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Appendix S1: Mathematical methods and estimation techniques

S1.1: Linear stability analysis of the disease-free equilibrium

We linearize the model Egs. (1)-(3) in the vicinity of the disease-free fixed point H (z,y,t) = K,
I(z,y,t) = 0, R(z,y,t) = 0 and obtain the following equations for the small deviations from this
fixed point {(z,y,t) and I(z,y,t):

%}yﬁ = —rud(T,y,1) - 5K/f€(x,y,u,v)f(u,v,t>du dv, (S.1)
8I(gtyat) — ﬁK//i(x,y,u, ) (u, v, t)dudv — pl(z,y,t). (S.2)

The disease-free fixed point becomes unstable if the small deviation I(z, y, t) grows over time. To
check this, we substitute I(z, y, t) = w(z, y)e* in Eq. S.2. Then, the stability of the disease-free
fixed point is determined by solving eigenvalue problem

do dy
B—K/ du/ dv k(r)w(u,v) = cw(x,y), (8.3)
HoJo 0

where o = 1 + \/pu. The eigenvalue problem here consists in finding the values of A ;and functions
w(z,y) satisfying the relationship (A.3). The disease-free fixed point is unstable if at least one of
A; has a positive real part. Eq. 6 is the homogeneous Fredholm equation of the second kind and can
be solved numerically using the Nystrom method (Press et al., 1992). The dominant eigenvalue o,
determines the basic reproductive number, 1. €. Ry = 0,4 Note that the eigenvalue problem Eq. S.3
also determines the stability properties of the corresponding integro-difference system of equations
in discrete time.

$1.2 Approximation for the basic reproductive number

Approximate expression for the basic reproductive number for the model Egs. (1)-(2) can be found
by applying its intuitive definition “the average number of secondary cases of infection generated
by one primary case in a susceptible host population” (Anderson and May, 1986) with the averaging
performed over the spatial coordinates. This leads to the expression:

K dy dy
ROC(x07y0) = 57/ dl’/ dy /{(xayaanyO)‘ (84)
0 0

Here, the basic reproductive number depends on the position g, o of the initial inoculum. The
basic reproductive number in Eq. S.4 does not yield the invasion threshold at Ry.(zo, y0) = 1 (Diek-
mann et al., 1990). However it may serve as a useful approximate expression, since the calculation
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according to Eq. S.4 is often much simpler than the solution of the eigenvalue problem Eq.S.3. In
order to determine how good this approximation is, we obtain an explicit expression for Ro.(xq, yo)

i~ 8 (1) ()] o (55) ()] o

where we substituted () in Eq. S.4 with the Gaussian dispersal kernel
ki (r) = Foc exp|—(r/a)?]. (8.6)

The approximate basic reproductive number Ry.(¢, yo) in Eq. S.4 depends on the position of the
initial inoculum x0, y0. In order to obtain a single quantity for a particular spatial configuration of
the host population, we average Ro.(o, yo) over all possible values of xg, yo within the field:

da dy
(o0, o)) / di / dy Ry(z, ). (57)

In the case of the Gaussian dispersal kernel the Eq. S.7 yields:

(Roc(0, Y0))zo,m0 = dddy ﬁf (\/g(exp[—di/(%z)] 1)+ %erf [\j%J) X (S.8)

(@(exp[—di/@az)] —1)+ %erf {\?GD (S.9)

In Figure S1, the approximate basic reproductive numbers Ro.(zo, yo) calculated using Eq. S.5
(dotted curves), the spatially averaged (Ro.(Zo, Y0))z04 [EQ. S.8, dashed curve] and the exact basic
reproductive number obtained by solving Eq. A.3 (solid curve) are plotted versus the field size d. The
approximate Ro.(xo, 3o) is highest when the initial inoculum is introduced to the center of the field
(upper dotted curve in Fig. S1) and is lower at the field border and in its corner (middle and lower
dotted curves in Fig. S1). The spatial averaged (Roc(zo, Yo))zoy 1S reasonably close to the actual
Ry (cf. dashed and solid curves in Fig. S1), but it underestimates the actual R, because it neglects
the contribution of the subsequent generations of infection. At d > a the R, tends asymptotically
to the maximal value of Ro.(zo, ¥o), achieved at the field center v = d/2, y = d /2. The values of
Ro.(xo, o) at the border and in the corner of the field also reach constant but considerably smaller
values at d < a. This can be explained by the fact that when the size of the field increases, the
surface-to-volume ratio of the square field d ecreases, meaning that t he c ontribution o f t he hosts
close to the field border to R ( steadily decreases.

All the curves in Fig. S1 behave in the same way at small field sizes (i.e. when d < a): they
increase quadratically with the field size d, according to

K
Roasympt = B—dz. (S.10)

2mwa?y

Thus, the approximate expression for the basic reproductive number Eq. S.4 holds well in the two

limiting cases: at small field sizes (i. e. when d < a) and at large field sizes (i. e. when d > a).



A. Mikaberidze et al.

2.0r

VT R L
A
A

1.5;

£y 1.0r

AT iy
\
N
N

0.5t

0 5 10 15 20 25 30
field size d/a

Figure S1: Basic reproductive number R, as a function of the field size d of the square two-
dimensional field measured in units of the dispersal radius for the Gaussian dispersal
kernel [Eq. S.6]. Solid curve shows the Ry computed by solving the eigenvalue problem
in Eq. S.3. Dotted curves represent the approximate Ry.(zo, yo), according to Eq. S.5
with the initial inoculum located at the field center (zo = yo = d/2, upper curve), at the
field border (z¢ = d/2, yo = 0, middle curve) and in the corner of the field (zq= 0, yo =
0, lower curve). The dashed curve shows the average (Ro.(Zo, Yo))uoy, OVer the field,
according to Eq. S.8. Model parameters: =4, K =1, u = 2.
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S.3. Estimation of the basic reproductive humber as a function of the
field size and shape

The basic reproductive number, R can be determined as the dominant eigenvalue of the Fredholm
equation Eq. S.3 We compute it as a function of the dimensions d, and d, of a rectangular field,
which characterize its size and shape. To do this, we obtain numerical estimates for the dispersal
kernel x(r) (Sec. S.3.1 and Sec. S.3.2) and the parameter combination SK/u (Sec. S.3.3), which as
we will show corresponds to the limit of Ry at d,, d, — oo.

S.3.1. Fitting disease gradients

Disease gradients were measured in terms of both average number of lesions per leaf and disease
severity in a large-scale experiment over three consecutive seasons (Sackett and Mundt, 2005a;
Cowger et al., 2005). The datasets corresponding ot the average numbers of lesions per leaf in
primary disease gradients were fitted using several different model functions (Sackett and Mundt,
2005a). Here, we also fitted the disease severity measurements corresponding to primary disease
gradients (Fig. 2) for the two largest datasets (Hermiston 2002 and Madras 2002) of the experiments
(Sackett and Mundt, 2005a; Cowger et al., 2005).

The following model functions are often used to fit the disease gradient data. Lambert kernel
(Lambert et al., 1980)

yL(r) = yo exp|—(r/a)"], (S.11)

which includes the special cases of the exponential (or Laplacian) kernel at n = 1 and the Gaussian
kernel at n = 2. Power-law kernel (Gregory, 1968)

ypr(r) = yor™" (S.12)

is used to describe disease gradients of pathogens with long-range dispersal. However, the function
approaches infinity at the focus » = 0, which is unrealistic. For this reason a modified power-law
kernel was introduced (Mundt and Leonard, 1985)

ypra (1) = yo(ro + T)_b- (8.13)

It exhibits the same behavior as the power-law kernel in Eq. S.12 at large r, but the divergence is
“softened” such that the function has a finite value at » = 0. In this study, we used a different form
of the modified power-law kernel

b/ (S.14)

ypra(r) = yo (5 +1?)
that is very similar to Eq. S.13, but is more suitable for extensive numerical computations required
for the solution of the eigenvalue problem in Eq. 6.

Figure 2 shows the primary disease gradients in terms of the disease severity for the two largest
datasets obtained in (Cowger et al., 2005; Sackett and Mundt, 2005a): Hermiston 2002 (left panel)
and Madras 2002 (right panel). Both of the datasets were fitted using the exponential kernel [Eq. S.11
with n = 1], Lambert kernel [Eq. S.11], modified power law 1 [Eq. S.13, fit not shown] and mod-
ified power law 2 [Eq.S.14]. The two modified power laws provided best fits with the modified
power law 2 being slightly better. It is our kernel of choice, since it also allows for faster numerical
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solutions of the eigenvalue problem in Eq. 6. We fix the parameter
The fit of the modified power-law function in Eq. S.14 to the disease gradient data shown in Fig. 2
yielded the following estimates for the parameter values:

Hermiston 2002 downwind b = 2.51 £ 0.03, yo = 0.65 £ 0.054; (8.15)

Madras 2002 downwind b = 2.41 £+ 0.06, yo = 0.095 £ 0.016. (S.16)

Here, the uncertainties represent 95 % confidence intervals that were calculated from standard
errors.

S.3.2. Definition and normalization of the dispersal kernel

We defined the dispersal kernel x(z, y, u, v) as a probability density function for an infectious spore
to land at a distance r from its source (Nathan et al., 2012). The fact that a spore should eventually
land somewhere is reflected in the condition to normalize the dispersal kernel:

2m 00
/ d@/ drre(r,0) = 1. (S.17)
0 0

Here, we transformed the dispersal kernel to polar coordinates using the relationships x = r cos,
y = rsinf. In the case of isotropic dispersal x(r,0) = k(r), i.e. the dispersal kernel does not
depend on the angle of dispersal §. Then the normalization condition reads

27 /OO drre(r) = 1. (S.18)
0

Next, we provide the normalization condition for the modified power-law function Ypy2(r) [Eq. S.14]
and for the Lambert function [Eq. S.11].

The dispersal kernel x(r) is assumed to be proportional to the disease gradient y(r) (see Sec. 3.2).
Therefore, the dispersal kernel should be given by the same function as the disease gradient

—b
kpLa(r) = kopra (12 +72) %, (S.19)

but with the different proportionality constant «,, which is obtained by substituting the Eq. S.19 into
the normalization condition Eq. S.18:

kopLe = (b — 2)r572/(27). (5.20)

This expression is valid only if the integral in Eq. S.18 converges, which is the case at b > 2. In both
datasets used here (Hermiston 2002 and Madras 2002 downwind) this condition is fulfilled for the
values of b, corresponding to the best fit.

Similarly, the Lambert dispersal kernel has the form:

k1(r) = KoL exp[—(r/a)"], (8.21)
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where
1

ma’T (52)
is determined from the normalization condition Eq. S.18.

We use the numerical values for the best-fit parameters Eq. S.15 and Eq. S.16 to obtain estimates
for kousing Eq. S.20:

(8.22)

KoL =

Hermiston 2002 downwind : k¢ = 0.071, (8.23)
Madras 2002 downwind : ko = 0.058. (8.24)

Thus, our estimates for the dispersal kernels () are given by the Eq. S.19 with the parameter
values from Eq. S.15 and Eq. S.23 for Hermiston 2002 downwind; and from Eq. S.16 and Eq. S.24.

S.3.3. Estimation of the R, in the limit of a large field size

First, we consider the host population to be initially fully susceptible and have the leaf area index of
K. Then, we introduce a localized unit of infected hosts (focus or source, hence the index ”’s”) at a
position z, ys

H(z,y,t =0) =K, I(z,y,t =0) = Liotod(x — x5)I(y — ys). (5.25)

We are interested here only in the primary infections occuring due /(x, y,t = 0), because the amount
of disease due to the primary infection (or the primary disease gradient) is often measured in experi-
ment (for example, (Sackett and Mundt, 20054a)). Hence, we derive the amount of infection produced
after a single time step At from Eq. 2:

[I(x,y,t = At) — I(x,y,t =0)] /At = (S.26)
16 /dw du /dy dvk(z,y,u,v)I(u,v,t =0)H(z,y,t =0) — pul(z,y,t =0) (8.27)
0 0
By substituting Eq. S.25 in Eq. S.26 we obtain
Al(x,y,t = At) = LAt KaSR(T, Y, Ts, Ys), (5.28)

where
Al(z,y,t = At) = I(x,y,t = At) — I(z,y,t =0) (5.29)

represents the primary disease gradient from a localized point-like source. Further, we assume
dispersal to be isotropic and set the coordinate of the focus to zero, i.e. zs = 0. Then, the amount
if infected host in the next time step and the dispersal function depend only on the distance r =
\/ 22+ y? from the focus, i.e. I(x, y, t = At) = I(r, t = At), k(z, y, s, ys) = £(r). We can then re-
write the Eq. S.28:

Al(r,t = At) = LAt KaBR(T), (5.30)

Next, we connect Al(x,y,t = At) with the whole-plant disease severity y(r).
The quantity /(r,¢) in our model that represents the spatial density of the infected host tissue.
In the case of wheat stripe rust it is the infected leaf area per unit land area (in analogy with the
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“leaf area index” (LAI), we will call it the “infected leaf area index” (ILAI)). We express the disease
severity as a ratio y(r) = Z(r)/Ka¢, where Z(r) is the total infected leaf area at a location r and
KCa¢ is the total leaf area at a location. By dividing both the numerator and the denominator of
this expression by the unit land area As, we obtain y(r) = AI(r)/K s, where Al(r) is given by Eq.
S.29, and K a;1s the total leaf area index. Therefore,

Al(r,t) = At) = Kay(r). (8.31)
On the other hand, from Eq. S.30
Al(r,t = At) = BEKa Aok (T). (8.32)
By equating Eq. S.31 and Eq. S.32 we obtain the relationship

p__1L M (8.33)

o Lo (1)

Here we assumed At¢ = 1/u, which implies that the consecutive pathogen generations do not
overlap (see the discussion in Sec. S.1). We multiply both sides of the Eq. S.33 by the leaf area index
K ;attime ¢t = At and obtain the expression for Ry = BKar/ 14

Kat Yo
ItotO Ko

Ros = (8.34)

Here we used the fact that x(r) is proportional to Y (r) and, therefore, their ratio equals to the ratio
Yo / Ko.

Now, we determine the intensity of the initial inoculum /i, [Eq. S.25] from experimental pa-
rameters. The J-functions in Eq. S.25 represent an infinitely narrow peak of a unit height. This is an
idealized mathematical entity that can, however, be quite useful. It describes the actual situation well
if the spatial scale of interest is much larger than the size of the focus. This was the case in the stud-
ies (Sackett and Mundt, 2005a; Cowger et al., 2005), where the focus (the area inoculated initially)
was a square with the side Az = 1.52 m, while the spatial scale over which the epidemic developed
in the next generation was 50-80 m for the two largest datasets (Hermiston 2002 and Madras 2002
downwind).

A:z:f Aa:f A:cf Aa:f
[ e [ oo =00t - ) = o= [ de [ aulo= ygiona 539
0 0 0 0

Here, vy is the disease severity at the focus caused by artificially inoculated spores (first generation)
and K is the leaf area index at the time of inoculation (“zeroth” generation). The Eq. S.35 says
what the intensity of the initial inoculum should be if it was concentrated in a very small area such
that the total amount of disease is the same as in the experiment.

Lioto = yrKoAxF. (S.36)
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After substituting Eq. S.36 into Eq. S.34 we obtain:

Kae 1 o
= — =—. S.37
Ky yfo?c Ko (5.37)

0Ooo

The expression in Eq.S.37 now consists of the parameters that are known from a typical disease
gradient experiment.

We use the estimates we obtained above for the parameters y, [Eq. S.15 and Eq. S.16] and «, [Eq.
S.23 and Eq. S.24], also use the area of the focus Az = 1.52 m x 1.52 m = 2.31 m? for both
datasets and the values for the initial disease severity y; = 0.227 (Hermiston 2002) and y; = 0.062
(Madras 2002) (Cowger et al., 2005). We also assume that the leaf area index at the time of
inoculation K was two times smaller than its value at the time of disease gradient measurement,
when the plants almost reached their maximum size, i. e. Ka; = 2K. By substituting these values
into Eq. S.37 we obtain the estimates for Ry:

Hermiston 2002 downwind Ry, = 34.6 & 2.9; (8.38)

Madras 2002 downwind Ry, = 22.9 4+ 3.8. (8.39)

The uncertainties in the Ry, estimates in Eq. S.38 and Eq. S.39 represent 95 % confidence intervals.
Here, we only took into account errors in the parameter y, (see Eq. S.15 and Eq. S.16 above) and
neglected errors in other parameters, because they are much smaller than errors in .

Having obtained the numerical values for the parameter Ry, = K a;/p and the function x(r), we
solved the eigenvalue problem in Eq. S.3 numerically for different values of d, and d, and
determined the basic reproductive number R, as a function of the field size and shape. The results of
this computation are shown in Fig. 3 and Fig. 4.

S.4. Susceptible-infected model with spatial spore dispersal

In this section we consider the model that takes into account spore dynamics explicitly. Our goal
here is to describe the approximation that was used to obtain the simplified model Egs. (1)-(2) that
do not explicitly include spore dynamics. For the sake of brevity we consider the model in one-
dimensional space, but it is straightforward to extend the consideration to two dimensions. The
model of host-pathogen population dynamics reads

d
LD (K = 1) = 8 [ nlls = a)Uls.0ds Hm0), (540)
ot i
d
al(aa;, t _ 5//0 k(|s — 2|)U (s, t)ds H(w,t) — pl (, 1), (SA1)
% =1, 8) = 1U(z,1), (S.42)

where H(z,t), I(x,t) represent the areas covered by susceptible and infected host tissue, corre-
spondingly, per unit area of the field; and U(z,t) represents the number of spores per unit area of
the field. Susceptible hosts H (x,t) grow with the rate ry. Their growth is limited by the “carrying
capacity” K, implying limited space or nutrients. Furthermore, susceptible hosts H(x,t) may be
infected by the pathogen and transformed into infected hosts in the compartment /(z,¢) with the
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transmission rate (3. The corresponding terms in Egs. (S.40)-(S.41) are proportional to the amount of
the available susceptible tissue H(x, t) and to the amount of the infectious spores U(x, t) at the
location x. Infectious spores are produced at the rate y and lost at the rate 1.

Here, x(|s — x|) is the dispersal kernel that characterizes the probability of an infectious spore,
produced at the location s to land at the location x. The integration is performed over all possible
sources of spores within the field, i.e. over the whole extension of the field from O to d, where d is
the size of the field. We assume that the dispersal kernel depends only on the distance |s — z|. The
fact that the spore should land somewhere allows to normalize this function such that the integral of
it over the whole space is unity:

/OO k(r)J(r)dr =1, (5.43)
0

where J(r) = 1 for the one-dimensional case considered here, and .J(r) = r for the two-dimensional
case (in this case additional integration over the polar angle is required).

We assume that the characteristic time scale of spore dispersal is much shorter than the charac-
teristic time scales associated with other stages of the pathogen life cycle. Then, the equation for
spores is assumed to quickly assume the equilibrium state, with the left-hand side equal to zero and
Uz, t) = (y/p)I(x, t). This means that the density of spores is proportional the density of the
infectious host tissue. By substituting this expression into Egs. (5.40)-(S.42), we reduce the model to
just two Egs. (1)-(2), where the transmission rate is a compound parameter: 5= v’/ /.

S.5. Effect of the plot size on fungicide dose-response

In this section we present details on how we obtained the results described in Sec. 3.3 and in Fig. 5 of
the main text. The data on disease severity of stripe rust versus the dose of epoxiconazole fungicide
were taken from the Home-Grown Cereal Authority (HGCA) project report (Bounds et al., 2012).
We chose epoxiconazole among several other fungicides considered in (Bounds et al., 2012), because
it is an important and widely used fungicide for controlling stripe rust. Moreover, the dose-response
curves for other fungicides are similar. Hence, we expect qualitatively similar outcomes.

We first estimate the fungicide dose-response parameters ¢, and Dso. To do this, we determine the
relationship between the decrease in the transmission rate 5 and the decrease in the disease severity,
y, defined as

() — I(t) + R(1)
IO+ RO+ HE)

where H (t), I(t) and R(t) are solutions of Egs. (1)-(3). In the following, we consider the case when
the threshold for epidemic development is exceeded, i.e. Ry > 1.
Initially, the host density in the infected compartment grows exponentially

(S.44)

I = Iyexp [r(D)t], (S.45)

where the growth rate, r(D), depends on the fungicide dose D. 7(D) is related to other model
parameters in the following manner

r(D) = B[1 — e(D)|K — u = u[Ro(D) — 1], (5.46)
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where
Ro(D) = Ro(D = 0)[1 —e(D)] (5.47)

and £(D) is given by Eq. 9 in the main text.

Next, we substitute the Eq. S.45 in Eq. 3 and perform integration with respect to time ¢, to obtain
I(t) + R(t) = Io [(1 + p/r(D)) exp [r(D)t] — p/r(D)]. The assumption of exponential growth of
I,(t) implies in addition that I(t) + R(t) + H(t) ~ K. Consequently, using Eq. S.45, we obtain the
expression for the disease severity, neglecting the dependence of the coefficient before the
exponential function on the fungicide dose D:

y(t) = yoexp [(Ro[l — e(D)] = 1) ], (S.48)

where we neglected the term Iyu/r (D), as it is much smaller than the exponentially growing term.

In contrast, over large times (but within a single growing season), disease severity approaches a
constant value (Gilligan, 1990; Madden et al., 2006). For simplicity, we approximate the dependence
of the disease severity on time using the logistic function

1

) = T gy — e [(—Roll — (D) = 4]

(5.49)

which behaves as an exponential in Eq. S.48 during the initial phase and approaches unity over large
times.

Further, we fit the expression for the disease severity in Eq. S.49 to the the empirical dose-
response curve for epoxiconazole (triangles in Fig. 5(a)). To do this, we set the time of fungicide
application to zero (to = 0), use xk = 1, set t; ~ 32 days (Bounds et al., 2012), and x = 0.033 day !
(Sache and Vallavieille-Pope, 1993). We also use the value of the basic reproductive number in the
absence of fungicides Ro(D = 0, S = 60 m?) = 12.6. We obtained this estimate using the Her-
miston 2002 disease gradient dataset (Sackett and Mundt, 2005a; Cowger et al., 2005) for a square
field with the area of ~ 60 m?, which is the field size used in the field experiments where fungicide
dose-response curves were measured (Bounds et al., 2012). We consider the initial severity, y,, and
the dose-response parameters, ¢, and D5, as fitting parameters. As a result, we obtain the best-fit
estimates:

em = 0.290 £ 0.009, D5y = 0.050 4 0.013, o = (2.9 £ 0.025) x 1075, (8.50)

The uncertainties in Eq. S.50 represent the 95 % confidence intervals.

We substitute the best-fit values of ¢, and D5y from Eq. S.50 in Eq. S.47, and estimate the depen-
dence of the basic reproductive number on the fungicide dose at the field size that was used in the
din Fig. 5(b) in the main text). Next, assuming that the fungicide and the field size affect the basic
reproductive number as independent factors, 1. e. multiplicatively, we determine the dependence of
the basic reproductive number on the fungicide dose at a 50 % larger field size of S = 90 m?, linear
extension d = 9.5 m (dashed red curve in Fig. 3(b)). We do this using the same values of the dose-
response parameters ¢, and Dsq (Eq. S.50), but a different value of Ry in the absence of fungicides,
Ro(D = 0, d = 9.5 m) = 16, that we estimated from the Hermiston 2002 disease gradient dataset
(see solid red curve in Fig. 3). Finally, we compute the dependence of the disease severity on the
fungicide dose for this larger field size, by substituting Eq. S.50 and Ry(D =0,d =9.5m) = 16 in

10
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Eq. A.50. The result is shown as a dashed red curve in Fig. 5(a).
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