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While successful timber production systems accelerate tree growth at the expense of

understory components, successful agroforestry systems maximize the total system

production, including the understory component. This study examined the effect of

trees on understory biomass production to determine if aboveground interactions or

underground factors produce the greater effect. For 1993 and 1994, a series of transacts

using random trees for starting points were established before sheep grazed the

agroforests. Each transect consisted of six or seven plots that were sampled for biomass

by clipping, drying, and weighing of herbaceous material. Transects extended

perpendicular to tree rows, approximately north and south, with plots, 0.10 m2, every

0.5 m starting 0.5 m from the tree trunk. Transects were also clipped from pastures.

Near-earth, remotely-sensed imagery was obtained before grazing periods. Two arrays,

each consisting of six photosynthetically active radiation (PAR) sensors, were used to

measure the tree's effect on available solar energy at locations matching clipped plots.

A geographic information system (GIS) database was also developed for agroforestry

plots. Data from these sources were used in regression analysis. Four mathematical

growth models were developed using vegetative indices created from remotely sensed

data. Individual best-fit agroforest models predicted forage yields within 135 kg/ha (5.0,

5.8, and 8.9%) of actual harvested plots. Regression analysis of PAR data produced an

anisotropic pair of models for available solar energy, one for each direction from the



tree. These models demonstrated the anisotropic nature of available solar energy in our 

agroforests. However, pattern analysis of clipping data showed strong isotropic forces 

dominating understory growth. Decreased production in row middles, detected by both 

clipping and remote sensing analysis, suggested animal use patterns, in the form of 

trails, may significantly affect forage production in silvopastoral systems. Because 

aboveground tree effects are primarily anisotropic while underground factors are 

isotropic, we conclude that underground competition for soil moisture and/or nutrients 

controls understory production in young open-canopy agroforests. It appears that 

agroforest manipulations that seek to manage shade on understory herbaceous 

vegetation in open canopy silvopastures will have limited effects compared to those that 

manipulate tree water and nutrient use. 
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Spatial Patterns of Tree Effects on Pasture Production 
in Open Canopied Agroforests 

Chapter 1
 

Introduction and Literature Review
 

Humans have a long and close relationship with trees and forest products. The 

ability to start fires and maintain them using wooden fuels was a major leap in human 

evolution. Wooden sticks were among the earliest of weapons, useful in the hunt, and 

also in the conquest of other people. Wood has been a major building material 

throughout human history. In earlier times, the forest was viewed as an endless resource 

never feeling the impact of its human inhabitants, or as an impediment to agriculture or 

other land uses. It is now becoming apparent that forests may have been impacted 

beyond the limits that natural regeneration can replenish. Human intervention is needed 

to restore this dwindling forest resource. Today's concerns about global warming have 

further emphasized the role of forests in global cycles such as sequestering greenhouse 

gases. This has made reforestation even more critical (Postel and Heise, 1988). The 

replenishment of our dwindling forest resources has now become a global priority. 

In order to expedite the regrowing of forests, past research dealing with the 

timber/herbage interface has concentrated on methods of optimizing timber production 

at the expense of the herbaceous and shrub understory components. The silvicultural 

goal was maximum tree growth, which required a virtual elimination of competition for 

the available site resources: light, moisture, temperature, and nutrients (Wray, 1987). 

This research lead to many practices currently used in the commercial forest industry. 

Planting trees in a uniform grid pattern dominates the industry today. It is meant to 

decrease intraspecific competition between individual trees while increasing 

interspecific competition between trees and understory vegetation (Avery and Gordon, 

1983). Its goal is to shift the advantage to the trees for obtaining available site 

resources. Another technique is to "release" trees from competition with chemical or 



physical suppression of the understory plants. Ideally, rapid tree growth then allows the 

silvicultural crop to dominate the site before the understory components can recover and 

repopulate (Wray, 1987). These strategies have proven very successful in increasing 

tree growth rates. However, even with this acceleration in growth, the time required to 

grow a tree can exceed a human life span. In western Oregon, the time span required to 

grow a Douglas fir to a marketable size, twenty years to commercial thinning, sixty or 

more years until harvest, requires a long-term commitment and a major investment of 

money (Sharrow and Fletcher, 1994). This reality has led to greater interest in multi-

crop agroforestry systems. Agroforestry systems combine tree production with the joint 

production of agricultural crops and/or animals (Lundgren, 1982). This helps offset the 

burden of long-term silvicultural debt by providing short-term agricultural income (Nair, 

1985). Attention, especially in developed countries, is now directed toward the use of 

quicker maturing understory components to generate an earlier, and even larger return 

for investors (Carruthers, 1990). 

Agroforestry systems are not a product of modern scientific theory but have been 

practiced by indigenous farmers throughout the world for centuries because they make 

practical sense (Nair, 1985). Over the millennia, the Kayapo Indians of Brazil's Amazon 

Basin have developed an extremely effective agroforestry system without any outside 

influence (Posey, 1985). The ancient Romans planted grains among the grapevines that 

twined through the olive trees in an attempt to produce maximum yields per unit of land 

(Winkler et al., 1974). Ideally, a combination of plants would utilize site resources non-

competitively by way of differences in rooting depth or in season of growth, thus 

maximizing the efficiency of crop production (Buck, 1986). 

A strictly, scientific definition of agroforestry stresses two differences between it 

and other land use systems. First, woody perennials must be deliberately grown on the 

same land as agricultural crops and /or animals. Second, there must be significant 

interaction between components, positive and/or negative (Lundgren, 1982). However, 

scientific knowledge of these systems is limited. The interactions between components 
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has been only superficially explored. For success, components must interact to the 

overall benefit of the agroforestry system. Overall success for an agroforestry system is 

based on both abiotic and biotic factors, such as topography, weather, and 

plants/animals. It is also influenced by strong economic and social forces. This 

research investigates some of the abiotic and biotic factors but does not explore the 

economic or social aspects. 

Agroforesters group systems based upon their structural components into three 

types; agrosilviculture (trees + crops), silvopastoral (trees + livestock), and 

agrosilvopastoral (trees + crops + livestock) (Nair, 1985). Of these three types, 

agrosilvopastoral systems are the most complex, both in their structure and in their 

management. Forest, forage crop, and livestock enterprises exist as strong separate 

industries in both the western and southeastern United States. Therefore, it is not too 

surprising that the most common agroforestry system found in the Pacific Northwest, 

and in the United States in general, incorporates livestock, usually sheep or cattle, with 

timber production (Logan, 1983, Gold and Hanover, 1987). Well managed agroforestry 

systems can sustainably increase land productivity, improve cash flow, and increase the 

diversity of plants and animals present on western Oregon hill lands (Sharrow and 

Fletcher, 1994). The understory vegetation in these systems is generally a combination 

of established pasture grasses and seeded legumes. Legumes, in particular, may 

increase weight gains of livestock while supplying needed nitrogen for trees (Logan, 

1983, and Anderson et al., 1988). This plant population also covers the soil, protecting 

it from wind and water erosion. However, uncontrolled pasture growth may compete 

with young trees for soil moisture, and provides a habitat for small mammals that gnaw 

on trees. Agroforesters strive to obtain more production per unit land by balancing 

livestock production with timber production (Logan, 1983). Livestock convert forage 

into meat or other products such as wool, milk, or dung. This grazing, in turn, reduces 

the competitive effects of the pasture on trees, reduces invasion by weedy plants, and 

recycles forage nutrients as dung and urine. 
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Livestock grazing patterns as well as pasture production may be affected by the 

proximity to a tree. This complex set of biological interactions among agroforest 

components is reflected in an equally complex spatial structure. Successful 

agrosilvopastoral design and management relies upon a fundamental understanding of 

how spatial structure relates to the agroecosystem processes of competition, succession, 

nutrient cycling, carbon flow, and hydrology. Agroforesters manage agroecosystem 

processes primarily through manipulating system spatial structure. 

Discussion 

Trees are a fundamental structural element in any agroforest. Their health and 

well-being is of primary importance for land managers and system operators. 

Agroforestry systems in Oregon emphasize the quantity and quality of wood production. 

Therefore, any limitations to tree growth are a major concern. The primary resources 

that might limit plant/tree growth at various times in the growing season are water, 

nutrients, and solar energy (Salisbury and Ross, 1992, Harper, 1977, and Buck, 1986). 

Those areas where the strongest interactions occur between the tree and understory 

components are of particular interest. The key to maximizing overall agroforest benefits 

requires an intimate understanding of this relationship between a tree and the understory 

plants surrounding it. We can then use this understanding in designing systems that 

obtain a better resource sharing in time and space (Buck, 1986). 

Plant interactions can be quite different when the relative importance of a 

primary resources shifts substantially, such as the importance of water in a wet year 

compared to a drought year. Quantification of many confounding variables that also 

constantly change in their ranking of relative importance, such as water, nutrients, or 

understory composition, presents a major problem in plant competition studies. The 

connected nature of the landscape, where the individual components function together, 

much like a single entity, makes the measurement of a single, specific response 
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extremely difficult (Harper, 1977). For example, cutting off the lower branches of an 

agroforestry tree increases the available sunlight reaching the understory leading to an 

increase in forage production (Logan, 1983, Anderson et al., 1988, and Buck, 1986). 

However, pruning also decreases the transpirational surface of the tree that significantly 

alters its internal water balance and reduces tree growth (Buck, 1986, and Yunusa et al., 

1995a). These alterations may also act to increase forage production by reducing water 

and nutrient use by trees, making the exact quantification of the benefit from the 

increased solar energy complicated. In a similar fashion, subterranean clover (Trifolium 

subterraneum L.) increases the amount of soil nitrogen available for plant growth 

(Logan, 1983, and Tisdale et al., 1985). It dies in early summer, decreasing the water 

competition within the plant population (Harper, 1977). Measuring the effect of 

increased nitrogen versus the effect of greater water availability on tree growth is a 

difficult task because the three major processes involved in nutrient uptake, diffusion, 

mass flow, and root contact, are affected by soil moisture levels (Kramer, 1980, and 

Tisdale et al., 1985). Grazing also affects growth, persistence, and proportion of pasture 

plants. Frequent defoliation is especially important in maintaining mixed grass/legume 

stands. It keeps the grass from shading out the legume component (Whitehead, 1970). 

Other less important resources may become amplified through their effect on primary 

resource acquisition. Changes in soil atmosphere, the pore spaces filled with air, are 

magnified through their effect on moisture and nutrient uptake (Tisdale et al., 1985). 

Many studies have been done on the relationship between tree basal area, or 

cover, and understory production. Sharrow (1991) reported that 10-year-old conifer 

trees have a detrimental effect on forage production for a distance approximating 2 

canopy diameters with no effect apparent beyond that distance. Other work (Woods et 

al. 1982, Cameron et al. 1991, Joyce and Mitchell 1989) has shown a similar pattern of 

detrimental effects that lessen with increasing distance from the tree. A similar effect 

was predicted by a model developed by Scanlon (1992) that used factors relating to both 

beneficial and detrimental responses to predict the effect of distance from tree on forage 

production. Both beneficial and competitive effects accrue from the interactions 
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between plants as they attempt to use the resources available to them. The exact 

response of a plant to these effects varies by tree and individual forage species. Pieper 

(1990) found that production of cool season grasses increased with canopy cover of 

pinyon-juniper trees while that of warm season grasses declined. 

Pattern analysis can often separate effects qualitatively, but a quantification of 

specific effects can be nearly impossible to isolate, and the proper scale of confounding 

factors difficult to discern (Isaaks and Srivastava, 1989). Arnold (1964) and Everett et 

al. (1983) showed a distinct zonation in understory production around pinyon-juniper. 

Everett et al. (1983) also noted these changes were a successional reorganization of 

existent vegetation rather than invasion by other species. Tree effects on individual 

species varied with tree size, topographical aspect, and slope position relative to stem. 

This zonation graphically displayed individual species successes in obtaining growth 

resources from the area near trees. However, dominance is not a static condition. 

Variation in the timing of climatic events, such as rainfall, can turn a winning strategy 

one year into a loser the next year (Harper, 1977). Agroforestry designs attempt to 

minimize competition and to maximize facilitation between the tree and the understory 

components for the most common conditions (Sharrow and Fletcher, 1994). 

For convenience, we can divide forces acting upon a plant into an aboveground 

factor, primarily solar energy, and an underground factor, primarily available nutrients 

and water. Research conducted in dry climates suggest the most limiting factor for 

forage production is interspecific competition for moisture (Ong et al., 1991). Riegel 

(1989) found underground factors to be important in limiting forage production under 

semi-arid pine forests of northwestern Oregon. Krueger (1981) stated that, in dry years, 

moisture would be the most limiting factor in eastern Oregon forests. However, the 

work of Young and Smith (1982 and 1983) showed that either light or water could be 

the most limiting factor depending on environmental variables during that year. The 

importance of solar radiation in their research might reflect their cold subalpine sites 

and not be applicable to other warmer locations. In southwestern Australia, on a site 
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more comparable to western Oregon, Anderson and Batini (1979) indicated that light 

was the limiting factor for understory forage growth with little apparent competition 

with trees for moisture. An important limiting factor in the maritime climate of the 

Willamette Valley might be the availability of solar energy. This resource is made more 

important by the low solar altitudes and the long shadows typical during the early part of 

the growing season at this latitude and the many overcast, low-light days (ASHRAE, 

1991). 

A way of understanding the interplay of these natural forces is to examine the 

spatial patterns that result from them (Isaaks and Srivastava, 1989). Pattern studies in 

an agroforest system are difficult because of the complexity (numerous component 

configurations), the large area required, and the long time period between management 

actions and growth responses (Sharrow, 1991). The general dicotomy, of aboveground 

and underground factors, can be related to the two primary force patterns: isotropic and 

anisotropic. An isotropic force acts in all directions the same way, while an anisotropic 

force acts differently, with a different magnitude, in different directions (Isaaks and 

Srivastava, 1989, and Eastman, 1995). Clipping data by Yunusa et al (1995b) for a 

ryegrass/clover understory and a lucerne understory grown under Monterrey pine (P mus 

radiata) showed basic isotropic patterns for most of the clipping periods. However, a 

pure ryegrass understory exhibited a distinct anisotropic pattern for these same periods. 

Data for northwestern Oregon (Sharrow, 1991) showed isotropic patterns that were 

regression modeled (R2=0.87) based on distance from tree. The work of Scanlon (1992) 

in a mesquite-pinyon system and in an eucalypt-dominated system produced isotropic 

models with concentric facilitative and competitive zones. Other work (Arnold, 1964, 

and Everett et al., 1983) showed isotropic patterns of growth interspersed with 

anisotropic patterns indicating individual specie preferences. In our research, forage 

biomass forms a spatial pattern radiating outward from a tree located in the center. 

Moisture/nutrient interactions are based upon the root system which, when viewed from 

the top and given no major soil differences or physical obstacles, radiates in all 

directions from the tree trunk (Tisdale et al., 1985, and Sutton, 1969). Tree roots 
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Figure 1.1. Examples of Isotropic Force and Anisotropic Force. 

Isotropic Force 

Anisotropic Force
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penetrate deeper soil layers extracting soil water and nutrients from this area beyond the 

reach of shallow rooted pasture systems (Ball et al., 1979, and Glover and Beer, 1986). 

On the other side, the dense mat of grass roots is efficient in capturing surface moisture 

and nutrients released by litter decomposition (Glover and Beer, 1986). A general 

water/nutrient model dictates that all roots, large and small, will function in the same 

manner (Sutton, 1969). Therefore, patterns of forage biomass responding to nutrient or 

water competition with a centrally located tree should be isotropic (Figure 1.1) in 

nature. If the spatial patterns show few differences between north and south, then the 

primary acting forces are isotropic in nature. However, distinctly isotropic patterns can 

often indicate multiple isotropic forces working in concert (Eastman, 1995). In our 

case, isotropic forces could be indicative of, not only soil resources, but also livestock 

impacts. Both north and south sides of our agroforestry trees are equally available to the 

livestock for grazing, so the animal use pattern across alleys would also show as an 

isotropic force, unless livestock were responding to shade. Examination of spatial 

patterns separates acting forces into basic isotropic and anisotropic components, but it 

does not clearly indicate if the pattern is the result of one or more than one co-acting 

forces (Isaaks and Srivastava, 1989). 

A tree in the northern hemisphere casts a shadow predominantly to its north side 

producing a distinctly anisotropic pattern of available solar energy (ASHRAE, 1991). If 

south and north sides of a tree do not show similar forage production patterns, the 

anisotropic response might suggest tree shadows as an important factor in 

tree/understory interactions and understory production. It should be noted that shade 

has other effects beside limiting available energy for photosynthesis. The presence or 

absence of a species, the size and shape, and even nutritive contentare determined, in 

part, by light (Krueger, 1981). Anderson and Batini (1983) note that nitrogen-fixing 

legumes do not tolerate shading and are at a disadvantage compared to competing 

grasses when low light levels exist. Shade also lowers plant and soil temperatures with 

varying effects on vegetation moisture demands and on growth (Tisdale et al., 1985). 

Heat stress is one of the primary forces keeping plants from attaining their full yield 
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potential (Buck, 1986, and Kramer, 1980). Wilson (1986) found that shade can actually 

increase production during drought conditions. The spectral quality of solar energy is 

also altered by refraction and reflection as it passes through the upper canopy. This 

spectral change can effect plant phenology and morphology as well (Buck, 1986, and 

Salisbury and Ross, 1992). Wind and precipitation (rain shadows) can also produce 

anisotropic patterns. However, at our study site, these patterns are oriented, 

predominantly, down the tree rows and not across row centers (Taylor, 1997, personal 

communication). 

Our study attempts to use low-level remote sensing technology to identify and 

quantify tree and site spatial variables that exert major influences on pasture growth. It 

is hoped that this detailed description of spatial vegetation and environmental patterns 

will suggest the nature and intensity of the interactions between agroforest components 

as they share resources in time and space. Remote sensing is the science and art of 

gathering information about an object, area, or phenomenon through the analysis of data 

acquired by a device that is not in contact with the object, area, or phenomenon under 

investigation (Lillesand and Keifer, 1987). Accurate analysis of remotely sensed plant 

community data is dependent on an understanding of the reflectance/absorbance of 

energy from vegetation. 

Energy in the near infrared range (0.70 ,um to 1.30 ,am) is reflected strongly, 

with reflectance reaching 50 percent of incident radiation (Knipling, 1970). The 

reflectance of infrared is related to the structural complexity, ie. cell wall interfaces, of 

the vegetation (Grant, 1987). This complexity varies considerably between species. 

Dicots, broadleaf plants, reflect greater amounts of infrared than monocots, grasses 

(Salisbury and Ross, 1992). Structurally-caused reflective differences between species 

form the basis of most classification procedures (Chen et al., 1995, and Knipling, 1970). 

Visible light (0.40 ,um to 0.70 ,ain), composed of the primary colors, red, green, and 

blue, is reflected weakly by vegetation with reflectance values ranging from 5 to 20 

percent of incident radiation. Energy in the blue and the red ranges is absorbed by plant 
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chlorophyll and is used to power the photosynthetic apparatus (Salisbury and Ross, 

1992). Therefore, dense, high chlorophyll-content vegetation will absorb more red and 

blue energy and will reflect less than sparse or low chlorophyll-content vegetation. 

Where the understory is of a homogeneous composition (ie. agronomic forage crops and 

pastures), reductions in reflectance form a gradient indicating greater biomass. 

Certain plant species reflect noticeably more blue light than others and appear as 

a blue-green color. Because of these species-related differences, the blue band 

potentially contains more information for some vegetation types than does the red band. 

Tucker (1977), for instance, noted that wet or dry weight biomass had its strongest 

correlation with the blue band (0.35 /am to 0.44 ,um). However, selective atmospheric 

Rayleigh scatter, which causes the blue color of the sky, makes blue light hard to 

accurately detect and measure. The longer the atmospheric pathway between object and 

sensor, the more severely the blue channel is distorted by scatter "noise." Past emphasis 

on satellite and high-altitude aerial photography has rendered blue band data relatively 

unimportant. So much so, that many satellite systems, such as the SPOT, have 

abandoned blue band detection entirely, and panchromatic imaging uses only the red 

and green wavebands (Lillesand and Keifer, 1987) For this reason, most vegetation 

indices are based on near-infrared/red band ratioing (Richardson and Everitt, 1992). 

However, when the sensor is located less than 150 meters from the target as in near-

earth sensing, the potential usefulness of blue band data increases considerably. 

Researchers and managers have used remote sensing to evaluate rangelands 

since the late 1930s. This spatial data was never fully utilized because of limitations in 

storing and analyzing it (Anderson, 1996). The development of personal computers 

produced hardware capable of handling large amounts of data, and, in the early 1970s, 

geographic information systems (GIS) were developed for manipulation and analysis of 

spatial data (Dangermond, 1991). GIS software stores geographically linked 

information as a series of numbers within different layers that can be mathematically 

manipulated to produce other information. The ability to combine information from 
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different sources and to create new information is what distinguishes GIS from other
 

mapping systems (Anderson, 1996).
 

The collection of accurate spatial data has been greatly improved through the 

development of another computer-based technology, Global Positioning Systems (GPS) 

(Deckart and Bolstad, 1996). Developed primarily for military use, GPS has been 

rapidly adopted for a myriad of private and public uses (Anderson, 1996, and Deckard 

and Bolstad, 1996). GPS is based on a system of twenty-four navigational satellites 

orbiting the earth. Satellite signals are processed using a GPS receiver to obtain real 

world coordinates for any point on the earth (Trimble, 1991). Errors in the satellite 

clock, satellite positions, receiver clock, and atmospheric delays of the signals degrade 

accuracy (Deckard and Bolstad, 1996). Accuracy is further degraded deliberately 

because of military concerns about security. A standalone GPS receiver obtains position 

estimates that are accurate to within 100 meters (Anderson, 1996, and Trimble, 1991). 

Differential GPS receivers provide much more precise positions by referencing position 

estimates against a known reference point. The difference between position estimates 

received by a referenced base station and its known location are calculated and used to 

correct position estimates simultaneously collected by a roving GPS receiver. 

Differentially corrected positions are accurate to less than 5 meters (Anderson, 1996, 

Deckart and Bolstad, 1996, and Trimble, 1991). According to Anderson (1996), "When 

used in combination, GIS, GPS, and remote sensing technologies provide the spatial 

framework, data analysis, and location assessment tools needed to combine information 

sources, create new information, validate results, and provide visual representations of 

the spatial dynamics for an area." 
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Abstract 

A successful agroforestry design balances production of short-term products, 

such as livestock and/or crops, with longer-term growth of woody plants. The most 

common agroforestry system in the United States is a silvopastoral system that 

incorporates livestock, usually sheep or cattle, with timber producing trees. Our 

agroforest plantations are Douglas-fir trees planted in a subclover/perennial ryegrass 

pasture. Designing silvopastures demands an intimate knowledge of the complex 

interactions between trees, pasture, and their environment. Those areas where 

competition occurs between agroforestry components for limited resources, are of 

particular importance. The primary limiting resources for plant growth are solar energy, 

water, and nutrients. These resources can be grouped into aboveground and 

underground factors. Underground factors, available water and nutrients, act as an 

isotropic force, a force that acts equally in all directions around trees. Shadow modeling 

indicates that solar energy acts as an anisotropic force, a force that acts with different 

magnitudes in different directions. Photosynthetically active radiation (PAR) data was 

collected using two arrays of sensors placed to the north and south of random trees. 

Biomass samples were collected by clipping plots along transects placed to the north or 

south of random trees. Samples were obtained twice each year before the agroforests 

and pastures were grazed by sheep. PAR data and regression modeling confirmed that 

solar energy acts as an anisotropic force in our silvopastures. Spatial analysis of 

clipping data during an unusually wet spring, and a more typical spring suggests that 

environmental factors such as precipitation interact with structural elements such as 

trees to produce forage production patterns. These differences in patterns can be traced 

to changes in the relative importance of aboveground and belowground resources. 

Combined data for the two years showed an overall strong isotropic pattern of 

increasing forage production with increasing distance from trees. Forage production 

patterns were predominately isotropic in both early and mid-late spring both years, 

suggesting that trees and pastures were primarily competing for underground resources, 

probably soil moisture and nutrients, rather than for light. However, some anisotropic 
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forces were evident during mid-late spring in 1994. Based on these observations, 

agroforest manipulations that seek to manage shade effects on understory herbaceous 

vegetation in open canopy silvopastures will have limited effects compared to those that 

manipulate tree water and nutrient use. 

Introduction 

Trees have been an important human resource for many thousands of years. 

Historically, the forest resources seemed to exist in unlimited amounts, never feeling the 

impact of humans. However, today with the advent of satellite imagery the impacts are 

easily seen, and the replenishment of our dwindling forest resources has become a 

priority. Concerns about global warming have further emphasized the role of forests in 

sequestering greenhouse gases and have made reforestation even more critical (Postel 

and Heise, 1988). The time span for growing a tree to a marketable size, twenty years to 

commercial thinning, sixty or more until harvest in western Oregon, requires a long-

term commitment and investment of money (Sharrow and Fletcher, 1994). Agroforestry 

systems lessen the burden of this long-term debt through a multi-product approach 

(Nair, 1985). Agricultural products may be marketed during the early timber growth 

period to generate short-term cash revenues. The most common agroforestry system 

found in the Pacific Northwest, and in the United States in general, incorporates 

livestock, usually sheep or cattle, with timber production in a silvopastoral design 

(Logan, 1983, and Gold and Hanover, 1987). Well-managed agroforestry systems can 

sustainably increase land productivity, improve cash flow, and increase the diversity of 

plants and animals present on western Oregon hill lands (Sharrow and Fletcher, 1994). 

The production of livestock is dependent on understory forage grown in the interspace 

between trees. Improved forage species are sometimes planted to maximize livestock 

production as well as to improve tree growth. Legumes, in particular, may increase 

weight gains of livestock while supplying nitrogen for trees (Logan, 1983, and Anderson 

et al., 1988). 
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Previously, foresters dealt with methods of optimizing timber production at the 

expense of the herb and shrub understory. This work lead to many developments in 

commercial forest management. The use of a uniform planting grid dominates the 

industry and is meant to decrease intraspecific competition between trees while it 

increases interspecific competition between trees and understory vegetation (Avery and 

Gordon, 1983). Chemical or physical suppression of the understory plants is often used 

to "release" young trees from competition. Ideally, rapid tree growth then allows the 

silvicultural crop to dominate the site before the understory components recover and 

repopulate (Wray, 1987). The ultimate goal was to shift the advantage to the tree for 

obtaining available site resources. Agroforesters strive to harmonize resource 

partitioning between trees, understory plants, and animals in time and space (Buck, 

1986) so that overall system productivity is increased. The key to achieving this goal is 

an intimate understanding of the spatial relationship of resource capture between a tree 

and the understory plants surrounding it. Of particular interest are the interfaces where 

competition for various limited growth resources might occur. The primary resources 

that might limit plant growth at various times in the growing season are water, nutrients, 

and solar energy (Salisbury and Ross, 1992, Harper, 1977, and Buck, 1986). Plants with 

the best strategy to acquire and accumulate these resources will thrive, while their 

competitors will decline (Harper, 1977). 

Pattern studies in an agroforest system are difficult because of the numerous 

component configurations, the large area required, and the long time between 

management changes and response (Sharrow, 1991). A potentially useful way to 

investigate the relative influence of natural forces is to examine the spatial patterns that 

result from them. Spatial pattern analysis often has been more successful in separating 

effects qualitatively, rather than quantitatively (Isaaks and Srivastava 1989). In our 

case, forage production forms a spatial pattern radiating from the tree stem that can be 

analyzed to determine the types of forces that shaped it (Isaaks and Srivastava, 1989). 

Aboveground and underground factors may be separated by associating them with the 

two primary force patterns, isotropic and anisotropic. An isotropic force acts 
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symmetrically in all directions, while an anisotropic force acts differently or with a 

different magnitude, in different directions (Isaaks and Srivastava, 1989, and Eastman, 

1995). Moisture/nutrient interactions are based upon the root system which, when 

viewed from the top and given no major soil differences or physical obstacles, radiates 

symmetrically in all directions from the trunk (Tisdale et al., 1985, and Sutton, 1969). 

Therefore, patterns of forage growth responding to nutrient or water competition with a 

centrally located tree would be isotropic. If spatial biomass patterns show few 

differences between north and south sides of a tree, then it could be inferred that the 

primary forces are isotropic in nature. Distinctly isotropic patterns can often indicate 

multiple isotropic forces working in concert (Isaaks and Srivastava, 1989, and Eastman, 

1995), or theoretically, several counterbalancing anisotropic forces. In our case, 

isotropic forces could include both soil resources and livestock impacts. Livestock used 

both north and south sides of our tree rows equally. Therefore, animal use patterns 

along alleys might appear as an isotropic force. However, a tree in the northern 

hemisphere casts a shadow predominantly to its north side (ASHRAE, 1991). If forage 

production patterns south and north of a tree differ, this anisotropic response would 

suggest tree shadows are an important factor in tree/understory interactions. It should 

be noted that shade has other effects beside limiting energy for photosynthesis. Shade 

also lowers plant and soil temperatures with varying effects on vegetation moisture 

demands and on growth (Tisdale et al., 1985). Heat stress is one of the primary forces 

keeping plants from attaining their full yield potential (Buck, 1986, and Kramer, 1980). 

Everett et al. (1983) and Wilson (1986) found that shade can actually increase 

production of certain species, especially under drought conditions. The spectral quality 

of solar energy is also altered by reflection and refraction as it passes through the upper 

canopy. This spectral change can alter plant phenological development (Buck, 1986, 

and Salisbury and Ross, 1992). 

Research conducted in drier climates than western Oregon suggest the most 

limiting factor for forage production in an open canopy forest is interspecific 

competition for moisture (Ong et al., 1991). Riegel (1989) found underground factors to 



be most important in limiting forage production under a previously open canopy, xeric 

pine forest which had closed canopy as a result of fire exclusion in northwestern 

Oregon. Understory forage production was most limited by competition with trees for 

soil nutrients during the early spring, and for soil moisture as soils dried in late spring. 

Krueger (1981) stated that moisture is probably the most limiting factor in the forests of 

eastern Oregon in dry years. Arnold (1964) and Everett et al. (1983) observed distinct 

rings of understory production around pinyon pine and juniper trees. Zones were 

believed to be the result of a successional reorganization of existing vegetation rather 

than invasion by outside species (Everett et al., 1983). Although tree impacts on total 

understory production were predominately isotropic, effects on individual species were 

strongly anisotropic. They varied with tree size, topographical aspect, and slope 

position relative to the stem. These zones graphically display individual species success 

in obtaining sufficient growth resources near the tree. Clipping data by Yunusa et al 

(1995b) for a ryegrass/clover understory, and a lucerne understory grown beneath 

Monterrey pine (Pinus radiata) showed basic isotropic patterns for most of the clipping 

periods. However, a pure ryegrass understory exhibited a distinct anisotropic pattern for 

these same periods, possibly reflecting species differences in resource demands. Data 

for western Oregon silvopastures (Sharrow, 1991) showed isotropic patterns which were 

regression modeled (R2=0.87) based on distance from tree. The work of Scanlon (1992) 

in mesquite and in eucalypt dominated systems produced isotropic models with 

concentric facilitative and competitive zones which both decreased with distance from 

trees. Observed forage production reflected the net effect of these two processes. 

Under more mesic conditions in southwestern Australia, Anderson and Batini (1979) 

concluded that "light reduction seems to be the only factor seriously reducing pasture 

production" in a young, open canopy, pine forest. They felt there was little apparent 

competition between pasture and trees for soil moisture. Early spring in western Oregon 

is cool and rainy. Low solar altitudes, long shadows typical during the early part of the 

growing season at this latitude, and the many overcast low-light days (ASHRAE, 1991) 

favor competition for light during early spring. However, low air and soil temperatures 

also limit growth and affect the response to light. Conversely, generally higher amounts 



24 

of incoming solar radiation, higher air and soil temperatures, and less precipitation 

during the late spring should emphasize competition for soil moisture. Therefore, light 

effects might be more pronounced during the first portion of the growing season then 

shifting to moisture effects during the second half Our study attempts to use spatial 

analysis of forage production around individual agroforest trees to seperate tree effects 

into aboveground and underground factors. 

Materials and Methods 

Study Area 

The study site was located on the western edge of the Willamette Valley in 

Corvallis, Oregon (44°33' N, 123°20' W). Soils are shallow, well-drained, silty-clay 

loams (Vertic Haploxerolls) of the Philomath series (Knezevich, 1975). This site is 

marginal for commercial timber production because of shallow soils and seasonally high 

water tables. The elevation is 60 m above mean sea level with a northeast aspect. 

Climate is Mediterranean maritime with warm dry summers and cool moist winters. 

Precipitation falls mainly as rain from November through March, totaling about 70% of 

the average 1,024 mm. Less than 100 mm of precipitation is received during the 

summer dry period from June to September. The frost-free period is 165-200 days 

(Knezevich, 1975). 

Three 0.5 ha replications of pasture and silvopasture were plowed and planted 

with twenty kg/ha of rhizobium inoculated subterranean clover seed in fall 1989. 

Perennial ryegrass (Lolium perenne L.) from the residual soil seed bank slowly 

increased over time, presumably due to increasing soil nitrogen from N-fixation by 

subclover. Agroforest replications were planted with two-year-old (1-1) bare root 

Douglas-fir (Pseudotsuga menfiesii L.) seedlings in winter 1988-89. Trees were planted 

in rows oriented with an azimuth of 60°, where 0 'is true North and 90 'is East. There 



Table 2.1. Precipitation on the Research Site for 1992,1993,1994, and 30-year Average 
for Corvallis, Oregon. Measurements are given in centimeters. 

30-Year 
1992 1993 1994 Average 

January 13.92 12.90 12.27 17.32 

Febuary 13.84 5.82 16.43 12.80 

March 2.97 14.33 9.63 11.56 

April 12.85 20.17 6.12 6.50 

May 0.15 14.07 4.47 4.95 

June 1.83 6.55 5.03 3.12 

July 2.51 2.72 0.10 1.32 

August 0.56 0.94 0.00 2.21 

September 3.45 0.10 2.36 3.84 

October 10.90 2.67 16.18 7.90 

November 16.00 4.27 23.93 17.32 

December 22.12 22.66 15.19 19.61 

Calendar 
Year 101.12 107.19 111.71 108.46 
Total 

Forage 
Year Total 34.163 63.6524 41.783 40.259 
(Feb-July) 
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are 2.5 m between trees within rows and 7 m between tree rows. The trees are now 

large enough, many over 2 meters in height with canopy diameters of approximately 1 

meter, to have observable influence upon forage production patterns and vary enough in 

size to allow comparisons between tree sizes (range of sample tree heights was 1.21 m 

to 3.77 m). Both pasture and agroforestry replicates were grazed by sheep two times 

during the growing season, once during early spring (late April-mid May) and again in 

late spring (mid-June through July) each year. Sufficient sheep were employed to 

remove approximately half of the forage present within 2-5 days. Trees were protected 

from livestock by portable electric fences placed parallel to tree rows, 0.5 m from tree 

stems. 

Species Composition and Clipping Data 

Herbage biomass estimates were made by clipping and drying understory forage 

in agroforest plantations and pastures. Clipping data was obtained during the early 

spring and mid-late spring growing seasons in 1993 and 1994. Before the sheep were 

allowed to graze, ten to twelve trees per replication were randomly selected as endpoints 

for clipping transects. All plant material within six 0.10 m2 plots (0.25 m x 0.40 m 

rectangles) per transect was clipped to ground level. Transects plots were placed every 

0.5 m beginning 1 m from the sample tree and extending to the middle of the row. 

Transects were established perpendicular to the tree row in both northern and southern 

orientations. Five transects per pasture replication were clipped on a similar spacing, 

starting 0.5 m from the electric perimeter fences. All clipped samples were oven-dried 

and their weights were recorded. 

Forage species composition based upon plant canopy cover was determined just 

prior to grazing in early May each year. Point contacts were recorded using twenty 

randomly placed, 10-point frames (Sharrow and Tober, 1979) for a total of two hundred 

points for each plot. 



Table 2.2. Percent Species Composition (Proportion of Cover) of Pastures and 
Agroforests in Spring 1993. 

1993 Standard 1993 Standard 
Pastures Error Agroforests Error 

Subterranean clover 
(Trifolium subterraneurn L.) 

42.89 1.67 38.13 1.39 

Other Legumes 
(Nitrogen-fixers) 

2.68 0.33 4.52 1.27 

Garden Burnet 
(Sanguisorha minor Scop.) 

5.05 5.05 5.36 5.36 

Other Forbs 
(Dicots) 

9.72 0.74 9.53 1.25 

Annual 
8.55 0.61 11.37 0.16 grasses 

Perennial ryegrass 
(Lolium perenne L.) 

21.23 8.15 22.40 4.21 

Meadow foxtail 
(Alopecurus pratensis L.) 

4.35 2.98 2.00 1.32 

Tall oatgrass 
(Arrhenatherum elatius L. 5.04 2.60 4.68 2.35 

J.S. Presl & C. Pres') 

Other 
Perennial grasses 0.51 0.51 2.01 0.29 

Bare Ground 0.50 0.29 0.33 0.17 
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Table 2.3. Percent Species Composition (Proportion of Cover) of Pastures and 
Agroforests in Spring 1994. 

1994 Standard 1994 Standard 

Pastures Error Agroforests Error 
Subterranean clover 

(Trifolium subterraneum L.) 
6.34 5.02 4.29 1.94 

Other Legumes 
(Nitrogen-fixers) 

2.77 0.84 2.76 1.11 

Garden burnet 
(Sanguisorba minor Scop.) 

9.24 9.24 8.43 8.43 

Other Forbs 
(Dicots) 

10.77 2.37 21.59 3.40 

Annual 
28.03 3.86 31.07 5.13 grasses 

Perennial ryegrass 
(Lolium perenne L.) 

12.82 5.37 8.29 4.36 

Meadow foxtail 
(Alopecurus pratensis L.) 

17.90 10.06 4.68 3.90 

Tall oatgrass 
(Arrhenatherum elatius L. 4.31 3.58 2.71 1.41 

J.S. Pres] & C. Presl) 

Other 
Perennial grasses 

7.81 2.04 16.18 6.39 

Bare Ground 4.83 1.74 9.83 2.59 
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Photosynthetically Active Radiation (PAR) 

Measurements of photosynthetically active radiation (ktmols m') were 

obtained using LI-COR quantum sensors. The spectral bands sampled (LI-COR, 1986) 

ranged from 0.40 pim (blue) to 0.70 ,um (red). Six sensors were arranged in an array, 

one every 0.5 m, along a PVC pipe. The pipe was supported 0.3 m above the ground by 

a plywood datalogger enclosure. By this means, the sensors were positioned above the 

understory vegetative canopy while recording measurements, which corresponded to 

transect clipping plots from 1.0 m to 3.5 m from trees. Sensors were attached to a LI­

COR LI-1000 datalogger which recorded measurements every 30 minutes from all six 

sensors. Two PAR arrays allowed simultaneous data collection on opposite sides of a 

tree. A minimum threshold of 10 4mols s-1 m' was set to exclude nighttime readings. 

Comparative open sun readings were recorded using a single PAR sensor and datalogger 

placed in the middle of an open pasture. A series of PAR readings were obtained 

starting June 1994 and ending September 1995 from four randomly selected trees. 

Sensor arrays were moved at randomly selected times to sample for the general effects 

of tree size, slope of site, and aspect of site as part of a longer term study on PAR 

availability. 

Modeling of Shadows 

The availability of solar energy on a site is dependent upon latitude, season, and 

weather patterns. The first two variables can be used to predict available solar energy 

for a site at a specific time, adjusted for the effect of weather (Leckie et al., 1981). 

Modeling of shadows was accomplished using the following equations. The angle of 

the sun in relation to the equatorial plane is called the solar declination, S, and can be 

calculated for any day of the year using the following relationship: 

6 = 23.45 sin [360 x (284 + N)/365] 



Table 2.4. Comparison of Mathematical Modeling of Shadow Length of Neighbor Tree with Average PAR Reading for South 
Transect. PAR measurements are average readings recorded for the 30-minute interval. Units are ,umols m'. 

Obs. Solar Local Neigh. Predict. PAR PAR PAR PAR PAR PAR PAR of 
period Altitude Time Tree Shadow 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5111 Full Sun 

degrees Ht.(cm) in m South South South South South South 

Mar 10 1039
38.20 267 3.39 561.45 558.24 561.89 623.23 638.89 609.35 580Mar 22' AM
 

Apr 2 11:53

51.26 267 2.14 803.34 797.44 791.02 712.46 812.00 739.90 780Ayr12' AM
 

May 22 12:07
61.37 267 1.46 1792.25 1757.38 1849.88 1783.88 1798.88 1769.63 1780May 30' PM
 

Jun 14 2:19
1PM
66.46 224 0.98 1147.36 1240.21 1155.53 1227.93 1239.52 1232.69 1250Jun 272
 

Sept 19 11:40

43.58 329 3.46 1252.67 1277.67 1327.00 1371.33 1278.33 1247.00 1260Sept 22' AM 

data collected 1995 2 data collected 1994 
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where N is the Julian day, N = 1 is January 1 and N = 365 is December 31. The 

apparent daily solar path is described using two component angles, an altitude angle, a, 

and an azimuth angle, as. The altitude angle at solar noon, aN, is obtained for a site 

from the formula: 

aN=90°-L+ 

where L =Latitude, 44°33' or 44.62° for our site. The sun's altitude angle can then be 

calculated for any time of the day using the relationship: 

sin a= cos L cos .5 cos h -,- sin L sin el 

where iz is called the hour angle and is equal to 15° for each hour away from solar 

noon. The azimuth angle at any time is given by the relationship: 

sin as (cos L sin h cos a 

(ASHRAE 1991). Using the above formulas, we calculated the solar altitude for a solar 

azimuth of 150°. This is the orientation for our agroforestry plots where the tree is 

directly in line between the sun and the north PAR sensor array. In this position, the 

tree casts its shadow directly down the sensor array. Using the solar altitude angle and 

the tree's height, we can then calculate the length of the shadow cast on level ground 

with the formula: 

Length of shadow = Square Root of ((tree height/sin a)2-(tree height)2) 



3", 

Data Analysis 

Available solar energy differences between and within arrays of sensors 

(distance and direction from tree), and differences between arrays and an open-sky 

(pasture) sensor were examined using analysis of variance (ANOVA) with individual 

observation days within periods as replications. The ANOVA model was a split-block 

in time with array placement (to the north or south of tree) as treatments and with the 

pasture as a control. Treatments and control served as main plots, sensor position 

(distance from tree) as subplots, and sampling times as sub-subplots. Means for 

significant treatment effects were separated using a Least Significant Difference (LSD) 

procedure at p<0.10 (Chao, 1974). 

The pattern of solar energy available around individual trees was quantified by 

fitting least square regression surfaces to PAR data. Regression equations with the 

highest R2 and lowest standard error were selected as best fit surfaces (Draper and 

Smith, 1981). Regression analysis using linear, multiplicative, reciprocal, and 

exponential formulas showed that linear formulas produced higher R2 values and 

reduced the complexity of interpretations. Spatial pattern of forage production north of 

trees was compared to that south of trees by comparing their best fit regression models 

using a test for homogeneity of regression coefficients (Steel and Torrie 1980). 

Independent variables used in the modeling were: observed tree height, observed tree 

trunk and canopy diameter, heights and trunk diameters of five neighboring trees, sensor 

distance from observed tree, length of day during collection period, maximum solar 

angle, aspect and slope of PAR arrays, and all possible combinations of the above. 

Forage production differences between transect positions and treatments were 

examined by ANOVA using blocks as replications. The ANOVA model was a split 

block in time with treatments as main plots, transect position as subplots, years as sub-

subplots, and sampling dates as sub-sub-subplots. Means for significant treatment 

differences were separated using LSD procedure at p>0.10 (Chao, 1974). The basic 
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pattern for forage production around individual trees was analyzed by graphing clipping 

data using the plot's position relative to tree or fence for the x-axis to simplify visual 

recognition of treatment patterns. Patterns were classed as isotropic or anisotropic 

based on similarities or differences between transect patterns and mean separations 

(LSD) of treatments (Isaaks and Srivastava, 1989). 

Results and Discussion 

Comparisons of predicted shadows with PAR data show good agreement in 

timing of shadows, shading patterns, and length of shadows (Table 2.4 and Table 2.5). 

Variation in local skylight conditions, haze or clouds, are apparent in the readings. Both 

shadow predictions and PAR data suggests that trees have little effect upon incoming 

solar radiation on their south side, except for directly under the tree canopy (Table 2.4). 

Cumulative daily PAR obtained from the open pasture sensor and those of transect 

sensors 3.0 m and 3.5 m from either side of the tree were not different (P>.10). Trees 

consistently reduced average PAR reaching forage plants within 1 m of trees to the north 

side (Table 2.5). The range of values varied seasonally from 35% of full sun in April to 

18% of full sun in August. 

It should be noted that the PAR readings for September 1995 were taken from a 

much larger tree, 416 cm, than the other readings where the tree heights averaged 265 

cm. The shadow from the larger tree decreased light intensity levels more than a 

smaller tree because of the greater density and width of the tree canopy and affected 

positions farther away from the tree because of greater tree height. This is the effectwe 

see based on calculated shadow lengths as well as in the PAR data. One meter north of 

the tree, available solar energy is 14% of full sun, while 3.5 m north of the tree solar 

energy only reaches 37% of full sun. While these levels are above the light 

compensatory level for the understory plants, they are below the light saturation level 

(Salisbury and Ross, 1992, and Harper, 1977) suggesting that the reduction in available 



Table 2.5. Comparison of Mathematical Modeling of Shadow Length of Observation Tree with Average PAR Reading for North 
Transect. PAR measurements are average reading recorded for 30-minute interval. Units are /cools s-I m-2. 

Obs. Solar Local Tree Predict. PAR PAR PAR PAR PAR PAR PAR of 
period Altitude Time Height Shadow 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 3.5 m Full 

degrees in cm in m North North North North North North Sun 

Feb 1AM20:3431.79 282 4.55 190.09 239.97 239.97 565.98 718.47 668.25 870Mar 52̀ 

Apr 26 12:01
57.05 282 1.83 299.30May 5' PM 755.02 848.00 796.06 865.07 878.66 860 

May 17 12:16
62.52 282 1.47 369.35May 22' PM 1211.89 1455.66 1349.29 1504.59 1511.14 1500 

Jun 14 219
66.41 1.17 369.65 1161.45 1199.02 1334.78 1259.71Jun 272 M 1253.22 1250'PIS
 

Jul 10 12:18

64.52 249 1.19 864.14 1586.57 1500.71 1637.29 1533.71 1543.86 1540ul 182 PM 

Aug 9 12:05
56.70 1.64Aug 172 

.

PM 
949 201.69 546.79 1038.51 1223.19 1160.73 1175.64 1150 

Sept 24 11:2837.59 416 5.40 159.98 235.55 * 190.20 357.85 430.57Oct 4' AM 1170 

* datalogger failure data collected 1995 2 data collected 1994 
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Table 2.6. North Regression Model for Daily Cumulative PAR. 

Model-fitting Results for Daily Cumulative PAR (prrnols s-1 m-2) from North 
(330 'azimuth) array. 

Independent Coefficient Standard Range of 
Variable Error Values 

Constant -48143.08 6137.36 -59310.50 to 
-37370.80 

Length of Day 2869.43 208.24 2543.82 to 
hours 3269.11 

Slope of array 2415.14 389.25 1763.45 to 
percent 3123.22 

Aspect of array 75.78 11.41 55.05 to 
degrees azimuth 94.92 

Tree height/dist. -38.63 7.55 -53.31 to 
cm/m -27.04 

Adjusted R2 = 0.83 Standard Error = 3914.96
 

47 Observations fitted, one forecast fitted for missing value of dependent variable
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Table 2.7. South Regression Model for Daily Cumulative PAR. 

Model-fitting Results for Daily Cumulative PAR ( umols 
azimuth) array. 

Independent
 
Variable
 

Constant
 

Length of Day 
hours 

Slope of array 
percent 

Aspect of array 
degrees azimuth 

Coefficient 

-60176.57 

3128.88 

2839.45 

86.83 

Standard
 
Error
 

4947.04 

181.27 

307.17 

8.87 

rn-2) from South (150° 

Range of
 
Values
 

-70931.00 to
 
-51857.30
 

2743.14 to
 
3395.26
 

-3191.90 to
 
5937.48
 

55.87 to 
83.22 

Adjusted R2 = 0.85 Standard Error = 3112.25 

59 Observations fitted 

http:51857.30
http:70931.00
http:60176.57
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solar energy might decrease biomass production at this stage of tree growth. The data 

for September, while not representing part of the main growing season, is important 

because germination and establishment of subterranean clover occurs at this time. 

Patterns for September are also indicative of those for March when the same solar path 

is traced by the sun. We can use these data to help predict the effects of tree growth on 

shadow patterns and lengths. For this agroforestry design, when trees reach eighteen 

meters in height, they will cast a shadow across the entire alleyway on the summer 

solstice, June 21, towards the end of the forage growth season. This stage of growth is 

close to the 20 to 30 percent tree cover mentioned by Krueger (1981) as showing 

noticeable reductions in forage production. 

As one might expect, PAR patterns around trees were strongly anisotropic with 

shadows being cast predominately on the north side of trees. Stepwise regression 

modeling of the combined transect PAR data did not produce a single suitable model 

(adjusted R2 <0.18). However, R2 values for seperate north and south transect models 

ranged from 0.83 to 0.85 for both daily cumulative PAR (Table 2.6 and Table 2.7) and 

daily average PAR (Table 2.8 and 2.9). Daily average PAR models contained fewer 

variables, were simpler to define, and had approximately the same R2 values as 

cumulative PAR models so we will use them in our discussion. PAR reaching the 

forage canopy varied with "length of day" in both north and southtransects. The 

variable "length of day" has a universal effect as it occurred in all average PAR and 

cumulative PAR models. This variable can be thought of as representing general 

seasonal effects as it reflects not only the longer hours of daylight as one moves towards 

the solstice, but also the accompanying greater solar angles and higher light intensity 

levels evident in the PAR data (ASHRAE, 1991). The tree related variable in only north 

side models indicates that the tree shadow affects available PAR energy to the north of 

the tree only or displays an anisotropic pattern. The ratio of tree height/distance from 

the tree was used to represent tree effects and to account for the interrelationship 

between tree size and the length of its shadow. The addition of this variable to the north 

model substantially increased adjusted R2 values from 0.39 to 0.84. 
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Table 2.8. North Regression Model for Daily Average PAR. 

Model-fitting Results for Daily Average PAR ( /2mols m') from
 
North (330° azimuth) array.
 

Independent Coefficient Standard Range of 
Variable Error Values 

Constant -373.49 93.26 -561.50 to 
-185.50 

Length of Day 83.69 6.05 71.50 to 
hours 95.88 

Tree height/dist. -1.45 0.23 -1.91 to 
cm/m -0.98 

Adjusted R2 = 0.84 Standard Error = 119.68 

47 Observations (periods) fitted, one forecast fitted for missing value of dependent 
variable 
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Table 2.9. South Regression Model for Daily Average PAR. 

Model-fitting Results for Daily Average PAR (4mols s-1 rn-2) from
 
South (150° azimuth) array.
 

Independent Coefficient Standard Range of 
Variable Error Values 

Constant -615.47 76.69 -743.72 to 
-487.22 

Length of Day 92.20 5.47 83.08 to 
hours 101.33 

Adjusted R2 = 0.83 Standard Error = 100.92 

59 Observations fitted 
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In general, north transect PAR readings increased rapidly with distance from 

trees within the first 1 to 1.5 m, then stabilized at open pasture levels for distances 

greater than 2 m (Table 2.10). Position south of trees had relatively little effect upon 

measured PAR. Transect positions south of the tree were within 9 percent of each other 

with the position three-and-a-half meters from the tree receiving the lowest amount of 

energy, suggesting neighboring tree shadows extended across row middles. However, 

these differences were not statistically significant from each other or open pasture levels 

(p<0.10). In the context of physiological response, the PAR levels at all positions are at 

or above the light saturation level (approximately 50% of full daylight) for the 

understory plants (Salisbury and Ross, 1992, and Harper, 1977), and we would expect 

little reduction in growth from reduced light levels. As trees grow in height, their 

influence on incoming solar radiation extends farther from the trunk. Such an effect is 

predicted by shadow modeling and is evident in PAR data for the southern transect in 

which the shadow from a large tree in an adjacent row appears to have reached the 

center of the alley between rows. Therefore, we would expect tree growth to have a 

greater impact on available solar energy in the future possibly altering the relationship 

of underground factors to aboveground factors in determining pasture growth. 

During the years of 1993 and 1994, we were fortunate to experience an above-

average rainfall year and a more typical average rainfall year, respectively (Table 2.1). 

Plant responses can be quite different when the relative importance of a primary 

resource, such as water, shifts substantially as in this case. Herbaceous plant 

composition varied between the two years, reflecting differences in the monthly amount 

and seasonal pattern of precipitation each year. The understory cover in 1993 (Table 

2.2) was dominated by subclover (38 percent) with a substantial perennial ryegrass 

component (22 percent). Germination and establishment of subclover is dependent 

upon adequate rainfall in the fall (Raguse et al., 1994, and Lanini et al., 1995). 

September and October of 1992 were average and above-average rainfall months, 

respectively (Table 2.1), which helped subclover establishment. Rainfall during the 

growing season started below normal during the month of February but exceeded the 
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Table 2.10. Average Daily Total of Photosynthetically Active Radiation (PAR) for 
Time Periods Relating to Growing Seasons Preceding Clipping. 

Distance 1st Growing' 1st Growing' 2nd Growing' 2nd Growing' 
from tree Per. Per. Per. Per. 

North South North South 

(m)	 Percent Full Percent Full Percent Full Percent Full 
Sun Sun Sun Sun 

1.0	 49* 100 56* 100 

1.5	 78* 99 91	 100 

2.0	 92 97 100 99 

2.5	 96 93 100 100 

3.0	 100 100 99	 100 

3.5	 100 91 100 96 

1st Growing' Period is February 1st through May 15th. 
2nd Growing' Period is May 15th through June 30th. 

* means within columns vary p<0.10. 
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30-year average for March-July. Average forage yield of agroforest transect plots 

(Figure 2.1) did not differ (p<0.10) from open pasture yields in late May. Distance from 

trees had no apparent effect upon agroforest herbage yield (p<0.10). However, herbage 

yield in late June followed a distinctly isotropic pattern. Forage production was 

numerically highest 2.5 m from both north and south sides of the trees. Forage 

production within 2 meters of a tree, north or south, was lower than open pasture levels 

(p<0.10), suggesting that isotropic competition was occurring. This pattern suggests 

that underground factors dominated competition even during periods of abundant 

moisture, possibly through a limitation of available nutrients as well as available 

moisture (Tisdale et al., 1985). June forage production in the center of alleys, at 3 and 

3.5 m from trees, was well below open pasture values. Remote sensing analysis of 

large-scale aerial photos taken of the research area (Harris et al., 1996) clearly 

delineated pathways in alley centers created by sheep and indigenous deer in response to 

the electric fence protecting trees from browse damage. A similar pattern of reduced 

forage production and utilization near electric fences was evident at the edge of 

pastures. This pattern of low production in alley centers was not noted in the study by 

Yunusa et al. (1995b) who used mowed plots instead of grazing. Overall forage 

production for agroforest plots was 87 per cent of pasture production (Table 2.11). 

Positions near trees and in row middles showed the largest differences. Standard errors 

for agroforest plots were twice those of pasture plots, indicating more variation in 

agroforest production patterns. 

The understory vegetation of agroforests in 1994 (Table 2.3) was dominated by 

non-leguminous forbs (31 percent), and perennial and annual grasses (37 percent), while 

subclover contributed less than 5 percent. This shift in forage composition can be 

traced to droughty fall conditions when rainfall for September through November of 

1993 (Table 2.1) was considerably below the 30-year average. A similar shift was 

shown in pasture composition with non-leguminous forbs at 28 percent, perennial and 

annual grasses at 36 percent, and subclover at 6.34 percent. The precipitation pattern in 

1994 was the reverse of that seen in 1993. Precipitation in February 1994 was above 
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Figure 2.1. 1993 Understory Production. 

Measurements are given in dry weight biomass. 

1993 Understory Production

First and second clippings
 

65 May 4-6 

60 
46, --.-North1 

g 55 - 8 -­ -A-Southl 

50 
A 

cr 
45 ,./11111r. \A 

--E-Pasture 1 

40 Qt 
June 23-28 
-o-North2 

cq 35 

30 -A-South2 

25 
3.5 -o-P asture21.5 2 2.5 3 

Meters from tree/fence* 

Doubled symbols indicate that transect weights are significantly different 
(p=0.10) from the same clipping period pasture weight at that position. 

*Pasture measurements are taken starting 0.5m beyond the electric fence 
to correspond to tree trunk position in relationship to temporary fence. 
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average, while March through July totals were average or below average. Tree effects 

upon understory plant production (Figure 2.2) appeared to be strongly isotropic for the 

period before mid-May. Forage yield within agroforest alleys was similarly reduced 

relative to open pasture regardless of its position either north or south of trees, again 

suggesting a dominance by underground factors. An anisotropic pattern of herbage 

production within agroforests began to emerge during June as available soil moisture 

declined and air temperatures rose. Reductions in forage production were most 

pronounced on the south side of the trees within 2 meters, suggesting that shade may 

have provided a compensatory factor which offset water competition on the north side 

of trees. While the south transect was significantly different from pasture production at 

these positions, the differences between agroforestry transects were not statistically 

significant (p>.10). Shade near trees might maintained a climatic condition, probably 

reduced temperatures and evapo/transpiration requirements, that is facilitative for 

biomass production on the north side compared to the south side. Shading and 

decreased light levels are known to increase production in certain cases, especially 

drought (Everett et al., 1983, Helms, 1963, and Wilson et al., 1986). Averaged across 

all transect positions, agroforest production was 87 and 78 percent of pasture production 

(Table 2.11 and Table 2.12) in 1993 and 1994, respectively. Production was depressed 

all the way across agroforest alleys compared to pasture plots. 

Detailed examination of forage production patterns suggests there are often 

several forces acting concurrently to produce these patterns. The magnitude with which 

these forces express themselves varies considerably depending on complex natural 

interactions (Harper, 1977). Spatial pattern analysis revealed predominately isotropic 

patterns of herbage yield in 1993 and 1994, which were more pronounced in the second, 

warmer and drier, half of the forage production season. Anisotropic patterns were 

evident near trees in the second half of the 1994 growing season but were relatively 

small compared to isotropic effects. While the pattern suggests a strong isotropic 

dominance, it is likely that two or more isotropic forces are reflected in it. If we accept 

that the differences at alley middles are caused by animal use patterns, the remaining 
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Table 2.11. Comparison of Forage Production between Agroforests and Pastures for 
1993. 

Measurements are given as average dry weight biomass in kg/ha. 

Distance 
from 

Tree/Fence 

Combined 
Agroforest 
Transects 

Standard 
Error 

Pastures 
Standard 

Error 
(m) 

1 6913 2296 8866 1211 

1.5 8414 2681 8824 1327 

2 8550 2903 8843 1250 

2.5 8721 3229 9590 1478 

3 7416 2417 9748 1533 

3.5 7669 2663 8990 1516 

Transect 
Average 

7947 2698 9143 1386 
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Table 2.12. Comparison of Forage Production between Agroforests and Pastures for 
1994. 

Measurements are given as average dry weight biomass in kg/ha. 

Distance 
from 

Tree/Fence 

Combined 
Agroforest 
Transects 

Standard 
Error 

Pasture 
Standard 

Error 
(m) 

1 4249 1095 5485 736 

1.5 4578 1192 5471 672 

2 4388 1159 5966 599 

2.5 4325 1103 5512 475 

3 4229 1020 5693 678 

3.5 4361 1254 5348 528 

Transect 
Average 

4355 1137 5579 615 
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isotropic pattern closely approximates the neutron probe soil moisture data of Yunusa et 

al. (1995a) for a subclover/ryegrass understory suggesting soil moisture levels combined 

with animal use are the forces that control biomass production in our agroforests. 

Conclusions 

Patterns of forage production associated with trees contain both isotropic and 

anisotropic components that can be used to understand the underlaying ecosystem 

processes that produce them. Distribution of solar energy (PAR) about trees was 

predictable by mathematical shadow modeling. Shade was strongly anisotropic in 

nature, differing markedly between the north and south sides of trees. On the other 

hand, competition between trees and understory vegetation in our young agroforests was 

predominately isotropic in nature. This suggests that young trees affect understory 

herbage production more through competition for soil resources rather than light. The 

linear structure of our agroforest tended to concentrate ungulate use into the centers of 

alleys between trees, which appeared to decrease forage production in the alley centers. 

Interactions between woody vegetation patterns and grazing animal behavior in 

agroforests are largely undocumented. Our data suggest that this is an area of 

considerable interest for silvopasture design. Reduced light (an anisotropic factor) 

appeared to play little role in tree/forage relations outside of the dense shade directly 

under the center of the tree canopy. In one instance, however, shade appeared to 

slightly increase understory production, presumably by reducing transpirational stress 

during hot dry periods. Based on these observations, it appears that agroforest 

manipulations that seek to manage shade effects on understory herbaceous vegetation in 

open canopy silvopastures will have limited effects compared to those that manipulate 

tree water and nutrient use. 
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Figure 2.2. 1994 Understory Production 

Measurements are given in dry weight biomass. 

1994 Understory Production
 
First and second clippings
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(p=0.10) from the same clipping period pasture weight at that position. 

*Pasture measurements are taken starting 0.5m beyond the electric fence 
to correspond to tree trunk position in relationship to temporary fence. 
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Abstract 

Low-level remote sensing using a small tethered blimp and two 35 mm cameras 

adds a new dimension to landscape analysis. The distance from the sensor to the object 

under investigation is less than 150 m, which makes possible the collection of high-

resolution spatial data over blue as well as red, green, and infrared wavelengths. The 

relatively short atmospheric pathway causes less atmospheric scattering of the blue 

band, thereby increasing the utility of its data. Three blue/infrared and one red/infrared 

band-ratio vegetative indices were used to model dry weight production of pasture 

forage plants growing in association with conifer trees in three agroforests. Normalized 

Difference Vegetation Indices (NDVI) based upon the blue band were better predictors 

of pasture production than those based upon the red band in 2 out of 3 agroforests 

examined. No one model fit all three replications well. However, individual best-fit 

models developed for each agroforest predicted forage yields within 135 kg/ha (5.0, 5.8, 

and 8.9%) of actual harvested plots. 

Introduction 

Agroforestry is the joint production of trees with agricultural crops and/or 

animals. Agroforestry draws upon agronomic, forestry, horticultural, and animal 

science knowledge but differs from these fields by placing emphasis upon the 

interactions among agroecosystem components. Agroforesters group systems based 

upon their structural components into agrosilviculture (trees + crops), silvopastoral 

(trees + livestock), and agrosilvopastoral (trees + crops + livestock) systems (Nair, 

1985). Of these three types, agrosilvopastoral systems are the most complex, both in 

their structure and management. 

Strong conifer forest, forage crop, and livestock industries exist in both the 

western and southeastern United States. Integration of livestock and forest enterprises 
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with forage crops grown as improved pastures is the most commonly encountered 

agroforestry system in North America. Livestock in these systems are often sheep or 

cattle. Ground vegetation is generally a combination of pasture grasses and legumes 

that fill the available spaces underneath and between trees. This plant population 

provides food for the livestock, protects soil from erosion, and facilitates tree growth by 

fixing atmospheric nitrogen. However, uncontrolled pasture growth may compete with 

young trees for soil moisture and provides a habitat for small mammals that gnaw on 

trees. Livestock harvest forage, control competition between trees and forage, reduce 

invasion by weedy plants, and recycle forage nutrients as dung and urine. 

This complex set of biological interactions among agroforest components is 

reflected in an equally complex spatial structure. Trees are a fundamental element of 

agroforest structure. Livestock grazing patterns as well as pasture production may be 

affected by the proximity of trees. 

Many studies have been conducted on the relationship between tree basal area, 

or cover, and understory production. Sharrow (1991) reported that 10-year-old conifer 

trees have a detrimental effect on forage production for a distance approximating 2 

canopy diameters with no effect apparent beyond that distance. Other work (Woods et 

al., 1982, Cameron et al., 1991, and Joyce and Mitchell, 1989) has shown a similar 

pattern of detrimental effects, which lessen with increasing distance from the tree. The 

exact response of a plant to these effects varies by tree and forage species. Arnold 

(1964) observed distinct compositional zones of native forage plants around juniper 

trees, which suggests differing responses among species to the presence of the tree with 

some species increasing while others decrease. Pieper (1990) found that production of 

cool season grasses increased under the canopy of pinyon-juniper trees while that of 

warm season grasses declined. A similar effect was predicted by a model developed by 

Scanlon (1992) which used factors relating to both beneficial and detrimental responses 

to predict forage production in reference to distances from trees. 
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Both beneficial and competitive effects accrue from the interactions between 

plants as they attempt to use the resources available to them. Site resources for which 

competition might occur include quantity and quality of light, soil moisture, and soil 

nutrients. Nutrient uptake and water uptake are interdependent processes, so a more 

functional division might be the aboveground (light) factor or the belowground 

(moisture and nutrients) factor. Work by Young and Smith (1982 and 1983) showed 

that light or water could be the most limiting factor depending on the environmental 

factors during the year. Riegel (1989) found underground factors to be the most 

important in the forest systems of northwestern Oregon. Within the belowground factor, 

soil nutrients are likely the most important factor during spring, while soil moisture 

dominates plant interactions during dry periods such as summer or during droughts 

(Krueger, 1981, and Riegel, 1989). Karl and Doescher (1993) also found water relations 

to be the most important in the open canopied forests of southwest Oregon. 

Agroforesters manage agroecosystem processes primarily through manipulating system 

spatial structure. Successful agrosilvopastoral design and management relies upon a 

fundamental understanding of how spatial structure relates to agroecosystem processes 

of competition, succession, nutrient cycling, carbon flow, and hydrology. Our study 

attempts to use low-level remote sensing technology to identify and quantify tree and 

site spatial variables that exert major influences on pasture growth. It is hoped that 

description of spatial vegetation and environmental patterns will suggest thenature and 

intensity of the interactions between agroforest components as they share resources in 

time and space. 

Remote sensing is the science and art of gathering information about an object, 

area, or phenomenon through the analysis of data acquired by a device that is not in 

contact with the object, area, or phenomenon under investigation (Lillesand and Keifer, 

1987). Accurate analysis of remotely sensed plant community data is dependent on an 

understanding of the reflectance/absorbance of energy from vegetation. Energy in the 

near infrared range (0.70,um to 1.30 ,on) is reflected strongly with values reaching 50 

percent of incident radiation (Knipling, 1970). The reflectance of infrared is related to 
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the structural complexity of vegetation biomass (Grant, 1987). This complexity varies 

considerably between species with dicots reflecting greater amounts of infrared than 

monocots (Salisbury and Ross, 1992). These structurally caused reflective differences 

between species form the basis of most classification procedures (Chen et al., 1995, and 

Knipling, 1970). Visible light (0.40 /An to 0.70 /yin), composed of the primary colors, 

red, green, and blue, is reflected weakly by vegetation with reflectance values ranging 

from 5 to 20 percent of incident radiation. Energy in the blue and the red ranges is 

absorb by plant chlorophyll and is used to power photosynthesis (Salisbury and Ross, 

1992). Therefore, dense, high chlorophyll-content vegetation will absorb more red and 

blue energy and reflect less than sparse or low chlorophyll-content vegetation. Where 

the understory is of a homogeneous composition (ie. agronomic forage crops and 

pastures) differences in reflectance form a gradient indicating increasing biomass. 

Certain plant species reflect noticeably more blue light than others and appear as a blue-

green color. Because of these species-related differences, the blue band contains more 

information for some vegetation types than does the red band. Tucker (1977), for 

instance, noted that wet or dry weight biomass had its strongest correlation with the blue 

band (0.35 Am to 0.44 ,um). However, most vegetation indices are based on near­

infrared/red band ratioing (Richardson and Everitt, 1992). Atmospheric Rayleigh 

scatter, which causes the blue color of the sky, makes blue light hard to accurately 

detect and measure. The longer the atmospheric pathway between object and sensor, 

the more severely the blue channel is distorted by scatter. Past emphasis on satellite and 

high-altitude aerial photography has rendered blue band data relatively unimportant. So 

much so, that many satellite systems, such as the SPOT, have abandoned blue band 

detection entirely (Lillesand and Keifer, 1987). However, when the sensor is located 

less than 150 meters from the target, the potential usefulness of blue band data increases 

considerably. 

Our study investigates the utility of very low-level overflight photographic data 

to predict and to interpret the effects of agroforest trees upon associated pasture forage 

production. This paper focuses on the detection of spectral data using a small tethered 
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blimp and two 35 mm cameras and the importance of blue band data in modeling 

herbaceous plant dry weight biomass. 

Materials and Methods 

Study Area 

The study site was located on the western edge of the Willamette Valley near 

Corvallis, Oregon (UTM Zone 10n, 476050 E 4933900 N). Soils are shallow, silty-clay 

loams (Vertic Haploxerolls) of the Philomath series. Although conifer trees grow 

naturally on the site, it is marginal for commercial timber production because of shallow 

soils and seasonally high water tables. The elevation is 60 m above mean sea level with 

a northeast aspect. Climate is maritime with warm dry summers and cold moist winters. 

Precipitation falls mainly as rain from November through March, contributing about 

70% of the annual average 1,024 mm. Less than 100 mm of precipitation is received 

during the summer dry period from June to September. The frost-free period is 165-200 

days. Areas abutting the site are a combination of oak savanna and urban housing 

developments. 

Three 0.5 ha agroforest replications were planted with two-year-old (1-1) bare 

root Douglas-fir (Pseudotsuga menziesii) seedlings in 1989. Trees were planted in rows 

running approximately west-east with 2.5 m between trees within rows and 7 m between 

rows. The trees are now large enough, some over 2 meters in height, to have observable 

influence upon forage production patterns and vary enough in size to allow comparisons 

between tree size classes. 

Twenty kg/ha of rhizobium inoculated subterranean clover (Trifolium 

subterraneum L.) seed was planted in 1989. Perennial ryegrass (Lolium perenne L.) 

from the residual soil seed bank slowly increased over time, presumably due to 
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Figure 3.1. Species Composition of Agroforestry Plots for 1994. 
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Abbreviations of plant names are as follows: TrSu = subterranean clover (Trifolium 
subterraneum L.), Le = other legumes (nitrogen fixers), SaMi = garden burnet 
(Sanguisorba minor Scop.), Fo = other forbs (dicots), AG = other annual grasses, LoPe 

= perennial ryegrass (Lolium perenne L.), A1Pr = meadow foxtail (Alopecurus pratensis 
L.), ArEl = tall oatgrass (Arrhenatherum elatius (L.) J.S. Presl & C. Pres1), PG = other 

perennial grasses. 
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increasing soil nitrogen from N-fixation by subclover. Average understory composition 

is usually 40 percent subterranean clover, and 28 percent perennial ryegrass, with annual 

grasses and miscellaneous broadleaf plants making up the remainder. However, in 1994 

of subterranean clover was considerably reduced by drought. Understory composition in 

1994 was about 55 percent annual grasses and broadleaf plants with another 25 percent 

perennial grasses (Figure 3.1). Forage species composition was noticeably different in 

Agroforest B, where total herbage production was relatively low and contained about 17 

percent burnet (Sanguisorba minor Scop.). 

Ground Data Collection 

Species composition for each agroforest was determined at the end of May 1994. 

Point contacts were recorded using twenty random, 10-point frame sets (Sharrow and 

Tober, 1979) for a total of two hundred points for each agroforestry replicate. After the 

aerial photos are taken and before the sheep were allowed to graze, twelve random trees 

per replication were selected as endpoints for clipping transects. Seven 0.1 m2 plots (25 

cm X 40 cm rectangles) were clipped for each transect starting at a point 0.5 m from the 

tree. Transects were established perpendicular to the row orientation in either a 

northern or southern direction. Clipped samples were oven-dried and their 

corresponding tree number, transect direction, distance from tree, and dry weights were 

recorded. 

Blimp and Cameras 

The blimp was 5.5 m by 2 m with a capacity of 9 m3 of helium. It produced a 

net lift of 4.7 kg when full. A braided nylon tether line was attached to keep it below a 

legal maximum altitude of 152 m. A home-made gondola held two Nikon® 6006 35 mm 

cameras aligned to photograph the same scene. Each camera was fitted with Nikon 28 
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mm wide-angle lens. The gondola contained two radio-controlled servos. One servo 

pressed a dual shutter release so that both cameras fire simultaneously. The second 

servo controlled a stepping motor that rotates the gondola to align shots. 

Blimp Aerial Photos 

On three separate occasions over a two-year period, aerial photos were obtained 

of the agroforestry replications. Photo sessions were timed to occur one or two days 

before the agroforests were grazed by sheep. These photos captured peak biomass 

production of the understory (forage) component. The agroforestry replicates were 

grazed two times during the growing season with the exact timing dependent on 

environmental conditions and forage growth. The photos used in this analysis were 

taken on June 26, 1994, just before the second grazing period. Photos were taken from 

an altitude of approximately 120 meters under a diffuse, but bright sky. 

The cameras were loaded with Kodak ASA 100 Ektar® color print film and 

Kodak HIE* high-speed black and white infrared film. The color film was exposed 

through a haze filter with aperture and shutter speed automatically adjusted by the 

camera. The infrared film was exposed through a Wratten No. 25 (Red) filter that 

transmitted visible red as well as infrared spectral energy ranging from 0.59 ,um to 0.90 

,um. This "modified" infrared band was captured using a lens aperture manually set at 

f/16 with a shutter speed of 1/125 second. 

Digital Elevation Model 

A Digital Elevation Model (DEM) was produced using contours contained in 

two DXF files obtained from the City of Corvallis, Department of Planning. These files 

contain contours delineating every two feet of elevation. The hydrologic drainage, 
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streets, fences, and buildings were also delineated. The DEM has a resolution, or pixel 

size, of approximately 0.17 m on a side, or about 0.03 m2, and maps an area 278 m by 

224 m. The overall elevation change on our site is 21 m. Our agroforestry GIS database 

uses the Universal Transverse Mercator (UTM) Zone lON coordinate system and the 

North American Datum (NAD) 1927. 

Fence Line and Tree Positions 

A Trimble Pathfinder Pro XL Geo-Positioning System (GPS) was used to locate 

tree and fence positions for referencing to the DEM. The GPS was used to log at least 

180 positions, in UTM coordinates, for each point location. These positions were 

differentially corrected using base station data from the Oregon State University, 

Department of Geosciences Base Station, and an averaged, corrected position was 

assigned to each point. The base station is located within a three kilometer radius from 

our site and provides accurate correction of geo-positioned points to within two meters 

(Trimble Navigation, 1991). Twelve trees in each agroforestry replication were geo­

positioned. Corner fence posts and gates were geo-positioned on three separate dates. 

The final fence line positions were averages of the three corrected positions. In all 

instances, repeated positioning located points within a one meter radius of each other. 

Ground measurements were made between the fence line points and key trees to 

accurately locate the tree grid. One hundred and six GPS points and twenty ground 

measurements were used to locate and accurately align image layers (Cook and Pinder, 

1996). 

All corrected points were brought into AutoCad' as DXF files for the final 

fitting of an ideal tree grid. A perfect grid locating rows of trees seven meters apart 

with trees planted every two and a half meters was fitted visually to the GPS positions 

and fence line measurements. This best-fit grid was then used to supply coordinates for 



Figure 3.2. Gray scale images of red, blue, green, and infrared bands. 
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every tree in the agroforestry replications. These coordinates allow any identifiable tree 

to act as a Ground Control Point (GCP) during processing of aerial photos. 

Photo and Image Processing 

Photographic film was developed on the OSU campus at the Media and 

Communications Photo Center. Slides and negatives of the best paired-photos were 

then sent to LazerQwile' of Beaverton, Oregon, for processing using Kodak PhotoCD` 

technology (Kodak, 1994). The resulting PhotoCD contained 100 images available at 

five different resolutions. All analysis was done using images opened at full detail, or 

3,072 columns by 2,048 rows. Color images were opened from the PhotoCD using 

Picture Publisher* software and were saved as 24-bit (true-color) Tagged Image File 

Format (TIFF) files. These color TIFF files were imported into the image processing 

software, Idrisi, and were converted into three digital color band images, red, green, and 

blue. Matching black and white infrared images were opened from the PhotoCD and 

were saved as 256-color paletted TIFF files. The TIFF files were then imported as a 

single, 256-color (grayband) image (see Figure 3.2). 

Eighteen GCPs were used to resample each infrared band to the same relative 

coordinate grid as the matching color band images. A linear, nearest-neighbor 

resampling routine was used. The Root Mean Square (RMS) error for this operation 

was kept at less than 0.8 pixels for each image (Welch et al., 1995). Smaller-windowed 

images were extracted from each set of four waveband images to focus on agroforestry 

areas, to remove distorted photo edges, and to speed image processing times. A false 

color composite (FCC) was produced using the windowed green data for the blue band, 

the red data for the green band, and the infrared data for the red band (see Figure 3.3). 

The linear band saturation for this operation was set at 1.5 percent (Eastman, 1995). 

Points positioning tree trunks for clipping transects were interpolated on the FCC with 

on screen-digitizing. These points were resampled to a UTM Zone ION coordinate 



Figure 3.3. False Color Composite Image of Agroforestry "A" Plot. 

False Color Composite of Agroforestry A shows photosynthetically active biomass in shades of red.
 
Imagery was obtained on June 26, 1994
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system and were converted into a DXF file for transfer into Auto Cad. Clipped plot 

transects were digitized as polyline rectangles precisely 25 cm by 40 cm and were 

spaced 0.5 meters apart in the transect. A total of two hundred forty-four clipped plot 

polygons were designated for this set of pictures. The vector polygons were converted 

to raster format and were linked to the GIS database as extraction polygons. Average 

values of slope, aspect value, and elevation were extracted from GIS layers for each 

clipped plot polygon. The aspect value image is an aspect image that has been resealed 

to show the degree of inclination north to south on a scale of 0 to 255 respectively. The 

extraction polygons were then resampled to the same relative coordinate system as the 

color bands to process the vegetative indices. 

Training sites were identified, using the FCC image, for the five broad classes: 

bare ground, sparse cover, dense cover, tree, and shadow. Spectral signatures were 

extracted and identified (see Figure 3.4). A supervised classification using a maximum 

likelihood algorithm and equal probabilities was then used to produce a class cover 

layer (see Figure 3.5). These classification images were then reclassified to produce 

five Boolean, 0 or 1, layers isolating the separate classes. For example, the bare ground 

layer has ones to denote cells of bare ground with all other cells valued at 0. The 

extraction polygons were used to sum each component cover. Because cover pixels had 

a value of one, the sum total would identify how many pixels in each polygon were 

covered by each class. This sum was divided by the total number of pixels in the 

polygon, an average of 42, to generate percent cover estimates for soil, sparse 

vegetation, dense vegetation, shadows, and trees for each polygon. Thirty clipped plot 

polygons were located under tree canopies and were discarded from this analysis. 

The modified infrared image contains visible red data values (see Figure 3.6) 

combined with infrared values. The decision to capture data over this range was made 

to fulfill other research objectives. However, the utility of infrared data is based on its 

high reflectance from vegetative biomass and low reflectance from bare soil, creating a 

wide range of values. The soil, in this instance, reflects strongly in the visible red range, 
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Figure 3.4. Spectral Signatures of Agroforestry "A" Classes. 
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so the high red reflectance, even when combined with a low infrared reflectance, 

narrows the differences between bare soil and vegetation in the modified infrared band 

which makes the detection of vegetation more difficult. For this reason, the modified 

infrared images were digitally corrected to remove the red data values. Digital image 

processing allows one to construct mathematical functions using two image sets. We 

had an image containing the visible red data that we could subtract from the image 

containing red and infrared to produce an image containing only infrared (see Figure 

3.7). 

Digital number images were converted to reflectance values for the creation of 

vegetative indices. We wanted to know how the ratio between the visible color bands 

and the infrared band would be affected by varying the reflectance of the visible light 

band. Red and blue band images were scaled to produce three images for each color 

band representing 5, 10, and 15 percent reflectance of incident radiation. The infrared 

and red bands were then processed to form NDVIs using the formula: 

NDVI = (Infrared - Red)/(Infrared + Red) 

Three NDVI images were formed for each agroforestry replication with NDVI-5 

using a red band of 5 percent, NDVI-10 using a red band of 10 percent, and NDVI-15 

using a red band of 15 percent reflectance. The blue reflectance bands were combined 

with the infrared band in the same manner with the formula: 

(B)NDVI = (Infrared - Blue)/(Infrared + Blue) 

Three (B)NDVI were formed for each agroforestry replication with (B)NDV1-5 

using blue at 5, (B)NDVI -10 using blue at 10, and (B)NDVI-15 using blue at 15 percent 

reflectance. Sums and averages of the vegetative indices within clipped plot polygons 

were extracted from the images for stepwise regression analysis (see Figure 3.8). 



Figure 3.5. Supervised Classification of Agroforestry "A" Using Five Classes. 

Supervised Classification Image showing five classes: trees (yellow), dense vegetation (green), sparse vegetation (red), 
bare ground (blue), and shadow (purple). 
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Results and Discussion 

A visual examination of the databands (Figure 3.2) showed the infrared band to 

have the most distinct dataset, ie. it appears more detailed than the other bands. The 

second most detailed image of the set is not the red band, but the blue band. Trees 

appear darker and more distinct in the blue band, as are certain forage background 

patterns. Examination of band histograms reveals that both populations of data are 

normal in distribution with the blue band spanning a range of 136 values, while the red 

band spans 84. The blue band, in this case, appears to include more useful data than the 

red band. The spectral signatures for agroforest A (see Figure 3.4) show considerable 

variation in spectral response over the bands recorded. However, the classes bare 

ground and sparse vegetation share similar signatures in the visible light range. When 

the differences between values for the red and for the blue bands are examined, a greater 

difference between classes exists for the blue band than for the red. This difference also 

suggests that the blue band might be more suitable than the red band for quantifying 

vegetation. 

A verification database was assembled from our GIS database consisting of 

twenty random, clipped plot polygons from each agroforest replication for a total of 

sixty samples. This database was used to evaluate and assess models generated by 

stepwise regression of the remainder of the clipped plot polygons data set (154 

samples). Three other model database sets, one for each agroforest replicate, were 

assembled from the 154 samples. These were used to model understory dry weight 

response on an individual agroforest level. Each individual database contained at least 

50 sample plots. 

Regression analysis of data was conducted using linear, multiplicative, 

exponential, and reciprocal models. Linear models were selected because they most 

accurately estimated the verification dataset. Modeling on an individual agroforestry 

level, the best predictor for pasture dry weight biomass in Agroforest A was a model 



Figure 3.6. Modified Infrared Band of Agroforestry "B". 

Modified infrared band contains red and infrared data values. 
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with an 1Z2 of 0.72 based on (B)NDVI -5. Agroforest B did not generate any useable 

regression models for the dry weight variable. The best model had an R2 of 0.29. The 

best fit model for Agroforest C (R2 of 0.65) was based on NDV1-15. 

When all the agroforest replications were pooled, no suitable models were 

generated, the best R2 being 0.36. Problems in pooling data across agroforests likely 

reflect substantial variation in both plant production and composition differences (see 

Figure 3.1). Of particular importance to remote sensing data, the percent cover of 

broadleaf plants (dicots) and grasses (monocots) was markedly different between 

agroforests. 

Broadleaf (%) Grass (%) 

Agroforest A 28.1* 64.8 

Agroforest B 54.1* 40.6 

Agroforest C 16.1* 83.3 

* 7.1, 5.3, 0.5 % was subtracted from percentages to compensate for the summer 

death of subterranean clover (Trifolium subterraneum L.) so that data would better 

represent species composition at time of photos. 

Accepting that considerable spectral differences exist in the broad groups, 

monocots and dicots, we created two general models, one for each broad species group. 

Because we adjusted our species composition data to reflect the summer death of 

subterranean clover, the total of broadleaf composition and grass composition does not 

equal one hundred percent for any agroforest replicate. Therefore, percentage 

composition using broadleaf plants defines a different model than percent composition 

grass does. We created two new variables, grasscomp and broadcomp, with the above 
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values to incorporate percentage composition of grass and percentage composition of 

broadleaf plants into our analysis. When the variable broadcomp was added to the 

stepwise regression of all agroforests, a model with an adjusted R2 of 0.9764 resulted. 

When the variable of grasscomp replaced it in the regression, a model with an adjusted 

R2 of 0.9800 was produced. An examination of observed values plotted against 

estimates for each model shows three distinct clusters of points arranged along a strong 

regression line. The species composition data ranked, or stratified, the vegetative index 

values along the strong regression line between the agroforest replicates. In all, we 

generated two general models based on dominate species composition and two 

individual agroforest models (no model was generated for Agroforest B). These we 

labeled as Broadleaf (broadleaf plants dominate species composition), Grass (grass 

dominates species composition), Model A, and Model C. 

The models were used to generate estimates of dry weight biomass for the sixty 

verification plots. Mean values and standard deviations of the estimates were compared 

to mean values and standard deviations of the actual dry weight to assess model 

accuracy for all three grouped replicates. Models were also compared on an individual 

agroforest level to select the best individual models (see Table 3.1). 

Comparison of estimates to actual weights for the group of all three agroforestry 

replications showed the broadleaf and grass models producing estimates within 2 grams 

(200 kg/ha) of the actual mean value. This was an underestimate of approximately 10.5 

percent. The standard deviation for the two models is about three times the deviation 

for the actual dry weight. The agroforest-specific models, A and C, did not preform well 

when applied to the entire data set. Model A produced an overestimate of 39 grams 

(3900 kg/ha) and Model C a nonsensical negative value. The broad agroforestry models, 

broadleaf and grass, tend to work well on their individual species-dominated replicates. 

The broadleaf model worked well with Agroforest B, 54.1 percent broadleaf, producing 

an over-estimate of less than 5 percent (108 kg/ha) and a standard deviation of 16.9, 

which is close to the actual weight standard deviation of 12.6 g/plot. This model has the 
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Table 3.1. Actual Dry Weights and Model Predictions. 
All measurements are g/0.1m2. 

Total All ' 
Replications 

Total 2 
Agroforestry 

A 

Total 2 
Agroforestry 

B 

Total 2 
Agroforestry 

C 

Actual Dry 
Weights 

Standard Dev. 

Broadleaf 
Model 

19.57 

9.43 

17.60 

13.57 

5.53 

15.13 

21.78 

12.64 

22.87 

23.35 

5.28 

31.51 

Standard Dev. 29.00 34.19 16.97 24.03 

Grass 
Model 

17.42 14.79 16.36 21.11 

Standard Dev. 25.14 33.32 16.96 23.28 

Agroforest A 
Model 

58.13 15.29 N/A N/A 

Standard Dev. 

Agroforest C 
Model 

43.01 

-75.55 

16.31 

N/A 

N/A 

N/A 

N/A 

22.00 

Standard Dev. 80.49 N/A N/A 17.06 

Based on sixty sample plots, each 0.1m2 
'Based on twenty sample plots, each 0.1m2 
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best fit of all models. However, the broadleaf model worked poorly on the grass 

dominated, Agroforest C, overestimating production by 37.2 percent (869 kg/ha). The 

Grass model, on the other hand, underestimated production by 9.6 percent (223 kg/ha). 

It also produced an estimate for grass-dominated Agroforest A, within 8.9 percent (121 

kg/ha) of the actual mean. The models' standard deviations show considerable "wobble" 

in the range of values as they estimate dry weights. 

The individual agroforest models were each successful in predicting biomass 

within their more limited situation. Model A produced an over-estimate of 12.7 percent 

(172 kg/ha), slightly larger than the Grass model. However, the standard deviation for 

this model is half of that for the species dominant models at 16.1 g/plot. Based on both 

mean value and standard deviation, Model A is the best fit model for Agroforest A. 

Model C underestimated production by 5.8 percent or 135 kg/ha. The standard 

deviation, at 17.1 g/plot, is about three times the actual standard deviation of clipped 

plots. Model C was clearly the best model for Agroforest C. 

Broadleaf Model 

Dry Weight = ((B)NDVI-10 - 70.668498+0.011453(Tree height) ­

0.607454(Distance from tree) - 8.495667(Percent bare ground) ­

0.009179(Aspect Value) - 0.267925(Elevation) - 0.56318(Percent 

composition broadleaf))/0.060461 

Grass Model 

Dry Weight = ((B)NDVI-10 + 16.368162-0.887642(Distance from tree) ­

5.526492(Percent bare ground) + 0.575005(Percent composition 

grass))/0.057974 
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Model A 

Dry Weight = ((B)NDVI-15 - 21.901926-0.224624(Trunk diameter) 

1.335103(Distance from tree) + 0.000001734592(Tree volume) ­

.019249(Percent bare ground))/0.122034 

Model C 

Dry Weight = (NDVI-15 - 29.548379-1.567157(Distance from tree) ­

4.286467(Sparse vegetation cover) + 0.017672(Aspect Val ue))/0.112156 

The variable distance to tree has a universal effect in these agroforest 

replications as it appears in all models. If the coefficient were positive, it would 

indicate that the tree is a "bad neighbor" and that competition dominates interactions 

with the forage. However, our distance coefficient is negative. A negative regression 

coefficient might indicate that facilitative effects such as tree shading the ground or 

decreasing wind velocity are important. Animal behavior is also a possible explanation. 

When sheep graze the replications, electric fence is strung along either side of the tree 

rows to prevent browse damage. The sheep and native deer tend to walk down the 

middle of the rows staying as far from the fence wire as possible. This activity tends to 

create paths which might be reflected in forage biomass distribution (see Figure 3.8). It 

should be noted that our regression models depict standing forage biomass at a point in 

time, which is the net result of previous forage production, use, and tissue senescence. 

Because the vegetative indices are not soil-linked, it is not surprising to see a 

soil-linked variable in the model with the appropriate negative coefficient. A plot with 

more bare ground produces less biomass. Model C uses sparse vegetation cover instead 

of bare ground. Perhaps with a grass monoculture, the upright architecture of the grass 

plants allows soil background pixels to be better incorporated in the sparse vegetation 

class than with the bare ground class. Tree variables relating to size (height and 
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Figure 3.8. Blue Difference Vegetation Index (BNDVI) of Agroforestry "B" Showing 

the Position of Clipped Quadrats. 

This index generated the best performing model. 

Sheep paths are shown running down 
the middle of rows. In the windowed 
image, paths are shown in more detail. 
The effects of paths might be reflected 
in the model variable, distance from 
trees. This variable occurs in all of the 
models with a negative coefficient. 
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volume) appear with positive coefficients. It is possible that this relates to site 

suitability. Better areas grow bigger trees and produce more forage biomass. 

A final variable, aspect value, appeared in the models Broadleaf and Model C 

but with opposite signs on the coefficients. Does this mean broadleaf plants prefer 

wetter, cooler northern sites while grasses prefer warm, sunny south facing slopes? 

When we extract the average agroforestry value from the aspect image, we discover that 

Agroforest A and B are oriented to the northeast. However, Agroforest C is oriented to 

the northwest. Slope of the site is less than 8%, so physical aspect differences are 

probably not great. We cannot tell, at this time, if the different preferences for north or 

south demonstrated by the Broadleaf Model and Model C are based on species 

preferences, dicots versus monocots, or on overall agroforestry aspect. 

Figure 3.9 shows a predictive model for agroforest C. The greenest forage 

represents 4000 kg/ha while the tan color represents 1000 kg/ha. The effect of distance 

from tree in driving the model is seen by the color bands radiating along the tree rows. 

Conclusions 

Our study demonstrates the value of the blue wavelength (0.40 /um to 0.50 ,arn) 

for modeling dry weight biomass. The value of this data was dependent upon accurate 

measuring techniques that required a low-level sensing platform. Varying the 

reflectance values of the visible band did not improve vegetation estimates as best fit 

models still used red and blue normal daylight reflectance values of 0.15 and 0.10 

respectively. Our best fit regression models were able to predict forage biomass within 

100-135 kg/ha, which was comparable to the accuracy generally achieved by physical 

techniques such as clipping plots. Species composition of forage was extremely 

important in accurately model vegetation response. General models based on dominant 

species, dicot or monocot, work well on plots dominated by those groups. Therefore, 
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Figure 3.9. Predicted Standing Crop for Agroforestry "C" Modeled at 135 Levels of 
Production. 

Window from above image shows dry weight biomass as modeled 
at 135 levels of production. 
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separate models may not be needed for each image set. Finally, Geographic Information 

Systems coupled with remote sensing was a powerful tool for describing small scale 

landscapes and developing a better understanding of landscape processes. A GIS-linked 

database can incorporate spatial, physical, and spectral data, and can combine factors in 

a new way to explain the variability encountered in nature. 
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Chapter 4 

Summary 

Our research produced results that fulfilled most of the objectives with which we 

started. Analysis and modeling of photosynthetically active radiation data verified our 

shadow modeling and showed that the aboveground factor, solar energy, was available 

in different amounts on opposite sides of the trees. In turn, pattern analysis strongly 

suggests that underground factors, soil moisture and available nutrients, exert the 

greatest influence on understory production in our agroforestry research plots. This 

result was further bolstered by the results from low-level remote sensing analysis, which 

did not produce different regression models for opposite sides of agroforestry trees but 

only produced models that worked on both sides of the tree equally well. Remote 

sensing, geographic information systems, and global positioning systems technologies 

proved to be powerful research tools for gathering and storing spatial data, combined 

information from different sources, manipulated and analyzed spatial data, and 

produced visual representations of results. Regression modeling of spatial data 

produced interesting, and potentially enlightening, models that mathematically describe 

ecological processes. These results were supported by a large body of research on plant 

competition and were consistent with our understanding of ecological processes. 

The unexpected influence of animal use patterns, primarily trails, was shown 

using classical physical techniques, clipping of biomass, as well as by using pattern 

analysis and remote sensing techniques. This influence is relatively unknown and 

suggests an area for continued research to develop a better understanding of its 

magnitude. Such research would greatly benefit silvopastoral design and management. 

In summary, our work meets the requirements of accepted research. It presents 

strong evidence in support of our objectives. The evidence is supported by our 

understanding of physiological and ecological processes. More importantly, it brings 
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more questions to mind than answers it produces. This is the role of research in our 

society. 
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Appendix 1 

The availability of solar energy on a site is dependent upon latitude, season, and 

weather patterns. The first two variables can be calculated and used to predict available 

solar energy for a site at a specific time given an effect from the weather. The 

relationship of these variables becomes obvious when one examines the trajectory of the 

earth around the sun. The earth travels an elliptical path around the sun, even though it 

is not a very pronounced ellipse. The earth is closest to the sun in December at 89.8 

million miles and farthest from the sun in June at 95.9 million miles. Because the 

intercepted radiation decreases with the square of the distance, the relatively small 

difference in distance makes an appreciable difference in radiation intensity. Those of 

us living in the northern hemisphere should wonder, "Why isn't it warmer in January 

then if we are closer to the sun?" The seasonal effect, winter versus summer, is not 

related to distance from the sun but to the tilt of the earth's axis in relationship to the 

solar plane. The rotation about this axis combined with the orbit about the sun causes 

considerable seasonal variation in the apparent daily path the sun traces across the sky. 

On June 22, the summer solstice, a ray drawn from the sun forms a 23.45'angle above 

the earth's equator as viewed from the Northern Hemisphere. On the other hand, a ray 

drawn on the winter solstice, December 22, forms an angle of 23.45 'below the equator. 

On the vernal and autumnal equinoxes, the sun is directly over the equator. This angle 

in relation to the equatorial plane is called the solar declination, 6, and can be calculated 

for any day of the year using the following relationship: 

= 23.45 sin [360 x (284 + N)/365] 

where N is the Julian day, N = 1 is January 1 and N = 365 is December 31. 
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Table A1.1. Solar Declination for the Fifteenth of Each Month and Solstices and Solar 
Noon Altitude and Day Length for Agroforestry Site at Corvallis, Oregon (44°33' N, 
123°20' W).
 

Month Julian Day Solar Solar Noon Day Length 
Declination Altitude to nearest 

8 aN 0.5 hour 
(degrees) (degrees) (hours) 

January 15 -21.27 24.11 8.5 

February 46 -13.29 32.09 10.0 

March 74 -2.82 42.56 11.5 

April 105 9.41 54.79 13.5 

May 135 18.79 64.17 14.5
 

June 166 23.31 68.69 15.0
 

June 21* 172 23,45 68.83 15.5
 

July 196 21.52 66.90 15.0 

August 227 13.78 59.16 14.0 

September 258 2.22 47.60 12.0 

October 288 -9.60 35.78 10.5 

November 319 -19.15 26.23 9.0 

December 349 -23.34 22.04 8.5 

December 355 -23.45 21.93 8.0 
21* 

* Summer and winter solstices 
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The apparent daily solar path is described using two component angles, an
 

altitude angle, a, and an azimuth angle, as. The altitude angle at solar noon, aN, is
 

obtained from the formula:
 

aN = 90°- L ± 8 

where L =Latitude, 44°33' or 44.62° for our site. We can then calculate the highest 

point and the lowest noon angle the sun will ever obtain for our sky (Table A1.1). 

Therefore, at solar noon on June 22, the summer solstice, the sun will be at an altitude 

of 68.83° above a level horizon with an azimuth of 180°, true south. By definition, the 

solar azimuth angle of 180 °is solar noon. On the winter solstice, December 22, solar 

noon will produce an altitude angle of 21.93°. The closer the altitude angle nudges 

toward perpendicular, or 90°, higher levels of solar anergy fall per unit area of ground. 

This energy is expressed as the greater amounts of solar heat and higher light levels of 

summer. 

The sun's altitude angle can be calculated for any time of the day using the 

relationship: 

sin a= cos L cos 8 cos h + sin L sin 8 

where h is called the hour angle and is equal to 15° for each hour away from solar 

noon. The azimuth angle at any time is given by the relationship: 

sin as = (cos 8 sin h) cos a 

The results of these calculations for our site on the fifteen of each month are shown in 

Figure A1.1. In order to further tie our solar calculations to our PAR data, we have to 

convert solar time (ST) to match the local time (LT) recorded by the dataloggers. This 



Figure A1.1. Solar Altitude and Azimuth for Agroforestry Plots at Corvallis, Oregon. 
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operation is accomplished by the following formula: 

ST = LT + 4(LTmeridian longitude) + E 

where LTmerichan is the local time meridian, given for the various United States time zones 

in Table A1.2; and where E is a factor called the equation of time, which corrects for 

various earth-orbit phenomena. E is interpolated from Figure A1.2. Summer's daylight 

savings time requires an hour to be added to the answer from the above formula. 

A comparison of the PAR data with the graph of solar altitude and azimuth 

shows some differences for the approximate day length throughout the seasons. The 

PAR data for December shows a solar day of approximately eight and one-half hours 

with maximum values reaching 948 gmols s-1m' and an average solar noon value of 

325 jmols s-1 M-2. The length of day for this month is the approximately the same as 

that obtained from our solar graph. On the other hand, the PAR data for early July 

shows a solar day spanning seventeen hours with maximum values reaching 2010 gmols 

m2. The average value for solar noon is about 1820 gmols However, the 

solar graph indicates a day length of only fifteen hours. The effect ofa higher solar path 

provides enough diffuse skylight for between one to two hours of additional PAR 

recordings at this time. For this month, the readings for the first and last hours of the 

day ranged from near the minimum PAR threshold of 10 gmols s' m-2 to around 200 

gmols s' m2. The benefit of this twilight activity would vary among the plant 

population. Species with low light compensatory levels and an upright canopy structure 

would continue growth processes for a longer period each day. The fact that the 

maximum PAR value for December is half of the July maximum, while the average is 

less than one-fifth, is representative of the rainy, cloud-filled skies of winter. For 

convenience, the terms north and south have been used to describe directional clipping 

and PAR data. However, an examination of the GIS database (Figure A1.3) shows that 

the agroforestry tree grids are actually oriented at an azimuth value of 60'on a grid 

where true north is 0° and due east is 90°. Because the PAR sensor arrays were 



96 

Table A1.2. The Local Time Meridians for United States Standard Time Zones 

Time Zone LT-meridian 

Eastern 75° 

Central 90° 

Mountain 105° 

Pacific 120° 

Yukon 135° 

Alaska-Hawaii 150° 
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positioned to correspond to clipping transects, namely perpendicular to tree rows, they 

are not oriented to the true north-south axis of the solar path across the sky. The north 

transect actually has a azimuth value of 330° while the south transect has a value of 

150 °. Using the above formulas, we can calculate the solar altitude for a solar azimuth 

of 150° or the point when the tree is directly in line between the sun and the north PAR 

sensor array. In this position, the tree is casting its shadow directly down the sensor 

array. Using the solar altitude angle and the tree's height, we can then calculate the 

length of the shadow cast on level ground (Table A1.3). For the sake of comparison, the 

shadow lengths for a representative tree measuring 250 cm in height were also 

calculated to show shadows as they vary with the season. 

The calculated shadow lengths for a tree 250 cm in height demonstrate that, on 

level ground, tree shadows will affect all northern clipping positions from the beginning 

of October until the beginning of March. During this time, southern clipping positions 

will start to experience shading with tree shadows stretching across the entire alley for 

long periods in December and January. However, cold temperatures would be the main 

limit on any photosynthesis during this time. A comparison of PAR readings from the 

south transect, using the sensors located 1.0, 1.5, and 2.0 m from the tree, and the open 

pasture sensor showed no significant differences between the two locations for the time 

periods measured. In other words, locations directly south of representative trees 

receive the same amount of photosynthetically active radiation as open sites. Direct 

comparisons between north and south transect plots were also made when simultaneous 

recordings were made on both sides. These comparisons showed that north transect 

positions at lag distances 3.0 and 3.5 m were not significantly different from south 

transect positions at lag distances 1.0, 1.5, and 2.0 m. The major effects of shading 

were localized to within 2.5 m north of a tree. One further reference to the solar graph 

should be made at this time. An examination of azimuth angles reveals that from the 

end of March until the end of September, the sun actually rises and sets to the north of 

the east-west axis of 90°to 270°. The amount of sunshine from this northern position 

reaches a maximum of about six hours during the summer solstice providing light for 
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Figure A1.2. Equation of Time 

From Leckie, J., G. Masters, H. Whitehorse, and L. Young. 1981. Solar Thermal 
Applications. IN: More Other Homes and Garbage, Designs for Self-sufficient Living. 
Sierra Club Books, San Francisco, CA, pp 95-240. 
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plant growth to the north of shading obstacles. This solar position north of the east-west 

axis combined with the 60° aspect angle of the tree grid allows shadows from 

neighboring trees to sometimes affect the PAR values for southern transects (Figure 

A1.4). The 60°tree grid matches the northeasternmost solar aspect angle, so the 

morning sun seldom shines on the northern side of the tree rows. However, the 

afternoon sun shines on the northern side of tree rows for most of the year, from January 

20 to November 20, with neighboring tree shadows affecting some southern transect 

positions. In June and July, the sun is north of the tree grid for over five hours in the 

afternoon. Neighboring tree shadows predominately affect positions 2.5 and 3.5 meters 

south of the observation tree with PAR readings dropping to as low as 24 percent of 

available daylight. This pattern of late afternoon shading of southern PAR transects is 

apparent in graphs for April, May, June, July, August, and September. The degree of 

shading and the affected positions in the transect are determined by neighboring tree 

height, the solar descent altitude and azimuth angles, slope, and aspect of the slope. 

Overall shading reduced first period readings at south lag distances 2.0, 2.5, and 3.5 m, 

to 97, 93, and 91 percent of the maximum PAR readings (Table A1.4). For a 

comparison north lag distances 1.0, 1.5, 2.0 and 2.5 m were reduced to 49, 78, 92, and 

96 percent of the maximum readings. For the second period, only the position 3.5 m 

south of a tree was affected with 96 percent of the maximum value. North transect 

positions at 1.0 and 1.5 m produced readings of 56 and 91 percent of maximum. The 

data indicates that with a tree grid of this spacing , we also experience some slight 

shading to the south of the tree. 

(Formulas were taken from American Society of Heating, Refrigerating, and Air 

Conditioning Engineers Handbook of Fundamentals. 1991. ASHRAE New York, NY 

638p.) 



Figure A1.3. Aspect of the Slopes of Witham Hill with OSU Rangeland Resources Agroforestry Research Plots in Corvallis, Oregon. 
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Table A1.3. North PAR Data Collection Periods with Local Time for Solar Noon, Solar 
and Local Time for Solar Azimuth 150° (tree shadow aligned with PAR sensors), Solar 
Altitude, Calculated Shadow Length of Actual Tree, and Calculated Shadow Length of 
250 cm Tree. 

All values are the means for the collection periods. 
Time is given using a 24 hour clock. 

Time Solar Solar Local Solar Shadow Shadow 
Period Noon Time at Time* at Altitude Length Length 

Local Azimuth Azimuth at Actual 250 cm 
Time* 150° 150° Azimuth Tree Tree 

150° (cm) (cm) 
(degrees) 

Feb. 22 12:16 10:18 10:34 31.79 455 403
 
-Mar. 5
 

Apr. 26 13:06 10:55 12:01 57.05 183 162 
-May 5 

May 17 13:06 11:03 12:16 62.52 147 130
 
-22
 

June 14 13:10 11:10 12:19 66.41 117 109
 
-27
 

July 10 13:11 11:07 12:18 64.52 119 119
 
-18
 

August 13:11 10:54 12:05 56.70 164 164
 
9 -17
 

Sept. 24 13:02 10:27 11:28 37.59 540 325 
-Oct 4 

Dec 12:05 09:54 09:59 16.43 844 848 
6-16 

*Local time is adjusted to show daylight savings time where applicable. 
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Figure A1.4. Average PAR Readings for Average Day and Observed Trees' Height. 
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Appendix 2
 



Table A2.1. Clipping Biomass for Root Barrier Plots for May 17-20, 1994 

Tree Direction Height Diameter Canopy 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gm gm gm 

106 N 236 46 132 20.2 21.1 18.3 24.1 15.7 

198 S 280 52 143 26.8 27.3 28.3 27.4 21.4 

465 N 234 61 157 24.8 30.6 33.9 27.1 16.4 

527 S 252 56 177 21.2 34.6 21.7 17.4 14.6 

789 N 207 42 129 20.9 29.1 32.4 27.7 22.4 

796 S 206 53 150 13.1 23.6 23.5 21.5 20.2 



Table A2.2. Clipping Biomass for Root Barrier Plots for June 26 - July 7, 1994 

Tree Direction Height Diameter Canopy 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gm gm gm 

106 N 236 46 153 30.2 24.4 24.2 27.5 24.5 

198 S 280 52 166 24.5 33.9 29.7 39.7 50.5 

465 N 234 61 197 25.4 17.7 14.7 14.7 11.9 

527 S 252 56 177 0.0 34.3 18.2 17.5 12.9 

789 N 207 42 129 21.0 41.6 17.8 21.8 26.0 

796 S 206 53 150 16.4 19.2 24.5 18.8 29.1 



Table A2.3. Clipping Biomass for Root Barrier Plots for May 22, 1995. 

Tree Direction Height Diameter Canopy 1.0 m 1.5 in 2.0 in 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gm gm gm 

106 N 290 75 187 43.2 47.3 45.0 44.1 36.1 

198 S 307 67 203 48.4 42.1 43.5 56.0 54.6 

465 N 318 80 221 39.4 39.0 63.0 50.2 32.1 

527 S 326 80 256 39.5 63.2 61.9 68.4 45.1 

789 N died died died 29.7 36.9 31.4 36.0 48.4 

796 S 241 76 164 41.2 51.2 42.8 46.3 50.3 



Table A2.4. Clipping Biomass for Control Trees for Root Barrier Plots for May 17-20, 1994 

Tree Direction Height Diameter Canopy 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gm gm gm 

108 N 209 43 136 18.6 19.4 22.8 20.2 30.5 

191 S 237 45 150 24.5 37.8 22.8 22.9 37.1 

463 N 236 42 144 26.0 22.2 22.3 14.2 18.8 

528 S 240 59 185 23.1 33.0 25.4 24.7 21.7 

790 N 198 39 121 37.8 28.4 15.2 21.6 22.4 

797 S 208 50 118 19.0 24.0 19.6 16.3 22.0 



Table A2.5. Clipping Biomass for Control Trees for Root Barrier Plots for June 26 July 7, 1994 

Tree Direction Height Diameter Canopy 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gmgm gm 

108 N 209 43 136 36.6 31.3 19.5 19.1 21.2 

191 S 237 45 150 19.8 23.4 18.5 31.4 17.5 

463 N 236 42 144 22.3 18.1 19.8 14.7 26.9 

529 S 278 54 204 27.2 12.9 16.8 12.3 8.7 

790 N 198 39 121 27.8 27.3 19.6 13.4 14.3 

797 S 208 50 118 20.5 30.9 21.4 37.6 27.8 



Table A2.6. Clipping Biomass for Control Trees for Root Barrier Plots for May 22, 1995. 

Tree Direction Height Diameter Canopy 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m 
Number N or S in cm in mm Diameter from Tree from Tree from Tree from Tree from Tree 

in cm gm gm gm gm gm 

108 N 281 67 163 44.6 45.0 41.4 49.7 45.5 

191 S 324 67 193 51.3 49.6 61.6 54.6 54.9 

463 N 306* 67 187 32.9 48.2 49.7 40.5 41.8 

529 S 390 90 245 47.3 49.4 57.9 59.4 57.6 

790 N 234* 52 154 63.7 55.3 41.4 55.4 0.0' 

797 S 276 66 143 53.1 67.6 61.7 52.4 52.7 

*late measurement 7/95 
mole hill 




