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Digital Clocks Based upon Dual Side Band Suppressed Carrier Modulation 

1. Introduction 

Electronic devices become more reliable and efficient as engineers design them to 

operate within an appropriate set of environmental conditions. Electromagnetic noise is a 

significant environmental constraint for many products and systems, and could cause many 

devices to malfunction unless the levels of man-made electromagnetic noise were 

controlled. Stray noise can impact communications, navigation, and other critical radio 

services. Fortunately, there are technologies and standards that enable engineers to reduce 

the electromagnetic noise generated by their designs. The work described in this thesis is 

an additional technology - a tool - for controlling the emissions from digital systems into 

the electromagnetic environment. 

1.1 Electromagnetic Interference 

Electromagnetic interference (EMI) occurs when radio noise from one electronic 

Many countries have enacted laws thatsystem disrupts the function of another system. 

limit the strength of radio emissions from various classes of products. Some companies 

These standards are all directed toand military organizations have additional standards.
 

achieving the objective defined in the European EMC Directive (European Council,
 

1989): 

The apparatus ... shall be so constructed that: 
a. the electromagnetic disturbance it generates does not exceed a 

level allowing radio and telecommunications equipment and other 

apparatus to operate as intended; 
b. the apparatus has an adequate level of intrinsic immunity to 
electromagnetic disturbance to enable it to operate as intended. 
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Interference requires three components: a noise source, a noise receptor, and a 

coupling path (Ott, 1988). A noise source can be any device that creates electromagnetic 

fields. A noise receptor is a device that responds to those fields in an unintended manner. 

The coupling path comes in many forms, and may include signal cables, power cables, or 

free space. The coupling path determines how much radio power from the noise source 

will impinge upon the receptor. By eliminating or modifying any of these three 

components, one can prevent troublesome interference effects. The condition in which 

interference effects are sufficiently controlled is called Electromagnetic Compatibility, or 

EMC. 

1.2 Radio Systems 

Many cases of electromagnetic interference involve radio systems. Radio 

transmitters intentionally create strong electromagnetic fields, thereby acting as the noise 

source. A well-known example is the HERO problem, which deals with the Hazards of 

Electromagnetic Radiation to Ordnance. It is a standard practice on many military ships to 

keep missiles and explosives away from radar dishes, because the strong radio pulses from 

such dishes can overload the propellant igniters or explosive initiators. 

Radio receivers also are involved in many cases of interference, because they are 

intentionally designed to respond to radio waves. They can act as noise receptors. A 

well-publicized example of this arises from the use of personal electronic devices aboard 

airplanes. Many airlines restrict the types of electronic devices that passengers can use in 

These restrictionsflight, especially during the approach and departure phases of flight. 

were established because cell phones, electronic toys, and other devices that seem safe can 

actually interfere with navigational radio systems. 

Radio receivers typically contain very selective narrow band filters. For 

interference to occur, a noise source must emit significant radio power within the input 

band of the tuned receiver or its intermediate tuner stages. 
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1.3 High Speed Digital Systems 

High speed digital systems are a very common source of electromagnetic noise, 

and often cause interference to other devices and systems. This happens mainly due to 

system clocks that are repetitive square wave signals. Interference may also occur on 

occasion as a result of data interactions, which are synchronous to the system clocks. The 

characteristics of these clock and data signals that allow them to cause interference are 

their high frequencies, their high harmonic content, and their narrow bandwidths which 

may be only a few hundred Hertz wide or less. The high frequency has functional value in 

that it permits faster data manipulation. The high harmonic content is necessary to 

provide clean signal edges. The narrow bandwidth is not always necessary; it is present as 

a result of the crystal oscillators used to generate reliable high frequency timing. 

1.4 Spread Spectrum Clocks within Digital Systems 

The manner in which a clock signal is used in high speed digital systems can 

generally be grouped into one of three categories: for direct drive of digital systems; as a 

frequency reference for phase locked loop (PLL) frequency synthesis; and as a timing 

reference for PLL synchronized data interchange. Each usage category responds 

differently to broad band clocks. 

A fast digital clock is commonly used to indicate when data is valid on a bus, but 

sometimes data is simply synchronized to phase-locked loops at the data source and 

destination. The PLLs are synchronized using a slower clock or intermittent strobe. 

Narrow band clocks are critical for PLL synchronized data interchange. Systems that use 

this method include x86-class microprocessors, and the low-voltage differential signaling 

system (LVDS) used on many flat panel displays. Even the analog color system used in 

color television relies on PLL synchronized data interchange. Variations in the clock 
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operation, in the form of cycle-to-cycle jitter or frequency hopping, can cause data loss in 

such systems. 

A clock used as a reference frequency for PLL synthesis can accommodate more 

jitter and frequency drift, though there are limits at which the synthesis becomes unstable 

(Hardin et al., 1997). PLL synthesis is used in many microprocessor systems, as well as 

digitally tuned radio and television sets, to generate a stable, digitally-selectable high 

frequency signal from a low frequency oscillator. 

In the end, almost every digital clock is used to drive logic gates, such as NAND 

gates, latches and flip-flops. Clocks used to drive circuitry directly can withstand jitter 

and frequency variation without any difficulty, so long as the design meets the minimum 

values for clock period, data setup time, and data hold time. These minimum timing 

values are violated when the high period or the low period of the clock is shortened 

beyond an acceptable limit. 

Spread spectrum clocks reduce interference to radio systems by spreading the 

electromagnetic emissions across a wider band of frequencies. Narrow bandwidth radio 

tuners are less likely to experience interference from digital systems using broad band 

clocks, because their own receiver filters tend to reject most of the noise power. 

Exchanging a narrow band clock for a spread spectrum clock will not generally decrease 

the power in an emission; rather, it decreases the power spectral density. This 

modification to the noise source can resolve many interference problems. 

The application of a spread spectrum clock to a circuit or system must be done 

with an understanding of how that system uses the clock: for direct drive, synthesis, or 

synchronization. The cycle-to-cycle jitter and frequency drift characteristics of the spread 

spectrum clock must meet the requirements of the system. 
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1.5 Existing Spread Spectrum Technologies 

Spread spectrum methods are increasingly popular in radio communications. 

These include methods of digitally double-modulating a radio carrier to improve efficient 

use of the communication channels. The second digital modulation is done with an 

encryption key, and several transmitters broadcast into overlapping frequency channels. 

The various keys used in a channel are mathematically orthogonal so the individual 

information streams in the channel can be recovered and discriminated. 

Digital systems that use spread spectrum clocks for control of electromagnetic 

interference are not nearly so elegant. There are two basic methods in use: random phase 

or frequency variations, or controlled frequency modulation (FM). 

The random methods are quick, cheap, and dirty: a disturbance signal is injected 

somewhere within the clock generation circuit. This disturbance signal causes the phase 

or frequency to shift from the oscillator's steady state conditions. The clock circuit 

recovers and establishes a new steady state condition. The disturbance signal changes 

again and again, forcing more recovery processes and steady state conditions. The 

resulting clock signal has spread spectrum characteristics. A clock with these random 

variations is called a dithered clock. The signal may also include significant levels of jitter 

or frequency drift, making these generally useful only for direct drive circuitry. 

Due to the random nature of these dithering methods, the clock period may be lengthened 

or shortened while trying to restore steady state conditions. This can impact the timing 

margin in the digital design, and so the designer must take this effect into account. The 

effective clock rate or effective frequency of a signal is the number of low-to-high 

transitions per second. A circuit designer who uses random dithering must make the 

effective clock rate low enough so that the minimum timing requirements of the logic 

gates are not violated during the system's randomized timing variations, as shown in the 
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upper graph of Figure 1.1. The random variation method is not useful in circuits involving 

phase locked loops, or in high performance systems where the effective clock frequency 

must be near the minimum cycle time limit, defined by either the logic gate technology or 

the overall system design. 

The FM method of spread spectrum clock generation is best described in work 

done by engineers at Lexmark, Inc. Their method uses a narrow band reference clock to 

create a frequency modulated output clock. The modulation is performed with a patented 

modulation wave, optimized to result in a flat frequency spectrum over the modulation 

band (Hardin et al., 1994). The frequency deviation of the fundamental may be set to 

provide the desired power spectral density. The deviation is multiplied for harmonics, 

such that higher harmonics have a wider spectral spread. 

This FM method tends to work quite well in direct drive systems. With 

appropriate modulation rates, it works well in frequency synthesis systems, though the 

PLL loop filter within the synthesis circuit may alter the flatness of the emission spectrum. 

It is less useful in synchronization applications, though it can provide acceptable results. 

The major drawback of this method is that it requires phase locked loops, or similar 

analog devices, to establish low-jitter clocking. This makes the technique difficult to 

implement on a silicon process which is optimized for high speed digital operation. The 

effective clock rate depends on the modulation wave shape. Generally, the effective clock 

rate is set below the maximum permissible clock rate by the amount of the FM deviation, 

as shown in the middle graph of Figure 1.1. 

1.6 A Dual Side Band Supressed Carrier Spread Spectrum Clock 

This work presents a different method and system for generating a spread 

spectrum digital clock based upon dual side band suppressed carrier amplitude 

modulation, which is useful for most digital clock applications. The system is entirely 

The method does not createdigital, and is compatible with existing digital technology. 
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random short pulses that might violate minimum timing specifications, but allows the 

designer to achieve an effective clock rate that is closer to the maximal clock rate of the 

circuit, as suggested in the lower graph of Figure 1.1. 
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2. Technology Overview 

Existing spread spectrum technologies modulate the phase or frequency of a wave 

The method described here uses amplitudeto achieve broadband signal characteristics.
 

modulation to create a broadband signal. A dual side band suppressed carrier clock can
 

replace the narrow band square wave clock used in digital electronics.
 

A square wave clock changes between a logical 1 and a logical 0 at regular 

intervals. One could look at it as a bit pattern: 101010101010101010101010. In the new 

scheme, transitions will be omitted from time to time, to make a bit pattern more like 

this:101011010101010010101. This modification to the pattern could be viewed as a 

phase delay; however, it is more useful to think in terms of repeatedly changing the 

polarity of the signal. 

By changing the polarity of the signal, bits tend to cancel each other in the 

frequency domain. In fact, the signal energy moves into the side bands commonly 

discussed in AM modulation theory. The end result is that the modulation pattern - the 

template which determines how often the bit polarity will be inverted - will completely 

determine the shape of the side bands. Spectral reductions of greater than 20 decibels are 

noted in this thesis. 

Many digital devices can use this clock as their timing reference. Others can use 

this clock only when distributing signals across cables or between chassis. This method 

has the capability of demodulating the signal so that the original square wave clock is 

recovered at the receiving circuit. 

The proposed method uses only logic gates. It does not require the use of analog 

devices -such as phase locked loops - in digital designs. 
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3. Theory and Analysis 

3.1 Phase Inversion and Spectral Cancellation 

Consider the waves shown in Figure 3.1. The first wave, (a), represents a standard 

square wave moving between the binary values +1 and -1. The second, (b), is a sinusoidal 

wave with the same fundamental frequency as the square wave. Fourier analysis of the 

square wave would show a peak in the frequency spectrum at the frequency ofthe 

sinusoidal wave. 

The Fourier transformation, G(co), of a function, g(t), is generated by comparing 

g(t) with a sinusoidal wave (or, elwi in general) at every frequency, co. The function g(t) 

and the sinusoidal wave are compared by multiplying them together, and their product is 

integrated over a time period, such as -x to 00. For any value of co, the transformed 

function, G(co), will have some value corresponding to the power spectral density of the 

original function, g(t), at frequency co. 

If the first two functions of Figure 3.1 were multiplied, as shown in part (c), the 

resulting function would always be positive: when the sine wave is positive, the square 

wave is positive, yielding a positive product; when the square wave is negative, the sine 

wave is negative, and the result is again positive. Since wave (c) is always positive, its 

average value of is also positive. The Fourier transform of the square wave has a peak at 

the frequency of the sinusoidal wave, indicating that the wave has power at the frequency 

of the sine wave. This power implies a possibility of interfering with a radio receiver 

tuned to the frequency of the sine wave. 

Figure 3.1 includes an ordered set of numbers, (d), representing the square wave 

as a binary pattern of +1 and -1 values. Figure 3.1 also includes (e), a Fast Fourier 

Transform of that digital pattern. Only the integer part of the magnitude of the Fast 
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a. Square wave 

_J 

b. Sine wave 

c. Product function 

AAAAAAAAAAAAAAAAAAAAA 

d. Numeric pattern representing the square wave 

[ +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 

e. Fast Fourier Transform of the numeric square wave pattern 

< 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 > 

Figure 3.1: Spectral analysis of pure square waves by graphic and numeric processes. 

Parts a, b, and c demonstrate the graphic process; parts d and e represent the numeric 

process. 
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Fourier results will be shown, though the values are often complex numbers. The Fast 

Fourier Transform identifies repetitions in a signal, and each entry in the transformed 

number set corresponds to a different repetition rate or frequency. The peak value of 16 

located at position 9 in the transformed pattern corresponds to the fundamental frequency 

of the square wave. 

Compare these results to those in Figure 3.2. The first wave, (a), is like the square 

wave in Figure 3.1, except that the magnitude is inverted every four cycles. This is a 

suppressed carrier modulated square wave, and its spectral properties form the basis of 

this work. When the modulated wave, (a), and the sine wave, (b), are multiplied, their 

product function, (c), is sometimes positive and sometimes negative. The average value of 

this product function is exactly zero. A Fourier analysis would show no energy peak at 

the frequency of the sine wave. A radio receiver tuned to the frequency of the sine wave 

would not experience interference from this square wave. 

Figure 3.2 also includes a binary representation of the wave with inversion, (d), 

and a Fast Fourier Transform of that binary pattern, (e). This transform shows two 

immediately significant properties. The first is that element 9, corresponding to the 

frequency of the sine wave, is zero. Note that other elements in the transformed pattern 

are nonzero, suggesting that the energy in such a wave would be distributed across many 

frequencies. The second significant property is that the highest value in Figure 3.1(e) was 

16, but the peak lowered to a value of 10 in Figure 3.2(e). 

3.2 Suppressed Carrier Modulation 

Suppressed carrier modulation can be considered mathematically from 

several different viewpoints. Starting with a binary pattern C which represents a clock or 

square wave, and a binary modulation pattern M, the modulated binary pattern S can be 

generated in either of two equivalent processes. 
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a. Modulated square wave 

b. Sine wave 

A A A A A A A A A A A
VV7VVVVV77 

c. Product function 

AAAAAAAA rIV YAAAAA 

d. Numeric pattern representing the modulated square wave 

[ +1 -1 +1 -1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 -1 +1 ] 

e. Fast Fourier Transform of the numeric modulated square wave pattern 

< 0 2 0 2 0 4 0 10 0 10 0 4 0 2 0 2 > 

Figure 3.2: Spectral analysis of modulated square waves by graphic and numeric 

processes. Parts a, b, and c demonstrate the graphic process; parts d and e represent the 

numeric process. 
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The first process is an element-by-element multiplication process: 

S; = A C; M, B for j = 1 to n Eq. 3.1 

E { -1 +1 } 

E { -1 +1 ) 

Where C, M and S are binary patterns of length n. The scalar constants A and B are 

selected so that S; maps into the same binary space as and M. For binary values in the 

set {-1 +1), A = ±1 and B = O. 

Equation 3.1 defines an amplitude modulation process. Standard amplitude 

modulation is based upon the equation 

Eq. 3.2f(t) = A sin(27r t) [1 + m(t)] 

-1 < m(t) < 1 

where f(t) is the modulated signal, fc is the carrier frequency, and m(t) is the modulation 

signal. Since the quantity [1 + m(t)] is assured to be positive, there is always some 

spectral energy at the frequency ff. 

Suppressed carrier amplitude modulation, by contrast, has little or no energy at the 

carrier frequency ff. It is based upon the equation 

Eq. 3.3f(t) = A sin(27c fe m(t) 

This modulation is similar to that described in Equation 3.1. The relationship exists more 

clearly between Equation 3.1 and Equation 3.3 when: C is the binary pattern of a square 

wave with a fundamental frequency fc; the variable A in Equation 3.3 takes the value one, 

with A and B in equation 3.1 set to +1 and 0 respectively; and M is a binary-valued 

substitute for m(t). 

The second equivalent process for generating the modulated pattern S from C and 

M is to represent the patterns as logical values and perform a bit-by-bit exclusive-OR 

operation. The mapping of the logical space (0 1) into the binary space {-1 +1} is not 

unique. For mathematical purposes in this chapter, the logical state 0 will map to the 
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binary value +1, and the logical state 1 will map to the binary value -1. The mapping will 

be different in later chapters of this thesis, to better suit the mappings commonly used in 

electrical engineering. Once a mapping relationship is established, any binary-valued 

pattern P will uniquely map to a logical pattern P, and vice versa. 

Let the binary patterns S, C, and M map into the logical patterns S, C, and M. 

The process of Equation 3.1 may be equivalently written as 

= @AA for j = 1 to n Eq. 3.4 

Table 3.1 demonstrates how C, M, S, C, M, and S relate under thesemappings and 

modulation processes. Suppressed carrier modulation can be implemented in a binary 

system by using Equation 3.1, or in a logical system by using Equation 3.4. Binary 

patterns in brackets [], and logical patterns in braces {} will be used interchangeably in the 

remainder of this text. 

Table 3.1: Binary Patterns and Logical Patterns. 

Binary Patterns Logical Patterns 

C [-1 +1 -1 +1 -1 +1] C {101010} 
M [-1 -1 +1 +1 -1 +1] M {1 1 0 0 1 0} 

S, = Ci MI [+1 -1 -1 +1 +1 +1] Si = C, ED /14, {01 1 0 0 0} 

3.3 Side Bands from Narrow Band Suppressed Carrier Modulation 

Analog communication theory predicts that an amplitude modulation process will 

produce side bands equally spaced above and below the carrier frequency. The side bands 

are related in frequency and amplitude to the carrier frequency and the spectral content of 

the modulation signal. The Fast Fourier Transform pattern of Figure 3.2e showed spectral 

content equally spaced above and below position 9 in the pattern, where position 9 

corresponded to the carrier frequency before modulation. This suggests that the side 

bands predicted in analog communication theory also appear as a result of the digital 

processes detailed above in Section 3.2. 
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3.4 Simulation and Analysis of Side Bands 

This prediction is tested by analysis of several 32-element modulation patterns. In 

all cases, the carrier C is composed of alternating logic states { 0 1 0 1 0 1 0 1 0 1 ). 

The Fast Fourier Transform of the binary modulation signal M is shown as Fm, and that of 

the binary modulated signal S is shown as Fs. As before, the Fast Fourier results will be 

shown in angled brackets <>, and only the integer portion of the magnitude will be shown. 

The transformations will be performed on binary patterns, as before, though logical 

patterns will be shown. This work was carried out using the Fast Fourier Transform, 

vector, and list manipulation functions of the HP48G calculator. The Reverse Polish LISP 

programs and algorithms are detailed in Appendix A. 

For reference, the first system analyzed will be an unmodulated signal. 

M= {0000 0000 0000 0000.0000 0000 0000 0000} Eq. 3.5a 

Fm = <32000 0000 0000 0000 . 0000 0000 0000 0000> Eq. 3.5b 

S={0101 0101 0101 0101.0101 0101 0101 0101} Eq. 3.5c 

Fs = <0000 0000 0000 0000 . 32000 0000 0000 000> Eq. 3.5d 

The initial value of 32 in Fm indicates that the average value of M is not zero. The 

reader will recall that each binary value NI; is +1 for all j, because of the mapping between 

logic and binary spaces defined previously. Thus, Equation 3.5b is not the Fast Fourrier 

Transform of Equation 3.5a. Logical M is converted to binary M, and then transformed, 

and then magnitudes of the transformed values are rounded to the nearest integer for 

simpler presentation. Fs shows that the peak of 32 occurs at position 17, corresponding 

to the fundamental frequency of the carrier C. 

The second system to be considered uses a square wave modulation signal of one-

sixteenth the carrier frequency: 
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M= {0000 0000 0000 0000 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1} Eq. 3.6a 

Fm = <02007 0403 03 02 0202 . 0202 0203 03 04 07020> Eq. 3.6b 

S={0101 0101 0101 0101.1010 1010 1010 1010} Eq. 3.6c 

Fs=<0202 0203 0304 07020.02007 0403 0302 0202> Eq.3.6d 

The first half of Fm shows a peak value in position 2, with decreasing values in even-

numbered positions. This corresponds to a low frequency square wave and its decreasing 

spectral content at even-multiple harmonics. The second half of Fm is a reversal of the 

first half. This is a spectral wrap-around effect of the Fast Fourier Transform. 

The first half of Fs is a reverse image of the first half of Fm, and the second half of 

Fs is a copy of the first half of Fm. These are the upper and lower side bands expected 

from modulation theory. As expected, the value at position 17 of Fs is zero. This 

indicates a suppressed carrier modulated square wave. 

The next system to be analyzed uses a square wave modulation signal at one-

quarter of the carrier frequency: 

M= {0 0 0 0 1 1 1 1 0000 1111.0000 1111 0000 1111} Eq. 3.7a 

Fm=<0000 21000 0000 9000.0000 9000 0000 21000> Eq.3.7b 

S={0101 1010 0101 1010.0101 1010 0101 1010} Eq. 3.7c 

Eq. 3.7dFs = <0000 9000 0000 21000 . 0000 21000 0000 9000> 

As in Equation 3.6, Fm shows harmonics of a square wave in the first half of the spectrum, 

which are repeated as upper and lower side bands in Fs. 

It is useful to note the locations of the side bands between Fs in Equation 3.6 and 

Fs in Equation 3.7. In Equation 3.6, the largest elements are in positions 16 and 18. In 

Equation 3.7, the magnitudes of these largest elements have changed little, but they have 

been relocated to positions 13 and 21. A slower modulation signal can compact the side 

bands more closely together without necessarily changing the side band magnitude. 

Another feature to note at this point is the total number of 0 to 1 or 1 to 0 

transitions in S, compared to those in M and C. The effective clock rate or effective 
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frequency of a signal is the number of low-to-high transitions per second. Careful 

comparison will show that the number of transitions in S plus the number in M will equal 

the number in C. This arises because each transition in the modulation signal creates a 

phase inversion at the same time the carrier phase was expected to change. Therefore S 

has fewer transitions than C, and the difference is directly attributed to M. For application 

of this technique to the clocks of digital systems, that trade-off between the number of 

edges in the modulation signal and the resulting effective clock rate (as measured by the 

number of transitions in 5) will become a major design consideration. 

The next few systems will have random modulation signals. 

Ai={1001 1100 0011 0110.1011 1000 0001 1110} Eq. 3.8a 

Fm = <0184 11346 2262 8463.4364 8262 2643 11481> Eq. 3.8b 

S= {1100 1001 0110 0011. 1110 1101 0100 1011} Eq. 3.8c 

Fs = <4364 8262 2643 11481.0184 11346 2262 8463> Eq. 3.8d 

Again, the number pattern in the first half of Fm is repeated as side bands in Fs. The peaks 

in Fm, and therefore in Fs, were lower with this randomly generated modulation signal. 

However, the number of transitions in M was large, resulting in a lower effective clock 

rate in S. 

Equations 3.9 and 3.10 will examine the effect of doubling each entry in the 

previous random modulating signal, M. The first half of M from Equation 3.8 will be used 

in Equation 3.9, and the second half will be used in Equation 3.10. 

{1100 0011 1111 0000.0000 1111 0011 1100} Eq. 3.9a 

Fm=<041110 0993 0365 0320.0023 0563 0399 010114>Eq.3.9b 

S= {1001 0110 1010 0101.0101 1010 0110 1001} Eq. 3.9c 

Fs = <0023 0563 0399 010114.041110 0993 0365 0320> Eq. 3.9d 

http:010114>Eq.3.9b
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Eq. 3.10aA1={1100111111000000.0000001111111100} 

Fm = <012135 5247 6631 2221.0122 2136 6742 551312> Eq. 3.10b 

Eq.3.lOcS=11001101010010101.01010110101010011 

Fs = <0122 2136 6742 551312.012135 5247 6631 2221> Eq.3.10d 

The peak in Equation 3.8 was a value of 11. The peaks in Equations 3.9 and 3.10 

were 11 and 13 respectively. The effective clock rate improved from a value of 9 cycles in 

Equation 3.8 to values of 12 cycles and 13 cycles in the later equations. In some cases, 

the effective clock rate can be increased without a significant impact on peak noise levels. 

By comparison, the peak values found using square wave modulation in Equations 

3.6 and 3.7 were relatively constant, with values of 20 and 21. The effective clock rates 

were quite different, with rates of 15 cycles in Equation 3.6 and 12 cycles in Equation 3.7. 

Again, effective clock rate and peak emission levels can be somewhat independent. 

However, the randomly modulated signals seem to have much lower peak spectral values 

that the square-wave modulated signals. 

3.5 Prediction of Side Band Peak Frequencies and Intensities 

The foregoing analysis suggests that the side band characteristics predicted by AM 

modulation theory will apply directly in the analysis of the spectra that result when two 

digital waves are modulated through an exclusive-OR operation. The basic analysis for 

side band peak locations arises by replacing m(t) in Equation 3.3 with a sine wave: 

Eq. 3.11f(t) = A sin(27c fa t) sin (27c fm t) 

Eq. 3.12f(t) = 0.5 A { sin[27c (fa + fm) t] + sin[27c (fa - fm) t] } 

Two peaks of equal amplitude result, located at frequencies that are the sum and 

difference of the initial frequencies. A few clarifications are necessary when predicting the 

digital suppressed carrier modulation results, to account for the fact that the modulation 

occurs in logic space. 
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If the modulating signal is not a sine wave, it will be composed of a spectrum of 

frequencies. When the sine wave of Equation 3.11 is replaced with a series expansion of 

m(t), the spectrally-rich nature of side bands becomes apparent: 

Eq. 3.13m(t) = 4 II; sin(27t t + 4);) 

f(t) = A sin(27t fc t) 13; sin(27t f t + 41;) Eq. 3.14 

f(t) = 0.5A 4 { sin[274 + fi)t+4);] + sin[274 - fi)t-4);] ) Eq. 3.15 

and 4; are constants, and the f are the constituentwhere 4 denotes summation over j, 

frequencies which make up m(t). 

In the present case, the carrier wave is not a sine wave, either. It is a square wave, 

c(t), which is composed of a harmonic spectrum of signals. The modulation process and 

harmonic products are defined by the following equations. 

Eq. 3.16f(t) = c(t) m(t) 

Eq. 3.17c(t) = Ek Ak sin(2n k fe t) 

Eq. 3.18f(t) = Ek Ak sin(27t k t) B sin(27t t + 

f(t) = 0.5 Ek Ak B; 

sin [2n (k fe + f;) t +(1);] + sin [2n (k - f;) t - (1);) Eq. 3.19 

This is a long way of saying that the shape of the side bands will match the shape 

of the modulating signal in relative frequency and relative amplitude. However, the shape 

of the side band becomes more complicated as the side bands of adjacent harmonics begin 

to overlap. 

When predicting the actual spectral content at a given frequency, one must account 

for the possibility that two modulation products may contribute to a single peak, and that 

contribution may be constructive or destructive based upon phase angle. For example, a 

first signal with spectral content at 20 kHz and 40 kHz is modulated with a second signal 

having spectral content at 5 kHz and 15 kHz. The spectral content at 25 kHz would 

include the modulation contribution from (20 kHz + 5 kHz) and the contribution from (40 



21 

kHz - 15 kHz). Similarly, the spectral content at 35 kHz would include content from the 

(20 kHz + 15 kHz) and (40 kHz - 5 kHz) modulation products. 

3.6 Demodulation 

When demodulation is discussed in the realm of communication theory, it is 

presented with the goal of recovering the modulation signal. Synchronous demodulation 

of an analog suppressed carrier signal is accomplished through a process of (1) replicating 

or retrieving the original carrier signal; (2) modulating the suppressed carrier signal, fit), 

with the replicated carrier, to produce g(t); and (3) passing g(t) through a low-pass filter 

to recover m(t), the modulation signal. Mathematically, 

g(t) = D sin(2n t) f(t) Eq. 3.20 

Recalling Equation 3.3 which generated the modulated signal, 

(Eq. 3.3)= A sin(27c t) m(t) 

it is clear from Equation 3.20 that 

g(t) = A D sin(27t t) sin(2n fc t) m(t) Eq. 3.21 

g(t) = 0.5 A D [m(t) - cos(47t t) m(t)] Eq. 3.22 

from which m(t) can be retrieved using a low-pass filter. These equations assume there is 

no phase error introduced, or that the replicated carrier is phase locked to the original 

carrier. If there is time or phase delay introduced in the transmission of the suppressed 

carrier signal from modulator to demodulator, the same delays must be present in the 

replicated carrier. 

In the present context where the carrier or clock is the significant signal and the 

modulation is of little functional value, there is great value in demodulating the suppressed 

carrier signal to retrieve the clock. This could be accomplished using a second exclusive 

OR gate and an exact copy of the logical modulation pattern M. Recalling Equation 3.4, 

Sj Cj Mj for j = 1 to n (Eq. 3.4) 

this demodulation would create a pattern T, such that 
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Si OM 

= Cj Mj 0 Mj 

= Cj for j = l to n Eq. 3.23 

In this manner, demodulation recovers the original clock signal. As with analog 

synchronous demodulation of suppressed carrier signals, the time delays introduced in 

transmission from the modulator to the demodulator must be present in the modulated 

signal and the modulating signal equally. 

3.7 Application and Summary 

The objective of a spread spectrum technology is to reduce the electromagnetic 

interference attributable to high speed electronic systems while creating minimal 

degradation to the performance of the systems. This chapter proposes and predicts that 

the peak spectral density in a clock signal can be reduced through use of suppressed 

carrier amplitude modulation. Significant points from this analysis include: 

A. This modulation may be achieved in a logic system using the XOR logic gate function. 

B. The original clock may be recovered by routing the modulating signal and the 

modulated signal to an XOR gate demodulator. 

C. The side bands of the modulated wave will take the spectral shape of the modulation 

signal. 

D. The effective clock rate after modulation will decrease as the edge rate of the 

modulating signal increases. 

E. Decreasing the modulation wave frequency has the effect of compacting the side bands 

of the modulated signal. This compaction can improve the effective clock rate of 

the modulated signal with only a small impact upon peak spectral density. 

F. Modulation with complex or random waves will produce lower peaks in the modulated 

signal spectrum. 
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There are practical limits to how compact the modulation spectrum can be. Power 

spectral density is measured with a device having a finite input bandwidth. Most devices 

that are susceptible to electromagnetic interference are susceptible over a small bandwidth. 

Any adjacent peaks in the modulation signal will be added together if they are separated by 

less than the critical input bandwidth of the measuring equipment or the susceptible 

device. International standards require the electromagnetic radiation from digital devices 

at frequencies below 1 GHz to be measured with a 120 kHz input bandwidth (IEC, 1993). 

Assuming that adjacent peaks do not fall within the critical bandwidth, discrete 

spectral analysis predicts that a narrow band modulation signal applied to a square wave 

voltage clock could reduce the emissions from a relative linear level of 32 to a level of 20. 

to a level of 11,A broad band modulation signal could decrease the emissions further 

for example. 
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4. Circuit Implementation 

4.1 A Simple Modulator - Demodulator Pair 

Figure 4.1 shows a simple modulator and synchronous demodulator, as suggested 

by the discussion of the previous chapter: 

Sj = Cj M.) for j = 1 to n (Eq. 3.4) 

The modulator would be located at a source circuit or system, and the 

The traces or cables that connectdemodulator would be located at the destination circuit. 

the two circuits would not carry any narrow band signals. This feature tends to reduce the 

peak spectral emissions from the circuit or cable that would otherwise carry a narrow band 

clock. 

In practice, this circuit would not perform well in a high speed digital system. The 

first problem lies in the nature of the exclusive-OR gate. If the Input Clock changes its 

logical state when the Modulating Signal changes state, the Modulated Clock may glitch. 

The glitch is a normal result when both inputs change at the same time, or at nearly the 

same time. In transition between input values of 11 and 00, the output should remain 0. In 

practice, the logic may attempt to output a transient value of 1, which is the proper result 

of a 01 or 10 input pattern. Thus the output of the XOR gate would start at 1E1)1=0, begin 

a transition to an intermediate state such as 1@0=1, and then revert to the desired 000=0 

condition. A similar glitch could occur in the Output Clock signal if the Input Clock is 

stable when the Modulating Signal changes state. The Modulated Clock would change 

logical states, but its change would involve a time delay relative to the Modulation Signal. 

The Output Clock would change state in response to the Modulation Signal, and then 

change back due to the delayed transition of the Modulated Clock. 
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Figure 4.1: A simple modulator-demodulator pair. 
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To avoid such glitches, the circuitry surrounding an XOR gate should be arranged such 

that either (1) only one input switches at a time, or (2) glitches in the output are 

functionally acceptable. 

A second problem with the simple circuit of Figure 4.1 is that the Input Clock and 

Modulating Signal are not necessarily synchronous. Their timing transitions could be 

separated by arbitrarily short intervals, leading to a condition where the Modulated Clock 

could have pulses of very short duration. These pulses would probably violate the 

minimum low or high periods of logic gates attached to the Modulated Clock line, 

including XOR2. 

4.2 A Better Modulator - Demodulator Pair 

These issues are addressed by the circuit design of Figure 4.2. Within the system 

architecture, the final XOR gate would be located at the destination circuit, and the 

remainder of the circuit elements would be located at the source circuit.
 

This design requires a reference clock (Clock x2) operating at twice the desired
 

output clock frequency. Flip-flop 1 is arranged as a divide-by-two counter, to create the 

Input Clock for the modulator. This Input Clock changes state on the rising edge of 

Clock x2. Modulating Signal I is latched by a flip-flop to create Modulating Signal II, 

which also changes state on the rising edge of Clock x2. The X0R1 gate receives these 

two signals as input, and so the output of XORI will have glitches only at the rising edge 

of Clock x2. 

A second stage of latches is clocked on the falling edge of Clock x2. At the falling 

edge of Clock x2, Modulating Signal II and the output of the first XOR gate are both 

stable. The Modulated Clock and Modulation Signal will both transition in sync with the 

falling edge of Clock x2. 

Figure 4.3 is a timing diagram of the circuit in Figure 4.2. As this figure shows, 

either the Modulated Clock or the Modulation Signal will change on every falling edge 
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Figure 4.2: A buffered modulator-demodulator pair. 
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of Clock x2, but never will both change at the same time. The Output Clock will not 

suffer from glitches. Note that the Output Clock is synchronous with the falling edge of 

Clock x2, not the Input Clock. This is an important design consideration. 

4.3 Backward Compatibility 

The modulator and the demodulator would typically be included in separate 

integrated circuits or system modules. The question arises how this method might be used 

on a standardized or generic device when other parts of the system may not be fully 

designed for suppressed carrier modulation. 

If the modulator circuit or module were to drive a destination circuit incapable of 

utilizing a modulated clock, the Modulating Signal I input would simplybe grounded. 

The output of the modulator will be a stable, unmodulated clock. 

Suppose the destination system is built to accommodate a modulated clock, but a 

source module is chosen that does not include the modulator. Simply ground the 

Modulation Signal input at the destination circuit. In this way, the unmodulated clock will 

be received and utilized appropriately. 

With these options in mind, the modulator and demodulator could be implemented 

in existing systems for use when connected to an appropriate mating circuit. Systems with 

these circuits added are backward compatible with narrow band systems. 

4.4 A Stand-Alone Modulator 

The circuit design of Figure 4.2 is sufficient to transmit a narrow band clock from 

one circuit or system to another without routing any narrow band signals across circuit 

boards or through cables. However, there are many direct-drive circuits that will operate 

effectively from a broad band clock having the characteristics described in Chapter 1. 

Specifically, the clock must meet the minimal high, low, setup, and hold requirements 

specified for logic gates. A state machine is an example of a direct drive circuit that can 
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operate on a clock that occasionally provides a longer clock phase than typical. A 

modulated clock can be used to drive such circuits without providing a demodulator. 

The circuit of Figure 4.4 is appropriate for such a direct-drive circuit. The only 

changes are removal of the demodulating XOR gate, and the flip-flop used to create the 

Modulation Signal. 

4.5 Modulation Sources 

The design of broad-spectrum noise sources is related to, but distinct from, the 

present subject matter. The theory of suppressed carrier clock modulation predicts that 

the measured emission levels from a device using suppressed carrier clocks will depend 

heavily upon the modulating spectrum. The implication is that a spectrally broad 

modulation source may be desirable. 

Every real suppressed carrier clock modulator must have such a noise source, 

including those that are to be used in the next chapter of this work, and so the topic will 

be discussed briefly at this point. 

The simplest modulation waveform is a square wave with a frequency set below 

the input clock frequency, perhaps using a divide-by-n counter from the input clock. Such 

waveforms were used in the previous chapter (refer to Equation 3.7). A more complex 

waveform would be a random signal approximating white noise. 

Another useful waveform is the pseudo-random pattern. It has good spectral 

smoothness, yet the hardware implementation of the pattern generator is simple and 

straightforward. The details of this pattern generator will not be covered in this present 

text. In future chapters, references to the pseudo-random signal will mention an order 

number (defining the size of the state machine used to generate the signal) and the 

effective clock rate (which is the average number of low-to-high transitions per second). 
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4.6 Construction 

The suppressed carrier clock generator was assembled using a piece of 1.5 mm 

thick fiberglass circuit board plated on one side with copper, as shown in Figures 4.5 and 

4.6. Traces and land patterns in the copper were created by carving out unwanted metal 

with a hobby knife, due to budget and schedule. Most interconnections are made with 

narrow gauge wire. The circuit includes a 5V power supply, a number of single-pole 

single-throw switches in Dual In line Package (DIP) arrays, a connector for the serial 

programming interface, and a programmable gate array containing all the logic circuits. 

The circuit board was mounted inside a sheet metal box on half-inch standoffs. Four 

terminals are provided on the side of the box for accessing 5V power and ground rails, 

plus the two output signals (Modulated Clock and Modulation Signal). A hole in the end 

of the box permits insertion of the 12 V power input, as shown in Figure 4.7. 

The gate array used is an Altera EPM7064S-7ES, which contains 64 macrocells, 

and has a maximum operational speed well above 140 MHz. A gate array macrocell can 

be thought of as a flip-flop with support gates. The output of each macrocell can be 

connected to the input nodes of other macrocells. This gate array can be reprogrammed 

in place using a serial interface from a computer. The array is in a 44-pin J-lead package. 

The design has only five high-speed signals external to the gate array: 66.66 MHz 

and 40.00 MHz primary clocks, a Modulated Clock output, a Modulation Signal output, 

and a demodulated clock output. The primary clocks originate from crystal oscillators 

soldered on the circuit board, and attached to the gate array using narrow gauge wire. 

The outputs are routed on the non-plated side of the board using copper tape with an 

adhesive backing. 
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Figure 4.5: Top side of circuit board. 
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Figure 4.6: Bottom side of circuit board. 



Figure 4.7: External view of test assembly. 
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The characteristic impedance of a microstrip structure can be approximated using 

Equations 4.1 and 4.2 (Pozar, 1990). The fiberglass thickness, d, is 1.5 mm. Its relative 

permittivity, E is 4. 

ee = (e, + 1)/2 + - 1)/24(1 + 12d/W)] Eq. 4.1 

Zo = 120n / Ake e) [W/d + 1.393 + 0.667 ln(W/d + 1.444)] Eq. 4.2 

In the original arrangement this tape width, W, was approximately 4 mm, and 

contained no filter or termination elements. This would make the trace characteristic 

impedance about 450. At a later stage of the measurement process, the trace width was 

narrowed to about 0.75 mm, as shown in Figure 4.8. This change produced a 

characteristic impedance near 100Q. 

The first demodulator receivesThere are, in fact, two demodulators in the system. 

the Modulated Clock and Modulation Signal before they exit the gate array. Its output is 

provided as a means of verifying that the system is running correctly. This demodulator 

was present throughout testing, and was referred to as Demod. At a later stage of the 

experimental work, when the trace impedances were increased to 1005, additional 

circuitry was provided to return the signals to gate array inputs and then demodulate the 

signals, resulting in the Xclk signal.
 

The Modulated Clock and Modulation Signals ran from the gate array outputs
 

through 10052 microstrip transmission lines to the terminal posts. The power and ground 

connections previously provided at these posts were removed. The signals were 

connected to a five-inch length of 30052 television antenna twin-lead. After the twin-lead, 

the signals were routed back across the circuit board to the gate array, at the inputs of the 

second demodulator. The output ofthis second demodulator is called Xclk, because it 

demodulates signals that have been routed external to the gate array and circuit board. 

Measurements on Xclk permitted evaluation of the effects of signal filtering. 
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Figure 4.8: Circuit board with redesigned transmission lines. 
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Signal flow within the gate array is controlled using a number of digital inputs, set 

using the DIP switches. These are DC signals, and are routed with narrow gauge wire. 

The function of each switch is discussed in further detail in Appendix C. 

The serial programming interface is also attached in one corner of the board. 

During normal circuit operation, these programming signals are idle. 

The power supply is designed for quick assembly and quiet operation, rather than 

efficiency. The AC to DC converter is an HP F1044B AC adapter which converts power 

from the building mains to regulated 12V DC. This DC current enters the circuit board 

through a mating connector, and passes through a common mode choke to a 47 µF filter 

capacitor. The 12V power is converted to 5V using a 7805 voltage regulator chip set in 

an appropriate heat sink. This 5V power is supplied to the various elements of the system, 

with 0.1 Eff decoupling capacitors added at the power input terminals of most devices on 

the board, and to the power terminal on the side of the box. 
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5. Measurement Configurations 

Before providing the experimental data, it may be useful to describe the equipment 

used for various measurements. 

5.1 Bench Top Spectral Measurements 

The spectral content of a signal is linearly related to the far-field radio 

measurement used in most EMC testing, but predicting the scaling factor is a difficult task. 

That factor includes the effects of the spatial relationship between the measurement 

antenna and the electronics device creating the radio emissions. The measured strength of 

a radio emission will also depend upon the radiation efficiency of the mechanical structures 

that make up the source device. Measurement of the relative amplitudes in a signal 

spectrum on a laboratory bench is a convenient technique for evaluating variations in 

signal content, which will have a direct effect on far-field radio emissions. 

During spectral measurements made on the laboratory bench, the clock generator 

is assembled as described in Chapter 4, except that the cover of the metal box is removed 

Spectral measurements are made at the terminal lugsto permit frequency measurements. 

outside the box, unless stated otherwise. 

Measurement equipment includes an HP8594EM Spectrum Analyzer, an 

HP85024A High Frequency Probe with an HP11881A 10:1 Divider tip in place, and an 

XY Plotter controlled by the Spectrum Analyzer through an HPIB channel. 

Spectrum analyzer measurements are made using a 120 kHz IF Bandwidth, as is 

typically used in regulatory emissions testing. Where possible, this bandwidth is also used 

when measuring spectra at frequencies below the lower regulatory limit of 30 MHz. The 
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analyzer readings are presented in dBIAV without any additional calibration factors 

included to account for the response of the high frequency probe. 

The frequency response of the probe and tip are assumed to be fairly flat over the 

measurement range. Most of the comparisons in the data analysis will involve comparing 

data at a single frequency or nearby frequencies from two different experiments. 

Therefore, the relative magnitudes of the various signals can be compared, and probe 

calibration effects will cancel out in the comparison. Theseprobe calibration effects, if 

any, are small compared to the larger issues of antenna orientation and the radiating 

structure efficiency which must be considered in relating bench top tests to radiated field 

measurements. 

The original measurements contain data measured with the peak detector and with 

the quasi-peak detector of the spectrum analyzer. For stable, narrow band spectral peaks, 

the two detectors will produce the same value. When measuring signals in which the in-

band power level varies faster than 10 kHz, the Quasi-Peak detector will register more like 

an Average detector. Unless stated otherwise, spectral measurements discussed in this 

thesis are peak detector values and are equivalent to quasi-peak readings within 0.3 dB. 

5.2 Effective Frequency Measurements 

The effective clock rate or effective frequency of a signal is the number of low-to­

high transitions per second. This parameter is important in understanding how a 

modulation technique will affect the operational throughput of a digital system that is 

directly driven by a modulated clock. This parameter is irrelevant in discussing the 

operation of systems using demodulated clocks. 

The equipment set used to determine the effective clock edge rates of digital 

signals includes a Universal Counter, and a 10:1 voltage probe. The universal counter, 

often called a frequency counter, is adjusted to read a stable value of the effective 

frequency. 
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5.3 Clock Parameter Measurements 

Hewlett-Packard makes a Time Interval Analyzer, the HP El 725A. This device 

makes very fast measurements of timing signals, and will report various characteristics of a 

clock signal, such a cycle-to-cycle jitter, or minimum and maximum pulse widths. The test 

device uses standard 1 MO 10:1 voltage probes as would be used on an oscilloscope. It 

has a graphic interface, based upon a windowed operating system, for control of the high-

speed instrument. This instrument was used to measure jitter. 
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6. Experimental Results 

6.1 Experimental Approach 

The objectives of these experiments are: (1) to verify that the spectra generated by 

the modulator fit the theory presented in Chapter 3, especially the specific points detailed 

in Section 3.7; (2) to measure the timing parameters of digital clocks generated or 

distributed by the techniques described herein; and (3) to note, investigate, and 

characterize anomalous or unexpected results. 

6.2 Baseline Clock Spectra 

Before attempting to measure or discuss the complex spectra of modulated clocks, 

it is reasonable to present and discuss a few baseline spectra. The baseline spectra are an 

unmodulated 20 MHz clock, and unmodulated 33.33 MHz clock, and a signal held at the 

low logic level. The measurements of the unmodulated clocks will serve as a standard of 

comparison for determining how much noise reduction can be achieved with modulation. 

The data from the signal held low will indicate the noise levels measured by the test setup 

that come from sources other than the signals under study. 

These initial measurements are made from 0 Hz to 100 MHz. This range is 

deemed sufficient to capture the expected effects without losing detail. 

This figure shows the electrical powerThe 20 MHz clock is shown in Figure 6.1.
 

present in the signal measured, as a function of frequency. The horizontal scale is the
 

frequency axis. In this case, the frequency runs from 0 Hz (DC) to 100 MHz. The 

vertical scale is signal amplitude, measured on a logarithmic scale. The top line is 107 

dBilV, and each division is a 10 dB separation. Four harmonics peaks were measured. 

The readings appear in Table 6.1. 
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Table 6.1: 20 MHz Baseline Data. 

Frequency Signal Level
 
MHz dBiLiV
 

20.0 105.1 
40.0 79.8 
60.0 94.2 
80.0 81.2 

The 33.33 MHz clock is shown in Figure 6.2. Two harmonic peaks were 

measured, and those readings appear in Table 6.2. 

Table 6.2: 33.33 MHz Baseline Data. 

Frequency Signal Level
 
MHz cii3p.V
 

33.3 104.7 
66.6 85.0 

The diamond-shaped marker isThe null experiment data is shown in Figure 6.3.

placed on the highest data point in the spectrum. The notation in the upper right corner of 

the data plot indicates that the marker is at 70.5 MHz, and the signal amplitude at that 

frequency is 51.02 dBuV on the Modulated Clock line and 50.71 dBp.V on the 

Modulation Signal line. This suggests that data above 60 dBEW is related to intentional 

signals rather than extraneous noise. 

The signal readings reported, as with the 20 MHz and 33 MHz baseline data 

shown above, are made using a measure-at-maximum function of the HP8594EM 

Spectrum Analyzer. This function will repeatedly narrow the measurement range about a 

spectral peak, to find the local maximum very precisely. The function then makes Peak, 

Quasi-Peak, and Average detector measurements. The data measured in this way reflects 

the signal amplitude with better accuracy than the marker function. 
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6.3 Does an Exclusive-OR Modulator Generate a Suppressed Carrier Signal? 

The data in Figure 6.4 shows the spectrum measured when a 20 MHz clock is 

modulated with a 2.5 MHz square wave. The unmodulated clock spectrum is also shown 

for comparison. The signal amplitude at 20 MHz is above the 60 dI307 background noise 

level, and so there is true spectral content measured there. However, 20 MHz has clearly 

been suppressed, and the energy has moved to other frequencies in the spectrum. 

The clock harmonic at 60 MHz also is suppressed. However, the harmonics at 40 

MHz and 80 MHz are not suppressed. This is an unexpected result, and will be discussed 

further in Section 6.9. 

Similarly, Figure 6.5 shows the spectrum observed when a 33.33 MHz clock is 

modulated with a 2.083 MHz square wave. The signal at 33.33 MHz is suppressed; the 

signal at 66.67 MHz is not suppressed. 

The buffered exclusive-OR modulator does create a suppressed-carrier signal. 

However, this suppression does not appear to benefit even-multiple harmonics. 

6.4 Can Synchronous Demodulation Recover the Original Clock? 

In each of the dozens of modulation profiles tested, the Demod signal was 

measured using the Universal Counter. Without fail, it reported the correct frequency. 

The signal timing was also quite good, as will be discussed in Section 6.10. Synchronous 

demodulation appears to function as expected. 

6.5 Does the shape of the side band match the modulation spectrum? 

To address this, we return to the measurements of the 20 MHz clock that has been 

modulated by a 2.5 MHz square wave. Figure 6.6 shows the spectrum observed at the 
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Modulated Clock output, and the spectrum of the Modulation Signal. A dark line has 

been added to the upper plot to mark 20 MHz and 60 MHz, for easier identification of the 

side bands, which fall off monotonically with peaks every 5 MHz. The Modulation Signal 

spectrum has its highest content at 2.5 MHz. Peaks appear every 5 MHz, falling off 

monotonically. Thus, the side bands replicate the spectrum of the Modulation Signal. 

The recorded spectrum of the Modulation Signal appears in Table 6.3 below. The 

first two columns are the recorded frequency and signal amplitudes. The third column 

shows the signal strength normalized to the 2.5 MHz signal level. 

Table 6.3: 2.5 MHz Modulation Spectrum. 

Frequency Signal Level Normalized 
Level 

MHz dBp.V dB 

2.5 102.8 0.0 

7.5 93.8 -9.0 

12.5 90.2 -12.6 

17.5 87.6 -15.2 

The spectrum of the Modulated Clock appears in Table 6.4. The third column 

shows the frequency offset from 20 or 60 MHz, as appropriate. The fourth column shows 

the level of the side band spectrum normalized to the level of the first side band peak at 20 

MHz or 60 MHz, as appropriate. The predicted levels in column five came from Table 

6.3. 

The frequency offsets were as expected: 2.5, 7.5, and 12.5 MHz from the carrier 

harmonics. The normalized levels were predicted to be 0, -9, and -12.6 dB. The actual 

side band levels varied from those values, sometimes rather significantly, though the 

general trend of a decaying side band was as expected. 

The spectra in Figure 6.7 were generated by modulating a 33.33 MHz clock with a 

4th order pseudo-random signal. The order number indicates the size of the state machine 
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Table 6.4: 20 MHz Clock with 2.5 MHz Square Wave Modulation. 

Frequency Signal Level Frequency Normalized Predicted 
Offset Level Level 

MHz dBIN MHz dB dB 

7.5 90.7 12.5 -11.3 -12.6 

12.5 94.0 7.5 -8.0 -9.0 

17.5 102.0 2.5	 0.0 0.0 

20.0 66.7 0.0	 NA NA 
2.5	 0.022.5 100.2	 0.0 

27.5 87.3 7.5 -12.9 -9.0 

32.5	 79.0 12.5 -21.2 -12.6 
NA NA40.0 78.5 NA 

74.9 12.5 -15.4 -12.647.5 
-9.5 -9.052.5 80.8 7.5 

57.5	 90.3 2.5 0.0 0.0 
NA60.0 65.1 0.0	 NA 

62.5 90.0 2.5	 0.0 0.0 

67.5 79.6 7.5 -10.4 -9.0 

used to generate the modulation pattern. The effective clock rate of this Modulation 

Signal was 2.222 MHz. Note that the Modulated Clock spectrum still bears a null at 

33.33 MHz. It appears as a notch in the curvature of the spectrum. 

The spectral peaks of the Modulation Signal were measured. These are tabulated 

and normalized in Table 6.5. The peak is taken to be the highest spectral line in a group of 

lines. This peak can be more difficult to identify both in frequency and magnitude. 

Table 6.5: 4th Order 2.222 MHz Pseudo-Random Modulation. 

Frequency Signal Level Normalized 
Level 

MHz dBiN dB 

0.0 96.6 0.0 

11.7 83.7 -12.9 

21.1 79.6 -17.0 
29.4 76.7 -19.9 
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The peak levels of the Modulated Clock are presented in Table 6.6. Calculating 

offsets and normalized signal levels is made difficult by the slight asymmetry of the 

spectrum about the 33.33 MHz carrier frequency, but the results are helpful. 

Table 6.6: 33.33 MHz Clock with 4th Order 2.222 MHz Pseudo-Random Modulation. 

Frequency Signal Level Frequency 
Offset 

Normalized 
Level 

Predicted 
Level 

MHz dEktV MHz dB dB 

3.9 78.1 29.5 -15.3 -19.9 

12.8 80.4 20.6 -13.0 -17.0 

21.1 83.5 12.2 -9.9 -12.9 

32.2 93.4 1.1 0.0 0.0 

45.0 76.8 11.6 -16.6 -12.9 

53.3 68.5 20.0 -24.9 -17.0 

66.7 84.4 NA NA NA 

78.9 66.3 21.1 -18.1 -17.0 

87.8 71.6 12.2 -12.8 -12.9 

100.5 84.4 0.5 0.0 0.0 

identifying peak locations disturbs the frequencyIn this case, the uncertainty in

offsets slightly from the predicted offsets of 0, 11.7, 21.1, and 29.4 MHz. As in the 

previous test case, the signal amplitudes also varied from the expected normalized values 

of 12.9, 17.0 and 19.9 dB. 

It is significant to note that, in both cases, the upper side band of the fundamental 

fell away more quickly than expected, while the lower side band fell away more slowly. 

This trend was observed in many of the spectra studied. 

In general, the side bands of the modulated clocks did bear a strong resemblance to 

the spectra of the modulating signals, as predicted by theory. 
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6.6 What is the relationship between the various effective frequencies? 

The effective clock rate or effective frequency of a signal is the number of low-to­

high transitions per second. These effective frequencies were measured for many 

combinations of input clock and modulation profile. A sampling is provided in Table 6.7. 

Note that the original clocks and demodulated clocks have the same frequencies, and that 

these frequencies could be calculated as the sums ofthe Modulated Clock effective rate 

and the Modulation Signal effective rate. 

Table 6.7: Measured Effective Frequencies. 

Original 
Clock 

Modulation 
Signal 

Modulated 
Clock 

Demod. 
Clock 

Effective Effective Effective Effective 

Rate Rate Rate Rate 

MHz MHz MHz MHz 

20.00 2.50 17.50 20.00 

20.00 5.00 15.00 20.00 

20.00 4.17 15.83 20.00 

33.33 8.33 25.00 33.33 

33.33 2.08 31.25 33.33 

33.33 1.11 32.22 33.33 

33.33 4.44 28.89 33.33 

Clearly, raising the effective frequency of the Modulating Signal directly lowers the 

effective clock rate of the Modulated Clock. 

6.7 How does the spread of the side bands affect side band amplitudes? 

In this area, there were some unexpected results. With square wave modulation, 

the modulation rate seemed to have little effect on the magnitudes of the spectral 
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measurements. The results with broadband sources were different. In this section, all 

measurements are made at the highest peak in the side bands around 33.33 MHz. 

Figures 6.8, 6.9, and 6.10 show the spectra measured when a 33.33 MHz clock is 

modulated by 2.1, 4.2, and 8.3 MHz square waves. The side bands are fairly compact 

with 2.1 MHz modulation, and rather broad with 8.3 MHz modulation. Yet, the peak 

amplitude of the Modulated Clock is not greatly affected, as demonstrated in Table 6.8. 

Table 6.8: Side Band Amplitudes with Various Narrow Band Modulation Profiles. 

Modulation Modulated Peak 
Frequency Clock Amplitude 

Effective 
Rate 

MHz MHz dBp.V 

2.08 31.25 101.2 
4.17 29.17 101.8 
8.33 25.00 103.1 

Since the effective clock rate is so much better with the 2.1 MHz modulation, one 

might suggest that slow modulation is always best. However, the pseudo-random 

modulation data suggests there is a limit to that line of thought. 

A series of data points appears in Table 6.9 below. These were measured while 

modulating a 33.33 MHz clock with various 6th order pseudo-random signals. The quasi-

peak detector function was used, rather than the peak detector, because results from the 

two varied significantly at some points in the measurement series. The results for the 

fastest and slowest modulation rates are higher than for those in the middle. 

Further analysis of the signals indicated that the result is related to the separation 

between the fine detail in the spectra. These pseudo-random signals are composed of a 

series of individual spectral lines, which are closely spaced at regular intervals, and are of 

similar amplitudes. Compacting or expanding the side bands changes the separation 

between these fine spectral lines. In this case, with a 4.23 MHz effective modulation rate, 
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Table 6.9: Side Band Amplitudes with Various Broadband Modulation Profiles. 

Modulation Modulated Highest 
Signal Clock Amplitude 

Effective Effective (Quasi-
Rate Rate Peak) 
MHz MHz dli4tV 

0.53 32.80 95.7 

1.06 32.28 91.8 
2.12 31.22 87.9 
4.23 29.10 87.6 

8.45 24.89 88.8 
16.93 16.40 90.7 

the separation between spectral lines was found to be 158 kHz. This would place adjacent 

spectral lines beyond the 120 kHz input bandwidth of the spectrum analyzer. Further side 

band compaction causes the spectrum analyzer to add together the power in adjacent 

spectral lines. 

The spread of the side bands does not have a large effect upon the amplitude of the 

highest spectral peaks. The design is optimized by using a modulation profile in which the 

spacing between fine spectral details is near the input bandwidth of the measurement 

device or of the susceptible equipment. 

6.8 How does narrow band modulation compare to broadband modulation? 

The data used in the last section is useful here as well. In Section 6.2, the baseline 

measurements for the 33.33 MHz unmodulated clock showed that the amplitude of the 

fundamental was 104.7 dBi.tV. Table 6.10 demonstrates the degree to which the spectral 

amplitude around 33.33 MHz changes with modulation. Broadband and narrow band 

modulation signals will be compared based upon having nearly equivalent effective 

frequencies. The amplitude measurements for square wave signals were made with both 

peak and quasi-peak detectors, and were found to be the same, within tenths of a decibel. 
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Table 6.10: Amplitude Reductions in the Spectra of 33.33 MHz Clocks with Square-Wave 
and Pseudo-Random Modulation Signals having Comparable Effective Frequencies. 

Square Wave Signal Pseudo-Random Signal 

Effective Peak Amplitude Peak Amplitude 

Modulation Amplitude Change Amplitude Change 

Frequency (Quasi-
Peak) 

MHz dBI.N dB dBEAV dB 

-3.5 87.9 -16.82.1 101.2 
4.2 101.8 -2.9 87.6 -17.1 

8.3 103.1 -1.6 88.8 -15.9 

ability to reduceThe broadband pseudo-random signals demonstrate a greater

measurable emissions than do narrow band square wave signals. 

6.9 Why are even-multiple harmonics not suppressed? 

Experimentation often opens the way to new questions. The data reported in 

Section 6.3 showed that even-multiple harmonics were not diminished by modulation, but 

instead continued as narrow band peaks. These peaks are present in all of the spectra, and 

the amplitudes are consistent no matter what modulation profile was applied. 

A pure square wave will not have even-multiple harmonics. In practice, there are 

two primary sources of even-multiple harmonics in the noise spectra radiated from digital 

devices: the first deals with power supply switching; the second deals with the structure of 

CMOS drivers. 

In many digital circuits, some gates will change state on the rising edge of the 

system clock or strobe, and some will change state on the falling edge. There will be a 

current inrush at the power pins on both edges of the system clock. This is a spike 

This is sometimes called AI-noise (Costafunction occurring at twice the clock frequency.
 

et al., 1996). Using a suppressed carrier clock to drive a digital circuit typically causes a
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small fraction of these clock edges to be omitted. Only a few power supply current spikes 

will be omitted. The net effect of this change is small, and is not expected to cause benefit 

in systems where the primary noise emission source is AI-noise. 

The second source of even-multiple harmonics is related to the structure of CMOS 

output pads. These are the circuits that drive the output pins of digital ICs. The pin is 

connected to the positive voltage supply by a p-channel field effect transistor (FET), and 

to ground by an n-channel FET. Only one transistor conducts at a time, so that the output 

pin is driven either high (by the P-FET pull-up transistor) or low (by the N-FET pull-down 

transistor). P-FETs typically have a higher channel resistance than N-FETs, and so the 

rising edge of a signal pulse will be slower than the falling edge. This difference between 

rising- and falling-edge rates will introduce even-multiple harmonics into a signal that 

should ideally have none. 

In this scenario, the even multiple harmonics are not affected by the modulation, 

because they are injected into the signal after the modulator. 

The pull-up and pull-down resistances can be measured by allowing the output 

circuit to drive known loads. In this manner, the output resistances of the Altera gate 

array are determined to be 44.10 for the pull-up, and 10.90 for the pull-down. The ratio 

of pull-up to pull-down resistances is greater than 4. One way to determine whether this 

mechanism is the source of the even-harmonic content is to use series termination. 

The trace characteristic impedances on the circuit board were changed to about 

1000, and the secondary Xclk demodulator was added to the gate array program, as 

discussed in Section 4.6. The spectrum of Figure 6.11 was measured in this configuration. 

The 1000 traces were severed near the gate array, and 1200 resistors inserted in series 

with the transmission line. This change makes the pull-up resistance 164.10, and the pull-

down resistance 130.90, for a ratio near 1.25. The spectrum of Figure 6.12 was 

measured in this configuration. 
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Adding the series resistors to the two signal lines lowered the amplitude of the 

entire spectrum. At 30 MHz, the signal level dropped by 3.4 dB, which would be 

expected. At 66.7 MHz, the signal level dropped by 14.6 dB. This large change in the 

level of the 66.7 MHz harmonic supports the possibility that this signal is generated due to 

the asymmetry of the output driver. 

6.10 How does signal filtering affect recovery of the original clock? 

Signal filtering is a common technique for suppressing radio emissions. Filtering 

changes the shape of clock edges in ways that might harm the stability ofthe demodulated 

clock signal. Since filtering is so widely used, any degradation that arises from filtering 

should be understood. Degradation will be evaluated primarily by monitoring cycle-to­

cycle jitter. 

The 66.67 MHz oscillator feeding the gate array exhibited 27 psec of jitter. With 

no modulation, source termination, or filtering, the gate array put out a 33.33 MHz clock 

with 37 psec of jitter at the Xclk demodulator output. After modulation and 

demodulation, the same system exhibited 89 psec of jitter. One popular microprocessor 

that uses PLL synchronized data interchange requires less than 200 psec of jitter on 

system clocks. 

When 1200 source terminators were added to the gate array outputs, the jitter of 

the demodulated clock did not change. Strong filtering was added, in the form of Murata 

BLM21B201S surface mount ferrite beads. These were placed in series with the 1200 

resistors. Jitter increased to 101 psec. 

To push the envelope, the BLM21B201S ferrite beads were replaced with 

BLM21B751S beads. These beads add well over 100D of reactance at 33 MHz. The 

square edges of the Modulated Clock wave were so heavily damped that the wave form 
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was more like a triangle wave, and fell well short of the power and ground voltages. In 

this extreme case, the jitter in the demodulator output was only 302 psec. 

This method of modulation and demodulation appears capable of recreating clean 

clock waves when used in concert with source termination and signal filtering. 

Synchronous demodulation assumes that the Modulated Clock and the Modulation 

Signal have been treated in a similar manner from the output of the modulator to the 

demodulator. There was no attempt to quantify the issues that can arise if the two signal 

lines are filtered differently. 

6.11 Why are the side bands not symmetrical in many cases? 

Side band asymmetry was not expected, but it should not be surprising. One 

reason for asymmetry was discussed in Section 3.5: there is band overlap. The 

intermodulation products of signals that are already spectrally rich can reinforce or cancel 

each other. The extreme case of side band asymmetry occurs when the Modulation Signal 

is a square wave at half the frequency ofthe original clock, as shown in Figure 6.13. 

Here, the 20 MHz square wave is modulated by a 10 MHz square wave. The 

combinations of wave harmonics adding and subtracting with other wave harmonics 

produce a Modulated Clock spectrum that closely resembles the Modulation Signal 

spectrum. In fact, they are the same. Modulating a 20 MHz square wave with a 10 MHz 

square wave creates a 10 MHz square wave which is 90° out of phase with the 

Modulation Signal. 

6.12 Summary 

The data verifies that the spectra generated by the suppressed carrier modulator 

fits the theory of Chapter 3. The timing parameters are within the range expected in 

digital devices, and are well enough understood to permit system designers to make 

appropriate trade-offs. Three areas of unexpected results were investigated: asymmetry in 
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the side bands of the Modulated Clock; the presence of narrow band even-multiple 

harmonics in Modulated Clock spectra; and the rising of signal levels when the 

Modulation Signal has fine spectral lines spaced closer than the measurement bandwidth. 
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7. Design Scenarios 

7.1 Design Constraints and Baseline 

Two design scenarios will be presented. In the first scenario, the Modulated Clock 

will be used without demodulation. The second scenario will include demodulation. 

Both scenarios are based upon 33.33 MHz clocks. Both will use 1200 resistors 

and Murata BLM21B201S ferrite beads in series with the 5V TTL output driver pins. 

The signals will be routed through the five inch length of 30052 television twin-lead on 

their way to the receiver chip. 

Figure 7.1 is a plot of the spectrum measured without any modulation present. 

The range measured is from 30 MHz to 250 MHz, since the legal limits for radiated 

electromagnetic emissions start at 30 MHz, and many systems have their major emission 

issues below 250 MHz due to a 7 dB relaxation of the RF emission limits at 230 MHz. 

7.2 Design Scenario #1 

In this scenario, a high effective clock rate is required so that the system will have 

adequate data throughput. To achieve this throughput, the Modulation Signal will be a 4th 

order pseudo-random signal with a 555 kHz effective frequency. The 33.33 MHz clock 

will be slowed 1.7% to 32.8 MHz. 

Figure 7.2 shows the spectrum measured on the Modulated Clock signal trace. 

The peaks are summarized in Table 7.1 below, and are compared to the baseline 

measurements. 

The odd-multiple harmonics that this technique is designed to resolve were 

decreased 9.5 to 11.7 dB. The even-multiple harmonics changed by 2.3 dB or less. 
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Table 7.1: Amplitude Reductions due to the Design Scenario #1 Modulation Profile. 

Baseline Baseline Modulated Amplitude 
Frequency Amplitude Amplitude Change 

(Quasi- (Quasi-
Peak) Peak) 

MHz dBtiV dBpV dB 

33.33 102.90 91.60 -11.30 
66.67 70.00 69.70 -0.30 

100.00 74.10 62.70 -11.40 
133.33 63.00 60.70 -2.30 
166.66 76.20 66.70 -9.50 
200.00 63.00 60.90 -2.10 
233.33 69.20 57.50 -11.70 

7.3 Design Scenario #2 

In this scenario, a high effective clock rate is not required because the system will 

operate on a full 33.33 MHz demodulated clock. In practice any modulation profile could 

be used which met the emission requirements. In this instance, the Modulating Signal will 

be a 10th order pseudo-random signal with a 16.683 MHz effective frequency. With this 

modulation pattern, the Modulation Signal and Modulated Clock have almost the same 

effective frequencies. 

Figure 7.3 shows the spectrum measured on both signals. The peak amplitudes are 

summarized in Tables 7.2 and 7.3. The peak frequencies in the pseudo-random spectra 

are so different from the baseline peak frequencies that direct comparison becomes 

difficult. The peaks closest to each other in the baseline and modulated tests will be 

compared as seems most reasonable. There is also no attempt to predict how actual 

emissions radiated from the two signals would combine at a radio receiver. 

The spectral peaks that this technique is designed to resolve were decreased 8.8 to 

24.7 dB. With this modulation, and fairly strong filtering, the Xclk demodulated clock 
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Table 7.2: Amplitude Reductions Measured on the Modulated Clock Signal due to the 

Design Scenario #2 Modulation Profile. 

Baseline Baseline Modulated Modulated Amplitude 

Frequency Amplitude Clock Clock Change 
(Quasi- Frequency Amplitude 
Peak) (Quasi-

Peak) 
MHz dBp.V MHz dBp.V dB 

33.3 102.9 32.5 78.2	 -24.7 
56.0 -14.066.7	 70.0 66.7 

-15.6100.0 74.1 80.0 58.5 
0.7133.3	 63.0 133.3 63.7 

-11.0166.7	 76.2 166.6 65.2 
-4.8200.0 63.0 200.0 58.2 

240.0	 -20.0233.3 69.2	 49.2 

Modulation Signal due to the DesignTable 7.3: Amplitude Reductions Measured on the
Scenario #2 Modulation Profile. 

Baseline Baseline Modulation Modulation Amplitude 

Frequency Amplitude Signal Signal Change 
(Quasi- Frequency Amplitude 
Peak) (Quasi-

Peak) 

MHz dBilV MHz d131.1V dB 

30.5	 -24.133.3 102.9	 78.8 

66.7	 70.0 NA NA NA 
-18.4100.0 74.1 82.0 55.7 

133.3	 63.0 133.3 62.4 -0.6 
-8.8166.7	 76.2 166.6 67.4 
-5.3200.0	 63.0 200.0 57.7 

-23.0233.3 69.2 240.0 46.2 
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output was a 33.33 MHz square wave signal having a maximum cycle-to-cycle jitter of 

101 psec. 

7.4 Other Design Considerations 

A discussion of spread spectrum clocks used for reducing radio interference should 

include some indication of common pitfalls related to the techniques. Perhaps the 

comments that follow are not academically germane to the fundamental thesis issues, but 

they may turn out useful to those who read this document in the future. 

It is good engineering practice to resolve basic EMI issues, so far as possible, with 

all spread spectrum techniques deactivated. Spread spectrum clocks are not a replacement 

for fundamentally solid design work. 

The spectrum should be broadened only as much as necessary to achieve EMI 

design objectives. 'More' is not always 'better.' If the product's mechanical structure has 

resonances, spread spectrum clocks will find them. If the product will be used near other 

devices having narrow band susceptibilities, broad band emissions will find them. 

EMI test technicians should be informed when spread spectrum clocks are in use. 

The task of identifying broadband emissions can be more difficult than finding narrow 

band emissions. Some test labs will need to develop new processes for measuring these 

signals. Make sure the test lab learns how to find all of the emissions during product 

development. Do not delay their learning curve until the start of production audits. 

Frequency modulation and amplitude modulation are not mutually exclusive. Both 

techniques have value in resolving specific issues, and some designers may choose to use 

both. To use both techniques, frequency modulate first, then amplitude modulate. If 

synchronous demodulation is required, the recovered clock signal will be an FM clock. 
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8. Conclusions 

This method of generating a spread spectrum clock can significantly reduce the 

power available to interfere with a narrow band radio receiver or other susceptible narrow 

band devices. The technique has strengths and weaknesses evident from the measured 

data. 

One significant weakness is its inability to control noise from even-multiple 

harmonics. These harmonics do cause radio interference because of the imperfections in 

logic IC drivers and AI-noise. 

Suppressed carrier clocks can have a fairly flat response at higher harmonics, as 

shown in Table 7.1. This may be seen as a disadvantage in comparison to frequency 

modulation techniques, where the higher harmonics of the modulated clock have higher 

total frequency deviation, and therefore have lower peaks. The other side to this issue is 

that suppressed carrier clocks achieve their full potency at the fundamental, which is not 

true of the FM methods. 

The data demonstrates several advantages of the suppressed carrier method. 

Suppressed carrier modulation reduced several signal peaks more than 15 dB, and in some 

cases more than 20 dB. These levels of amplitude reduction are rare with other spread 

spectrum techniques. 

With demodulation, the suppressed carrier method produces clocks with very low 

cycle-to-cycle jitter. 

The shape of the spectrum after modulation is somewhat arbitrary, which could be 

exploited by a clever designer who needs to target a specific frequency range as a quiet 

zone. The final modulated clock spectrum can be selected by designing and tailoring the 

spectral content of the Modulating Signal. 
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As one good idea sometimes leads to another, so a research project, when 

complete, may suggest additional areas for investigation. Additional areas of study related 

to this work might address the following questions: 

What modulation spectra are possible with this scheme, and how deftly could a 

design engineer tailor the final spectrum? Referring to Figure 4.2, Modulating Signal II 

must be synchronous with the rising edge of Clock x2, and so the actual modulation 

profile is constrained. Could digital filter theories help define the range of spectra possible 

with this method? 

How does this apparatus impact over-all system design? A clock signal is usually 

synchronous with some data signal, and that data signal would be generated by reference 

to a master clock running at half the frequency of Clock x2 . Are there architectural issues 

related to digital IC design that must be addressed in new ways for this system to 

function? 

In systems requiring signal line filtering and synchronous demodulation, how much 

filter asymmetry is acceptable? In Section 6.10, there was no attempt to quantify the 

timing issues that can arise if the two signal lines are filtered differently. 
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9. Summary 

Spread spectrum technologies are used in the field of electromagnetic compatibility 

design today. These techniques are powerful in their ability to reduce the power spectral 

density of radio emissions that could otherwise interfere with radio communications, radio 

navigation, or other legitimate uses of the radio spectrum. 

The generation of suppressed carrier clocks stands as a useful spread spectrum 

technique a tool in the EMC engineer's toolbox. Like any tool, it has its strengths and 

weaknesses. There are jobs for which this tool works well, such as reducing the effect of 

emissions from a cable interconnecting two circuits or systems. There are jobs better 

suited to other tools, such as reducing emissions due to AI-noise. Suppressed carrier 

clocks may be used along with other design techniques, and are compatible with common 

EMI reduction methods. 

Suppressed carrier clocks are applicable to a wide variety of design applications. 

These signals offer an all-digital solution with high functional throughput, large reductions 

to spectral peaks, and significant design flexibility. Suppressed carrier clocks also provide 

the option of demodulation, to restore the original, unmodulated clock signal where 

needed. 



76 

Bibliography 

Costa, V., R. Preatoni, and S. Caniggia. 1996. "Investigations of EMI on Multilayer 

Printed Circuit Boards: AI-noise and Power Supply Decoupling." IEEE EMC 
Symposium Record. 

European Council. 1989. Directive 89/336/EEC. 

Hardin, K. B., J. T. Fessler, and D. R. Bush. 1994. "Spread Spectrum Clock Generation 
for the Reduction of Radiated Emissions." IEEE EMC Symposium Record. 

Hardin, K. B., J.T. Fessler, N. L. Webb, J. B. Berry, A. L. Cable, and M. J. Pulley. 1997. 
"Design Considerations of Phase-Locked Loop Systems for Spread Spectrum 
Clock Generation." IEEE EMC Symposium Record. 

EEC. 1993. Publication CISPR 22. "Limits and Methods of Measurement of Radio 
Disturbance Characteristics of Information Technology Equipment." International 

Electrotechnical Commission. 

Ott, H. 1998. Noise Reduction Techniques in Electronic Systems, 2nd ed. John Wiley & 

Sons, Inc., New York. 

Pozar, D. 1990. Microwave Engineering. Addison-Wesley Publishing Company, Inc., 

Reading, Mass. 



77 

APPENDICES
 



78 

Appendix A. Analysis Programs 

The following objects and programs will generate the numerical results presented 

in Section 3.4. These programs operate under the Reverse Polish LISP (RPL) operating 

system of the HP48 Calculator, release K or later. 

To use the programs, enter each object and store it under the object name 

provided. Enter a 32-bit modulation pattern of Os and ls as a column vector, then execute 

the program object RUNMODS. The four objects returned to the stack will match the 

four item equations shown in Section 3.4. M will be at stack level 4, Fm at Stack level 3, 

S at stack level 2, and Fs at level 1. These objects are best viewed in the Matrix Writer 

format with complex numbers shown in polar format, and the numeric display mode set to 

0 FIX. 

In the object descriptions, or program comments, Binary form refers to objects 

made of -1 and +1 values, while Logic form refers to objects made up of 0 and 1 values. 

Object Name: C	 Object Type: Column vector 

Purpose: 32-bit carrier signal in Binary form. 

[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1] 

Object Name: L-->B	 Object Type: Program 

Purpose: Convert 32-bit column vector on Level 1 from Logic form to Binary form. 

OBJ> DROP 32 -.LIST	 Change vector to list 

Map {1 0} to {-1 +1}-2 * 1 ADD 

OBJ* DROP {32} BARRY	 Change list to vector 

>> 
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Object Name: B-->L Object Type: Program
 

Purpose: Convert 32-bit column vector on Level 1 from Binary form to Logic form.
 

OBJ- DROP 32 -LIST Change vector to list
 

-1 ADD -0.5 * Map {-1 +1} to {1 0}
 

OBJ> DROP {32} >ARRY Change list to vector
 

Object Name: BMOD Object Type: Program 

Purpose: Modulate two Binary column vectors located on Levels 1 and 2, returning in a 

Binary column vector on Level 1. 

OBJ--> DROP 32 -LIST SWAP Change vector to list 

OBJ--> DROP 32 -LIST Change vector to list 

* Modulate 

OBJ- DROP {32} >ARRY Change list to vector 

>> 
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Object Name: RUNMODS Object Type: Program 

Purpose: Given a column vector M on Level 1, return M, Fm, S and Fs on Levels 4 

through 1. 

DUP Save copy of M 

FFT Create Fm 

2 PICK L-->B Obtain M 

C BMOD DUP B--÷L Create S 

SWAP FFT Create Fs 

>> 
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Appendix B. Terms and Acronyms 

Terminology and acronyms change frequently in current technology, and some 

have such narrow usage as to be considered jargon. Many of the acronyms and terms 

used in this thesis are listed here, for reference. Acronyms will be alphabetized as if they 

were common words. 

AC - Alternating current. Electrical currents (or voltages associated with such currents) 

that flow in both directions in a conductor. In circuit operation, the magnitude of 

the current (or voltage) will typically change to positive and negative values in a 

repetitive, and often symmetric, pattern. 

Altera - an integrated circuit manufacturer. An Altera gate array was used to implement 

the test circuit described in this thesis. 

AM - Amplitude Modulation. A method of encoding information into a radio signal or 

other carrier in which the signal frequency remains relatively constant, but the 

wave amplitude is adjusted. 

CMOS - Complementary metal-oxide semiconductor. An integrated circuit design 

method which uses both n-channel and p-channel field-effect transistors in each 

functional device. 

DC Direct current. Electrical currents (or voltages associated with such currents) that 

flow in only one direction in a conductor. In circuit operation, the magnitude of 

the current (or voltage) may change to any non-negative value. 

dB - decibel. A unit of measure for logarithmic comparison of ratios. In comparing 

power measurements, the decibel value is ten times the base ten logarithm of the 

power ratio. 
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dl3tiV - decibels referenced to a microvolt. A logarithmic unit of measure for the 

expression of voltages. Any voltage can be expressed in units of d1307 by dividing 

the voltage magnitude by one microvolt, taking the base ten logarithm of the ratio, 

and multiplying by twenty. 

DIP - Dual Inline Package. A method of arranging the terminals of a device for ease of 

assembly. The device terminals are arranged in two parallel rows of pins, with a 

well-defined spacing between adjacent pins. A matching pattern ofholes is created 

in a printed circuit board. The pins of the DIP part pass through the holes in the 

circuit board, and are electrically and mechanically bonded to the circuit board 

with solder. 

EMC - Electromagnetic Compatibility. A situation in which the radio emissions from a 

circuit or system are controlled such that the do not interrupt the function of 

another circuit or system. Antonym of EMI. 

EMI - Electromagnetic Interference. A situation in which the radio emissions from a 

circuit or system interrupt the function of another circuit or system. Antonym of 

EMC. 

Exclusive-OR - a standard logic gate. The output is driven to a logic 1 level unless both 

inputs are at the same logic level. 

FET - Field effect transistor. 

a standard logic gate. When the Clock input of a flip-flop transitions from logicFlip-flop 

level 0 to logic level 1, the data present at the D input is transferred to the Q 

output. Flip-flops may include an output that is the inverse of Q, and may include 

preset and clear inputs. Some flip-flops use J-K inputs instead of a D input. Since 

these J-K flip-flops are not used in the present work, their function will not be 

discussed here. 
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FM - Frequency Modulation. A method of encoding information into a radio signal or 

other carrier in which the signal amplitude remains relatively constant, but the 

wave period is adjusted. 

Glitch - a momentary error condition. 

HERO - Hazards of Electromagnetic Radiation to Ordnance. A topic in the field of EMC 

dealing with the ability of radio waves to ignite explosive devices. 

Hold - a timing parameter of flip-flops and latches. Hold time indicates the minimum time 

over which data at the D input must be stable to assure it will be properly 

transferred to the Q output. This hold time is specified from either the rising edge 

of the Clock input or the falling edge of the Gate input until the time D changes to 

a new logic level. 

HP - Hewlett-Packard Company. 

HPIB - Hewlett-Packard Interface Bus. A communication interconnect and signaling 

system used to interface a wide variety ofequipment. HPIB is used mainly on 

scientific test and measurement products, and is similar to GPIB - the General 

Purpose Interface Bus. 

IC - Integrated Circuit. A complex circuit implemented in a batched process on a single 

material substrate. The substrate is usually a semiconductor, and the process 

Other materials may be addedusually involves multiple photo-lithographic steps. 

to the substrate during the process, such as dopants, conductive metals, and 

oxides. The term IC usually includes a package that envelopes the finished 

substrate in a mechanically robust manner, and provides electrical and thermal 

interconnect points. 

IEC - The International Electrotechnical Commission.
 

IEEE - The Institute of Electrical and Electronic Engineers.
 

IF - Intermediate frequency. Many radio systems operate by translating a modulated
 

signal from the carrier frequency down to a lower frequency. This frequency 
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translation is called heterodyning, and permits better frequency selectivity in the 

receiver. The lower frequency is called the intermediate frequency. 

Jitter - variations in the periodicity of a repetitive signal. Jitter is usually defined as the 

difference between the period of one wave and the period of the following wave. 

J-lead - a type of connection lead for electronic parts which are to surface-mounted to a 

circuit board. The J-lead extends from the package body toward the board 

surface. At a specified distance, the lead then bends back toward the package 

body, forming a J shape. The base of the J is soldered to a metal pad on the board 

surface. 

Latch - a standard logic gate. Data on the D input of a latch is transferred to the Q output 

during any period of time that the Gate input is asserted. When the Gate input is 

de-asserted, the Q output of the latch remains at the same level as was present at 

the D input when the Gate signal changed. Latches may include an output that is 

the inverse of Q, and may include preset and clear inputs. 

LVDS - Low Voltage Differential Signaling. A communication protocol used to transfer 

data to flat panel displays, especially in notebook computers. The voltage levels 

used to communicate clock and data signals are typically less than a half volt, and 

are driven as differential signal pairs, rather than as a signal relative to system 

ground. The clock signal is typically no faster than one-seventh the data rate, and 

is actually a synchronization signal. At the receiver end, a phase-locked loop 

operates at the actual data rate, and is synchronized to the slow clock signal. The 

output of the phase-locked loop is used to clock data bits off of the high-speed 

serialized data bus. 

Macrocell - a block of logic gates within a programmable gate array. 

NAND gate - a standard logic gate. The output is driven to a logic 1 level unless both 

inputs are at logic 1 levels.
 

N-FET - an n-channel field effect transistor.
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P-FET - a p-channel field effect transistor. 

PLL - Phase-locked loop. A circuit containing a controllable oscillator, feedback loop 

filter, and phase comparator. The PLL may also included digital divide circuits. 

When operating properly, the phase and frequency of the controllable oscillator 

will have a known relationship to the phase and frequency of a reference signal. 

Thus, the feedback control system allows the oscillator and reference signal to be 

phase-locked. 

RF - Radio Frequency. This term is also used to refer to signals on wires or waves 

propagating through space which oscillate at radio frquencies. Radio frequencies 

begin at a few kilohertz, and end well below the frequency of infrared light. The 

upper limit for frequencies included in the term RF changes as the technologies for 

intentionally generating high-frequency radio waves improve. 

RPL - Reverse-Polish LISP. The operating system used in the Hewlett-Packard series 28 

and 48 calculators. RPL uses many of the list-processing features of the LISP 

computer language, but operates in a reverse-polish, or post fix, math syntax. 

Setup - a timing parameter of flip-flops and latches. Setup time indicates the minimum 

time over which data at the D input must be stable to assure it will be properly 

transferred to the Q output. This setup time is specified from the time D changes 

state until either the rising edge of the Clock input or the falling edge of the Gate 

input. 

TTL - Transistor-transistor logic. TTL refers directly to a family of logic functions that 

use transistors for input and for output. The term TTL is often used in reference 

to the mapping between logic states and voltage levels used by TTL logic gates. 

5V TTL levels typically map input voltages between -0.3 V and 0.8 V to logic 

level 0, and input voltages between 2.0 V and 5.3 V to logic level 1. At the circuit 

outputs, a logic level 1 maps to a voltage between 2.4 V and 5.3 V, while a logic 

level 0 maps to a voltage between 0 and 0.4 V. 
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Twin-lead - a low-cost transmission line used to connect television receivers to aerials 

(receive antennas) before coaxial cable became popular in homes. Twin-lead is a 

flat cable made with two stranded conductors spaced to create a nominal 30052 

characteristic impedance. The conductors are molded into weather-resistant 

plastic. Twin-lead is not shielded. 

x86 - A broad class of microprocessors based upon the 8086 microprocessor, including 

the 80186, 80286, 80386, 80486, and PentiumTM processors. Intel Corporation 

manufactured these processors, and holds the trademark as noted. The term x86 is 

also used to refer to similar microprocessors built my other microchip 

manufacturers, such as Cyrix. 

XOR - see Exclusive-OR. 



87 

Appendix C. Control Switches 

The system provided three banks of single-pole single-throw DIP switches, for 

setting the machine state. Each DIP switch contains eight individual switches. The 

meaning of each bit is shown in the following lists. The name shown after the bit number 

is the input control bit name shown on the system schematics. In practice, exactly one 

pseudo-random generator chain length and one divide-by-n assignment should be selected 

at any time. The output of the divide-by-n counter can be used as a modulation source 

directly, and also sets the clock rate of the pseudo-random noise generator. The prime 

66.66 and 40 MHz clocks originate from separate crystal oscillators, and therefore there is 

no phase correlation between them. 

The switches may be identified in Figure 4.5. The bits are numbered with the high 

order bit toward the top of the picture and low order bits toward the bottom of the 

picture. When the right side of an individual switch is pressed down, the bit is designated 

to be at the logic 1 or true state. Switch bank 1 is furthest left in the picture. Ofthe two 

switch banks on the right of the picture, the upper is switch bank 2, and the lower is 

switch bank 3. 

Switch Bank 1: Input Control. 

Bit 7: Master33. When true, the main clock will run at 33.333 MHz. When false, the 

main clock speed is 20 MHz. 

Bit 6: Noise66. When true, the input to the divide-by-n counter is a 66.666 MHz clock 

wave. When false, the input is a 40 MHz clock wave. 

Bit 5: Unused. 

Bit 4: Unused. 

Bit 3: Unused. 
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Bit 2: Use External. When set true, the signal from an external pin is selected as the 

Modulation Signal. When false, the output of the divide-by-n counter is selected. The 

setting of Switch Bank 3 bit 1 (UseWide) overrides this setting. 

Bit 1: NZ Clear. This switch resets an error state indicator within the pseudo-random 

noise generator. It does not affect any other system operation and is provided for 

diagnostics only. 

Bit 0: Disable outputs. When true, the second pair of flip-flops within the modulator are 

held in a reset state, but all other high-speed switching within the system continues. This 

is used to distinguish noise emissions on the output pins from other noise within the 

system. 

Switch Bank 2: Divisor Settings. 

Bit 7: Takel. When true, the divisor output frequency is the same as the input frequency. 

Bit 6: Take2. When true, the divisor output frequency is one half of the input frequency. 

Bit 5: Take4. When true, the divisor output frequency is one quarter of the input 

frequency. 

Bit 4: Take8. When true, the divisor output frequency is one eighth of the input frequency. 

Bit 3: Take16. When true, the divisor output frequency is one sixteenth of the input 

frequency. 

Bit 2: Take32. When true, the divisor output frequency is one thirty-second of the input 

frequency. 

Bit 1: Unused. 

Bit 0: Unused. 

Switch Bank 3: Pseudo-Random Signal Generator Settings 

Bit 7: N3. Sets pseudo-random generator for a 3 bit chain. 

Bit 6: N4. Sets pseudo-random generator for a 4 bit chain. 
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Bit 5: N6. Sets pseudo-random generator for a 6 bit chain.
 

Bit 4: N10. Sets pseudo-random generator for a 10 bit chain.
 

Bit 3: N15. Sets pseudo-random generator for a 15 bit chain.
 

Bit 2: N20. Sets pseudo-random generator for a 20 bit chain.
 

Bit 1: Use Wide. When true, the Modulating Signal is taken from the pseudo-random
 

noise generator. When false, the Modulating Signal will be taken from either the external
 

modulation input or the divide-by-n counter output, as determined by Switch Bank 1 bit 2.
 

Bit 0: Unmodulate. When true, the modulation source selected by other switch 

settings is overridden, and a low state is applied to the Modulating Signal input of the 

modulator. 

Referring again to the photograph in Figure 4.5: Switch Bank 1 has bits 7 and 6 set 

true; Switch Bank 2 has bit 7 set true, and Switch Bank 3 has bits 4 and 1 set true. These 

settings would create a 33.33 MHz clock with pseudo-random modulation. The pseudo­

random signal generator would be running at the 66.67 MHz rate, using a 10-bit chain. 

This switch setting was used to create the spectral data reported in Section 7.3, Design 

Scenario #2. 




