perform as efficient 

and robust as baby animals. This fact has attracted the attention of the researchers to 

understand the principles of locomotion in animals and replicate the same dynamics 

and behavior on the legged robots. To achieve this goal, bio-inspired models have 

been proposed to describe the important features of animals’ locomotion and create 

the same dynamics on the robots. The spring loaded inverted pendulum (SLIP) 

was one of the first models that was proposed for running [39] and recently it was 

extended to the bipedal spring-mass model [6] for walking. In this chapter, the 

bipedal spring-mass model is used as the basis for the passive behavior of the system 

with an actuator in series with the spring in the leg to be able to handle the energy 

management. 

McGeer [9] was the first one that showed walking does not require high tech 

sensors or complicated control commands. In his passive walker there was no sensor 

in the system and the gravitational force acted like a feed-forward force to the system 

(feed-forward force (gravity) based on the states of the system). A similar logic was 

accepted by Schmitt and Clark [54] for stance phase control policy for running SLIP. 

In their method, the flight phase control policy used a feedback control based on the 

previous take-off angle and was independent of the stance phase controller and the 

stance phase controller was a feed-forward function that adds and removes energy 

regardless of the states of the system. They gained the inspiration for their control 

policy from the behavior of cockroaches [86] and grounded running birds [87]. Later, 

Miller et al. [88] showed the potential of this strategy on a mono-pod robot. 

Inspired by Schmitt and Clark [54] control policy for running, we investigate the 
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applicability of the feed-forward control strategy for walking. The plan is to extend 

the policy to the systems with and without some physical or virtual damping in 

parallel to the spring in the bipedal spring-mass model. 

The inclusion of damping in the system will be investigated for two reasons: First 

is that all real systems have some inherent damping and second is that if the analysis 

shows that the existence of damping is useful for the stability and robustness of the 

system, the effect of damping can be generated in the software by the actuators. 

It is acknowledged that assuming virtual damping in the controller and providing 

the same effect by the actuators requires feedback from velocity and may reduce the 

efficiency of the system with respect to the undamped situation. 

In this section we investigate how a feed-forward stance phase control policy 

stabilizes the bipedal spring-mass walking model. For this purpose, one of the control 

policies that was investigated before as the swing leg control strategy is used as 

the swing leg policy for the model and for the stance phase policy, a feed-forward 

sinusoidal function is used to change the zero force leg length of the leg. 

6.2 Method 

We use the actuated bipedal spring-mass model as the bipedal extension of the 

actuated SLIP model introduced before in [10, 47]. The actuated bipedal spring-

mass model is shown in figure 6.1 and the equations of motion for this model can be 

modified as follows: 
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Figure 6.1: left: The model of the robot with the leg motor to change the zero force 
leg length during the stance phase. When the motor is kept locked (zero mechanical 
energy), it provides the same behavior of the equivalent conservative bipedal spring-
mass model that is shown in the right. 

For single support phase dynamics: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) 

m.l1 
ẍ 

(6.1)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1(y−yt1) 
m.l1 

− g 

For double support phase dynamics: 

⎧ ⎪⎨

⎧ ⎪⎨


⎫ ⎪⎬

⎫ ⎪⎬
F1(x−xt1) + F2(x−xt2) 

m.l1 m.l2 
ẍ 

(6.2)=
⎪⎩
 ⎪⎭ÿ ⎪⎩
 ⎪⎭
F1 (y−yt1) + F2(y−yt2) 
m.l1 m.l2 

− g 

Where 

Fi = k(l̃0(t) − li(t)) + c(l̃̇0(t) − l̇i(t)) i = 1, 2 (6.3) 

li = (x − xti)2 + (y − yti)2 i = 1, 2 (6.4) 
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To have a feed-forward function for the change of the zero force leg length during 

stance phase, the actuator dynamics is ignored and the change in the rest leg length 

is assumed instantaneous. Here we assume that the zero force leg length is changed 

based on the following function: 

l̃0(t) = l0 − ldev sin(ωt) (6.5) 

The derivative of the zero force leg length with respect to time is as follows: 

l̃̇0(t) = −ldev ωcos(ωt) (6.6) 

l

In this equation l̃0(t) is the zero force leg length of the stance leg at time t and 

0 is the original rest length of the leg correspond to the zero actuator length. The 

amplitude of the leg length change is shown by ldev and the frequency of the leg 

length change is denoted by ω. As can be seen in equation 6.5, the change of the leg 

length does not depend on the state of the system and is based on time as well as its 

derivative. Since the leg force during the stance is always in compression, shortening 

the leg means dissipating some energy and extending the leg means gaining some 

energy. Therefore, like in Schmitt and Clark [54] policy for running, for the exact 

desired gait, the robot loses some energy in the beginning of the touch-down and 

later during the stance, it gains the energy it lost before such that at the end the 

whole energy of the system remains the same. If the system has more energy than 

the desired energy level then the leg leaves the ground earlier and therefore it loses 

more energy in the beginning than it receives from the actuators later. 
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For the swing leg control, we use the constant touch-down time control policy 

as described in chapter 5, to be a function of time similar to the stance phase. 

Moreover, the constant touch-down time control policy has shown successful results 

in stabilizing the bipedal spring-mass model. 

6.3 Results 

The results of the numerical simulations are presented in this section for two separate 

scenarios: system without damping and damped model. The results show that the 

system converges to asymmetric equilibrium gait in the presence of damping and can 

converge to both symmetric and asymmetric equilibrium gaits for undamped system. 

The parameters that affect the analysis are the touch-down time tT D , frequency of 

the leg length change during the stance phase ω, the amplitude of the leg length 

change during the stance phase ldev and the amount of damping in the system c. By 

changing either of the aforementioned parameters, the system converges to different 

equilibrium point in different energy level. 

6.3.1 Undamped system 

We start the analysis with the case that there is not any physical damping in the 

system and therefore the system is conservative if the actuators are kept locked 

during the stance phase. Therefore, the only sources of energy change in the model 

are the leg actuators. For the first case, shown in figures 6.2 and 6.3, the system 

starts with a perturbed state to transition to the desired state in lower energy level 
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than the initial state. The transitioning to the desired state in this case is similar to 

recovering from a drop step when the perturbed system has higher energy level than 

the desired state. 
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Figure 6.2: The behavior of the bipedal spring-mass model using the feed-forward 
stance phase control strategy. The model starts with a perturbed state and converges 
to the desired equilibrium point. The actuator leg length profile is not matched with 
the gait for the initial steps and then they get aligned. 

For the second example of the undamped case, the desired equilibrium point has 

higher energy level than the initial perturbed state. The results for this case are 
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Figure 6.3: The states of the system at the Poincare section. The perturbed state 
at the beginning has higher energy than the desired equilibrium point. 

shown in figures 6.4 and 6.5. The case of having the desired state in higher energy 

level is like walking over a step and recovering from the perturbation. By adjusting 

the frequency and the touch-down time, asymmetric equilibrium point with higher 

energy level can be achieved. The actuator leg length is not aligned with the gait in 

the beginning and after few steps the actuator leg length profile gets compatible with 

the gait and the system monotonically gains energy until the desired equilibrium 

gait. In this case, unlike the previous example, the actuator leg length profile is 
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not symmetric with respect to the mid-stance even though the system is physically 

undamped. Therefore the actuator adds and removes the same amount of energy 

in each gait, but the first half with shorter duration, the rate of removing energy is 

higher than the second half of the stance phase. 

0 1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

xl[m]

yl
[m

]

0 1 2 3 4 5 6 7 8
−0.02

−0.01

0

0.01

0.02

Timel[s]

l a(t
)l

[m
]

0 1 2 3 4 5 6 7 8
0

500

1000

Timel[s]

F
or

ce
l[N

]

CoMltrajectory

Forcelprofile

Actuatorllegllengthlprofile

Figure 6.4: By adjusting the frequency and the touch-down time, the system can 
converge to asymmetric equilibrium point. The actuator leg length is not aligned 
with the gait in the beginning of the perturbation. 
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Figure 6.5: The states of the system at the Poincare section including the energy 
level of the system. The desired equilibrium gait is asymmetric in higher energy 
level. 

6.3.2 System with damping 

In the presence of damping, the behavior of the system improves even though the 

efficiency may sometimes degrade. In the following examples, two cases are studied 

that a physical damping exists in the leg. For the first example, the desired equi

librium gait is asymmetric double hump with higher energy level than the initial 
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perturbed state. The results are shown in figures 6.6 and 6.7. The rate that the sys

tem converges to the desired equilibrium gait is faster than the undamped situation 

and the system converges to the desired equilibrium gait. It can be seen that the 

actuator leg length profile is not symmetric with respect to the mid-stance because 

the actuator should compensate for the energy that the damper dissipates in each 

gait. 
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Figure 6.6: The center of mass trajectory, force profile and the actuator leg length 
of the bipedal spring-mass model in the presence of ζ = 5% damping in parallel to 
the spring. The system starts from a perturbed state and after 5 steps converges to 
the desired equilibrium point with the desired energy level. 
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Figure 6.7: The change of the Poincare section states from a perturbed state to the 
desired equilibrium gait in higher energy level than the initial perturbed state. 

For the second example, the desired equilibrium gait is grounded running with 

higher energy level. The results for this case are shown in figures 6.8 and 6.9. The 

system converges to the equilibrium point after about 5 steps. 
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Figure 6.8: The behavior of the bipedal spring-mass model in the presence of damping 
and using the feed-forward stance phase control strategy. The desired equilibrium 
point is grounded running state with higher energy level than the initial perturbed 
state. In the presence of damping, the actuator leg length is not symmetric and the 
positive work done by the actuator is bigger than the negative work. 

6.4 Simulation on the full order model 

In this section the proposed control policy is implemented on the full order model of 

the robot in the presence of moderately large noise. For the swing leg control policy, 

the constant stance leg angle is chosen for the implementation and the stance phase 



128 

0.82 0.84 0.86 0.88 0.9

−20
−10

0
10

520

540

560

y [m]ψ [°]

E
 [J

]

0.8 0.85 0.9
−15

−10

−5

0

5

y [m]

ψ
[°

]

0.8 0.85 0.9
520

530

540

550

560

y [m]

E
 [J

]

Figure 6.9: The states at the Poincare section and energy level of the system in the 
presence of ζ = 5% damping in parallel to the spring and using feed-forward stance 
phase control strategy. The desired state is in higher energy level than the initial 
state. 

control policy is the sinusoidal feed-forward function of the zero force leg length. The 

full body model of the robot is shown in figures 5.39 and 5.40 in chapter 5. This 

control policy can successfully stabilize the full order model and the resultant ground 

reaction force from this simulation is shown in figure 6.10. 
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Figure 6.10: The vertical ground reaction force from the feed-forward control policy 
implemented on the full order model of the robot. The asymmetric shape of the 
ground reaction force is the same as the force profile that we expect from the reduced 
order model. 

6.5 Conclusion 

In this chapter, a new control strategy was proposed for spring-mass walking robots 

that can stabilize the gait and manages the energy of the system. For the stance 

phase, a feed-forward function based on time was used and for the swing leg pol

icy, the constant touch-down time strategy presented in chapter 5 was used. The 

simulation results showed that the control policy can indeed stabilize the bipedal 

spring-mass model to the desired gait and desired energy level. If the energy of the 

gait is more than the desired energy that corresponds to the swing leg touch-down 

time and the stance phase parameters (amplitude and frequency of the feed-forward 
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function), the leg leaves the ground earlier and therefore it leads to losing more en

ergy during the stance than gaining energy. Although the simulation results show 

that losing or gaining energy is not a monotonic function, but in general as a whole 

this is the stabilizing reason for the energy of the gait. Moreover, for the spring-mass 

model with some physical damping in parallel to the spring, the stability of the con

trol policy was enhanced and the rate of convergence increases as well. The damping 

in the leg can be physical damping or can be virtually created by the actuators. 

6.6 Future work 

The next step is to implement this control strategy on the spring-mass legged robot. 

Reformulating this concept based on the states of the system (like the stance leg 

angle) instead of time is another extension to this control policy. 
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Chapter 7 – Bio-inspired swing leg control for spring-mass robots 

running on ground with unexpected height disturbance 

We proposed three swing leg control policies for spring-mass running 

robots, inspired by experimental data from our recent collaborative work 

on ground running birds. Previous investigations suggest that animals 

may prioritize injury avoidance and/or efficiency as their objective func

tion during running rather than maintaining limit-cycle stability. There

fore, in this study we targeted structural capacity (maximum leg force 

to avoid damage) and efficiency as the main goals for our control poli

cies, since these objective functions are crucial to reduce motor size and 

structure weight. Each proposed policy controls the leg angle as a func

tion of time during flight phase such that its objective function during 

the subsequent stance phase is regulated. The three objective functions 

that are regulated in the control policies are i) the leg peak force, ii) the 

axial impulse, and iii) the leg actuator work. It should be noted that 

each control policy regulates one single objective function. Surprisingly, 

all three swing leg control policies result in nearly identical subsequent 

stance phase dynamics. This implies that the implementation of any of 

the proposed control policies would satisfy both goals (damage avoidance 

and efficiency) at once. Furthermore, all three control policies require a 
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surprisingly simple leg angle adjustment: leg retraction with constant an

gular acceleration. This work was published as a paper in Bioinspiration 

& Biomimetics journal (2013) in collaboration with Dr. Monica A. Daley 

at Royal Veterinary College, London. 

7.1 Introduction 

We seek to understand the principles of legged locomotion and to implement them 

on robots. Recent years have seen remarkable advances in dynamic legged robots, 

including Rhex, a rough-terrain hexapod [61, 62], Bigdog, a rough terrain quadruped 

[89], MABEL, a biped that can negotiate uneven terrain [90], ATRIAS, a bio-inspired 

actuated spring-mass robot [2], and PETMAN, a versatile humanoid biped. These 

robots highlight the emerging potential for legged robotic technology; however, none 

of these machines can compete with animal performance and efficiency. In natural 

environments animals frequently negotiate potholes, steps and obstacles remarkably, 

while running. Because we do not yet understand the fundamental principles of 

locomotion that enable such performance, we cannot reproduce these behaviors in 

machines [91]. In this study we seek to identify reasonable objective functions animals 

might care about, and use them to control a spring-mass running robot. To gain 

insight into the goals birds may care about during running, we investigated guinea 

fowl running data (figure 7.1) and interpreted the importance of those goals for real 

machines. 

There are two reasons why we focus on swing leg control: i) The flight phase 
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Figure 7.1: Illustration of experiment setup on the guinea fowl running over a step 
down (a), and schematic drawing of the SLIP model (b). The gray areas indicate 
the stance phases, and the blue line represents the CoM trajectory [3]. 

determines the landing conditions, which have huge effects on stance dynamics, and 

ii) adjusting the leg parameters during flight is very energy efficient because there 

are no ground reaction forces to overcome during flight to move the leg. The effect 

of swing leg control methods on the dynamics of a spring-mass system has been 

investigated in previous literature [6, 4, 42, 43, 5]. From a biologist’s perspective, 

animal running data reveal that the initial leg loading during stance is very sensitive 

to its landing conditions, which are determined by the flight phase [92, 93, 94, 95]. 

Daley et al. [87] showed that for running guinea fowl, the variation in leg contact 

angles explains 80% of the variation in stance impulse after an unexpected pothole. 

From a roboticist’s point of view, using a feed-forward control strategy minimizes 
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the need for sensing, which makes these techniques easy to implement in robots. 

Previous theoretical studies of swing leg control suggest a trade-off between ob

jectives like disturbance rejection, stability, maximum leg force and impact losses. 

For example, a constant leg retraction velocity in late swing improves stability in 

both quadrupeds [96] and bipeds [42]. Similarly, increasing the leg length in late 

swing can improve stability and robustness [43]. Whereas low leg retraction veloci

ties improve the robustness against variations in terrain height, high leg retraction 

velocities minimize peak forces and improve ground speed matching [97, 44]. Alter

natively, a feed-forward swing leg control policy can be applied to the spring-loaded 

inverted pendulum (SLIP) model to maintain steady state running (equilibrium gait), 

regardless of ground height changes [98]. While maintaining steady state running re

sults in symmetric trajectories even in the presence of ground height changes, it also 

results in high leg forces and high leg actuator work (electric consumption of the 

electric motor) during the perturbed step. Karssen et al. [99] determined the opti

mal swing leg retraction rate that maximizes disturbance rejection, and minimizes 

impact losses and foot slipping. They considered a predefined constant leg retrac

tion rate for running and concluded that there exists no unique retraction rate that 

optimizes all goals mentioned above at the same time. Especially for high forward 

speeds, a compromise between disturbance rejection and energy losses is inevitable. 

Recently, Ernst et al. [5] demonstrated how leg stiffness may affect the self-stability 

of a running robot. They proposed a control strategy that updates the leg stiffness 

based on the fall time or vertical velocity of the center of mass (CoM). 

The equilibrium (symmetric) gait policy is a well-investigated swing leg control 
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policy for spring-mass robots [98, 5]. This policy ensures that the robot’s CoM 

trajectory is symmetric with respect to the vertical axis, which is defined by mid-

stance (touch down and take off conditions are symmetrical). Therefore, on flat 

ground each step is identical to the previous step, resulting in a periodic gait pattern. 

By choosing the appropriate initial leg angle (touch down leg angle) for each velocity 

vector v = (v , v y )
T , a symmetric gait can be obtained. This policy continuously x 

updates the leg angle based on the CoM velocity vector during flight such that 

whenever the leg hits the ground, a symmetric CoM trajectory is maintained. In the 

presence of a drop, however, the required mechanical capacity (leg force for example) 

can increase drastically, and may exceed the ultimate leg capacity. Therefore, the 

equilibrium gait policy may not be a practical control strategy for spring-mass robots. 

Inspired by our findings from a previous study on guinea fowl negotiating a drop 

perturbation [3], we propose three candidates for the objective function of the swing 

leg control policy. The objective functions are: i) maintaining constant peak force, 

ii) maintaining constant leg axial impulse, and iii) maintaining constant leg actuator 

work. Each control policy adjusts the leg angle during flight such that its objective 

function during the subsequent stance phase is regulated. The first swing leg control 

policy ensures that the leg peak force in the following stance phase is the same as 

the peak force of the previous step. The second policy keeps the axial impulse of 

the upcoming passive stance phase the same as the axial impulse of the previous 

step. The last control policy focuses on economy by maintaining constant electrical 

work to keep the motor, which is in series with the spring, locked (providing zero 

mechanical work and thus a conservative passive stance phase). In this case the 
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actuator requires the same electric energy for the drop step and flat ground. We 

compare these control policies with equilibrium gait policy and against each other. 

The results show that the equilibrium gait policy requires more energy and leg 

force capacity than the proposed control policies. For economically designed robots 

that are operating at (or close to) their maximum mechanical capacity, any drop 

in the ground may cause damage, or the robot could even fall if the motors are 

not strong enough. Moreover, it turns out that with a simple swing leg control 

policy, retracting the leg with constant angular acceleration, both goals (optimizing 

mechanical demand and energy efficiency) could be met at once. 

7.2 Bioinspiration 

We are inspired by the robust and efficient running of animals. Guinea fowl, for 

example, locomote highly agile, robust and efficient in natural environments (un

even terrain). We want to identify control policies that make running legged robots 

perform as proficiently as animals like guinea fowl. 

Our strategy is to exploit results from experiments that have been conducted 

by Blum etal [3] on guinea fowl negotiating a drop perturbation, and hypothesize 

policies these birds may follow during running. The experimental setup they used is 

shown in figure 7.1. 

The results suggest that the leg touch-down angle may be the main parameter 

that guinea fowl control during flight phase. Furthermore, force data show that leg 

peak forces and axial impulses are nearly constant during level running and in the 
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presence of a drop [3]. 

7.3 Methods 

In this section we describe the model that we use in this study and our proposed 

control policies. We use the spring-loaded inverted pendulum (SLIP) model (section 

7.3.1) as the model for our running robot, and our hypothesized control policies 

(section 7.3.2) will be applied on this model during running. We assume the system is 

running on level ground and without any prior information, an unknown disturbance 

in the ground occurs. Each control policy regulates an objective function (section 

7.3.2) to handle the disturbance. 

We focus on step-down disturbances through all of our simulations because the 

only challenge for step-up disturbances is a geometric constraint between the toe and 

the ground that may lead to a stumble or a fall. Once the geometric constraint for 

step-up disturbances is solved (by changing the length of the swing leg and adjusting 

the leg angle accordingly), an equilibrium gait can be obtained without suffering leg 

force or work increase. We will discuss this case more in stability analysis section 

(section 7.5.1) and in the discussion section as well. 

7.3.1 Model 

We consider the spring-loaded inverted pendulum (SLIP) [39, 100], because the pas

sive model of the spring-mass robot is similar to the SLIP model. The SLIP model 

is a well-known template for studying legged locomotion [40]. This model is based 
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on the ubiquitous center of mass trajectory that animals have during running. Both 

humans and birds can deviate from SLIP dynamics for very large disturbances; yet, 

numerous studies [101, 102, 92, 4, 43, 103, 104] have investigated human locomotion 

in response to terrain perturbations and found that humans follow SLIP like behavior 

for a range of disturbances. It should be noted that animals and actual spring-mass 

running robots have leg actuators in series with a spring (figure 7.2) to compensate 

for the energy loss due to friction and impacts. However, the mechanical energy 

generated/dissipated by the motor is low, and thus the system can be accounted 

as a passive conservative SLIP model. Because the model is passive during stance 

phase we do not need the leg motor in our simulation, but its existence can not be 

ignored. Therefore, we keep the leg motor locked (zero mechanical work) to have 

a conservative system (SLIP-like) and consider a criteria for the required electric 

energy. 

Leg 
Motor

k

m m

k

Figure 7.2: left: The model of the robot with the leg motor. The reason of the 
leg motor existence is to add energy into the system when some energy is lost due 
to impact or friction. Here, this motor is kept locked (zero mechanical energy) to 
provide the equivalent conservative SLIP model that is shown in the right. 

During flight phase of running the CoM describes a ballistic curve, determined 
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by the gravitational force. Therefore, the only leg parameters that can be controlled 

during the flight phase are the landing conditions for the upcoming stance phase. The 

transition from flight to stance occurs when the landing condition y = L0 sin(θTD ) 

is fulfilled. During stance phase the equation of motion for a passive SLIP model is 

given by 

L
mr̈ = k 0 − 1 r − mg,

Leg r 

with r = (x, y)T being the position of the point mass with respect to the foot 

point, r its absolute value and g = (0, g)T the gravitational acceleration, with g = 

9.81 m/s2 . Take off occurs when the spring deflection returns to zero. The system is 

energetically conservative and due to the massless leg there are no impact or friction 

losses in the system. 

The model was implemented in Matlab (R2012a, Mathworks Inc., Natick, MA, 

USA). To accomplish the simulations, following properties for the robot (table 7.1) 

were assumed. 

Table 7.1: Properties of the spring-mass robot 
Parameter Description Value 

m robot mass 38.0kg 
kleg leg spring stiffness 3900 N 

m 
v0x initial horizontal velocity 3.5 m 

s 
h0 initial CoM height 57cm 
δgnd ground disturbance −10cm 
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7.3.2 Proposed control Strategies 

Inspired by the running behavior of birds mentioned in section 7.2, we propose three 

swing leg control policies. We focus on flight phase control policies because, con

trary to stance control, we can theoretically do no work and still control the gait. 

Therefore, the controllers are economically efficient. Leg angle during flight is the 

only parameter that is changed in all three proposed control policies. Each policy 

controls the trajectory of the leg angle as a function of time θ(t) (or vertical velocity) 

such that its objective function is regulated in the upcoming passive stance phase. 

The objective function for each policy is i) the leg peak force, ii) the axial impulse, or 

iii) the leg actuator electric work. Therefore, each control policy adjusts the leg angle 

during flight at each instant to keep its objective function the same as in the previous 

step. When there is no ground height disturbance (level running), all control policies 

result in equilibrium gait. 

We assume that our model has no information about the location and the size 

of the drop perturbation, and the leg angle is adjusted continuously starting at the 

instant of the expected touch down in anticipation of ground contact. Therefore, on 

flat ground, equilibrium gait is obtained. In the presence of a drop, however, the 

leg angle is adjusted at each instant such that the objective function is regulated in 

the subsequent stance phase. It should be noted that no control is applied during 

stance, which is purely passive. 



141 

7.3.2.1 Constant peak force policy 

The first proposed control strategy is to regulate the peak force during running. The 

constant leg peak force control policy adjusts the leg angle during flight such that the 

resulting leg peak force during stance of any drop step remains the same as for level 

running. This control policy allows for running robots to operate at their maximum 

capacity on even terrain and relinquishes the need to reserve some of the mechanical 

capacity, motor torque and structural strength for the drop step, and hence yields 

to lighter and more efficient robots. Experimental data show that running birds 

maintain nearly constant peak forces during running and in the presence of a drop 

([3]). It should be noted that the controller does not need any information about 

the size and location of the drop (minimal sensing), since the leg angle is adjusted 

continuously during the flight phase such that the leg peak force gets regulated. 

In the presence of a drop, the leg angle retracts towards the ground. Contrary 

to equilibrium gait policy, as indicated in appendix 7.7, constant peak force policy 

always retracts the leg to fulfill its objective function. This behavior helps to reach 

the ground sooner and hence prevents the vertical velocity from increasing further. 

The reason that the leg is retracted before hitting the ground in this control policy 

is as follows: As the robot falls, the vertical velocity of the CoM increases and 

consequently the velocity vector rotates towards the leg. To avoid an increase of the 

peak force, the angle between the velocity vector and the leg direction needs to be 

increased. To increase this angle, the leg has to be retracted even faster than the 

rotation of the velocity vector towards the leg. 
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7.3.2.2 Constant axial impulse policy 

The axial impulse is another objective function that we propose to be regulated 

during running. We chose the axial impulse, because this function considers both 

leg force and leg work at the same time (our two goals), maintains consistent energy 

storage in the spring, and is also able to reproduce the observed animal behavior. 

The constant leg impulse control policy provides the same axial impulse for the drop 

step as during level running by adjusting the leg angle during flight. This control 

policy - like the constant peak force control policy - retracts the leg at the presence 

of a drop perturbation, regulating the axial impulse to be the same as during level 

running. 

The mathematical formula for the axial impulse is: 

ts 

I = F dt, 
0 

where, F is the force in leg direction and ts the stance time. 

7.3.2.3 Constant leg work policy 

Our third proposed control policy, constant leg work policy, directly targets the 

efficiency of the system. The motivation for this objective function comes from 

observation from animals running on natural environment and still they are very 

efficient. 

It should be noted that the connection of muscles and tendons in animals is similar 
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to the connection of a motor in series with a leg spring for running robots. Although 

the whole system remains energetically conservative and the generated/dissipated 

mechanical work is zero, the leg actuator requires electric energy to hold a fixed 

position. 

To regulate the electric work for this control policy in the drop step, the leg angle 

is adjusted such that the electric energy of the leg actuator is the same as for level 

running. The consumed electric energy to keep the motor locked during the stance 

phase is the integral of the power over time 

ts 

EW = �P� dt 
0 

Since the power in the electric motors is equal to P = V I, and V = R ·· 

I, by considering the relation between the torque and current in electric motors, 

the required electric energy can be obtained. It should be noted that from the 

robotics point of view, when negative mechanical work is generated, it should be 

treated differently because of the energy loss in the system. Since in this study 

the leg motor is kept locked during the stance phase, no negative work is produced. 

Therefore the consumed electrical energy is proportional to the integral of the torque 

squared over stance time. We use this integral as the criteria for the actuator electric 

work. The mathematical formula for this criteria is defined as the following function 

which has been used as the cost function for optimization problems in other studies 

[105, 106, 107]: 

ts 

W = F 2 dt 
0 
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Here, W is the work criteria that is proportional to the consumed electric energy 

to keep the leg motor locked. The leg force is shown by F and the stance time 

is ts. This control policy that regulated the actuator electric energy- like the two 

previous control policies - retracts the leg in the presence of a drop to keep the leg 

actuator work constant and consequently, like before, the leg reaches the ground 

sooner because of the steeper leg angle at the time of the touch-down. It should be 

noted that the required energy for the swing leg is not significant because the SLIP 

model has a massless leg (and hence the robots that are designed based on this model 

have very light legs and the motors to move these light legs have small inertias), and 

consequently no force and energy are needed for the leg rotation (or very small for 

real world robots). 

7.4 Results 

In this section we investigate, in simulation, the success of the control policies in the 

presence of a hidden drop step, and then compare the three proposed control policies 

against the equilibrium gait policy (see Appendix) and against each other. Since the 

system follows its passive dynamics during stance, the difference in the behavior of 

the system for each policy comes only from the different touch-down angles. 

As figure 7.3 shows, the overall shape of the CoM trajectories during the drop 

step are very similar for the three proposed control policies and clearly different from 

the equilibrium gait policy. In this figure the CoM trajectories of the step before 

the drop and the drop step itself are shown. Because the robot does not have any 
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information about the disturbed step, the step before the drop is the identical to 

level running. All three control policies could successfully pass the drop step, and 

the robot did not fall. The constant force control policy causes the model to touch 

the ground slightly sooner than the other two policies, and hence results in a a lower 

CoM height and less vertical velocity. 

The CoM trajectories in figure 7.3 imply that the robot accelerates horizontally 

in the drop step for all three of the proposed control policies, while for equilibrium 

gait policy the robot maintains the same forward speed as before. It should be noted 

that, although part of the potential energy of the system is redirected into horizontal 

kinetic energy, since the velocity contributes quadratically to kinetic energy, the 

resulting horizontal velocity after take-off does not increase drastically.. 

The leg force profiles are shown in figure 7.4. The leg peak force in the drop step 

for equilibrium gait policy increases by 45% compared to level running, while for the 

proposed control policies it remains nearly constant. For both constant impulse and 

constant work policy, the leg peak force increases slightly. 

The axial impulse decreases slightly in the drop step for both constant peak force 

and constant actuator work policy (figure 7.5), but increases by 60% for equilibrium 

gait policy. 

Figure 7.6 compares the efficiency of the control polices based on required electric 

energy. The constant axial impulse policy requires 7% more electric work for the drop 

step than during level running, while the constant peak force policy needs the least 

electric energy in the drop step (about 5% less than during level running). Whereas 

the proposed control policies require nearly the same amount of electric energy in 
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Figure 7.3: CoM trajectories of the robot subjected to the three proposed control 
policies and equilibrium gait control policy. For the proposed control policies the 
height of the CoM is lower at take-off respect to touch-down and equilibrium which 
implies that the system would have higher forward speed at take-off. This is the 
same behavior that we observe from animals. 
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Figure 7.4: Axial force profiles for the three proposed control policies and the equi
librium gait control policy and undisturbed situation. The peak force in equilibrium 
gait control policy increases about %45 respect to the undisturbed peak force. The 
beginning of the force profiles show that the equilibrium gait policy reaches the 
ground the last. 

the drop step as during level running, the required electric energy for the equilibrium 

gait policy in the drop step is more than 200% of what is required for level running. 

Figure 7.7 shows that the general behavior of the system with the proposed 

control policies is consistent for different leg stiffness and drop heights. The system 

can recover from higher drop heights when the leg stiffness is greater, which means 

the robustness of the system increases for these control policies with increasing the 



147 

0

50

100

150

200

A
xi

al
 Im

pu
ls

e 
(N

.s
)

Drop gait

Eq. gait policy
Constant Force
Constant Impulse
Constant Work

Level running

Figure 7.5: Axial impulse in the leg during the stance phase for level ground and 
drop step. The axial impulse for drop step with equilibrium gait control policy is 
much higher than the level running. For the constant peak force and constant work 
policies, the axial impulse in drop step decreases a little bit respect to the level 
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Figure 7.6: Actuator electric work criteria to keep the motor locked during the stance 
phase. The required work for drop step with equilibrium gait control policy is much 
higher than the level running (more than 2 times), but the required electric work 
with constant peak force control policy is nearly the same as level running. 

leg stiffness. For the peak force control policy, as an example, the CoM trajectory 

trends of the system for different drop heights are shown in figure 7.8. 

A comparison of the touch-down angles for each control policy is shown in figure 

7.9. This figure qualitatively illustrates how the control policies choose leg angles 

through a range of vertical velocities. In this figure the proposed control policies are 

depicted in the peak force, impulse and leg work contour lines. Moving along each 
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Figure 7.7: The effect of the leg stiffness and drop height on the behavior of the 
system with the proposed control policies. The behavior of the system is consistent 
for different leg stiffness and drop heights. 
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Figure 7.8: CoM trajectory trend of the system with different drop heights. In 
animals running, the same behavior for the CoM trajectory is observed [3] 

contour line means following the corresponding control policy. During level running, 

all three proposed control policies and the equilibrium gait policy exhibit the same 

behavior, illustrated by the gray big circle in the figure. The small colored circles 
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show the touch down conditions of the robot following each of the control policies in 

the drop step. As the vertical velocity increases, the contour lines diverge from each 

other, which implies a more different behavior of the system for each control policy 

in larger drops. 
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Figure 7.9: Contour lines for leg peak force (red), axial impulse(blue) and leg actu
ator electric work(green). The big gray circle shows the level running touch down 
condition and the small colored circles show the touch down angle at the drop step 
following each of the control policies. Since the contour lines are close to linear re
spect to vertical velocity (or time), a constant angular rate for the leg retraction 
would be a good approximation for the policies. 

The shapes of the contour lines in figure 7.9 are nearly linear for small changes in 

vertical velocity. To study the shape of the contour lines further, we focus on only on 

the peak force contour lines, shown in figure 7.10. This figure shows the desired leg 

angle trajectory, which is a peak force contour line, and two fits (linear and quadratic 

function) for the desired leg angle trajectory. The linear fit of the desired leg angle 

trajectory drifts along the desired curve, and this drift gets smaller with increasing 
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forward speed. The quadratic function, however, is an excellent fit for the leg angle 

trajectory. 
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Figure 7.10: Desired and fit functions for the leg angle trajectory subjected to the 
constant peak force policy. The blue dashed lines are the desired leg angle trajectory 
and the green solid lines and red solid lines are linear and quadratic fit respectively. 
The constant angular acceleration fits the exact desired trajectory very well. As the 
forward speed increases, the constant retraction rate approaches the exact desired 
trajectory. The value for the retraction rate can be obtained from the slope of the 
contour lines. 

7.5 Discussion 

All three proposed control policies produce nearly identical leg angle trajectories, are 

clearly distinct from the equilibrium gait policy [98, 5], and successfully negotiate the 
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drop step while achieving their specific objectives. The policies were hypothesized 

based on their relation to pragmatic locomotion goals such as safety and energy effi

ciency. They are mathematically related, and as such might be expected to generate 

similar behaviors; however, the spring-mass model can be sensitive to small policy 

changes, so it was unclear how they would relate to one another and the equilib

rium gait when implemented. These results show that a single policy achieves both 

pragmatic locomotion goals of safety and efficiency at the same time. 

Results show that the actuators require much more electrical energy in the drop 

step to maintain equilibrium gait than by using one of the proposed control policies. 

The 45% increase of the leg force may lead to serious structural damage to the 

leg, and even if the structure of the leg can sustain this new force, the motors and 

electronics may not be able to provide that much force and hence lead to falling. 

For the proposed control policies, on the other hand, the internal demands remain 

nearly the same as before. For example, the leg peak force increases only slightly 

(about 2 − 3%) for both constant impulse and constant work policy, and, of course, 

remains constant for the constant peak force policy. It should be noted that the 

electric energy that we consider here is to keep the leg motor locked and is due to 

the resistance of the electric motor. When there is need to do some mechanical work 

during the stance (which is not considered in this study), that work should be added 

to the resistance electric work. 

The asymmetric shapes of the CoM trajectories resulting from the proposed con

trol policies during the drop step imply that the robot accelerates horizontally in 

the drop step for all three proposed control policies. This is consistent with the 



152 

behavior that animals show in the drop step [3]. However, with the equilibrium gait 

policy, the robot maintains the same forward speed during running. The increase 

of the horizontal velocity in the drop step for the proposed control policies is due 

to the conversion of potential energy (of the drop height) into kinetic energy. Since 

the velocity contributes quadratically to the kinetic energy, the resulting horizontal 

velocity does not increase significantly, especially for high forward speeds. For exam

ple, if the initial forward speed is 5m/s, after redirecting the added potential energy 

from falling into a 20cm drop into horizontal velocity, the resultant forward speed 

will be 5.4m/s. This means the forward speed increases only by 8% after falling from 

20cm height. 

In this study, we focused on the mechanical and electrical limitations of the 

actuators that facilitate the control policies. Other preferred requirements like the 

next stride apex height and apex horizontal velocity are of second priority for the 

control policies and can be determined similar to the dead-beat control strategies 

[84, 98], or the Raibert controller [108]. 

Since the contour lines in the leg angle (θ) - fall time (t) plane (figure 7.9) are 

nearly linear, retracting the leg with a constant angular velocity, determined by the 

average slope of the contour lines, would be a simple implementation. The value 

for the leg retraction rate agrees with Karssen et al. [99]. Further investigation of 

the contour lines reveals that leg retraction with a constant angular acceleration is a 

more accurate fit for the swing leg trajectory, but for high forward speeds (> 6m/s), 

the angular leg trajectory with constant angular velocity is close enough. To cover 

all speeds, however, the constant angular acceleration fit is the better choice. 
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The proposed control policies lead to retraction of the leg before the touch-down. 

This behavior is in general in agreement with the behavior of the ground speed match

ing control technique [97, 44] that requires the velocity of the toe perpendicular to 

the leg length remains zero at the time of touch-down. In figure 7.11 the comparison 

of the touch-down angle between the ground speed matching and the constant peak 

force control policy proposed in this study is presented. Since the ground speed 

matching policy determines the angular velocity of the leg ( θ̇) at each time, to find 

the leg angle trajectory (θ(t)) in this control policy, θ̇ should be integrated and hence 

a reference point is needed. It is assumed that the reference point for ground speed 

matching control policy corresponds to level ground running (equilibrium gait) which 

in this figure has falling time equal to t = 0.1s. As can be seen in figure 7.11, both 

policies require leg retraction for the swing leg, meaning that the constant peak force 

policy also helps in reducing the effect of the impact perpendicular to the leg length. 

Moreover, for the forward speed equal to Vx = 3.5 m , the angular velocity of the con
s 

stant peak force policy and the ground speed matching strategy are nearly the same 

which suggesting that implementing the constant peak force control policy matches 

the ground speed matching strategy for small ground drop steps, but as the forward 

velocity increases, the constant peak force policy deviates from the ground speed 

matching. 

The objective functions that we chose for the policies are of great technical impor

tance from a roboticist’s point of view. We tried to find an exact map that regulates 

our objective functions, but surprisingly the map function happened to be simply 

a constant leg angular acceleration. For short flight times (falling from small drop 
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Figure 7.11: The comparison of the touch-down angle between the ground speed 
matching control policy and the constant peak force control policy. The discrepancy 
between the touch-down angles increase with falling time as the horizontal velocity 
of the system increases. 

heights), constant leg angular velocity is a good approximation for this map. The 

outcomes agree with what Karssen et al. [99] found for the optimal swing leg retrac

tion rate when the peak force is considered as the objective function. But contrary 

to their work, we did not limit our policy to a constant leg retraction rate. 

The difference between the proposed control policies and the equilibrium gait 

policy increases as the forward speed increases. To provide steady state running for 

high forward speeds, using an equilibrium gait controller, the leg should protract 

in the falling half of the flight phase (see Appendix), but for all three proposed 

control policies the leg is retracted to reach the ground. The leg protraction in 



155 

the equilibrium gait policy postpones the instant of touch-down and consequently 

increases the difference of the proposed control policies and the equilibrium gait 

policy. Karssen et al. [99] also reported that the difference between optimal swing 

leg retraction rate for disturbance rejection and other objective functions (including 

the leg peak force) increases with increasing forward speed. 

The desired leg angle trajectory for each of the proposed control policies is dif

ferent with the two-phase constant leg retraction rate in the clock-driven model that 

was proposed for robots like RHex [61] [62] [109]. In each of our proposed con

trol policies, as well as in the clock-driven model, after the time of the expected 

touch-down, the leg trajectory follows a different trajectory function. However, in 

the policies proposed here, instead of a constant retraction rate, a constant angular 

acceleration is applied to the leg. More importantly, contrary to the clock-driven 

method, the leg control stops at the beginning of stance phase (the three proposed 

control policies are purely passive in stance phase). The clock-driven method is a 

simple bio-inspired technique, but it does not consider the structural or electrical 

capacity of the leg, and may therefore lead to failure during stance. 

By using a new type of return map, the proposed control policies and their 

limitations can be depicted visually. In this new type of return map, contrary to 

return maps with constant mechanical energy [4, 5] (figure 7.12-a), the horizontal 

velocity is kept constant (figure 7.12-b). In a return map with constant energy, any 

change in the ground level alters the energy of the system and therefore, flight phase 

control policies with varying ground level can not be depicted on the map (figure 

7.12-a). In the return map that we use here, instead of the mechanical energy, the 
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horizontal velocity is kept constant (figure 7.12-b). The key difference of these two 

return maps is: the axes in the return map with constant mechanical energy represent 

the apex heights relative to the original ground level, but in the return map with 

constant forward speed, the two axes are the apex heights relative to the upcoming 

stance phase ground level. In figure (7.12-b), yi represents the apex height relative to 

the upcoming stance phase. Therefore, any change in ground height is interpreted as 

the change in yi (for example, if there is a 10cm drop step, the apex height increases 

by 10cm). The vertical axis of this graph (yi+1) is the apex height relative to the 

upcoming stance ground level. 
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Figure 7.12: Return map with constant mechanical energy ([4, 5]) (a) and return 
map with constant horizontal velocity (b). There are two sets of contour lines: leg 
angle (θ) contour lines [Degree] are in blue and axial peak force contour lines [N] are 
in red. 

When the constant peak force control policy is implemented, the leg angle is 

adjusted such that its return map is parallel to the axial peak force contour lines. 
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Using the constant forward speed for this map allows us to interpret the change of the 

ground level as a change in the apex height. Therefore, contrary to the conventional 

return map [4, 5], we do not need to change the graph. For example, if the apex 

height for steady state running is 57cm then the peak force would be 1000N . Now, 

we assume the drop height is 10cm; therefore, the apex height including the drop 

step would be 67cm. To follow the constant peak force policy, the leg angle should 

be set to θ = 121◦ at the moment of touch-down, and the passive dynamics of 

the system will result in the same axial peak force as before (1000N ). It should 

be noted that there is no need to know the ground level in advance, since the leg 

angle is continuously being updated expecting to reach the ground any moment. To 

achieve steady state running (equilibrium gait), the controller should follow the 45◦ 

line, which requires the touch down angle to be about θ = 129◦. Consequently, the 

peak force in the leg increases to about 1350N (35% increase). We also notice that 

although the constant peak force policy prevents the peak force from increasing, it 

has a limit for the maximum drop height that can be handled by this control policy. 

For example, to keep the peak force equal to 1000N , the maximum drop height is 

10cm (the end of the 1000N contour line). This implies that for deeper drops, the 

peak force has to increase to prevent the robot from falling or additional control 

inputs are required, such as a change in leg length. 

Because of the negative slope of the force contour lines in the return map, the 

next apex height decreases with increasing drop height. This implies that the system 

gains horizontal velocity due to the transformation of potential energy into kinetic 

energy. This behavior is confirmed by simulations and can also be observed in animal 
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experiments [3]. We know that for a successful running gait, the subsequent apex 

height is an important factor that also needs to be considered. The subsequent apex 

height after the drop step should be greater than a predefined threshold, and the 

flight phase should be long enough to allow the leg to be placed on the ground for the 

next stride. Therefore, based on the geometry of the leg, the negotiable drop height 

is limited by the controller. However, if the controller was allowed to change the 

leg length of the subsequent step, another option would be to continue running with 

a shorter leg length. For all these cases, the return map with constant horizontal 

velocity visualizes the limitations and can help designing an appropriate scenario for 

the control policy. 

The findings of the return map that we presented for constant peak force policy, 

can be easily extended to axial impulse or leg work. In these cases, only the peak 

force contour lines in figure 7.12 would change to the impulse or leg work contour 

lines in the range of 175N.S to 300N.S, and 135000N 2.S to 350000N 2.S, respectively. 

The overall shape of the impulse/leg work contour lines are similar to the peak force 

contour lines in figure 7.12. 

It should be remembered that all three proposed control policies adjust the leg 

angle during flight, and the system is assumed to be conservative. Therefore, to 

continue running on ground with a permanent drop step, the robot should dissipate 

the gained kinetic energy. In this case, a stance phase control would be required to 

bring the robot back to the preferred forward speed, or the robot would continue 

with a higher horizontal velocity. A simple and bio-inspired stance phase technique 

that was proposed by Schmitt et al. [54] and investigated more by [88] and [56] could 
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be used to dissipate the gained energy. Since the energy that requires dissipation 

is only that due to the drop perturbation, the cost of dissipating this energy in 

subsequent steps is the same across all control policies compared. If the energy 

were dissipated within the perturbed step, this could lead to different energetics 

for different policies that require energy dissipation while meeting other mechanical 

objectives. The equilibrium gait policy requires high force, and the proposed control 

policies have relatively short stance periods, and these factors could influence the cost 

of dissipation depending on motor/muscle characteristics. By allowing the energy 

dissipation to occur in subsequent steps following the perturbation, the energy can 

be dissipated in the energetically optimal period of stance. 

The simulations and the results presented in this work are designed for unexpected 

step-down disturbances in the ground level. For the case of step-up disturbances, 

since the touch-down occurs early, the vertical velocity of the CoM has not reachined 

its prior peak values, therefore an equilibrium gait can be obtained with lower values 

for the leg force or work (in section 7.5.1 it is explained more on the return map as 

well). The height of the step-up disturbance that can be handled depends on the 

length of the leg. To increase the control authority in handling the step-up distur

bances (running over larger step-up disturbances), other scenarios (like shortening 

the leg length during the flight phase) can be used that are not in the scope of this 

study. As an example, during the first half of the flight phase (CoM going upward) 

the leg can be getting shortened (to provide enough space for the possible obstacles) 

and during the second half of the flight phase, as the leg length is being increased to 

its nominal length, the leg angle is adjusted accordingly to provide an equilibrium 
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gait at the moment of contact with the leg length at that moment. 

7.5.1 Stability analysis of the proposed control policies 

In this section, we investigate the stability of the proposed control policies and com

pare them with the stability of the equilibrium gait policy. To give this comparison, 

we use the return map with constant energy level (figure 7.12) in more details for 

each case. More information about the return map with constant energy was pre

sented earlier and can be found in [4, 42, 5]. For the conservative SLIP model, since 

the energy level is constant, the only variable of the system would be the apex height 

at each stride. Therefore, the perturbations in stability analysis are applied to the 

apex height while the whole energy of the system is kept constant. For more details 

about the stability analysis of the SLIP model running refer to [4, 43, 5, 41]. 

We first start with investigating the stability of the equilibrium gait policy. Figure 

7.13 shows how the perturbation in the apex height changes the location of the states 

on the return map. The equilibrium gait policy controls the states to move along the 

45 degree line to always have a symmetric trajectory. For example, if the level ground 

running is shown by point A in figure 7.13, after the perturbation, the system would 

be on state B along the 45 degree line. Since this policy always keeps the states on the 

45 degree line, the next state has the same apex height as the perturbed state which 

implies neutral stability. Figure 7.14 shows the CoM trajectory of the perturbed and 

unperturbed systems with this control policy. Because of the neutral stability of the 

equilibrium gait policy, the perturbations do not vanish and the system continues 
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running in the new symmetric trajectory.
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Figure 7.15 shows the stability of the proposed control policies (constant peak 

force policy for example). Like before, we assume the system is running on the level 
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ground at state A. After the perturbation, the apex height goes to state B1 which 

has the same leg peak force (it moves along the peak force contour lines). For the 

next step, the system goes to state B2 to keep the leg peak force constant and then 

returns back to state B1 and so on. The CoM trajectory of the system in this case 

is shown in figure 7.16. In this case, the CoM trajectory is periodic in two steps 

instead of one step in equilibrium gait policy and like equilibrium gait policy it has 

neutral stability. 
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Figure 7.15: The return map for constant peak force policy. After the perturbation, 
the system oscillates between states B1 and B2. 

Due to the negative slope of the leg peak force contour lines, the next apex 

height after the drop step is lower than the drop step apex height. It implies that 

after the drop step the system can continue in a new equilibrium gait with a lower 

leg peak force, impulse and leg work. The return map in this case is shown in figure 

7.17. After the perturbation, the system goes from state A (ground level running) to 
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state B1 along the contour lines to retain the leg peak force. For the next step, the 

system can converge to state B (on the 45 degree line) which is an equilibrium state 

with lower leg peak force. The CoM trajectory of the system in this case is more 

compatible with the animals data encountering drop step perturbation. The CoM 

trajectory of the system under drop step-like perturbation (increased apex height) is 

shown in figure 7.18. 

When the perturbation is like a step-up obstacle, the perturbed apex height is 

smaller than the level running, thus the peak leg forces are lower, and the resulting 

new equilibrium gait will satisfy peak force limits. 

In summary, the proposed control policies, like equilibrium gait policy, converge 

to new CoM trajectory after the disturbance. When they are used with equilibrium 

gait policy for after the drop step, the system will continue with a new symmetric 

CoM trajectory. Assuming the robot keeps the gained energy level, the robot will 

continue running with a higher forward speed. 
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7.6 Conclusion and future work 

Three flight phase control policies inspired by animal data, but suitable for ma

chines, were proposed and implemented to the model of a spring-mass running 
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robot. The control policies regulate their objective functions that target the me-

chanical/amperage limitation and electrical efficiency of the system. By using either 

of these bio-inspired control policies, the safety and efficiency of the robot during 

running is guaranteed, while their implementation is very easy with minimal sensing 

requirements. 

All three proposed control policies (constant peak force, constant axial impulse 

and constant leg actuator electric work) successfully negotiated the drop step, and 

surprisingly resulted in similar behavior of the spring-mass robot. Therefore, by 

implementing either of these proposed control policies, both goals, damage avoidance 

and efficiency, would be satisfied. 

We showed that a simple leg angular acceleration during the flight phase keeps 

running safe (avoiding the damage) and efficient. If the drop height is less than 10% 

of the leg length, a constant leg angular velocity (constant leg retraction rate) would 

lead to similar results. The value of the leg retraction rate (leg angular velocity) can 

be derived from the slopes of the leg peak force contour lines in the leg angle-falling 

time plane. It should be noted that implementing these policies is very easy because 

the constant angular acceleration for the leg can be provided by constant motor 

¨ torque (T = θ) and since the relation between the motor torque and current is I · 

linear, therefore providing a constant current places the toe at the right location at 

each instant. 

For future work we plan to implement these policies on our robot ATRIAS. We 

found that the amperage limitation is a big concern for electrically actuated spring-

mass robots like ATRIAS, and therefore, we will start with the constant leg peak 
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force policy. 

7.7 Appendix: Equilibrium gait policy 

The equilibrium gait policy ensures that the robot has symmetric CoM trajectories 

during stance with respect to the vertical axis defined by mid-stance (i.e. touch 

down and take off conditions are symmetrical). To result in symmetric gait for high 

forward speeds in the presence of a drop, the leg should protract as the CoM falls in 

the drop (figure 7.19). This protraction opens more room between the toe and the 

ground, and consequently leads to higher vertical velocity at the time of touch down. 

Figure 7.19 shows the leg angle trajectory with respect to falling time for different 

forward speeds that results in equilibrium gait. For low horizontal velocities, the leg 

angle function is monotonically decreasing, meaning that the leg should be retracted 

after apex. For high forward speeds (here vx > 3) the robot should protract the leg in 

the beginning, and then (after gaining some downward velocity, and if it did not yet 

touch the ground) should start retracting the leg to provide the appropriate leg angle 

for equilibrium gait. For human-scale spring-mass running robots, high downward 

velocity (here more than about 2 m/s, which corresponds to a drop height of about 

30% leg length) is not common to be rejected blindly. Therefore, for small to medium 

drops, the leg would have monotonic behavior. This is interpreted as retraction for 

low forward speeds, and protraction for high forward speeds as the robot falls. 

Karssen et al. [99] also concluded that for high horizontal velocities, the trade-off 

between disturbance rejection, energy loss, and foot slipping increases. On the one 
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hand side, the leg should be protracted the reject disturbances, but on the other hand, 

the leg should be retracted to reduce impacts and prevent foot slipping. Moreover, 

as the robot falls, the protraction increases the distance between the toe and the 

ground and postpones the contact moment, meantime the vertical velocity increases, 

and consequently the leg peak force and axial impulse increase even more. 
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Chapter 8 – Conclusion 

In this thesis, after analyzing the dynamics of the spring-mass model for walking, six 

control policies have been proposed to stabilize the spring-mass walking robots and 

one flight phase control strategy has been proposed for spring-mass running robots. 

The proposed control policies were derived from template, if possible, they were 

confirmed through anchor and finally stabilized the real robot. The emphasis on 

the control policies are on the passive dynamics of the system. Stability, robustness, 

efficiency and damage avoidance are the main goals for the control policies to fulfill. 

The following general conclusions can be obtained from this research: 

•	 The various types of the equilibrium gaits for walking are like a continuum and 

can continuously transform to each other. 

•	 Even though deadbeat control policy mathematically exists for spring-mass 

walking model, the sensitivity of that makes it impractical for real robots. 

Therefore, before moving on to implement the policy on the full order model, 

the sensitivity analysis at the level of reduced order model should be checked. 

•	 The idea of self-stability was expanded for spring-mass walking model. Instead 

of touch-down angle, other possible parameters were targeted and showed that 

they can stabilize the gait very robustly with low sensitivity to the errors and 

noises. 
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•	 For the control policies that come from template, self-stability characteristic 

helps the system against the errors due to the difference between the template 

and the anchor. 

•	 Inspired by feed-forward control policy for running [54], the idea of having 

stance phase as a feed-forward function to add and remove energy for walking 

was successfully shown on template and worked well on anchor. 

•	 Inspired from animals’ running pattern, it was shown that retaining steady 

state running is clearly not what animals do during running. Instead, other 

meaningful objective functions like avoiding damage and/or efficiency seem to 

be the answer. Surprisingly, both damage avoidance and energy efficiency can 

be fulfilled with simple implementation strategy (constant angular acceleration 

for swing leg). 

In more detail, the conclusions for each chapter are as follows: In chapter 3, the 

dynamics of the bipedal spring-mass model was analyzed for walking and the touch

down angle of the swing leg was assumed as the only control input to the system. 

Three regions in the state space were found: i) the states that can start successful 

walking gaits, ii) the states that can be reached at the end of walking gaits and iii) 

the intersection of the two previous sets which is called workspace of the system. The 

equilibrium points in a constant energy level were found and the relation between 

them can be visualized by projecting them on the workspace of the system. It was 

found that the equilibrium gaits are like a continuum evolving as the height of the 

CoM changes at the Poincare section. The following conclusions can be obtained 
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from the analysis of this chapter: 

•	 The dimension of the workspace in y direction is about 2Δs where Δs = mg is
k 

the static deflection of the spring under the weight of the system. 

•	 The velocity of the system at the Poincare section is maximized for the mid

dle of the workspace where the deflection of the spring is equal to the static 

deflection (Δs). 

•	 The symmetric equilibrium gaits are continuously changing on the ψ = 0 axis 

and forming different types of symmetric equilibrium points. 

•	 Asymmetric equilibrium points are branched from the symmetric axis ψ = 0. 

•	 Each equilibrium point can correspond to one or more touch-down angles, but 

even though two touch-down angles can repeat one equilibrium point at the 

Poincare section, the gait history is different and only the states at the Poincare 

section is the same. 

•	 By changing the height of the CoM at the Poincare section, the type of the 

equilibrium point varies. Bouncier gaits correspond to large height at the right 

of the workspace and as the height at the Poincare section decreases to static 

deflection (Δs), the trajectory of the CoM becomes flat during the gait and the 

grounded running gaits are obtained. 

In chapter 4, a deadbeat control strategy for the bipedal spring-mass model was 

presented. Since the system has one control input (touch-down angle of the swing 
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leg) and two outputs (height of the CoM and the orientation of the velocity vector), 

any arbitrary state can not be achieved in one step. The deadbeat control policy 

in this chapter shows that two steps are necessary and sufficient to guarantee the 

stability of an equilibrium point with this control policy. The applicability problem 

of this strategy for real robots is the sensitivity of the system to the touch-down 

angles. Since the deadbeat control policy requires the system to go to a transition 

state before settling down to the desired state, and because of the sensitivity of the 

behavior to the touch-down angle, the system can not converge to the desired state 

because it can not be exactly at the right transition state. The following conclusions 

can be gained from this chapter as well: 

•	 Two steps are necessary and sufficient for deadbeat control of the bipedal 

spring-mass model. 

•	 The basins of attraction are different for different equilibrium points. 

•	 The deadbeat control policy sometimes is very sensitive to the touch-down 

angle and this sensitivity makes the transition to the desired state practically 

very difficult and unlikely. 

In chapter 5, four new control policies for the swing leg of the bipedal spring-mass 

model were proposed and compared with current strategies. The stability analysis 

of the control policies showed the stability of the proposed policies. The basins of 

attraction showed that the control policies are highly robust against external per

turbations. The applicability of the proposed control policies was shown by imple

menting one of them on the full order model of the robot as well as our spring-mass 
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robot ATRIAS itself which the control policy could successfully stabilize the robot 

for walking. Following conclusions can be obtained from the outcome of this chapter: 

•	 All four proposed swing leg control policies i) regulating the touch-down time, 

ii) regulating the stance leg angle, iii) regulating the CoM horizontal displace

ment and iv) regulating the step length, outperform the current constant angle 

of attack control policy and the constant aperture angle control policy that 

exist for the bipedal spring-mass model. 

•	 State-based control policies stabilize more gaits than time-based control policy. 

•	 The constant stance leg angle and the constant CoM horizontal displacement 

are similar in stability and behavior. They also show the best performance for 

the stability and robustness. 

•	 Both the constant aperture angle control policy and the constant step length 

policy have marginal stability. The constant step length policy can provide 

larger basin of attraction for the system compared to the constant aperture 

angle control policy. 

•	 The implementation on the real platform (ATRIAS) confirmed that the proof 

of concept for the proposed switching policies, is valid on the robot and stabilize 

the gait. 

In chapter 6, a time based feed-forward function was assumed for the stance 

phase of the bipedal spring-mass model combined with the time-based swing leg 

control strategy. The feed-forward function varies the zero force leg length of the 
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system during the stance phase and therefore changes the energy in the system. The 

analysis was performed on the system with and without physical damping in parallel 

to the spring. The implementation of the feed-forward control strategy on the full 

order model of the robot showed that this policy can stabilize the full order model 

with the expected behavior. Following conclusions can be obtained from the results 

of this chapter: 

•	 The behavior of the systems with damping is faster to converge to the limit 

cycles than undamped spring-mass systems. 

•	 The bipedal spring-mass model with damping converges to asymmetric equi

librium gaits. 

•	 Both symmetric and asymmetric equilibrium gaits can be achieved for the 

bipedal spring-mass model without damping. 

•	 Simulation on the full order model showed the validity of the concept for sta

bility and robustness on the model with full details and in the presence of 

significant noise. 

In chapter 7 we considered the leg angle as the only control parameter during the 

flight phase to control spring-mass running robots. In the proposed control policies 

we investigated in this chapter, the leg peak force, axial impulse and leg actuator 

work during stance phase were considered as the objective functions to be regulated 

by adjusting the leg angle during the flight phase. We found out that by regulating 

any of these three objective functions, both goals of damage avoidance and energy 
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efficiency would be fulfilled at once. Results showed that implementing these policies 

in real robots are as easy as implementing a constant angular acceleration for the 

leg retraction during the flight phase. Furthermore, we proposed a new graph that 

depicts the behavior of the flight phase control policies in the presence of ground 

level changes. By the help of this graph, the limitations of the flight phase control 

policies (like the maximum drop height that can be rejected to have a successful 

stance phase) can be found. The general conclusions for this chapter are: 

•	 Considering damage avoidance and/or energy efficiency as the primary goals 

during running is crucial for economically designed running robots and leads 

to the same behavior that is observed from animals’ running. 

•	 When regulating any of the three proposed objective functions (peak force, ax

ial impulse or leg actuator work) during running, both goals of damage avoid

ance and energy efficiency are fulfilled at once. 

•	 Implementing a constant leg angular acceleration is enough to regulate either of 

the proposed objective functions (leg peak force, axial impulse or leg actuator 

work). 

•	 The control policies are feed-forward and there is no need for any external 

sensing. 

•	 By implementing a very simple constant angular acceleration trajectory for the 

swing leg, both goals of safety and efficiency are fulfilled. 

By the results of this work, roboticists have a better understanding of the behavior 

of the spring-mass walking and running robots to achieve stable, robust and safe 
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locomotion. It was found that even though deadbeat control is possible for walking 

in two steps, but the applicability of deadbeat control is questionable due to the 

sensitivity of that to touch-down angle errors. By the new proposed control strategies 

in this study for swing leg, stable and robust walking for spring-mass robots are 

possible with large basins of attraction. For energy management, a simple feed-

forward strategy that was proposed in this work can be used to take care of the 

energy changes that the system experiences during walking on rough ground. For 

spring-mass running robots the focus of the proposed control policies is damage 

avoidance in uneven terrain which can be implemented by providing the constant 

angular acceleration for the swing leg trajectory. 
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