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Abstract

An analytical model of subtropical mode water is presented, based on ventilated ther-

mocline theory and on numerical solutions of a planetary geostrophic basin model. In ven-

tilated thermocline theory, the western pool is a region bounded on the east by subsurface

streamlines that outcrop at the western edge of the interior, and in which additional dynami-

cal assumptions are necessary to complete the solution. Solutions for the western pool were

originally obtained under the assumption that the potential vorticity of the subsurface layer

was homogenized. In the present theory, it is instead assumed that all of the water in the pool

region is ventilated, and therefore that all the Sverdrup transport is carried in the uppermost,

outcropping layer. The result is the formation of a deep, vertically homogeneous, fluid layer

in the northwest corner of the subtropical gyre that extends from the surface to the base of

the ventilated thermocline. This ventilated pool is an analog of the observed subtropical mode

waters. The pool also has the interesting properties that it determines its own boundaries and

affects the global potential vorticity-pressure relationship. When there are multiple outcrop-

ping layers, ventilated pool fluid is subducted to form a set of nested annuli in ventilated,

subsurface layers, which are the deepest subducted layers in the ventilated thermocline.



1 Introduction

The structure of the subtropical thermocline has fascinated theorists and observationalists alike

for many years, for it is perhaps the single most prominent aspect of the ocean’s stratification.

Major features of that thermocline include broadly distributed pools of weakly stratified, low

potential vorticity water, such as the ‘Eighteen-Degree Water’ of the North Atlantic (Worthing-

ton 1959; McCartney 1982). These pools are known as ‘mode waters’ because they appear as

distinct modes in a census of water properties. The subtropical mode waters, observed in all

subtropical ocean gyres, are of special interest for a variety of reasons, yet their origin remains

relatively poorly understood.

Here, we propose a simple mechanism for the existence and maintenance of subtropi-

cal mode waters as a large-scale dynamical component of the subtropical gyre circulation. A

proximate mechanism for their formation, of course, is deep winter-time convection. How-

ever, this convection can only occur if the large-scale circulation maintains a weakly stratified

volume of water with sufficiently small upper ocean heat content. From this point of view,

mode waters are part of the large-scale structure of the ocean thermocline, and must be under-

stood within that context.

The model we propose here is, technically, a modest extension of the ventilated ther-

mocline theory of the subtropical gyre developed by Luyten et al. (1983). Although the ven-

tilated thermocline is, as its name suggests, generally a stratified region, a striking feature of

a number of numerical simulations of the subtropical thermocline that have reasonably small

vertical diffusivity (Cox 1985; Samelson and Vallis 1997; Vallis 2000) is a thick recirculating
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thermostad extending down to the internal thermocline, particularly prominent in the north-

west (or, more generally, pole-west corner) of the subtropical gyre, which resembles observed

subtropical mode water.

In this western region, ventilated thermocline theory suggests that a recirculating

regime can form in which the circulation is controlled by some mechanism other than ven-

tilation. One possibility, discussed in the original Luyten et al. (1983) paper is that this pool

may be a region of homogenized potential vorticity. A separate, related, possibility is the

interaction of weak ventilation and homogenization. Such was examined in Dewar (1986),

where it was argued that large scale distributions of low potential vorticity waters naturally

arose in these conditions. Convectively introduced mass anomalies in subsurface layers were

balanced by eddy mass fluxes.

Although plausible, such mechanisms are based on the assumption of the down-

gradient diffusion of potential vorticity by eddies and, especially in regions like intense west-

ern boundary currents where mean advection may be important this assertion cannot be justi-

fied. Note too that the original theory implicitly invokes eddy mechanisms in the pool region

although they are required to be weak in order to fit within the homogenization formalism.

The alternative hypothesis explored in the present study is that the western pool is wholly

filled with ventilated fluid. That is to say, if there is no surface source for a given water mass,

then we may suppose that no such water mass will exist. In the original theory, one must

posit that the pool region is ventilated via eddy pathways for it is not ventilated by a steady

inflow. Here we consider the possibility that those eddy fluxes are weak compared to the Ek-
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man pumping mass flux. Thus, the present model casts the ventilated thermocline model into

a self-consistent wholly non-eddying form. If a non-ventilated water mass is initially present,

then we suppose that it slowly disappears from the pool region, expunged by the continuous

downward Ekman pumping of surface water into the pool and a weak frictional flow down the

pressure gradient. Our hypothesis is motivated by, and describes, the planetary geostrophic

numerical model solutions computed by Samelson and Vallis (1997) (henceforth SV), which

contained an explicit western boundary layer, but no eddies and only minimal parameterized

eddy fluxes.

In a two-layer model, this ventilated-pool hypothesis results in the mode water region

being represented by a single, thick upper layer, which forms above a second layer of zero

thickness, and a third, quiescent layer or flat bottom boundary beneath. As layers are added,

the structure becomes more complicated, and the ventilated pool may contain subducted lay-

ers, but the essential structure remains: a thick weakly stratified pool that forms the deepest

part of the ventilated thermocline. An interesting complication is that the boundary of the pool

region has vertical isopycnals (in the planetary geostrophic model) or layer interfaces, and that

these in general will be shocks, rather than passive features. That is, we may not necessarily

suppose that the separate sub-regions making up the ventilated thermocline can be smoothly

patched together, or that a local solution exists to the equations of motion as needed that does

not affect the solution in rest of the domain. However, by generalizing the model slightly and

applying appropriate shock conditions, we show that solutions can be found that fit within

the planetary geostrophic framework, and that the consequence of the shock existence can be
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examined.

We show here that a model can be constructed that is based on the ventilated pool

hypothesis and satisfies the large-scale equations of motion. We examine the consequences

of the mode water pool on the larger scale circulation and compare qualitatively the quasi-

analytical solutions so obtained with the numerical solutions of SV. These solutions capture

essential elements of the mode water found in that numerical model. We hope that the dynam-

ical framework described here will also prove useful in the effort to understand mode waters

and their role in the general circulation.

The model formulation and some specific solutions for the classical ventilated ther-

mocline and the recirculating pool is the subject of section 2. The connection of these two

zones is the subject of Section 3, where the pool dynamics are considered in more detail

and a generalization of the ventilated thermocline argument to properly allow for fronts is

presented. A schematic extension to multiple outcrops with subduction of the model mode

water is presented in Section 4, which is followed by a concluding summary. Some technical

computations are described in appendices.

2 A single-outcrop model

2.1 Formulation

We consider first a ventilated thermocline model (Luyten et al., 1983) with two moving lay-

ers and a single outcrop, that being the simplest equation set that can illustrate the ideas.
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The thicknesses of layers 1 and 2 are denoted byh1 and h2, respectively, and the corre-

sponding layer interfaces are denoted byz=−H1 andz=−H2, respectively, whereH1 = h1

and H2 = h1 + h2. We will consider both the flat-bottom case of a two-layer ocean with

H2 = constant, and the reduced-gravity case with two moving layers overlying a resting

abyssal ocean andH2 a function of position. The reduced gravity based on the density differ-

ence between layersj and j +1 is denotedγ j , where onlyγ1 is considered for the flat-bottom

case. Velocities and pressure are geostrophically related and layer pressures are connected to

layer thicknesses via the usual formulas. A dynamically active variable in the lower layer of

both models is the pressure,p2, which in the 2.5 layer model is related to interface depth via

p2 = γ2H2. The model is solved on aβ -plane, with Coriolis parameterf = f0 + βy, wherey

is the meridional coordinate. The wind forcing, basin geometry, and nondimensionalization

used in SV is employed here, so that the Ekman pumping iswE(x,y) = wE0cos2πy, 0< y< 1

At the eastern boundaryx = xe, h2 = H2 = H2e = constant, andh1 = 0.

In the subtropical gyre (0.25< y < 0.75), the solution has four distinct regimes (Fig.

1). Fory > y2, layer 2 is exposed to the surface forcing. There are three additional regimes

in y < y2, where layer 1 is exposed to the surface forcing: the central region, in which layer-

2 fluid is ventilated, the shadow zone in the southeast, and the western pool region in the

west. The bounding streamlinesxs(y) andxp(y) separate the shadow zone and pool region,

respectively, from the interior. Layer-2 fluid in the central, ventilated region is set in motion

by the action of the wind in the outcrop zoney > y2, but any layer-2 fluid in the shadow zone

or pool region is isolated from direct contact with surface forcing.
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2.2 The ventilated pool

Consider now the thermocline structure in the western pool region. Fory > y2, there is only

one moving layer, and the geostrophic and Sverdrup balances may be solved in the usual way,

giving

H2p2 = φ +H2p2e (2.1)

for the flat-bottom case, and

γ2H2
2/2 = φ(x,y)+ γ2

H2
2e

2
(2.2)

for the 2.5 layer model, wherep2e = p2(xe) and

φ(x,y) = f 2/β

∫ x

xe

wedx. (2.3)

South of the outcropy2, the Sverdrup formulae generalize to

H2p2 + γ1h2
1/2 = φ +H2p2e (2.4)

and

γ1h2
1/2+ γ2H2

2/2 = φ + γ2
H2

2e

2
(2.5)

for the flat-bottom and reduced-gravity cases, respectively, as both layers are in motion. For

y < y2, the western limit of the ventilated interior is found by computing the trajectory of the

characteristicxp(y) emanating from the pointx= xw, y= y2, as described below (Section 3.1).

For both the flat-bottom and reduced-gravity cases, these critical trajectories run through the

interior, thus defining regions in layer 2 that are isolated from the outcrop and governed by

processes other than ventilation (see, e.g., Fig. 1). Luyten et al. (1983), for example, assume
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that the layer 2 potential vorticity is uniform in the pool region, and that the layer 2 thickness

is continuous at the joint.

The central assumption of the present ventilated-pool theory is instead that layer 2

vanishes in the pool region:

h2 = 0, h1 = H1 = H2, for x < xp(y). (2.6)

Thus, in the pool region there is again only one moving layer; in the flat-bottom model, this

layer fills the entire water column, while in the reduced-gravity model, the intermediate layer

2 vanishes, and the moving layer extends downward to the top of the stagnant layer 3. The

Sverdrup solution in the ventilated pool region is then

h1 =

√
2φ +H p2e

γ1
, (2.7)

for the flat-bottom model and

h1 =

√
2φ + γ2H2

2e

Γ
(2.8)

for the reduced-gravity model, whereΓ = γ1+γ2 is the density difference between the moving

layer (layer 1) and the quiescent fluid below (layer 3). The deep, homogeneous, recirculating

surface layers (2.7) and (2.8) in the western subtropical gyre form the ventilated pool mode-

water analog in the single-outcrop flat-bottom and reduced-gravity models, respectively. The

thermocline depthh1 in the ventilated pool regions is thus determined by the Sverdrup relation,

the eastern boundary depth of the deepest wind-driven layer, and the wind forcing.

A zonal cross-section of the resulting solution of (2.8) in the middle of the subtropical

gyre reveals the following structure (Fig. 3). The moving fluid farthest west consists entirely
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of upper layer water and represents the ‘mode water’ in this model. It is bounded on the east

by the pool front. Just offshore of the front is a thin layer of pool ventilated, subsurface water.

Further offshore is the classical ventilated thermocline. The entire offshore zone is capped

by a thin layer of warm water. A meridional cross section close to the western edge of the

model domain will cut through the mode water, which will appear as a thick layer connected

to the surface at the central latitudes of the gyre (Fig. 4). Despite the crude discretization of

the vertical structure, these solutions may be usefully compared to the numerical model solu-

tions of SV. The analog of the ventilated pool in the numerical model is the weakly stratified

region above the main thermocline on the western side of the basin (Fig. 5 and Fig. 6). The

abrupt westward increases in the depths of isothermal surfaces above the main thermocline in

the numerical model are analogs of the abrupt increase of layer-1 thickness across the pool

boundary.

The assumption (2.6) that leads to the solutions (2.7) and (2.8) was originally moti-

vated by the numerical model calculations analyzed by SV. The essential factors that give rise

to the formation of the vertically homogeneous, ventilated-pool structure in those numerical

solutions can be readily identified. The key physical element is the lack of a source of layer 2

fluid in the pool region. The absence of such a source can be inferred from several properties

of the SV model. The pool region is clearly isolated from the ventilated portion of layer 2 by

the bounding streamlinexp(y) or its analog in the SV solutions, so there is no ventilation of

layer 2 in the pool region. If the outcrop position were different, the structure of the pool would

change accordingly, but by the very definition of the pool, there can be no ventilated source
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of layer-2 fluid in the pool. Similarly, surface cooling in the western boundary current cannot

provide a source, since the latitude at which layer-1 fluid is cooled to layer-2 temperatures in

the boundary current defines the western limit of the outcrop, and any such cooled surface fluid

that returns to the subtropical gyre must enter the ventilated portion of layer-2 instead. The SV

model is steady; therefore, there is no possible source from explicit eddy processes. Moreover,

the SV western boundary current is essentially adiabatic (SV97a, SV97b; Samelson 1998), so

parameterized eddy fluxes do not contribute significantly, and consequently entrainment and

mixing of layer-3 fluid also cannot provide a source. Examination of the spin-up of the SV

solutions indicates that the exposed layer deepens in the west on the advective timescale until

it reaches the depth of the main thermocline and carries all the Sverdrup transport, forming the

homogeneous ventilated pool that we identify as an analog of subtropical mode water, while

a classical ventilated regime develops to the east. Thus, these time-dependent solutions reach

a stable steady ventilated-pool state without ever developing an analog of unventilated layer-2

fluid in the western pool region.

In the ocean, of course, many processes may operate that are neglected in this analysis.

However, motivated by the suggestive similarity between the model solutions and observed

mode waters, we can rephrase the specific causes of the model pool structure as an hypothesis

regarding the large-scale dynamical mechanisms that may support and maintain subtropical

mode waters in the ocean:

• In the subtropical mode-water region, the dominant source of fluid in density classes

above the main thermocline is downward surface Ekman pumping;
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• Specifically, both adiabatic, lateral and diapycnal, turbulent eddy fluxes of fluid into

density classes above the main thermocline in the subtropical mode-water region are

small relative to surface Ekman pumping.

Some estimates of the relative importance of these processes in the ocean are discussed below

in Section 4.

3 Pool boundary dynamics

3.1 The western-pool boundary

In the standard ventilated thermocline theory, the western-pool boundaryxp(y) in the flat-

bottom or reduced-gravity model is determined as follows. The lower layer flow south of the

outcrop liney = y2 is governed in general by potential vorticity conservation, i.e.

h2/ f = F2(p2) (3.1)

From either (2.4) or (2.5), it is simple to show that any contour of constant potential vortic-

ity (or, equivalently in the planetary geostrophic approximation, potential thicknessh2/ f ) is

governed by

φ f |p2 = γ1h1h1 f |p2 (3.2)

where the notation “|p2” denotes a derivative taken along a contour of constantp2. But because

lines of constantp2 correspond to constanth2/ f , the above becomes

φ f |p2 =−γ1h1h2

f
=−γ1(H2− f F20)F20 (3.3)
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whereF20 denotes the constant value of potential thickness along the trajectory. This may be

integrated to obtain an implicit expression forxp(y),

φ [xp(y),y)] = φw− γ1HF20( f − f2)+ γ1
F2

20

2
( f 2− f 2

2 ) (3.4)

whereH = H2 for the flat-bottom case andH = H2w = h2(xw,y2) for the reduced-gravity case,

andφw = φ(xw,y2).

3.2 Flat-bottom case

The characteristic equation (3.3) applies to both the flat-bottom and reduced-gravity models.

It appears to be degenerate in the ventilated pool, where by assumptionh2 = 0 and layer-2

characteristics cannot be defined. Nonetheless, it may be used to derive properties of the pool

boundary, by considering arbitrarily smallh2 > 0, since this limit is well-behaved:φ f |p2 → 0

ash2 → 0. Thus, in the ventilated-pool theory, we may consider layer-2 characteristics in the

recirculation pool in both cases to be governed byφ f |p2 = 0, so that the characteristics and

Sverdrup contours coincide. Alternatively, the following argument can be rephrased in terms

of layer-1 characteristics, but the present approach is simpler.

At the outcrop latitudef2, the characteristics in the ventilated zone, described byh1 =

0, run parallel to those of the recirculating pool, described byh2 = 0 (see (3.3)). However, as

the fluid moves south on the characteristics, the recirculation zone continues to be described

by h2 = 0, while h1 becomes positive in the ventilated zone. Thus by (3.3), the ventilated

characteristics are governed byφ f |p2 < 0 while the pool characteristics continue to follow the

Sverdrup contours (i.e.,φ f |p2 = 0). The ventilated characteristics cross Sverdrup streamlines
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towards higher, and thus western, values asf decreases. This dual occupation of the same

points in space by multiple characteristics is inconsistent with the straightforward application

of the characteristics method. We conclude that globally smooth solutions of this hyperbolic

boundary value problem are not possible and joining conditions must be considered. These

conditions will yield new equations for the pool boundaryxp(y). This boundary proves to

consist, in general, of a shock trajectoryxv(y) and a narrow adjacent “pool-ventilated” region.

For simplicity, we nonetheless denote the generalized ventilated-pool boundary byxp(y) in

some parts of the discussion below.

Analytically joining the pool and the ventilated interior is rather complex, and it is

useful first to examine the more accessible flat-bottom model. The condition governing dis-

continuities in this case is derived by integrating the potential vorticity conservation equation

J(p2,h2/ f ) = 0 (3.5)

over an area covering the discontinuity. This area is defined by having two of its corners on the

front trajectory, but is otherwise rectangular (Fig. 2). The lengths of the two sides are given by

m in the meridional direction andl in the zonal direction. The result of the area integration is

(φy +φxl/m)−βγ1/( f )
[Hh2

1/2−h3
1/3]

[h1]
= 0 (3.6)

where the square brackets notation denotes the difference of the value of the enclosed quantity

between the east and west sides of the domain. In the limit of vanishingl andm, their ratio

converges to

lim
l ,m→0

(
l
m

)
→ ∂

∂y
x|v (3.7)
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the meridional slope of the front. A bit more algebra yields

dφs

d f
=−γ1H

f

[
h+ +h−

2
−

h2
+ +h+h−+h2

−
3H

]
(3.8)

whereh+ (h−) denotes the upper layer thickness east (west) of the front, andφs denotes the

value of the barotropic streamfunction along the front. This is a differential equation governing

the trajectory of the front through the general circulation.

For the front to exist, it is required that it be intersected on both sides by characteristics

of the smooth solution (“smooth characteristics”). This is stated for the present problem as

φ f |h− ≥ φ f |v ≥ φ f |h+ (3.9)

where the first and third entries in the above denote trajectories of characteristics for the

smooth part of the problem and the middle entry the trajectory of the shock. The above in-

equality reflects that for decreasingf , the change inφ of the smooth characteristic governing

h− increase more slowly than either the same change for the shock, or for the smooth charac-

teristic governingh+. This way, the characteristics collide, and are resolved by the presence

of the shock. The equals signs in the above inequality correspond to limiting cases where the

smooth solution characteristics are tangent to the shock. This recognition is key in the analysis

to follow. What is to be avoided here, and what is not consistent with the concept of the shock,

is for the smooth characteristics to radiate from the shock, e.g.φ f |h+ < φ f |v.

Now, given that the pool (withh1 = H) always has characteristics that followφ , it is

sensible to poseh− = H. Leavingh+ unspecified for the moment, the shock formula (3.8)
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becomes

φ f |v =−γ1

f

(
H2

6
+

Hh+

6
−

h2
+
3

)
(3.10)

and it is easy to show for allh+ from 0 to H that the right hand side is negative. The shock

trajectory thus always climbs to largerφ for decreasing f, while the smooth characteristic

for h− always follows constantφ , rendering the postulateh− = H consistent. The value for

h+ is determined by the requirement that the smooth characteristic run parallel to the shock

trajectory, i.e.

φ f |v =−γ1H
f

(
H
6

+
h+

6
−

h2
+

3H

)
=−γ1

f
h+(H−h+) = φ f |p2 (3.11)

whose solution ish+ = H/4. This implies the discontinuity inh1 at (xw,y2) extends from

h1 = H to h1 = H/4. For smaller values ofh+, the smooth characteristics don’t press west fast

enough to be swallowed into the shock.

The behavior ofh1 for H/4 < h1 < H is determined by the shock trajectory. It thus

remains thath1 for 0 < h1 < H/4 is part of a smooth thermocline, for which the standard

solution

h2

f
=

H−h1

f
= G(p2) (3.12)

applies. The function G remains to be determined, however. The Sverdrup constraint (2.4) is

everywhere valid, including through the front. The initial location of the front is(xw,y2), so

by (2.4),

H p2(h1) = φw−
γ1h2

1

2
+H p2e (3.13)
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for the rangeh1 = 0→ H/4. Combining (3.12) and (??) then determines the function G

G(p2) =
H−

√
2H
γ1

(p2e+φw/H− p2)

f2
=

H−h1

f
(3.14)

Eq. (3.14), when combined with (2.4), determines bothp2 andh1 on all characteristics that can

be traced back to(xw,y2). This part of the thermocline may be referred to as “pool ventilated”,

as it has a potential vorticity that is set by the pool conditionh1 = H.

As the shock is followed south fromy2, its eastern face starts to entrain pool ventilated

water. In fact, it turns out thath+ = H/4 during this phase of front evolution because parts of

the smooth thermocline thicker than this run into the shock, while those thinner move away

from it. Further, the pool ventilated characteristic emanating fromh1 = 0 and the ventilated

thermocline characteristic emanating fromh1 = 0 remain parallel always, as they both start

from the same location and have the same characteristic equation (3.3). Thus, at the latitude

where f = 3 f2/4, h2+/ f = H/ f2, signaling a switch from pool ventilated water to normal

ventilated water on the offshore front edge (see Fig. 2).

3.3 Reduced-gravity case

The flat-bottom model illustrates the essential features of the pool boundary calculation, but

does so in the unrealistic environment of a rigid lower boundary. The reduced gravity set-

ting is in this sense a much more natural model of the real ocean, but is algebraically much

more tedious. Nonetheless, an analysis like that outlined above applies to the reduced-gravity

model, as shown below.

The first hurdle is to develop a shock trajectory equation like (3.8). The procedure is
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again to consider an integral of the layer 2 potential vorticity equation over a small region

around the shock (Fig. 2), although the calculations are more involved. The details are given

in Appendix A and only the results are quoted here.

Define

F(h2) =
γ1γ2h2

2

2Γ
− φγ2√

γ1γ2

(
sin−1

[√
γ1γ2

2φΓ
h2

]
−
√

γ1γ2

2φΓ
h2

√
1− γ1γ2

2φΓ
h2

2

)
. (3.15)

The shock equation is

φ f |v =
− 1

f F(h2)(√
γ1γ2
γ1

sin−1
[√

γ2γ1
2φΓ h2

]) (3.16)

for the 2.5 layer problem, where it has been assumed thath2− = 0.

Recall thath1 = 0 along f = f2 until x = xw, at which pointh2 = 0. Simple algebra

shows that at the discontinuity,h1 =
√

(2φw + γ2H2
2e)/Γ. Thush1 changes in the front from

this value to a minimum of 0, whileh2 changes from 0 toh2 =
√

(2φw + γ2H2
2w)/γ2 = h2w.

Following the flat-bottom analysis, the layer two thickness for which the characteristics along

the shock parallel the smooth thermocline thickness must be computed. This is obtained by

equating(3.3) with (3.16). Although it may be consistently assumed thath2− = 0, it is still

necessary to solve the resulting equation for the initialh2+ numerically. This value will be

referred to ash2c. Then, for allh2 from h2c to h2w, the smooth functional relationship linking

the potential thickness and pressures must be determined. To do so uses the special form of

the Sverdrup potential atφw

γ1
h2

1

2
+

γ2H2
2

2
= φw +

γ2H2
2e

2
(3.17)
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The relation betweenh2 andH2 for generalφ is

H2 =
γ1h2

Γ
+

√
2φΓ+Γγ2H2

2e− γ1γ2h2
2

Γ
(3.18)

which can be used to diagnose the functional relationship betweenp2 andh1. Combining with

the Sverdrup relation yields

h1 =
(γ1 f2−Γ f )h2

Γ f
+

√
2φwΓ+ γ2H2

2eΓ− γ1γ2 f 2
2h2

2/ f 2

Γ
(3.19)

which governs the connection betweenh1 andh2 on any characteristic that can be traced to

(x2w,y2). This function and the Sverdrup relation giveh2 in the pool ventilated zone. Again,

the ventilated thermocline characteristic starting from(xw, f2) with h1 = 0 must be parallel

to the pool ventilated characteristic withh1 = 0. So, the value ofp2 hitting the shock on the

east should be monitored, and when it exceedsp2w emanating from(xw, f2), h2+ must be

computed from the standard ventilated thermocline theory. In either case, values for bothh2−

andh2+ can be determined for any interior oceanic point, and the front equation (3.16) can be

integrated in latitude to yield a new value forφ |v.

The frontal pool boundary computed in this way lies to the west of the original western

pool boundary, which forms the eastern limit of the pool-ventilated wedge; on the eastern side

of the original pool boundary, the circulation is governed by standard ventilated thermocline

theory ( Fig. 1).

17



4 Discussion

4.1 Subduction

In the simple models discussed above, the entire meridional variation of surface density in

the subtropical gyre is concentrated at the zonal outcrop of layer 2, and the ventilated pool

region in the northwest corner of the gyre is completely filled by a single, deep, homogeneous

layer of fluid extending from the surface outcrop to the base of the main thermocline. It

is straightforward to generalize this conceptual model to the case in which the meridional

variation of density in the subtropical gyre is distributed across several layer outcrops, as in

the original LPS ventilated thermocline theory. The main complication is that there are a

number of distinct regions to consider, each requiring a separate calculation to determine the

various layer depths.

Consider a standard three-layer reduced-gravity model with two layer outcrops, each

at a constant latitude. The moving layers are labelled 1, 2, 3 from the top as usual, with cor-

responding densitiesρ1, ρ2 andρ3, the outcrop between layer 1 and layer 2 being at latitude

y2, and that between layers 2 and 3 aty3 (Fig. 7). The standard multiple-outcrop ventilated

thermocline is complicated by the splitting of western-pool and shadow-zone boundary trajec-

tories at each outcrop in the various layers. In the present situation, the complexity is increased

by the need to solve the shock equations. For the present illustrative purposes, we dispense

with these complexities by fixing the pool boundaries at the original western-pool bound-

ary locations that would obtain for corresponding single-outcrop models, and neglecting the
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shadow zone entirely. This is adequate to provide a semi-quantitative schematic solution of

the two-outcrop model. The explicit formulae are given in Appendix B.

The main result of the two-outcrop model is that the ventilated pool that forms from

the northern outcrop will be subducted at the southern outcrop, forming a thick, homogenous

subsurface layer. The details of this structure depend on the latitude of the southern outcrop.

A western pool region arises at a given outcrop if the flow at the western edge of the outcrop

is eastward, that is, if the outcrop is north of the latitude of maximum Ekman pumping. If the

southern outcrop in the two-outcrop model is south of this latitude, the characteristics of layer

2 will be directed westwards and no ventilated pool will form in layer 1 (Fig. 7). In this case,

the subducted ventilated pool and the shallow layer-1 cap above it will extend to the western

boundary (Fig. 8). These solutions develop a shallow ventilated thermocline structure above

the subducted pool that closely resembles the SV solutions (Fig. 6).

If both outcrops are north of the latitude of maximum Ekman pumping, however, there

will be two pool boundaries, one emanating from the western edge of each of the two outcrops

(Fig. 9). In this case, the southern outcrop (y= y2) will cross the northern, outer pool boundary,

dividing the latter into two segments. Denote these segmentsa andb (Fig. 9). Denote the

region west of the northern segment (a) and north ofy = y2 by A, and the region west of the

southern segment (b) and east of the southern, inner pool boundary (c) by B. Also, denote the

region west of the inner pool boundaryc by C , and the regions east of the outer pool boundary

(a andb) by D. In regionsA andB, then, there are no characteristics of layer 3 that thread back

to the surface and therefore withinA andB there is no layer 3 water. Furthermore, on region
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C there are no characteristics of layer 2 water that thread back to the surface and therefore

within C all of the water is layer 1 water. Zonal sections through regionsC , B, andD will

show three distinct themocline structures, from west to east: an inner ventilated pool, with a

single thick layer of moving layer-1 fluid in regionC ; an intermediate regime with moving

fluid in the shallow, exposed layer 1 and the thick, subducted ventilated-pool layer-2 annulus

in regionB; and the standard eastern ventilated thermocline regime in regionD (Fig. 10).

This results of this simplified three-layer reduced-gravity calculation may be com-

pared with the SV numerical solutions, in which the mode-water analog appears as a con-

tinuous, nested set of annuli on successive isopycnal surfaces (Fig. 5 and Fig. 6). In zonal

cross-section, these appear as short, near-vertical segments above the main thermocline on the

T =50, 60, 70, and 80 isotherms (Fig. 5). This structure is the natural extension to continuous

stratification of the two-outcrop conceptual picture described above: each vertical isopycnal

segment, lying between the shallow, ventilated part of the surface to the east and the deep,

unventilated part of the surface to the west, is an analog in the continuous model of the sin-

gle subducted annulus that lies between the two pool boundaries in the two-outcrop model

(Fig. 10). The capped ventilated-pool structure that arises when the southern outcrop is south

of the latitude of maximum wind-stress curl (Fig. 8) is apparent in cross-sections of the SV

numerical solutions (Fig. 6).

The three-layer model is sufficient to illustrate the subduction of the ventilated pool,

and the associated formation of the nested annulus and shallow ventilated thermocline struc-

tures. Introducing additional layers and outcrops would lead to a set of several nested annuli
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and shallow ventilated layers, resulting in a structure similar to the isothermal surfaces in the

SV numerical solutions (e.g., Fig. 5 and Fig. 6). As in the two-outcrop model, the total lat-

eral density gradient across the ventilated pool will be determined by the surface boundary

conditions and the geometry of the outcrops. However, even in the continuously stratified

SV solutions, the transition in depth on each isopycnal occurs abruptly (Fig. 5), as a front, in

agreement with the present model, and this in turn suggests that such fronts will tend to obtain

an inherent dynamical character of their own. The horizontal gradients in the mode-water ana-

log from the SV solutions are less apparent in meridional sections (Fig. 6). Note that, despite

having lateral density gradients, the fluid in the continuously stratified ventilated pool is nearly

homogeneous vertically, and so will have low potential vorticity throughout.

The SV solutions used a planetary geostrophic numerical model. Similar ventilated-

pool mode-water features appear generically in primitive-equation model simulations of sub-

tropical gyre circulation (e.g., Cox, 1985). These can often be identified by the tongues of low

potential vorticity immediately above the main thermocline (e.g., Cox, 1985, Fig. 5) that are

associated with the weakly-stratified, subducted annuli.

4.2 Jets and eddies

In the layer model, the lateral density gradients in the ventilated pool and at its boundary are

represented by vertical interfaces between the adjacent layers. Associated with these fronts in

the layer model will be intense baroclinic jets with infinitesimal thickness. In the continuous

limit (SV), these jets will spread out laterally over the width of the pool, and the corresponding
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baroclinic shears will be weakened, as they evidently are in the planetary geostrophic numer-

ical solution. Nonetheless, such areas are almost undoubtedly prone to baroclinic instability

(Samelson 1999), and so may provide an important source of eddy energy in these regions;

indeed, Henning and Vallis (2002) observe that the mode water region is a region of strong

mesoscale activity. The corresponding eddy fluxes could act to reduce the lateral density

gradients within the pool that are associated with the nested annuli structure discussed above.

It is possible to make rough estimates of the size of the associated fluxes, which are

generally relevant to the neglect of eddy processes in the theory, as well as to the specific case

of the unstable baroclinic jets. These estimates may be compared to the downward Ekman flux

into the ventilated pool, which provides the only source of ventilated-pool fluid in the present

model. The average downward Ekman velocitywek for this area is a little weaker than the

typical values quoted for subtropical gyres, because the formation zone for the mode waters

is close to the zero Ekman pumping line. Thus,wek≈ −0.8×10−6ms−1. The amplitude of

the lateral eddy-driven mass flux,veddy ≈ K∇2h, can be crudely estimated as an effective

velocity veddy by assuming a lateral diffusion coefficient of 1000m2s−1 acting on a 300 m

deep layer extending laterally a radius of 500 to 2500 km. The resulting values areveddy≈

1.2−0.05×10−6ms−1, and so can be comparable towek. Diapycnal velocities,wK, can also

be estimated based on an interior diffusivity of 10−5m2s−1 operating on a 300m thick water

mass and are quite small atwK ≈ 3×10−8ms−1. From these estimates, it is well established

that diabatic fluxes are relatively weak. The neglect of eddy fluxes is not as clearly supported,

and these may be expected to modify the present large-scale dynamical results.
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A related feature of note is the abrupt change, at the bounding streamlinexp(y), of

the depth of the main thermocline. This discontinuity arises from the difference between the

reduced gravities across the main thermocline in the ventilated pool region (Γ) and in the

adjacent ventilated interior (γ2). As xp(y) is approached from the ventilated interior, the depth

of the main thermocline approaches the value

H+
2p =

(
2φ(xp,y2)+ γ2H2

2e

γ2

)1/2

(4.1)

while from the ventilated pool, it approaches

H−
2p =

(
2φ(xp,y2)+ γ2H2

2e

Γ

)1/2

(4.2)

Clearly, these two thicknesses cannot be equal. The effect of the westward-increasing density

difference across the main thermocline across the pool boundary (or across the pool itself,

in the continuous limit), is to decrease the depth of the main thermocline toward the west,

relative to the depth it would obtain if the warm fluid were confined near the surface. The

geostrophic shears associated with these changes in the depth of the main thermocline may

also be baroclinically unstable. It is conceivable that the convergent eddy driven heat fluxes

observed by Henning and Vallis (2002) at the base of the main thermocline in eddy-permitting

primitive equation simulations are related to this baroclinic energy source.

4.3 Air-sea heat fluxes

The model of the existence and maintenance of subtropical mode waters that we propose here

does not explicitly address the role of air-sea heat exchange in mode-water formation. In
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fact, with a boundary current that arranges to return the subducted fluid adiabatically to the

subtropical gyre at the same latitudes where it was previously exposed to the surface, our

model mode water could be seen - except for a volume flux equal to the net downward Ekman

pumping over the pool area, which must then escape to the subpolar gyre - as an essentially

adiabatic, steady, recirculating pool. In contrast, many studies of subtropical mode water have

focused on wintertime formation of homogeneous columns of fluid by convective overturning

that is induced by air-sea heat exchange, and on the relation between mode water and the

intense heat loss from the ocean to the atmosphere in the western boundary currents and their

extensions that lie on the rim of the mode water regions. From the point of view of the

present model, however, the seasonal air-sea exchanges would represent a literally superficial

mechanism with little dynamical influence on the large-scale circulation processes that support

the existence and maintenance of the mode water pool. Similarly, we cannot exclude the

possibility that eddy processes may be important components of the dynamics of observed

ocean mode water, but it should be clear that they play no explicit or implicit role in the

present model.

5 Summary

A simple modification to standard ventilated thermocline theory yields an appealing model of

the large-scale dynamical mechanisms that support and maintain subtropical mode water as an

essential component of the subtropical gyre circulation. The modification consists in assuming

that there are no significant sources of unventilated, recirculating fluid, and consequently that
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the western pool region is entirely filled with ventilated fluid. The resulting ventilated pool is

a vertically homogeneous layer of fluid in the northwest corner of the subtropical gyre, which

extends from the surface to the main thermocline and carries the entire Sverdrup transport in

this region. This ventilated pool is a natural model of subtropical mode water. With multiple

outcropping density layers, or continuous stratification, the mode water pool is comprised of

a set of nested annuli of successively subducted, vertically homogeneous fluid layers. Lateral

gradients in the pool are controlled by large-scale surface conditions and geometry. In this

model, the subtropical mode water is ventilated, in the sense of LPS. It is the deepest such

ventilated layer, and so forms the base of the ventilated thermocline and the wind-driven

motion in the northwest portion of the subtropical gyre.

Future work might usefully address the dynamic and thermodynamic mechanisms by

which the recirculating subsurface layer of fluid interacts with the western boundary current

and the atmosphere, and explicitly consider the timescales on which this occurs. The structure

of mode water suggested by the model will be particularly prone to baroclinic instability,

which can be expected to modify the circulation. We hope that this model will provide a

useful point of reference for understanding mode water in more complete numerical models,

and that these ideas will be useful in the analysis of such models and in further attempts to

understand the important role of mode waters in ocean and global climate dynamics.
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Appendix A: A Front Trajectory Equation for a Reduced

Gravity Model

The equation governing the trajectory of a front through the general circulation can be obtained

by integrating

J(p2,h2/ f ) = 0 (A.1)

over a small region enclosing the shock ( Fig. 2). The result corresponds to the conservation

of layer 2 mass through the shock and may be written

MN−MS+ME−MW = 0 (A.2)

whereMN,S,E,W denotes the mass flux through the north (y= yN), south (y= yS), east (x= xE)

and west (x = xW) sides of the domain, respectively. For the remainder of this appendix,MW

will be ignored, ash2 is assumed to vanish in the ventilated pool.MN is by design determined

solely by northward velocity, thus

MN =
∫ xE

xW

(h2p2x/ fN)dx=
1
fN

∫ p2E

p2W

h2dp2 (A.3)

where the subscripts “W” and “E” denote values west and east of the front respectively, and

fN = f (yN). Layer two pressure and thickness are related via

p2 =
γ2γ1h2

Γ
+

γ2

√
2Γφ − γ2γ1h2

2

Γ
(A.4)

through the front by the Sverdrup constraint. Thus (A.3) yields three integrals.

MN =
[

γ1γ2

Γ
h2

2

2

]h2+

h2−

+
γ2

2 fNΓ

∫
φE

φW

2Γh2dφ√
2Γφ − γ1γ2h2

2

−
γ2
2γ1

Γ fN

∫ h2

h1

h2
2dh2√

2Γφ − γ1γ2h2
2

(A.5)
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It is useful to distinguish in the above equation between “fast” variables, likeh2, which on

a zonal section through the front change rapidly, and “slow” variables, likeφ , which are

insensitive to the presence of the front. This permits the second integral to be ignored relative

to the first and third because, asxE → xW, the second integral is proportional toφE−φW → 0.

In contrast, the other integrals involveO(1) changes in the “fast” variables. The third item in

(A.5) is however rendered easily integrable if the “slowness” ofφ is exploited to replace it by

the constant valueφ((xE +xW)/2,yN). In summary, defining

F(h2) =
γ1γ2h2

2

2Γ
− φγ2√

γ1γ2

(
sin−1

[√
γ ′1γ2

2φΓ
h2

]
−

√
γ ′1γ2

2φΓ
h2

√
1−

γ ′1γ2

2φΓ
h2

2

)
(A.6)

MN =
F(h2+)

fN
− F(h2−)

fN
=

F(h2+)
fN

(A.7)

the latter equality due toh2− = 0. A similar formula can be written forMS. Note that the

result of the integration is a formula that depends only on the end point thickness,h2+. This

is a slow variable east of the front, so the differenceMN−MS can be written as

MN−MS = Myδy (A.8)

whereδy = yN−yS.

The eastern face mass flux,ME can be written as

ME =
∫

~u2h2 ·~nEdl (A.9)

where~nE is the eastward pointing unit vector normal to the front

~nE =
î−xy|v ĵ√
1+(xy|v)2
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The quantityxy|v denotes the meridional derivative of the shock trajectoryx(y) and the line

integration traces the front slightly to its east. A little algebra then shows

ME =−
∫ p2y|vh2dy

f
(A.10)

Using (A.4) in the above returns three integrals, all of which contribute at first order inδy.

Computing∂M/∂y and gathering the results in (A.2) yields (3.16).

Appendix B: The three-layer model

We give here explicit expressions for the three-layer model solutions described in section 4.1.

Let the reduced gravities be defined by:

γ13 = g
ρ3−ρ1

ρ0
= γ1 + γ2, γ14 = γ1 + γ2 + γ3, γ24 = γ2 + γ3. (B.11)

The layer thicknesses are denotedh1, h2 and h3 and the co-ordinates of the interfaces are

denotedη1, η2 andη3, such thatη1 =−h1, η2 =−(h1+h2) andη3 =−(h1+h2+h3). Also,

fi = f (yi), xe is the longitude of the eastern boundary of the domain,h3e is the thickness of

layer 3 at the eastern boundary, andW(y) is the value of the wind-stress curl.

The solution is then calculated as follows (see Fig. 9).

1. Within regionA all of the moving fluid is layer 2 fluid, and beneath this is abyssal fluid

of densityρ4. Thus, the layer depth is calculated as in a one-layer ventilated thermocline

model, and as in the pool region of the one layer model, but with an appropriate value

for the reduced gravity determined by the density contrast between layer 2 and layer 4.
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2. At y1 layer 2 is subducted under layer 1, and so within regionB, the pool region consists

of layer 1 and layer 2 fluid. Layer 2 conserves its potential vorticity, and this is given

by its value aty2. Effectively, then, the layer depths are calculated as in a two-layer

ventilated thermocline model, with moving layers of densityρ1 andρ2, along with the

abyssρ4.

3. In regionC all of the moving fluid is layer 1 fluid, and beneath this is abyssal fluid. Thus,

the calculation proceeds as in item 1 above, except with a different value of the reduced

gravity (and of course a different wind field, appropriate to the different latitude).

4. Outside of the pool regions, the layer depths are calculated in the standard way for a

three layer model. There will in general be the usual shadow zone in the eastern part of

the domain, necessary to satisfy the no-normal flow condition at the eastern boundary,

and the usual need to specify the (constant) depth of layer 3,H3, at the eastern boundary.

Note that the layer depths will in general be discontinuous at the pool boundaries, as in

the single-outcrop model.

The layer thicknesses are given by:

RegionC :

η1 =−h1 =−

√
D2

1 +
γ3h2

3e

γ14
,

η2 = η1, η3 = η1 (h2 = h3 = 0),

(B.12)

where the Sverdrup depthD1 is given by

D1 =
2 f 2

βγ14
(x−xe)W(y) (B.13)
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RegionB:

η2 =−

√
D2

2 +
(γ3h2

3e/γ24)
(1+(γ1/γ24)(1− f/ f2)2 , η1 = (1− f/ f2)η2, η3 = η2 (B.14)

where

D2 =
2 f 2

βγ24
(x−xe) f igW(y) (B.15)

RegionA:

η2 =−
√

D2
2 +(γ3h2

3e/γ24), η1 = 0, η3 = η2. (B.16)

Outside of these regions, that is in regionD, the layer depths are given by the standard formu-

lae for a three-layer ventilated thermocline model.

The various layer depths of the regions for the case shown in Fig. 7 are calculated in a

similar fashion, although there is now no regionC .
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1 Horizontal structure of the reduced-gravity model with the ventilated pool.

The subtropical gyre is the region 0.25< y < 0.75, wherewE < 0. There is

one subregion with layer 2 exposed to the surface forcing (y> y2 = 0.65), and

three with layer 1 exposed: the interior, in which the layer 2 fluid is ventilated,

the shadow zonex > xs(y), and the ventilated pool regionx < xp(y). The

number of the exposed layer in each of the four subregions is indicated. The

western-pool boundary characteristic (dashed) and the ventilated-pool shock

trajectory (solid) are both shown. For this solution,f0 = 0.45,β = 1.1,γ1 =

10,γ2 = 50,H2e = 0.1, andwE0 = 1, with nondimensionalization as in SV. . .37

2 Schematic of the front trajectory and characteristics. The box encloses an area

encompassing the shock, and over which mass conservation is integrated in

order to form the joining conditions. The quantities “l ” and “m” denote the

zonal and meridional lengths of the integration area, which in the limit con-

verge in ratio to the slope of the front. Also shown are various characteristics

determining the offshore front thickness. The shaded zone corresponds to the

“pool-ventilated” wedge emanating from the western edge of the outcrop; its

width is exaggerated in the schematic. Control ofh+ passes to the regular

ventilated thermocline at the latitude wheref = 3 f2/4. . . . . . . . . . . . . 38
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3 Zonal cross-section vs. depth, aty = 0.5, of the reduced-gravity model with

the ventilated pool. The layer numbers and interfaces are shown. The deep,

homogeneous "subtropical mode-water" layer in the ventilated pool region is

located in the upper left, forx < xp(y). Layer 3 is quiescent and of arbitrary

depth. Horizontal distancex and vertical distancez have been nondimension-

alized by 5000 km and 5000 m, respectively. The constant depth of layer 2 at

the eastern boundaryx = 1 isH2E = 0.1 (500 m). . . . . . . . . . . . . . . . 39

4 Meridional cross-section vs. depth, atx = 0.05, of the reduced-gravity model

with the ventilated pool. The layer numbers and interfaces are shown. The

deep, homogeneous "subtropical mode-water" layer in the ventilated pool re-

gion is located in the central portion of the section. Layer 3 is quiescent and

of arbitrary depth. Horizontal distancex and vertical distancez have been

nondimensionalized by 5000 km and 5000 m, respectively. . . . . . . . . . .40

5 Zonal cross-section vs. depth of the reduced-gravity model (thick solid lines)

with the ventilated pool as in 3, overlaid on contours of temperature from a nu-

merical solution of the continuously stratified planetary geostrophic model of

Samelson and Vallis (1997). The near-vertical isotherms above the main ther-

mocline in the numerical solution are the analogs, on each isothermal surface,

of the ventilated pool in the layer model. The planetary geostrophic model

solution is influenced by friction, which reduces the zonal slope of the main

thermocline, and thermal diffusion, both of which are neglected in the layer
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6 Meridional cross-section vs. depth of the reduced-gravity model (thick solid

lines) with the ventilated pool as in 4, overlaid on contours of temperature

at x = 0.1 from a numerical solution of the continuously stratified planetary

geostrophic model of Samelson and Vallis (1997). The near-vertical isotherms

above the main thermocline in the numerical solution are the analogs, on each

isothermal surface, of the ventilated pool in the layer model. The planetary

geostrophic model solution is influenced by friction, which reduces the zonal

slope of the main thermocline, and thermal diffusion, both of which are ne-
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7 Horizontal structure of the three-layer, two-outcrop model with ventilated pool

in layer 2 only. The outcrop latitude of layer 2 isy2 = 0.54, just equatorwards

of the latitude of maximum Ekman pumping, so the characteristics in the sub-

surface layer-2 are all directed westwards, and no ventilated pool forms in
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8 Zonal cross section aty = 0.5 (upper panel) and meridional cross section at

x = 0.1 (lower panel), corresponding the solution of Fig. 7. The upper and

lower case letters correspond to the regions and boundaries in Fig. 7, respec-

tively, and the numbers indicate the fluid layer. The stagnant layer 4 is labelled

“Abyss” and the shadow zone is omitted. The upper interface in the meridional

cross-section is analogous to the shallow ventilated thermocline in the SV so-
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9 Horizontal structure of the three-layer, two-outcrop model as in Fig. 7 but

for y2 = 0.65, with ventilated-pool regions in layers 1 and 2. The outer pool

boundary, markeda andb, corresponds to the boundary of characteristics in

layer 3 that do not trace back to the surface, and the boundary markedc corre-

sponds to similar characteristics of layer 2. The regionsA, B, C are ventilated-

pool regimes, while regionD is the classical ventilated thermocline regime. .45

10 Zonal cross section aty = 0.55 (upper panel) and meridional cross section

at x = 0.1 (lower panel), corresponding the solution of Fig. 9. The upper

and lower case letters correspond to the regions and boundaries in Fig. 9, re-

spectively, and the numbers indicate the flud layer. The stagnant layer 4 is

labelled “Abyss” and the shadow zone is omitted. The subducted annulus la-

beled “B,2” in the zonal cross-section is analogous to the vertical segments of

isothermal surfaces above the main thermocline in the SV solutions (Fig. 5). .46

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
E
 > 0

w
E
 > 0

2

1

1

1

Ventilated Pool

y = y
2

x = x
s
(y)

x = x
p
(y)

x

y

Figure 1: Horizontal structure of the reduced-gravity model with the ventilated pool. The

subtropical gyre is the region 0.25< y < 0.75, wherewE < 0. There is one subregion with

layer 2 exposed to the surface forcing (y > y2 = 0.65), and three with layer 1 exposed: the

interior, in which the layer 2 fluid is ventilated, the shadow zonex > xs(y), and the ventilated

pool regionx < xp(y). The number of the exposed layer in each of the four subregions is

indicated. The western-pool boundary characteristic (dashed) and the ventilated-pool shock

trajectory (solid) are both shown. For this solution,f0 = 0.45,β = 1.1,γ1 = 10,γ2 = 50,H2e =

0.1, andwE0 = 1, with nondimensionalization as in SV.
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Figure 2: Schematic of the front trajectory and characteristics. The box encloses an area

encompassing the shock, and over which mass conservation is integrated in order to form the

joining conditions. The quantities “l ” and “m” denote the zonal and meridional lengths of the

integration area, which in the limit converge in ratio to the slope of the front. Also shown are

various characteristics determining the offshore front thickness. The shaded zone corresponds

to the “pool-ventilated” wedge emanating from the western edge of the outcrop; its width is

exaggerated in the schematic. Control ofh+ passes to the regular ventilated thermocline at the

latitude wheref = 3 f2/4.
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Figure 3: Zonal cross-section vs. depth, aty= 0.5, of the reduced-gravity model with the ven-

tilated pool. The layer numbers and interfaces are shown. The deep, homogeneous "subtropi-

cal mode-water" layer in the ventilated pool region is located in the upper left, forx < xp(y).

Layer 3 is quiescent and of arbitrary depth. Horizontal distancex and vertical distancez have

been nondimensionalized by 5000 km and 5000 m, respectively. The constant depth of layer

2 at the eastern boundaryx = 1 isH2E = 0.1 (500 m).
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Figure 4: Meridional cross-section vs. depth, atx = 0.05, of the reduced-gravity model with

the ventilated pool. The layer numbers and interfaces are shown. The deep, homogeneous

"subtropical mode-water" layer in the ventilated pool region is located in the central portion

of the section. Layer 3 is quiescent and of arbitrary depth. Horizontal distancex and vertical

distancez have been nondimensionalized by 5000 km and 5000 m, respectively.
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Figure 5: Zonal cross-section vs. depth of the reduced-gravity model (thick solid lines) with

the ventilated pool as in 3, overlaid on contours of temperature from a numerical solution of the

continuously stratified planetary geostrophic model of Samelson and Vallis (1997). The near-

vertical isotherms above the main thermocline in the numerical solution are the analogs, on

each isothermal surface, of the ventilated pool in the layer model. The planetary geostrophic

model solution is influenced by friction, which reduces the zonal slope of the main thermo-

cline, and thermal diffusion, both of which are neglected in the layer model.
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Figure 6: Meridional cross-section vs. depth of the reduced-gravity model (thick solid lines)

with the ventilated pool as in 4, overlaid on contours of temperature atx = 0.1 from a numeri-

cal solution of the continuously stratified planetary geostrophic model of Samelson and Vallis

(1997). The near-vertical isotherms above the main thermocline in the numerical solution are

the analogs, on each isothermal surface, of the ventilated pool in the layer model. The plane-

tary geostrophic model solution is influenced by friction, which reduces the zonal slope of the

main thermocline, and thermal diffusion, both of which are neglected in the layer model.
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Figure 7: Horizontal structure of the three-layer, two-outcrop model with ventilated pool in

layer 2 only. The outcrop latitude of layer 2 isy2 = 0.54, just equatorwards of the latitude

of maximum Ekman pumping, so the characteristics in the subsurface layer-2 are all directed

westwards, and no ventilated pool forms in layer 1, while the layer-2 ventilated pool is sub-

ducted aty = y2. For this solution,γ2 = 20,γ3 = 30, andy3 = 0.7, and the other parameters

are as in Fig. 1.
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Figure 8: Zonal cross section aty = 0.5 (upper panel) and meridional cross section atx =

0.1 (lower panel), corresponding the solution of Fig. 7. The upper and lower case letters

correspond to the regions and boundaries in Fig. 7, respectively, and the numbers indicate the

fluid layer. The stagnant layer 4 is labelled “Abyss” and the shadow zone is omitted. The upper

interface in the meridional cross-section is analogous to the shallow ventilated thermocline in

the SV solutions (Fig. 6).
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Figure 9: Horizontal structure of the three-layer, two-outcrop model as in Fig. 7 but fory2 =

0.65, with ventilated-pool regions in layers 1 and 2. The outer pool boundary, markeda andb,

corresponds to the boundary of characteristics in layer 3 that do not trace back to the surface,

and the boundary markedc corresponds to similar characteristics of layer 2. The regionsA, B,

C are ventilated-pool regimes, while regionD is the classical ventilated thermocline regime.
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Figure 10: Zonal cross section aty = 0.55 (upper panel) and meridional cross section at

x = 0.1 (lower panel), corresponding the solution of Fig. 9. The upper and lower case letters

correspond to the regions and boundaries in Fig. 9, respectively, and the numbers indicate

the flud layer. The stagnant layer 4 is labelled “Abyss” and the shadow zone is omitted.

The subducted annulus labeled “B,2” in the zonal cross-section is analogous to the vertical

segments of isothermal surfaces above the main thermocline in the SV solutions (Fig. 5).
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