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Seismotectonics of the Himalayas and the Tibetan Plateau:
Moment Tensor Analysis of Regional Seismograms

1 INTRODUCTION

The collision and subsequent penetration of the Indian continent into the Asian
continent resulted in the formation of the most dominant topographic structures on
earth: the Himalayas and the Tibetan plateau (Figure 1.1). The most striking
tectonic features are the underthrusting of Indian lithosphere beneath the Tibetan
plateau, thickening of the crust up to 80 km, and the successive extension of the
plateau combined with continental escape. These features open a multitude of
geodynamical questions about mountain building and plateau formation which has
inspired a variety of geological and geophysical research to investigate the structure
and physical properties of the orogen at depth (e.g. Gansser, 1964; Molnar and
Tapponnier, 1975; Rothery and Drury, 1984; Armijo et al., 1986; England and
Houseman, 1986; Bilham et al., 1997; McCaffrey and Nabelek, 1998; Larson et al.,
1999; Bollinger et al., 2004; Hetenyi et al., 2006). Seismologic investigations have
played a rather significant role in the process of understanding these systems by
revealing their structure as well as the tectonic status quo. The investigation of
source characteristics and depth distribution of earthquakes are important tools to
provide information about the state of stress and mechanical properties of the

lithosphere.



Until this century however, the lack of regional broadband stations has restricted
the study of focal mechanisms to teleseismic investigations, limiting the analysis to
larger events with magnitude ~My, > 5. This restriction resulted in a patchy picture
of the current deformation expressed by earthquakes, and left the seismotectonics
of many regions in the area poorly sampled. In recent years, several temporary
broadband seismic networks were deployed in the region, lowering the magnitude
threshold for such analysis dramatically (Drukpa et al., 2004; de la Torre and
Sheehan, 2005; Nabelek ef al., 2005). In particular the HICLIMB seismic array,
which produced the most extensive seismic data set ever recorded in the region
between 2002 and 2005 (Nabelek et al., 2005).

This study makes use of temporary network data for a detailed investigation of the
seismotectonics of the Himalayas and the Tibetan plateau by increasing the number
of reliable focal mechanisms through regional moment tensor analysis. A major
advantage of this study with respect to previous investigations of this kind is given
by the unprecedented spatial coverage of stations from the HICLIMB seismic
network, which allows for a major decrease of the magnitude threshold of
analyzable earthquakes, and tightly constrained source parameters through
inversion of full regional waveforms.

The focal mechanisms determined in this study are then combined with results
from previous investigations to give a more complete picture of the mechanisms

and kinematics associated with this continent-continent collision.



The discussion focuses on three major topics related to the active tectonics in the
orogen. First, special attention is given to the pattern of thrusting along the arc in
the vicinity of the Main Himalayan Thrust (MHT). Second, patterns of normal
faulting on the southern Tibetan plateau are discussed in relation to possible
mechanisms causal to extension. Third, mechanisms and focal depths of deep
events are investigated in the light of vertical strength of the crust and mantle in the
region of the Himalayas and the southern Tibetan plateau. The following

paragraphs provide a short background on the topics of focus.

The present day tectonics of the Himalayas is characterized by the underthrusting
of the Indian lithosphere along the Main Himalayan Thrust, which has been
documented by various seismological studies (e.g. Hauck et al., 1998; Zhao et al.,
1993; Schulte- Pelkum et al. 2005; Nabelek et al., 2005). The MHT emerges along
the Himalayan piedmont, where it is known as the main frontal thrust (MFT)
(Nakata, 1989), and roots into a ductile, sub-horizontal shear zone, beneath the
higher Himalaya (Cattin and Avouac, 2000). Between 13 and 21 mm/yr of the
convergence between India and Eurasia (e.g. Bettinelli et al., 2006; Jouanne et al.,
2004) are being accumulated within the Himalayas, resulting in significant strain
buildup in the upper, locked part of the MHT (Pandey et al., 1995). This ongoing
crustal shortening is manifested in large, devastating earthquakes that have
repeatedly ruptured the Himalayan front in recent history, such as the 1905 Kangra

(Mw 8.2), or the 1934 Bihar (Mw 8.4) earthquake (e.g., Seeber and Armbruster,



1981; Bilham et al., 2001). During the interseismic period, intense microseismicity
and frequent medium-sized earthquakes have been observed in a narrow belt that
follows approximately the topographic front of the higher Himalayas throughout
Nepal (Pandey et al., 1995; 1999) (Figure 1.2). Previous investigations of focal
mechanisms along the Himalayan front have reported the dominance of shallow
northward dipping thrust faulting in the region of intense microseismicity
(Baranowski et al., 1984; Ni and Barazangi, 1984; Molnar and Lyon-Caen, 1989)
(Figure 1.2). These events have been interpreted to define the detachment surface
that separates the underthrusting Indian plate from the overriding lesser Himalayan
crustal block (Baranowski et al., 1984; Ni and Barazangi, 1984). However, if the
MHT is indeed essentially locked, the zone around the fault tip is subjected to large
tectonic stresses and fracture can occur on planes adjacent to the main detachment
in addition to slip on the main detachment surface. The slip orientation of these
events is thought to be roughly arc radial (Armijo ef al., 1986; Baranowski et al.,
1984; Molnar and Lyon-Caen, 1989), but a detailed investigation of variability
along the arc and the relation to geometric variations in the microseismic belt has
been missing due to scarcity of reliable fault plane solutions. A greater number of
focal mechanisms along the arc increase the understanding about the tectonic
processes in the interseismic period, as well as the geometry of the main

detachment.



The tectonics of the Tibetan plateau are largely affected by the subduction of the
Indian crust beneath Tibet and crustal shortening and thickening induced by the
Indo-Asian collision. In addition to the north-south compression prevalent at the
collisional front however, the Tibetan plateau is subjected to significant east-west
extension and lateral escape. This is expressed in normal and strike-slip faulting
with increasing dominance of strike-slip faulting towards the north and northeast of
the plateau (e.g. Tapponier et al., 1982). In the south, extension of the Tibetan
plateau becomes evident by a number of large graben systems cutting through the
higher Himalayas, the Tethyan Himalaya, the Lhasa terrane, and -to a smaller
extent- the Quiangtang terrane (Tapponier ef al., 1982; Armijo et al., 1986).
Surface traces of these rift structures, while generally striking north-south, change
azimuth from arc perpendicular in the higher Himalayas and southern Tethyan
Himalaya, to the northward radial in the Lhasa terrane further to the north. Whereas
the changes in orientation of the fault surface traces signify a regional change in
tectonics, previously available fault plane solutions of earthquakes of magnitude
M,, > 5 have shown a constant north-south strike and due east-west extension
(Figure 1.2), not reflecting any significant changes in active faulting patterns across
southern Tibet (e.g. Molnar and Chen, 1983; Molnar and Lyon-Caen, 1989).
Several mechanisms have been proposed to explain the extension of the Tibetan
plateau, emphasizing different driving forces. In one view Tibetan plateau
extension is described as an expression of gravitational collapse following

thickening of the crust and convective removal of the mantle lithosphere beneath



Tibet (e.g. England and Houseman, 1989, Royden, 1996, Molnar et al., 1993).
Other models attribute the extension to basal drag induced by the underthrusting
Indian lithosphere at oblique convergence (McCaffrey and Nabelek, 1998), or
simply to north—south compression induced by the Indo-Asian collision (e.g. Kapp
and Guynn, 2004). The proposed models have to take into consideration the
orientation of extension expressed by fault traces and focal mechanisms to prove
meaningful. Thus, a more detailed investigation of the faulting patterns and
regional changes will lead to a better understanding of the driving mechanisms

involved in Tibetan plateau extension.

Most earthquakes on the Tibetan plateau occur in the very shallow crust (e.g. Chen
et al., 1981; Molnar and Chen, 1983; Molnar and Lyon-Caen, 1989). However, in
addition to the very shallow seismicity, intermediate-depth earthquakes have been
reported in several places on the plateau, indicating seismicity in the uppermost
mantle (Molnar and Chen, 1983; Chen et al., 1983; Zhu and Helmberger, 1996;
Chen and Yang, 2004). The observed seismicity at intermediate-depth raised
questions about the strength profile beneath the Tibetan plateau and the support of
the orogen. In one view, the only significant source of strength is restricted to the
seismogenic layer in the crust, while the mantle is mechanically weak and not able
to sustain the accumulation of elastic strain required for causing earthquakes
(Maggi et al., 2000; Jackson, 2002). The support of the orogen according to this

model is provided by the flexure of the Indian subcontinent bending underneath the



Tibetan plateau. A different view proclaims that strength resides in the upper crust
and in the uppermost mantle with a weaker lower crust sandwiched in between
(Chen et al., 1983; Burov and Diament, 1995; Chen and Yang, 2004). This model
finds support by recent flexure modeling investigations of the India plate, which
suggest that the geometry of the lithosphere necessitates a strong mantle (Hetenyi
et al., 2006). Only few intermediate-depth earthquakes have been previously
determined through waveform modeling, due to the restriction to teleseimic
investigation. Well-determined focal depths from the investigation of regional
waveforms of small to medium sized earthquakes can help distinguish between
these views. Furthermore, fault plane solutions of these events provide a better
understanding of the source mechanisms causing earthquakes at intermediate-

depth, and gives insight into the state of stress and its variations with depth.
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Figure 1.1. Overview map of the Himalayas and the Tibetan plateau.
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Figure 1.2. Focal mechanisms from previous studies and microseismicity determined by the
Nepalese Seismic Network (red dots) (e.g. Pandey ef al., 1999). Faults are shown in black (see text
for reference) and the 3500 m-elevation contour is drawn in blue.
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2 GEOLOGIC AND STRUCTURAL SETTING

The Himalayan-Tibetan orogen is part of the greater Himalayan-Alpine system that
extends from the Mediterranean Sea in the west to the Sumatra arc of Indonesia in
the east over a distance of more than 7000 km. This extraordinarily long system
was developed by the closure of the Tethys oceans, through the convergence of two
great landmasses: Gondwana in the south and Laurasia in the north (Yin and
Harrisson, 2000).

The history of the Himalayan-Tibetan orogeny in particular can be attributed to the
India-Asia collision, which followed the successive accretion of microcontinents,
flysh complexes, and island arcs onto the southern margin of Eurasia since the
early Paleozoic (Yin and Harrisson, 2000). Timing of the collision itself has been
inferred by Cenozoic magnetic anomalies that showed a rapid decrease in relative
velocity between India and Eurasia from 18-19cm/yr to ~5cm/yr around ~55Ma
(Kloodtwijk et al., 1992). Stratigraphic and Paleontologic evidence places the onset
of the continent collision to older than ~52 Ma (Gaetini and Garzanti, 1991), and
possibly as old as ~70 Ma (Rowley, 1998).

In the following, I first describe convergent features from the former India-Eurasia
contact to the Himalayan front, and then outline extension structures and the
geology on the Tibetan plateau (Figure 2.1).

The Himalayas rise from the Ganga foreland basin in the south to form the southern

margin of the Lhasa terrane in the north. The Yarlung-Tsangpo Suture separates the
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Tethyan Himalaya in the south from the Lhasa terrane in the north, representing the
contact at which Tethyan sedimentary rocks from the former Indian continental
margin have been sutured against magmatic rocks and mélanges of the past active
margin of the Eurasian continent [Searle et al., 1987; Hauck et al., 1998]. This
suture extends over a length of more than 1200 km in the east-west direction,
following the Yarlung River Valley, and was active probably no later than 10 Ma in
the Mount Kailas region in southwestern Tibet (Yin et al 1999). Tethyan
Himalayan sedimentary rocks were shortened by as much as 140 km through
folding and thrusting before 17 Ma (Ratschbacher, 1994), following the initial
contact between India and Asia.

Thrusting in the Himalayas can be mostly attributed to slip on three north dipping,
late Cenozoic thrust systems: The Main Central Thrust (MCT), the Main Boundary
Thrust (MBT), and the Main Frontal Thrust (MFT) (e.g. Nakata, 1989, Yin and
Harisson, 2000). These thrust faults were activated in a forward propagation
sequence, revealing a successive southward movement of the deformation front to
maintain a critical slope, and are believed to sole in a common décollement termed
the Main Himalayan Thrust (MHT) (e.g. Hauck et al., 1998; Avouac, 2003).

The Main Central Thrust juxtaposes the higher Himalayan crystalline belt to the
lesser Himalayan belt, and is defined by a shear zone ranging in thickness from a
few kilometers to more than 10km (Schelling, 1992). The higher Himalayan belt
has been interpreted as a thrust sheet of Indian continental basement displaced

southward along the MCT, and the surface trace of the fault generally coincides
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with a steep increase in topography from the lesser to the higher Himalayas (Yin &
Harrisson, 2000).

Both, the hanging wall and the footwall of the MCT show an upward increase in
metamorphic grade. Lithologies of the higher Himalayan belt consist of gneisses,
schists, marbles and intrusions of leucogranite, with metamorphic grades ranging
from kyanite to sillimanite facies (Schelling 1992). The lesser Himalayan belt
consist of a ~12 km thick section of phyllites, schists, slates, marbles and
augengneisses, revealing an up-section metamorphic grade increase from
greenschist to staurolith facies (Schelling 1992, Le Fort 1975, Brunel, 1986).
Balanced cross sections suggest that between 140 km and 500 km of convergence
have been accommodated by displacement on the steeply north dipping MCT
(Gansser, 1964; Srivasta & Mitra 1994). Geochronology of the hanging wall of the
MCT indicates anatexis and simple shear deformation occurring synchronously at
2241 Ma (Hodges et al., 1996, Yin and Harrisson, 2000). While cooling ages in the
hanging wall of the MCT indicate that deformation was terminated by the mid-
Miocene (Hubbard & Harrisson, 1989), reactivation of the fault is suggested at 8-4
Ma by Th-Pb dates of metamorphic strata (Harrisson et al., 1997). The relatively
recent reactivation of the MCT has been taken as an explanation for the break in
slope of the mountain range in the vicinity of the fault and might be related to the
generation of higher Himalayan leucogranites (Yin and Harrisson, 2000).

The Main Boundary Thrust places the Lesser Himalayan formations over the

Miocene to Pleistocene age Siwalik Formations. The sub-Himalayan Siwalik
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Formation represents molasse deposits of Miocene to Quaternary age (Gansser
1964). At the surface the MBT is a generally steep north-dipping feature (Johnson
et al., 1985). Although activity on the MBT cannot be directly dated, due to a lack
of crosscutting relations, several efforts have been made to constrain the age of
initiation. Significant changes in magnetostratigraphic sedimentation patterns of the
Himalayan foreland as well as subsidence, lithostratigraphic, and geochronological
data have been used to place the initiation of slip on the MBT to greater than >10
Ma and likely to be at ~11Ma (Burbank et al., 1996; Meigs et al., 1995). Nakata
(1989) suggested that the MBT could have been active in recent times based on
geomorphologic evidence.

The southernmost and most recently active fault in the system of south verging
thrust structures is the Main Frontal thrust (Nakata, 1989). This thrust places the
sub-Himalayan molasse belt over undeformed sediment deposits of the Ganga
basin and emerges with a dip of about 30°. The region between the MBT and the
MFT, the sub-Himalaya, has been recognized as a zone of thin-skinned tectonics
(e.g. Mugnier et al., 1999; Lavé and Avouac, 2000).

Intensity distribution of large historical earthquakes along the Himalayas have led
to the suggestion that the current deformation front might extend further south than
the MFT as a blind detachment below the Indo-Gangetic plain (Seeber and
Armbruster, 1983), but no structural evidence has been found to support this theory

(Lavé and Avouac, 2001).
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The South Tibetan Detachment System (STD) is a northward-dipping low-angle
normal fault that follows the northern edge of the Himalayas along the arc
(Burchfield et al., 1992). It marks the contact between Tethyan metasediments, and
Higher Himalayan Gneisses. U-Th-Pb dating of accessory minerals in shear fabrics
that appear to be related to slip on the fault indicated activity on this fault system at
~17 Ma and lower limits have been put at 8-9 Ma by dating of crosscutting north-
south trending normal faults (Harrisson ef al., 1995).

Several north-south trending rifts cut through the Himalayan-Tibetan orogen such
as the Thakkola, Kung Co, Pum Qu graben and the Yadong-Gulu Rift. The age of
their initiation, while being strongly debated, has been argued to represent the time
when the plateau reached its present elevation (Molnar & Tapponnier 1975,
England and Houseman 1989). The largest north-south trending graben, the
Yadong-Gulu rift, cuts the South Tibetan Detachment system and must hence be
younger than the last recorded activity on the STD (Edwards and Harrisson, 1997).
The right lateral Karakorum fault is the dominant feature in the western part of
Tibet bearing large offsets of up to 66410 km since no longer than 10 Ma (Yin et
al., 1999). In the south this fault probably terminates in the evolving Ghurla
Mandatha extensional system in the southwest of Tibet (Ratschbacher et al., 1994).
Further north slip on this fault might translate into the Karakorum-Jiali fault zone,
which extends across Tibet just south of the Bangong Nuijang suture, and marks
the northern extent of the Lhasa terrane. The Lhasa terrane collided with

Quiangtang between late Jurassic and mid-Cretaceous times (Dewey et al., 1988;
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Matte et al., 1996). The Lhasa terrane has experienced as much as 80 km
shortening until the late Cretaceous (Murphy et al., 1997), however, in the
Cenoizoic the tectonics of the Lhasa terrane are characterized by extension. This
extension is manifested in north-south trending grabens across the region (e.g.
Molnar and Tapponier, 1975; Armijo et al., 1986). The age of initiation of these
extensional structures is not well known, but activity of rifts in the
Nyanquentanglha region in southeast Tibet, are constrained to 8+1 Ma (Harrisson
et al., 1995). Deformation in the Quiangtang terrane to the north is generally less
well constrained than in the Lhasa terrane but probably dominated by sinistral
strike-slip with predominantly northeasterly strikes (Molnar and Lyon-Caen, 1989;
Armijo et al., 1986). Recent mapping efforts have reported the presence of major
north striking active normal faults such as the Shuang Hu graben (~E90°). These
normal faults connect northeastward trending strike-slip faults and show a
significant left-lateral slip component (Yin et al., 1999).

The northern boundary of the Tibetan plateau is marked by two major east-
west trending fault systems: The Altyn Tag and the Kunlun fault. The Kunlun fault
reveals offsets of about 75 km along its more than 1000 km long extent (Kidd and
Molnar, 1988). The Quaternary slip rate along this fault has been inferred from
cosmogenic dating of offset streams to be about 12 mm/yr (van der Woerd et al.,
1998), which, projected into the past, implies activity of the Kunlun fault since
more than 7 Ma. The active role of this fault in the accommodation of the India-

Asia collision becomes evident from large earthquakes, such as the November 2001
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Mw 7.8 earthquake, which ruptured a 400 km long segment of the mainly left
lateral fault. Several strike-slip fault systems mark the eastern part of the Tibetan
plateau. These faults have been taken as markers of escape tectonics (Tapponier,
1975), accommodating eastward transport of material as a result of north-south

shortening.
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Figure 2.1. Fault traces in the Himalayas and Tibet. Faults bounding major
geologic units are shown in red others are shown in black. Abbreviations: MFT-
Main Frontal Thrust; MBT- Main Boundary Thrust; MCT- Main Central Thrust;
TAK- Thakkola graben; GYR- Gyirong graben; KC- Kung Co graben; PQ- Pum
Qu graben; YTS- Yarlung-Tsangpo Suture; KKF- Karakorum Fault; NQT-
Nyanquentangla graben; JFZ- Jiali Fault Zone; BNS- Bangong Nuijang Suture;
KF- Kunlun Fault; ATF- Altyn Tag Fault.
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3 METHODS

3.1 Theory

The majority of shallow earthquakes can be associated with frictional
dislocation on planar surfaces caused by sudden material failure of rocks as a result
of tectonic stresses. This causes a temporary breakdown of the linear stress-strain
relations where the elastic rebound of the medium generates seismic waves.

To derive the properties of such an earthquake we have to establish a mathematical
model of the seismic source, which allows for determination of the displacement field
with a manageable number of parameters. The moment tensor, which is based on the
concept of equivalent body forces, offers a way to describe force relations of seismic
sources in a very general sense. The moment tensor M is a symmetric matrix
composed of nine force couples, since net torque and net force vanish in the Earth.

The tensor can be written as:

[ e e s\
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For a shear dislocation, M is a double-couple that can be expressed in terms of four
independent parameters: the strike, dip, rake, and the seismic moment, describing the
source orientation and strength. The description of the source dislocation in terms of

the moment tensor allows for a linearized inversion for the earthquake source
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parameters. The double-couple solution can then be derived from the decomposition
of the moment tensor.

The inversion scheme used in this study follows closely Nabelek ’s (1984) method for
the analysis of teleseismic body waves and represents a modification of this code to
retrieve the source parameters at regional distances (Nabelek and Xia, 1995).

The method involves modeling of entire 3- component seismograms by computing
complete waveforms to invert for the moment tensor and source time function.
Considering a horizontally layered medium, the displacement as a function of time t
observed at a station at distance A and azimuth ¢ from the earthquake epicenter can be

expressed as:

y A\ ].
upbv(q/), At) = {HPbVZ(d), h,t)[i(myy + Myy) — %(myy — Mygy) COS 2¢ + Mgy sin 2¢]+
HPSV1(¢, h,t)[my sin ¢ + my cos ¢| + HPSVO(cb, hyt)m..} e Q(t) ;

, 1
uSH(<b, At) = {HSHQ(qﬁ, h, t)[§(myy — Migy) SIN 2¢) + Mgy cOs 2¢0]+

HSH1(¢7 h,t) [myz COS @ — My, sin (M} o () )

Where u™" represents displacement resulting from P-SV coupled waves (vertical and
radial components), and u™ represents displacement due to SH waves on the
transverse component, H represents the excitation functions for a source at depth h
with a unit step slip history, m;; are the source moment tensor components, € is the far
field source time function, and ‘®’ denotes convolution in the time domain (Nabelek

and Xia, 1995).



20

The source time function is parameterized as:

Where T is a series of n isosceles-triangle functions of a unit area, duration 2 <, and
overlapped by T, ax are the corresponding amplitude weights, which are required to
sum up to 1. The resulting source time function has amplitudes specified at equal time
intervals T and the intervening samples are interpolated by the trapezoidal rule
(Nabelek, 1984). The duration and time resolution of the source time function can be
controlled by varying the number and length of individual triangles (Nabelek and Xia,
1995). The excitation functions in this procedure are calculated with a discrete
wavenumber summation technique after Bouchon (1982).

The procedure makes use of the maximum likelihood inversion scheme, in which
the L2 norm between synthetic waveforms and observed seismograms is

minimized. The maximum likelihood inverse is found by minimizing:

X* = [d—m(p)]" Cpyld — m(p)];

Where d is an array of data points representing the observed displacement at given
receivers for a specified time window, m is an array of all synthetic seismograms
predicted by the model parameters p: the six moment tensor components (five, if a
deviatoric constrain is imposed) and the amplitude weights of the n isosceles triangles

used to parameterize the source time function. Cy are a priori estimates of the data-
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covariance, and its inverse functions as the weighting matrix. The inversion is
stabilized by a damping factor, which decreases the impact of small eigenvalues to the

inversion result.

3.2 Data

Data for this study comes primarily from the HICLIMB seismic array that operated
over 250 broadband seismic stations from fall 2002 to summer 2005, along an
approximately 800 km long transect between the Ganges basin and north central Tibet
with additional lateral sites (Figure 3.2.1).

The array was deployed and operated in two major phases during which up to over
120 broadband seismometers, predominantly Streckeisen (STS2) and Guralp (3T,
3ESP, 40T) sensors, where recording at a given time. The first phase, operating
between fall 2002 and spring 2004, spanned the region from the Indian-Nepali border
in the Ganges basin to the Tethyan Himalaya in southern Tibet in the main transect
with a station spacing of 3 km throughout Nepal and 5 km to the north. Additionally,
lateral sites were deployed to the west and the east of the main transect from the Terrai
in southern Nepal to the higher Himalaya. Between spring 2004 and summer 2005,
Phase 2 spanned the region from southern Tibet, east of Saga, to latitude N34°, with a
station spacing of 5 km in the south to 12 km in the north of the main array, in

addition to a lateral array from the main transect to ~100 km east of Shigatse.



22

In addition to records from the HICLIMB array, data from the Himalayan Nepal Tibet
Seismic Experiment (HIMNT) and the Bhutan seismic experiment were supplemented
to extend the survey beyond the timeframe of HICLIMB network operation back to
fall 2001 (Drukpa et al., 2006; de la Torre and Sheehan; 2005). Data from permanent
global seismographic network stations (LSA, WMQ) was used to improve azimuthal

coverage.
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Figure 3.2.1. Map of stations used for the regional moment tensor analysis. Red triangles: stations of
the Hi-CLIMB seismic network (Nabelek ef al., 2005). Blue triangles: Stations of the Himalayan Nepal
Tibet Seismic Experiment (HIMNT) (de la Torre and Sheehan, 2005). Black triangles: stations of the
Bhutan seismic network (Drukpa ef al., 2006). Purple triangles: Global seismographic network
permanent broadband stations. Only the station in Lhasa is shown here, station WMQ in Urumgqi to the
north (N 43.811°, E87.695°) is not shown on this map, but was used for analysis of several events in
central and northern Tibet.
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3.3 Velocity Models

Although the crustal structure varies considerably throughout the region of
investigation, two simple 1-D seismic velocity models suffice to explain the observed
waveforms if the frequency band used for the analysis is low enough. Higher
frequency signals are more susceptible to lateral changes and discrepancies to the true
velocity model and the calculated excitation functions are not able to explain the
increasingly complicated waveforms. The size (M,>3.5) and regional distance
(mostly < 1000 km) of events, however allowed for analysis in low enough frequency
bands in which the signal is dominated by guided and surface waves that can be
modeled using relatively simple 1-D velocity models.

The first velocity model is based on a model derived by Zhao et al. (2001) from an
INDEPTH 3 reflection and refraction analysis in the Lhasa and Quiangtang terranes.
This model was primarily used for the analysis of earthquakes that occurred during the
second phase of the HICLIMB project, with ray paths traveling dominantly through
the Lhasa terrane. This model contains a 65 km thick crustal layer with a 3 km thick
sediment layer on top (Figure 3.3.1). The second velocity model was derived from a
model for the Himalayan crust published by Pandey et al. (1995) with a 55 km thick
crust. This model was used for earthquakes occurring during phase one of the
HiCLIMB project, the HIMNT and Buthan arrays, with ray paths that travel primarily

through the Himalayan crust (Figure 3.3.1).
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The initial models were used to calculate excitation functions for earthquakes of
significant magnitude (>5.2), appropriate location to cover a representative path, and
event-station distance (< 500 km), using available Harvard CMT solutions, which
appeared to be robust based on a relatively high double-couple component. The
synthetic waveforms were then compared to the observed seismograms, and the
velocities and Poisson’s ratio adjusted to match the major phase arrivals. The
Poisson’s ratio was changed from initially 0.25 to 0.27 to provide an appropriate
separation of early phases (P waves) and late phases (Love and Raleigh waves). This
value, which is characteristic of a more mafic or sedimentary lithology, might not be
representative of the upper crust, but is coherent with estimates from other studies for
the Tibetan crust ranging between .25-.29 (e.g. Langin et al., 2003). Consideration of
a vertically variable Poisson’s ratio throughout the crust however, did not improve the

waveform fits and hence a uniform Poisson’s ratio was assumed.
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Figure 3.3.1. Velocity Models used for the computation of excitation functions. In the legend a

represents P- wave velocity and B represents S-wave velocity.
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3.4 Procedural steps

The location and origin time of the majority of events analyzed in this study were
taken from the U.S.G.S. Advanced National Seismic System (ANSS) catalogue and
determined by the National Earthquake Information Center (NEIC). Few of the used
event epicenters were located by the HIMNT project (Monsalve et al., 2006).
Seismograms were then windowed with respect to the event origin time and distance
to each station. After visual inspection of the signal, waveforms were band pass
filtered to optimize the signal-to-noise ratio. In general, the investigated band pass was
kept as broad as possible to allow investigation of low as well as high frequencies for
a better resolution of source parameters. The actual frequency band used for the
inversion depends on event magnitude, station-event-distance, and background noise
level. For events with magnitude M,>5, events could be analyzed using frequencies
bands between 10-100s (e.g. 50-100s for M>5.5, or 10-50s for My, < 5.5). Multiple
passbands were used whenever possible to confirm the robustness of the mechanism.
For smaller events the frequency band is shifted to higher frequencies, if longer
frequencies are not strongly excited or the signal is buried by lower frequency noise.
Frequency bands that maximize the signal to noise ratio are usually narrower for the
analysis of events with magnitude < 5, and events were analyzed in pass bands
between 10 and 50s. On average 30-40 waveforms were used for the inversion for
events that occurred during the HICLIMB array operation, 10-20 for events during the

HIMNT and Bhutan seismic networks. Noisy traces were discarded and three
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component data were used whenever possible. Furthermore, if stations were not
uniformly distributed around the event, even stations with good signal to noise were
discarded to provide uniform azimuthal weighting. Waveforms are sampled according
to the distance of the station to provide roughly equal weighting of all stations, by
using the same number of samples for the inversion. Waveforms from stations closer
than 256 km were sampled at 1 Hz, stations closer than 512 km every two seconds,
and ones further away every 4 seconds. The amplitude decrease with distance is
corrected to a reference distance assuming cylindrical geometrical spreading (Nabelek
and Xia, 1995).

In the inversion, the moment tensor is always constrained to be purely deviatoric and
decomposed into a double-couple (DC) and a CLVD (Compensated Linear Vector
Dipole) component. Phase misalignments introduced by bad locations, false origin
time or deviations from the assumed crustal velocity model are corrected by realigning
the waveforms, to enhance correlation of signals and to avoid skipping of cycles.

The best fitting centroid depth is determined by minimizing the misfit for a suite of
trial depths, starting with the hypocentral depth listed in the ANSS catalogue and
sweeping through a reasonable range in steps of 3 km. An example of waveform fits
and variance increase through the investigated depth range is shown for event H96 in
Figure 3.4.1. The uncertainties in depth mostly depend on the variance increase
around the best depth, frequency band used for analysis and the type of mechanism.
Since the excitation functions representing Love waves do not vary significantly with

depth, the depth of strike-slip events is usually less well constrained than for
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mechanisms with dip slip component, when P-SV coupled phases are more strongly
excited. However, applications of this method in other regions have shown that the
centroid depth resolution for shallow strike-slip events is usually in the + 5 km range
(Braunmiller and Nabelek, 2002). Variance curves for deeper earthquakes are usually
flatter, which results in a decrease of centroid depth resolution.

Figure 3.4.2 shows the waveform fits for the biggest event (H100). Depth resolution
for this event is shown for different frequency bands in Figure 3.4.3, which shows the
general pattern that the minimum at lower frequencies is often less sharply defined
than at higher frequencies, but provides stable mechanisms over a wider depth range.
Nonetheless, the plot shows that the 8 km centroid depth of this event is well resolved
in all frequency bands. Strike, dip and rake are varied from the best fitting solution to
show the source parameter uncertainty of this event (Figure 3.4.4). Although the
parameter resolution varies for different mechanisms and used frequency bands, this
event shows that the strike and dip are somewhat better constrained than the rake,
which is in accordance with results from the application of this method in other
regions (Nabelek and Xia, 1995; Braunmiller and Nabelek, 2002). The resolution is
similar, but slightly better at higher frequencies than at lower frequencies. Considering
the longer frequencies as lower bounds for the resolution and a 10% variance increase
significant, the bounds are +4° for strike, -5/+7° for dip, and -8/+9° for the rake.
Based on variance increase criteria from the examples shown here and the application
of the same moment tensor methodology elsewhere (e.g. Nabelek and Xia, 1995;

Braunmiller and Nabelek, 2002, Braunmiller and Bernardi, 2005), average
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uncertainties for strike, dip, and rake are on the order of + 10°, + 10°, and 15°.
Uncertainties of stress axis azimuths discussed later in this manuscript are on the order
of + 10°. For shallow crustal earthquakes, centroid depth is usually constrained to
within +5 km, while for intermediate depth events, the excitation functions vary less
with depth and uncertainties are on the order of + 8 km. Uncertainties in moment

magnitude (My,) are constrained to within + 0.1-0.2.
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Figure 3.4.1. Waveform fits at different stations and variance with depth for event H96. Solid lines
represent observed, and dashed lines represent synthetic seismograms. The variance vs. depth in the

lower right box shows that the depth is well resolved.
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Figure 3.4.2. Waveform fits at different stations for the biggest event in this study (H100). Solid
lines represent observed, and dashed lines represent synthetic seismograms.



33

05 1 Y)”//*‘
: - . ’_—_.‘ :
0.4 - e =k
8 Q
@© 03
= |
(v |
> 0'27— — 10-100s |
- . 20- 50s
01 4 - 50-100s
0 10 20

Depth [km]

Figure 3.4.3. Depth resolution for the biggest event (H100) in different frequency bands. The
variance is smaller at lower frequencies, but the minimum is less sharply defined than at higher
frequencies. The mechanism stays consistent over the depth range for lower frequencies, while at
higher frequencies the mechanism changes at greater depth. The variance increase away from the
minimum shows that the depth is well resolved.
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Figure 3.4.4. Resolution of Strike, Dip and Rake for the biggest event (H100) in different frequency
bands. The strike and dip are the better- resolved parameters for this event. The resolution is slightly
better at higher frequencies, although the variance is increased when higher frequencies are used.
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3.5 Robustness

In order to evaluate the robustness of the derived solutions, tests were conducted to
infer the impact of significant potential sources of error and limitations of parameter
resolution, such as earthquake mislocation, assumed crustal model, and azimuthal
station coverage.

Since hypocentral earthquake locations from the ANSS catalogue are determined
mostly from teleseimic distances with varying degrees of azimuthal coverage, and
grossly simplified earth models, errors have to be expected. Comparison of ANSS
locations to recently published locations determined from HIMNT data shows that
earthquakes with magnitudes < 4 are significantly mislocated with a median offset of
~20 km (compared to de la Torre et al., 2007, in review). To see how the solution is
influenced by significant mislocation and the assumption of a particular crustal
velocity model, solutions were derived for an event with an epicentral location
difference of 20 km (H3), using velocity models from this and other studies conducted
in the region (Cotte et al., 1999; Langin et al., 2003). The chosen earthquake
represents a characteristic event in terms of faulting mechanism and magnitude, and
was analyzed in a commonly used frequency band (15-33s) with both, ANSS and
HIMNT locations (Figure 3.5.1). The azimuthal station coverage of this event is 114°
and the event station distance is between 81 and 514 km. The centroid depth of the
derived mechanisms was calculated in 3 km steps, and varied between 19 and 25 km.

The centroid depth stayed at the initially determined best depth of 22 km in 4 of 6



35

cases. Differences do not show a clear correlation to the average seismic velocities of
the assumed models; i.e. the depth is not necessarily constrained deeper because of the
usage of a, on average, slower model (Figure 3.5.1). The strike and dip varied by +
3.5° the rake by £11°, and T axis azimuth by + 5.5°. In all cases the derived
mechanisms show a normal faulting event at comparable depth, which shows that the
faulting character and centroid depth are stable and the tectonic interpretation is not

considerably affected.

Another important factor in constraining the radiation patterns to determine
earthquake source parameters is the angular distribution of stations around an
earthquake. Due to the linearity of the HICLIMB seismometer array, the azimuthal
coverage of stations around investigated events is often restricted to less then 90°, or
not equally distributed around the focal sphere. Figure 3.5.2. (top left) shows a
characteristic station distribution around event H51, with the main array west of the
event and the Lhasa station to the northeast. This event was separately analyzed with
different station distributions, successively decreasing the coverage from >100° to a
single station (Figure 3.5.2). The best-fitting centroid depth of this event was initially
at 14 km and increased insignificantly by 3 km in two instances, which can be
attributed to a relatively flat variance variation around the minimum depth. Coverage
as low as 10° revealed comparable solutions, while the strike and dip varied
considerably when only one station was used. The strike varied maximally by —
4°/+17°, the dip and rake by +15° and +20° respectively, and the P-axis azimuth by —

7°/+2°, from maximum distribution to 2 stations and azimuthal coverage of 12°.
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Although these results cannot be generalized to other events with different
mechanisms and event-station distance, this test shows that focal mechanisms from

this study are well constrained, even with minimal station distribution.
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Figure 3.5.1. Focal mechanism solutions for event H3 analyzed with different locations and
velocity models. Top: map showing event locations (ANSS: open asterisk, HIMNT solid asterisk)
and station distribution (triangles). Bottom: Derived mechanisms; Labels under the beach balls:
Strike/Dip/Rake; T-axis Azimuth/Plunge; B-axis Azimuth/Plunge; Centroid depth; Moment
magnitude; DC- Percentage of double couple. The solution derived with the HIMNT location and
Himalaya model is the preferred solution.
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Figure 3.5.2. Robustness test of solution H51 for varying azimuthal station coverage and station
combinations. Note that the mechanism is stable when more than one station is used.
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3.6 Comparison with other studies

3.6.1 Harvard Centroid Moment Tensor

Comparison with other data sets is an important means to test the consistency of the
derived moment tensor solutions. During the timeframe of investigation, the Harvard
Centroid Moment Tensor Project (CMT) analyzed 35 events also determined in this
study. Figure 3.6.1.1 shows a comparison of Harvard CMT and regional moment
tensors (RMT) derived in this study. The azimuth and plunge of the principal axes of
the RMT solutions are generally in good agreement with the CMT solutions.
However, the non-unique decomposition into double-couple and CLVD components,
especially for low double-couple events, can result in differences of double-couple
fault plane solutions. In particular small events with a magnitude of My, ~5 appear to
be affected by this. Visual investigation and comparison of observed and synthetic
seismograms derived with both CMT and RMT solutions, however, suggest that the
solutions derived in this study are more reliable in most cases. However, beside the
event size and magnitude of the CLVD component, it appears that the event station
distance plays a significant role in the quality of events from this study, since some
affected earthquakes were located up to more than 1000 km away from the closest
seismic stations. Since the crustal structure varies considerably within a 1000 km
range it cannot be ruled out that the simplified velocity model is not appropriate to

model waveforms at greater distances.
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Moment magnitudes of these events compare well with a standard deviation of +.19
and a mean offset of .09 (Figure 3.6.1.2). The biggest deviations occur for events with
M,, 5 and below, and for these events CMT solutions appear to be systematically
higher than magnitudes from this study (mean offset .25, standard deviation + .16). A
reason for this difference might be the deviation of derived mechanisms and differing

azimuthal station coverage in both prcedures.

Many Harvard CMT centroid depths are fixed to default values and are therefore not
valuable for depth comparisons. Instead, I have compared CMT events for which the
depth has been determined through modeling of broadband P-waveforms. Depth
constraints from determination of body wave depth phases can be expected to be very
reliable, and thus provide a powerful means of examining the depth resolution of the
RMT method used in this study. The best fitting depths determined in this study fall
close to Harvard CMT depths with a standard deviation of + 1.1 km, mean offset of

0.7 km, and a median of 0.0 km.
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Figure 3.6.1.1. Comparison of moment tensor solutions determined in this study (top) with Harvard
CMT (bottom). Beach balls show double couple and non double- couple components. Labels above
beach balls represent the datum given to events in this study in each top line (YYMMDD HHMM).
The moment magnitude (M,,) and centroid depth are plotted below each solution.
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3.6.2 HIMNT

More focal mechanisms with which to cross check my results come from an
investigation conducted as part of the Himalaya Nepal Tibet Experiment (HIMNT)
(de la Torre et al 2007; in review). De la Torre et al. determined 17 focal mechanisms
through inversion of regional waveforms and first motion polarities, using locations
and origin times determined by Monsalve et al. (2006). Only 14 of these events have
been studied here, since the three remaining events were not listed in the ANSS
catalogue and the origin time was not known. The focal mechanisms derived in de la
Torres’ study compare very well with the solutions from this study (Figure 3.6.2.1).
While small differences in faulting parameters can be observed, the orientation of
principal stress axes are similar. The determined centroid depths of events from both
studies are very comparable. Six events have been determined at identical depth, four
events show a difference of 3 km, three events between 5 and 7 km, and one outlier

with 13 km difference at intermediate-depth.
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Figure 3.6.2.1. Comparison of events determined in this study (top beach balls) and de la Torre et al.
(2007, in review) (bottom beach balls). Moment magnitude and centroid depth is given below each
solution. Labels above beach balls represent the datum given to events in this study in each top line
(YYMMDD HHMM), labels above de la Torre’s events are in accordance with the labels given in their
manuscript as of September 2006.
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3.7 Work Plan

The first focus was to analyze all earthquakes with magnitude M >5 that occurred
within the Himalayas and the entire Tibetan plateau. Following that, I moved the
focus towards the area of the Himalayan arc and southern Tibet. The goal was to
analyze all events that occurred in this region during project HICLIMB which are
listed in the Advanced National Seismic System (ANSS) catalogue. The magnitude
cut off of the ANSS catalogue is, depending on the region, around M ~3.2. The
magnitude threshold is lower for events around Nepal, which can be attributed to the
operation of the Nepalese seismic network, which represents the densest continuous
array in the area of study. Most events down to Magnitude 4 were analyzed in the
region between N26-31° and E79-98° with additional events of magnitude as small as

3.5.

The analysis of earthquake source parameters at regional distances finds its limits in
event station distance, event magnitude, depth (e.g. for great depths at close distances
when no surface waves are excited), and background noise. Smaller events require
proximity to the stations and analysis of waveforms at higher frequencies, which in
turn results in degradation of waveform fits and, in cases, stability of the solution. For
a number of small events (M, 3.5-4) along the Himalayan arc which are listed in the
ANSS catalogue, waveforms did not allow for analysis due to low signal to noise

ratios.
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4 RESULTS

4.1 Overview of Results

I have determined source parameters for 107 earthquakes in the Himalayas, the
Tibetan plateau, and northwards to the Tarim basin in the northwest and the Nan
Shan in the northeast (Figure 4.1.1, Table 4.1.1.).

The centroid depths of the analyzed events range from 3 to 98 km. While most
earthquakes occurred between 5 and 25 km, 12 events occurred below 50 km
(Figure 4.1.2). Events in the shallow crust are found throughout the area of study,
but events below 50 km are mostly restricted to the area beneath the southern
Tibetan plateau. The magnitudes of studied events range from My, 3.5 to 6.3 with a
median magnitude of 4.4 (Figure 4.1.3). Out of 23 events with magnitude My, > 5,
21 occurred on the Tibetan plateau and only 2 events with My, > 5 occurred along
the front of the Himalayan arc: one strike-slip event in central Bhutan (N27.264°,
E89.331°), and a thrust event near the eastern syntaxis (N28.881°, E94.626°). 46
events that occurred along the front of the Himalayan arc from the Ganges basin in
the south to the southern Tethyan Himalaya in the north were analyzed with a
median magnitude of My, 4.1.

In the following, I will give a short overview over the focal mechanisms

determined in this study, which are shown in Figure 4.1.1. Deformation along the
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Himalayan arc is dominated by thrust faulting at depths between 10 and 20 km. The
fault plane solutions of these thrust events show, to a first order, nodal planes with
arc parallel strike and, in most cases, one shallow northward dipping plane. The
thrust events are located in the region with significant elevation increase. In few
places along the arc strike-slip faulting mechanisms where determined with
generally greater centroid depths than the thrust events (= 24 km). The planes of
these strike- slip mechanisms show strike roughly NW-SE (NNW-SSE) and NE-
SW (NNE-SSW). Normal faulting along the front of the arc is restricted to the
region of the Pum Qu graben crossing the Himalayas at ~E87°. The centroid depths
of these normal faulting events range from 27 km to 92 km. Events between the
higher Himalayas and the Yarlung-Tsangpo Suture show mostly strike-slip
mechanisms with centroid depths between 70-77 km, and only one at 18 km depth
close to the Yarlung-Tsangpo suture. The fault planes show predominant strike in
NW-SE or NE-SW direction. Normal-faulting events south of the Yarlung-Tsangpo
suture exclusively occurred in the western part of the Tethyan Himalaya and the
Ghurla Mandatha region.

In the Lhasa terrane, north of the Yarlung-Tsangpo Suture, earthquakes were localized
in three areas during the time of investigation. Deformation here is characterized by
shallow normal faulting mostly restricted to the upper ten kilometers, with roughly
north-south striking planes varying locally from NNE to NNW. In the central-eastern
part, the area of the Yadong-Gulu rift, fault plane strikes are rotated clockwise from

the north, whereas to the west, between E83° and E84°, strikes of normal faulting
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mechanisms show a slight counterclockwise rotation from the north towards NNW.
Strike-slip faulting is observed in several places on the Lhasa terrane, and the best
fitting focal depths of these events are found to be deeper than the normal faulting
events. In the region between N30-31°, E83-84°, normal faulting mechanisms range in
depth from 8 to 16 km, whereas deeper strike-slip events in the same region show
centroid depths between 12 and 34 km. The biggest events (Mw 6.2, 6.3) occurred in
this region showing normal faulting at 16 and 8 km depth. Further to the east, near the
northern limit of the Yadong-Gulu rift, an earthquake shows strike-slip faulting at 98
km depth. In the northeast, events show interlaced strike-slip and normal faulting in
the area of the Shuang Hu graben and the Jiali fault on the Quiangtang terrane and
northeastern Lhasa terrane.

In the following section solutions along the Himalayan front and the southern Tibetan
plateau are described in more detail to give a background for later discussion in the
area of focus. Focal mechanisms from other studies are added in order to give a more
complete picture of the regional seismotectonics (Figure 4.1.4). The added
mechanisms were determined from inversion of either body waves at teleseismic
distances (Molnar and Lyon Caen, 1989; Chen and Yang, 2004, Harvard CMT;
Ekstrom, 1987), or complete waveforms at regional distances (Burtin, 2005).

Reliable solutions from comparison to synthetic body waves are also added
(Baranowski et al., 1984). In order to put the results in context to other investigations

related to active deformation of the orogen, focal mechanisms are shown with GPS
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measurements (Bettinelli et al., 2006), and microseismicity locations (Pandey et al.

1999).
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Figure 4.1.1. Overview map of the 107 focal mechanisms determined in this study. Events with
centroid depth < 50 km are shown in red, events with centroid depth > 50 km are shown in blue.
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Figure 4.1.2. Histogram showing the focal depth distribution of analyzed events. Note that more than
10% of the investigated events show centroid depths below 65 km.
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4.2 Western Nepal

The region of western Nepal has not experienced a major earthquake in possibly
more than 500 years, and has been identified to mark a seismic gap between the
regions of the 1934 Bihar earthquake in the east and the 1905 Kangra earthquake to
the west (e.g. Avouac, 2003). However, far western Nepal marks a zone of intense
microseismicity, which has been interpreted as an expression of interseismic stress
accumulation at the down-dip tip of the locked zone of the MHT (Pandey ef al.,
1995; 1999). Focal mechanisms in the region between E80-83° plot in the
microseismic cluster and yield information about the mode of deformation
associated with the seismicity resulting from interseismic stress build-up. The
epicenters of most events plot at the topographic front between the lesser and the
higher Himalaya, which varies considerably in the region of the Karnali river valley
in far western Nepal (Figure 4.2.1).

The focal depths of thrust events range from 10 km to 23 km west of the
topographic embayment associated with the Karnali River, with only one exception
at 74 km (Figure 4.2.1). In the Karnali river region, microseismicity as well as the
locations of thrust events are offset to the north with respect to the west, following
the topographic increase. At the east rim of the embayment, the topographic front
as well as seismicity are offset again to the south. Right beneath this offset a strike-

slip event at 53 km depth indicates deformation in the lower crust or in the upper
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mantle. To the east, the seismic belt and the associated focal mechanisms follow
the topographic front again further south.

Focal mechanisms show predominantly thrust faulting with one shallow northward
dipping plane and one steeply dipping to subvertical plane, striking approximately
parallel to the local trend of the topography. The dips of the northward dipping
planes of these thrust events range from 15° to 45°, steeper than in most regions
further east. Besides the dominant pattern of shallow dipping thrusts, several
mechanisms, mostly at depth beneath 20 km, show potential backthrusts with the
shallow plane dipping to the south, and normal faults with T-axes roughly parallel
to the local trend of the topographic increase. The polar plot of events in this region
shows the dominance of thrust events in this region with P-axis plunges of less than
30° and steeply plunging T-axes. The P-axis azimuths of these events show
significant variation between N180°-270°, with prevalence around N195° (Figure
4.2.2). The variations in dip and azimuth will be further investigated in the

discussion section.
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Figure 4.2.1. Source mechanisms (beach balls) of earthquakes in western Nepal. Beach balls are
colored as in Figure 4.1.4. The labels above the beach balls show the event label number and the
centroid depth in parentheses or just the centroid depth for Harvard CMT solutions. Harvard CMT
solutions with fixed depth are not labeled. Microseismicity (M> 3) recorded by the Nepalese network is
plotted as red dots (hyocentral depth <25 km) and blue dots (hypocentral depth >25 km). (Pandey et
al., 1999). Black arrows show GPS displacement vectors relative to stable India from Bettinelli ez al.
(2006).

Figure 4.2.2. Lower hemisphere polar plot showing compressional (black squares) and extensional
(open circles) axes of mechanisms along the Himalayan front of western Nepal. Events north of N30.2°
are not shown. Note the high variability of P- axes azimuth.
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4.3 Central Nepal

The microseismic belt in central Nepal, between E83° and E87°, follows a fairly
straight line oriented about 105° NW-SE, following the orientation of the
topographic front. The area west of ~E85° is considered part of the seismic gap
zone, west of the rupture area of the 1934 Bihar earthquake (Avouac, 2003).
Although no major earthquakes have been documented in this area, this region has
experienced significant moderate earthquakes in the recent past, such as a
magnitude 6.4 earthquake in 1954 (NSC Nepal, personal communication).
However, no source mechanisms were previously available in this region. The
determined focal mechanisms in this area show low-angle thrust faulting at depths
between 10 and 21 km (Figure 4.3.1). While one of these events was located
directly adjacent to Pokhara, three occurred in a sequence within two days in
November 2003 some 15 km west of the city with magnitudes between 3.5 and 3.8.
P-axis azimuths of the western events are rotated counterclockwise with respect to
the event in Pokhara. The direction of horizontal displacement measured at the GPS
station in Pokhara aligns closely with the P-axis azimuth of event H78 at 10 km
depth, while a little further to the west, the P-axes azimuth of events H48 at 14 km
and H46 at 16 km are rotated counterclockwise with respect to the horizontal
displacement direction derived from the station in Jomosom in the Thakkola

graben.
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East of Kathmandu, thrust events show depths between 10 and 21 km. Events
between 10 and 16 km show a gently north dipping plane, whereas deeper thrust
events show steeper northward dips or shallow southward dipping planes and hence
generally more horizontally oriented P-axes plunges (Figure 3.3.2). The P-axis
azimuth of most thrust events align well with the GPS velocity azimuths at the
stations in this area. However, the P-axes azimuth of event H95 and H97 at 20 and
21 km depth are rotated clockwise with respect to the shallower events, showing P-
axes orientation normal to the higher mountain range to the east. While no shallow
earthquakes have been observed south of the foothills in the region of the Ganges
basin, centroid depths of two events indicate brittle deformation beneath the Indian
crust. GPS vectors in the region show significant variation in the azimuth of
displacement, especially in the lesser Himalaya and the Siwaliks, where

uncertainties are frequently higher than the measured displacement at these sites.
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Figure 4.3.1. Source mechanisms (beach balls) of earthquakes in central Nepal. Beach balls are
colored as in Figure 4.1.4. The labels above the beach balls show the event label number and the
centroid depth in parentheses or just the centroid depth for Harvard CMT solutions. Harvard CMT
solutions with fixed depth are not labeled. Microseismicity M= 3 recorded by the Nepalese network
is plotted as red dots (hypocentral depth < 25 km) and blue dots (hypocentral depth > 25 km)
(Pandey et al., 1999). Black arrows show GPS displacement vectors relative to stable India from
Bettinelli et al. (2006).

Figure 4.3.2. Lower hemisphere polar plot showing compressional (black squares) and extensional
axes (open circles) of mechanisms near Pokhara (A), and east of Kathmandu (B). Red symbols
represent P- and T-axes of two deeper events beneath the Ganges basin.
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4.4 Eastern Nepal, Sikkim, and western Bhutan

The seismotectonics of this area (E87-90°), as opposed to the previously discussed
regions along the arc, are characterized by normal and strike-slip faulting in
addition to thrusting at the topographic front (Figure 4.4.1). In the region between
E87° and E88°, where the Pum Qu graben is crossing the higher Himalayas, several
focal mechanisms show normal faulting at 12 and 27 km in the foreland close to the
outcrop of the Main Frontal Thrust (MFT), and at 57 km and 65 km beneath the
greater Himalaya and in the Pum Qu graben (~E87.5°). While the normal faulting
event in the Pum Qu graben shows due east-west extension in accordance with the
strike of the graben at the surface further north, principal stress axes of mechanisms
south and east of the graben are slightly rotated to the WNW-ESE (Figure 4.4.2).
Another event with high normal-, but considerable strike-slip component was
determined further north at 92 km depth. The dilatational stress axis of this event
however differs from the shallower normal faulting events, trending SW-NE, but is
rather comparable to the most proximate strike-slip event at 78 km depth. The
strike-slip events in the region show focal depths of 24 to 44 km south of the
topographic front and 55 to 78 km beneath the higher and southern Tethyan
Himalaya. The left lateral slip plane of event T62 at 44 km, determined by Molnar
and Lyon- Caen (1989) aligns with the surface trace of Yadong-Gulu rift at its

southernmost extent.
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Thrust events determined in this study show steeply dipping nodal planes with
considerable strike-slip component. Event T6, determined by Baranowski ef al.
(1984) however, shows a characteristic thrust with shallow northward-dipping fault
plane at 15 km depth. The P-axes orientation of most thrust events trend roughly
north-south, which is approximately normal to the general trend of the higher
Himalayan range. A thrust event some 50 km to the east (H125) at greater depth of

25 km shows a clockwise- rotated P-axes azimuth of N38°.

The depths of normal faulting events in the vicinity of the Pum Qu graben (Figure
4.4.2) indicate that the rift extends deep into the subducting Indian crust and
possibly even beyond the Moho, a feature that is not evident in other grabens
transecting the Himalaya where normal faulting occurs mostly in the upper 20 km.
As a corollary, this implies that the Indian crust is extending roughly parallel to the
arc near the Pum Qu graben. Additionally, depths of several strike-slip events along
the front suggest that the Indian crust is internally deformed to the east of the Pum
Qu graben. While Ni and Barazangi (1984) have reported a strike-slip event at 13
km in this region, the centroid depths determined through inversion instead of
forward modeling indicate that strike-slip faulting occurs below the main

detachment.
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87° 88° 89°

87° 88° 89°

Figure 4.4.1. Source mechanisms (beach balls) of earthquakes in Eastern Nepal, Sikkim, and Western
Bhutan. Beach balls are colored as in Figure 4.1.4. The labels above the beach balls show the event
label number and the centroid depth in parentheses or just the centroid depth for Harvard CMT
solutions. Harvard CMT solutions with fixed depth are not labeled. Microseismicity (M> 3) recorded
by the Nepalese network is plotted as red dots (hypocentral depth <25 km) and blue dots (hypocentral
depth > 25 km) (Pandey et al., 1999). Black arrows show GPS displacement vectors with respect to
India from Bettinelli et al. (2006).

Figure 4.4.2. Lower hemisphere polar plot showing compressional (black squares) and extensional
axes (open circles) of normal faulting mechanisms near the Pum Qu graben (A), and thrust and strike-
slip mechanisms in the region between E87° and E90° (B). Note that, while events in the Pum Qu
graben show east-west extension (left panel), most events in the regon show dominant north-south
compression.
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4.5 Bhutan To Eastern Syntaxis

Deformation along the topographic front from Bhutan to the eastern syntaxis (E90°-
95°) is again dominated by shallow northward dipping thrust mechanisms (Figure
4.5.1). Between E92° and E93°, the dips of the northward dipping plane is slightly
steeper than of events to the west and the east. East of E93° P-axis azimuths trend
rather north-south, while the high mountain range curves to the northeast. The focal
depths of thrust events in the region are between 10 and 17 km with the exception
of event H132 at 21 km. The depth of this event is 11 km deeper than the thrust
events 10 km to the south and shows a significantly rotated P-axis with respect to
these events but is oriented perpendicular to the topographic embayment of the arc
to the northeast. Additional thrust earthquakes occurred south of the MFT with
north and northeastward trending P-axis at 29 and 36 km, and two strike-slip events
with a high thrust component at 27 and 65 km with east-west oriented P-axis
azimuth. Further to the north, north of the higher Himalaya, a normal faulting event
suggests extension beneath the Moho at 80 km depth. The dilatational axis of this
event is oriented to the southeast and perpendicular to the topographic front of the
Himalayas projected in that direction.

While the seismotectonics in this region shows the prevalence of thrust faulting
perpendicular to the arc in the front of the range, depths of several mechanisms
suggest deformation in the Indian crust and potentially below the Moho. This

deformation is characterized by thrust and strike-slip faulting at depths between 25



and 65 km south and by normal faulting at 80 km to the north of the higher

Himalayas.
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Figure 4.5.1. Source mechanisms (beach balls) of earthquakes in the region between Bhutan and the
eastern syntaxis near Arunachal Pradesh. Beach balls are colored as in Figure 4.1.4. The labels
above the beach balls show the event label number and the centroid depth in parentheses or just the
centroid depth for Harvard CMT solutions. Harvard CMT solutions with fixed depth are not labeled.
Seismicity M> 3 recorded by the Nepalese network is plotted as red dots (hypocentral depth <25
km) and blue dots (hypocentral depth > 25 km) (e.g. Pandey et al., 1999).
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4.6 Southern Tibet

The tectonic environment changes drastically north of the Higher Himalayas from
prevalent compression to extension. Deformation in the Tethyan Himalaya,
between the higher Himalaya and the Yarlung-Tsangpo suture, shows shallow
normal faulting in the upper 18 km of the crust and strike-slip faulting mostly
below 70 km depth (Figure 4.6.1). Most of the normal faulting events are located
within or adjacent to the northward continuation of major grabens or half grabens
in the region that transect the higher Himalaya. During the timeframe of this
investigation, however, the only shallow normal faulting event in the western
Tethyan Himalaya (H102) cannot be associated with any of these structures. The
northward continuation of the Pum Qu graben (~E87.5°) appears to be the most
active feature in the region but, contrary to the southern part of this rift (Figure
4.3.1), depths of focal mechanisms is restricted to the upper 16 km. Extension in
the Tethyan Himalaya graben systems occurs mostly perpendicular to the surface
traces of the faults, as indicated by the T-axes of the focal mechanisms. The T-axis
of the normal faulting event in the Yadong-Gulu rift is slightly rotated however,
paralleling the eastward offset direction of the fault.

T-axes of shallow normal faulting mechanisms show a rotation from east to west,
in accordance with the southward convex strike of the higher Himalayan mountain
range and Yarlung-Tsangpo suture.

Deformation below 70 km depth in the Tethyan Himalaya is almost exclusively

situated just north of the Higher Himalayan range near the highest mountains in the
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region, between E86° and E88°. The only deep event away from this area plots
close to the surface trace of the Yarlung-Tsangpo suture at 77 km depth. Although
some of these events are located adjacent to the surface trace graben systems, the
strike-slip mechanisms are contrary to the shallow deformation indicated by normal

faulting solutions.

The southern Lhasa terrane, north of the Yarlung-Tsangpo suture shows
significantly more deformation in the shallow crust than south of the suture. Focal
mechanisms predominantly show normal faulting, while strike-slip deformation
occurs in several places in the region (Figure 4.6.1). Deformation at 80 km and
deeper, is restricted to the vicinity of the Yadong-Gulu rift (~E89.3°-E90.3°). These
deep events, which have been observed by several investigations using teleseismic
as well as regional waveform investigations (Chen et al., 1981; Chen and Yang,
2004; Burtin, 2005; this study), show prevalent strike-slip faulting with north to
northeast trending P-axes. Normal faulting events associated with this graben
indicate that shallow deformation in this rift is restricted to the upper 16 km,
revealing a gap of 64 km to the deep events. The extensional axis is roughly
perpendicular to the surface trace of the fault, which strikes NNE, while some of
them show a considerable strike-slip component. Although the mechanisms of
shallow and deep earthquakes are considerably different, and the vertical gap spans
over 60 km, T-axes of the shallow normal faulting events are roughly in alignment

with intermediate depth earthquakes between 80 and 98 km.
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Further to the west, the northward continuation of the Pum Qu graben (E88°)
appears to be one of the more active extensional features in southern Tibet in recent
years, as indicated by the number of focal mechanisms of medium sized events and
microseismicity. A series of relatively shallow normal faulting events indicates that
active extension associated with the graben is restricted to the upper 10 km of the
crust. Further to the west, the region between E83° and E84.5° is characterized by
intense seismicity during the time of HICLIMB network operation (S. Carpenter,
personal communication), and the biggest earthquakes of this study occurred in this
area. Most of these events show normal faulting in the upper 10 km of the crust,
while the second biggest event from this study (H76, Mw 6.2) occurred at 16 km.
The T-axes azimuths of these mechanisms are oriented slightly ENE, which reveals
the local orientation extension in this direction. In the same area, at greater depth
between 12 and 34 km, mechanisms show a dominant strike-slip component, with
north-south trending P-axes. The orientation of the maximum horizontal
compressive stress (Zoback and Zoback, 1980) is thus approximately the same for
the shallow normal and deeper strike-slip events, while revealing different modes
of deformation. The strike-slip events in this region could be an expression of

stresses induced by the right-lateral Karakorum fault to the west.

Whereas in most places in the southern Lhasa terrane normal faulting is prevalent,
the central-northern part of the Lhasa terrane east and southeast of Tsochen, shows
a zone of pure strike-slip faulting at 9 to 22 km depth. The nodal planes of these

events strike northeast and northwest, transverse to the surface traces of the graben
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systems in this region, while the compression axes trend due north-south or NNW.
These events might be associated with strands of the right lateral Karakorum-Jiali
fault zone that have been mapped in the region (Yin et al., 1999). This region
seems to mark the transition from prevalent normal faulting in the south to

dominance of strike-slip faulting in central and northern Tibet.
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4.7 Profiles Across the Himalayas

Cross sections of seismicity linked with projections of focal mechanisms are a
powerful means for studying the distribution of deformation at depth and its
association with structural features. In order to avoid inaccuracy and distortion of
spatial relationships of such seismic events, I created five cross sections in the area of
study along the arc. The events projected onto these cross sections are chosen so that
major changes in the structural character along the arc are preserved. Because the
topographic front changes rapidly in far western Nepal, events were projected onto
two separate cross sections to minimize distortion (Profile A and B). Receiver
function profiles are added to show the relation to the structural environment (Profile
C: Nabelek et al., 2005; Profile D: Schulte-Pelkum et al., 2005). The difference in the
geometry of the MHT in both profiles results from contrary interpretations of the
reflection characteristics of this structure. In profile D the MHT is hence deeper than
in Profile C, does not reach the surface, and might be falsely interpreted. In this
section, I will first discuss the deformation along the front of the Himalayan arc,
followed by shallow crustal and deeper deformation in the region of the Tibetan

plateau.

The seismotectonics of the Himalayan front is characterized by thrust faulting at depth
between 10 and 25 km, and is located in the zone of increased microseismicity that
has been detected by the Nepalese Seismic Network (Pandey ef al., 1995; 1999).

These thrust events generally occur within a narrow zone of less than 50 km width,
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near the topographic increase from the lesser to the higher Himalaya (Figure 4.7.1).
Interpretations of the depth of the Main Himalayan thrust from receiver function
analysis (Profile C and D) shows that most of these events can be associated with
deformation in the vicinity of the main detachment, while their vertical spread
suggests significant deformation in the hanging as well as the footwall of the MHT.
The variability in apparent nodal plane dips, and frequently greater dip than the
detachment inclination furthermore signifies that many thrust events rupture at an
angle to the main fault surface. In far western Nepal, the microseismic belt and the
distribution of thrust type focal mechanisms at the Himalayan front appear to be
elongated in an arc perpendicular direction (Figure 4.7.1, Profile A, distance: 100-200
km). It is noteworthy that this elongation is due to the projection including events in
and to the west of the Karnali river valley, where the topographic front is offset to the
north by 50 km (Figure 4.2.1). Pandey et al. (1999) combined the regions of Profile A
and B in western Nepal on one cross section, which led to the impression that the
elongation of the seismic cluster might represent a double ramp structure that was
proposed by DeCelles et al. (1998). However, the wider north-south spread of
seismicity is rather an artifact of projection than a considerably different structural

architecture in this part of the arc.

Strike-slip faulting along the front of the Himalayan range occurs predominantly east
of the Pum Qu graben at centroid depth > 24 km, indicating that the Indian crust
beneath the detachment is subjected to significant internal deformation (Figure 4.7.1,

Profiles D and E, distance: 100-130 km). The existence of strike-slip faults has been
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documented at the surface and was attributed to conjugate strike-slip faulting,
accommodating north-south compression (Dasgupta ef al., 1989). Since all of the
investigated strike-slip events apparently occurred beneath the detachment, it is
unlikely that these events are related to strike-slip faults at the surface although a
genetic relationship between transverse features in the subducting Indian plate and the

overlying lesser Himalayas was proposed by Valdiya (1976).

Normal faulting along the front of the arc, south of the Tethyan Himalaya is restricted
to the vicinity of the Pum Qu graben at E86.5°-E87.5° (Figure 4.7.1, Profile D,
distance: 20-200). The depths of these events indicate that this graben extends
throughout the entire crust, dissecting the subducting Indian plate, and possibly

continuing into the upper mantle.

North of the higher Himalaya, the seismotectonic picture is dominated by shallow
normal faulting in all profiles, revealed by focal depths hardly exceeding 20 km. All
of these events plot above the main detachment outlined by the receiver function
depths. The greater number of events north of the Yarlung-Tsangpo suture suggest
that this region is currently experiencing significantly more brittle deformation than

the Tethyan Himalaya.

Several earthquakes plot beneath the crust-mantle boundary outlined by the receiver
function profiles, indicating brittle elastic deformation in the uppermost mantle. These
earthquakes show mostly strike-slip mechanisms in two distinct regions. Beneath the

higher and southern Tethyan Himalaya, intermediate depth earthquakes occur in the
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region where the northward dipping Moho is bending back to sub-horizontal (Profiles
C and D). Further to the north, beneath the Lhasa terrane and the northward
continuation of the Yadong-Gulu rift, events show even greater centroid depth (Profile
E). The centroid depth of these events ranges between 80 km and 98 km, which is
significantly below estimated Moho depth at 70 km from previous studies in this

region (e.g. Hauck et al., 1998).
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Figure 4.7.1. Cross-sections of the Himalayas and southern Tibet. Focal mechanisms are plotted in
back projection in the color code according to Figure 4.1.4. Harvard CMT solutions with fixed centroid
depth are not shown. Surface traces of profiles are shown on the overview Map (top, green lines).
Interpretations of MHT (solid lines) and Moho depth (dashed lines) from receiver function analysis are
shown in cross section C and D (C: Nabelek ef al., 2005; D: Schulte- Pelkum ef al., 2005).
Microseismicity is plotted in blue (Pandey et al, 1999). The topography is shown above each profile.
Location of major faults is indicated above each topography line. MFT: Main Frontal Thrust; KKF;
Karakorum Fault; YTS Yarlung-Tsanpo Suture.
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Figure 4.7.1. Cross-sections of the Himalayas and southern Tibet.
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Figure 4.7.2. Cross-section of the Himalayas in central Nepal. For location see overview map in
Figure 4.7.1. Interpretations of MHT and Moho interfaces from HiCLIMB receiver functions are
shown as solid lines (Nabelek et al., 2005). Microseismicity is plotted in blue (Pandey et al, 1999).
Note that northward dipping nodal planes of thrust events show mostly steeper dips than the MHT
inclination in their vicinity. Centroid depths of these events show significant vertical spread.
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S DISCUSSION

5.1 Thrusting along the Himalayan Front

In this section I investigate the characteristics of thrust faulting along the
Himalayan front. First, I will discuss their general location and reasons for their
occurrence in this region. I will then show the nodal plane dips of these thrust
events to explore if these events represent slip on the main detachment as proposed
by previous authors. Last, I will discuss the variations of their compressive stress
axes azimuth along the arc and reasons for these variations in the context of plate

model predictions, GPS measurements, and topography.

5.1.1 Location of Thrust Events

The ongoing convergence between India and southern Tibet is localized along the
creeping part of the main detachment (MHT) resulting in significant strain buildup
and Coulomb stress increase at the down-dip tip of the locked part of the fault
during the interseismic period (Pandey et al., 1995; Cattin and Avouac, 2000).
This accumulation of stress and strain causes intense microseismicity and frequent
medium sized earthquakes that can be observed in a narrow belt that follows the
topographic front of the higher Himalayas (Pandey et al., 1995; 1999) (Figure

5.1.1.1). The thrust events yield insight into the mechanisms of deformation
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associated with the microseismic cluster, where tectonic stresses are greatest
(Pandey et al., 1999; Cattin and Avouac, 2000). Thrusting becomes absent north of
the 3500m- topography contour line, and deformation changes to normal faulting
on the Tibetan plateau and the Himalayan grabens. The northern limit of thrust
events marks the transition zone where the MHT changes its character from brittle
behavior in the locked part to ductile and aseismic deformation in the down-dip
part, which creeps at rates comparable to geologic slip rates (Lavé and Avouac,
2001; Cattin and Avouac, 2000). The more detailed shape of the seismicity, and
close corellation with the 3500m- elevation contour is controlled by vertical
stresses induced by the local topography. North of the 3500m- contour, Coulomb
stresses decrease due to loading and commensurate increase of vertical stress,

inhibiting fracture (Bollinger ef al., 2004).



84

80° 82° 84° 86° 88° 90° 92° 94°
- 30°
R - 28°
Kathmandu v
26° - ! ! 26°

80° 82° 84° 86° 88° 90° 92° 94°

Figure 5.1.1.1. Thrust events along the Himalayan front from this and previous studies. The 3500 m
elevation contour is shown in grey. Seismicity (Ml > 3) recorded by the Nepalese network is plotted
in red (Pandey et al., 1999).
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5.1.2 Nodal Plane Dips

The thrust events along the Himalayan front imply underthrusting on mostly
shallow northward-dipping fault planes. Previous investigators of focal
mechanisms in the region argued that most of these thrust events define the
detachment surface that separates the underthrusting Indian plate from the
overriding lesser Himalayan crustal block (Baranowski ef al., 1984; Ni and
Barazangi, 1984). Geodetic studies have indicated that the MHT is essentially
locked during the interseismic period (e.g. Bilham et al., 1997; Larson et al., 1999;
Jouanne et al., 2004; Bettinelli et al., 2006), causing the zone around the down-dip
tip of the locked part to be subjected to large tectonic stresses. This becomes
evident from the distribution of seismicity showing a rather rounded shape than
simply outlining a planar surface. The distribution of seismicity indicates that
fracture occurs on planes adjacent to the main detachment in addition to slip on the

main detachment surface.

The geometry of the décollement, at least in central and eastern Nepal, is now
constrained by receiver function data of the HICLIMB and HIMNT seismic
experiments (Nabelek et al., 2005; Schulte-Pelkum et al., 2005). The MHT
reflector is subhorizontal beneath most of the lesser Himalaya, where most thrust
events occur, and steepens somewhat to the north underneath the higher Himalaya

to dips < 8° at the northernmost extent of the seismic cluster (Figure 4.7.1, C).
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Only 6 of the more than 40 investigated events show dips within the range of
maximum inclination of the MHT reflector (Figure 5.1.2). The investigation of
parameter resolution of a dip-slip event in chapter 3.2.1 showed that the dip is
constrained to within less than 7°, consistent with uncertainties given for thrust
events determined with the same method in other regions (e.g. Nabelek and Xia,
1995). Under consideration of uncertainties of < 7°, 6 more events could have
slipped in the plane of the MHT. Baranowski et al. (1984) gave an uncertainty
estimate of 5-10° for their teleseismic investigations. Taking 10° as a conservative
upper limit for events from Baranowski et al. (1984) and Molnar and Lyon-Caen
(1989), the number of thrust events that potentially could have ruptured on the
surface of the MHT increases from 3 to 15, which is only about one third of the
total number of thrust events investigated her. This number would additionally
imply that the dip is frequently overestimated, which is very unlikely given the
consistency of error estimates of different studies. Since the geometry of the MHT
is only constrained in central and eastern Nepal, it cannot be ruled out that the
detachment is steeper in other regions along the arc. However, most regions show
shallow as well as steeper dipping thrusts in the same area. The only region
showing exclusively steeper dips (20°-32°) is the region between E91.8° and E93°.
In the event of a locally steeper MHT, these events could represent detachment slip,
but the structure in this region is not constrained. However, a local steepening of
the MHT from less than 8° to more than 20° is rather improbable because of

flexural plate rigidity and would imply tearing of the India crust.
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Even though over 50% of the investigated thrust events show centroid depths in the
range of the MHT reflector in central and eastern Nepal (12-18km), the plunges of
their slip vectors show mean and median values of 20.2° and 18.5°, which is outside
the range of possible uncertainties. Events between 6 and 12 km depth show
somewhat shallower dips with mean and median values of 14.3° and 12°, while
events below 18 km dip even steeper (mean 29.5°, median 30°). All of the depth
groups mentioned above show fairly high standard deviations (+11-13°), which
indicates that there is no preferred angle of slip at either depth. The general trend to
steeper nodal planes at greater depth cannot be attributed to a steepening from
south to north that would reflect the increasing dip of the detachment in this
direction. Instead, the steep dip of deeper events could be an expression of greater
strength of the Indian crust away from the fault zone.

The fact that most of the nodal planes indicated by the fault plane solutions are
steeper dipping than the MHT is converse to the view that the thrusts outline the
detachment surface, as proposed by previous authors (Baranowski ef al., 1984; Ni
and Barazangi, 1984). On the other hand, the steeper plunge of slip vectors is
consistent with the notion that the main detachment is essentially locked and the
region of the lower tip of this zone is intensely deformed. Thus, most of these thrust
earthquakes signify internal deformation in the vicinity of the MHT rather than
detachment slip. A corollary of slip on steeper planes is a larger vertical component
of displacement, which likely contributes to the uplift of the mountain range and

creation of topography. This is in agreement with the fact that the highest uplift
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rates are observed in this region (Bettinelli ez al., 2006). Furthermore, slip on
planes oblique to the dip of the detachment surface might play a role in the
formation of asperities on the MHT. By introducing kinks and reducing the
smoothness of the main detachment surface, slip of these events could contribute to
the locking of the thrust. The detachment might be exceptionally rough in the
region of western Nepal, where comparably more moderately sized earthquakes
occur, and fault planes tend to be steeper than further to the east. A greater
roughness increasing friction on the main detachment in far western Nepal could be
a contributing factor to the long seismic dormancy of this region and potentially

higher recurrence intervals than in other regions along the arc.
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5.1.3 P-axes Azimuth

The mechanisms of the majority of the thrust events from this study are consistent
with previous investigations of earthquake focal mechanisms underneath the
Himalayan front that have shown dominant thrust faulting between 10 and 20 km
with a shallow dipping plane inclined northward underneath the Himalayas, and
strike roughly parallel to the regional topography of the range (Ni and Barazangi,
1984; Baranowski, 1984; Molnar and Lyon- Caen, 1989). Besides the interpretation
that these events outline the dip of the MHT, slip of these events was thought to
occur in an arc radial fashion. The previous description of thrust events along the
arc in chapter 4 has shown that, while the thrust faulting earthquakes indeed
suggest arc radial slip to a first order, deviations from a ideally circular geometry
become obvious. In this section, I will investigate the reasons for short scale
variations of slip directions along the arc in the vicinity of the MHT. The P-axes of
thrust events are used here as an approximation for the slip direction of these
earthquakes. Because the azimuth of P-axes and slip vectors are identical for pure
dip-slip events, the usage of the principal axes rather than the slip vectors is
appropriate and does not necessitate choice between nodal planes.

Most thrust event P-axes align perpendicular to the regional azimuth of the
topographic front of the Himalayan arc sampled at more than 200 km, and roughly
align with a small circle centered at N42°, E90° with a radius of 1600 km that

outlines the increase in elevation from the lesser to the higher Himalaya to E92°
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(Figure 5.1.3(B, C)). Some thrust events follow this circle even east of E92°, where
the azimuth of the topographic front strongly deviates from the azimuth given by
this circle, and indicate oblique underthrusting beneath the general trend of the
higher Himalayas. Several events to the west show deviating P-axes from arc-
normal orientation and their centroid depths indicate an apparent depth dependence
of stress axes azimuth. Between E86° and E92° four thrust events between 20 and
25 km depth reveal a consistent clockwise rotation of P-axes azimuth with respect
to shallower events in the nearby region. The deep events show P-axis azimuth
between 37° and 45 °, while shallower thrusts show P-axes orientations between NE
22° and NW 26°, reflecting the regional trend of the higher Himalayan topographic
front. In western Nepal, the P- axes azimuths reveal a rather diffuse pattern.
Principal stress axes of deeper and shallower thrust events are not as clearly
separated as events to the east, and more spread out with azimuths ranging from
NW 16° - NE 12° west of Pokhara and N 2°- NW 41° in far western Nepal.
Nonetheless, P-axes deviating from the local trend of topography tend to be
associated with deeper events, however showing a counterclockwise rotation with
respect to the shallower ones.

As becomes evident from the profile plots in section 4 (Figure 4.5.1), the deviating
events plot at the lower part of the microseismic cluster and possibly occurred
below the detachment. The apparent depth dependence could thus indicate that
events below the detachment behave differently than shallower earthquakes.

Assuming that the shallow events represent slip in the hanging wall, a difference in
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stress orientation would imply decoupled stresses across the MHT. Such
differences in faulting orientation in the footwall and hanging wall has been
observed in places along the Sunda arc, where slip directions of deeper earthquakes
deviate from slip directions in the hanging wall (McCaffrey et al., 2000). A
decoupling of stresses would necessitate a certain weakness of the detachment.
Several authors have proposed long-term weakness of the MHT based on the
observation of a comparably low frictional coefficient on the detachment surface
(Cattin and Avouac, 2000; Bollinger et al., 2004), and little internal deformation in
the hanging wall observed at the surface (Lavé and Avouac, 2001). However, the
previous section has shown that significant deformation occurs in the vicinity of the
detachment, which is in agreement with the notion that the MHT is essentially
locked during the interseismic period (e.g. Bettinelli et al., 2006). The fact that
most of the slip does not occur on the detachment surface indicates significant
strength of the locked portion, which implies that stresses should be coupled across
the fault at present. To investigate if shallow events follow different patterns than
deep events and if stresses are decoupled, P-axes of thrust events are compared to
azimuths of plate motion predictions and displacement vectors from GPS stations
in the region (Figure 5.1.3.2) (Bettinelli et al., 2006). If stresses are decoupled
across the MHT, deviating stress axes orientation of the events in the footwall
could respond to stresses given by the direction of Indian plate movement. Figure
5.1.3.2 shows the azimuth of Indian plate convergence with respect to stable

Eurasia as predicted by HS3—-NUVEL1A and the REVEL 2000 models (Gripp and
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Gordon, 2002; Sella et al., 2002). The two plate velocity models were chosen to
indicate the end member models of plate vector estimates, since the first is based on
seafloor spreading and hotspot migration estimates (Gripp and Gordon, 2002),
while the other is derived from recent geodetic data (Sella et al., 2002).

The plate model predictions suggest obliquity of India plate convergence with
respect to the curvature of the arc. The azimuths of both models show that the India
plate motion is clockwise oblique with respect to the arc east of E84°-85°, whereas
to the west the convergence is counterclockwise oblique. This change coincides
with a similar change of obliqueness indicated by the P-axes azimuth of deeper
events that deviate from the arc circular pattern. While this fits the general sense of
rotation of deviating P-axes azimuths, the angles of obliqueness with respect to the
geometry of the arc given by the plate models are lower than the angles given by
the azimuths of deeper events, and show little correlation with the orientation of
stresses indicated by the thrust events. The missing correlation indicates that the
azimuth of Indian plate convergence taken from plate model predictions cannot
reconcile the orientation of the rotated earthquake mechanisms.

GPS vectors show that the displacement at the surface is roughly perpendicular to
the approximate arc azimuth east of E85°, in agreement with the direction of
displacement indicated by the shallower thrust earthquakes (Figure 5.1.3.2). The
GPS vector azimuths show significant variation in the central part of the section
between E84° and E88°, and vectors vary significantly even at the same station over

time (Bettinelli ez al., 2006). Further to the west, GPS displacement vectors trend to
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the SSW and show correlation with deeper, rather than shallow events. This
correlation implies that these deeper events slip in the direction of displacement
measured at the surface, which could be taken to argue against decoupled stress
fields across the MHT. However, the GPS displacement vector azimuths do not
match the detailed pattern of slip directions indicated by the P-axes of many events.
The disconnect between GPS measurements at the surface and earthquake slip
vectors could be due to complexities of GPS measurements in the vicinity of the
locked part of the fault. Another obvious problem in this comparison is furthermore
the large distance of some GPS sites to the thrust earthquakes in the eastern part of
the section. Nonetheless, the GPS and plate model prediction cannot reconcile the
orientation of slip indicated by the thrust events that deviate from the rough shape
of the arc, which implies a different reason for the short scale variations in slip
direction.

While the Himalayan arc is remarkably circular, it reveals many small-scale
undulations of the mountain front that often coincide with drainage systems. Many
of the deviating events occurred in the vicinity of such smaller scale undulations of
the Himalayan front. To investigate if the P-axes orientations of thrust events align
perpendicular to the more regional topography, the 3500m- topography contour
was used for comparison as an approximation for the shape of the Himalayan front.
To check at which scale the P-axes show maximum correlation to the topography
normal, the topography was filtered at 200, 100, 75, 50 and 25 km wavelengths,

using a two dimensional boxcar filter. The 3500m-elevation contour was extracted
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from the filtered topography, after which I calculated the azimuths along the
contour. While the A = 200 km filtered contour approximately follows the roughly
outlined arc front from the previous section (Figure 5.1.3.3 (A)), shorter
wavelengths of the arc subsequently reveal the many small-scale undulation along
the Himalayan front, which is signified by increasing azimuth variations. Filtered at
25 km the arc perpendicular azimuths vary substantially, covering the entire
azimuth spectrum (Figure 5.1.3.3 (D)). However, filtered at 50 km the contour
perpendicular azimuths reproduce pattern given by the thrust event p-axes well in
terms of variations and amplitudes of the azimuth, and shows that these rotated
events slip normal to the local topography at this length scale. However, small
lateral offsets of these events with respect to the azimuth of the 50 km contour
cause root mean square misfits of significant size (Figure 5.1.3.4). While these
offsets are in part due to the projection over some distance directly to the north and
not in the direction of slip, another possible reason is given by the uncertainties in
earthquake location. Since the locations used for the analysis of earthquakes source
parameters from this and other studies are mostly taken from earthquake
catalogues, the uncertainties might be significant. A comparison of NEIC locations
to locations determined by Monsalve et al. (2006) indicates that mislocation is
frequently on the order of 20 km. In order to account for the projection
uncertainties and possible mislocation of events, the location was allowed to move
laterally at different scales in the procedure. Figure 5.1.3.4 shows the RMS errors

of P-axes and contour normal when maximum lateral shifts in event location of 10
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and 20 km are allowed for. The plot shows that,while the 200, 100, and 75 km
wavelength contours show smaller root mean squares for the initial location, the
consideration of lateral uncertainties does not improve the fit significantly. The rms
error with respect to the 50 and 25 km wavelength contours decreases significantly
to less than 10° if a maximum shift of 20 km is allowed for, while the 25 km
wavelength contour shows slightly smaller misfits than the 50 km wavelength
contour (6.7° vs. 9.6°). However, the 25 km contour does not appear to be very
representative, since the amplitudes of the contour azimuths are not matched well
by the P-axes azimuths, and none of the higher azimuth values are reflected by the
P-axes. The fit is purely accomplished by the shift of the location of nearly one
wavelength. On the other hand, the 50 km wavelength contour matches the P-axes
azimuth values of shallow and deeper events in amplitude all along the arc, which
suggests that all of the investigated events follow the same pattern. The fit to within
10° is in the range of uncertainties of determined P-axes orientation from this
method, as shown in the methods section of this manuscript.

The good correlation of thrust event P-axes with changes of the topography on a 50
km scale suggests slip of these events occurs indeed radial to the Himalayan front,
but slip directions change significantly on a very local scale. The fact that events
that are likely to have occurred in the footwall and events in the hanging wall
follow the same pattern, furthermore suggests significant coupling of the stress

field above and below the décollement. This is in agreement with the notion that
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the MHT is essentially locked (e.g. Bettinelli ef al., 2006; Jouanne ef al., 2004;
Larson et al., 1999).

The correlation at a 50 km scale indicates that the topography is tightly related to
the slip direction of moderately sized earthquakes in the interseismic period. A
possible reason for this correlation could be the impact of the topographic load on
the stress field at mid-crustal depths. Similar correlation of thrust earthquake slip
vectors with smaller scale topographic variations can be found along the Cascadia
subduction zone (Braunmiller, personal communication). However, the topography
in the Cascadia environment is almost negligible compared to the Himalayas, and
the changes in vertical load induced by the topography probably too small to cause
significant variations in the stress field at depth on such short wavelengths. On the
other hand, since most of the earthquakes probably did not occur on the main
detachment, these local variations of slip direction might be indicative of slip on
local weak zones around the detachment that vary in azimuth on a shorter scale
than the megathrust. The fact that the earthquakes along the Himalayan front show
slip perpendicular to smaller scale topographic features on planes of considerable
dip indicates that these earthquakes contribute to the mountain building process and
development of smaller scale undulations of the topographic front. This
interpretation is in agreement with the coincidence of the event locations and the
region of highest interseismic uplift, which is indicated by vertical velocities

determined by GPS investigations (Bettinelli e al., 2006; Bilham et al. 1997).
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While the contribution of large earthquakes in the mountain building process is
surely dominant, the highest uplift caused by large events is translated to the
foothills of the Himalayas (Lavé and Avouac, 1998), whereas the regions to the
north might actually subside during these events. Since recurrent large earthquakes
of magnitude > 8 in the Himalayas rupture several hundred kilometers of the front
at once they are likely to form the general circular shape of the arc. The existence
of short scale lobate variations of the front however are less likely to be formed by
these large events, and topography might be built in the interseismic period by
smaller thrust earthquakes. The local shape and morphology of the arc is controlled
by erosion of material in massive streams crossing the Himalayas (e.g. Avouac,
2003). The pattern of erosion however is guided by the topography, and contributes
to the shape of the arc on smaller scales as a response to uplift. Deformation from
moderately sized earthquakes in the interseismic period might thus be a
contributing factor in the process of mountain building and the shape of the arc in

dimensions between large earthquakes and erosion.
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Figure 5.1.3.1. A) Beach balls, B) P-axes, and C) P-axis azimuth of thrust events along the
Himalayan arc. The 3500m- topography contour is shown in gray in maps A) and B). Dashed line in
B represents a small circle centered at N42° E90° with 1600 km radius. Dashed line in C represents
azimuth perpendicular to this circle. The stippled line represents the rough azimuth of the arc,
corrected for deviations from the circle in the east and west. P —axes of orange events are within 15°
of this line, while blue events deviate more than 15° from this line.
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Figure 5.1.3.3. P-axes of thrust events and 3500m topography contour filtered at A) 200, B) 100 and
75, C) 50, and D) 25 km. Below maps: Azimuth of thrust event p-axes and azimuth perpendicular to
contour. The outline and azimuth of a small circle centered at N42°, E92° is shown in A). Note the good
agreement of the P-axes azimuth with the contour azimuth filtered at 50 km.
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Figure 5.1.3.4. Root mean square of thrust event P-axes azimuth with respect to the 3500 m —
topography contour normal filtered at different scales versus maximally allowed lateral shift.
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5.2 Faulting Patterns in Tibet

As opposed to the Himalayan front, the tectonics of the Tibetan plateau is
characterized by extension and lateral escape. Various models have been proposed
arguing the relative importance of different mechanisms involved in the tectonics
of Tibet (e.g. Seeber and Armbruster, 1984; Armijo et al., 1986; Molnar et al.,
1993; Kapp and Guynn, 2004; McCaffrey and Nabelek, 1998). The orientation of
faults and fault plane solutions are an important tool to put constrains on the
mechanisms contributing to the extension of the plateau and escape tectonics.

At the surface, extension and lateral escape is expressed in normal and strike-slip
faults with increasing dominance of strike-slip faulting towards the north and
northeast. In the south, extension of the Tibetan plateau becomes evident by a
number of large graben systems cutting through the higher Himalayas
perpendicular to the range, and by roughly north-south trending rift valleys in the
Tethyan Himalaya and the Lhasa terrane (Tapponier et al., 1981; Armijo et al.,
1989). Surface traces of the graben systems show significant local variations in
strike and tend to fan out to the north from a northwesterly to northeasterly
direction from west to east (Figure 5.2.1).

Previously, only few focal mechanisms were available on the Tibetan plateau and
extension indicated by these events apparently occurred simply in the east-west
direction, not reflecting the local changes of fault strikes from south to north. Focal

mechanisms from this study confirm the view of previous investigators that



104

extension occurs in a general east-west direction (e.g.: Molnar and Chen, 1983;
Molnar and Lyon Caen, 1989). However, with the improved spatial coverage in this
region through the addition of focal mechanisms from this study, smaller scale
variations of the faulting patterns and deviations from a pure east-west extension

become obvious (Figure 5.2.1).

T-axes of events in the Tethyan Himalaya show extension roughly parallel to the
arc, and rotation from ENE in the eastern part to WNW in the western part
approximately parallel to the orientation of the surface trace of the Yarlung-
Tsangpo suture (Figure 5.2.1, 5.2.2). Further north, across the Yarlung-Tsangpo
suture, this pattern changes to a seemingly opposite trend. Although extensional
directions vary considerably with short distance, the general pattern of T-axes
shows a roughly northward convex trend from east to west (Figure 5.2.1, 5.2.2).
The different patterns of T-axes azimuth in the southern Lhasa terrane and the
Tethyan Himalaya suggest that the region of the YTS represents a boundary
separating faulting styles in the north and in the south, which is indicated not only
by the focal mechanisms but also the orientation of the surface traces of the faults.
The faulting regime changes to a preponderance of strike-slip faulting in the
northern plateau at roughly N31° in the central part, and at N31.5° in the eastern

part of the Lhasa terrane (Figure 5.2.1).

Several authors have stressed the notion that shallow extension in southern Tibet is
an expression of gravitational collapse of the thickened crust (e.g. Molnar et al.,

1993; Royden, 1996). An elevated gravitational potential energy is given by the
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increased crustal thickness and topography, and hence is likely to play a role in the
extension process of southern Tibet. However, the strike of normal faulting
mechanisms and the northward change to strike slip faulting indicate that southern
Tibetan plateau extension is not simply driven by gravitational collapse. If
extension is merely driven by gravitational forces, normal faults should show
dominant extension parallel to the topographic gradient and gradient perpendicular
strike. This is suggested by modeling efforts considering only the gravitational
potential energy as a driving force that have predicted north-south extension of the
Tibetan plateau, which is contrary to the observed east-west extension (Flesh et al.,
2001). Proponents of the gravitational collapse model have described the extension
in southern Tibet to be a result of a weak Tibetan crust spreading over a rigid India
plate (e.g. Jade et al., 2004). The increasing surface area of the weak plateau as it
spreads radially over India would then require the southern rim to extend in an arc
parallel fashion. While it is generally questionable if such comparisons are
meaningful in a rigid plate environment, this analogy only matches the arc parallel
extension in the south, but is contrary to the northward radial fault strikes in the
Lhasa terrane. Furthermore, according to this model dominant extension should
still occur parallel to the topographic gradient. The highest gradients in the systems
are undoubtedly radial to the Himalayan arc and hence rather north-south in the
region under investigation, converse to what is indicated by the focal mechanisms.
In the context of gravitational collapse, strike slip faulting has been proposed to

occur in regions with lower elevations than the areas of normal faulting (Molnar
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and Lyon-Caen, 1989). This idea has to be rejected since the elevation does not
vary significantly in the zone of transition from prevalent normal to strike-slip
faulting (Figure 5.2.3).

Other conceptual models trying to explain the extension of southern Tibet
emphasize the role of forces induced by the indentation and subduction of Indian
lithosphere underneath the Tibetan plateau (e.g. Seeber and Armbruster, 1984;
Kapp and Guynn, 2004; McCaffrey and Nabelek, 1998). Kapp and Guynn (2004)
modeled the fault orientations in Tibet as a two dimensional thin sheet considering
compressive stresses induced by the collision as the main reason for the extension.
The northward divergent orientation of fault traces on the Tibetan plateau was
reproduced under the assumption that compressional stresses are higher in the
center of the plateau than to the west and the east, where they are relieved by strike-
slip along the Karakorum fault and thrusting near the Shilong plateau. While this
model is able to reproduce the northward radial orientation of faults north of the
YTS, it does not reconcile arc parallel extension in the higher Himalayas and
Tethyan Himalaya. The primary driving force in this thin sheet model is given by
the compression induced by converging India and neglects three-dimensional
effects such as basal shear stress induced by the underthrusting Indian plate. Since
it is now known that the Indian lithosphere is underthrusting Tibet as far north as
roughly the Bagnong Nuang suture, it is difficult to deny the influence of basal

traction induced by movement along the main detachment.
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Indeed, possible sources for changes in shallow faulting patterns can be found by
investigating the geometry of the underthrusting Indian lithosphere. Comparison of
the faulting styles observed from focal mechanisms to the geometry of the
subducting Indian plate, as outlined from receiver function profiles, show that the
changes from arc parallel extension to northward radial extension, and then to
strike-slip faulting further north coincide with structural changes of the MHT
reflector at the top of the underthrusting Indian lithosphere. Near the Yarlung-
Tsangpo suture, where the pattern of extension changes from southward to
northward convexity, the India plate bends back from a northward dip to continue
subhorizontally underneath the plateau (Figure 5.2.3). Further to the north, around
N31°, the reflector from the top of the Indian plate bends down into the mantle just
south of the Bagnong Nuang Suture, corresponding to the change from normal to
strike-slip faulting preponderance. The correlations between the geometry of the
underthrusting India plate and shallow faulting patterns in the Tibetan plateau
suggests that the faulting styles in the shallow crust are influenced by basal
mechanisms, since the shear stresses imposed on the bottom of the Tibetan crust
can be expected to vary where the underlying architecture changes.

This draws attention to the model proposed by McCaffrey and Nabelek (1998),
who emphasized the importance of basal drag in the formation of southern Tibetan
rift structures. Their model predicts varying obliquity of basal traction imposed by
India to the bottom of the Tibetan crust to cause differential extension in southern

Tibet. The varying obliqueness is given by the convergence of India with respect to
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a curved backstop. This backstop is given by northern Tibet, bound to the south by
the southward convex Karakorum fault and Karakorum-Jiali fault zone. The
conceptual nature of this model, however, does not account for variations in the
geometry of the underthrusting Indian plate, and hence cannot be directly used to
compare extensional faulting orientations on the Tibetan plateau. Nonetheless, the
basal traction imposed on the bottom of the Tibetan crust can be expected to vary in
the region in which the bottom plate changes from northward dipping to horizontal.
Strike- slip faulting at the Karakorum- Jiali fault could be seen as movement along
the backstop proposed in the basal drag model. North of the region in which the
Indian plate bends down into the mantle, basal traction applied to the Tibetan crust
vanishes, and strike- slip deformation is the dominant mode of deformation,
possibly guided by north-south compression and resulting lateral escape.

The focal mechanisms investigated here are surely not sufficient to rule out a
certain impact of the elevated potential energy of the thickened crust on the
extension of the plateau. However, the predicted extensional directions given by the
collapse model are hardly matched by the orientation of normal faulting
mechanisms, which shows that simple collapse is not able to explain Tibetan
plateau extension. On the other hand, the coincidence of structural changes in the
architecture of the underthrusting Indian plate with changes of faulting styles above
signifies that basal mechanisms are likely to play a significant role in the extension
process of the Tibetan plateau. The influence of basal shear stresses additionally

implies a certain level of stress coupling between the underthrusting Indian crust
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and the Tibetan crust above. In order to further understand the relative importance
of these mechanisms and to investigate the impact and viability of stress coupling
across the detachment at mid-crustal depths, additional modeling efforts have to be
undertaken. The variations in faulting patterns that have been observed in this study
provide new constraints for any effort trying to explain the Tibetan Plateau

extension.
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Figure 5.2.1. Focal mechanisms of crustal events in the southern Tibetan plateau (top panel) and
associated dilatational axes (bottom panel). Note the lateral change in T-axes azimuth variation
south and north of the Yarlung-Tsangpo suture (YTS) from southward to approximately northward

convex. Events are colored as in Figure 4.1.4.
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5.3 Deformation at Depth

Since earthquakes are an expression of elastic deformation in the earth, their
vertical distribution can be indicative of mechanical strength at depth. While most
of the earthquakes in the Himalayas and Tibet show focal depths in the upper crust,
where mechanical strength is undisputed, the location of deeper earthquakes has
been strongly debated in recent years. Although previous authors have documented
the occurrence of mantle seismicity beneath the Tibetan plateau (e.g. Chen et al.,
1981; Zhu and Helmberger, 1996; Chen and Yang, 2004), only few of these events
were reported in southern Tibet. The small number of reported mantle events and
their occurrence near the Moho allowed arguing against mantle seismicity (Maggi
et al., 2000; Jackson, 2002). The question of whether deeper events occurred in the
lower crust or upper mantle is of particular importance in the region of the
Himalayas and the Tibetan plateau, since where mechanical strength resides has
major implications on the support of the orogen. Furthermore, the deep-event stress
axes orientation gives insight about the reasons for deeper seismicity.

Centroid depths of earthquakes investigated in this study underline that the
dominant mechanical strength resides in the upper 20 km of the crust (Figure 5.3.1,
A). While earthquakes at the Himalayan front show centroid depths predominantly
between 10 and 20 km, brittle deformation on the Tibetan plateau is concentrated in

the upper 10 km of the crust, which is in agreement with depths determined by
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previous investigations (e.g. Molnar and Chen, 1983; Ni and Barazangi, 1984,
Randall et al., 1995).

Normal faulting events in the Pum Qu graben show extension of the Indian plate
below the décollement in east-west direction. Focal depths and comparison to
receiver function profiles indicate that two of these events could have occurred in
the lower Indian crust, a pattern that is unique along the arc (Figure 4.7.1). Events
indicative of brittle deformation in the lower crust become absent north of the
higher Himalayas, where no earthquakes have been determined between 34 and 75
km.

While few normal faulting events have been determined at depths below 75 km, the
majority of events show strike-slip mechanisms with northerly trending P-, and
east- west trending T- axes, which is consistent with the stress field produced by
the indentation of the Indian continent (Zhu and Helmberger, 1996). While deeper
earthquakes occur in several places between the Ganges basin and the Tibetan
plateau, two dominant regions of intermediate depth deformation become obvious.
Significant deformation occurs underneath the Tethyan Himalaya, especially
between E86° and E88° just north of the higher Himalayas, east and west of the
Pum Qu graben. The centroid depths of these earthquakes are between 75 and 92
km, whereas the depth of the Moho is at 65 to 70 km in this region as shown by
receiver function images (Figure 4.7.1 C), which suggests brittle elastic
deformation in the uppermost mantle. Cross sections together with receiver

functions show that these events occur below the region where the Moho reflector
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changes orientation from northward dip to horizontal (Figure 5.2.3). This could
imply that these events are related to the backward bending of the Indian crust
above, deforming mantle material below the bend.

Another active region of deformation at intermediate depths is close to the northern
extent of the Yadong-Gulu rift, east of Shigatse. The centroid depths of these
earthquakes are on average deeper than events just north of the higher Himalayas
and range between 80 and 98 km. The depth of the shallower two events was
determined using body wave depth phases under the assumption of a purposely-
slow crustal velocity model in order to prove the subcrustal depth occurrence of
two of these events (Chen and Yang, 2004). The slower velocity model leads to an
underestimation of depth of up to 10 km (Chen and Yang, 2004), which would put
them into the vicinity of events determined from regional data and confirms the
depth resolution of events determined in this study. The crust mantle boundary in
the region is at about 70 km depth as inferred from wide-angle reflection analysis
(Hauck et al., 1998), and is confirmed to be significantly less than 80 km through
surface wave dispersion analysis (Chen and Yang, 2004). The depths of these
events thus represent strong evidence for brittle elastic deformation in the upper
mantle, since errors in centroid depth of up to more than 20 km are required to
place them into the crust.

The depth distribution of earthquakes investigated here, strongly suggest a bimodal
strength profile underneath the Himalayan orogen, which is contrary to the

proposition that the strength resides in a single seismogenic layer represented in the
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crust (Maggi et al., 2000; Jackson, 2002). Regionally, the lower crust might be
brittle enough to sustain the accumulation of strain required to produce
earthquakes. Seismicity in the lower crust however appears to be restricted to the
region of the Pum Qu graben and does not appear to be a common phenomenon
throughout the orogen. The occurrence of these earthquakes might be attributed to
the eclogitization process of granulite near the Moho as proposed by Jackson et al.
(2004).

Deeper events underneath the Tethyan Himalaya and the Lhasa terrane are located
consistently beneath Moho depths determined in the region indicating a strong
lithospheric mantle. The fact that deeper earthquakes occur mostly in the mantle
rather than the lower crust provides additional evidence that the largest contribution
to the integrated vertical strength of the lithosphere is provided by the mantle
(Molnar, 1992; Chen and Yang, 2004). This is in agreement with evidence from
flexural and thermodynamic modeling that requires a strong mantle to explain the
geometry of the bending India plate (Hetenyi et al., 2006). The occurrence of
intermediate depth earthquakes furthermore indicates that the temperatures of the
mantle lithosphere beneath the Himalayas and the Tibetan plateau are relatively
low.

The source mechanisms of mantle earthquakes show the predominance of vertical
shear expressed in strike- slip faulting, as opposed to thrust and normal faulting in
the shallow crust. Chen and Yang (2004) have argued that these upper mantle

earthquakes are unlikely to be related to the subduction process, based on few
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earthquakes that show steeply dipping P-axes and east-west extension. The addition
of newly determined focal mechanisms however shows the dominance of
horizontal, northerly trending compressional axes that are consistent with the
regional stress field induced by the India-Eurasia convergence. Although reverse-
faulting mechanisms might be intuitively expected in a subduction environment,
such a mode of deformation might be inhibited by increased vertical stresses
induced by the significant overburden. While tectonic stresses are unlikely to be
higher at intermediate-depth, vertical stresses increase due to the topographic load,
which causes the extensional stress axes to be oriented east-west. Furthermore,
although the normal faulting mechanisms show steeply dipping P-axes indicative of
the high vertical stresses, the direction of maximum horizontal stress is given by
the intermediate stress axes for these events (Zoback and Zoback, 1980). This axis
correlates with the direction of the P-axes of most strike-slip events and indicates
that they occurred in a north-south compressive regime. The occurrence of some
normal faulting could be taken to argue that the vertical stresses at this depth are
comparable and locally bigger than the tectonic stresses. Nonetheless, the
consistent northerly orientation of the compressive stress direction indicates that

the upper mantle is likely involved in the collision process.
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6 SUMMARY AND CONCLUSIONS

I have presented 107 source parameters of small to moderate sized earthquakes in
the Himalayas and the Tibetan plateau. Using data from the densely spaced
temporary broadband seismic network of the HICLIMB experiment, with addition
of data from other regional temporary broadband networks and permanent GSN
stations, allowed unprecedented lowering of analysis threshold to moment-
magnitude (My,) 3.5. The analysis of such small events resulted in a large source
parameter database, providing unprecedented coverage as the basis for a detailed
seismotectonic study. The moment tensor solutions, derived from 3-component full
waveform inversion at regional distances are robust with respect to inaccuracies in
earthquake location, crustal velocity model, and limited azimuthal station
distribution. Source mechanisms and centroid depths compare well to Harvard
CMT and other published solutions.

The earthquake source parameters from this study are combined with previously
published solutions to investigate the patterns of thrusting along the arc, normal
faulting in the southern Tibetan plateau, and depth and stress axes of intermediate-
depth earthquakes.

Thrust events along the arc fall close to the lower edge of the locked zone of the
MHT where the accumulated stresses due to the plate motions are largest. The 3500
m- topography contour marks the northern limit where thrust faulting occurs. The

sharp cut-off of the thrust seismicity probably indicates the change to the ductile
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regime and could be locally influenced by the increase in vertical stresses due to
lithostatic load that inhibits fracture.

Focal mechanisms of thrust events indicate slip on northward dipping planes. The
slip vector plunge of these events is frequently steeper than the décollement imaged
by receiver functions in central and eastern Nepal. The steeper dips together with
the vertical spread of centroid depths and microseismicity hypocenters indicate that
many of these thrust events do not represent slip on the main detachment surface,
but rather represent internal deformation in the footwall and the hanging wall of the
MHT. Dips are steeper especially in the western part of Nepal, possibly
contributing to the formation of asperities on the detachment that break during
large earthquakes.

P-axes of these thrust events show deviations from a mere circular geometry, but
indicate that slip in the vicinity of the MHT occurs perpendicular to the regional
topography and small undulations of the Himalayan front on a 50 km wavelength
scale. Thrust earthquakes in the foot and hanging wall follow the same pattern,
which implies that the stresses above and below the main detachment are coupled.
The fact that many of these events show slip on steeper dipping planes
perpendicular to the local shape of the arc indicates that small to moderate sized
earthquakes contribute to the mountain building process and formation of
topography on a local scale.

The Indian crust is subjected to significant internal deformation along the arc as a

result of the subduction process. This is indicated by several strike-slip earthquakes
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below the décollement, especially east of the Pum Qu graben. Furthermore, deep-
seated normal faulting in the vicinity of the Pum Qu graben suggests that this
structure extends to Moho depths or even beyond, indicating that the Indian crust is

locally extending in a roughly east-west direction.

Deformation on the southern Tibetan plateau is dominated by normal faulting in the
upper 15 km of the crust. Although extension occurs in an east-west direction to a
first order, nodal plane and T-axes strikes vary considerably across southern Tibet
from arc parallel extension in the Tethyan Himalaya to northward convex on the
Lhasa terrane. The orientation change roughly at the Yarlung-Tsangpo suture
coincides with a geometric change of the underlying décollement atop the Indian
lithosphere imaged by receiver functions (Nabelek et al., 2005). Around N31°, the
faulting style changes to a preponderance of conjugate strike-slip faulting in the
northern Lhasa and Quiangtang terrane. This transition coincides with the latitude
at which the Indian lithosphere bends down into the mantle as indicated by receiver
function images from the HICLIMB experiment (Nabelek ef al., 2005). Correlation
of faulting patterns in the shallow crust with changes in the geometry of the
detachment implies mechanical coupling between the underthrusting Indian
continent and the Tibetan crust above, and points to the importance of basal shear
stresses in the extension process.

The analyzed earthquakes show a bimodal depth distribution. Deformation along
the Himalayan front is mainly localized between 10 and 20 km depth, while normal

faulting on the Tibetan plateau occurs mostly in the upper 15 km of the crust. This
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study gives additional evidence that most of the deeper seismicity occurs beneath
the Moho, signifying a strong upper mantle and relatively low temperatures.
Faulting in the upper mantle is dominated by strike-slip faulting with northerly
trending P-axes. Additionally, few normal faulting events in the mantle show
maximum horizontal compressive stresses oriented in the same direction. The
orientation of compressional axes of these events aligns with the India-Eurasia
plate convergence and signifies that this deformation is related to the subduction
process. In addition to the dominant mantle seismicity, events in the Pum Qu
graben indicate that the lower crust might regionally be brittle enough to sustain

earthquakes.
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APPENDIX A

This appendix contains observed and synthetic waveforms of all earthquakes
analyzed in this study. Event source parameters are summarized in Table 4.1.1.
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Figure A.1. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.2. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.3. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.4. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.5. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.6. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.7. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.8. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.9. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.10. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.11. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.12. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.13. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.14. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.15. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.16. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.17. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.18. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.19. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.20. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.21. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.22. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.23. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.24. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.25. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.



158

020927_1714, 2/ 9/27 17:14:38 Mw=5.07 25-50s 39km
y/ R T

LSA 1.0 L0 AR
210S° 469km I / T “\/\JV\/X
H0220 19 AR AL 1.0 )
233° 1045 km R AVA AR AL AVA S A
HO02 1.0 . 1.0 A A
233(") ll())s(l)km ‘/V\/\/\ MAA/‘A\/\/\’
H0170 10 i L‘LN\A/\,V\/\/\
233° 1058 km AT y
HO1 1.0 1.0 ¢
2339 11?691(.11 “\/\/‘\f ~—~«\/\N\/\/\,
10 - 1.0

B2 o i Sh
H0250 10 A A 10 Ah A A
234° 1037 km AT v
H0240 10 A EL_«,AVW/\/\/\
234" 1038 km WWVV\N‘“ e y
H0230 1.0 . \ /\ LMMW
234° 1043 km AV "

WMQ

338° 1276 km

1.0

0 100 200 300 400
Time (s)
maximum amplitude: 36.2 pm

M

Figure A.26. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.



159

021019_0724, 2/10/19 7:24:37 Mw=4.93 25-40s 36km

Z R
LSA
196" 690 km
H0220 10 A g f\\(,\\_{,\.
222° 1185 km g
WMQ

334° 1025 km

T rr e
0 100 200 300
Time (s)

maximum amplitude: 11.9 um

=TT

Figure A.27. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.28. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.29. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.30. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.31. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.32. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.33. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.34. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.35. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.36. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.37. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows

station name, event-station azimuth, and hypocentral distance.
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Figure A.38. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.39. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows

station name, event-station azimuth, and hypocentral distance.
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Figure A.40. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.41. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.42. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.43. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.44. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.45. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.46. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.47. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.48. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.49. Observed (solid lines) and synthetic (dashed lines) seismograms.

station name, event-station azimuth, and hypocentral distance.

First column shows
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Figure A.50. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.51. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.52. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.53. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.54. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.55. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.56. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows

station name, event-station azimuth, and hypocentral distance.
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Figure A.57. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.58. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.59. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.60. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.61. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.62. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.63. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.64. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.65. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.66. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.67. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.68. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.69. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.70. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.71. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.72. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.73. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.74. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.75. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.76. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.77. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.78. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.79. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.80. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.81. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.82. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.83. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.84. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.85. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.86. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.87. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.88. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.89. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.90. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.91. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.92. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.



225

040630_1533 continued

z R
N, A A 2anaf i
318° 515 km J \/
H1610 1.0 »l.q
323° 564 km

I L I I
0 100 200 300
Time (s)

maximum amplitude: 2.2 um —

Figure A.93. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.94. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.95. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.96. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.97. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.98. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.99. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.100. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.



233

040720_0335, 4/ 7/20 3:35:51 Mw=3.55 20-33s 13km
Z R T

T0380

21° 300 km

T0310

25° 229km

T0150

28° 120 km

T0270

47° 246 km

T0160

55° 193 km

HO0641

334° 113km Y

HO0780 10 .

340° 165 km T\ VY -
HO800 0 AA .
341° 173 km

H1260 }2/\"”\/\/\/\"""”‘ W an L0
348° 366 km i

H1130 }Q,\/\,\/\/W SN L0
349° 257 km y CE

10

H1150 X0 ., 10
350° 273 km
H1090 0 1.0
358° 221 km

I B

0 100 200

Time (s) \ //

maximum amplitude: 0.5 pm

Figure A.101. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.102. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.103. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.104. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.105. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.106. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.107. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.108. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows

station name, event-station azimuth, and hypocentral distance.
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Figure A.109. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.110. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.111. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.112. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.113. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.114. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.115. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.116. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.117. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.118. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows

station name, event-station azimuth, and hypocentral distance.
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Figure A.119. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.120. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.121. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.122. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.123. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.124. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.125. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.126. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.127. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.128. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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050407_2141 continued
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Figure A.129. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.130. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.131. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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050409_0920 continued
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Figure A.132. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.



265
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Figure A.133. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.




266

050508 1642 continued
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Figure A.134. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.135. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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050515 1921 continued
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Figure A.136. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.137. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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Figure A.138. Observed (solid lines) and synthetic (dashed lines) seismograms. First column shows
station name, event-station azimuth, and hypocentral distance.
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APPENDIX B

This Appendix contains Tables of earthquake source parameter from previous
studies.

The first Table is a compilation of published teleseimic body wave investigations.
The second Table is a compilation of source parameters determined with the same
method as used in this thesis with data from permanent stations from the Global
Seismographic Network and temporary network stations from the Passcal 91-92
network (e.g. Zhu and Helmberger, 1996).
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