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GENERALIZED HILBERT TRANSFORMS ASSOCIATED TO CONES IN Rn

CHAPTER I

INTRODUCTION

The classical Hilbert transform H on L2(R) may be

defined by

(HU)A(t) . t A= -1 u(t), for u in L2(R).
tl

Clearly H is an isometry of L2(R) and H2 = -I, H = -H.

It is also easy to see that H is a real operator, i.e.,

H commutes with conjugation. On real functions, H may be

characterized as follows:

Let uo be a real valued function in L2(R). Then there

exists a real valued function vo in L2(R) such that if
A

Fo = uo + ivo , then supp Fo In this case vo = Huo.

Moreover, there exists a unique holomorphic function F in

the upper half plane 0 such that F is in H2(0) and

F0(x) = L2-lim F(x+iy) as y 0.

In this case F is just the Cauchy integral of Fo, and if

we set F = u + iv, where u and v are real, and compute v

explicitly) we obtain

v0(x) = L2-lim v(x,y)
y4,0

=(x_t) u0(t) dt,
yo -c° (x-t)2+y2

i.e., formally at least vo is given by the singular



integral

m u0(t)
v0(x) = 1 dt.7 loo X u

In general this integral diverges, but it does exist in the

principle value sense for almost all x.

Thus there are two aspects to the Hilbert transform,

which may be described briefly as

the connection with singular integrals, and

the connection with boundary values of

holomorphic functions.

Corresponding to these aspects there are at least two ways

of generalizing the Hilbert transform to Rn

(A) The Riesz transforms.

One way to generalize the Hilbert transform to Rn is

tointroducetheRiesztransformsR.j= 1,2, ,n.
J'

These transforms are defined by

(R.u)Aw for u in L2(Rn)

Clearly R. is a bounded operator on L2(Rn) and we have

2 R2. -I and R:
-Rj'

j 1,2, ,n.
j-1

The Riesz transforms are singular integral operators and

in a certain sense are the prototypes for all singular

integral operators.
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1 if is in F*-{0}

{
hr() = -1 if -.. is in 7*-[0]

0 otherwise.

Then we define the Hilbert transform H associated to F by

(Hru)A( ) = hr() for u in L2(Rn).

Then HF is a bounded real operator in L2(Rn), Hr = -H

and -H2 is an orthogonal projection. This Hilbert transform

is related to boundary values of holomorphic functions in

much the same way as in the one-dimensional case. It is

this Hilbert transform which we will study here.

In order to prepare our way, we briefly discuss cones

in Rn and Fourier transforms and convolutions in chapter II,

and some distribution theory in chapter IV. In chapter III,

we study the Hilbert transform Hr on L2(R) and show that

the Hilbert transform of a real-valued function u in L2(Rn)

is the boundary value of a certain conjugate Poisson

integral of u. In chapter V, we extend the definition of

Hilbert transform to .13L2(Rn) and show that we have results

similar to those obtained for L2(Rn).

3

(B) Hilbert Transforms Associated To-A Cone.

Let F be a closed convex cone in Rn. We assume r to be

salient so that the dual cone F* has nonempty interior.

Now we define



The Hilbert transform on L2(R1) is studied, for

example, in Titchmarsh [2], Hewitt [1], Zygmund [1],

Weiss [1], Butzer-Trebels [1] and Butzer-Nessel [1].

The Hilbert transform on distributions in one-dimensional

space may be found in Horvath [1], Tillmann [1] and [2],

Newcomb [1], Lauwerier [1], Beltrami-Wohlers [1] and [2],

and Gattinger [1].
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CHAPTER IF

PRELIMINARY FOR CHAPTER III

(i) Convex Cones

A subset F of Rn is called a cone if tx is in F

whenever x is in r and t > 0. If 'F is a cone, then the set

F* = [ E Rn I ( ,x) > 0 for each x E r
is a closed convex cone and is called the dual cone of F.

Theorem 2.1. F*** = F* and F** is the smallest closed

convex cone which contains F.

Proof. Clearly F C r** and therefore (F**)* C F* and

F* (F*)**, hence r*** = r*. Suppose A is a closed convex

cone andFcACF**. Then A* = F* by the first part. If_

x is not in A, by the separation theorem we can find in

Rn so that ( ,x) < (,y) for each y in A. Since A is a cone,

we have ( ,x) < t(E.,,y) for each y in A and t > O. Thus

(,y) > 0 for each y in A and ( ,x) < O. The first condition

implies that is in A* = T*, and therefore x is not in F.

Thus A D r**, therefore r** = A. Now if A is any closed

convex cone and r C A, by the above A n F** = F**, i.e.,

5

Q.E.D.

Definition. A cone r in Rn is said to be salient if r**

contains no subspaces other than [01.
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Lemma 2.2. If F is a cone, then F is salient if and only

if r* has nonempty interior.

Proof. A subspace L of Rn is clearly a cone and L*

Suppose r is not salient. Then there is a subspace L / [01

such that L c F. Thus F*** F* c LL which implies F* has

empty interior. Conversely, suppose F* has empty interior.

Let L be the subspace of Rn spanned by F*. Then L / Rn,

since F* is convex and has empty interior. But then

[01 /L C T** and so r is not salient. Q.E.D.

Lemma 2.3. Let F be a convex cone and for each x in F

define

6(x) inf {(,x) is in F* and 1 1.

Then 6(x) is the distance from x to the boundary of F.

Proof. Let d be the distance from x to the boundary of F

and choose xo in the boundary of F such that lx-xol = d.

Let H be a supporting hyperplane of F at xo with normal 11

such that liii 1, (11,x0) a > 0 and (my) > a for each

y in F. It follows that 11 is in F*. Since 0 is in T we also

have a = 0. Thus

6( ) < (11,x) = (Thx-x0) dist(x,H) < ix-x01 d.

Conversely, suppose F, is in
5n-1

Then x-cl is on the

sphere with center at x and radius d. So we have x-ci is in

T = F**, and hence if is in F*, we have ( ,x-d) > 0. Thus

( ,x) > d which implies 6(x) > d. Q.E.D.



An immediate consequence of the above lemma will be

useful to us in chapter III.

Corollary 2.4. Suppose r is a convex cone. Then x lies in

the interior of r if and only if there exists 6 > 0 such

that ( ,x) 61fl for each in F*.

ii) Fourier Transforms and Convolutions

If 1 < p < c°,we denote by L(R) the Banach space of

complex-valued LP functions on Rn relative to Lebesgue

measure. As usual, we identify functions which are equal

almost everywhere. We denote by q(Rn) the real Banach

space of real-valued functions in LP(Rn).

If u is in Ll(Rn), we define the Fourier transform

A
u() or 3[u(x); ] of u(x) by

- 01 e-i(''x) u(x) dx
Rn

and the inverse Fourier transform 171.( ) or 3-1[u(x); ] of

u(x) by

(21-11-11 Jr ei(x) u(x) dx

Remark. For any function u on Rn we define U(x) = u(-x).

7



VA T
We note that if u is in Ll(Rn), then a - (27)-n el

and v commutes with A, - and .

Theorem 2.5. If u is in L1(Rn) then el is a bounded

uniformly continuous function which vanishes at c° and

< huhL,

Proof. This theorem is the Riemann-Lebesgue lemma. See,

for example, Bochner and Chandrasekharan [1] p.57.

Theorem 2.6. If u is in L1(Rn) and el is in L1(Rn) then

Proof. This is the Fourier inversion theorem. See for

example, Bochner and Chandrasekharan [1] p. 65.

Theorem 2.7. If u is in L1 (R) n L2(Rn), then el is in

L2(R) and a L2 (211)n/2 huhL2 (Plancherel formula).

Both 3 and 6-1 extend uniquely to bounded linear operators

of L2(Rn) onto itself and these extensions are inverses of

each other . If u and v are in L2(Rn) then we have

AA(U,V (2u)n (u,v) (Parseval's formula)

A
n v

u (2TT) u

A A

jRn
u(x) v(x) dx = v( F)

Rn

8



In particular (2u) -n/2 3 is an isometry of L2(R) onto

L2(Rn).

Proof. This is the L2-theory of the Fourier transform.

See, for example, Bochner and Chandrasekharan [1] p. 120.

If 1 < p < 2 then L(R) C L1(Rn)+L2(Rn). Thus if u is

in L(R) we may write u = u
+u2

with u. in Lj(Rn), j = 1,2.
J

A A
In this case we define

Au = u +u .12 It is easy to check that

A .
U well-defined and we have the following result.

1 1
Theorem 2.8. If - 1, 1 < p < 2 and u is in

0
Lp(R

A
n) then u is in L-1(nR ) and moreover

< (270n/q huk .

Lq LP

Proof. The proof depends on the M. Riesz-Thorin inter-

polation (or convexity) theorem. See Weiss [2] p. 168ff,

Zygmund [I] Vol.II p. 254ff, Katznelson [1] p. 141ff and

Donoghue [1] p. 260. The inequality in the theorem, due to

Titchmarsh [1], is called the Titchmarsh inequality and is

also referred to as Hausdorff-Young inequality.

Theorem 2.9. If p, q, r are extended real numbers such

1 1 1
that 1 < p, q, r < . and + 1 - and if f is in

L(R) and g is in Lq(Rn), then the integral

9



f * g(x) f f(x-y) g(y) dy
Rn

converges for almost all x and defines a function f * g

in Lr(Rn) called the convolution of f and g. Moreover we

have f * g g * f a.e. and

hf * gh <114 p Hqe (Young's inequality)
r

In case r d-c°, the integral converges for each x and f * g

is a bounded uniformly continuous function.

Proof. See Zygmund [1] Vol.II p. 37 or Hewitt and

Stromberg [1] p. 414.

The Fourier transform converts convolution into

multiplication. This statement has a wide range of

applicability when we pass to distributions. For the

present, we have the following results.

Proposition 2.10. If f and g are in L1(Rn) then f * g

is in L1(Rn) and (f * g)A g.

Proof. See, for example, Bochner and Chandrasekharan [1]

p. 58.

Theorem 2.11. If f and g are in L2(Rn) then

f * g = ( if\ 1g)-

Proof. If f is in L/(Rn) then

(axf)AW = e-i(x'"

10



where Uxf(y) f(y-x). Since le-i(x'"I 1 this property

also holds for f in L2(Rn). Then by theorem 2.7 we have

f * g(x)
Rn f(y) g(y) dy

x

jcn (gxf)-(Y) g(Y)

V A

In(Jxvil-W
A

dr C-/W
Rn

= (2u -n 4n(U-xf)AW

-(2u)nJC ei(x'"
Rn

Q.E.D.

The main references to Fourier transforms are the

books by Bochner [4] Wiener [1], Titchmarsh[2], Carleman

[1] Bochner and Chandrasekharan [1], Zygmund DJ, Hewitt

[1], Goldberg [1], Weiss [1], and Katznelson [1].
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CHAPTER III

THE HILBERT TRANSFORM ON L2(Rn

Let F be a closed convex salient cone, so F* has

nonempty interior. We define the function h by

1, if is in F*-{01

= -1, if is in F*-{01

0, otherwise.

Now we define the Hilbert transform Hr (or simply H if no

confusion can arise) associated with F by

(Hu)A( ) 1A1() for u in L2(Rn).

Theorem 3.1. H is a bounded linear operator on L2(Rn).

In fact 1114 < 1. Moreover we have

the adjoint H* of H is -HI

Q -H2 is an orthogonal projection in L2(R)

and (Qu)A() = 111(W til( ) for u in L2(Rn),

H = QH = HQ.

Proof. (Hu)A(E.,) = is in L2(Rn) for u in

L2n). By theorem 2.7 we have Hu is in L2(Rn(R ), and

liHukL2 (27)-n/2 11Q1,2

(2n)-n/2 4 h( ).tAl()

< (211)-n/2 1141,2

HuilL2

12
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Moreover, we have following:

For every u and v in L (Rn we have

(Hu,v) = (2u)

= (2)),1/)())
= (2) ),ih(OW)

- (21-0-n (U,-g)

= (u,-Hv)

(u,H*v) .

Therefore H* = -H .

Let Q -H2. For each u in L2(Rn), we have

(Qu)AW = (-H2 )A()

-04(HuHAm

= ihW(Hu)A( )

h2()tqW

= 111(W 111()

(Q2u)AW = Ih(W (Qu)A()

= 111(FD)12 ft()

=

(Qu)A( )

Hence Q2 Q by theorem 2.7. We also have

Q* (-H2)* = -(H*)2 = -(-H)2 - -H2 = Q.

Therefore Q is an orthogonal projection.

Since Q -H2 it is obvious that QH = HQ.



Also we have, for every u in L (Rn),

(QHu)A() = lh(;)1 (Hu))

h()1 (-ih(Ff)) el( )

= h()

(1411)AM .

By theorem 2.7, we have QHu Hu for every u in

L2(Rn). Therefore H = QH = HQ . Q.E.D.

Definition. Suppose u is in Lloc(Rn). We define the

support of u as the complement of the largest open set on

which u vanishes almost everywhere. We denote the support

of u by supp u.

To see that the definition makes sense, i.e., the

existence of the largest open set, let [IJaaEA be the

family of all open sets (suitably indexed) such that u

vanishes almost everywhere in Ua for each a in A, and let

U = U Ua Since U is 0-compact there is a countable
aEA

.subset N of A such that 11
Ua

. Thus u vanishes
aEN

almost everywhere in U .

Let im T be the image of a transformation T and ker T

be the kernel of T.

Theorem 3.2. The Hilbert transform H associated with F

has the following properties.



H is an isometry of im Q onto im Q .

ker H ker Q (im Q)-1- .

im H im Q = [uEL2(0) suPp c F*U(-F*)j.

Proof. According to theorem 2.7 and 3.1, we have

r/HQuilL2 (21-r)-n/2 1-1Qu111,2

(2n)-n/2 6i411,2

(21-r)-n/2 h( ) q(WL2

- (27)-n/2 W-1(W q(WL2

- (27)-n/2 11 -1111,2

1QukL2

Now if v is in im Q, then v Q2v H(-QHv) and so H maps

im Q onto im Q isometrically. In particular im Q im H

whence QH H implies im Q im H. Now Q -H2 implies

ker H C ker Q and H - HQ implies ker Q C ker H. Finally

u is in im Q if and only if Qu u, i.e., a.e.

Thus u is in im Q if and only if (I - 0 a.e. outside the

closed set F* U (-1-*)
. Q.E.D.

Definition. A linear operator. T on L2(R) is called a

real operator if it commutes with conjugation, i.e., T is

real if Ta Tu for each u in L2(Rn).

A real operator clearly maps real functions to real

functions and hence induces a linear operator on LORn),

15



16

which is the real Hilbert space of real-valued functions in

L2(Rn).

Proposition 3.3. H and Q are real operators on L2(0).

Proof. From the remark preceding the theorem 2.5 we have

following equalities, for u in L2(Rn),

(Hu)/\() (Hu)/\() (Hu)/\(-)

h(-)

(-h( )) 11\-1(-)

= (1(-E.,)

h( )

A

= -171()

(Hu) (s).

Therefore Hu - Ha for every u in L2(Rn). Also we have

Qü - -H2171 -H(Hu) -H(Hu) -H(Hu) = -H(Hu) Qu 9 for

every u in L2(Rn). Q.E.D.

We denote the characteristic function of a set A by

xA . Thus

f1

if x is in A

XA(x)
0 otherwise.
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Now let W be the bounded linear operator in L2(Rn) defined

by W = t(Q + iH) .

Proposition 3.4.
A

We have (Wu)A = x u a.e. for each u inr*

L2(Rn). In particular W is an orthogonal projection in

L2(R) and im W u E L2 (Rn)I sulDID c r* J.

Proof. (Wu)eW = f-T-1713T-1()

= ((Qu)A()+ i(Hu)A())

= (1/1()() + i(-i)h()e1W)

= (1h(FD)1 + hW)

A
= () a.e.

F*

By theorem 3.1, we have the following equalities:

W2 - (Q iH)2

_ (Q2 H2 21HQ)

(Q + Q + 2iH)

= * (Q + iH)

W.

W* = (Q + iH)*

= (Q* + (iH)*)

= (Q - iH*)

= t (Q + iH)

- W.

Therefore W is an orthogonal projection in L2(Rn).



Thus u is in im W if and only if u Wu if and only if

AAA a.e. if and only if u a.e. outside theU = x .0

closed set F* . Q.E.D.

Lemma 3.5. If uo and vo are in L2(Rn), then the following

statements are equivalent.

W(uo+ivo) uo + ivo.

Quo - Hvo 2u0 and Qvo + Huo 2v0 .

Quo = uo and Huo vo .

Proof. (a) <=> (b) Consider following equalities:

W(uo+ivo) = (Q + iH)(uo+ivo)

= [(Quo - Hvo) + i(Qvo + Huo)].

Therefore W(uo+ivo) uo + ivo if and only if

Quo - Hvo 2u0 and Qvo + Huo 2v0 .

(b) <=> (c) If Quo - Hvo = 2u0 and Qvo + Huo 2v0

then, applying H on first equality and using theorem 3.1,

we have 2Hu0 = HQuo - H2v0 Huo + Qvo 2v0

which implies Huo vo. Apply this fact to first equality,

we have 2110 = Quo - Hvo = Quo - H(Huo) Quo + Quo 2Qu0

which implies Quo uo . Conversely, if Quo 110 and

Huo vo , then Quo - Hvo Quo - H(Huo) 2Qu0 2u0 and

Qvo + Huo = Q(Huo) + Huo = 2Hu0 = 2v0 . Q.E.D.

Corollarly 3.6. Let uo be in L(Rn) . There exists vo in

18
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) such that supp(uo+ivo)A 7* if and only if Quo= uo.



Moreover, in this case we have vo Huo .

Proof. By proposition 3.4, if supp(uo+ivo)AC r* then

uo+ivo is in im W and so W(uo+ivo) uo + ivo which implies

Quo = uo and Huo vo by the above lemma. Conversely,

suppose Quo uo . Let vo Huo . By the above lemma, we

have W(uo+ivo) uo + ivo which implies uo + ivo is in

NAim W. Therefore supp(uo+ivo)

Suppose is in Rn and a

j = 1,2, ,n. We define lal
a1+ a2+

+
an and

al a2....Fan
1 2 'n

Now let Fo denote the interior of F. Thus we have follow-

ing proposition.

a -(y)Proposition 3.7. If y is in Fo , then e' XF*(fl

belongs to LP(Rn) as a function of for p > 1.

Proof. By corollary 2.4 there exists 6 > 0 such that

(,y) 61fl for each in T*. Thus

n
e-(,Y) X WIPr*

< Jr 1 1Pial e-P151 1

i3n-11 rpial+n-1 e-pOirl dr <

where 1Sn-11 denotes the area of the unit sphere Sn-1

Q.E.D.

an) with a, > 0,
5

J
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If Fo is nonempty, then the .proposition 3.7 implies

that the integral

K(z) (21-)-n ei(z'"

converges absolutely for z in 0 Rn ir.
.c The

function K is called the Cauchykernel of the tube 0 or of

the cone F . It was first studied by S. Bochner (see

Bochner [2]). If y is in Fo , it is convenient to introduce

the function K defined by K (x) K(x + iy), x in Rn.

We note that

K (x) 3-11e-(Y'"

(e-(Y'"Xr*))-(x)

Theorem 3.8. If To is not empty then the Cauchy kernel K

is a holomorphic function in the tube 0 . We may compute

the derivatives of K by differentiating under the integral

sign.

Proof. By lemma 2.3, if y is in F and ; is in F*, then

(F,Y) > 6(y)kl where 6(y) is the distance from y to the

boundary of F . Now let A be any compact subset of Fo .

By continuity of the distance function, there exists 6 > 0

such that (,y) > 61fl for in r* and y in A. Therefore

kaei(x+iy, ), (F)I <

for in Rn and y in A. Since A was an arbitrary compact

subset of ro, by Fubini's theorem, we conclude that

20



LP

uH = hpauh p k = 0,1,2,
k lal< k L

is a Frechet space, and if 1 < p < 0,, then 1) is even
LP LP

reflexive according to the theorem of Mackey-Arens (see

Schwartz [1] p.200). It is customary to denote I) by B and
Lw

21

K(x+iy) is a C function of (x,y) in Rnx70 and that

a 8
D D'K(x+iy)x y

= (2111-n JHa1+21s1 dr
Rn

Xr*

ax axIn particular 6x + i 6y. - 0, j - 1,2, n

i.e., the Cauchy-Riemann equations hold, and therefore K is

holomorphic. Q.E.D.

Corollary 3.9. If y is in ro , then K is in C(R) and

DaK (x) = ilal (ec e-(Y'" xr*(x) .

Proof. The corollary is immediate by proposition 3.7 and

the proof of theorem 3.8. Q.E.D.

We define, for 1 < p <

= [u E C'(Rn) Da E L(R) for each a 1

LP

and provide it with the topology defined by the system of

semi-norms of the form, for u in



to define

g° = [uEBIDauvanishes at . for eachal

We recal that Cc°(Rn) is dense in .0 for 1 < p < c° and
LP

also dense in g° . But nRn) is not dense in 3.

Proposition 3.10. If y is in Fo , then K is in for
LP

p > 2. Moreover K is in g°.

Proof. Corollary 3.9 and proposition 3.7 together with

theorem 2.8 (applied to - rather than A) imply Ky is in

for p > 2. Corollary 3.9 and proposition 3.7 together
LP

with theorem 2.5 (applied to - rather than A) imply Ky is

in e° Q.E.D.

Remark. Since DaK is in L2(Rn) by proposition 3.10, it

now makes sense to speak of the Fourier transform of DaK .

In view of corollary 3.9 and theorem 2.8 we have

(DaK )A(;) = ilal ;a e-(Y') Xr*() .

Suppose now Fo is in L2(Rn). We define the Cauchy

Integral F KF0 of Fo by

F(z) jr K(z-t) F0(t) dt, for z in Rn+iro.
Rn

This Cauchy integral was also studied by S. Bochner (see

22



Bochner [21). If we let F (x) F(x+iy), then we clearly

have F K , F0 which shows that F is well-defined andy

F is a bounded continuous function (theorem 2.9).

A A

Moreover, by theorem 2.11 we have F (K Fo)- which we

may write explicitly as

i(zF) A -F(z) (21-)-n e F.(S)

where the integral converges absolutely for each z in
A

0 = Rn+iFo. In particular since (WF0)A Fo a.e. on r*,
we conclude KWFO KF0 .

Lemma 3.11. If Fo is in L2(Rn) and F KF0, then

sup Jr 1F(x+iy) 12 dx UWF0112 .

yEF0 Rn L2

Proof. By the remark following proposition 3.10, we have

A

K (F,) = e-(Y' ) xr*(;) .

A

K (F,) is bounded, since (y,F..) > 0 for y in Fo and F., in r* .

A A A
Since F - (K Fo)- and K is bounded, we see that F is in

Y
.. A A A

L2(R) and moreover by theorem 2.7, F - K Fo and
Y Y

A
11F H22 = (27)-n 11F3X12_,2 . Since (y,F,) > 0 for § in F*, wey L

A A A A
have IFyl = lyol IX* Fol i(wF0)A1 G L2(R)

A A A
Clearly F () K ( ) F0(t) converges to (WF0)A(t) as y

23
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converges to 0 in Fo and therefore by the Lebesgue dominated

convergence theorem we have

A

ilFy1112_,2

as y --> 0, y in ro . Hence

sup dr11F(x+iy)12 dx = lim 11F,q2
yEFO Rn y4o,yEr0

A

= lim (21-0-n 11Fyq2
y4o,yEro

- (217)-n haht2

> H(NF0)AHt2 (2-r)n kWFokf,2

OfFoll22L
Q.E.D.

Let 0 = Rn + iFo . A function F defined and holomorphic

on the tube 0 is said to belong to the space H2(0), if

Fld2 sup(Jr IF(x+iy)I
R"

2 dX)2 < m.
yEF0

Lemma 3.12. The Cauchy integral is a bounded linear map

of L2(Rn) into H2(0) where 0 Rn + iFo . Moreover

111 KFO 2 01F0kL2 < 0.111,2

for each Fo in L2(Rn) and so in particular ker K ker W .

Proof. Once we show that F = KF0 is holomorphic in 0,

then lemma 3.11 implies 111 KF0 N2 = I
WF0HL2 and therefore



KF0 0 if and only if WF0 0, i.e., ker K ker W. To

see that F is holomorphic, we first note that

F(x + iy) (2n)-11 r ei(X-FiY'" Fo( )

As in the proof of theorem 3.8, if A is any compact subset

of Fo , there exists 6 > 0 such that

i(x+iy,
A

) F0M1

< e-61 1 1110()1

and so by Fubinits theorem F(x+iy) is a Cm function of

(x,y) in Rn+To and

Da D F(x+iy)
x y

A2)_n ilcd+21fl jr Fa+( i(x+iy, )
8 x (F) F 0Rn ' rw D,

aF . FIn particular ax. + lay. 0, j

i.e.., the Cauchy Riemann equations hold, and therefore F is

holomorphic. Q.E.D.

Theorem 3.13. The Cauchy integral maps L2(Rn) onto H2(0)

and is an isometry of im W onto H2(0).

Proof. In view of lemma 3.12 and KWFO KF0 1 it suffices

to show that if F is in H2(0), then there exists Fo in

L2(R) such that F KF0 , i.e.,

25



= (27)-nei(x+iy ) A' Fo() d .

That such an Fo exists is a theorem of S. Bochner (see

Bochner [2]). Q.E.D.

Corollary 3.14. If Fo is in L2(Rn), then F = KF0 is in

H2(0.) and each element of H2(D) is of this form. Moreover

WF0(x) = L2-lim F(x + iy)
yEro,yo

In particular Fo in L2(R) is the L2-boundary value along

the edge of D of some F in H2(D) if and only if WF0 = Fo

Ai.e., supp Fo c r*

Proof. The first part is only a restatement of theorem

3.13. In the proof of lemma 3.11 we have that F is in

A

L2(Rn), and F converges to WF0 in L2(-°) as y converges to

0 in Fo therefore F converges to WF0 in L2 as y converges

to 0 in ro by Parseval s formula. In particular, if Fo is

in L2(Rn) and

F0(x) = L2-lim F(x + iy)
y-0,yEro

for some F in H2(0),

then we have F KF0 for some Fo in H2(D). Hence

F0(x) = L2-lim F(x + iy) = wF:(x)
yo,yEF0

26

Therefore Fo WF0 a.e. and so WF0 = Fo since W is a projec-

tion. Conversely, if WF0 = Fo , taking F = KF0 , we have



and

where p(x,y) = 2 Re K(x+iy) is called Poisson kernel and

q(x,y) 2 Im K(x+iy) is called conjugate Poisson kernel.

27

F0(x) WF,(x) = L2-lim F(x + iy) Q.E.D.
yo,yEF,

Remark. The existence of boundary values of ON
functions in dimensions > I was first considered by E. M.

Steim, G. Weiss and M. Weiss (see Stein, E. M., Weiss, G.

and Weiss, M. [1]).

Let Re F be the real part of F and Im F be the imagin-

ary part of F.

Theorem 3.15. Let uo be in L(Rn). Then there exists F in

H2(o) such that

u0(x) L2-lim Re F(x + iY)
)

yo,yEro

if and only if uo Quo . Moreover, in this case, if

vo = Huo , then

v0(x) L2-lim Im F(x + iy)
yo,yEF,

and if F(x + iy) = u(x,y) + iv(x,y) where u and v are real

then

u(x,y) p(x-t,y) u0(t) dt

v(x,y) n q(x-t,y) u0(t) dt



Proof. Let uo be in q(Rn). If there exists F in H2(0)

such that

u0(x) = L2-lim Re F(x + iy), then let
yo,yEF,

v0(x) L2-lim Im F(x + iY).
yo, yEro

From corollary 3.14, we have F KF0 for some Fo in L2(Rn)

and WF0(x) = L2-lim F(x + iy) = u0(x) + ivo(x).
yo,yEF0

Therefore W(uo + ivo) = W2F0 = WF0 uo + ivo which, by

lemma 3.5, is equivalent to Huo vo and Quo 110

Conversely, if Quo uo , then, letting vo Huo , we have

W(uo + ivo) uo + ivo by lemma 3.5. Therefore if we let

F K(uo + ivo), we have u0(x) L2-lim Re F(x + iy) by
yo,yEF0

corollary 3.14. Now if F(x+iy) = u(x,y) + iv(x,y) where

u and v are real, we consider following equalities

F KF0 KWF0 K(uo+ivo) K(Quo+iHuo) 2KWu0 = 2Ku0 .

Hence u(x,y) = jrn 2 Re K(z-t) u0(t) dt

and

p(x-t,y) u0(t) dt

v(x,y) 2 Im K(z-t) u0(t) dt
Rn

jr q(x-t,y) u0(t) dt .

Rn
Q.E.D.
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Lemma 3.16. If y is in Fo , then

and

p(x,y) (2u)_n e

q(x,y) (2u)-n e

(27)-n f,

i(x, ) Ih(M

i(x,)e-1(Y)W h( )

i(x e
n .X7* e

(2u)-11Xdr () ei(x' " e-i(Y'"I ,n F*

K(x + iy) (217)-n

- (27)-n Jr x (E;) e-i(x'" e-1(37'"1
Rn

= (2,)-n drn ei(x,)

Therefore p(x,y) - 2-Re K(x+iy) K(x+iy) + K(x+iy)

(ao-n r i(x,s'D) e-I(37,W (xl,*()-1-xr*(_E)) cg
jRn e

29

hence e-1(Y,'H hq()I

and qy(E.,) e' .

Proof. Consider following equalities

K(x + iy) (217)-nJ ei(x+iY'" ,c1"



i(x, ) e-1(Y,W 11-1(W 121- .= (2n)-n in e

21.0-n Jr
Rn

Proof.

f) e-1(Y,) I (xr*()_xr*(-)) d;

,A /\
By theorem 2.11, we have qy * Quo - kqy Quo

, u, From lemma 3.16, we know that q isqy

A
bounded. Thus q Quo and q (I are in L2(Rn) and so by

theorem 2.7, we have

30

and

_i (27)-n fn ei(xM h( )

Since P(x,Y) = (e-1(Y'W ih(W)-(x) and

q(x,y) (-i h())-(x) are in L2(Rn), we have

y() el(Y) )1 ih()1, and /(1.3r() = e-1(Y) )1 h( ).

Q.E.D.

Theorem 3.17. If uo is in LpRn then

Huo = L2-lim q * Quo
y-o,yEF0 Y

L2-lim q, * uo.

Therefore

Huo(x) = L2-lim Jr q(x-t,Y) u0(t) dt
y-0,yEro R
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(qy Quo)A(. ) icly(FA (Quo)A()

h(F,) (1.( )

e-1(37,W h() fto(E)

() ftc)( )

(qy * uo)A( ).

While (Huo)A( ) h( ) q0( ) and

1(qy * Quo)() - (Hu.)A()l <2 l(Hu.)A()j E L2(R)
)

we have , by dominated convergence theorem,

Hcly * Qu.) - Hu0q2 (2n) * Quo)A - (Hu.)
Ailt2

as y --> 0 , y in r. . Q.E.D.

Examples.

(A) Suppose n 1 and r [0,m). In this case H is

the classical Hilbert transform and 0 is the upper half

plane. We note r* Co,w) , so r* U (-r*) R and therefore

Q I. Hence by theorem 3.2, H is an automorphism of L2(R).

By theorem 3.15, we have that if u0 is in L(R), then there

exists a unique F in H2(0) such that

u0(x) L2-lim Re F(x + iy) , and in this case
y 0

Hu.(x) L2-lim lin F(x + iy)
y 0



For the Cauchy kernel K(z), we have

K(z) = f'meiz -1
27 ariz

Hence q(x,y) - 2 Im K(x + iy) Im (fli(;-Pliiy))

Then

(1
y+ix

IT
Im

x2+y2

Therefore, by theorem 3.17, we have

CO

2+31.2) '

Huo(x) L2-lim JC q(x-t,Y) u0(t) dtyo
L2-lim 1 x-t

u0(t) dt
y o 7 Lo (x_t)2+3T2

which is a well-known classical formula.

(B) Let k > 0 and

F y E R3 1 y3 > k(y.21+y22)1 I

r* t e R3I > ( 2.4- 2)2-'

Suppose y is in Fo , we have

K(iy) - (27)-3 4* e-(37,')

(k/(2n))2
[31.2_k2(y2+y2)]3/2

3 1 2

z 2Now, for z in 0, define u = k2(z24.,z2)
1 2 3

If B(x,y) x3y3 - k2(x1y1+x2y2) then
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Re u B(y,y) - B(x,x) and Im u 2 B(x,y) . Suppose

Im u 0 and y is in Fo . Then B(y,7) > 0 implies y3 > 0 .

If x = 0, then Re u B(y,y) > 0. If x / 0, then B(x,y) = 0

and B(y,y) > 0 imply

1x 1y k2lx y +x y
3 3 1 1 2 2

< k2(x24.)(2)2(y2+y2 2

1 2 1 2

< k(X2 +X2) y
1 3 3

Thus lx < k(x2+x2) 2 which implies B(x,x) < 0, and SO
3 1 3

Re u > 0. We conclude that if z is in Rn+iFo and

u k2(z2+z2) z2
5
then u / 0 and -fl < arg u < ii . Hence

1 2 3

we may define u3/2 by taking the determination which is

positive when u is real and positive. Then u3/2 is a holo-

mophic function on Rn+iro which agrees with

(yz_k2(y2+3,2))3/2 on iro . Thus
3 1 2

K(z) -
(k/(211))2 n .

, for z in R +Iro .
[1,2(z2+z2)_z2j3/2

1 2 3

The conjugate Poisson Kernel qy(x) = 2 Im K(x+iy) is rather

unpleasant to compute. However if we let y converge to 0,

we have, formally,

_1(L21-x2_k2(x2+x2)]-3/2

go(x) - { . -11 L 3 1 2

0 , otherwise.

if x is in ru(-r)
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Now q, is not locally integrable along the boundary of

FU(-F). Since we would expect Huo L2-lim q * U0 to be
y o

given by an appropriate finite part of q, * U, , it appears

that H is not a singular integral operator in the usual

sense.

(C) Let S be the space of 2 x 2 real symmetric

matrices. Then E : U3 ---> S+iS defined by

z +z
3 1 2

E(z) =

Z -Z
2 3 1

is an isomorphism. Let P be the positive 2 x 2 real symme-

tric matrices. It is easy to see that E-1(P) = Fo where

2F { x E R3 I x > (x24.x2) J Note 7* , and
3 1 2

tr(E(x)E()) 2(x, ). Thus if B is in S, then tr(AB) > 0

for each A in P if and only if B is also in P. Bochner

defined the Cauchy kernel of P to be, for A in S+iP,

K(A) (217)-3
dc eii tr(AB)

dVB

where dVB is the Lebergue measure on R3 (see Bochner [2]).

By the previous example, if z is in R3+iF0 , then

K(E(z)) = (2.11)-3 ei(z'"

(2n)-2 tz2 + z2 - Z2)-3/2,

2 3

is the Cauchy kernel of F.



CHAPTER IV

PRELIMINARY FOR CHAPTER V

In chapter V, we shall generalize the ideas in chapter

III to .8 2' the dual of .a 2 . In this chapter, we present
L

a quick review of distribution theory. The book by L.

Schwartz [1] is highly recommended.

For each compact subset K of Rn, let

K
= [uECc°(Rn) I suppucK1

and provide bK with the locally convex topology defined by

the system of seminorms

111K,m - max sup IaDu
lakm

m - 0,1,2,

35

It is obvious that .&K is Frechet. If 0 is an open subset of

Rfl , we denote by L(0) the space C;(0) topologized by the

requirement that a seminorm p on 19-(0) is continuous if and

only if its restriction to LK is continuous for each compact

set K in C.

The dual space of JJ(D), denoted by .13'1(0), is called

the space of distributions in 0. Since a linear functional

T is continuous if and only if p(u) I(T,u)I is a continu-

ous seminorm, we have following proposition.
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Proposition 4.1. A linear functional T on L(0) is a dis-

tribution if and only if for each compact subset K of Q,

there exists a constant CK > 0 and an integer mK > 0 such

that, for each u in LK '

kT,u)I < CK max sup 1Daul.
lal<mK

The space L(0) is not metrizable (see Donoghue [1]

p. 100), but it is an inductive limit of metrizable spaces

LK (see Schwartz [1] p. 66 or Yosida [1] p. 28) (in fact,

it is an LF-space, i.e., a countable strict inductive limit

of Frechet spaces) and therefore we have the following use-

ful criterion .

Proposition 4.2. A linear functional T on L(Q) is a dis-

tribution if and only if (T,uv) converges to 0 whenever

u is a sequence converging to 0 in .5(0).v v>1

Proof. See Donoghue [1] p. 100.

To make use of this criterion we need to identify the

0-convergent sequences. In this connection we have following

proposition.

Proposition 4.3. A sequence {uvlV>1 in L(D) converges to 0
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if and only if there exists a compact subset K of 0 such

that supp u for each v, and we have Dauv converges to

0 uniformly on K for each multi-index a.

Proof. See Yosida [1] p. 28 or Donoghue [1] p. 99.

Let f be in 1loc(0) and define

(f,u) = jrf(x) u(x) dx, for every u in .5(0) .

Rn

It is obvious that f is in .5 (0) by proposition 4.2.

If T is in (0), we define DaT by duality,

(DaT,u) = (-l) for every u in .5(0) .

Thus a distribution, and so a locally integrable function,

has distribution derivatives of all orders. In the case of

function, if the classical derivatives exists they may

differ from the distribution derivatives. However, if f is

in Ck(p), then Daf in the classical and distributional sense

is the same, for !al < k, as may be seen by integration by

parts. Conversely, by a regularization technique one may

show that if f is in C(0) and the distribution derivative

D.f is a continuous function in 0, then D.f exists in the

classical sense and agrees with D.f in the distribution

sense (see Donoghue [1] p. 96).
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Let X be a locally convex linear topological space and

X be its dual space. The weak* topology on X is the topo-

logy of convergence at each point of X and thus is defined

by the family of semi-norms p of the form

p(T) 1(T )1, for every T in X ,

where x is an element of X. The strong topology on X is the

topology of uniform convergence on bounded sets of X and

thus is defined by the family of semi-norms p of the form

p(T) sup 1(T,x)1, for every T in X ,

xEB

where B is a bounded set in X. All distributional spaces

treated will be provided with the strong topology.

If f is in C'(0), we define fT, T in b'(0), by the

duality

(fT,u) = (T,fu), for every u in X(S1

and also define T, T in (0), by the duality

(T,u) = (Tovl for every u in b(0) .

We say that a distribution T in If (0) vanishes in an

open set U of 0 if and only if (T,u) 0 for every u in

b(0) with supp u in U. The support of T, denoted by supp T,

is defined as the complement of the largest open set on

which T vanishes. To see that this definition makes sense,

let [U.iEA1 be the family of all open sets on which T vanish.



Let tt = U U. and u in -U(l). We construct a partition of
iEA 1

unity [ailicm subordinate to the covering Nil
iEN of U.

Then u au is a finite sum and so (T,u) (T)aiu) 0
iGN 1 iEN

since supp au is in some Ui with i in N. If f is in

Ll (Rn) then its support as a distribution is same as its
loc 5

support as a function.

Let E(0) = [ f E C(o) and provide it with the topo-

logy defined by the system of semi-norms,

f IHK , p = sup IDaf(x)1 , for f in F.,(0)

xEK

where K is a compact subset of 0 and p is a positive number.

Theorem 4.4. The set of all distributions in 0 with com-

pact support may be naturally identified with the space

(o), the dual space of 8(0), i.e., a distribution has

compact support if and only if it extends (uniquely) to a

continuous linear functional on e(o).

Proof. See Schwartz [1] p.89 or Yosida [1] p.64 or

Donoghue [1] p.104.

A function f in Cc°(Rn) is said to be in S , if

13 asupnl x D f(x)I < for each pair of multi-indices a and
xER
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We provide g with the topology defined by the system of

semi-norms,

Wsup,1(1+1x12)kpaf(x)1.
lal<k xER-

It is obvious that .8 is dense in g and that g is dense in

L(R) , for p > 1.

Theorem 4.5. The Fourier transform 3 and the inverse

Fourier transform 5-1 establish two mutual inverse automor-

phismes on S.

Proof. See Schwartz [1] p.249, Yosida [1] p.147 or

Donoghue [1] p.140.

Let g be the dual space of g and call it the space of

temperate distributions.

Let f(x) be a bounded function and define

(f,u) jr, f(x) u(x) dx, for every u in S.
R-

That f is in g follows by the inequality

(f,u) - Jr f(x) u(x) dx
Rfl

_ r f(x)
(1+Ix12)n u(x) dx

JRn +Ix12)n(1

< 01 u Ihn
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In fact, we have the following theorem.

Theorem 4.6. A distribution T is temperate if and only if

it is a derivative (in distributional sense) of a continuous

function of slow increase i.e., a function which is the

product of (1+1x12)k/2 by a bounded continuous function

f(x): T Da((i+lx12)k/2 f(x))

Proof. See Schwartz [1] p.239.

T

Note that if f is in Ll
oc

(Rn
,

) n g the quantityl
,u), for u in g, may not equal the integral Jr

nf(x)u(x)dx,

since the latter may fail to exist. For example:

f(x) ex cos ex is the derivative of the bounded function

sin ex . Since the distributional derivative and the usual

derivative are same for Cc° functions, we have that

7

f(x) ex cos ex is in L1 n S by theorem 4.6. But theloc

Jr
m

,integral ex cos ex Ilkx ) dx does not exist in general for
_m

Remark. If T is in g , then by theorem 4.6, for each u

in .0, we have

(T,u) (Da((l+1x12)k/2 f(x)),u(x))

(-1)ial ((iddx12)k/2 f(x),Dau(x))

41



= (-1)1a1 jrn (1-1-1X] 2)k/2 f(X) Dau(x) dx

where f is a bounded continuous function. Clearly the last

integral converges for u in g and depends continuously on u.

Thus the integral actually gives (T,u) for u in g .

A

For T in g , we define T and T by dualities, for u

A -A
in g , (T,u) (T,u) and (T,u) = (T01) . These defini-

tions make sense, since A and - are automorphisms of g .

A

Theorem 4.7. The Fourier transform T ---> T and inverse

Fourier transform T ---> T establish two mutually inverse

automophisms on g with respect to weak* topology or the

strong topology.

Proof. See Schwartz [1] p.251, Yosida [1] p.152, or

Donoghue [1] p.144.

Theorem 4.8. Let T be in g , then

A A
(DaT)A = (i)a T , and Da. T ((-ix)a T)A

are also in g .

Proof. See Schwartz [1] p.109 or Donoghue [1] p.144 or

Yosida [1] p.152.

In chapter III we introduced . e° . Now, if
LP
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1 1
1 , 1 < p <00, we denote the dual space of P

Lq

by If and the dual of by P . The fact that we have
LP

continuous inclusion with dense images, p < q

5c5c5 c.b ce
LP lig

implies that we have canonical inclusions

1 T / ?

cP c.E) cg cP
LP Lq

continuous for any of the usual dual topologies (e.g. weak*,

strong, etc.). Since X is not dense in B, the dual of is

not a space of distribution.

1 1If f is in L(H) then for u in with 1,
Lq

we define

(f,u) JC f(x)
Rn

Theorem 4.9.

dx .

1

It is obvious that f is in P by HOlder's inequality. In
LP

fact we have following representation theorem.

1

A distribution T belongs to .b , if and
LP

only if it is finite sum of the derivatives of functions

in LP(Rn).

Proof. See Schwartz [1] p.201.
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Remark. Let T be in .8 , we have by theorem 4.9,
LP

(T,u) K2 Dafa , u)

(-1)a (fa '

Dau)
a

§ (-1)a
fft

fa(x)_ Dau(x) dx

where fa is in LP and u is in J. By Continuity, this formula

continues to hold for u in
LP

1
If T is in and a is in .1) with

1 - 1 > 0,
LP Lq

the convolution a * T is defined by

a * T (x) = (Tt
'

a(x-t))
(T,JxCic)

which is in .8 with
Lr

and theorem 2.9.

1 1 1 - 1 by theorem 4.9,
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CHAPTER V

HILBERT TRANSFORM ON 2

In this chapter, we extend the Hilbert transform to

n
L2 . Let r be a closed convex salient cone in R with

nonempty interior. We recall that Hr is the bounded linear

operator on L2(Rn) defined by

(Hru)AM h( ) , for u in L2(Rn)

where h = Xr* - x_r* a.e. and we recall Hr = -Hr .

From now on we simply write H for Hr . Note that since H

is a real operator and H* -H, we have the relation

Jr Hu(x) v(x) dx (Hu,) (u, -Hv) = -
Rn

jru(x) Hv(x) dx
Rn

for each u and v in L2(Rn)

First of all, let's study H on &1_,2

Lemma 5.1. L2 = [f E L2 (Rn)
I

p(x)f(x) E L2(R) for each

polynomial p(x))

Proof. If f is in .L2 2 then Daf is in L2(Rn) for each a.

A

Hence (Daf)A( ) = (is) f() is in L2(Rn) for any a .

u,Hv)
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A

Therefore p(x)f(x) is in L2(Rn) for any polynomial p(x). So

A A
2 C {f E L2 (Rn) p( )f(x) E L2(R) for any polynomial

p(x)). Conversely, suppose p(x)f(x) is in L2(R) for any

polynomial p(x). Then, we see that (1+1)(12)5 f(x) is in

L2(Rn) for any real s. Let lal < h < 2s - 1.21 . So

xa is in L2(Rn) . Then
(1+1x12)'

xaf(x)
xa

(1+1)(12 f(x) is in Ll(Rn) for any a
(11-1x12)s

with ial < h. Taking inverse Fourier transform, we know

that ((ix)a f(x))-() DaT() is continuous. Hence T is

in Ch(Rn), for h < 2s - . Since s can be arbitrarily
2

large, we have that -f is in C(Rn) . For any a, we have

DaTWIlL2 k((ix)a f(x))-WhL2

(27)-n/2 11(ix)a f(x)2

which implies f is in .81,2 . Therefore

[f E L2 (H) p(x)f(x) E L2(R) for any polynomial p(x)1

Q.E.D.



Proposition 5.2. H is a continuous linear map of .61,2 into

"61,2

E U .Proof. If u is in .bL2 ' then
A

= h(A A()

a A
Since u(EA = i-lai (Dau)A) is in L2(R) for each a,
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A

we have (H is in 1)1,2 by lemma 5.1. Thus Hu is in L2

For continuity, note that

IlDaHAL2 - (21-)-n/2 1(DaHu)AMIL2

= (21-)-n/2 he(Hu)A111,2

< (21-)-n/2 lieq()11

- (21-)-n/2 0(Dau)A(S)111,2

= leilk 2 Q.E.D.

Since DL2 CL2 let's see how H operates on f in .61L2 as

an element of L2 For every u in LI, , we have, by the

remark after theorem 4.9 and formula * before lemma 5.1,

(Hf,u) fRn Hf(x) u(x) dx

Ln f(x) (-Hu)(x) dx

(f,-Hu) .



Definition.

dual operator of -H

1

We now define H' 2 > XL to be the
' L

continuous for the various dual topologies (e.g. weak*,

strong, etc.). Moreover, we have a natural inclusion

L2(Rn) PtL2 and according to formula * , H' is an extension

of H on L2(Rn) (relative to this inclusion). Hence we will

simply denote H' by H and refer it as the Hilbert transform

.1
on I/L2 associated to the cone F.

If P is a polynomial with constant coefficients,

thenP(-D) is a continuous linear map of PL2 into PL2 and hence

the transpose of P(-D) maps PL2 continuously into PL2 and

clearly coincides with P(D) taken in the distribution sense.

Thus for T in .&L2 and u in L2' we have

(P(D)T,u) = (T,P(-D)u) .

Lemma 5.3. If P is a polynomial, then H commutes with P(D).

Proof. If T is in andand u is in 1) L2
'

then

(P(D)HT,u) = -(T,HP(-D)u) , and

(HP(D)T,u) = -(T,P(-D)Hu) .

Now clearly

(P(-D)Hu)) = (Hu))

1\h( ) 1( )

> P 2 . Note that H' is
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and since P(-D)u is in L2(Rn) we have

(HH(-D)u)A( ) = h() (P(-D)u)A(;)

h() II-1()

Therefore P(D)HT HP(D)T for every T in .5'1,2 Q.E.D.

Theorem 5.4.
A

If T is in .0 2 then T and (HT)A are locally
L '

A

integrable functions and (HT)A( ) h() .

Proof. By theorem 4.9 we have a finite number of fa in

L2(Rn) with T Dafa . By above lemma HT - DaHfa and

therefore

(HT)AW(iE)a (Hfa)A( )

a

, A

h(FD) 2 WA- fa()
a

A
= h() T( ) . Q.E.D.

Theorem 5.5. Let Q LH2 : ---> 2 . We have

Q2 = Q , and

H = QH = HQ .

Proof. (a) For every T in .01,2 and f in .&2 , we have

(QT,f) (-H2T,f) = -(H2T,f) = -(HT,-Hf)

_(T,H2f) = (T,-H2f) (T,Qf)
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Therefore, by theorem 3.1 we have

(Q2T,f) (T,Q2f) (T,Qf) (QT,f) .

(b) Since Q -H2 , we have HQ - QH . For every T in .0L2

and f in L2 we have, by theorem 3.1,

(QHT,f) = (HT,Qf) (T,-HQ0 = (T,-Hf) (HT,f) .

Therefore H QH - HQ . Q.E.D.

Theorem 5.6. The Hilbert transform H associated with r
has the following properties

H maps im Q onto im Q

A

ker H ker Q (T E PL2T - 0 a.e. in r*u(-r*)1,

50

(c) imH- im Q 1.TEP
7

A

1,215upp T c r*u(_1-*)1

Proof. By theorem 5.4, if T is in PL2 thenA,, A
(HT)A( ) = T(,) and (QT)A( ) = Ih( W T(F.) .

Thus (b) follows, and in addition we see

A

im Q = ( T E PL2 supp T c r*u(-r*)1 . Now Q -H2 implies

im Q c im H . Suppose that T is in im H, say T - HS . Then

QT = QHS = HS - T implies that T is in im Q , hence (c)

follows. If T - QS , then T = Q2S = H(-QHS). Thus (a)

follows. Q.E.D.
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If T is in .L2we define T by (T,u) = (T,a) , for u in

. We say that T is real if T = Tr- . Note if T = Dafa

in L2(Rn), and T is real then T = (T + T) implies

T = 2 Daga where ga = (fa +) are real L2-functions.
a

An operator L on .51,2 is said to be real if it maps real

distributions to real distributions. This condition is

equivalent to LT - LT , for T in .5
L

Proposition 5.7. H and Q are real operators on .81,2

Proof. If T is in .DL2 and u is in 2' we have by
L

proposition 3.3,

(HT,u) (T,-Hu) = (T,-Hu) = (T,-HTI) (HT,TO (HT,u) .

Since Q -H2 , Q is also real. Q.E.D.

Let W be the continuous linear operator on .51,2 defined

by W - (Q + iH) .

A

Proposition 5.8. We have (WT)A(F.D) = Xr*( ) T() for each

T in .512 . In particular, W2 = W on &1_,2 and

A
T

imW= (TE.5 21suppTcr*l.



Proof. If T is in I) 2 then by theorem 5.4 we have

A A

(WT)A(;) = (1h(E,)1"1-h()) = xr.W TW .

Thus W2 W . In particular T is in im W if and only if

WT = T, whence the last part follows. Q.E.D.

Lemma 5.9. If Uo and Vo are real distributions in 2L '

then the following statements are equivalent.

W(Uo + iVo) Uo + iVo .

QUo - HVo 2110 and QV° + HU° 21/0 .

QUo Uo and HU° Vo .

Proof. The proof is exactly same as that of lemma 3.5.

Corollary 5.10. Let Uo be a real distribution in J31,2

There exists real Vo in .8L2 such that supp (Uo+iVo)A C F*

if and only if QUo Uo . Moreover, in this case we have

Vo = HU0 .

Proof. The proof is exactly same as that of corollarly

3.6.

In chapter III we met the Cauchy kernel K of the tube

n Rn+iFo or of the cone T . K is holomorphic in 0 . If

y is in ro then (i) e-(37'" x() is in LP(q) for
D

1 < p < and its inverse Fourier transform is just DaK
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where K (x) = K(x+iy) is in P , for q > 2 . Thus
Lq

(DaK
y/0(k ),\

()a e_(y, )

xr*()\

Since DaK is in L2(0), if f is in L2(R) then, by theorem

2.11, we have

A
DaK f ((Da K )A

Y

Since (DaK )AW (i)a e XF*(,c) is bounded, we have

that 01K a._ f is in L2(Rn) and
y'

(DaK W (DaK )A f = (Wa e-(Y'" Xr*PD1
Y

=e' (Daf)A(F.,)

= e-(Y'" (AaDaf)A()

iNow D f is n PL2 and as we have already seen in chapter IV,

we have

K.,Daf(x) = (Daf,J K ) = (-1)a LTn f(x) Da( K )(x) dx
Y x y x y

(f,(-D)a(UxKy)) = (f,(-1)a(-1)a qx(DaKy)v)

Now suppose T is in PL2 , then T = Dafa with fa in L2(Rn),

and so

= (f (DaK )v) DaK f(x)
x y Y
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(K *Arfl = (K Daf )A(E)
a Y - cc

(DaK f )A(t)
a y c a

e-(y, ) x() (Dafa)A()F* a

A

e-(Y' ) X*() T()

Hence we have proved following theorem.

Theorem 5.11. If y is in ro and T is in .&2 , then

(Ky *
T)A is an L2-function and we have

A
A

(K T)
/

_ e' xr*(§) T(FD)* (

= e-(Y) ) (WT)A()

In particular IC T = K WT .

Y * Y

Again if T Dafa with fa in L2(Rn), then by above

theorem

Op(ic THA () (jic ,T)A( )
. y * y

A
= (i)a-rA e-(37, ) Xr*( ) fa()a

belongs to L2(R) since e-(Y'" xr*( ) is bounded.

Above also shows that

D(KT) -D9K T=Ky , Y
y

5L.



(T,u) E (-1)lal JC f (x
Rn

aa
au(x) dx

A
= E (-1)1a1 fn fa(§) (-i)a

a
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Thus K . 'T is in.DL2 . K * T(x) is called the generalized
Y .y

Cauchy integral of T in PL2 , denoted by KT(x+iy), and was

introduced in case r is an octant by H. Tillmann who called

it "Indikatrix" (seeTillmann [1] and [2]). Hence theorem

5.11 implies following corollary.

Corollary 5.12. For z in D = Rn+iro and T in .0 L2 we have

KT = K(WT) .

Now if u and v are in L2(Rn) then by theorem 2.7(iii)

A
v(x) u(x) dx = v() 171() .

In particular we have, for u in PL2 ,

(K" T u) = jr (K , T)(x) ) dxy
Rn

A

jr0 e-(Y," Xr*(§) T( ) Ti() d§

If T = 2 Dafa with fa in L2(Rn), and u is in P 2 then by
a L '

the remark after theorem 4.9 we have



Jr(Dafa
)A( ct

a Rn

A

= T(§) u(' ) d§ .

Since the formula holds for any T in BL2 , we have, in

particular,

A

(WT,U) = Jr
n
Xr*(§) tr() u( ) d§ .

R

Thus for y in ro , T in .012 and u in .t5L2 , we have

(Ky * T - WT, u) = in, (e-(Y't)-l) Xr*W (1"() d§ .

R-

Now if T = E Daf with f in L2(Rn), thenaa a

A , A
T( ) = fa(t) .

Since (i§)a ta(§) = (-1)1a1 (Dau)-(§) , we have

A
=Z(-1)1aIjr (e-(Y'"-1)Xr*(Wa(F(Dau)-(§)d§

Y's a Rn

which implies

1(Ky * T - WT, u)1 Ca(Y) h(Dau)11,2

- (21-)-n/2 Ca(Y) DaulL2

A
where Ca(y) ( in(§) 1(e-(Y' ) - 1) fa(W2 d§)21-*
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We note, by dominated convergence theorem, that Ca(y) --> 0



as y --> 0 in Fo . Thus we have proved following theorem

which improves that of R. Carmichael (see Carmichael [5])

who uses the weak* topology on

Theorem 5.13. If T is in L2' then K * T converges to

WT in .13` 2 as y converges to 0 in To where the convergence is

in the sense of the strong topology on

We now define DH2(0) to be the space of holomorphic

functions in 0 which are finite sums of derivatives of

functions in H2(0) where 0 Rn+iro .

Theorem 5.14. If T is in .& 2 and F KT then F is in

DH2(Q) . If we define Fy(x) F(x+iy), then Fy converges

to WT in withwith respect to the strong topology as y

converges to 0 in Fo .

Proof. In view of theorem 5.13, we need only to prove

that KT is in DH2(0). Suppose T k Dafa with fa in L2(Rn).

By theorem 5.11, we have

KT(z) Ky * T(x)

= (e-(Y'" xr,*() (Dafa)A(§))-(x)
a
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= E (27)-n Jr ei(x e-Cy x() (i)a dF,

a Rn

= E Da[(21-)-n ei(z'"
a x

= E DaKf (z)
a x a

= E DaKf (z)
a z a

Thus KT is in DH2(0) . Q.E.D.

Theorem 5.15. If F is in DH2(Q), then there exists T in

L2
such that F converges to T in SL2 with respect to the

strong topology as y converges to 0 in ro . Moreover WT T

and KT = F .

Proof. If F is in DH2(0) then F = E DaF with Fa in H2( ).
a z a

Now F
Y
(x) Fa(x+iy) defines a function Fa

1Y
in L2(Rni.

a

By the Cauchy-Riemann equations Fy DFa,y ) whence Fy

is in 1)L2 when y is in ro . Now since Fa is in H2(0), by

theorem 3.13 and corollary 3.14, there exists fa in L2(Rn)

such that
Fa

converges to fa in L2(Rn), i.e.,
'Y

l(Fa,y - fa, 01 = Ca(y) HuilL2 for u in L2(Rn), where Ca(Y)

converges to 0 as y converges to 0 in F, . Moreover

WI = fa and F Kf i.e. F = K f .Fa
- a ' a,y y - a
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Let T 2 Dafa . Then T is in .6'1,2 and WT = T since W corn-
a

mutes with P(D) and Wfa fa . If u is in .81,2 , we have

(T,u) = 2 (_1)1al (f Dau) , and
a a/

(F = (...1)1a1 (Fay Dau) .

Y' a )'

Thus i(F - T, u)1 < C (y) Dauk 2 Hence F converg-
Y a a L

es to T in .aL2 with respect to the strong topology as y

converges to 0 in ro In addition

KT -K *T=EK , Daf
a y" a

= E Da(K, f )

a
a

= E DaFa
a

F . Q.E.D.

Remark. T in the above theorem is called the distribution-

al boundary value of F along the edge of 0.

Combining theorems 5.14 and 5.15 we have following

corollary.

Corollary 5.16. T in .5L2
is the distributional boundary

value of some F in DH2(0) along the edge of 0 if and only

A

if WT T , i.e., supp.T C r* .
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The concept of distributional boundary value in
LP

was extensively studied by Tillmann for tubes over octants

(see Tillmann[1]) and by Beltrami and Wohlers in the one

dimensional case (see Beltrami and Wohlers [1],[2],[31 [4])

Theorem 5.17. Let Uo be a real distribution in 1'1,2

Then there exists F in DH2(0) such that Re F converges to

Uo in L2(strong topology) as y converges to 0 in Fo , if

and only if, U0 = QUO . Moreover, in this case, if Vo = HUoT

then Im F converges to Vo in (strong(strong topology) as y

converges to 0 in ro , and if F(x+iy) u(x,y) + iv(x,y)

where u and v are real, then u(x,y) = py * U0(x) and

v(x,y) = qy * U0(x) where py(x) 2 Re K(x+iy) and

q (x) = 2 Im K(x+iy).

Proof. If the real distribution Uo in 1)1,2 is such that,

for some F in DH2(0), Re F converges to Uo in ..&2 (strong

topology) as y converges to 0 in Fo , by theorem 5.15 we

know F = KT for some T in III} and Fy converges to T in bL2

(strong topology) as y converges to 0 in ro . Moreover

WT = T and T Uo + iVo where Vo is also real. Thus, by

lemma 5.9, QUo = Uo and HU° = Vo . Conversely, suppose

QUo = U0 and let Vo HU0 . Let T = Uo + iVo then T is in



Corollary 5.18. If Uo is a real distribution in 2 then
L '

q * Uo converges to HUo in .0L2 (strong topology) as y con-

verges to 0 in ro .

Proof. Let T QUo + iHU0 = 2 WU° . Then WT T and if

F = KT we have that F converges to T in
.1)L2

. Thus Im F

converges to HU0 in 111,2 . Now Im F q * Uo is proved in

the above theorem. Q.E.D.

Since HQUo = HU° , we have following corollary imme-

diately.
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Corollary 5.19. If Uo is a real distribution in .812, then

q * QUo --> HU° in 1/2 (strong topology) as y --> 0. in ro.

-13L2
and WT T by lemma 5.9. By corollary 5.16, T is the

boundary value of some F in DH2(0) and clearly Re F con-

verges to Uo and Im F converges to Vo in .b1,2 (strong topo-

logy). Now suppose QUo= Uo , Vo = HU° , T Uo + iVo and

F = KT so WT T and F converges to T in .13' 2 . Then

F = KT - K(Uo+iVo) K(QU0+iHU0) = 2 KWUo - 2 KU° which

implies that, if F(x+iy) u(x,y) + iv(x,y) , then

u(x,y) - 2 Re KU° py * U0(X) and

v(x,y) - 2 Im KU° qy * U0(x) . Q.E.D.
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