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CALIBRATING RECURRENT SLIDING WINDOW

CLASSIFIERS FOR SEQUENTIAL SUPERVISED

LEARNING

CHAPTER 1

INTRODUCTION

1.1 Sequential Supervised learning

The standard supervised learning problem is to learn to map from an input

feature vector x to an output class variable y given N training examples of the

form (xi, yj)fi. Problems where the variable y can take up a finite number

of discrete values are called classification problems in the literature. Standard

supervised learning algorithms like decision tree algorithms, the naive Bayes

algorithm, the K-nearest neighbor algorithm etc., learn this map and come

UI) with a classifier which given a new example feature vector as input,

produces the corresponding class value y as output. The accuracy of a classifier

is measured as the percentage of such new data points (data points not included

in the set of training examples) it classifies correctly.

Many problems, however, do not succumb to this simple approach. Consider

the problem of part-of-speech tagging. The problem can be defined as follows.

Given a set of sentences in the English language, label each word according to

the part of speech it represents in the sentence. Trying the classical supervised

learning approach on this problem would lead to construction of a dataset where
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each example would be a word broken down into a number of features and the

class variable specifying the corresponding part of speech (e.g., noun, verb,

adjective, etc.). We could build a classifier by feeding some training data (data

where we already know the correct part of speech for each word) to a standard

learning algorithm and then classify new words. This method would not work

well however, as the problem arises with words like "lead". There is no way to

tell if the word "lead" viewed in isolation is an adjective as in "a lead pencil",

or a verb as in the sentence "please lead the way". The classification here

depends on the relationship of this word to the other words in the sentence. The

classification is bound to the "sequence" in which this word appears. Therefore

the part-of-speech can be seen as a problem of mapping input sequences to

output sequences. No learning algorithm can be accurate in this setting unless it

has a way to analyze the context around individual words. A standard Machine

Learning approach would try to process each word separately, but this example

shows that would not work because at a minimum each word needs to be handled

in context. We need algorithms to learn a map from input sequences to output

sequences.

Many recent learning problems can be viewed as extensions of standard

supervised learning to the setting where each input object X is a sequence

of feature vectors, X (xi, x2,... , XT), and the corresponding output object

Y is a sequence of class labels Y (yr, Y2, ,YT). The sequential supervised

learning (SSL) problem is to learn to map from X to Y given a set of N training

examples, (Xi, Y)i1.
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TABLE 1.1: The 8-Case Analysis

000 (a), (b), and (c) are all random. There is no point in learning.

001 (a) and (b) are random but there is a pattern in (c). Just learn the

x -f y mapping.

010 (a) and (c) are random. Just model y, e.g., as a Markov chain or time

series.

011 (a) is random. This is the HMM case (HMMs are discussed in

section 1.3.1). Model y as a Markov chain, model y x and

then invert using Bayes' theorem. Alternatively, we can try to use a

recurrent sliding window (discussed in section 1.3.4) that has an

input context of 0 but a large recurrent context. Ideally we would use

information from the entire sequence Y (as in CRFs and HMMs).

However this is expensive, so we will use "half' of the information

(just one-sided output context)

100 (b) and (c) are random. Just model x as a Markov chain or time series.

101 (b) is random. Model the x's as a Markov chain and learn x -+ y

mapping. The simple sliding window method (discussed in section 1.3.4)

with a big input context and no output context is appropriate here.

110 (c) is random. Model x's as a Markov chain and the y's as an

independent Markov chain. Again, there is no point in learning here.

111 All three relationships are important. In this case we need to capture

the sequential relationships in both the x's and the y's as well as

the relationships between the x's and the y's. CRFs are one approach;

recurrent sliding windows with big input context and big output context

are another approach.
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FIGURE 1.1: Pictorial view of the 8-Case Analysis

1.2 The 8-Case Analysis for sequential supervised learning problems

It. is hard to predict an output sequence given an input sequence directly in

a single step. The number of possible output sequences is exponential in the

length of the sequences, and classification methods do not work well with large

numbers of classes. Therefore we seek a divide-and-conquer approach. There

are three relationships that are important in a sequential supervised learning

problem:

(a) The sequential relationships among the x's

(b) The sequential relationships among the y's

(c) The mapping from x's to y's

\Ve can imagine 8 cases as shown in table 1.1. Because we are interested in

cases where X provides some information about Y, we can ignore cases 000,
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010, 100, and 110. Case 001 can be handled by standard supervised learning.

Cases 011, 101 and 111 can be handled by sliding windows, recurrent sliding

windows, or some other popular sequential supervised learning algorithms. In

the next section we will see some such popular sequential supervised learning

algorithms that exploit the relationships (a), (b), and (c) in data.

FIGURE 1.2: Hidden FIGURE 1.3: Max En- FIGURE 1.4: Condi-
Markov Model tropy Markov Model tional Random Fields

1.3 Popular sequential supervised learning algorithms

In the literature, two general strategies for solving SSL problems have been

studied. One strategy, which we might call the direct approach, is to develop

probabilistic models of sequential data. The advantage of these probabilistic

models is that they seek to capture the true sequential relationships that gener-

ate the data. Examples of such strategies are hidden Markov models, maximum

entropy Markov models, and conditional random fields. The other general strat-

egy that has been explored might be called the Indirect approach (i.e., a "hack").

In this strategy, the sequential supervised learning problem is solved indirectly



by first converting it into a standard supervised learning problem, solving that

problem, and then converting the results into a: solution to the SSL problem.

Examples of indirect approaches include sliding windows and recurrent sliding

windows. Let us look at each of them with more emphasis on sliding windows

and recurrent sliding windows because they are the basis for this thesis.

1.3.1 Hidden Markov Models

The hidden Markov model (Rabiner, 1989) is a generative model of the joint dis-

tribution P(X, Y) of the object sequence X and the label sequence Y. Dynamic

Bayesian networks can use information from previous time steps (or neighboring

examples in the sequence) for current evaluation. Dynamic Bayesian networks

factor the state space into subspaces. This is especially useful when the inter-

actions between the subspaces is sparse. If the subspaces are highly correlated,

it is more useful to combine them and treat them as a single space. A hidden

Markov model is a special case of dynamic Bayesian networks that does not

factor the state space. Therefore it is used in problems where such factoring is

superfluous. Hidden Markov models are ideally suited to solve problems that

can be classified as case 011. Figure 1.2 shows an example of a HMM. The

popular forward-backward prediction algorithm provides efficient inference for

HMMs. We will see examples of real world problems currently solved using

HMMs in the next chapter.

1.3.2 Maximum Entropy Markov Models

The HMM is a generative model, which means that it models the relationship (c)

as a map from y to x. During classification, Bayes' rule is employed to infer the
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y values given the x values. There are two potential problems with this method.

Firstly a joint distribution of the object sequence and the label sequence has

to be maintained because of which, the required resources grow exponentially

with the number of input features. Secondly a generative models may not

exactly model the causal relationships between the x's and the y's correctly.

In some problems the causal relationship is from the x's to the y's. Maximum

entropy Markov models (McCallum, Freitag & Pereira, 2000), which are another

sequential supervised learning device, model exactly that relationship. MEMMs

learn conditional probability tables rather than a joint distribution. This avoids

problems caused by a large input feature space. MEMMs require only simple

extensions to the forward-backward algorithm. Figure 1.3 shows an example of

a MEMM.

1.3.3 Conditional Random Fields

More recently, the conditional random field (Lafferty, McCallum, & Pereira,

2001) has been proposed as a model of the conditional distribution P(YJX). It

is another sequential supervised learning approach that goes beyond MEMMs

in that it works with a conditional model and additionally solves the label

bias problem that is caused by the use of the exponential transition model

of MEMMs. In MEMMs, the probabilities of state transitions are normalized

locally for each time step rather than normalizing over the entire sequence of y's.

As a result, they do not compute the globally most likely sequence. This means

that the probabilities of transitions from state Yt to state Yt+i are normalized

over all possible states Yt+I that can be reached from Yt As a result, probabilities

of transitions to states with fewer outgoing states increase. This gives rise
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to a bias towards states with fewer number of possible next states, and this

is termed as the label bias problem. CRFs solve this problem by employing

global normalization. CRFs can be pictured as Markov random fields of the y's

conditioned on the x's. An example of CRFs is shown in Figure 1.4. Conditional

random fields constitute a very promising approach, and they are attracting

further applications and research.

1.3.4 Sliding Windows and Recurrent Sliding Windows

The indirect approach employed in sliding windows and recurrent sliding win-

dows is to convert the input and output sequences into a set of windows as

shown in Table 1.2. Each window consists of central element x and LIC let-

ters of left input context and RIC letters of right input context (in the figure

LIC = RIC = 3). Contextual positions before the start of the sequence or

after the end of the sequence are filled by a designated null value (in this case

In most SSL problems, there are regularities in the sequence of y values. In

part-of-speech tagging, the grammar of natural language constrains the possi-

ble sequences of parts of speech. In text-to-speech mapping, there are patterns

in the phoneme sequence. The simple sliding window method cannot capture

these patterns unless they are completely manifested in the X values as well,

which is rarely the case. One way to partially learn these patterns is to employ

recurrent sliding windows, in which previous predictions (e.g., for Yt-i, Yt-2,

etc.) are fed back as input features to help predict Yt. During learning, the

observed labels in the training set can be used in place of these fed back val-

ues. During classification, the sequence is processed from left-to-right, and the



TABLE 1.2: Simple sliding win-
dows

(X,Y) enough 1n-f-

w1 ___enou I

W2 __enoug n

w3 _enough

w4 enough_

W5 nough__ f

W6 ough___

TABLE 1.3: Recurrent sliding
windows

(X,Y) enough In-f-

w1 ___enou__ I

Wf2 __enoug_I II

w3 _enoughln

w4 enough_n

W5 nough__- f

w6 ough___-f
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predicted outputs th_2, pt_i are fed as input features to predict Yt- Note that

the sequence could also be processed from right-to-left, but not simultaneously

left-to-right and right-to-left. We denote the number of fed back y values as

the left output context LOG or right output context ROC, depending on the

direction of processing. Table 1.3 shows the training windows with LOG 2

and ROC 0. The advantage of the recurrent sliding window approach is that

it can be combined with any standard supervised learning algorithm to solve

SSL problems.

1.4 Our Approach

Two practical issues arise in applying either the direct or indirect methods.

The first issue is the size of the context. How much of the input sequence and

output sequence should he considered at each point along the sequence? For the

recurrent sliding window methods, this can be stated concretely as follows: how
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large should the left input context, right input context, and left output context

be? Presumably larger contexts will lead to high variance and overfitting by

the learning algorithm, whereas smaller contexts will lead to lower variance but

higher bias and underfitting by the learning algorithm.

Based on the 8-case analysis, we can say that only in case 111 do we expect

there to be a trade-off between input and output contexts. In the 101 case,

output context should always be 0. In the 011 case input context should always

be 0. So in these two cases there is no trade-off: one form of context is simply

useless. This may explain some of our results (or at least it may suggest a way

of interpreting our results).

The second issue is the criteria for measuring performance. A straight-

forward generalization of the 0/1 loss for standard supervised learning is to

measure the number of whole sequences that are correctly predicted. How-

ever, another measure is the number of individual Xt items correctly classified

(e.g. individual words in part-of-speech tagging). An interesting question is

whether the optimal choice of input and output context depends on the per-

formance criterion. Let us analyze what the 8-case analysis says about this.
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001: The two criteria should be the same.

011: If we use a very large output context, this will make the whole word

predictions more accurate, but it may also increase variance. So we

might predict that a smaller output context would be more appropriate

for individual letter predictions, since whole word accuracy is less

important and this pushes us to reduce variance by using a smaller

output context.

101: Again we predict that for whole word accuracy we want larger intput

context. So we predict that a smaller context would be appropriate

for single letter predictions.

111: For the whole word criterion, this would suggest larger output context

(which, because of the trade-off means smaller input context). For

the single letter criterion it depends on which influence is stronger.

If the y * y correlations are weaker than the x > x

correlations, then we use a larger input context, otherwise a larger

output context.
In order to test our predictions we conducted an experimental study of these two

issues. In this thesis, we present the experimental study employing a general-

purpose recurrent sliding window system, RSW, that we have constructed as

part of the WEKA, the widely used Java based Machine Learning library de-

veloped at the University of Waikato, NZ. RSW can work with any of the

WEKA classifiers that return class probability distributions'. Our study com-

pares naive Bayes, decision trees, bagged trees, and adaboosted trees on two

1 Interested readers can find details about the implementation and documentation of RSW
in the appendix
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SSL problems: NETtalk and protein secondary structure prediction. We find

that our intuitions are somewhat justified. There is some trade-off between the

amount of input context and the amount of output context for the NETtalk

data (which clearly belongs to case 111), but it is not crystal clear. Further-

more, we show that better learning algorithms (e.g., adaboosted trees) are able

to handle larger amounts of both input and output context. Finally, we show

that the appropriate choice of input and output context depends on the learn-

ing algorithm and on the evaluation criterion. This suggests that there are no

general-purpose methods for choosing the amount of input and output context

in an algorithm-independent way.
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CHAPTER 2

PREVIOUS WORK

At this point we will present an introduction of some previously studied

sequential supervised learning problems and approaches that have been used to

solve them.

2.1 NETtalk (text-to-speech mapping)

The NETtalk problem is defined as follows. Given a list of words and their

corresponding phoneme-stress sequences, learn a map that can be applied to

predict the correct phoneme-stress sequence of a new word. A phoneme is the

most basic unit of speech and a stress is a measure of emphasis given to that

phoneme during pronunciation. The phoneme and stress pair together form a

label which can be fed to a speech synthesis system to generate spoken words.

Since the words themselves can be viewed as a sequence of letters, NETtalk can

be viewed as a sequential supervised learning problem in which the x's are the

individual letters and the y's are the corresponding phoneme-stress pairs (class

labels). Some of the early work with sequential data using sliding windows was

done for the NETtalk system (Sejnowski & Rosenberg, 1987). The NETtalk

system learnt to pronounce English text by learning a map from individual

letters in a word to their respective phonemic sound symbols coupled with the

amount of stress associated with that phoneme. An example is given in Tables
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1.2 and 1.3 in the previous chapter. Sejnowski & Rosenberg (1987) used a neural

network with 203 input units, 80 hidden units, and 26 output units. The input

units were divided into sets of 29 units each (26 letters and 3 extra features).

Each feature was a single bit that was 1 if a particular letter appeared at a

particular position in the input. Each of these 7 sets represented a letter and

altogether a 7 letter window. The NETtalk system achieved a performance

of around 93% on the training data for predicting individual letters correctly

and around 65% for predicting whole words correctly. However this system

was specifically built and tuned to solve the text-to-speech problem alone. An

interesting inference with the NETtalk data that was indicated by Sejnowski

& Rosenberg, and later clearly presented by Bakiri & Dietterich (1991), was

that the pronunciation (phoneme and stress) of a letter depends more on the

letters that come after it than on those that come before it. As a consequence,

a window sliding over the word from right to left gives better performance than

a window sliding in the opposite direction. Later Adamson and Damper (1996),

employed a similar approach but with a recurrent network on this problem of

learning to pronounce English text. We have used the NETtalk data for our

experiments.

2.2 Prediction of protein secondary structure

An important problem in molecular biology is that of predicting "protein sec-

ondary structure". Briefly, the task is as follows. For each element in a protein

sequence (drawn from a 20-letter alphabet), assign it to one of three classes

(alpha helix, beta sheet, or coil). If we view the class labels or residues (alpha

helix, beta sheet, or coil) as a sequence corresponding to the protein sequence,
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then this task can be formulated as a sequential supervised learning problem

where the r's represent the proteins and the y's represent the individual class

label (alpha helix, beta sheet, or coil). As a result of the sequential nature

of protein and DNA data, applications of sequential data classifiers in Com-

putational Biology are immense. Qian & Sejnowski (1988) employed a sliding

window of width 15 with neural networks in their work on prediction of sec-

ondary structure of globular proteins. Later Krogh et al. (1993) used an HMM

to model protein families. Again the attempts here have been to come up with

a model specifically tuned to solve this problem. We have used the Qian &

Sejnowski data sets for training and testing of prediction of secondary structure

of proteins as well, in our experiments.

2.3 Part-of-speech tagging

Part-of-speech tagging has been defined in the previous chapter. For more than

thirty years POS tagging has been a standard for the sequential data learning

task. Yet solutions to this problem have been ad-hoc. Words that can poten-

tially belong to more than one part of speech category are called ambiguous

words in the literature. Researchers have figured out to a large extent what the

unambiguous words are and have built dictionaries for them. The majority of

the research in POS tagging is conducted for disambiguation given the context

in which the word appears. The context is generally selected as a few words

appearing before and after the current word in the sentence. Greene & Rubin

(1971) used a rule-based approach to build a text tagger and achieved up to 77%

accuracy on test data. Later improvements were made, and statistical methods

started finding their way into this area quite early. Jelinek (1985) used a HMM
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for this purpose. Almost all work on POS tagging after that has been with

improving HMM performance for this problem. Cutting, Kupiec et al. (1992)

also used a HMM for their POS tagging system and employed ambiguity classes

(classes of ambiguous words) and a phrase recognition system based on word

sequences to achieve an accuracy of 96% on unseen data. Brill (1992) deviated

from the main stream and introduced a trainable rule-based tagger. However

his system too used a lot of sequential information and did equally well (96.5%

accuracy). Ratnaparkhi (1996) inserted a bunch of extra features for rarely

occuring and ambiguous words. To avoid feature space explosion, he used a

maximum entropy Markov model. This was an ad-hoc strategy meant specifi-

cally to improve performance on the POS tagging problem. Recently Marquez

Padro (2000) presented a sliding window approach with an output context of 5.

They divided the POS tagging problem into many classification problems, one

for each ambiguity class and induced statistical decision trees to model grammar

constraints (accuracy 99%). Lafferty, McCallum & Pereira (2001) employed the

POS tagging domain to present Conditional Random Fields. POS tagging has

application in language understanding and information extraction (a problem

in itself for which state-of-the-art systems learn sequential patterns of text).

2.4 Information Extraction

The field of information extraction (IE) deals with segmenting and extracting

information from documents. For example, we might wish to extract informa-

tion from web pages such as names, address, and title of the CEO of a company

(extracted from a corporate webpage). Another example would be to extract

the authors, title, journal, year, and page numbers of a published article by
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analyzing the citations in a paper. Since it is more likely that the name of the

author would follow a i.vord like "Author" or a phrase like "Written by" in the

document, there is a possibility of extracting information from the sequence in

which words appear. IE can therefore be modeled as a sequential supervised

learning problem where the x's represent the words in the document and the y's

represent a binary class (e.g., "author" and "not author"). Classical IE systems

applied NLP as their core. Statistical methods were employed in IE systems like

FASTUS 1993, and CIRCUS 1993. Cohen (1995) presented text classification

using relational learning with ILP methods and Freitag (1996) proposed the use

of Machine Learning methods with IE where text formats are fairly informal

along with the use of sliding windows and HMMs for learning sequential text

patters. Later HMMs started coming into use more frequently in IE (Leek 1997)

and Craven et.al (1998) suggested the use of relational learning methods that

learn to classify Web pages on the basis of the sub-graph of pages surrounding a

given page. This was an application of IE where they identified useful fields in

existing text (in their case, web pages). After that Freitag & McCallum (1999)

implemented the use of HMMs to model the same for IE with a statistical tech-

nique called shrinkage which, they explain, brought in the best of both worlds

in terms of the bias variance tradeoffs. I\4ore recently McCallum, Freitag &

Pereira (2000) exhibited the use of maximum entropy Markov models for IE.

This technique not only modeled the causal relationships in the problem better

but also reduced the space of possible feature value combinations required to be

enlisted. Sequential supervised learning techniques are commonplace and taken

for granted in IF applications today.
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2.5 Summary

Among other applications of such sequential data classifiers are handwriting

recognition systems (Bengio et al. 1995, Hu & Brown 1996), Speech Recognition

(Rabiner 1989), intrusion detection systems (Lee, Stolfo & Mok 1998), fraud

detection systems (Fawcett & Provost 1997) and many more. Solutions to

all these problems have been either ad-hoc or extremely complex. Since we

can classify all the above problems as sequential supervised learning problems,

we can imagine a generalized approach to solving them without using ad-hoc

strategies. A general purpose tool is needed for such problems. Such a robust

and efficient off-the-shelf implementation will not only aid in the development

of new applications in these and other areas but also allow researchers to share

a common platform for comparative study.

RSW is the first general purpose off-the-shelf classifier for sequential data

using recurrent sliding windows. However, since a general purpose tool is, by

definition, not tuned to solve any specific problem, the two issues discussed in

section 1.4 arise. Both these issues can be summed up into one question: given

a problem domain, how can we calibrate the window size for a recurrent sliding

window classifier so as to achieve optimal performance? In this thesis along

with RSW we also present the first systematic study of calibration of window

size for RSW through our experimental study.
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CHAPTER 3

EXPERIMENTS AND RESULTS

3.1 Experimental Methods:

For our experiments, we chose two large datasets. The first is the text-to-speech

dataset from the NETtalk system (Sejnowski & Rosenberg 1987). This dataset

consists of 20,003 words, expressed as sequences of letters and their correspond-

ing pronunciations in terms of phonemic sound representations. Of these, 2000

sequences (words) were picked at random without replacement. This dataset of

2000 sequences was then randomly split into a 1000-sequence training dataset

and a 1000-sequence test dataset. Each class label consists of a phoneme-stress

pair. For example, in words like "there", the "t" is pronounced as "T>" wherein

the "T" is the phoneme label and the ">" is the stress label. There are 56 phone-

mic sounds produced in English speech and 6 different levels of stress. Of all

the 336 possible combinations of phonemes and stresses only 140 are observed

in the training and test sets. The average length of English words in the data

is 7 (minimum 2, maximum 17).

The second problem we studied was the Protein Secondary Structure Pre-

diction dataset employed by Qian Sejnowski (Qian & Sejnowski 1988). Their

task was to assign each element in a protein sequence (drawn from a 20-letter

alphabet) to one of three classes (alpha helix, beta sheet, or coil). Although

there are only three classes, the average length of the protein sequences is 169
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(minimum 11, maximum 498).

We computed two measures of performance:

(a) The percentage of individual elements in the test set predicted correctly

and

(b) the percentage of whole sequences in the test set predicted correctly. For

the latter, all elements in the sequence must be correctly predicted in

order for the sequence to be declared correctly predicted.

Because the sequences are so long, we never observed a case where an entire

protein sequence was correctly predicted.

For each dataset and each performance measure, we applied RSW with

LIC = RIC 0. . . 7. This resulted in an input window size ranging from

1 to 15 by steps of 2. For each input window size, experiments were performed

with the right output context (ROC) varying from 0 to 7 and then with the left

output context (LOC) varying from 0 to 7. This gives a total of 120 experiments

with different input and output context combinations.

Each of the 120 experiments was performed with each of four learning algo-

rithms: naive Bayes, J481 decision trees, bagged J48 trees, adaboosted J48 trees

(boosting by weighting). For decision trees, we employed pessimistic pruning

with five confidence factors (0.1, 0.25, 0.5, 0.75, 1). With bagged and boosted

trees, we experimented with 10 to 50 unpruned trees.

1 J48 is the WEKA implementation of C45 (Quinlan 1993)
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3.2 Results

Figures 3.1, 3.2, and 3.3 compile the results of the above experiments. Each

graph displays a comparison of the performance of various learning algorithms

across various input contexts for the best configuration of the remaining param-

eters. A label next to each performance curve displays the name of the learning

algorithm and the output context. The output context chosen for each curve is

the one where the performance of the algorithm achieves its maximum. Where

there is a difference in performance between the use of left and right output

context, it is specified appropriately by an L or an R.
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FIGURE 3.2: Protein Secondary Structure: % of individual residues (amino
acids) correct

Figure 3.1 shows performance curves for the four algorithms applied to the

NETtalk data. The performance criterion is the number of letters in the test

dataset predicted correctly. Naive Bayes works very poorly on this problem.

Peak performance is obtained with no output context and an input context of

2 which is a simple 5-letter window. A clear case of overfitting is exhibited as

the input context increases.

The best configuration for a single decision tree is the following: input con-

text of 1 (i.e., 3-letter window), output context of 1, and a pruning confidence

factor of 0.75. Performance starts dropping slightly for greater input contexts.

Bagging achieves significantly better performance, and it attains maximum per-
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formance with an input context of 3, output context of 2 (and 50 bagged trees).

Boosted decision trees do somewhat better than Bagging. They. achieve maxi-

mum performance with an input context of 4 and an output context of 6. So

there is a pattern: as we move from a single tree (IC = 1, ROC 1) to Bagging

(IC 2, ROC = 2), to Boosting (IC = 4,ROC = 6), the learning algorithms

are able to handle larger input and larger output context.

From this figure, we draw the following conclusions. First, the best con-

figuration depends on the learning algorithm. Second, as expected, all of the

algorithms exhibit some overfitting when the input context becomes too large.

Third, all of the algorithms give very poor performance with an input context of

0 (i.e., only the one current letter in the window) which is equivalent to treating
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this problem as a standard supervised learning problem. Fourth, all algorithms

obtain better results using right output context rather than left output context.

This is consistent with the results of Bakiri (1991).

Figure 3.2 shows the performance of the four algorithms applied to the Pro-

tein dataset. In this domain, naive Bayes gives the best performance (IC = 6).

The second best is bagged decision trees (IC=4). The third best is adaboosted

decision trees (IC = 6), and the worst is a single decision tree with strong

pruning (IC 1, pruning confidence 0.1). Note that in all cases, an output

context of 0 is preferred. Most state-of-the-art secondary structure prediction

methods use non-recurrent sliding windows coupled with better input features

and additional post-processing of the predictions (Jones, 1999).

Figure 3.3 shows the four algorithms applied to the NETtalk data again,

but this time the evaluation criterion is the number of whole words in the test

set predicted correctly. This graph is somewhat similar to the one in Figure 3.1,
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except that the peak performances now have different window sizes. Bagging

does better with a smaller input context and a larger output context. Boosting

uses the same output context of 6 but performs better with an input context

of 4 instead of 3. A big surprise is that J48 gives its best performance with

an output context of 7 (and no pruning). Even naive Bayes changes its best

configuration from input context 1 to input context 2. The major conclusion to

be drawn from this figure is that the optimal choice of input and output context

depends on both the learning algorithm and the evaluation criterion.
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Figures 3.4 and 3.5 show contour plots of the performance of Bagging and
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FIGURE 3.7: Protein Secondary Structure: % of individual residues (amino
acids) correct as a function of output context

Boosting for various input and right output contexts. For Bagging, the maxi-

mum at input context 3, output context 2 is clearly visible as is the maximum

at input context 4 and output context 6 for Boosting. There is some evidence

for a trade-off between input and output context. For example, decreasing in-

put context does allow us to increase output context or vice versa to a certain

extent. This is the case, in Figure 3.5. This is less evident in Figure 3.4. How-

ever, there is a large plateau of good performance when the input and output

contexts are sufficiently large. Here shrinking either input or output context

hurts performance.

Figures 3.6 and 3.7 show the performance varying with output context for
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FIGURE 3.8: NETTa1k: % of whole words correct as a function of output
context

the different learning algorithms. The performance criterion is the number

of individual examples predicted correctly. Here again all other parameters

including the input context are chosen so as to maximize the performance. The

input context for every curve is specified in a label adjacent to it.

We observe here that the curves for Bagging, Boosting and J48 are nearly

fiat, which shows that the amount of output context has little impact on their

performance. In comparison, Figure 3.1 showed that the amount of input con-

text has a much greater impact in the sense that it must be at least 1 in order to

get a reasonable performance. However, for naive Bayes, increasing the output

context has a devastating effect performance drops rapidly and monotonically



as the output context is enlarged.

The picture changes when we consider the percentage of whole sequences

correctly classified as seen in Figure 3.8. Here, increasing the output context im-

proves the accuracy of J48 and Boosting substantially, and it improves Bagging

to a lesser extent. Again the accuracy of naive Bayes decreases with increasing

output context. Clearly naive Bayes overfits for large input and output window

sizes.
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CHAPTER 4

DISCUSSION

It is clear from the results obtained that the optimal window size depends on

a lot more than the underlying domain. In this chapter we attempt to explain

why this is so. The problem domain certainly has information to provide, but

it is not sufficient for calibrating a sequential data classifier. In order to explain

the results we turned to the popular and widely accepted bias-variance theory.

Bias-variance theory employs the standard statistical analysis that views each

training set as a random sample from a population of possible training sets. It

decomposes the prediction error of a classifier into three factors: (a) the bias,

or systematic error of the learning algorithm, (b) the variance, or variation of

the learning algorithm that results from random sampling of the given data set

from the population, and (c) the noise, or variation in the class labels due to

factors that cannot be predicted from the input features. In continuous predic-

tion problems where the error is measured by the squared difference between

the predicted and observed values of the response variable, the error can be

decomposed into a sum of the squared bias, the variance, and the noise. In

classification problems where the error is measured by the error rate, the de-

composition is more complicated, and there has been considerable debate about

the most appropriate bias-variance-noise decomposition. We will employ the de-

composition developed by Domingos (2000). He developed his decomposition

for the case where there are only two possible classes. We will first present his
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decomposition and then show how to extend it for more than two classes.

Consider that you have lots of different training sets (of equal size) drawn

from the same population at random. Consider that you have a test set that

is representative of the population. Consider a classifier ii trained on each of

the training sets and tested on each example (x, y) of the test set. Let ym be

the majority prediction among all the classifiers for (x, y). Also consider that

the true function we are trying to learn is f. There are 3 components that

determine whether the prediction y =

Noise: y f(x)? (Is the label on x correct?)

Bias: f(x) = y7? (Is the majority prediction among all classifiers correct?)

Variance: y h(x)? (Does the majority prediction ym match the prediction

of the particular hypothesis h?)

To simulate this analysis using real datasets, we generate 200 bootstrap

replicates of the training data (X, Y). On each bootstrap replicate, we train a

classifier h using a learning algorithm that attempts to learn the true function

f. Then, we classify each test point x on each classifier. We assume that the

noise is zero.

Domingos developed a case analysis of error. If there is no noise, this analysis

can be shown as in Figure 4.1 The first level in this tree structure checks for bias,

and the second level checks for variance. In the case where the classification

is not biased, if there is no variance, then the prediction is correct. Otherwise

variance causes error. This type of variance is called unbiased variance and it is

undesirable. In the case where the classification is biased, lack of variance is bad

(biased variance in this case), because biased variance will cause the prediction

to differ from the biased classification. In the 2-class case, if the prediction if

not equal to the wrong class, it has to be equal to the right class. Therefore
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f(x) = ym?

(no bias) yes no (bias)

ym h(x)? (unbiased variance) ym = h(x)? (biased variance)

correct wrong wrong correct

FIGURE 4.1: A Case Analysis of Error for 2 classes

biased variance is desirable variance. Over the entire test set, the total bias,

unbiased and biased variance is calculated by simple summation and the error

is measured as follows:

Error(1) Bias(b) biasedVariarice( 17b) + 'unbiasedVariance(V)

In order to perform a bias variance analysis of our results, we extended

Domingos' work for the case where there are multiple classes. A case analysis of

error for the multiple class case can be shown as in Figure 4.2. Once again we

assume there is no noise. The only difference from the 2-class setting is for the

biased variance case. In this case, the classification is biased and suffers from

variance as well. But this biased variance is not necessarily good, because with

more than 2 classes now, it is not enough for the prediction to be unequal to a

wrong answer. Since there are multiple wrong answers here, the prediction can

be biased, differ from the majority prediction, and still be wrong. This brings

us to another kind of variance we term "biased unlucky variance". It is unlucky,

because even when the classification decision facing this kind of variance differs
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f(x) = ym?

(no bias) yes no (bias)

ym = h(x)? (unbiased variance) ym = h(x)? (biased variance)

correct wrong f(x) = h(x)? (biased unlucky variance) wrong

correct wrong

FIGURE 4.2: A Case Analysis of Error for multiple classes

from the incorrect majority, it is wrong and hence loses on both fronts. The

error decomposition now has a new term and can be written as follows:

Error(1) = Bias(b) biasedVariance( Vb)+> unbiasedVariarice(U)+

BiasedUnlnckyVariance(Vb'u)

Figures 4.3 and 4.4 show the results of our experiments on the bias-variance

analysis of single decision trees and 50 bagged trees respectively. For the purpose

of these experiments, we have chosen the NETtalk data and assumed there is

no noise in the data. The Figures 4.3 and 4.4 plot bias, variance, and error

rate against output context for no input context. It can be seen from both

these curves that bias decreases with increasing context (window size) and net

variance increases with increasing context (window size). This corresponds to

our intuition. Suppose the data was generated by a second order hidden Markov
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FIGURE 4.3: Bias Variance Analysis of J48 against output window size with
IC=O for NETtalk data

model. If a learnt classifier now used an output context of 0 or 1, there will

be a bias, because the learnt classifier cannot represent the true function. The

greater the window size, greater is the probability that the true order or the

generative model is encompassed by the learnt classifier. Hence there is a lower

bias. At the same time, a large window equates to a large number of features

in the sliding window realm. Variance increases with the number of features in

the data set and hence should also increase with increasing window sizes.

Figures 4.5, 4.6, and 4.7 compare the error rate, bias, and net variance

curves of J48 decision trees and 50 bagged trees for respectively 3 different

output contexts 0, 4, and 7. Each of the plots tell the same story. Bagging J48
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FIGURE 4A: Bias Variance Analysis of Bagged J48 against output window size
with ICO for NETtalk data

decision trees gives a reduction in net variance as it should according to theory.

The apparent small reduction in bias with Bagging is actually because of the

fact that to optimize performance the bagged trees have been left unpruned

whereas single decision trees have been pruned using pessimistic pruning with a

confidence factor of 0.25. Prunning reduces variance but increases bias in trees.

With Bagging however, the aggregation reduces variance, so better performance

is obtained by growing the trees to full depth and thereby reducing bias. The

bias curves for Bagging and J48 are almost overlapping indicating there is not

much difference in the bias for all window sizes. Bias decreases steadily as the

window size increases. It decreases up to an input context of 3 and then remains
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FIGURE 4.5: Bias Variance Analysis of J48 and Bagging as a function of input
window size with OCO for NETtalk data

more or less constant. The variance curves are a lot different. There is a huge

gap in variance between J48 and Bagging, and this difference is increasing with

increasing window size. Clearly Bagging is able to eliminate the variance caused

by using single decision trees. Variance due to bagged decision trees increases

much slower than variance due to J48. The optimal operating point (the point

where error is minimum) is at an input context of 2 for J48 and an input context

of 3 for Bagging in Figure 4.5. Bagging, therefore, employs a larger window and

obtains a better performance. Similarly in Figures 4.6 and 4.7, the window size

at which Bagging reaches its optimal point is greater than the window size at

which J48 reaches its optimal point.
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FIGURE 4.6: Bias Variance Analysis of J48 and Bagging as a function of input
window size with 005 for NETtalk data

This is the point where the story gets interesting. With standard supervised

learning, sources of bias and variance for the classifier are the training data and

the learning algorithm which generates the classifier. However with sequential

supervised learning, as we saw earlier, the window size is an additional source of

bias and variance. A bagged classifier can afford a larger window size, because

Bagging has lower variance. The extra variance generated by a greater window

size is eliminated by bagging the classifier. The bagged classifier then uses

this larger window size to obtain some additional bias reduction. This is why

Bagging can use a larger window size and yet achieve better performance. The

same argument can be extended to Boosting, which is a bias and variance
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FIGURE 4.7: Bias Variance Analysis of J48 and Bagging as a function of input
window size with OC7 for NETtalk data

reduction technique. This confirms the idea that differences in optimal window

sizes for different learning algorithms are due to the different bias variance

profiles of these algorithms.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

All methods for solving sequential supervised learning problems must con-

front the question of how much context to employ. For HMMs and conditional

random fields, the question of output context becomes the question of the order

of the Markov process (first order, second order, etc.). HMMs cannot handle

large input contexts (at least not without violating the assumptions of the gen-

erative model), but CRFs can. Hence, CRFs also must face the choice of the

size of the input context. The choice of input and output context is analogous

to classical feature selection. One common approach to feature selection is to

fit some simple model to the data and/or compute some figure of merit for

the informativeness of each attribute. (Kira & Rendell, 1992; KolIer & Sahami,

1996). The experiments reported here show that this will not work for SSL

problems, because the correct choice of input and output contexts depends on

the learning algorithm. Although a simple bias-variance analysis explains the

results, the input and output contexts chosen by some simple method (e.g.,

naive Bayes) are not good choices for boosted decision trees. A consequence of

this is that the input and output contexts need to be chosen by cross-validation

or holdout methods.

The experiments have also shown that the optimal input and output contexts

depend on the performance criterion. Window sizes that maximize the correct

classifications of individual examples are not the ones tha.t maximize the correct
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classifications of whole sequences and vice versa.

An important question for future research is to understand why different win-

dow sizes are required for different performance criteria (whole sequences vurses

individual items). Our bias-variance analysis explains why Bagging and Boost-

ing are able to handle large window sizes, but it does not explain why larger

output contexts are more valuable for whole sequence classification. Intuitively,

whole sequence classification requires greater integration of information along

the sequence. The primary way of integrating information along the sequence is

through the output context. But this intuition needs to be made more precise

in order to obtain a complete theory of sequential supervised learning.
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APPENDIX

RSW DOCUMENTATION

A.1 WEKA structure

A.1.1 Overall Structure

The WEKA system is a Java-based package. Its developers at the University of

Waikato NZ have systematically divided this package into a series of supplemen-

tary and consistent sub-packages. Each sub-package contains sub-sub-packages

and so on finally terminating in class files. Each class file has a specific purpose

and hence a very targeted implementation. Every sub-package is generated ac-

cording to functionality and code for various algorithms is grouped with the

same concept. WEKA always has more than one version available. A stable

version is available for the general users. For developers there are development

versions. Both these versions have a graphical user interface. A stable book

version, which is a subset of the GUI version is also available. There are 10

packages that together make the WEKA system. These are as follows:

1. weka.associations: As the name suggests, the classes in this package are

for generating object instances that apply association rules to data and

learn association rules from data.

2. weka.attributeSelection: The purpose for the classes in this package is very

clear from the name. These classes are largely used to manipulate the
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feature space to be used by various classifiers.

3. weka.classifiers: These classes implement various learning algorithms that

generate classifiers. This is a very elaborate package, and we will discuss

it in some more detail later.

4. weka.clusterers: These classes implement clustering algorithms.

5. weka.core: This package contains all basic functionality for working with

data sets. It also includes classes that construct datatypes useful for

manipulation by classifiers, filters and so on.

6. weka.datagenerators: Instantiations of classes in here are used for genera-

tion of data according to some pre-defined format.

7. weka.estimators: Estimators give information about some parameter of an

underlying distribution. The classes in this package are implement such

algorithms.

8. weka.experiment: This package provides extra functionality for doing struc-

tured experiments using WEKA.

9. wekafilters: Filters are instances of classes that manipulate the training

and test datasets. Manipulation can take the form of masking attributes,

choosing subsets of training examples based on some criteria, converting

categorical feature values to binary and so on. Filters largely use the

datatypes provided by the core package, and they are generally used prior

to passing the dataset on to classifiers for training or evaluation. We will

discuss this package in some more detail later.
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10. weka.gui: This package is responsible for the graphics while intense code

is running in the background. It obviates the need to check references and

manuals to look UJ) command line options.

Of these 10 top level packages that make up WEKA, the weka.classifiers

and weka.filters have been extended by the work described in this thesis. The

weka.filters package is divided into two sub-packages namely the attribute filters

and the instance filters. As the names suggest, attribute filters are those that

manipulate attributes, and instance filters are those that manipulate instances.

filters

aft ributeFilter instanceFilter

FIGURE .1: The filters sub-package

The main template class "Filter" deserves sonic detailed explanation in the

form of documentation here.
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A.1.2 filters

Class Name: Filter

Parent Class: javaiang.Object

General description:

This class is abstract, which means that it is not meant for instantiation but

only to serve as a template to build implementations in the category of filters.

As explained earlier, filters are manipulators of datasets. However, they do

not always remove something from the dataset as the name might seem to

suggest. A NominalToBinaryFilter, for example, replaces nominal (categorical or

enumerated) attributes with a number of binary attributes. There are many

subclasses to this class. Filter provides the following member variables and

methods that its subclasses can build on for thier specific algorithms.

Relevant Member Variables:

1. m_lnputFormat: Since filters alter the format of the dataset (number of

attributes, instances etc), objects are required to store the source and

target formats. This variable is the store for the source format. The

clatatype is "Instances".

2. m_OutputFormat: Store for the target format. The datatype is "Instances".

Relevent Member Functions:

1. setlnputFormat:

Input: data points (examples) in a datatype object "Instances".

Output: None.

Description: This method accepts the source data points and stores them
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into m_InputFormat. It also calls the setOutputFormat method from within

itself if required.

2. setOutputFormat:

Input: data points (examples) in a datatype object "Instances".

Output: None.

Description: This method is responsible for creating the target format

into which the given format of instances is to be converted.

3. useFilter:

Input: Data points in a datatype object "Instances" and the filter object.

Output: Modified data points in a datatype object "Instances".

Description: This method is probably the most important method for

filters. It is a static method (meaning that it relates to the whole class

rather than each instantiation), and it works as the interface between the

calling code and the filter implementation.

4. batchHnshed:

Input: None.

Output: true or false.

Description: This method is where the filter algorithm is implemented.

Every instance in the source dataset is converted to its target format. The

boolean output is just an indication of whether the process was carried

out successfully.

An example of filter use:

Instance source ... obtained from somewhere.



SomeFilter theFilter new SomeFilterO;

theFilter.setlnputFormat (source);

source Filter.useFilter(source, theFilter);

A.1.3 cla8szfiers

The package weka.classifiers is huge and understandably so. Directly under

this package there are a few class implementations among which those of chief

interest to us are the Classifier.class (a template for construction of all data clas-

sifiers), the Evaluation.class (an instantiation of this class provides functionality

for generating statistical information when some test data is classified), and the

DistributionClassifier.class (a template for classifiers that output a probability

distribution over the possible class values).

classifiers

Classifier Di stributionClassifier Evaluation

on

functions misc méta rul

FIGURE .2: The classifiers sub-package
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The classifiers package is further divided into 8 sub-packages. Each con-

tains classes that represent implementations of classifiers that can be placed

into a certain category according to a set of criteria. For example, Bagging and

Boosting are classification algorithms that use an ensemble of base classifiers

and are therefore placed under the subpackage "meta". All decision tree algo-

rithms come under the subpackage "trees". All Bayesian classifiers come under

"bayes" and so on. Again the main template class "Classifier" deserves detailed

explanation before we move on.

Class Name: Classifier

Parent Class: java.lang.Object

General description:

This class is abstract, which means that it is not meant for instantiation but

only to serve as template to build implementations in the category of classifiers.

There are many known subclasses to this class and more are coming up. Clas-

sifer provides the following member variables and methods that its subclasses

can build on for their specific algorithms.

Relevant Member Variables: None

Relevent Member Functions:

1. buildClassifier:

Input: training examples in a datatype object "Instances".

Output: None.

Description: This method is the implementation of the learning algorithm

that the class represents. The subclass of Classifier uses the training in-

stances supplied to generate the classifier. It is only after the BuildClassifier
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method is called with appropriate training examples that classifications

can be made on unseen data.

2. classifylnstance:

Input: One test example in a datatype object "Instance".

Output: Classification decision as a number (double) corresponding to a

class.

Description: This method is where the subclass of Classifer supports im-

plementation of the classification algorithm. It only classifies a single

example. To classify a number of test examples, this method is called

many times (e.g., inside a loop).

An example of classifer use:

Instances train = ... obtained from some source.

Instance test = ... obtained from some source.

SomeClassifier classifier new SomeClassifierO;

classifier.builclClassifier(train);

double result classifier.classifylnstance(test);

A.2 The RSW package

Our system with the main class RSW is not a separate package in itself. There

are 5 classes other than RSW that aid in the working and presentation of a

complete sequential data classifier. In all, our system consists of the following

classes:
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1. SequenfiatCassifier

2. DistributionSequentiaICassifier

3. RSW

4. Windowise

5. SequentialEvaluation

6. SeqCVParameterSelection

Let us look at each one in detail.

A .2.1 SequentialGiassifier

Class Name: SequentialCiassifier

Parent Class: weka.classifiers.Classifier

General Description: This class is abstract, and it serves as a template

for sequential data classifiers including RSW and any other potential classifiers

tuned specifically for classification of sequential data.

Relevant Member Variables: None.

Relevant Member Functions:

1. classifySequence:

Input: Data points in a datatype object "Instances".

Output: An array of classifications in the form of numbers (double) cor-

responding to a probability distribution over the space of class labels.

Description: This function is the sequential counterpart of the method
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"classifylnstance" in Classifier. Input is taken as an "Instances" instead of

"Instance", because classification decisions cannot be made unless the se-

quence in which a particular data point occurs is known completely. This

class has been placed inside the weka.classifiers package.

A .2.2 DistributionSequential Classifier

Class Name: DistributionSequentialClassifier

Parent Class: weka .classifiersSequentialClassifier

General Description: This class is abstract, and it serves as a template for

sequential data classifiers that return a probability distribution over possible

class values during classification instead of just a single value.

Relevant Member Variables: None.

Relevant Member Functions:

1. distributionForSequence:

Input: Data points in a datatype object "Instances".

Output: An array of arrays each representing a probability distribution.

Description: This function is the sequential counterpart of the method

"distributionForinstance" in the class DistributionClassifier. "distribution-

Forinstance", as the name suggests, returns a distribution over the space

of posiible class values for an example. Once again the input is taken as an

"Instances" object instead of an "Instance" object, because classification

decisions cannot be made unless the sequence in which a particular data

point occurs is known completely. This class has been placed inside the

weka.classifiers package.
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A.2.3 RSW

Class Name: RSW

Parent Class: weka dassifiers. DistributionSequentialCiassifier

General Description: This is the heart of our system. It is a class that

directly descends from Distri butionSequentia I Classifier and provides implementa-

tions for all its methods, mainly "buildClassifier" and "distributionForSequence".

The sliding window classification algorithm explained in the introduction is im-

plemented here. "windowisation" of the data performed by the Windowise filter

is the soul of this algorithm. "windowisation" is done at the time of training and

testing both. This class has been placed under the weka.classifiers.meta package,

because it conforms to that category. Like Bagging and Boosting, it uses a base

classifier and builds functionality on it.

A.2.4 Windowise

Class Name: Windowise

Parent Class: weka.filters

General Description: The process of wmdowisation was explained in the

introduction chapter of this thesis. This filter takes as input four numbers

specifying the sizes of the input and output contexts required for generating the

sliding window: LIC (the amount of left input context), RIC (the amount of

right input context), LOC (the amount of left output context) and the ROC

(the amount of right output context). For RSW, one of LOG and ROC must

be zero. Due to design constraints in the WEKA package, this filter cannot be

used by itself. It has to be used through another program. In other words, the
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user cannot run this code from the command line, feed it a dataset, and get a

windowised data set as output. However this is not a fundamental limitation,

and it might be sorted out in future versions. Since the windowising technique

affects both the attributes (features) and the instances (examples) in a dataset,

the Windowise class has been placed under the global filters package itself.

A .2.5 SequentialEvaluation

Class Name: SequentialEvaluation.

Parent Class: java.lang.object.

General Description: Classifiers in WEKA use a class called "Evaluation".

This class is responsible for generating statistics on the tasks the user wants

to perform, like the listing the number of test examples correctly classified,

the confusion matrix and so on. Taking inspiration from there, we wrote an

evaluation class "SequentialEvaluation" that does the same for sequential data

classifiers. The following is a sample output from running Naive Bayes on a

protein secondary structure classification dataset through Sequential Evaluation.

weka. classifiers .meta .RSW

Time taken to build model: 3.8 seconds

Time taken to test model on training data: 4.07 seconds

Error on training data

Correctly Classified Instances

Incorrectly Classified Instances

Correctly Classified Sequences

9643 53.2615 /,

8462 46.7385 %.

0 0



Incorrectly Classified Sequences

Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

Root relative squared error

Total Number of Instances

Confusion Matrix

a b c d

9607 138 0 123 a_
3599 36 0 1 b=e

4519 77 0 5 c=h

0 0 0 0 d=#

111

-0.0081

0.2334

0.4575

78.049 °h

118.3251 %

18105

<-- classified as

Error on test data

Correctly Classified Instances

Incorrectly Classified Instances

Correctly Classified Sequences

Incorrectly Classified Sequences

Kappa statistic

Mean absolute error

Root mean squared error

Relative absolute error

1617

0

17

-0.0056

0.2297

0 .4537

76.7851

100

55

0-

/0

54.0625 °h

45.9375 °h

0

100
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Root relative squared error 117.301 %

Total Number of Instances 3520

Confusion Matrix

a b c d <-

1903 0 0 20

748 0 0 0

849 0 0 0

0 0 0 0

classified as

a=

b=e

C =h

A .2.6 SeqG VParameterSelection

Class Name: SeqCVParameterSelection

Parent Class: SequentialCiassifier

General Description: In our experience, it is important to carefully choose

the size of the input and output contexts to obtain good results. If the contexts

are too large, performance is damaged because of high variance (overfitting) by

the base learning algorithm. If the contexts are too small, performance may be

poor because not enough contextual information is available to the base learning

algorithm. We have observed cases where the input context should be very small

yet the output context is large and also cases where the output context should be

zero and the input context should be large. Furthermore, the choice of context

may also depend on whether you seek to maximize the number of elements

correctly classified or the number of entire sequences correctly classified. A

good way to choose the context parameter values (LIC, LOC, RIC, ROC) is

to perform an internal cross-validation on the training data. RSW supports this
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with the SeqCVParameterSelection class. The SeqCVParameterSelection can be

used from the command line exactly as you would use CVParameterSelection but

with RSW as the base classifier. Please note that SeqCVParameterSelection will

not accept any other base classifier.

A.3 Structure of the ARFF file for sequential data

In WEKA, input files containing datasets must be in a particular format called

the ARFF format, in WEKA. For RSW, the ARFF file contains one example for

each element of each training sequence. The data file has the standard ARFF

format with the following extensions:

The first attribute in each line must be the sequence number. Each training

example (x, y) is assigned a unique sequence number (in ascending order count-

ing from 1). The second attribute in each line must be the element number.

Each position (Xt, lit) for t 1,... T (where T is the length of X and Y) must

be assigned an element number (in ascending order counting from 1). The re-

maining attributes in each line provide features that describe Xt and the class

label lit- The following example ARFF file shows two training sequences (bad,

BAD) an(l (feed, FEED). Note that each attribute and the class variable must

specify an extra null value that is used to pad context that extends beyond the

end of the sequence. This null value appears as the final value in the value list.

In this case, we have specified "_" as the null value for both featurel and class.

@relation SampleSequentialData

@attribute sequence_number numeric

@attribute element_number numeric



Qattribute featurel {a,b,c,d,e,f,g,h,i,j ,k,l,m,n,o,p,q,r,s,t,u,v,

w, x
, y , z , _}

@attribute class {Al, Bi, Cl, Dl, El, Fl, _}

@data

1, 1, b, Bi

1, 2, a, Al

1, 3, d, Dl

2, 1, f, Fl

2, 2, e, El

2, 3, e, El

2, 4, d, Dl

The type for the sequence_number and element_number attributes must be

numeric. The sequence numbers must start with 1 and proceed serially without

any breaks or jumps in increasing order. The element numbers inside each

sequence also must start at 1 and proceed serially in increasing order until the

end of the sequence. The class attribute must be nominal. RSW converts the

data structured as above into the windowised data as shown in the previous

section. The non-nominal attributes remain unmodified.

A.4 Using RSW from the command line

RSW is a meta classifier (like Bagging and AdaBoostMl). Therefore, it re-

quires a base classifier. RSW takes all options taken by any other classifier e.g.,

-t "train.arff" -T "test.arff" and so on. In addition to these, RSW requires 5

mandatory options.



59

-A size of the left input context for sliding window

-B size of the right input context for sliding window

-Y size of the left output context for sliding window

-z size of the right output context for sliding window

For running classifiers and other code iii genera1 through WEKA, please see

the WEKA Documentation. For documentation, versions, contribution and any

other information on WEKA, visit

http://www.cs .waikato ac .nz/ml/weka/index.html




