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7 [1] Current projections of the oceanic response to anthropogenic climate forcings are
8 uncertain. Two key sources of these uncertainties are (1) structural errors in current Earth
9 system models and (2) imperfect knowledge of model parameters. Ocean tracer
10 observations have the potential to reduce these uncertainties. Previous studies typically
11 consider each tracer separately, neglect potentially important statistical properties of the
12 system, or use methods that impose rather daunting computational demands. Here we
13 extend and improve upon a recently developed approach using horizontally averaged
14 vertical profiles of chlorofluorocarbon (CFC‐11), radiocarbon (D14C), and temperature (T)
15 observations to reduce model parametric and structural uncertainties. Our method
16 estimates a joint probability density function, which considers cross‐tracer correlations and
17 spatial autocorrelations of the errors. We illustrate this method by estimating two model
18 parameters related to the vertical diffusivity, the background vertical diffusivity, and the
19 upper Southern Oceanmixing.We show that enhancing the upper Southern Oceanmixing in
20 the model improves the representations of ocean tracers and improves the hindcasts of the
21 Atlantic Meridional Overturning Circulation (AMOC). The most probable value of the
22 background vertical diffusivity in the pelagic pycnocline is between 0.1 and 0.2 cm2 s−1.
23 According to the statistical method, observations of D14C reduce the uncertainty about the
24 background vertical diffusivity mostly followed by CFC‐11 and T. Using all three tracers
25 jointly reduces the model uncertainty by 40%, more than each tracer individually. Given
26 several important caveats, we illustrate how the reduced model parametric uncertainty
27 improves probabilistic projections of the AMOC.

28 Citation: Goes, M., N. M. Urban, R. Tonkonojenkov, M. Haran, A. Schmittner, and K. Keller (2010), What is the skill of ocean
29 tracers in reducing uncertainties about ocean diapycnal mixing and projections of the Atlantic Meridional Overturning
30 Circulation?, J. Geophys. Res., 115, XXXXXX, doi:10.1029/2010JC006407.

31 1. Introduction

32 [2] The North Atlantic Overturning Circulation (AMOC)
33 is a key component of the climate system [Munk and
34 Wunsch, 1998]. Past changes in the AMOC intensity are
35 associated with considerable changes in global scale tem-
36 perature and precipitation patterns [McManus et al., 2004].
37 Anthropogenic climate forcings may trigger an AMOC
38 threshold response, with potentially serious impacts on

39natural systems and human welfare [Patwardhan et al.,
402007; Keller et al., 2000]. Current AMOC model predic-
41tions are deeply uncertain [Zickfeld et al., 2007;Meehl et al.,
422007].
43[3] Tracer observations such as chlorofluorocarbon‐11
44(CFC‐11) and radiocarbon (D14C) provide information on
45the ventilation rate and advective properties in the ocean on
46time scales ranging from decadal to centennial that can be
47used for evaluating the skill of climate models in simulating
48the ocean circulation [Doney et al., 2004]. A better repre-
49sentation of these processes in models can possibly improve
50AMOC projections.
51[4] A key variable for determining ocean circulation
52properties in models is the vertical ocean diffusivity (Kv).
53Changing this value in model simulations has a large impact
54on oceanic heat storage and transport, uptake of ocean tra-
55cers such as CO2 [Sokolov et al., 1998], and on the work
56necessary to lift the abyssal waters through stratification
57(that closes the MOC circulation) [Wunsch and Ferrari,
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58 2004]. This variable is highly uncertain [Munk and Wunsch,
59 1998], and it is sometimes tuned in models to generate a
60 realistic AMOC strength [Gao et al., 2003]. In addition, this
61 parameter value affects the existence of multiple states of
62 the MOC in model simulations [Schmittner and Weaver,
63 2001].
64 [5] Various processes lead to mixing in the ocean such as
65 shear or buoyancy forced turbulence, interactions of flow
66 with topography, and double diffusion (differential molec-
67 ular diffusion of heat and salt). See Smyth and Moum [2001]
68 and Moum and Smyth [2001] for reviews. Although General
69 Circulation Models have been increasing their ability of
70 parameterizing subgrid scale turbulent processes in the
71 ocean [Bryan and Lewis, 1979; Pacanowski and Philander,
72 1981; Large et al., 2004; Ferrari et al., 2008], due to the
73 complexity of the problem and processes involved, most
74 schemes are still highly simplified and parameterized. In
75 Earth System Models of Intermediate Complexity (EMICs),
76 the absence of more complex parameterizations elevates the
77 importance of the parameters related to Kv in order to fulfill
78 the model necessity of turbulent mixing in simulating a
79 realistic AMOC strength.
80 [6] Several studies [e.g., England, 1993; Gao et al., 2003]
81 analyze the importance of the magnitude of the diffusivity
82 strength and parameterization on the MOC structure and
83 representations of tracers in ocean models. These studies are
84 typically silent on the question of how much information is
85 contained in the different types of observations. This is an
86 important question, for example, to inform the design of
87 AMOC observation and prediction systems [cf. Baehr et al.,
88 2008; Keller et al., 2007].
89 [7] Schmittner et al. [2009] discusses a relatively simple
90 but computationally efficient method to estimate the back-
91 ground ocean diffusivity Kbg from the combination of spa-
92 tially resolved ocean tracer observations considering both,
93 observational and model errors. However, Schmittner et al.
94 [2009] neglects the effects of cross correlation between
95 different tracers, which limits the number of tracers that can
96 be combined in a joined probability density function. In
97 another recent study,Bhat et al. [2009] estimates the posterior
98 probability distribution for Kbg using D14C and CFC‐11
99 observations. Their approach uses a Gaussian process
100 emulator for the climate model and estimates the distribution
101 of Kbg via a Bayesian approach. While their kernel mixing
102 based approach to constructing the emulator is flexible and
103 efficient, it is conceptually complex and computationally
104 highly demanding for routine use with more than two ocean
105 tracers.
106 [8] Here we estimate the probability density function
107 (pdf) of Kbg using three tracers simultaneously. Our
108 approach provides a fast and easy way to implement the
109 methodology, enabling the routine use of information from
110 several ocean tracers jointly, while still considering spatial
111 autocorrelation as well as cross correlation between residuals
112 of different tracers. We demonstrate how neglecting cross
113 correlation and/or simplifying the mean function can com-
114 promise the accuracy of the estimation. We improve the
115 treatment of uncertainties surrounding Kv in the model by
116 considering the structural uncertainty about the upper
117 Southern Ocean mixing (u_KSO). We show that an ensemble
118 with enhanced Southern Ocean mixing is more consistent
119 with the observations.

120[9] Furthermore, we advance on previous work by quan-
121tifying and ranking the skill of the tracers CFC‐11, D14C
122and temperature (T) to constrain the uncertainties in the
123model parameter Kbg. We demonstrate the potential utility
124of the considered observations to improve model predictions
125of the AMOC.

1262. Methods

1272.1. Earth System Model of Intermediate Complexity

128[10] We use the University of Victoria Earth SystemModel
129of Intermediate Complexity (UVic 2.8) [Weaver et al., 2001].
130This model has been widely used in climate simulations and
131models comparisons studies. In the UVic model, we param-
132eterize the diapycnal diffusivity as Kv = Ktidal + KSO + Kbg,
133which consists of the diffusivity due to local dissipation of
134tidal energy and its resulting generation of turbulence and
135mixing (Ktidal) [Simmons et al., 2004], a parameterization
136for the vigorous mixing (KSO) observed in the Southern
137Ocean [e.g., Naveira Garabato et al., 2004], plus a back-
138ground diffusivity Kbg that represents all other processes that
139lead to mixing, such as nonlocal dissipation of tidal energy,
140mesoscale eddy activity, double diffusion, hurricanes,
141interaction of flow with topography, and others.
142[11] The model accounts for increased mixing over rough
143topography based on the tidal mixing scheme of St. Laurent
144et al. [2002], and uses the [Gent and McWilliams, 1990]
145eddy mixing parameterization. It is likely that Kbg is spa-
146tially and temporally variable in nature [Sriver et al., 2010],
147but due to a lack of a more explicit representation of the
148processes and for simplicity we assume a constant value of
149Kbg everywhere. Note that Ktidal decays exponentially (with
150an e‐folding depth of 500 m above the seafloor) such that it
151is unimportant in the pelagic pycnocline (i.e., away from the
152boundaries). However, it is the value of Kbg in the pelagic
153pycnocline that is most important in determining the large‐
154scale ocean circulation in models [cf.,Marotzke, 1997;Munk
155and Wunsch, 1998]. For the Southern Ocean (south of 40S)
156parameterization, the vertical mixing is truncated at 1 cm2/s as
157a lower bound (Kv > 1 cm2/s). The Southern Ocean is one of
158the most tempestuous oceans on Earth, and these transient
159effects may produce strong turbulent mixing, specially in the
160upper Southern Ocean. In order to include uncertainties
161about the upper Southern Ocean mixing, we further divide
162the Southern Ocean mixing into upper (u_KSO) and lower
163(l_KSO) parts. Therefore, KSO = u_KSO + l_KSO, where
164u_KSO is the Southern Ocean mixing in the upper 500 m,
165and l_KSO is the Southern Ocean mixing from 500m to the
166bottom of the water column.
167[12] We create two ensembles to analyze the uncertainty
168in two model parameters, the background ocean diffusivity
169(Kbg) and the upper Southern Ocean diffusivity (u_KSO).
170Each ensemble contains seven members, corresponding to a
171grid of the parameter Kbg values of (0.05, 0.1, 0.15, 0.2, 0.3,
1720.4, and 0.5) cm2 s−1. The difference between the two
173ensembles is that in the first one (ENSEMBLE 1), the
174enhanced SO mixing is only applied in the lower part of the
175Southern Ocean, so in the upper SO the mixing is equal to the
176rest of the pelagic areas of the upper ocean (with indices
177u_KSO = 0, l_KSO = 1), whereas the second one (ENSEMBLE
1782) uses an enhanced mixing in the entire column of the
179Southern Ocean (with indices u_KSO = 1, l_KSO = 1). As we
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180 are not varying the parameter l_KSO, it is suppressed in the
181 rest of the manuscript.
182 [13] The ocean component in UVic is MOM2
183 [Pacanowski, 1995] with a 1.8° × 3.6° resolution in the
184 horizontal and 19 depth levels. The atmospheric component
185 is a one‐layer atmospheric energy‐moisture balance model,
186 which does not apply flux correction and is forced by pre-
187 scribed winds from the NCAR/NCEP climatology. Also
188 included in the model are a thermodynamic sea ice com-
189 ponent, a terrestrial vegetation (TRIFFID), and an oceanic
190 biogeochemistry based on the ecosystem model of
191 Schmittner et al. [2005].
192 [14] A total of 47,600 model years was preformed, what
193 makes UVic suitable for this kind of study. At first, the
194 model is spun up from observed data fields as initial con-
195 ditions for 3000 years (with a coupled carbon cycle for the
196 last 1000 years) for each parameter value. It is then inte-
197 grated from years 1800–2100 using historical and projected
198 climate forcings (SRES‐A1FI scenario), extended to the
199 year 2200 following [Zickfeld et al., 2008]. We modify the
200 model to include non‐CO2 greenhouse gases, volcanic and
201 sulfate forcings from Sato et al. [1993] and Hansen and
202 Sato [2004]. Atmospheric sulfates data enter the model as
203 gridded optical depth [Koch et al., 1999], and follow the
204 same rate of decrease as the CO2 concentration after 2100.

205 2.2. Data

206 [15] We focus on a subset of observations that have pre-
207 viously been shown to provide constraints on the parame-
208 terization of Kv in ocean models: (1) temperature (T), (2)
209 chlorofluorocarbon 11 (CFC‐11), and (3) radiocarbon
210 (D14C) observations [cf. Schmittner et al., 2009; Bhat et al.,
211 2009; Toggweiler et al., 1989]. D14C is defined as the
212 14C/12C ratio of air‐sea fractionation‐corrected data [Stuiver
213 and Polach, 1977]. Each of the tracers in this subset has a
214 different behavior and can constrain Kv in different ways.
215 The temperature observations constrain Kv, because Kv

216 affects, for example, the shape of the thermocline as well as
217 the penetration of the anthropogenic heat anomalies
218 [Gnanadesikan, 1999]. The D14C observations can con-
219 strain Kv in two main ways, because it has a natural and an
220 anthropogenic component. The natural component can
221 provide information of mixing rates (that are, in turn, a
222 function of Kv) in the order of centuries or millennia. The
223 anthropogenic component, which greatly increased during
224 the 1950s and 1960s due to thermonuclear explosions,
225 provides information on decadal time scale. Here we do not
226 make distinction between natural and bomb 14C, thus we use
227 its total concentration. The anthropogenic tracer CFC‐11
228 also constrains Kv on decadal time scale, because atmo-
229 spheric emissions started in the 1930s. The solubility of
230 CFCs in water is dependent on the temperature. Considering
231 CFC‐11 and D14C jointly can provide new insights into
232 vertical oceanic mixing because they have very different
233 forcing histories, air‐sea equilibration time scales and water
234 solubility [Broecker and Peng, 1987; Ito et al., 2004], and
235 the observation errors and signal‐to‐noise ratios of the two
236 tracers are different. We analyze published data products for
237 these three tracers [Locarnini et al., 2006; Key et al., 2004]
238 and average the model hindcasts over the time the observa-
239 tions have been collected, i.e., 1990s for CFC‐11 and D14C,
240 and 1950–2000 for temperature. We interpolate the observa-

241tions to the model grid and the model output is restricted to
242the regions where the data products are available. All con-
243sidered ocean tracer observations are horizontally averaged
244into global mean vertical profiles. Further, the probability
245distributions of the model parameters, inferred from the
246information of ocean tracers profiles, are compared with the
247distribution inferred from the climatological observations of
248the AMOC strength at 24°N. For this purpose, we use the
249information of the AMOC strength calculated with the
250inverse model of Lumpkin and Speer [2003], which is esti-
251mated as (17.6 ± 2.7 Sv). The model ensembles are cali-
252brated against observations using a Bayesian inference
253method. We assume a Gaussian likelihood function and
254estimate the posterior probability of Kbg and u_KSO given
255the observations through a Markov Chain Monte Carlo
256(MCMC) method [Metropolis et al., 1953]. Our method
257accounts for autocorrelations of the residuals, as well as
258cross correlation between residuals of different tracers. For
259this, a separable covariance matrix S is estimated. The
260inversion and the numerical implementation of the calibration
261procedure are detailed in the next subsection. Readers not
262interested in the details of the statistical inversion technique
263can skip the next subsection without loss of understanding.

2642.3. Bayesian Model Inversion

265[16] The goal of Bayesian parameter estimation is to infer
266a probability distribution(s) p(� |O) representing the uncer-
267tainty in one (or more) climate model parameter �, condi-
268tional on a vector of observed data O. Here � are parameters
269Kbg and u_KSO, which are related to the vertical ocean dif-
270fusivity in UVic. The inferential procedure is based on a
271statistical model that relates the model parameters (�) to the
272observations (O) by way of the ensemble of model output M
273(�). The statistical model used here assumes that the ob-
274servations are randomly distributed around the model pre-
275diction, according to

O ¼ M �ð Þ þ �; ð1Þ

276where the error is a random variable drawn from a multi-
277variate normal distribution

� � N �;Sð Þ; ð2Þ

278with an unknown mean or bias term m and covariance matrix
279S. These distributional parameters are estimated along with
280the model parameter �. The error term encompasses all
281processes which may cause the observations to deviate from
282the model predictions, including model structural error,
283unresolved variability in the climate system, and measure-
284ment error. We model these errors as random processes,
285approximated here by a potentially correlated Gaussian
286probability function.
287[17] The error mean term m represents model bias, which
288is common for each observed variable across ensemble
289members. Schmittner et al. [2009] assumed a bias which is
290constant with depth. Here we expand upon this form by
291using a general linear form that varies with depth (z), m = az +
292b. This form improves the model fit as indicated by a
293exploratory data analysis in the next section. The covariance
294matrix, described later, captures the residual variability that is
295unaccounted by the linear bias term.
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296 [18] The above probability model describing the spread of
297 observations about the model output defines a likelihood
298 function L(O|�, m, S) for the data conditional on the model
299 and covariance parameters

L Oj�; �;Sð Þ ¼ 2�ð Þ�N=2 Sj j�1=2exp � 1

2
~rTS�1~r

� �
; ð3Þ

300 where S is a covariance matrix and ~r = O − M(�) − m are the
301 bias‐corrected data‐model residuals.
302 [19] Consider an ensemble M containing p runs of a cli-
303 mate model, where each run corresponds to a different value
304 of a climate model parameter, �k, k = 1, …, p. For each
305 ensemble member we analyze n ocean tracer profiles
306 defined at d spatial locations (depths). The matrix S is nd ×
307 nd specifying the covariance between n tracers at d locations
308 (depths). Assuming separability, S can be approximated by
309 a Kronecker product of two matrices

S ¼ ST � CS þ SM ; ð4Þ

310 where ST corresponds to the n × n cross‐covariance matrix
311 of the tracers, and CS is the d × d spatial correlation matrix
312 (in depth) respectively. SM is the data measurement error
313 which we assume to be negligible compared to the other
314 errors because of the spatial aggregation of the data.
315 [20] The cross‐covariance matrix ST depends on n(n − 1)/
316 2 cross‐tracer correlation coefficients rij (since rij = rji), and
317 on residual standard deviations si of the n individual tracers

ST ¼

�2
1 �1�2�12 . . . �1�n�1n

�2�1�21 �2
2 . . . �2�n�2n

..

. ..
. . .

. ..
.

�n�1�n1 . . . . . . �2
n

2
6666666664

3
7777777775
: ð5Þ

318 [21] We model the spatial correlation CS using a Gaussian
319 correlation function, a special case of the Matérn class of
320 covariance functions (see, for e.g., Stein [1999]). This
321 function decays with distance between locations di and dj
322 with a correlation length scale l, assumed to be the same for
323 all tracers

CSð Þij ¼ exp � di � dj
�� ��2

�2

 !
: ð6Þ

324 [22] Given the property of the Kronecker product (see, for
325 example, Lu and Zimmerman [2005]), the multivariate
326 normal likelihood function L(y, �) becomes

L Oj�; �;ST ;CSð Þ ¼ 2�ð Þ�N=2 STj jd CSj jn
� ��1=2

� exp � 1

2
~rT S�1

T � C�1
S

� �
~r

	 

; ð7Þ

327 where N = nd is the total number of data points, and ~r = [O1 −
328 M1 − m1, …, On − Mn − mn]

T is the concatenated vector

329containing the misfit between the unbiased model predictions
330and the corresponding observations for the considered tra-
331cers. The Kronecker structure of equation (4) allows the nd ×
332nd matrix S to be efficiently inverted by inverting the two
333smaller matrices ST (n × n) and CS (d × d).
334[23] Once the probability model has been specified in the
335form of a likelihood function, the Bayes’ theorem allows
336inference about the posterior distribution of �. The theorem
337states that the posterior probability of the unknown para-
338meters is proportional to their prior probability distribution,
339multiplied by the likelihood of the data, according to

p �; a; b; �; �; �jOð Þ / L Oj�; a; b; �; �; �ð Þp �ð Þp að Þ
� p bð Þp �ð Þp �ð Þp �ð Þ: ð8Þ

340We draw 20,000 samples from the above posterior distri-
341bution by a Markov chain Monte Carlo (MCMC) algorithm.
342The MCMC algorithm jointly estimates the model para-
343meters (� = Kbg, u_KSO), 2n bias coefficients (ai and bi), n
344standard deviations (si), n(n − 1)/2 cross‐tracer correlations
345(rij), and one correlation length (l). This is an improvement
346upon the methodology of Schmittner et al. [2009] which
347held all parameters but � fixed at optimized values, and did
348not consider the uncertainty in the other parameters.
349Because the model output is only defined on a discrete grid
350of values, the MCMC algorithm proposes discrete jumps for
351the parameters � during its random walk through parameter
352space, and continuous moves for all other parameters.
353[24] We choose a uniform prior p(�) for the model para-
354meters Kbg and u_KSO. For the correlation length we apply
355the lognormal prior ln l ∼ N(5.5, 0.52), such that the loga-
356rithm of l is normally distributed with mean 5.5 and stan-
357dard deviation 0.5. This prior locates most of the probability
358mass of the distribution between 0 and 600 meters. We use
359normal priors for the bias parameters ai and bi, p(ai) = N(0,
360(si/l)

2) and p(bi) = N(0,si
2). For the estimate of individual

361tracers distributions, where the cross‐correlation matrix is a
362scalar (i.e., S = s1

2), we use a Jeffreys prior (p(si) / 1/S).
363When the multitracer cross‐covariance matrix is estimated,
364we specify an inverse Wishart prior distribution ST ∼ IW(S,
365n), with a diagonal scale matrix S = I and n = 2n + 1 degrees
366of freedom. A diagonal scale matrix reduces spurious cor-
367relations by penalizing tracer residuals which are not inde-
368pendent of each other. Spurious correlation is not a problem
369when the data dimension is large, but when the data are
370sparse such a regularization procedure is prudent (see, for
371instance, Barnard et al. [2000] or Chapter 19 of Gelman et
372al. [2003], and references therein).
373[25] Equation (8) provides the joint posterior probability
374of both the model parameter and the bias and covariance
375parameters. The marginal posterior probability of the model
376parameter alone is obtained by integrating the joint posterior
377over all other parameters,

p �jOð Þ ¼
Z
p �; a; b; �; �; �jOð Þdadbd�d�d�: ð9Þ

378[26] Since the posterior is estimated by MCMC sampling,
379this posterior distribution of � is easily obtained by simply
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380 considering the � samples while ignoring the samples for the
381 other parameters.

382 3. Results

383 3.1. Effect of Ocean Diapynal Diffusivity on the AMOC
384 Hindcasts and Spatial Fields

385 [27] In the adopted model the AMOC strength is positively
386 correlated with the parameters Kbg and u_KSO (Figure 1). Kbg

387 has a strong influence on the model hindcasts of the maxi-
388 mum AMOC strength, while the AMOC sensitivity to
389 u_KSO is weaker. The range of AMOC strength varies from
390 about 5–23 Sv across all simulations. The inclusion of
391 enhanced upper Southern Ocean mixing (u_KSO = 1), can
392 increase the AMOC by a few Sverdrups, with more influence
393 at lower Kbg. Under the projected climate forcings, the
394 AMOC strength decreases in most cases, but it is more
395 sensitive (in absolute values) to the considered forcings for
396 higher diffusivity values. Due to the strong dependence of
397 the AMOC structure and behavior on the values of the
398 parameters Kbg and u_KSO in this model, a reduction in the
399 parametric uncertainty has the potential to improve AMOC
400 hindcast and projection in the model.
401 [28] The different parameter values result in different
402 hindcasts of ocean tracers such as CFC‐11 (Figure 2) and
403 D14C (Figure 3), due to the different tracers advection and
404 diffusion rates in the model. Higher Kbg values result in
405 stronger vertical water exchange, increased deep water mass
406 formation, which carries water with higher tracer content
407 from the surface, and decreased vertical stratification in the
408 ocean. u_KSO broadly produces the same effects of Kbg.
409 Nevertheless, u_KSO impacts more heavily the lower Kbg

410 runs and the Southern Ocean stratification.
411 [29] Here we analyze the tracers concentrations as vertical
412 profiles of their averaged concentrations over the globe. We
413 consider three different observations, CFC‐11, D14C and T
414 (Figure 4, shown as an example for ENSEMBLE 1). In
415 general, the observations are contained by the model
416 ensemble spread, except for T in the deep ocean, which is
417 too cold in the model.

418 3.2. Uncertainty of the Statistical Inversion

419 [30] The inversion method uses the information contained
420 in the tracers to estimate the model parameter Kbg, taking
421 into account uncertainties in u_KSO. Key improvements
422 compared to Schmittner et al. [2009] are (1) the estimation
423 of the cross‐correlation terms; (2) a more refined represen-
424 tation of structured biases in the Likelihood function; and
425 (3) the consideration of the effects of the structural uncer-
426 tainty (specifically about the implementation of mixing in
427 the SO). Here we demonstrate how these improvements
428 affect the joint posterior pdf of the model parameters. We
429 test the sensitivity of the method to the choice of the sta-
430 tistical (or nuisance) parameters for the distribution of Kbg.
431 In this sensitivity test, we do not account for uncertainties in
432 the parameter u_KSO. Therefore, we only use outputs from
433 ENSEMBLE 1.
434 [31] For illustration, we use two tracers, D14C and T, as
435 input for the statistical inversion. We calculate four inver-
436 sion, which vary the number of statistical parameters to be
437 estimated. The structure of the errors differs from each other
438 by the representation of two main parameters, the bias and

439the cross correlation of the residuals between the model and
440the observations. The bias term represents our guess of the
441mean function of the residuals. We demonstrate the trade‐
442off between complexity of the bias‐correction and the
443covariance structure of the residuals in this simple sensi-
444tivity study.
445[32] Specifically, we analyze four different assumptions
446about the structural error terms. First, we use a simple case
447where the bias is constant and there is no residuals cross
448correlation; second, we use a constant bias and estimate the
449cross correlation; third we estimate a linear bias but no
450residual cross correlation; and fourth, in which linear bias
451and cross correlation are both estimated. To summarize the
452experiments in the sensitivity study, we have (1) m = b, r =
4530, (2) m = b, r = �̂, (3) m = az + b, r = 0, and (4) m = az + b,
454r = �̂. Note that the calibration also estimates standard
455deviation, correlation length and the model parameter, as
456described in section 2.3. Comparing all pdfs (Figure 5) we
457see that for the individual pdfs the representation of the bias
458term can be essential for the model parameter estimation.
459When a more simplified bias (m = b) is applied (Figures 5a
460and 5b), the pdfs in this example are displaced toward
461higher Kbg values, and centered on 0.3 and 0.4 cm2 s−1. In
462contrast, with the linear bias estimations, the mode of Kbg

463pdf is centered around 0.15 and 0.2 cm2 s−1. For the cases
464with linear bias (Cases c and d), the standard deviation of
465the residuals of both tracers (Table 1) decrease in compar-
466ison to the constant biases cases (Cases a and b). On the
467other hand, the standard deviations of the residuals are not
468influenced by the addition of cross‐correlation parameters.
469[33] The inclusion of the cross‐correlation parameter im-
470pacts the position of the joint posterior (black curves), and
471its strength is closely related to the representation of the
472bias. When the bias has a better representation, which is the
473linear bias case here (Figures 5c and 5d), the cross‐corre-
474lation term has little influence on the joint pdf. A compar-
475ison of the strength of the cross‐correlation parameters
476(Cases b and d in Table 1) shows that r = 0.70 when m is
477constant, and is much smaller r = 0.40 when m is linear.
478Comparing the posteriors of the Cases a and b (Figures 5a
479and 5b), r can visibly change the posterior when the mean
480function is less structured. Case b shows a counterintuitive
481result where the posterior mode is distant from the modes of
482the individual components (Figure 5b). This result indicates
483that with a relatively poor representation of the mean (bias)
484function, considering or neglecting the effects of this
485residual cross‐correlation can drastically change the Kbg

486posterior estimate. This effect becomes less pronounced, as
487the representation of the model bias term improves (e.g.,
488Figure 5b versus Figure 5c). As discussed by Cressie [1993]
489(pp. 25), “What is one person’s (spatial) covariance structure
490may be another person’s mean structure.” In other words,
491there is a trade‐off between estimating a mean function for
492the tracer residuals to account for structural model errors and
493the magnitude of the residual cross correlation across the
494considered sources of information.

4953.3. Estimating the Uncertainty of Vertical Diffusivity

496[34] The analysis so far illustrates how different tracers
497observations can be combined to reduce uncertainty about
498one mixing parameter (Kbg). This reduction in parametric
499uncertainty results, at least in the framework of the adopted
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Figure 1. AMOC strength (Sv), defined as the maximum of the transport stream function, from years 1800
to 2200. Dashed lines are for the ENSEMBLE 1 (u_KSO = 0); solid lines are for the ENSEMBLE 2
(u_KSO = 1).

Figure 2. Zonal averages for the Atlantic Ocean of CFC‐11 concentration in pmol/kg (color bars) and
density anomalies in kg/m3 (contour lines) for the model with diffusivity of (top) Kbg = 0.05 and (middle)
Kbg = 0.5. (left) ENSEMBLE 1 (u_KSO = 0) and (right) ENSEMBLE 2 (u_KSO = 1). (bottom) Observa-
tions from Key et al. [2004] and Locarnini et al. [2006].
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Figure 3. Zonal averages for the Atlantic Ocean ofD14C concentration in permil (color bars) and density
anomalies in kg/m3 (contour lines) for the model with diffusivity of (top) Kbg = 0.05 and (middle) Kbg = 0.5.
(left) ENSEMBLE 1 (u_KSO = 0) and (right) ENSEMBLE 2 (u_KSO = 1). (bottom) Observations from Key
et al. [2004] and Locarnini et al. [2006].

Figure 4. Global averaged profiles of CFC‐11 [Key et al., 2004], D14C [Key et al., 2004], and T
[Locarnini et al., 2006] for the observations (gray dots) and model ENSEMBLE 1 (colored lines). The
legend for the model Kbg values is the same as in Figure 1.
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500 model, in a reduction of the prediction uncertainty about the
501 AMOC. Of course, there are several caveats associated with
502 structural errors and other neglected uncertainties in this
503 study. We return to this issue in section 4. In this section we
504 illustrate how this information can potentially be used to
505 reduce uncertainties in two model parameters and improve
506 model hindcasts and projections of the AMOC. Here the
507 inversion uses our best estimate of the model bias term
508 (linear), and accounts for cross‐tracer correlation. We make
509 three inversions (Figure 6), one to estimate Kbg for the
510 ENSEMBLE 1, a second to estimate Kbg for the ENSEM-
511 BLE 2, and a third inversion which uses information from

512both ensembles to generate probability distributions for Kbg

513and u_KSO in a Bayesian model average fashion.
514[35] Information from the three considered tracers, CFC‐
51511, T and D14C, is introduced in the statistical inversion for
516the estimation of uncertainties in the model parameters. For
517comparison, we also show in Figure 6 the Kbg pdf obtained
518using the climatological AMOC observations. The Kbg pdf
519is derived from estimate of the climatological AMOC
520strength of Lumpkin and Speer [2003] by assimilating a
521single data point assuming a normally distributed error. In
522principle, the model could be calibrated with both the ocean
523tracers and AMOC strength data by using the derived

Figure 5. Sensitivity of the model parameter estimation to different treatments of structural model errors.
Shown are the posterior probability density function of D14C (red lines with crosses) and T (blue lines
with circles), and the joint posterior using both observations (black line with squares). The frames are
for the cases discussed in the text: (a) [m = b, r = 0], (b) [m = b, r = �̂], (c) [m = az + b, r = 0], and
(d) [m = az + b, r = �̂].

t1:1 Table 1. Properties of the Statistical Distributions of the Sensitivity Test for the Best Kbg
a

t1:2 Experiment

Mode
(cm2 s−1) Bias (a,b) s

Cross
Correlation
at Best Kbg

Mode of
Posteriort1:3 D14C T D14C T D14C T

t1:4 Case a 0.3 0.4 (−14.0,0) (0.45,0) 12.5 0.6 – 0.3
t1:5 Case b 0.3 0.4 (−14.0,0) (0.45,0) 12.5 0.6 0.70 0.2
t1:6 Case c 0.15 0.2 (−16.1,9e‐3) (0.22,3.3e‐4) 7.7 0.28 – 0.15
t1:7 Case d 0.15 0.2 (−16.1,9e‐3) (0.22,3.2e‐4) 7.7 0.28 0.40 0.15

t1:8 aMode, bias (m = az + b), standard deviation, and cross‐correlation of residuals for D14C and T and mode of the posterior (joint distribution considering
t1:9 all tracers information).
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524 AMOC pdf as a prior for Kbg. However, this would neglect
525 potential correlations between ocean tracer and AMOC
526 strength residual errors. As a proper treatment of AMOC/
527 tracer correlations is beyond the scope of this work, we
528 present the AMOC‐derived pdf just for comparison, without
529 assimilating it in the joint posterior pdf.
530 [36] The tracers distributions of both ensembles show sim-
531 ilar behavior. Nevertheless, the ENSEMBLE 1 (Figure 6a) has
532 in general higher Kbg modes in comparison to ENSEMBLE 2
533 (Figure 6b). This result shows that the additional mixing over
534 the upper Southern Ocean increases the overall magnitude
535 of Kv, without changingKbg, and tends to intensify the AMOC.
536 The posterior pdf for Kbg, obtained by assimilating observa-
537 tions of the AMOC strength only (lines with triangles), is
538 also displaced to lower values in ENSEMBLE 2, because
539 ENSEMBLE 2 has stronger AMOC values for the same Kbg

540 (Figure 1).
541 [37] When information from both ensembles are added
542 together (Figures 6c and 6d), the ENSEMBLE 2 dominates
543 the Markov chain for D14C and T, with probabilities of
544 100% and 65% for ENSEMBLE 2, respectively. Con-
545 versely, CFC‐11 has 80% probability of happening
546 ENSEMBLE 1 (Figure 6d). The joint posterior of all tracers

547encompassing the two ensembles (Figure 6c) is entirely
548described by ENSEMBLE 2; therefore, the posteriors in
549Figures 6b and 6c are practically identical.
550[38] When all the two model parameters are assimilated
551jointly (Figure 6c), the considered sources of information
552have rather different skill in improving Kbg estimates and
553AMOC predictions (see Table 2 for the properties of the
554statistical distributions). D14C has the highest information
555content with respect to improving Kbg estimates, its poste-
556rior 95% credible interval (CI) is the tightest (0.21 cm2 s−1)
557in comparison to the other tracers. CFC‐11 comes in second,
558with a 95% CI of 0.24 cm2 s−1, and T comes last with the
559largest CI of 0.26 cm2 s−1.
560[39] Combining the information of the three considered
561tracers (line with squares in Figure 6c), favors Kbg values in
562the lower part of the considered range, from 0.1 to 0.2 cm2 s−1.
563Note that the joined probability density function is narrower
564than each individual pdf indicating an advantage of using
565multiple tracer observations in reducing the parameter
566uncertainty.
567[40] As discussed in previous studies [e.g., Schmittner et al.
5682009], the Kbg value in a coarse resolution ocean model
569represents the effects of background diffusivity combined

Figure 6. Posterior probability density function of the model parameters for all considered sources of
information, the joint posterior using all available information from observations (black line with squares).
The climatological AMOC estimate of Lumpkin and Speer [2003] is plotted for comparison (pink line with
triangles). The Kbg estimates are for (a) ENSEMBLE 1, (b) ENSEMBLE 2, (c) ENSEMBLE 1 and
ENSEMBLE 2, and (d) the u_KSO estimate is for ENSEMBLE 1 and ENSEMBLE 2.
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570 with subgridscale diffusivity (i.e., a model shortcoming).
571 Another shortcoming for coarse z coordinate ocean models is
572 the numerical diffusivity (Veronis effect), which can generate
573 spurious diapycnal diffusion, especially in long climate si-
574 mulations, in western boundary regions and regions where
575 the isoneutral slope is large [Griffies et al., 1998, 2000].
576 Hence, even if our model‐based estimate does not represent
577 directly the observational estimate of pelagic diffusivity of
578 0.1 cm2 s−1 [Ledwell et al., 1993], they appear to be more
579 consistent when we improve on the parameterization of
580 regional mixing in the model.

581 3.4. AMOC Projections

582 [41] The joint posterior Kbg and u_KSO estimates
583 (Figures 6c and 6d) can be used to derive model projections of
584 the AMOC in 2100 and 2200 (Figure 7). The model hindcast
585 for the maximum AMOC strength in 2000 is about 15–
586 15.5 Sv. In 2100, the expected strength for the AMOC in
587 this model is about 11 Sv. In 2200 the AMOC shows a
588 slight strengthening relative to the 2100 conditions with an
589 expected value of roughly 12 Sv.
590 [42] The Kbg and u_KSO estimates suggest an AMOC
591 hindcast for the year 2000 (Figure 7) that is about 2 Sv
592 weaker than the climatological AMOC estimates of Lumpkin
593 and Speer [2003]. The inclusion of the parameter u_KSO in
594 the analysis reduces significantly the discrepancy of the
595 AMOC estimates relative to the Kbg (Figure 6c). Other sys-
596 tematic model bias(es), such as too weak buoyancy forcing
597 (e.g., from errors in the simulation of the atmospheric hydro-
598 logical cycle and surface freshwater fluxes) can compromise
599 the estimates of the current and projected AMOC strength
600 for the Uvic model. Further discussion and implications are
601 described in section 4.

602 4. Caveats

603 [43] Our results are subject to many caveats. These caveats
604 point to potentially fruitful research directions. In the statis-
605 tical part, we consider only highly aggregated data. Basin-
606 wide zonal averages could, for example, provide potentially
607 useful information on where the model performs better. In
608 the projection part, other model parameters, such as those
609 affecting the response of the ocean‐atmosphere coupled
610 system, for example, the hydrological cycle [Saenko and

611Weaver, 2004], climate sensitivity or sensitivity of climate
612to aerosol concentrations, [cf. Tomassini et al., 2007; Forest
613et al., 2002], are also highly uncertain, and can impact
614(probably widen) probabilistic AMOC projections and
615should be considered. In addition, the atmospheric model in
616UVic is rather simplified, and neglects important ocean‐
617atmosphere feedbacks.
618[44] UVic does not use flux correction. Freshwater flux
619correction is known to improve the salinity and stratification
620in ocean models [Sorensen et al., 2001], and can be used to
621improve projections and hindcasts.
622[45] In the hindcasts part, other parameters linked to both
623diapycnal and isopycnal mixing may affect the structure of
624the AMOC. Nevertheless, according to Jayne [2009], tidal
625mixing parameters in the [St. Laurent et al., 2002] param-
626eterization have relatively low impact on the strength of the
627AMOC, and that upper‐ocean wind‐driven mixing may
628have a much stronger impact.
629[46] We show how including regional aspects of vertical
630mixing can improve the representation of the AMOC. The
631model parameters uncertainties need to be estimated
632together as performed here, since addition of new para-
633meters can change the structure of the other calibrations.
634Jayne [2009] describes, “this is the typical conundrum: it is
635difficult to assess whether any of the given parameteriza-
636tions improve the model since comparing to observational
637metrics may obscure compensating errors in different para-
638meterizations.”

6395. Conclusion

640[47] We develop and apply a computationally efficient
641and statistically sound method to rank and quantify the skill
642of different sources of information to reduce the uncertainty
643about ocean model parameters and the resulting climate
644predictions. We improve on previous work by (1) refining
645the estimation of errors in the model structure, (2) including
646several ocean tracers and two model parameters at once in a
647computationally efficient fashion, and (3) quantifying and
648ranking the skill of different sources of information to

Figure 7. Joint posterior probability density function of
model projections of the maximum AMOC strength in the
years 2000, 2100, and 2200 using information from the
D14C, CFC‐11, and T observations. The climatological
AMOC estimate of Lumpkin and Speer [2003] is added
for comparison (pink line with triangles).

t2:1 Table 2. Properties of the Statistical Distributions ofKbg (Figure 6c)
t2:2 for Each Considered Sources of Information, the Posterior (Joint
t2:3 Distribution Considering All Tracers Information), and the Climato-
t2:4 logical AMOC Estimatea

t2:5 Observation Mode Mean 95% CI

Cross Correlation
at Best Kbg

t2:6 D14C CFC‐11 T

t2:7 D14C 0.15 0.15 0.22 1 0.06 0.38
t2:8 CFC‐11 0.20 0.23 0.26 – 1 0.02
t2:9 T 0.15 0.18 0.26 – – 1
t2:10 Posterior 0.15 0.16 0.17 – – –
t2:11 Climatological sAMOC 0.20 0.20 0.42 – – –

t2:12 aMode, mean, and 95% credible interval (CI, in cm2 s−1). Climatological
t2:13 AMOC estimate from Lumpkin and Speer [2003]. Also shown are the
t2:14 cross‐tracer correlation at the best Kbg value estimated in the joint posterior.
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649 reduce the uncertainty about a model parameter. Subject to
650 the aforementioned caveats, we show how D14C, CFC‐11,
651 and T together sharpen the estimates of Kbg by 40% and
652 improve AMOC projections in the UVic model.
653 [48] The Kbg derived from individual observations (i.e.,
654 D14C, CFC‐11, T) are broadly consistent, but show slight
655 discrepancies that we attribute predominantly to structural
656 model errors. Of the considered observations, D14C has the
657 highest skill in reducing uncertainties in AMOC projections,
658 but it is also the most distant from the pdf observational
659 derived AMOC estimates. D14C is followed (in decreasing
660 skill of being able to reduce Kbg uncertainty) by CFC‐11
661 and T. The second parameter analyzed in this work, u_KSO

662 improved the representations of C14 and T in the model, and
663 improves the representation of the AMOC strength.
664 [49] AMOC projections show a reduction of the maxi-
665 mum of the joint posterior in 2100 by roughly 25% (3.5 Sv).
666 Perhaps both surprisingly and encouraging, the pdfs of Kbg

667 estimated in this study are quite similar among the consid-
668 ered ocean tracers and the two ensembles analyzed, which
669 have different representations of the upper Southern
670 Oceanmixing and AMOC. This convergence of Kbg esti-
671 mates based on different sources of information and para-
672 meterizations suggest that Kbg can be robustly estimated
673 from the oceanic tracers studied here.
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