maRkov: Goodness-of-fit Tests for Binary Markov Chains

By
Conrad Cartmell

A THESIS

submitted to
Oregon State University

University Honors College

in partial fulfillment of
the requirements for the
degree of

Honors Baccalaureate of Science in Mathematics
(Honors Scholar)

Presented May 24, 2016
Commencement June 2016

AN ABSTRACT OF THE THESIS OF

Conrad Cartmell for the degree of Honors Baccalaureate of Science in Mathematics
presented on May 24, 2016. Title:
maRkov: Goodness-of-fit Tests for Binary Markov Chains

Abstract approved:

Debashis Mondal

Markov chains, discovered over one hundred years ago by Andrey Markov in an
attempt to analyze the distribution of vowels and consonants in Russian poetry, have
evolved in multiple fields over the last century to become a mainstay of statistical
modeling and computation. maRkov is a package of software to be deployed within the
R programming environment that allows for various tests to be performed to check
the appropriateness of different Markov Chain models for sets of observed binary
data.

Key Words: Markov chains, LRT, binary data, backward forward algorithm,
exchangeable sequence

Corresponding e-mail address: cartmelc@oregonstate.edu

©~Copyright by Conrad Cartmell
May 30, 2016
All Rights Reserved

maRkov: Goodness-of-fit Tests for Binary Markov Chains

By
Conrad Cartmell

A THESIS

submitted to
Oregon State University

University Honors College

in partial fulfillment of
the requirements for the
degree of

Honors Baccalaureate of Science in Mathematics
(Honors Scholar)

Presented May 24, 2016
Commencement June 2016

Honors Baccalaureate of Science in Mathematics project of Conrad Cartmell
presented on May 24, 2016

APPROVED:

Debashis Mondal, Mentor, representing Statistics

Charlotte Wickham, Committee Member, representing Statistics

Mina Ossiander, Committee Member, representing Mathematics

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of
Oregon State University Honors College. My signature below authorizes release of
my project to any reader upon request.

Conrad Cartmell, Author

Contents

1 Introduction

2 Vignettes
2.1 Explanation of Test Statistics
2.2 Snoqualmie Falls Rainfall
2.3 Oklahoma Tornadoes
2.4 Madras Schizophrenia Study

3 Object Documentation

1 Introduction

The project that makes up the backbone of this thesis is an R package called maRkov.
R is an open source statistical programming environment based on the S programming
language, which is maintained and developed by the R Core Team. The functionality
of R is supported by by what are called packages, modules of software created largely
by people unaffiliated with the R Core Team. These packages, for the most part,
are what makes R so useful for most people. They give users in a variety of fields
tools that are formulated specifically for them, thereby reducing the required degree
of programming knowledge required to perform complex analysis, as well as giving
them tools to prepare graphics and documentation of those results.

The maRkov package gives users the ability to answer two questions about binary
Markov chains.

e [s a sequence of binary data adequately described adequately by a first order
Markov chain, when compared to the alternative of a second order one?

e s a set of multiple sequences of binary data described adequately by a single
Markov chain, when compared to the alternative of multiple maRkov chains?

These two questions are answered by the single_binary_test() and multiple_binary_test/()
functions, respectively, in the maRkov package. What follows in this thesis is the doc-
umentation for said package, from an overview of every included function to the var-
ious included vignettes that give extended information on the relevant test statistics
and practical examples of the package in action.

2 Vignettes

2.1 Explanation of Test Statistics

See next page...

Explanation of Test Statistics
Conrad Cartmell
2016-05-28

The test statistics utilized in the maRkov package are drawn from the paper “Exact Goodness-of-Fit Tests for
Markov Chains” (Besag and Mondal 2013). This vignette will attempt to give a brief introduction so that
the user of the maRkov package is better equipped to understand the guts of the included programs.

Introduction to Markov chains

Markov chains were developed over a hundred years ago by Andrey Markov in an attempt to analyze the
distribution of vowels and consonants in Russian poetry. Over the years, their use has expanded into a wide
array of sciences, including genetics, biology, and physics.

Despite being extremely powerful tools, Markov chains are very simple processes at their most basic level. The
chains are composed of a set of states, called a state space, as well as a set of probabilities for transitioning
from each state to each other state, usually encoded in a transition matrix. Because this package is primarily
concerned with binary (two state) Markov chains, we’ll be using those as examples.

The defining feature of Markov chains is that they are memoryless. That is to say, the probability of
transitioning from one state to another is not affected in any way by the history of the chain. The only
determining factor for the transition probabilities is the state that they are currently in.

State 0 1
0 .6 4
1 3 7

The above table is a transition matrix. The first column represents the state that the Markov chain is
currently in, and the first row represents the state that it is transitioning to. In this case, the probability of
transitioning from state 0 to 0 is .6, from 0 to 1 is .4, from 1 to 0 is .3, etc. ..

The Markov chain described in the above table is a first order Markov chain. This means that each state
consists of the state of the process in a single time step. But it doesn’t have to be this way. We can expand
our state space so that it includes all possible doubles of individual states, thus capturing two time steps at
once. An example of a second order Markov chain is given in the table below.

State (0,0) (0,1) (1,0 (1,1)
00) .6 4 0 0
01) 0 0 3 7
(1,00 .6 4 0 0
11) 0 0 3 7

This table is read in the same way as the first. The first thing that pops out is the fact that it is impossible to
transition to a certain states from any given states. This is because, despite the fact that each state captures
two time steps, it is still only possible to take one step at once. Therefor, if the process is in, say, state (0,0),
when time moves forward one step, the italic 0 in the first position will be “pushed out” of the state, and the
bold 0 in the second position will be pushed into its place. Hence, the process is in state (0,0), the next
state it is in will necessarily have a first element of 0.

While second order Markov chains are certainly useful, and may in many cases have more power to describe

real life processes, there is a serious issue of computational efficiency. As you can see, increasing the order of
a Markov chain increases the number of states by a factor of the number of states in the first order chain.
Thus, to reduce computational demand, it is well within our interest to try to keep the total number of states
at a minimum.

Questions of interest & test statistics

The general principle underpinning the package is that it is possible to use single or multiple real sequences
of binary data to produce a set of possible exchangeable sequences that are generated to preserve a certain
property found in the original sequence This property is the count of transitions between states of the
chain. For example, the sequence of data a = { 1, 0, 0, 0, 1, 0, 1} has two transitions from 1 to 0,
two transitions from 0 to 0, and two transitions from 0 to 1. An example of a different sequence with the
same transition counts would beb = { 1, 0, 0, 1, 0, 0, 1}.

In order to generate a large number of such sequences that are independent of the original one, the the
procedure attempts swapping entries in a supplied sequence some number of times. For each attempted swap,
the sequence is checked to make sure that the transition counts are the same. If they are, the swap is made
and the sequence is saved. If not, another swap is attempted. The swaps that are attempted are determined
by randomly generating indices of the sequence(s).

Once all the swaps have been attempted, the resulting sequence of data is saved. Then, using that new
sequence as a starting point for each new one, the procedure attempts more swaps, after which it saves the
resulting sequence. However many sequences of generated data are desired are created in this fashion, and all
are independent from the original supplied sequence.

Single sequences

For single sequences of data, the primary question of interest addressed by the maRkov package is: is a first
order binary Markov chain appropriate to describe the given sequence compared to a second order one?
The function used to answer this question is single_binary_test (), which gives three test statistics: the
likelihood ratio test statistic, the Pearson’s chi-squared (x?) test statistic, and the run test statistic for a run
of a given length. The likelihood ratio test statistic addresses the above question of interest. The y? test
statistic functions as an approximation of the likelihood ratio test statistic, because they both have similar
distributions. Lastly, the run test statistic is useful for judging the homogeneity of the sequence, although it
does not test for a rigorous question of interest presented here.

Once single_binary_test() has generated a sufficient amount of exchangeable sequences, it goes about
generating the aforementioned test statistics. Since the test statistics in the maRkov package are concerned
with determining the appropriateness of first order chains against second order ones, a table of second order
transition counts is compiled for each sequence. From this table, the program generates test statistics.

LRT =2 Z nijklog< Zr;c)

.3,k

Ntj+
2
Nij+Ntjk
Nijk = Ty
+i+
2 _ E
X = Mij+Ntjk
1,7,k N4 j+

In the equations above, n;;; represents the frequency of the transition from state ij to state jk in a second
order chain. The n’s with + in the subscript indicate summation across all values of either i, 7, k or some
combination thereof. It should be noted, additionally, that i = j = k = {0, 1}.

Run test statistics simply represent the number of times that a run of a certain specified length occurs within
the sequence. The exact formula is shown below for a run of length p, where z; is the i*” index of a sequence
of data z of length [.

l—p

Run = E 1w4:1&aji+1:1&-~~&wi+p:1
=1

Multiple sequences

For multiple binary chains, the question of interest is different. Now, instead asking whether to use a first or
second order chain, we ask ourselves whether a single binary Markov chain is adequate to describe a given
set of sequences of data, or if multiple binary Markov chains are required. The likelihood ratio test statistic
is used to answer this question. The x? distribution is once again an approximation of the distribution of
likelihood ratio test statistics.

Unlike single_binary_test (), multiple_binary_test() isn’t at all concerned with second order chains,
so this time a table of first order transitions is compiled.

(t)

0 0
LRT =23 g +log| —5

- +ik
2,J,t MmO
it
), (+) 2
t
n(#) _ Mgy
n iJ n(+)
2 o
ceyy A
—0 ij
=0 ig Ny + 5
it

Where ng) represents the frequency of the transition from state i to state j in the t** chain in the set. +
indicates the same thing as in the single chain case. i = j = {0,1}, and ¢ is the set of natural numbers
smaller than the number of new sets of sequences to generate, which is given as the parameter n in
multiple_binary_test().

The run test statistic is calculated in the same fashion as the run test statistic in the single sequence case, but
the run test statistics from each sequence are added together. The exact formula is shown below for a run of

length p, where xz(-j) is the i*" index of a sequence of data x() within a set of n sequences z, all of length .

n l—p
Run=73_3% Lo c1g2®), =180 &0 =1
j= i=1 P

References

Besag, J., and D. Mondal. 2013. “Exact Goodness-of-Fit Tests for Markov Chains.” Biometrics 69 (2):
488-96. doi:10.1111/biom.12009.

https://doi.org/10.1111/biom.12009

2.2 Snoqualmie Falls Rainfall

See next page...

Snoqualmie Falls Rainfall
Conrad Cartmell
2016-05-29

It rains a lot in Washington. This will come as no surprise to anyone who has been to the Evergreen State,
but the specific patterns of the rainfall in the region are important to scientists. For this example, we will be
investigating whether precipitation at Snoqualmie Falls Washington during the month of January can be
modeled with a single binary Markov chains. To determine the answer to this question, we will be testing
the null hypothesis of a simple binary chain against the alternative of a second order binary chain for every
year of rainfall data that we have from Snoqualmie Falls, which runs from 1948 to 1983, and then test the
null hypothesis that we only need one chain for all of the years against the alternative that we need different
chains for different years. The data is sourced from Stochastic Modeling of Scientific Data (Guttorp and
Minin 1995).

To do this, we will be using the single_binary_test() and multiple_binar_test() functions. But first
we need to encode the rainfall data in the proper way. The data is below. Note that a “1” denotes that there
was more than 0.01 inches of rain on a given day, and a “0” denotes that there was less rainfall than that.
Each row is a separate year and each column is a day of the month of January.

=)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31

o=
[

—

o

(=2

D
HFRF OO OFROHROHKRFROORRHEFRERHEFFEFOHORORRHERERORRFEHRF |/
HE OO MEFEFOFORMFEFOOOOR M e O e b e e e e = O = DN
HEOOOHRFRMFEFMFEFOOOORFEMFEEEFEMFEEFEEFEF OOOR M FH O F == O | W
OO, OFRRFRFORFOORRFRFEFRFEFEFRFRFROOFOOOFRFRRFRFRMFER O |
HFOHHRORFRORFHFORRFROORRMHEERMHEERE HEEFEOOR HKEF O = = o
HFOHOOROHHOOROORORRRHRERHREROORORRHORHER O
HOOFO MO OO O b b e b e e e e e O O = e e e e [=g
HFOHFHROROFRROORRHRRORRHERERHERERREHERERRORRHRF R =R |0
HOMRMFEMFE PO RFRFORFRFRF R AR PO HFORFROR R OFROFRFEEFEORFOR
FRORRRPRRHERERRHERRHERERRERORRORRRHERPROORHRFRFROR
OO FRF HFEFEFRERERE R EOREFEF OOOO R OO = O
HEEORFRMHEFORMFFREFEFREFRPFREFRFRERPRPRPROOOORRFRRFRRFRRFOOROR
FRORORRMHEERMHEEREREEEREEPE RS ORRHEORRERFREREORFEOO
FRORRRPRHERRHERRHERERRHERORRRRORHERRRERRRERORO
HEOFRHFORMFERFREFEFRFRFORFRFRFEFRFFEFOORFRMFEEFEMFEFEFEFFEFOFRFERFERFRORF=OO
e O b= b= e e e e e e R e e e e el el el el O R R R R RO R RO OO
= OO O R b e e e e e e e e e e e e e e O b e e e e e O = O
HEHFEF O OFRORFRMFERERMFEFE R R =S RSO O FEOREORRERFERERFREOOO
HFOOOR HHFFRFORFRFRRFFRFRFRORFRFOFRFRFOOOOFORRFEOFRF = -
HFOHRR PR OORHFREREHEEFERHEFORHEFOOOORHEF I HEF O
O HFHFOOHHFRMFEFEOFOFRMFMMEEFEEFEOMFERFEFOOOO M H O M= O
HFERFRFOOFOFRFRMFOFRRFREFEFOORROFRRFOOOR R O
HHRHORFR OORKFRRMHEFEFERHEFOOFRRFFREOOO R I e = = O

[\

H R R OO O b b = = O O b b b= = e e e O e e O |
HERFOOFHFOORMFERFRMFEEFEMFEFEOFRRFRRFEMFEFERFOFE OO OO = O -
PR OFRRFRPORRFRFROOHRRFRMFERFRERFRFORFROORHRORRFEFOOOOR R
HHEHRFOR FOORHROOO,ROORHHEHEORORFRFHROOORRFEKFEKRRO
O OO HHOOOHOOOOHORRFRMEEFEORMEEMEFEFOMFEMFEEFERFEOOROO
HERHRPOOOOoOOO—HRFRFORFRORRFRFERFRFEFRFROOFRFRFEFFRFOFRFOORFRRFEFOOO-
O R OO O OO OO MO EEFEOMFEMFEEFEFEOFEOMFMFEOO - =
O OO HRFHFROOH OO EHFORFRORHFOFHOHFRMFEFEORFRMFEREREFROODOR

We’ll need to encode this data in a way that single_binary_test and multiple_binary_test() can
understand, so we’re going to turn it into a matrix with rows representing each single year chain, and columns
representing days of January. Luckily, the as.matrix function makes it easy to do this.

snoqualmie_matrix <- as.matrix(maRkov::snoqualmie)

Before we can examine whether a simple binary Markov chain is appropriate for describing rainfall in the
month of January in general, we need to ask ourselves if each January that we have is appropriately modeled
by a simple binary Markov chain. To determine this, we will generate a vector of likelihood ratio p-values for
each year, and a histogram:

lrt_p_values <- apply(snoqualmie_matrix, 1,
function(X) (single_binary_test(binary_chain = X,
swaps = 10000, n = 10000))$p_value_lrt)

hist(lrt_p_values, breaks = 10)

Histogram of Irt_p values

Frequency
4
|

0.0 0.2 0.4 0.6 0.8 1.0

Irt_p_values

This is quick and dirty analysis, but it is clear from looking at the histogram of p-values that very low ones
are generally uncommon. Given a p-value cutoff of .1, we would expect to see 36 x .1 = 3.6 p-values below .1.
In the above histogram, you see about 3 results with p-values below .1. This gives us no reason to doubt that
simple binary Markov chains can be used to model the month of January in each year, as the years with low
p-values may very well be the result of having data from a great many years.

We're finally ready to callmultiple_binary_test (), which will produce an object of class multiple_binary_test.
Afterwards, we’ll look at some plots and a summary of our data. Specifically, we’ll be taking a look at the
distribution of test statistics and the p-value for the likelihood ratio test (LRT). This test will give us a

answer to the question of whether or not the null hypothesis of a single binary chain is acceptable against the
alternative of a second order binary chain.

snoqualmie_test <- multiple_binary_test(binary_chains =
n = 10000)

snoqualmie_matrix, swaps = 10000,

plot(snoqualmie_test)

Visual representation of the actual Markov Chain.

Frequency

Frequency

1000 1500

500

400 600

200

i — =
| | | | |
40 60 80 100 120
LRT Test Statistics
Red line indicates value of test statistic of real data
| | | |
40 60 80 100

Pearson's Chi-Square Test Statistics
Red line indicates value of test statistic of real data

- e
o —
S L
o
> O
o ©]
c -
<}
g o
2]
L
o
O_
N
o -

380 390 400 410 420 430
Run Test Statistics For a Run of 4
Red line indicates value of test statistic of real data

By looking at these plots, we notice a few things. First, plotting a object of class multiple_binary_test
gives us a whole lot of information, much of which isn’t particularly interesting to us. We’ll just be looking at
the tile plot and the histogram of likelihood ratio test statistics. The tile plot lets us get a general feel for the
makeup of our set of chains, and the histogram of likelihood ratio statistics shows us that the test statistic of
the real set of chains lies somewhere in the meaty part of the distribution, making it unlikely that it is an
unusual observation. For more detailed and precise analysis, let’s turn our attention to the summary of
snoqualmie_test.

summary (snoqualmie_test)

#it

Call:

multiple_binary_test(binary_chains = snoqualmie_matrix, swaps = 10000,

it n = 10000)

it

Test statistics

Min 1Q Med 3Q Max stat Pr(>test stat)
LRT 36.39 65.52 73.47 82.07 128.05 92.80 0.0682

Chi Sq 34.00 61.05 67.93 75.47 111.32 90.3 0.027 =
Run = 4 374 399 405 410 435 434 1e-04 *xx
#i#t ——-

Signif. codes: O 's*x' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

-———

Here you can see the structure of the summary () output. The likelihood ratio test statistics are broken down
by quantile, and there is a p-value printed next to them as well. In this case, the p-value of the likelihood
ratio test indicates that a single binary chain is probably acceptable for modeling this data.

References

Guttorp, P., and V.N. Minin. 1995. Stochastic Modeling of Scientific Data. Chapman & Hall/CRC Texts in
Statistical Science. Taylor & Francis. https://books.google.com/books?id=LHdkc6tmF2EC.

https://books.google.com/books?id=LHdkc6tmF2EC

2.3 Oklahoma Tornadoes

See next page...

Oklahoma Tornadoes
Conrad Cartmell
2016-05-31

In “A Markov Chain Model of Tornadic Activity” (Caren et al.), the authors propose that tornadoes in the
United States can be modeled with Markov chains. In the paper, they encode their data in a matrix with
each row representing a year from 1953 to 1998, and each column representing a day of the year. A 1 in an
entry in the matrix indicates that at least one tornado occurred on the corresponding year and date and 0 in
an entry indicates that no tornadoes occurred on the corresponding day.

If the presence of tornadoes in the greater United States can be modeled with a binary Markov chain, it
stands to reason that tornadoes in Oklahoma could be modeled in the same fashion. The data encoded in
the included data set ok_tornado is encoded in the same way as the data in the Drton et al. paper, but it
covers only tornadoes in Oklahoma, and instead of including only the years 1953 to 1998, it includes all years
between 1950 and 2015. It’s time to get started.

The first thing that we are going to investigate is whether every year is adequately modeled by a first order
Markov chain. We’ll run single_binary_test() on every single year that we have data, and compile a
vector of likelihood ratio test statistic p-values to see if there are issues with using binary Markov chains for
each one.

We need to take our data and transform it into forms that single_binary_test() andmultiple_binary_test ()
can understand:

library(maRkov)
tornadoes <- as.matrix(ok_tornado)

Now that we have a vector representing the days with tornadoes in 2009 and a matrix representing days with
tornadoes from 1950-2015, we’ll run single_binary_test() on the chain from 2009 and look at a summary
of the results:

lrt_p_values <- apply(tornadoes, 1,
function(X) (single_binary_test(binary_chain = X,
swaps = 10000, n = 10000))$p_value_lrt)
hist(lrt_p_values)

Histogram of Irt_p_values

20

15

Frequency
10
I

0.0 0.2 0.4 0.6 0.8 1.0

Irt_p_values

This is not good. As you can see from the histogram of p-values, we have ~14 p-values that indicate significance
at the .1 level. We would expect to see 66 .1 = 6.6 if all the sequences could be adequately modeled by first
order Markov chains. None the less, we’ll forge on our investigation to see if we can identify what is going on.

tornadoes_test <- multiple_binary_test(tornadoes, swaps = 10000, n = 10000)

And then we’ll plot the results:

plot(tornadoes_test)

Frequency

1000 1500

500

Visual representation of the actual Markov Chain.

— I —

140 160 180 200 220
LRT Test Statistics
Red line indicates value of test statistic of real data

o
O — 1 —
O |
>‘ | —
(6]
c o
()] o — | |
S <
O
o
L
o
O p—
N
o —
| | | | |
120 140 160 180 200
Pearson's Chi-Square Test Statistics
Red line indicates value of test statistic of real data
o
S _|
o
AN
>
(&] N
C —
S _
>
[} o
L 8 -
—
o
o p—
) — 1
o p—
| | | | | | |

20 22 24 26 28 30 32 34
Run Test Statistics For a Run of 4
Red line indicates value of test statistic of real data

As you can see from the likelihood ratio test statistic histogram, our data seems to be extremely unusual.
Let’s take a look at the summary of tornadoes.test:

summary (tornadoes_test)

#

Call:

multiple_binary_test(binary_chains = tornadoes, swaps = 10000,

n = 10000)

#

Test statistics

Min 1Q Med 3Q Max stat Pr(>test stat)
LRT 134.0 167.4 174.8 182.4 226.3 188.2 0.124

Chi Sq 119.8 146.1 153.1 160.4 201.9 163.7 0.165
Run = 4 20 27 28 29 34 30 0.212
#it —-—-

Signif. codes: 0O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

——-

From this summary, we can see that our p-value for the likelihood ratio test statistics is quite small, so we
can conclude that a simple first order Markov chain is probably not appropriate to model this data. Why
could this be? if you look at the first plot generated by plot(tornadoes_test), you will notice that there is
a remarkable clustering effect in roughly the second quarter of the year. If you go to the website of Oklahoma
City, and navigate to their tornado safety page, found at [http://www.okc.gov/safety/tornado/], you will find
the following;:

When is tornado season?

Tornado season is generally March through August, although tornadoes can occur at any time of
the year.

Which suggests that days with tornadoes are going to be found predominantly between March 1st and August
31st, or between roughly the 60th and 244th days of the year. Let’s see what our tile plot of Oklahoma
tornadoes looks like when we superimpose those two dates upon it.

torn_data <- tornadoes_test$datal[[1]]
reverse <- nrow(torn_data):1
torn_data <- torn_data[reverse,]

image(c(l:ncol(torn_data)), c(l:nrow(torn_data)), t(torn_data),
axes = FALSE,
ylab = " ",
xlab "Visual representation of the actual Markov Chain.",
col = c("aquamarine3", "chocolatel"))

segments (60, 0, 60, 67)

segments (244, 0, 244, 67)

text (35, 63, "March 1st")

text (274, 63, "August 31st")

http://www.okc.gov/safety/tornado/

Visual representation of the actual Markov Chain.

As you can see, there does seem to be marked difference between the distribution of tornadoes between
these two dates and the distribution of tornadoes in the rest of the year. This fact begs the question: is it
possible that we could model tornado season in Oklahoma with a Markov chain? Let’s find out. We’ll need
to truncate our data to include only the days between March and August.

tornadoes_season <- tornadoes[, 60 : 244]
tornadoes_season_test <- multiple_binary_test(tornadoes_season, swaps = 10000, n = 10000)

Now we’ll look at the summary of the data, since we’ve already produced the tile plot.

summary (tornadoes_season_test)

#i#

Call:

multiple_binary_test(binary_chains = tornadoes_season, swaps = 10000,

n = 10000)

#it

Test statistics

#it Min 1Q Med 3Q Max stat Pr(>test stat)
LRT 115.4 152.7 161.5 170.3 216.9 176.6 0.129

Chi Sq 101.7 131.6 139.8 148.2 197.1 152.6 0.158
Run = 4 12 23 25 26 34 28 0.117
———

Signif. codes: 0 '**x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

———

Again, it turns out that a simple, first order binary Markov chain does is not sufficient for modeling this data.
Why is this?

It wasn’t mentioned at the beginning of this vignette for the sake of constructing an interesting problem,
but the authors of the Drton et al. paper did not actually use a first order binary Markov chain to describe

their data. In their case, they used what are called non-homogeneous Markov chains to describe their data.
These are Markov chains for which the transition probabilities change as the chain moves through states.
Given a little bit of thought, the requirement for this kind of chain makes perfect sense, as there are climate
factors that fluctuate throughout the year that affect tornado formation. Another issue is that tornadoes in
an area limited to the size of Oklahoma are affected by far more local weather patterns than tornadoes across
the entire United States, which may make them harder to model with Markov chains. Unfortunately, this is
the limit of the functionality of the package, so all we can conclude is that simple first order binary Markov
chains are not sufficient to represent this data.

References

Caren, Mathias Drton, Mathias Drton, Peter Guttorp, Caren Marzban, and Joseph T. Schaefer. “A Markov
Chain Model of Tornadic Activity.” Mon. Wea. Rev 131: 2941-53.

2.4 Madras Schizophrenia Study

See next page...

Madras Schizophrenia Study
Conrad Cartmell
2016-05-29

The Madras Schizophrenia Study was a long term longitudinal study on the presence of schizophrenia in men
and women in the Indian city of Madras, which is now known as Chennai. The data used in this vignette has
been sourced from a book on longitudinal studies called “Analysis of Longitudinal Data” (Diggle, Liang, and
Zeger 1994) that can be found at [http://faculty. washington.edu/heagerty /Books/AnalysisLongitudinal/].

The data found in madras is encoded as a data frame with 69 rows and 12 columns, with each row representing
a different patient, and each column representing a month since initial hospitalization. A 1 represents a
month in which symptoms were present, and a 0 represents one in which none were. The original dataset
from the book featured 86 different individuals, both men and women, but not all of them were followed
up on for 12 whole months. Since the program multiple_binary_test () requires rectangular data, these
individuals were removed from the dataset, leaving us with the 69 individuals mentioned.

The first thing that we need to do is to transform our data into something that the maRkov package can
understand. multiple_binary_test() takes a binary matrix as input, so that’s what we will transform our
data into:

library (maRkov)

madras <- as.matrix(madras)
head (madras)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1 1 1 1 1 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0
#4 O O O O O O o O 0o o0 o0 o
##5 o0 0 O O O o0 o o0 o o0 o0 o
6 0 0 0 0 0 0 0 0 0 0 0 0
str (madras)

num [1:69, 1:12] 1110001111

- attr(*, "dimnames")=List of 2

..$: chr [1:69] "1m nQm n3m ngn

..$: chr [1:12] "Jan" "Feb" "Mar" "Apr"

Looks great! Now, ideally we would want to examine each of these chains separately to see if a single binary
Markov chains are appropriate models for each of them. Unfortunately, given the fact that chain is extremely
short. However, since we have many of them, we can asses them all taken together to see if a single binary
Markov model is appropriate when compared to multiple binary Markov chains.

madras_test <- multiple_binary_test(madras, swaps = 10000, n = 10000)

And then we’ll plot our results to see if we can identify any patterns:

http://faculty.washington.edu/heagerty/Books/AnalysisLongitudinal/

plot(madras_test)

Visual representation of the actual Markov Chain.

o - —
o — | -
2 L
(>J, | -
c o] |
g Q7
O
e
L o
o p—
N
O —
| | | |
120 140 160 180
LRT Test Statistics

Red line indicates value of test statistic of real data

1000
|

Frequency
600
|

0 200
l

|==Se

80 100 120 140 160 180 200
Pearson's Chi-Square Test Statistics
Red line indicates value of test statistic of real data

Frequency
200 400 600 800

0
I

[I I I
60 70 80 90

Run Test Statistics For a Run of 4
Red line indicates value of test statistic of real data

As you can see from the histogram plots, it does not seem that there is any significant issue with using one
Markov chain to model all of the data. Let’s look at a more detailed summary to be sure:

summary (madras_test)

#it
Call:
multiple_binary_test(binary_chains = madras, swaps = 10000, n = 10000)

#it
Test statistics

#t Min 1Q Med 3Q Max stat Pr(>test stat)
LRT 112.2 141 .4 148.7 156.2 194 .4 143.9 0.665

Chi Sq 74.43 107.76 118.87 131.33 193.94 151.6 0.0477 =

Run = 4 56 70 73 76 94 66 0.94

———

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

——-

As you can see, the high likelihood ratio p-value suggests no reason to reject the hypothesis that a single
Markov chain can be used instead of multiples.

The issue that exists with this analysis is that we removed the data with missing entries. In “Analysis of
Longitudinal Data”, the authors discuss the differences between the patients who dropped out and those who
did not, and, as it turns out, the ones who drop out usually do so because their symptoms are not at all
improving. In essence, this means that we are losing the representative nature of our sample by removing
missing entries. Essentially then, the result that we get in this case means that, generally, people who have
schizophrenia and are getting better tend to get better in similar ways.

References

Diggle, P., K.Y. Liang, and S.L. Zeger. 1994. Analysis of Longitudinal Data. Oxford Statistical Science Series.
Clarendon Press. https://books.google.com/books?id=955qAAAAMAAJ.

https://books.google.com/books?id=955qAAAAMAAJ

3 Object Documentation

See next page...

Package ‘maRkov’

May 27, 2016

Type Package

Title Goodness-of-fit Tests for Binary Markov Chains
Version 0.1

Date 2015-08-04

Author c(person(given = *~Conrad", family =~ Cartmell", role =
c(Taut", “cre"), email = cwcartmell @ gmail.com"),
person(given = "~ Debashis", family = *Mondal", role = ““ctb", email

= ““debashis.stat@gmail.com"))
Maintainer Conrad Cartmell <cwcartmell@gmail.com>

Description Preforming goodness-of-fit tests on single binary Markov chains,
as well as sets of multiple binary Markov chains. Provides LRT, chi square,
and run test statistics, and generates data that can be used to preform
user-created tests as well.

License GPL
Imports Rcpp
LinkingTo Rcpp
LazyData TRUE
RoxygenNote 5.0.1
Depends R (>=2.10)
Suggests knitr,
rmarkdown

VignetteBuilder knitr

R topics documented:

alter_to_true_binary e e
alter_to_true_binary_multiple oL
check_false binary L
check_false_binary_multiple
check_true_binary
check_true_binary_multiple
chi_sq test_stat e e e e e e
chi_sq test_stat_array v v v it e e e e e e e e
ik dim_sum e e e e e e
indicate_TUN e e e e e e e e e e e e e e e e e

2 alter_to_true_binary

LAIm_Sum e e 8
jkodim_sum . .o e 8
Jodim_sum ... L e e e e e e e e 9
kK dim_Sum e 9
madras e e e 10
Metropolis e e e e e e e 10
multiple_binary_test 11
multiple_chi_sq_test_stat 12
multiple_chi_sq_test_stat_array 13
multiple_indicate_runo 13
multiple_metropolis 14
multiple_run_test_stat. e 14
multiple_run_test_stat_array e 15
N_COUNES . . o v v v e o e 15
n_counts_multiple 16
ok tornado L e 16
plot.multiple_binary_test e 17
plot.single_binary_test 17
print.multiple_binary_test. L 18
print.single_binary_test L e 18
TUN_tEeSt_Stat e e e e e e e e e 19
run_test_stat_array i e e e e e e e e e e e e e e 19
single_binary_test e e e e e e e e 20
snoqualmie L. 21
summary.multiple_binary_test Lo 21
summary.single_binary_test L 22
SWAD « & v v e e e e e e e e e e e e e e e e e e 22
swap_multo e e 23
Ul _test_stat o e e e 23
ul_test_stat_array L e e e e e e 24
UO_test_Stat e e e e e e e e e e e e e e e 24
UO_teSt_Stat_arrayt e e e e e e e e 25
vec_greater_than 25
Index 26

alter_to_true_binary Take a one dimensional vector with two unique values and change
those values to integers 0 and 1.

Description

alter_to_true_binary takes a one dimensional vector that contains two unique values and switches
all of the values with either integer values O or 1, so that the resulting vector has a one-to-one cor-
respondence with the original.

Usage

alter_to_true_binary(bin_chain, success)

alter_to_true_binary_multiple 3

Arguments
bin_chain A one dimensional vector with two unique elements.
success Denotes the data entry to be counted for run statistics.
Details

For this function to work properly, its argument should be checked first using check_false_binary,
and only used in alter_to_true_binary if check_false_binary returns TRUE.

Examples

alter_to_true_binary(c(”AII s HB” , "BH s ”B" s IIAH s ”B” , ”A” s ”A"))
alter_to_true_binary(c(TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE,
FALSE))

alter_to_true_binary_multiple
Take a two dimensional matrix with two unique values and change
those values to integers 0 and 1.

Description

alter_to_true_binary_multiple takes a two dimensional matrix that contains two unique values
and switches all of the values with either integer values O or 1, so that the resulting matrix has a
one-to-one correspondence with the original.

Usage

alter_to_true_binary_multiple(bin_chains, success)

Arguments
bin_chains A two dimensional vector with two unique elements.
success Denotes the data entry to be counted for run statistics.
Details

For this function to work properly, its argument should be checked first using check_false_binary_multiple
and only used in alter_to_true_binary if check_false_binary_multiple returns TRUE.

Examples

alter_to_true_binary_multiple(matrix(data = c("A","B","A","B","A" "B","B",
"A" PA"Yncol = 3))

alter_to_true_binary_multiple(matrix(data = c(TRUE,TRUE,TRUE,FALSE,FALSE,
TRUE, FALSE, FALSE, TRUE, TRUE, FALSE), ncol = 3))

4 check_false_binary_multiple

check_false_binary Check if a vector has two unique elements.

Description

check_false_binary returns TRUE if there are two unique elements in its argument, and returns
FALSE if there are not two unique elements in its argument.

Usage

check_false_binary(bin_chain)

Arguments

bin_chain A one dimensional vector.

Details

This function is not designed to be used outside of this package. It is sufficiently simple as to be
practically redundant to the user.

Examples

check_false_binary(c(1,0,0,1,0,0,0,1))

check_false_binary(c("A","B",”B","B" ,"A" "B" ,"A" ,"A"))
check_false_binary(c(TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE,
FALSE))

check_false_binary_multiple
Check if a two dimensional matrix has two unique elements.

Description

check_false_binary_multiple returns TRUE is there are two unique elements in its argument,
and returns FALSE if there are not two unique elements in its argument.

Usage

check_false_binary_multiple(bin_chains)

Arguments

bin_chains A two dimensional matrix

Details

This function checks every row and column element to see if they all share the same two values.

check_true_binary 5

Examples

check_false_binary_multiple(matrix(data = c¢(1,0,1,0,1,0,0,1,1), ncol = 3))
check_false_binary_multiple(matrix(data = c("A","B","A","B","A","B","B","A",
"A"), ncol = 3))

check_false_binary_multiple(matrix(data = c(TRUE, TRUE, TRUE,FALSE,FALSE,TRUE,
FALSE,FALSE, TRUE, TRUE,FALSE), ncol = 3))

check_true_binary Check if a one dimensional vector has only integer elements 0 and 1.

Description

check_true_binary returns TRUE if all of the elements in the argument are either integers of value
0 or 1. check_true_binary returns FALSE if not all of the elements in the argument are integers
of value O or 1.

Usage

check_true_binary(bin_chain)

Arguments

bin_chain A one dimensional vector.

Details

This function checks every element of its argument to see if they contain either the integer values 0
or 1.

Examples

check_true_binary(c(1,0,0,1,0,0,0,1))

CheCk_trUe_binary(C(”A” , IIBIV R IIBII s IIBVI R IIAII , IIBII , IIAII , IVAII))
check_true_binary(c(TRUE, TRUE, TRUE, FALSE,FALSE, TRUE, FALSE,FALSE, TRUE, TRUE,
FALSE))

check_true_binary_multiple
Check if a two dimensional matrix has only integer elements 0 and 1.

Description
check_true_binary_multiple returns TRUE if all of the elements in its argument are integers O
or 1, and FALSE if not all of the values in its argument are integers O or 1.

Usage

check_true_binary_multiple(bin_chains)

6 chi_sq_test_stat_array

Arguments

bin_chains A two dimensional matrix.

Details

This function checks every row and column element of its argument to see if they contain either the
integer values O or 1.

Examples

check_true_binary_multiple(matrix(data = ¢(1,0,1,0,1,0,0,1,1), ncol = 3))
check_true_binary_multiple(matrix(data = c("A","B","A","B","A","B","B","A",
"A"), ncol = 3))

check_true_binary_multiple(matrix(data = c(TRUE,TRUE, TRUE, FALSE,FALSE, TRUE,
FALSE,FALSE, TRUE,TRUE,FALSE), ncol = 3))

chi_sq_test_stat Calculates the Pearson’s chi square test statistic for a single binary
chain .

Description
chi_sq_test_stat takes a binary chain of data and calculates the Pearson’s chi square test statistic
associated with it.

Usage

chi_sqg_test_stat(bin_chain, n_chain_uniques)

Arguments

bin_chain A single binary chain of data in the form of an integer vector.
n_chain_uniques
A integer value representing the number of unique values in bin_chain.

chi_sq_test_stat_array
Calculate the chi square test statistics for many single binary chains.

Description
chi_sq_test_stat_array takes a two dimensional matrix of many binary chains of data and re-
turns a numeric vector filled with a chi square test statistic for each of them.

Usage

chi_sq_test_stat_array(bin_chains, n_chain_uniques)

ik_dim_sum 7

Arguments

bin_chains A integer matrix of binary chains of data, with each row being a different chain.

n_chain_uniques
A integer value representing the number of unique values in bin_chains.

ik_dim_sum Sum all the values in the first and third dimensions of a three dimen-
sional integer vector.

Description

ik_dim_sum takes a three dimensional integer vector, fixes the value of the second dimension, and
then sums the values of all the entries in the vector with that value for its second dimension.

Usage

ik_dim_sum(n, j)

Arguments
n A three dimensional integer vector.
j An integer that is a valid index of the second dimension of n.
indicate_run Indicate whether or not there is a run at a point in a integer vector.
Description

indicate_run takes an integer vector bin_chain, and two integers, p and i, and tells the user if a
run of length p starting and index i in the form of a Boolean value.

Usage

indicate_run(bin_chain, p, i)

Arguments
bin_chain A binary chain of data in the form of an integer vector.
p A integer value representing the length of the run to test for.
i A integer value representing the location in bin_chain to test for a run starting

at.

8 jk_dim_sum

i_dim_sum Sum all the values in the first dimension of a three dimensional integer
vector.

Description

i_dim_sum takes a three dimensional integer vector, fixes the values of the second and third dimen-
sions, and then sums the values of all the entries in the vector with those two values for its second
and third dimensions.

Usage

i_dim_sum(n, j, k)

Arguments
n A three dimensional integer vector.
A An integer that is a valid index of the second dimension of n.
k An integer that is a valid index of the third dimension of n.
jk_dim_sum Sum all the values in the second and third dimensions of a three di-
mensional integer vector.
Description

jkDimSum takes a three dimensional integer vector, fixes the value of the first dimension, and then
sums the values of all the entries in the vector with that value for its first dimension.

Usage

jk_dim_sum(n, i)

Arguments

n A three dimensional integer vector.

i An integer that is a valid index of the first dimension of n.

j_dim_sum

j_dim_sum Sum all the values in the second dimension of a three dimensional

integer vector.

Description

j_dim_sum takes a three dimensional integer vector, fixes the values of the first and third dimen-

sions, and then sums the values of all the entries in the vector with those two values for its first and
third dimensions.

Usage

j_dim_sum(n, i, k)

Arguments
n A three dimensional integer vector.
i An integer that is a valid index of the first dimension of n.
k An integer that is a valid index of the third dimension of n.
k_dim_sum Sum all the values in the third dimension of a three dimensional integer
vector.
Description

k_dim_sum takes a three dimensional integer vector, fixes the values of the first and second dimen-

sions, and then sums the values of all the entries in the vector with those two values for its first and
second dimensions.

Usage

k_dim_sum(n, i, j)

Arguments

n A three dimensional integer vector.
An integer that is a valid index of the first dimension of n.

J An integer that is a valid index of the second dimension of n.

10 metropolis

madras Data from the Madras schizophrenia study

Description

A data set documenting the presence of thought disorders across 12 months since hospitalization.

Each column represents a single patient, and each row represents a separate month. Months with

thought disorders are encoded as 1 and those without are encoded as 0. Data is sourced from "Anal-

ysis of Longitudinal Data" by Peter J. Diggle, Patrick J. Heagerty, Kung-Yee Liang, and Scott L.

Zeger. It was retrieved from http://faculty.washington.edu/heagerty/Books/AnalysisLongitudinal/madras.data
. Individuals who did not have 12 months of post hospitalization data were removed to make the

data rectangular.

Usage

madras

Format

A data frame with 69 rows and 12 columns.

metropolis Generate independent data from a single binary chain.

Description

metropolis takes a single binary chain of data in the form of an integer vector and generates b new
independent chains of data, placing all of them in an integer matrix with the original data in the first
TOW.

Usage

metropolis(bin_chain, m, b)

Arguments

bin_chain A single binary chain of data represented by an integer vector.

m An integer representing the number of swaps to be attempted.

b An integer representing the number of new chains of data to be generated.
Details

metropolis works by taking the supplied bin_chain, and attempting m swaps on it, only preform-
ing a swap of elements if doing so maintains the number of transitions between states in the resulting
chain. metropolis then takes the resulting chain, and attempts m swaps on it again, then saving the
resulting vector in a new row of an output matrix. metropolis does this b times, each time saving
the resulting vector. Once all of the new data has been generated, metropolis returns the newly
built integer matrix, of which the first row is the original chain of data bin_chain.

multiple_binary_test 11

multiple_binary_test Perform goodness-of-fit tests on multiple binary chains.

Description

multiple_binary_test is used to preform goodness-of-fit tests on multiple binary chains of data
of the same length to see if a Markov chain model is appropriate.

Usage
multiple_binary_test(binary_chains, swaps = 1000, n = 1000, run = 4,
bins = 30)
Arguments

binary_chains A two dimensional matrix, in which there are two unique values.

swaps A positive nonzero integer value for the number of swaps to be attempted on
the chain. Larger values will tend to yield "more independent" data. Generally,
the number of swaps should be much larger then the number of elements in the
matrix binary_chains.

n A positive nonzero integer representing the number of new sets of chains to be
generated.
run The length of the run to test for if one is interested in run test statistics.
bins The number of bins to be displayed in histograms of test statistics when one
plots objects generated by multiple_binary_test.
success Denotes the data entry to be counted for run statistics.
Details

multiple_binary_test works by taking the supplied binary_chains parameter, counting the
transitions between different elements, and then generating n new sets of chains with the same
number of transitions. It generates these new sets of chains by attempting to swap random elements
of the chains swaps times, only doing so if the attempted swap preserves the number of transitions
between the two unique elements of the chains. multiple_binary_test then saves the chain
generated by this process, then preforms a number of swaps equivalent to the value of swaps on
that chain again, then recording the result in a new entry in a list of data. multiple_binary_test
does this n times to generate the n new sets of chains. These new sets of chains are effectively
independent of the original one.

Once multiple_binary_test has generated new data, it preforms various tests of that data. in-
cluded in the function are the likelihood ratio test, the Pearson’s chi square test, and a run test for a
run of length specified by the argument run.

Value

multiple_binary_test returns a list of class "multiple_binary_test"” with the following ele-
ments:

data, a list of matrices, the first of which is binary_chains, and the rest of which are the generated
data.

test_stats_1rt, vector of likelihood ratio test statistics for each element of list data.

12 multiple_chi_sq_test_stat

test_stats_chi_sq, a vector of Pearson’s chi square test statistics for each element of list data.
test_stats_run, a vector of run test statistics for a run of length run for each element of list data.
p_value_lrt, the p-value of binary_chain, calculated exactly from the distribution of test_stats_1rt.
p_value_chi_sq, the p-value of binary_chain, calculated exactly from the distribution of test_stats_chi_sq.
p_value_run, the p-value of binary_chain, calculated exactly from the distribution of test_stats_run.

call, the function call.

bins, the number of bins specified in the function call.

run, the length of run specified in the function call.

Examples

data <- as.matrix(maRkov::snoqualmie)
foo <- multiple_binary_test(binary_chains = data, swaps = 10000, n = 10000,
run = 3, bins = 50)

multiple_chi_sqg_test_stat
Calculate the Pearson’s chi square test statistic for a set of binary
chains of data.

Description

multiple_chi_sq_test_stat takes a two dimensional integer vector bin_chains in which each
row represents a single binary chain of data, and calculates a Pearson’s chi square test statistic for
the entire set.

Usage

multiple_chi_sq_test_stat(bin_chains, n_chain_uniques)

Arguments

bin_chains A two dimensional integer vector where each row is a separate binary chain of
data.

n_chain_uniques
An integer value representing the number of unique elements in the set of chains
bin_chains.

multiple_chi_sq_test_stat_array 13

multiple_chi_sq_test_stat_array
Calculate Pearson’s chi square test statistics for many sets of binary
chains of data.

Description

multiple_chi_sq_test_stat_array takes a three dimensional vector containing multiple sets of
binary chains of data, and returns a numeric vector with entries corresponding to the Pearson’s chi
square test statistics of each set of binary chains of data.

Usage

multiple_chi_sq_test_stat_array(bin_chains, n_chain_uniques)

Arguments

bin_chains A three dimensional vector containing sets of chains of binary data.

n_chain_uniques
An integer value representing the number of unique elements in the set of chains
bin_chains.

multiple_indicate_run Indicate whether or not a run of a certain length exists starting at a
certain point.

Description

multiple_indicate_run takes a single binary chain binChain, a valid index of that chain i, and
a length of run p and tests whether or not a run of that length starts at index 1i.

Usage

multiple_indicate_run(binChain, p, i)

Arguments
binChain A one dimensional integer vector representing a binary chain of data.
p An integer representing the length of run to test for.

i An integer representing a valid index of binChain.

14 multiple_run_test_stat

multiple_metropolis Generate independent data from a set of binary chains.

Description

multiple_metropolis takes a set of binary chains of data in the form of an integer matrix and
returns a three dimensional integer vector with with the first entry of the first dimension filled
with the original set of binary chains and the rest filled with independent chains generated by
multiple_metropolis.

Usage

multiple_metropolis(bin_chains, m, b)

Arguments

bin_chains An integer matrix whose rows represent separate binary chains of data.

m An integer value representing the number of swaps to be attempted.

b An integer value representing the number of new sets of data to be generated.
Details

multiple_metropolis works by taking a supplied set of binary chains bin_chains and attempting
a number m swaps on entries of those chains, only swapping if doing so maintains the number of
transitions between states that existed in the initial set of chains bin_chains. After it does this, it
repeats the process on the newly generated set of binary chains of data b times, each time saving
the new set of chains in a three dimensional vector of data. The first entry of the first dimension of
this vector is used to store the original set of binary chains bin_chains.

multiple_run_test_stat
Calculate the run test statistic for a set of binary chains of data and a
run of a certain length.

Description

multiple_run_test_stat takes a two dimensional integer vector bin_chains in which each row
represents a single binary chain of data, and calculates a run test statistic for a run of length p for
the entire set.

Usage

multiple_run_test_stat(bin_chains, p)

Arguments

bin_chains A two dimensional integer vector where each row is a separate binary chain of
data.

p An integer value representing the length of run to test for.

multiple_run_test_stat_array 15

multiple_run_test_stat_array
Calculate run test statistics for many sets of chains of binary data.

Description

multiple_run_test_stat_array takes a three dimensional integer vector containing multiple sets
of binary chains of data, and returns a numeric vector with entries corresponding to the run test
statistics for runs of length p for each set of binary chains of data.

Usage

multiple_run_test_stat_array(bin_chains, p)

Arguments
bin_chains A three dimensional integer vector containing sets of chains of binary data.
p An integer representing the length of run to test for.
n_counts Second order transition counts for a single binary chain.
Description

n_counts counts the number of second order transitions in a binary chain of data, then returns a
three dimensional vector whose indices represent the type of transition, and whose values represent
the number of times that each transition occurs in the chain.

Usage

n_counts(bin_chain, n_chain_uniques)

Arguments

bin_chain An integer vector representing a chain of data.

n_chain_uniques
The number or unique values in the chain bin_chains, represented as an integer
value.

16 ok_tornado

n_counts_multiple Second order transition counts for multiple binary chains.

Description

n_counts_multiple counts the number of second order transitions in a integer matrix whose rows
represent individual binary chains. It returns a three dimensional vector whose indices represent the
type of transition, and whose values represent the number of times that each transition occurs in the
set of chains.

Usage

n_counts_multiple(bin_chains, n_chain_uniques)

Arguments

bin_chains A two dimensional integer vector, each of whose rows represents a single binary
chain of data.

n_chain_uniques
The number of unique values in the set of chains bin_chains, represented as an
integer value.

ok_tornado Tornado data for Oklahoma, 1950 - 2015

Description

A data set documenting the presence of tornadic activity in Oklahoma. Each row represents a year,
starting with 1950, and ending in 2015, and each column is a day of that year. Each day on which
a tornado occurred is marked encoded as a 1 and each day without tornadic activity is encoded as
a 0. The data is inspired by, but not drawn from, the paper "A Markov Chain Model of Tornadic
Activity" by Mathias Drton, Caren Marzban, Peter Guttorp, and Joseph T. Schaefer. As mentioned
in their paper, "day 366 of a non-leap year is coded as a non-tornadic day. This is not expected to
adversely affect the results." Data is sourced from the National Weather Service Weather Forecast
Office in Norman, Oklahoma, and can be found at http://www.srh.noaa.gov/oun/?n=tornadodata-
ok-monthlyannual .

Usage

ok_tornado

Format

A data frame with 66 rows and 366 columns.

plot.multiple_binary_test 17

plot.multiple_binary_test
Produce plots from objects of class "multiple_binary_test".

Description

Produces some interesting plots of data and test statistics of objects of classmultiple_binary_test.

Usage
S3 method for class 'multiple_binary_test'
plot(x, ...)

Arguments
X An object of class multiple_binary_test.

Further arguments passed to or from other methods.

plot.single_binary_test
Produce plots from objects of class "single_binary_test".

Description

Produces some interesting plots of data and test statistics of objects of class single_binary_test.

Usage
S3 method for class 'single_binary_test'
plot(x, ...)

Arguments
X An object of class single_binary_test.

Further arguments passed to or from other methods.

18 print.single_binary_test

print.multiple_binary_test
Print instructions for examining objects of class "multi-
ple_binary_test".

Description

Instruct user to use summary and print to examine objects of class multiple_binary_test.

Usage
S3 method for class 'multiple_binary_test'
print(x, ...)

Arguments
X An object of class multiple_binary_test.

Further arguments passed to or from other methods.

print.single_binary_test
Print instructions for examining objects of class "single_binary_test".

Description

Instruct user to use summary and print to examine objects of class single_binary_test.

Usage
S3 method for class 'single_binary_test'
print(x, ...)

Arguments
X An object of class single_binary_test.

Further arguments passed to or from other methods.

run_test_stat 19

run_test_stat Calculate the run test statistic for a single binary chain.

Description

run_test_stat takes an integer vector bin_chain of a chain of binary data, and a integer p repre-
senting the length of run to test for. It returns the run test stat for that chain of data.

Usage

run_test_stat(bin_chain, p)

Arguments
bin_chain A binary chain of data in the form of an integer vector.
P An integer greater than one representing the length of run to test for.

run_test_stat_array Calculate run test statistics for many binary chains.

Description

run_test_stat_array takes an integer matrix with each row denoting a binary chain of data and
returns an integer vector with run test statistics for runs of length p corresponding to each binary
chain.

Usage

run_test_stat_array(bin_chains, p)

Arguments

bin_chains A two dimensional integer matrix with each row denoting a individual binary
chain of data.

p An integer value representing the length of run to test for.

20

single_binary_test

single_binary_test Perform goodness-of-fit tests on a single binary chain.

Description

single_binary_test is used to preform goodness-of-fit tests on single binary chains of data to see
if a Markov chain model is appropriate.

Usage

single_binary_test(binary_chain, swaps = 1000, n = 1000, run = 4,
tiles = 30, bins = 30, success = NULL)

Arguments

binary_chain A one dimensional vector with two unique values.

swaps A positive nonzero integer value for the number of swaps to be attempted on the
chain. Larger numbers will tend to yield "more independent" data. Generally,
the number of swaps should be far greater than the length of binary_chain.

n A positive nonzero integer value representing the number of new chains to be
generated.

run The length of run to test for if one is interested in run test statistics.

tiles The number of chains to be represented in the tile plot when one plots objects
generated by single_binary_test

bins The number of bins to be displayed in histograms of test statistics when one
plots objects generated by single_binary_test.

success Denotes the data entry to be counted for run statistics.

Details

single_binary_test works by taking the supplied binary_chain parameter, counting the tran-
sitions between different elements, and then generating n new chains with the same number of
transitions. It generates these new chains by attempting to swap random elements of the chain
swaps times, only doing so if the attempted swap preserves the number of transitions between the
two unique elements of the chain. single_binary_test then saves the chain generated by this
process, then preforms a number of swaps equivalent to the value of swaps on that chain again, then
recording the result in a matrix of new data. single_binary_test does this n times to generate the
n new chains. These new chains are effectively independent of the original one.

Once single_binary_test has generated new data, it preforms various tests on that data. Included
in the function are the likelihood ratio test, the Pearson’s chi square test, and a run test for a run of
length specified by the argument run.

Value

single_binary_test returns a list of class "single_binary_test"” with the following elements:

data, a matrix of data with binary_chain in the first row, and the generated n rows of data in the
following columns.

test_stats_1rt, a vector of likelihood ratio test statistics for each row of data in data.

snoqualmie 21

test_stats_chi_sq, a vector of Pearson’s chi square test statistics for each row of data in data.
test_stats_run, a vector of run test statistics for a run of length run for each row of data in data.
p_value_lrt, the p-value of binary_chain calculated exactly from the distribution of test_stats_1rt
p_value_chi_sq, the p-value of binary_chain calculated exactly from the distribution of test_stats_chi_sq
p_value_run, the p-value of binary_chain calculated exactly from the distribution of test_stats_run

call, the function call.

run, the length of run specified in the function call.

tiles, the number of tiles specified in the function call.

bins, the number of bins specified in the function call.

Examples

data <- ¢(1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,9,0)
foo <- single_binary_test(binary_chain = data, swaps = 10000, n = 10000,
run = 4, tiles = 32, bins = 100, success = 1)

snoqualmie Rainfall data for the month of January in Snoqualmie Falls, 1948 -
1983.

Description

A data set documenting the presence of precipitation in Snoqualmie Falls Washington on every
day of every January from 1948 to 1983. 1 indicates a day with >=0.01 inches of precipitation, 0
indicates a day with <0.01 inches of precipitation. Data sourced from Peter Guttorp’s Stochastic
Modeling of Scientific Data, 1995.

Usage

snoqualmie

Format

A data frame with 36 rows and 31 columns.

summary.multiple_binary_test
Produce a summary of objects of class "multiple_binary_test".

Description

Prints test statistics and p-values for objects of class multiple_binary_test.

Usage

S3 method for class 'multiple_binary_test'
summary (object, ...)

22 swap

Arguments

object An object of class multiple_binary_test.

Further arguments passed to or from other methods.

summary.single_binary_test
Produce a summary of objects of class "single_binary_test".

Description

Prints test statistics, p-values, and provides sample data for objects of class single_binary_test.

Usage
S3 method for class 'single_binary_test'
summary(object, ...)

Arguments
object An object of class single_binary_test.

Further arguments passed to or from other methods.

swap Swap elements of single binary chains

Description
swap is used to swap elements of a single binary chain if doing so maintains the same number of
transitions between the two states of that chain.

Usage

swap(bin_chain, m)

Arguments

bin_chain A binary one dimensional integer vector.

m A integer value representing the number of swaps to attempt.
Details

swap takes a one dimensional vector of integers bin_chain and an integer m. It attempts to swap
elements of bin_chain m times, each time only completing the swap if it does not affect the number
of transitions between states in the sequence.

swap_mult 23

swap_mult Swap elements of multiple binary chains

Description

swap_mult is used to swap elements of multiple binary chains if doing so maintains the same
number of transitions between the two states of those chains.

Usage

swap_mult(bin_chains, m)

Arguments
bin_chains A two dimensional integer vector with binary values.
m A positive nonzero integer value for the attempted number of swaps to attempt
on bin_chains.
Details

swap_mult works by taking a two dimensional integer vector bin_chains and m, a number of times
to attempt swaps. It generates random integers which are valid indices of the two dimensional
vector bin_chains and tries to swap the elements of the vector at the indices that it generates, only
doing so if this preserves the total number of transitions between states. After attempting m swaps,
swap_mult returns the new, freshly swapped two dimensional vector of binary chains.

ul_test_stat Calculates the likelihood ratio test statistic for a single binary chain.

Description

ul_test_stat takes a binary chain of data and calculates the likelihood ratio test statistic associated
with it.

Usage

ul_test_stat(bin_chain, n_chain_uniques)

Arguments

bin_chain A binary chain of data in the form of a one dimensional integer vector.

n_chain_uniques
A integer value representing the number of unique values in bin_chain.

24 u6_test_stat

ul_test_stat_array Calculate likelihood ratio test statistics for many binary chains.

Description

ul_test_stat_array takes an integer matrix with each row denoting a binary chain of data and
returns an integer vector with likelihood ratio test statistics corresponding to each binary chain.

Usage

ul_test_stat_array(bin_chains, n_chain_uniques)

Arguments

bin_chains A two dimensional integer matrix with each row denoting a individual binary
chain of data.

n_chain_uniques
An integer value representing the number of unique values in the binary chains
found in bin_chains.

ub_test_stat Calculate the likelihood ratio test statistic for a set of binary chains of
data.

Description

u6_test_stat takes a two dimensional integer vector bin_chains in which each row represents a
single binary chain of data, and calculates a likelihood ratio test statistic for the entire set.

Usage

u6_test_stat(bin_chains, n_chain_uniques)

Arguments

bin_chains A two dimensional integer vector where each row is a separate binary chain of
data.

n_chain_uniques
An integer value representing the number of unique elements in the set of chains
bin_chains.

u6_test_stat_array 25

ub_test_stat_array Calculate likelihood ratio test statistics for many sets of binary chains
of data.

Description

u6_test_stat_array takes a three dimensional vector containing multiple sets of binary chains of
data, and returns a numeric vector with entries corresponding to the likelihood ratio test statistics of
each set of binary chains of data.

Usage

u6_test_stat_array(bin_chains, n_chain_uniques)

Arguments

bin_chains A three dimensional vector containing sets of chains of binary data.
n_chain_uniques
An integer value representing the number of unique elements in the set of chains
bin_chains.

vec_greater_than Find the number of entries in a vector greater or equal to the value of
the first entry.

Description
vec_greater_than counts the number of entries in a numeric vector testStats whose values are
greater than that of the value of the first element of the vector.

Usage

vec_greater_than(testStats)

Arguments

testStats A one dimensional numeric vector.

Index

*Topic datasets
madras, 10
ok_tornado, 16
snoqualmie, 21

alter_to_true_binary, 2
alter_to_true_binary_multiple, 3

check_false_binary, 3,4
check_false_binary_multiple, 3, 4
check_true_binary, 5
check_true_binary_multiple, 5
chi_sqg_test_stat, 6
chi_sqg_test_stat_array, 6

class, 11,17, 18, 20-22

i_dim_sum, 8
ik_dim_sum, 7
indicate_run, 7

j_dim_sum, 9
jk_dim_sum, 8

k_dim_sum, 9

madras, 10

metropolis, 10
multiple_binary_test, 11
multiple_chi_sq_test_stat, 12

multiple_chi_sq_test_stat_array, 13

multiple_indicate_run, 13
multiple_metropolis, 14
multiple_run_test_stat, 14
multiple_run_test_stat_array, 15

n_counts, 15
n_counts_multiple, 16

ok_tornado, 16

plot.multiple_binary_test, 17
plot.single_binary_test, 17
print.multiple_binary_test, 18
print.single_binary_test, 18

run_test_stat, 19

26

run_test_stat_array, 19

single_binary_test, 20
snoqualmie, 21
summary.multiple_binary_test, 21
summary.single_binary_test, 22
swap, 22

swap_mult, 23

ul_test_stat, 23
ul_test_stat_array, 24
ub_test_stat, 24
u6_test_stat_array, 25

vec_greater_than, 25

References

Besag, J. and D. Mondal (2013). “Exact Goodness-of-Fit Tests for Markov Chains”.
In: Biometrics 69.2, pp. 488-496. 1SSN: 1541-0420. po1: 10.1111/biom. 12009.
URL: http://dx.doi.org/10.1111/biom.12009.

Caren, Mathias Drton et al. “A Markov Chain Model of Tornadic Activity”. In: Mon.
Wea. Rev 131, pp. 2941-2953.

Diggle, P., K.Y. Liang, and S.L. Zeger (1994). Analysis of longitudinal data. Oxford
statistical science series. Clarendon Press. 1SBN: 9780198522843. URL: https://
books.google.com/books?id=955qAAAAMAAJ.

Guttorp, P. and V.N. Minin (1995). Stochastic Modeling of Scientific Data. Chapman
& Hall/CRC Texts in Statistical Science. Taylor & Francis. 1ISBN: 9780412992810.
URL: https://books.google.com/books?id=LHdkc6tmF2EC.

	main
	test_statistics
	Introduction to Markov chains
	Questions of interest & test statistics
	Single sequences
	Multiple sequences

	References

	main
	snoqualmie
	References

	main
	oklahoma_tornadoes
	References

	main
	madras
	References

	main
	obj_docs
	alter_to_true_binary
	alter_to_true_binary_multiple
	check_false_binary
	check_false_binary_multiple
	check_true_binary
	check_true_binary_multiple
	chi_sq_test_stat
	chi_sq_test_stat_array
	ik_dim_sum
	indicate_run
	i_dim_sum
	jk_dim_sum
	j_dim_sum
	k_dim_sum
	madras
	metropolis
	multiple_binary_test
	multiple_chi_sq_test_stat
	multiple_chi_sq_test_stat_array
	multiple_indicate_run
	multiple_metropolis
	multiple_run_test_stat
	multiple_run_test_stat_array
	n_counts
	n_counts_multiple
	ok_tornado
	plot.multiple_binary_test
	plot.single_binary_test
	print.multiple_binary_test
	print.single_binary_test
	run_test_stat
	run_test_stat_array
	single_binary_test
	snoqualmie
	summary.multiple_binary_test
	summary.single_binary_test
	swap
	swap_mult
	u1_test_stat
	u1_test_stat_array
	u6_test_stat
	u6_test_stat_array
	vec_greater_than
	Index

	main

