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The increasing level of complexity in systems creates a growing challenge 

for engineers to design safe and reliable systems.  The growing complexity can 

lead to possible moments when situations occur that were unanticipated or were 

not known that they could occur by designers and leave the system in an 

undesirable state.  This may happen if system designers were unable to identify the 

failure state or if they failed to pass on known information to other designers. 

This research aims to provide a systematic approach to identifying failure 

states in complex systems and to improve the connection between the different 

sides of development of the system by proposing a methodology of investigating 

the failure states.  The methodology identifies potential failure states as a system 

executes a command and has designers examine them to make recommendations 

into the severity and potential solutions to the failure state.  The information is 

organized into a single table that is passed over to other system developers and 



 
used in the design of the other sub-systems.  The table also serves as a record of 

the analysis that can be used for reuse or future redesigns. 

The benefits of the methodology are examined using the K10 rover 

developed by NASA as an example.  The K10 rover is analyzed to identify its 

failure states as it executes a command.  The identified failure states are analyzed 

and the information gained is used to classify the failure state according to a 

ranking scale developed for this research.   
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FAILURE STATE IDENTIFICATION FOR REQUIREMENTS 
DEVELOPMENT DURING COMPLEX SYSTEM DESIGN 

 

1 Introduction 

The increasing level of complexity in systems creates a growing challenge 

for engineers to have a complete understanding of the system and the interactions 

of components and subsystems.  Modern systems require several specialties in 

engineering and design to create systems that consist of several components and 

subsystems working together to meet the functionality and appeal that customers 

demand.  The growing complexity can lead to possible moments when situations 

occur that were unanticipated or were not known that they could occur by 

designers and leave the system in an undesirable state.  This may happen if the 

designers were unable to identify these potential failures or if they failed to pass on 

known information to other parties involved in the design. 

A complex system refers to a system that is composed of interconnected 

elements that function together as a whole to perform operations that would not be 

able to do by the elements alone.  A complex system can be something living like 

a beehive or the human body, something electro-mechanical like a car or 

computer, or anything with different components working together to accomplish a 

goal together.  For the system to be successful, all sides of the system need to be 

aware of what it takes for each element of the system to be successful as it 

performs an operation. This research aims to improve the connection 

between different sides of development of a complex system by proposing a 

methodology of systematically identifying potential failure states for the system as 
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it completes a process and analyzing them to increase awareness for all sides of 

development.  Designers of the system examine the potential failures to make 

recommendations into the severity and potential solutions to the failure state.  The 

analyzed failure state information is passed over to the system developers and used 

in the design of the system.  The analysis serves as a record for the system that can 

be used for reuse or future redesigns. 

 The benefits of the research are examined using the K10 Rover, a software 

driven hardware system, as an example complex system.  A software driven 

hardware system is one that utilizes software to run the hardware of the system to 

achieve the desired functionality.  Such electro-mechanical systems include 

aspects of mechanical engineering, controls engineering, electronic engineering, 

computer engineering and systems engineering.  

 

1.1 Research Goals 

To design more successful systems, it is necessary for system designers to 

have a better understanding of the different sides of development and to better 

communicate requirements.  To accomplish these goals, this research aims to make 

a bridge between system designers by identifying potential failures of the system 

and communicating them to developers that need the information.  This will lead 

to a clearer and better understanding between sides of development in a complex 

system.   
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The four goals of  

•Bridging the sides of development for a complex system 

•Identifying requirements for the system as it completes a process and 

properly managing them 

•Identifying risk for the system 

•Creating a record of the system to be used in design reuse and analysis  

are further explored. 

 

1.2 Bridging Sides of Development in Complex Systems 

 Complex systems require many disciplines of study to design and develop.  

For example, software developers have a much different background and training 

than a hardware designer would have.  Hardware and software designers use 

different terminology and it can be confusing trying to communicate necessary 

information for the development of the system.  

 When different parties involved in the development of a system do not 

have good communication, it can lead to a poorly designed system.  An example 

of this is the Mars Climate Orbiter (MCO) that was designed by NASA.  The 

software and hardware developers each used a different set of units in their designs 

and calculations.  The hardware and software were put together and the mission 

ended in failure when the system failed due to the miscalculations between the 

hardware and software [1].  Tools or a methodology to ensure proper 

communication can lead to more successful systems. 
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1.3 Requirements Identification and Management of Complex 
Systems 

When requirements are not identified and prepared for or properly 

managed for a system, it can leave it in an undesirable state and potentially end in 

failure.  An example of this is the Mars Polar Lander (MPL) designed by NASA.  

The hardware designers identified a requirement for the system as it prepared for 

landing on a surface.  The requirement was not communicated to the software 

developers and a signal was allowed to propagate that cut off the rockets 

prematurely during its landing sequence and the mission ended in failure when the 

MPL crashed into the surface of Mars [2, 3].  If the requirement had been 

effectively managed and communicated to the software developers, the mission 

may have been more successful. 

 

1.4 Risk in Complex Systems 

 Complex systems can have several interconnections between the 

subsystems and its components.  This can quickly become complicated and 

difficult for system designers to have a complete understanding of what is going 

on and what can happen.  If information for the operation of the system is 

unknown or unavailable, it poses a risk to the system and its operation.  System 

designers need to be able to identify risk and be able to effectively control it to 

ensure safe and reliable operation. 

 The Ford Focus debuted in the United States for the 2000 model year.  The 

car was a sales success but the car was plagued with system failures including 
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wheels falling off, roof pillars that may cause damages during a vehicle rollover, 

inadvertent deployment of the airbags, engine compartment fires, and engine 

stalling.  These failures have led to it being the most recalled car in recent history 

[4].  Engineers working on the design need to know how much risk they are taking 

to avoid embarrassing failures that can leave a poor image for organizations.  

 

1.5 Design Reuse in Complex Systems 

The aging of the baby boomer generation is leading to the retirement of 

many working professionals.  With their retirement, they also take years of 

knowledge about projects and systems that they have worked on.  If the 

information was not properly documented for future use, it could be very costly to 

the companies and organizations when developing new systems.  The problem is 

perceived as so severe in Japan, that it was named the “2007 Problem” there [5, 6]. 

Systems are expensive to design and upgrading or using parts of previous 

systems is a way to help reduce development costs.  If interconnections from 

previous designs with updated features are unknown, this could leave the system in 

an undesirable state or cause failure. An example of this is the Ariane 5 rocket [7-

9].  The Ariane 5 rocket was upgraded from the Ariane 4 rocket by putting in a 

more powerful engine.  When this was done a crucial exception handler in the 

software that controlled the burn time of the engine was neglected and the mission 

ended in failure when the rocket exploded as it was launching.  A methodology 
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that successfully captures the requirements of operation for a system as it operates 

is necessary to avoid disasters such as this. 

 

1.6 Contributions of Research 

          This research aims to improve the design of complex systems by addressing 

the four goals that were stated earlier.  This research utilizes several of the 

methods that are currently used and improves on areas where methods are lacking.  

The methodology developed uses a model structure inspired from IDEF0 that 

investigates processes that systems perform.  The model breaks down to an event 

sequence of the process and investigates the components acting on each event in 

the sequence and what possible states are a possible outcome to identify desirable 

states (will not cause harm to the system), and failure states (undesirable states that 

may cause harm to the system or endanger the system from completing its goals).  

Functional modeling flows are used to demonstrate the change of functionality and 

help designers brainstorm how the system performs its functions.  The identified 

failure states are analyzed for the possible harm they may cause to a system and 

what other sub-system designers need to be aware of to handle the situation.  The 

analyzed failure states are used to determine a reliability ranking for the process 

that is used to determine reliability of event sequences of the processes a system 

performs. 

 The methodology is a systematic analysis of the systems processes to 

determine possible failures of the system and to communicate the analysis to other 



7 
 

sub-system developers to use in their designs.  The analysis acts as a design record 

for future analysis of the design and to be used in future redesigns or reuse of the 

system. 
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2 Literature Review 

 Space missions still have failures, cars still get recalled, and other complex 

systems continue to have failures.  There has been a lot of research into designing 

complex systems, but it is obvious we still need to make inroads if system failures 

are still occurring.  Failures can be expensive, embarrassing, damaging to an 

organization and even deadly.   

 One reason for these failures is the growing complexity of systems that can 

lead to a disconnect between system developers and ineffective communication or 

a lack of understanding between them.  This research aims to have a single 

methodology to identify potential failures, give input into the potential failures by 

system designers, document the analysis and communicate the results.  This 

research is different in the method of identifying the potential failures and how it 

aims to be a single methodology and accomplish the four goals stated in the 

introduction. 

 To be able to accomplish the goals of the research, several areas of 

research are combined to put together a complete model.  Ideas from functional 

modeling are used to help capture change in functionality and a process modeling 

hierarchical structure is modified and used as a basis for the structure of the 

models.  These ideas are used in conjunction with event sequence diagrams to 

form a model of the system that captures event sequencing, change in states, 

related software inputs and outputs, and change in system flows to identify 

undesirable states of the system to be analyzed as a failure state.   
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 An overview of what is currently being done to try and accomplish the four 

goals of this research is performed. 

 

2.1 Bridging Sides of Development in Complex Systems 

 The design process is the organization and management of people and the 

information they develop in the evolution of a product [10].  How the design 

process is executed is crucial to how successful the system will perform.  For 

complex systems it is crucial to have all sides of development of the system work 

together and have knowledge of the other sub-systems to ensure that they work 

well together.   

Concurrent engineering is an area of study that examines different 

techniques to develop a more integrated design approach between different sides 

of development to avoid a “throw it over the wall” disconnected design approach 

[11].  Techniques such as scheduling [12], project planning [13], group activities 

[14], clustering of design activities into groups that allow effective organization 

[15], and brainstorming [16] between all sides of development have been proven to 

lead to a more integrated design team and increase awareness between sides of 

development. 

Software packages have been developed that help with concurrent design 

approaches.  Software such as IBM’s Lotus Notes features scheduling, planning 

tools, and virtual meetings to help designers coordinate meetings and keep each 

other up to date on the system design [17, 18].  SysML is a standard language that 
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provides a way to incorporate system information from all sides of development 

together in one place [19, 20].  SysML features several models and functional, 

interface, physical, performance, and design constraint categories.  Corporations 

such as 3M use company intranets to create storage spaces that designers involved 

in the system can access and keep up to date on design decisions and changes from 

any location. 

This research aimed to bridge different sides of development by having 

sub-system designers compare their sub-system to others to find possible situations 

where the two sides may not work well together and to identify when the two sides 

will work well together. 

 

2.2 Requirements Identification and Management of Complex 
Systems 

2.2.1 Requirements Management 
 Failure states need to be identified and managed properly to ensure that 

designers are aware of them and can prepare the system to handle them.  

Requirements management is an area of research that studies managing 

information and is reviewed as a way for designers to manage information about 

failure states. 

Requirements management is a well-researched field that incorporates 

many different areas of study.  There is three main steps of the requirements 

management process; elicitation, analysis and specification [21, 22]. The three 
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steps of the requirements management process are ongoing and interchangeable 

and do not necessarily occur in order.   

Elicitation is the process of identifying needs and bridging the disparities 

among the involved communities for the purpose of defining and distilling 

requirements to meet the constraints of these [23].   Elicitation follows the basic 

steps of fact-finding, information gathering, and integration [24, 25].   

Requirements analysis is the process of interpreting the customer attributes 

and deriving explicit requirements that are understood by the engineers and the 

business side of development.  This includes classification, prioritization, and 

negotiation of customer needs [21].  There are several classification schemes [26, 

27] used to help guide the designer in compiling, organizing, and analyzing 

product design issues. 

Requirement specification is the process of taking the product requirements 

created during the requirements analysis stage and turning them into concrete and 

precise requirements based on functional knowledge [27].  The House of Quality 

(HOQ) [28] and the Analytic Hierarchy Process (AHP) [29] can be used to 

accomplish this goal.  The HOQ is a graphical matrix that is part of Quality 

Function Deployment (QFD) [30] and uses a planning matrix to correlate the 

customer needs to how the organization is going to meet those needs to ensure that 

a quality product is developed [31].  AHP is similar but it has the ability to analyze 

the requirements quantitatively whereas HOQ is generally qualitative. 
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Even with a well-defined requirements management process, there are still 

large areas for errors or mistakes to be made that can lead to an incomplete 

understanding of the system [32].   Designing a system with teams of engineers 

involves several complexities from technical to psychological factors [33].  These 

many issues can open the door for problems to exist if they are not well controlled. 

Several problems have been identified that can exist such as flaws in the safety 

culture of a group, management and organizational factors and technical 

deficiencies [34]. Techniques such as concurrent engineering approaches [35] can 

help mitigate some of these issues, but several mistakes may still slip through.   

Systematic and automatic approaches to the requirements process are 

currently utilized and researched in engineering and software fields.  Requirements 

engineering (RE) is a systematic approach to requirement analysis that is used in 

software and systems engineering to aide designers and help them avoid mistakes 

in requirements management [36].  Software Process Improvement (SPI) is an 

accumulation of models that aide designers in the development of software and it 

includes models for requirements management [37].  RE and SPI are evolving 

fields and feature many different tools to aide designers with requirements 

management.  The various tools and models can become confusing or designers 

may not have the proper education to correctly choose the correct model or use a 

model appropriately.  To help with this situation, several tools have been 

developed to guide designers through the development process and ensure that 

they are correctly using the tools to assist in requirements management [38, 39]. 
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Design changes are common during the development of a system and it can 

be difficult to ensure that requirements that were identified are still being 

considered in the updated design.  Requirements traceability is the ability to follow 

the life of the requirement in both the forwards and backwards direction and is 

used to make sure that requirements are properly applied to designs [40].     

In this research identifying the failure states for the system is the elicitation 

of the requirements and work done on analyzing and quantifying them is the 

analysis and specification of the requirements.  Creating a clear method of 

identifying, recording, and communicating information is done to ensure proper 

management of identified failure states in this research. 

 

2.2.2 Requirement Quantification 
 Once failure states are identified, they need to be analyzed so designers 

know where vulnerabilities of the system are and what they need to know to avoid 

potential failures [41].  There have been several methods of identifying risk 

including numbers, colors, terms, and different visualizations. 

 FMECA quantifies the risk of a failure mode into the RPN discussed 

earlier.  The single number is an easy way to portray information that is easily 

understood by other people, but it also can be too simplistic and hard to portray all 

the information needed in a single number.  Colors have been demonstrated to be 

effective by Human Factors researchers [42] to portray information and have been 

used in rating scales such as the United States Department of Homeland Security 
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Advisory Chart.  The chart goes from green, which indicates a low risk level of a 

terrorist attack, to red, which indicates a high level of risk.  The colors were 

chosen to reflect a person’s natural reaction to the corresponding risk level; cooler 

colors reflect low levels and hotter colors reflect higher risk levels.  The colors 

have no published corresponding references to what criteria are used to determine 

each level, which leaves the scale open to the operator’s discretion but also leaves 

it open to criticism for a lack of specificity. 

 A term or name is another method that has been used to describe the 

potential risk that a failure state can pose on the system.  Computer scientists have 

used the terms Fatal Errors, Normal Errors, and Warnings to describe possible 

failures that may occur for the system.  Each term has a different meaning of the 

impact that the error may have on a system and must meet certain criteria to be 

classified for a certain error level.   

 Different visualizations of data can also be important when portraying 

information [43].  Human factors researchers have studied several visualization 

techniques such as displaying numbers on a scale, as a number, the use of color, 

brightness, hue, sound and other techniques and how they can be used together to 

accurately and clearly display information [42]. 

 This work utilizes a color scheme to indicate the level of severity of a 

failure state.  A green, yellow and red scale was chosen due to the level of 

knowledge that most users have with them.  Green generally indicates it is safe to 

proceed, yellow refers to caution, and red alarms users of a more severe failure. 
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2.3 Risk in Complex Systems 

 There are several methods of risk assessment and management used in the 

development of hardware and software systems and includes Failure Modes and 

Effects (Criticality) Analysis (FMEA/FMECA), Event Tree Analysis (ETA), Fault 

Tree Analysis (FTA), and Probabilistic Risk Assessment (PRA) [44, 45]. 

 FMEA/FMECA is used to identify and investigate potential system failures 

and weaknesses by taking a bottom up approach and looking at the individual 

components of a system and identifying their failure modes, effects, and causes.  

The end analysis generates a document that contains all of the information that was 

investigated.  This includes, function, failure mode/failure mechanism, failure 

cause, failure effects, detection methods and controls, and recommended actions.  

It also generates a number called the risk priority number (RPN).  The severity of 

failure, probability of failure, and detection ability of failure are ranked on a scale 

of 1-10 (1 low and 10 high).  These three numbers are multiplied together to give 

the RPN number, which can range anywhere from 0 to 1000. FMEA/FMECA is a 

good analysis method, but it is highly focused on individual components and can 

easily miss interactions between components or sub-systems that can lead to 

failure, which is a goal of this research.   

 Event Tree Analysis (ETA) begins with an undesirable event and uses 

forward logic to find all the possible outcomes that are possible from the initiating 

event by considering all the ways that it can affect the overall system by taking 

into account whether safety barriers are functional or not.  Probabilities can be 
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applied to event trees to calculate the frequency of occurrence of a possible event.  

ETA is a good visualization tool to see the event chains and barriers of a sequence, 

but it only investigates one event per tree and can overlook subtle system 

dependencies.   

Fault Tree Analysis (FTA) is a top down approach that starts with a 

potential undesirable event and works backwards to investigate other failures that 

are related to the top event to determine all the ways that the accident can happen.  

FTA draws off of an FMECA and a system block diagram and uses Boolean 

operators to determine reliability of the top-level event using probabilities of the 

individual elements and using the logic of the tree.  FTA leads to an improved 

understanding of system characteristics but a drawback is that it is in binary so it is 

either fail or succeed. 

 FTAs are used in the design stage and use failure rates that are derived 

from available sources such as handbooks.  Shalev and Tiran have applied 

condition monitoring methods such as vibration analysis and electric current 

analysis to FTAs to keep reliability information up to date for a particular system 

to reflect changes to the system such as maintenance or upgrades [46].  Work has 

also been done to partly automate the construction of fault trees using system 

topologies annotated with component-level failure specifications [47]. 

 Probability Risk Assessment (PRA) is another approach to addressing risk 

in complex systems.  It is a systematic and comprehensive approach that addresses 

risk by investigating the severity of failures and the probability of occurrence.  
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PRA uses FTA and ETA together to investigate possible failure events and to 

know what would be affected.  Determining the total consequences and 

multiplying them by their occurrences calculate the total risk.   

 Reliability block diagrams are a graphical representation of a system that 

illustrate the logical connection between components and are used for reliability 

prediction [45]. Reliabilities are strung together in series, parallel, or a 

combination of both layouts.  Reliability block diagrams make it easy to identify 

weak areas and areas that need improvement but they do not give an in-depth 

analysis of what failed and why, rather it only tags a reliability rating to a 

component. 

This work is similar to FMEA/FMECA in that it examines potential 

failures and performs an analysis on them.  Through the failure state identification 

process, interactions similar to those identified in an ETA and FTA are captured.  

Unlike ETA, the goal of this research is to stop the failure from propagating, so the 

further effects of propagation are not examined.  The failure state classifications 

are used to give a ranking to the process that can be put in an event sequence with 

other analyzed processes to create a reliability block diagram to determine risk of a 

sequence of events. 

 

2.4 Design Reuse of Complex Systems 

 Design-by-analogy is using ideas from other designs when coming up with 

a new design.  There are two approaches to design-by-analogy, one in the 
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Artificial Intelligence (AI) [48] and one in mechanical engineering.  Both 

approaches utilize a database of designs to search previous solutions.  The 

mechanical engineering method helps designers find similar functions and the AI 

approach uses software to come up with solutions to design problems. 

 McAdams and Wood have developed a methodology within mechanical 

engineering that builds off of functional design [49].  When beginning the design 

process, the system to be designed is broken into the functionality that is desired.  

A design repository of components stored as functions has been created.  

Designers enter in a functionality that is desired and previous designs matching the 

functionality desired are presented to give designers ideas of how to meet the 

functionality that is needed for their system.  This is a powerful tool to be used in 

the early design stages.  Other researchers have developed online design 

repositories to be used by designers. 

  Goel et. all [50, 51] have done research into design-by-analogy in the AI 

community and also use a database of previous designs to generate design 

solutions.  Previous designs are saved and classified as structure-behavior-

function, function-behavior-structure, or topographical graph models.  A design 

problem is entered and the software searches its database to generate a solution.  

The systems have proven to be successful in testing. 

 Design reuse is another term that is used to create new designs from 

previous designs.  Design reuse has been used by companies using CAD to create 

new designs based off of previous designs and a selection of proven parts that the 
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company keeps in inventory [52].  This has helped them increase the reliability of 

their products and decrease costs by using a limited number of parts. 

 This research is meant to help with design reuse and design-by-analogy.  

The methods examined draw off of databases of stored designs.  No database is 

created in this research, but the end result of the methodology presented in this 

research would be a good attachment to add to previous designs. 

 

 



20 
 

3 Engineering Techniques and Methods 

 The methodology developed in this research utilizes existing engineering 

techniques to be able to accomplish the goals stated in the introduction.  Other 

methods have been developed and are also examined. 

 

3.1 Event Sequences 

Event sequence diagrams can be used to capture the events that a system 

must perform to complete a task.  An event sequence diagram is a series of blocks 

put together in order of how they need to occur [53].  Blocks are placed in series to 

demonstrate the order and if events happen concurrently they are placed in parallel 

as shown below in Figure 1.   

 

Figure 1: Event Sequence Diagram 

Event sequence diagrams are used in this research to show the events that 

must take place to complete the task of the system to perform. 

 

3.2 Functional Modeling 

 Functional modeling is a graphical representation of the transformation of 
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energy, material and signal (EMS) flows as they pass through a system.  

Functional modeling is an effective design tool in the early stages because it places 

the emphasis on what must be done rather than how it is done [54, 55].  This 

allows a system to be designed without selecting any specific components or 

hardware.  Functional modeling has also been used for other purposes including 

modeling failure in a system [56-59] and mapping requirements to the system [60]. 

 The method of functional modeling begins by developing a black box 

representation of the system. The black box is the highest level of the model and it 

describes the basic overall function of the system in a verb-noun pair [61].  The 

black box model shows all of the EMS flows that enter and exit the system. 

 The abstract black box model can be decomposed into a model of 

interconnected sub-systems.  The model can be further decomposed into 

components while still retaining the use of EMS flows to describe their function 

qualitatively. This qualitative model uses a combination of verb-object description 

for each function.   

 In this research the event sequence diagrams that are created for a system 

are connected by the EMS flows used in functional modeling as a way to 

brainstorm the functionality that is occurring during the process.  The functionality 

occurring during the process is helpful to understand what is going on during the 

process and what system requirements are needed for the system to successfully 

complete a process. 
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3.3 Process Modeling  

Process modeling is used in fields ranging from business to engineering as 

a way to model a process.  They range from a simple flow chart to more advanced 

methods such as IDEF0. 

Of these methods, IDEF0 is a structured process modeling methodology 

that has a development similar to functional modeling [62].  The highest level of 

the IDEF0 model is the A-0 level, and it consists of a single box that represents the 

entire process with a verb-noun description.  The left side has the inputs into the 

function of the box.  The right side has the outputs, which are the inputs that were 

changed by the function the box represents.  At the top of each box are the controls 

that manage or act on the functions.  Coming in from the bottom are the 

mechanisms of how the function is performed.   

The zero level of the model is split into a group of three to six sub-

functions to create the first level.  The processes/functions of the first level are 

individually broken into three to six sub-functions and this represents the second 

level. The detail of the model increases with the number of levels that are added.  

This process continues until the level of detail of interest to the designer is 

reached.   

The structure of IDEF0 and a similar numbering system for the model is 

utilized in this research.  The idea of mechanisms acting on the process is modified 

to be the components that are used for completion of the event.  Also, instead of 
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the tools that are used to complete the process, the change in the hardware states 

will be used. 

 

3.4 Methods 

Previous work has been presented in the engineering design literature to 

combine functional modeling with process modeling, but their work did not 

identify possible failures that may occur during the process [63, 64]. 

An extension to their work, the Function Design Framework (FDF) also 

combined functional modeling with process modeling [65].  The methodology 

allowed a designer to model a system through any number of events and states.  

The framework also used a structured modeling hierarchy that allowed for it to be 

computational.  The methodology successfully captured the functionality that 

occurs at different states well.  The proposed methodology in this research focuses 

more on established hardware and their states rather than the functionality that is 

occurring.  

Function-Based Analysis of Critical Events (FACE) is a methodology that 

was developed that combines event sequences with functional diagrams and is able 

to come up with requirements for critical events to be completed successfully [66].  

The methodology in this research is similar to the FACE methodology in that they 

both aim to establish what a system must do to be successful for a sequence of 

events.  This research focuses on component states whereas FACE examines 

functionality of the system. 
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3.5 Review 

 This research aims to systematically identify potential system failure states 

by analyzing how the system works and the components involved in the process.  

This is accomplished by combining elements of process modeling, functional 

modeling, event sequence diagrams, and the states of the components of the 

system.  The methodology identifies a process and splits it into a sequence of 

events.  Functional modeling flows are used through the sequence to understand 

the changing functionality that occurs during the sequence.  Ideas from process 

modeling are used to develop the model hierarchy.   

 Together these combine with the states of the components to identify 

desirable states (will not cause harm to the system), and failure states (undesirable 

states that may cause harm to the system or endanger the system from completing 

its goals) for each event in the sequence of events.  The failure states are 

investigated to gain further information into the cause, possible related failures, 

and solutions to the failure state.   

 The methodology is similar to other methods that have been developed using 

similar engineering techniques, but the main difference is that this methodology 

focuses on component states rather than changes in functionality.  

 In this research, a process is the term used to define the highest level of the 

model.   A process can be broken down into events, which are sub-processes that 

when combined create the higher process.  Processes and events represent a single 

or combination of functions. 
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4 Methodology 

4.1 Nomenclature 

 A few terms need to be clarified before the methodology can be presented.  

A command is something that can be asked of the system to perform a function to 

complete a task.  Hence, a task is the system completing the command.  A task can 

be broken up into events to complete the task; all of the events together form the 

task.    

 

4.2 Introduction 

This research introduces a methodology that utilizes a unique combination 

of functional modeling, process modeling with component states to identify failure 

states for a complex system as it completes a process.  The methodology expands 

to analyze the identified failure states and to classify them based on potential risks 

they pose to the system.  The end result is the failure states of the system that are 

ranked using a new system based on the potential harm they may cause to the 

system, possible failures that may result from the failure state, and suggestions 

from the designers to the other system developers of possible solutions to the 

failure state.  The analyzed failure states are used to rank the process, which can be 

used in a reliability block diagram with other ranked processes to determine 

reliability.  The clear display of information will help system designers have a 
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better understanding and help make a clear bridge between the two sub-systems of 

the overall system.   

 

4.3 K10 Rover Introduction 

The K10 Rover is a software-driven hardware system that was developed 

to be a fully autonomous rover to assist astronauts by performing human-paced 

tasks[67, 68].  The rovers feature several hardware components for taking data and 

a full drive chassis that allows it to move across the terrain.  There is an onboard 

computer that executes the commands and has the rover complete the tasks that 

need to be performed.  The software controls the movement and the data 

acquisition for the rover.    

 

 

Figure 2: K10 Rover 
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The K10 will be analyzed from the hardware perspective to identify 

potential failure states the software side of development needs to be aware of.  The 

system will be examined to identify failure states as the K10 executes a command 

and completes a process.  The identified failure states are analyzed and the 

information gained is used to classify the failure state according to a ranking scale 

developed for this research.  The information gained from the analysis and the 

classifications are intended to effectively communicate information needed for 

successful operation of the K10 Rover to the software developers. 

 

4.4 K10 Example 

 The benefits of the methodology are illustrated and the steps demonstrated 

using the K10 Rover at NASA as an example. As mentioned before, the K10 is a 

good example of a complex system that will be used to analyze the hardware of the 

system to notify the software developers as the K10 performs a task.  An example 

of a task that needs to be performed is to move the rover to a certain point.  This 

task is crucial for the rover to be able to perform the other tasks that it is able to 

do.  For the rover to be able to move to a certain point, several hardware items 

need to be utilized and need to work correctly.  After the rover moves, it verifies 

its position by comparing the GPS location with the values recorded by the wheel 

encoders.   

The motivating example occurred during testing of the K10 rover in the 

summer of 2008, the K10 fell into a failure state that caused the rover to fail and 
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required human interaction to fix.  The rover was designed to be fully autonomous 

so this was a major failure for the system.  The failure state occurred when the 

rover executed a command to move to a waypoint.  When it verified its position 

the GPS distance value did not match the wheel encoder distance values and sent 

the rover into a failure state.   

The steps of the methodology are discussed and are applied to an example 

of how the task of Move Rover can be analyzed.  Failure states are identified and 

investigated to produce a full record of the failure state. 

The example presented is produced from documentation on the K10 Rover 

[67, 68] and is done as a basic example to show how the methodology can be 

applied.  Assumptions are made about the hardware and how they operate and the 

material is presented as if it was coming from the hardware engineer for the K10 

rover.  A more detailed analysis of the system may be necessary to capture all the 

information.  

 

4.5 Approach 

 The methodology is performed by completing the following steps:   

1) Identify the process to analyze  

2) Identify the components in a system, the states that they can be in, the related 

inputs and outputs from other subsystems, and combine all the information to 

complete a state table 
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3) Create a black box model for the task the system is to complete and identify the 

Energy, Material and Signal (EMS) flows entering and exiting the system on the 

horizontal plane, the components used in the task, and the states of the components 

for successful completion of the task in the vertical plane of the diagram 

4) Break the black box model into a sequence of events, complete the EMS flows 

through the sequence, identify the components used in each event and the 

component states for successful completion of each event 

5) Analyze each event to create sub-events and complete the EMS flows, identify 

components and their states to perform the sub-event 

6) Identify the failure states of the system based on the analysis 

7) Identify possible causes of why the failure state occurred 

8) Identify possible component failures that may occur from the failure state if it is 

not dealt with appropriately 

9) Suggest possible solutions to handle the failure state in an appropriate manner 

10) Classify the failure states based on the criteria presented in this paper 

11) Consolidate the information into a single table 

12) Continue analysis for every failure state and rank the overall process 
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4.6 Methodology 

Step 1: Identify the Process to Be Analyzed 

Methodology 

 To begin the methodology, it is necessary to identify the process of the 

complex system designers are analyzing that they want to further investigate.  The 

process should be selected so that it can be split into sub-events in later events and 

represents the highest level of the model, the zero level that is developed by the 

methodology.  The process that is chosen for investigation is illustrated in the 

model by being written as a verb-noun combination and enclosed in a box as 

demonstrated in Figure 3 below. 

 

 

Figure 3: Highest Level of the Model. 

 

Example 

 The K10 rover performs several actions such as operating ground 

penetrating radar, moving around, extracting underground soil samples, and taking 

pictures.  The motivating example occurred while the K10 was attempting to move 

to a target point and that is the process that will be investigated in this example.  

The highest level of our model is shown below in Figure 4. 
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Figure 4: Process to be Analyzed for the K10 Example. 

 

Step 2: Create State Table 

Methodology 

 The next step is to come up with a state table that lists all of the 

components of the system and the possible states that they can be in.  Each of the 

major components of the sub-system of the system that is being analyzed is listed 

in the first column in the table.  It is up to the design team to decide what level of 

detail they want to go into with their design and the requirements.  The designers 

can be specific by listing every part that goes into the design, or just choosing 

major components of the system to be more general.  The next column in the table 

lists all of the possible states that each component may be in such as on, off, busy, 

occupied, non-operational, etc.  

 The final two columns in the state table are the possible inputs and 

responses from another sub-system that interacts with sub-system that is being 

analyzed.  The inputs are all of the possibilities that the other sub-system would 

instruct the component to do.  For example, an electric thermometer may be asked 

to sample temperature by the control software of a system or a worker on an 
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assembly line could be instructed to attach a part by a control board.  The final 

column is the set of possible responses that the component may have to the input it 

was given by the other sub-system.  An example would be the electric 

thermometer sending the temperature value, sending an error message or maybe no 

response.  Not every component will have connections with other sub-systems and 

the columns should remain blank. 

Example 

 The K10 Rover features several hardware components that are necessary to 

complete the process of Move Rover.  The state table with the hardware 

components used in the task Move Rover is shown in Table 1.  The hardware 

components that are used in this task are the GPS, wheels, wheel encoders 

(alignment and drive), the wheel motors (alignment and drive), and an antenna.  

These hardware components are listed in the hardware table as well as the possible 

hardware states for each.  Furthermore, the possible software commands and 

responses of each are listed since we are analyzing the hardware and software 

interactions. 
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Table 1: State Table of K10 Rover Filled with Components Used in Example. 

Hardware 
Component 

Hardware 
States 

Software 
Input 

Software 
Response 

Wheel(s) 

Functional 
Stuck 

Spinning 
Malfunctioning 

  

GPS 

On – Functioning 
On - 

Malfunctioning 
Off 

Check GPS 

Coordinates 
Bad 

Information 
No Response 

Wheel Position 
Encoder 

Functioning 
Malfunctioning 

Off 

Check 
Encoder 

Position 
Bad 

Information 
No Response 

Wheel 
Distance 
Encoder 

Functioning 
Malfunctioning 

Off 

Check 
Encoder 

Distance 
Bad 

Information 
No Response 

Wheel Position 
Motor 

Functioning 
Malfunctioning 

Turn Wheel  

Wheel 
Distance 
Motor 

Functioning 
Malfunctioning 

Turn Wheel  

 

 An example of filling in the table for a component is to examine the GPS 

for the K10 rover.  The K10 features a Novatel OEM4 GPS unit.  The table can be 

filled in by examining the user guide of the GPS to find the possible states of the 

unit and to know what the possible responses are that the unit can provide.  Some 

information may still need to be provided by the designer’s knowledge if the user 

guide is incomplete. 
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If a hardware item does not exist in the table that is used during the task, it 

must be added to the table.  The bottom of the box shows the hardware states that 

are possible for the completed task.  Some states of the hardware would prevent 

the system from successfully completing the task, so it is important to show the 

states the hardware should be in at the completion of the task. 

 

Step 3: Create Black Box Model 

Methodology 

 The black box model is the highest level in the model and represents the 

zero level that was identified in the first step of the methodology.  The black box 

model adds the components that were identified in the state table that work on the 

process and the Energy, Material, and Signal (EMS) flows from functional 

modeling as shown in Figure 5.   

 All the components that work on the process that were identified in the 

second step of the methodology are listed on the top of the box for the zero level.  

The components are also listed on the bottom of the box accompanied by what 

states are desirable for them to be in.  The left side of the box shows the EMS 

flows that enter the process and the right side of the box shows the EMS flows that 

exit the process. 
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Figure 5: Black Box Model Layout. 

 

Example 

 To create the black box model for the K10 rover example, all of the 

hardware that is needed to complete this particular task needs to be considered 

from the state table created in the first step.  The hardware is shown entering the 

top of the black box model in Figure 6. 

 The energy, material, and signal (EMS) that are used in functional 

modeling are listed as electricity, waypoint coordinates (destination) entering the 

model from the left, and dissipated torque and task status exiting on the right.   

 The final part of the black box model is to identify what state the hardware 

components need to be in for the rover to have successfully completed its task to 

move.  The hardware states of ‘functional’ for the motors, the encoder, the GPS 

and the wheel are necessary for the successful completion of the task and are 
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shown exiting the bottom of the diagram.  The completed black box model is 

shown below in Figure 6. 

 

Move
Rover

Wheel
GPS

Wheel Position Encoder
Wheel Distance Encoder

Wheel Position Motor
Wheel Distance Motor

Wheel - Functional
GPS – On Functional

Wheel Position Encoder - On Functional
Wheel Distance Encoder- On Functional

Wheel Position Motor - On Functional
Wheel Distance Motor - On Functional

0

Electricity

Move Rover
Command

Rover
Position

Dissipated
Torque

 

Figure 6: Black Box Model for the Move Rover Task. 

 

Step 4: Event Sequence 

Methodology 

 The next step is to break the black box model into a sequence of lower 

level events.  This sequence of events is the first level, where the events are 

numbered in the order they are in the sequence.  At the first level, the number of 

events can be as many as the designer feels are necessary, but should be general 
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enough that they will be able to be further split up into lower levels.  At this level, 

events should not occur in parallel; in cases where events are in parallel they 

should be combined and split up at the next level. Figure 7 shows the numbering 

sequence and layout of the model at this level. 

 

 

Figure 7: Layout of the Model at the First Level. 

 

The EMS flows enter the first block in the sequence of events and are 

continued throughout the sequence. The flows follow basic functional modeling 

techniques and are part of this model to help demonstrate the change in 

functionality that occurs in the sequence of events.   

On top of each box the components that are used to complete the 

functionality or task of each box is listed.  The bottom of each box is the 

components states that are needed for the task or functionality to be completed and 

is drawn out at the bottom and connected to the top of the next box in the 

sequence.   
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Example 

 The black box model for the K10 rover example is broken up into the 

sequence of events shown in Figure 8.   These events represent the first level in the 

diagram and were left general enough so that they could be further broken down 

into a second level.  The event sequence shows that to complete the task Move 

Rover, the rover must go through the events of Request Waypoint, Receive 

Information, Move Rover, and Check Position. 

 

Request
Waypoint

Receive
Information

Move
Rover

Check
Position

 

Figure 8: Event Sequence for the Command Move Rover. 

 

The EMS flows that entered the black box model enter the first event of 

Request Waypoint, and the EMS flows exiting the black box are shown leaving the 

final event of Check Position.  In between these events, the EMS flows are 

connected and shown in Figure 9.  

The hardware that is used to complete each of the events in the sequence is 

shown as coming into the top of the event.  The hardware and the states necessary 

for completion of the event are shown at the bottom of the event and are connected 

to the next event in the sequence. The numbering sequence of the events is shown 

in the lower left corner for each event. Altogether they represent the first level of 

the diagram and are shown in Figure 9. 
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Step 5: Second Level and Beyond 

Methodology 

 Once the first level has been established, each of the events from the first 

level should be able to be broken down into sub-events to create the second level.  

The EMS flows that enter the event in the first level enter the first event in the 

second level for the event.  The EMS flows exiting the final event in the second 

Request
Waypoint

Receive
Information

Move
Rover

Check
Position

Wheel
Wheel Position Motor

Wheel Alignment Motor

GPS
Wheel Position Encoder

Wheel Alignment Encoder

Antenna

Antenna

1

2

3

4

Wheel
- Functional

Wheel Position Motor
- Functional

Wheel Alignment Motor
- Functional

GPS
-Functional

Wheel Position Encoder
-Functional

Wheel Alignment Encoder
-Functional

Antenna
-Functional

Antenna
- Functional

Electricity

Dissipated Torque

Command

Waypoint

Rover
Position

GPS and 
Encoder Values

 
Figure 9: First Level Sequence of Events. 
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level sequence correspond to the EMS flows exiting from the event in level one.  

The events can be drawn in parallel, series, or a combination of both. 

 Similar to the first level, the component acting on each event is listed as 

entering the top of each event.  The components states that would allow the event 

to occur are listed along with the hardware because some components states would 

not allow the events to occur.  If there are sub-system inputs for the event, they are 

listed as well.   

 Exiting the bottom of each event are the possible states that the 

components can be in along with the sub-system responses that are possible.  The 

states that would allow the system to move to the next event are connected to the 

top of the next event in the sequence and those that would not allow the system to 

move to the next event or are undesirable are drawn straight down and do not 

connect to the rest of the diagram.  It is up to the designers of the system to choose 

what states allow the system to carry out the task and the states that would not 

allow.  This allows designers to have a visual understanding of what can occur in 

the system throughout the event. 

 The process of breaking up events and creating a new lower level continues 

until it reaches a level of detail that is sufficient for the design team; the more 

levels in a diagram, the greater the detail of the events and functionality as well as 

the hardware and software interactions.  
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Example 

 The events of Move Rover and Check Position are examined in this 

example.  For the rover to be able to move, the wheels need to be positioned 

(angle) and rotated.  The event Move Rover is split up into the sub-events of Align 

Wheel and Rotate Wheel as seen in Figure 10.  These two events happen in series 

with the wheel being aligned first.  The EMS flows entering the event Move Rover 

are shown entering the sub-event Align Wheel.  The EMS flows exiting the event 

Move Rover exit the sub-event Rotate Wheel and EMS flows connect the two 

events.   

 For the event of Align Wheel, the wheel and alignment motor are used, as 

is shown in Figure 10.  They are listed along with their hardware state of 

‘functional’ as entering the top of the event.  The software input of position wheel 

is also listed for the motor and wheel.  

When the wheel has finished its alignment, the motor and wheel can be in 

any of the possible states listed in the state table.  The states that would allow the 

system to continue problem-free are identified as the wheel state of ‘functional’ 

and the ‘functional’ state of the motor.  These two states are connected to the next 

event in the sequence.  The wheel states of stuck, slipping, or failure and the motor 

states of failure are undesirable and are not connected to the following tasks.   
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Align
Wheel

Rotate
Wheel

Wheel
-Functional

Wheel Align Motor
- Functional
- Align Wheel

Functional

Malfunctioning Stuck
Spinning

Malfunctioning

Wheel Position 
Motor

-Functional
-Position Wheel

Wheel
- Functional

Functional Functional

Stuck
Spinning

Malfunctioning

Malfunctioning

3.1

3.2

Electricity

Dissipated Torque

Dissipated 
Torque

Electricity

Position

Waypoint

 

Figure 10: Second Level Diagram for the Event Move Rover. 

 

The event Check Position is for the rover to make sure that it has moved to 

the correct position.  Figure 11 demonstrates how the GPS and the wheel encoders 

are used to verify the rover’s position in this example. 

The GPS unit needs to be moving to be able to know the position, but it 

continually updates to the main computer on the rover.  Encoders are devices that 

convert motion into a series of digital pulses.  Knowing the angular resolution of 

the encoder allows a relative or absolute position measurement.  There is a wheel 

encoder to check the angle of the wheel and an encoder that calculates distance the 

rover has moved.   
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The Check Position event is broken into the two sub-events of Check GPS 

and Check Encoder.  The Check GPS event reads the GPS value and the Check 

Encoder event looks at the encoder values and the calculated position from them.  

These two events occur in parallel and have the same EMS flows entering them, 

which are the inputs into their parent event of Check Position.  Likewise they have 

the same EMS flows exiting them which are the EMS flows leaving the parent 

event of Check Position.   

The hardware involved in the event of Check GPS is the GPS unit and is 

shown as the input to the top of the event of Check GPS.  The GPS shows that it 

needs to be in the functional state and the software command of get position is 

used to get the GPS value.  The input to the top of the event Check Encoders is the 

wheel alignment encoder and the wheel distance encoder.  They must be in the 

functional state and the software command of check encoders is used to get the 

values.   

For the outputs of the hardware, the states that would allow it to continue to 

the next task are that the GPS and encoders be on and that they generate the 

coordinates of the rover.  The states of the GPS and Encoders as off, 

malfunctioning, no response, and bad response would not allow the system to 

move onto the next task.  There is also the situation that the GPS and the encoders 

both send valid data, but they do not match.  This is another situation that would 

not be allowed to move on to the next event.   
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Read
Encoders

Read
GPS

Wheel Alignment 
Encoder

-Functional
-Check Encoder

Wheel Distance 
Encoder
- Functional
- Check Encoder

Functional
-Coordinates

Malfunctioning
Off

Bad Information
No Response

Malfunctioning
Off

Bad Information
No Response

GPS
- Functional
- Check GPS

Functional
-Coordinates

Malfunctioning
Off

Bad Information
No Response

Coordinates
Do Not Match

4.1A

4.1B

Functional
-Coordinates

Coordinates
Match

Electricity

GPS and 
Encoder Values

Electricity

Rover Position

 

Figure 11:  Second Level Diagram for the Event Check Status. 

 

This process can be continued for other tasks for the event of Move Rover 

and can be continued for the tasks that have already been analyzed.  The detail of 

the model increases with the number of levels that are added. 
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Step 6: Identify failure states for the system. 

Methodology 

 The failure states of a system are identified as the flows that are 

undesirable and exit the diagram to the bottom.  Every failure is a separate state 

and should be listed in the format of Table 2.   

 

Table 2: Format of failure states 

The system will be in a failure state if: 

  •Hardware component A is in this state 

  •The data from component B is not correct 

  •etc. 

 

Example 

 From Figures 10 and 11 above, several failure states have been identified 

and are shown exiting the diagram at the bottom.  They are consolidated in Table 

3.  
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Table 3: Failure States Identified for the K10 Rover to Move. 

The K10 Rover will not successfully move if: 

  •The wheel align motor is malfunctioning 

  •The wheel is stuck 

  •The wheel is spinning 

  •The wheel is malfunctioning 

  •The wheel position motor is malfunctioning 

The K10 Rover will not successfully verify its position if: 

  •The wheel distance encoder is malfunctioning 

  •The wheel distance encoder is off 

  •The wheel distance encoder sends bad information 

  •The wheel distance encoder sends no information 

  •The wheel alignment encoder is malfunctioning 

  •The wheel alignment encoder is off 

  •The wheel alignment encoder sends no information 

  •The wheel alignment encoder is malfunctioning 

  •The GPS is malfunctioning 

  •The GPS is off 

  •The GPS sends no information 

  •The GPS is malfunctioning 

  •The GPS coordinates do not match the wheel encoder values 

 

 The failure that occurred during testing in the summer of 2008 for the K10 

was caused by the last identified failure state, the GPS coordinates do not match 

the wheel encoder values.  For this failure state to occur, it assumes that the 

computer of the K10 received values from the GPS and the wheel encoders and 
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that they were in the correct data format.  This is the failure state that will be 

further examined in this paper. 

 

Step 7: Identify possible causes of the failure state. 

Methodology 

 To fully understand the failure state it is necessary to know the possible 

causes of the failure state.  This is necessary because you need to know the cause 

of a problem before you can fix it. Designers should brainstorm all the possible 

causes of the failure state and write them down. 

Example 

 The hardware engineers for the K10 rover should be familiar with the 

hardware on the K10 and the possible causes for this particular failure state to 

occur.  Below in Table 4 are some possible reasons for why the GPS and the wheel 

encoder values may not match. 
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Table 4:  Possible Causes of the Failure State. 

The K10 Rover failure state may be caused by: 

  •The wheel distance encoder is out of calibration 

  •The wheel alignment encoder is out of calibration 

  •The GPS is receiving bad information 

  •Wheel distance encoder failure 

  •Wheel alignment encoder failure 

  •GPS failure 

  •The wheels may have slipped or be slipping 

 

 

Step 8: Identify possible hardware failures from the failure states. 

Methodology 

 When a failure state for a system occurs, it is possible that other 

components or systems may be affected, or could be affected if appropriate action 

is not taken to handle the failure state appropriately.  System designers need to be 

aware of these potential effects if the system is to properly handle the failure state. 

Engineers of a particular sub-system are the most knowledgeable of how that sub-

system works and all of the interdependencies within that sub-system.  For this 

reason, the sub-system engineer’s input is very valuable to the success of the 

overall system design and how the failure state is handled.  Sub-system engineers 

should evaluate all the possible effects that can be caused due to the failure state 
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and write them down for the software engineers to use when designing the 

software. 

Example 

 The failure state for this example leaves the K10 rover in a failure state 

where it cannot verify its position.  The possible causes of failure show that the 

equipment may be operating correctly and only need to be recalibrated, or that one 

of the pieces of hardware may have a failure.  The other possibility is that one of 

the wheels may have slipped or still be slipping.  The first scenarios do not have 

possible hardware failures that could result from a failure of one of the devices or 

one of them out of calibration.  If the wheel is slipping, there is a possibility that 

the wheel motor could burn out if the wheel is made to turn too hard or for too 

long.  This is something that could be passed on to the software developers.

 There is also that possibility that the rover is not in the location that it was 

meant to be.  The K10 is designed to operate in certain terrain and there is the 

chance that the K10 may have veered off course and ended up in terrain that is 

unsuitable for the rover.  This information should also be passed along to the 

software developers.  Below in Table 5 the possible hardware failures are listed. 

 

 

 

 

 



50 
 

Table 5:  Possible Hardware Failures that May Result from the Failure State. 

The K10 Rover may experience these failures: 

  •If the wheel is slipping, the wheel motors may burn out if they are run too long 

or too fast.   

  •The rover may be in unsuitable terrain that could cause damage to the entire 

system.  The rover should verify that it is able to operate before proceeding with 

any movement. 

 

 

Step 9: Suggest possible solutions to the failure state. 

Methodology 

 There are generally several solutions to a problem and that is why sub-

system engineers should have a say in how the system resolves a failure state 

situation.  Certain solutions may be better than others and after thinking about the 

cause and possible effects of the failure state, the sub-system engineers are in a 

good position to make recommendations of how the system should exit the failure 

state.   

Example 

 A list of possible causes of the failure state and possible hardware on the 

rover that may be affected by the failure has been identified in the two previous 

steps.  They should be taken into consideration when coming up with possible 

solutions to the software developers.   
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 One of the possible causes of the failure state is that one of the components 

is having a failure.  It may be possible to do a hardware check on the components.  

Reliability ratings for the hardware may also be available and maybe the values of 

one component can be trusted over the other.  If one of the components is out of 

calibration it may be possible to run the device through a recalibration cycle.   

 Another identified cause of the failure is that one of the wheels slipped or 

may still be slipping.  This could be verified by checking the slip monitors of the 

wheels.  If a wheel is slipping, the rover could free itself by turning the wheels that 

are not stuck to free the wheel that is slipping.  The possible solutions to the failure 

state are shown below in Table 6. 

 

Table 6: Possible Solutions to the Failure State. 

The K10 Rover may recover from the failure state by: 

  •Verifying if a wheel is stuck by checking the slip monitors.   

  •If a wheel is stuck, turn the wheels with traction to free the rover. 

  •Checking the hardware devices to make sure that they are operational. 

  •If the devices are operational, run encoders through a recalibration cycle and 

reboot the GPS.   

  •If problem persists, the reliability rating of component A is higher than 

component B, so go with the data from component A. 
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Step 10: Classify the failure states of the system. 

Methodology 

 It is important that system designers know the severity of the failure states 

and which ones are important for them to be aware of to handle them properly.  

Some failure states may not have any potential harm to the system whereas others 

may cause a catastrophic failure.  The classification scheme shown below in Table 

7 has been developed to classify the failure states. 

 

Table 7:  Classification of Failure States. 

Green 
The failure state is undesirable but it will not cause any harm to 

the system.  Limited or no system interaction is needed 

Yellow 
The failure state has the potential to cause harm to the system and 

action is needed to avoid negative effects to the system 

Red 
The failure state is likely to cause severe harm to the system and 

action is needed to correct the situation 

 

 The three-tier system allows for hardware engineers to notify software 

developers of the risks of the failure states and allows them to be open ended so 

that they can be more specific by entering information collected in previous steps.  

The information from the previous three steps should be utilized when making a 

decision to what level the failure state should be classified as. 
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Example 

 From the previous steps, it is clear that this failure state could occur and 

may have several causes.  Some of the causes have been identified that could pose 

harm to the system.  According to the ranking system, this failure state would be 

classified as a Yellow ranking because it has the potential to cause harm to the 

system but it has a small chance of causing severe harm to the system.    

 

Step 11:  Consolidate the information into a single table. 

Methodology 

The data and analysis for the failure state should be consolidated into a 

single record to create an easy to read and follow tool for software designers to 

ensure that the software is prepared to handle this potential failure.   

Example 

 A lot of information for the rover has been collected and gained from the 

analysis of the previous steps.  It is necessary to include all of this information 

when passing on knowledge of the failure state to the software designers.  All of 

the information should be collected and displayed in a single table that is easy to 

read.  This creates a record of the analysis performed on the hardware and can be 

used for redesigns of the K10 or knowledge that may be of importance when 

designing a new rover.  This is shown in Table 8. 
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Table 8: Complete Analysis Table for Failure State. 
Failure State Classification Possible 

Causes 
Hardware 
Affected 

Possible 
Solutions 

-The GPS 
coordinates do 
not match the 
wheel encoder 
values 

Yellow •The wheel 
distance 
encoder is out 
of calibration 
 
•The wheel 
alignment 
encoder is out 
of calibration 
 
•The GPS is 
receiving bad 
information 
 
•Wheel 
distance 
encoder 
failure 
 
•Wheel 
alignment 
encoder 
failure 
 
•GPS failure 
 
•The wheels 
may have 
slipped or be 
slipping 

•If the wheel 
is slipping, 
the wheel 
motors may 
burn out if 
they are run 
too long or 
too fast.   
 
•The rover 
may be in 
unsuitable 
terrain that 
could cause to 
the entire 
system.  The 
rover should 
verify that it 
is able to 
operate before 
proceeding 
with any 
movement. 

•Verify if a 
wheel is stuck 
by checking 
the slip 
monitors.   
 
•If a wheel is 
stuck turn the 
wheels with 
traction to free 
the rover. 
 
•Check the 
hardware 
devices to 
make sure that 
they are 
operational. 
 
•If the devices 
are operational, 
run encoders 
through a 
recalibration 
cycle and 
reboot the 
GPS.   
 
•If problem 
persists, the 
reliability 
rating of 
component A 
is higher than 
component B, 
go with the 
data from 
component A. 
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Step 12: Continue Analysis for Every Failure State and Rank the Overall 
Process 
Methodology 

 The methodology needs to be continued until every identified failure state 

for every sub-event of the process is analyzed.  The complete rankings of the 

failure states are used to give the event a color ranking based on the same scale.  

All other events are analyzed in the same manner and given a color ranking.  

These rankings are based off of the designers’ knowledge of the system and what 

they believe the ranking should be.  When all the events have been given a 

ranking, a final ranking is given to the overall process based off of the rankings of 

the sub-events; once again it is up to the designer.   

 Once the process is ranked, it can be placed in a sequence of processes and 

designers will be able to evaluate the event order based on its color ranking. 
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5 Results 

 A methodology combining process modeling, functional modeling, event 

sequence diagrams, and component states to identify potential failure states in a 

complex system was introduced.  The goal was for the methodology to be able to 

accomplish four goals: to bridge development between different sides of 

development, identify requirements for reliable operation and properly manage 

them, assess the risk for the system, and document the information to be used in 

the future.  The research accomplished these goals by doing the following: 

 

5.1 Bridging Development in Complex Systems 

 The research has system developers consider the interactions of subsystems 

and give insights into the identified potential failure states.  The investigation of 

the failure states structures the thinking of how the failure state may have occurred 

(possible causes), what can happen if further propagation were to happen (other 

components affected), and gives insight into possible solutions for the failure state 

for designers.  Overall, the analysis gets designers thinking of system interactions. 

 

5.2 Requirements Identification and Management of Complex 
Systems 

 The methodology focuses on identification of potential failure states, but it 

also does identify desirable states that ensure reliable operation of a system.  These 

desirable states can be used as requirements for the system as it performs 
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processes.  The analysis is documented and made available to other system 

designers to inform them of how the system should operate and what can possibly 

go wrong. 

 

5.3 Risk in Complex Systems 

 A color scheme was introduced to assess the risk of a potential failure state.  

The methodology builds off of the classified failure states to assign a risk level to 

the event, and finally the process being investigated.  The color scheme is a quick 

and easy way to alert designers of the risk of a failure state, event, and process for 

the system. 

 

5.4 Design Reuse in Complex Systems 

 The methodology produces a completed table of information (Table 8) for 

each failure state.  The analyzed failure states are used to assign a risk ranking to 

events and processes.  The analysis is documented and saved for future analysis or 

reuse.   

The methodology proved effective when it was applied to the K10 Rover, a 

software-driven hardware system.  It successfully identified potential failure states 

for the process of “Move Rover”.  The failure state of the GPS coordinates and 

wheel encoder values not matching was further analyzed to gain further 

information into the cause, possible related failures, and solutions to the failure 
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state.  After analysis the failure was given a yellow ranking, indicating that there is 

chance that the failure state could cause harm to the system.  This identified failure 

state occurred during testing of the rover in the summer of 2008 and required 

human interaction to fix the autonomous rover.  The situation may have been 

prevented if system developers were able to prepare for the potential failure state. 

 



59 
 

6 Discussion and Future Work 

 Failures of space missions like the Mars Polar Lander and Mars Climate 

Orbiter, and operational failures of other complex systems such as the numerous 

Ford Focus demonstrate that the increase in complexity of systems is making it 

difficult to design reliable systems.  There is a need for more research in adressing 

the challenge of understanding complex systems.  This research addressed the 

problem by introducing a methodology to identify potential failure states for a 

complex system as it operates.  The methodology expands to have designers 

investigate the potential failures and to give recommendations into why the failure 

may occur, what action should be taken to correct the failure state, and assigns a 

risk ranking to communicate the information to other system developers so they 

are aware of the possible failures.   

 The methodology was applied to the K10 rover as an example complex 

system.  Possible failure states were identified for the system as it completed the 

process of “Move Rover”.  The methodology successfully identified the failure 

state that forced human intervention to correct the K10 and recommendations were 

made for corrective action.  If the rover had been sent on a mission to another 

planet, the failure state may have been the end of the mission, but if the failure 

state had been identified, the system could have prepared for that particular failure 

state and taken the appropriate corrective action. 

 The methodology proved to be successful when applied to the K10 rover 

example but advancements can be made to improve the effectiveness of the 
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methodology.  A tool to aid designers in the methodology and connections with 

other risk methods and tools would help improve the methodology. 

 The final step of the methodology can become time consuming and it also 

needs to be better defined.  This step requires designers to perform a full analysis 

on every event for every process of a system.  This could lead to thousands of 

failure states for a person to analyze which would be impractical.  The result of 

this step of the methodology is not very concrete and relies on the designers’ 

knowledge and what they feel the ranking should be based on the option of 

choosing between three classifications.  A better ranking system, possibly similar 

to the Risk Priority Number (RPN) in an FMECA would make for more 

meaningful results.  The overall goal is to have each process systematically 

analyzed for its failure potential and the operation of the system can be modeled as 

a reliability block diagram and the total risk assessed.    

 Development of a software tool to help developers overcome these 

drawbacks has begun as shown in Figure 12.  The current version of the software 

tool performs basic operations of the methodology, but it does not include 

functional modeling and it currently cannot capture failure states that occur from 

interactions with other subsystems, such as the one that was investigated in this 

research (software responses did not match).  A more powerful tool that is further 

developed would greatly enhance the methodology.   
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Figure 12:  Screenshot of the Software Tool. 

 

The goal of the software tool is to automatically identify potential failure 

states, ease the analysis of failure states, and the ability to save analyzed events to 

a database.  Once all of the events are analyzed designers would be able to 

construct event sequences with the saved events and the software would 

automatically calculate the risk.  Designers could open the saved processes and 

events to see the more detailed analysis, or could choose to keep things at a higher 

level to perform an analysis.   

 The research has the ability to make a connection with other risk methods 

and analysis tools to help design more reliable systems.  The identified desirable 

states that would allow the system to continue operation can be used to develop 

requirements for the operation of the system.  These requirements could be input 

into a SysML requirements diagram to share with other system designers.  There is 

no formal language or specification needed to enter requirements into the diagram, 

so this could be done now. 
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 The states of failure for the system were identified, but it may be 

impractical for the system to catch every fault where they were identified in this 

layout of the diagram.  In conjunction with this model, future work will focus on a 

model that captures when the failures are detected by the system and when they 

would cause a system level of failure.  The methodology presented here captures 

the possible failures that may occur, which can be complemented by this other 

model that would demonstrate how the system actually works through them.   This 

would be a good connection into the design of a Prognostics and Health 

Management (PHM) [69] system to be used with the operation of the system. 

 The methodology uses functional modeling flows to help system designers 

to understand the functionality of the event that is being investigated.  A 

connection to the Function-Based Analysis of Critical Events (FACE) 

methodology that examines the change of functionality during an event sequence 

for a system would be a strong asset to the research.  The two methodologies use a 

similar approach and a connection of the two models will be investigated in future 

work. 

 The research assumes that the system being analyzed operates in ideal 

conditions at all times.  In reality complex systems can operate in varying 

conditions.  A car purchased in Arizona could be driven in the harsh winters of 

Minnesota and a Mars Rover could encounter a dust storm.  A method of 

accounting for operating conditions on the system and the effect it would have on 
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a system executing processes and a way to incorporate it into the software tool will 

be investigated. 

 The methodology was applied to the K10 rover, a software-driven 

hardware device, and proven effective.  Future work includes further investigation 

into systems that utilize hardware and software, but also to investigate other 

complex systems, such as ones that feature human interactions.  The analysis 

performed on the K10 consisted of analyzing the hardware and software 

interactions.  Future work will also include investigating systems with more 

complex interactions.    
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7 Conclusions 

This research presents a methodology to identify failure states for a 

complex system as it completes a planned task.  The failure states are determined 

by examining the states of the hardware of the system that are necessary for the 

successful completion of a task.  The methodology was applied to a task for 

NASA’s K10 rover to move to a waypoint and failure states were identified that 

may pose a threat to the system.  One of the failure states was further investigated 

into possible causes, other hardware that may be affected by the failure, and 

possible solutions to the failure state.  The methodology proved effective in 

capturing the potential failure states.  Future work will explore further reliability 

integration and the continuation of development of a software tool to aid in 

analysis. 



65 
 

Bibliography 

 
 
1. Stephenson, A., Mars Climate Orbiter: Mishap Investigation Report. 1999, 

NASA. 
2. Board, J.S.R., Report on the Loss of the Mars Polar Lander and Deep 

Space 2 Missions. 2000, JPL. 
3. Young, T., Mars Program Independent Assessment Team Report, NASA. 
4. Ford Focus Setting Recall Record.  2002; Available from: 

http://www.consumeraffairs.com/news02/ford_focus.html. 
5. The 2007 Year Problem (in Japanese). Nikkei Monozukuri, 2006.1. 616: p. 

48-69. 
6. Blowing Off the 2007 Year Problem. Nikkei Computer, 2006.7. 657: p. 40-

55. 
7. Huckle, T. Collection of Software Bugs. Available from: 

http://www5.in.tum.de/huckle/bugse.html. 
8. Leveson, N.G., The Role of Software in Spacecraft Accidents. AIAA 

Journal of Spacecraft and Rockets, 2004. 41(4): p. 564-575. 
9. Lions, J.L.C., Ariane 501 Failure: Report by the Inquiry Board. 1996, 

European Space Agency. 
10. Ullman, D.G., The Mechanical Design Process. Third ed. 2003, New York: 

McGraw-Hill Higher Education. 
11. Sage, A.P., Rouse, W.B., Handbook of Systems Engineering and 

Management. 2009: John Wiley and Sons. 
12. Belhe, U.a.K., A., Dynamic Scheduling of Design Activities with Resource 

Constraints. IEEE Transactions on Systems, Man, and Cybernetics -- Part 
A: Systems and Humans, 1997. 27(1). 

13. Martin, A., Project Planning in a Current Engineering Environment. IEE 
Conference Publication, 1992(359). 

14. Doolen, T.L., Van, A., Worley, J., Farris, J.A. Designing Kaizen Events for 
Success. in IIE Annual Conference and Expo 2007 - Industrial 
Engineering's Critical Role in a Flat World. 2007. 

15. Kusiak, A. and K. Park, Concurrent engineering: decomposition and 
scheduling of design activities. International Journal of Production 
Research, 1990. 28(10): p. 1883 - 1900. 

16. Lin, J.Y., Creativity Engineering for Continuous and Discontinuous 
Innovation, in Portland International Conference on Managment of 
Engineering and Technology. 2006: Istanbul, Turkey. 

17. Lai, T.a.T., E., One Organizations's Use of Lotus Notes. Communications 
of the ACM, 1997. 40(10). 

18. Vandenbosch, B.a.G., M.J., Lotus Notes and Collaboration. Journal of 
Management Information Systems, 1997. 13(3): p. 65-81. 



66 
 

19. Friedenthal, S., Moore, A., Steiner, R., A Practical Guide to SysML: The 
Systems Modeling Language. 2008: Morgan Kaufmann. 

20. OMG SysML 1.0 specification.  November 2008; Available from: 
http://www.sysml.org/specs.htm. 

21. Jiao, J., C.-H. Chen, and C. Kerr, Customer Requirement Management in 
Product Development. Concurrent Engineering Research and Applications, 
2006. 14(3): p. 169-172. 

22. Zimmerman, M.K., et al., Making Formal Methods Practical, in Digital 
Aviation Systems Conference. 2000. 

23. Project, S.E.I.R.E., Requirments Engineering Analysis Workshop 
Proceedings. 1991, Software Engineering Institute: Pittsburg, PA. 

24. Rzepka, W.E. A Requirements Engineering Testbed: Concept, Status, and 
First Results. in Twenty-Second Annual Hawaii International Conference 
on System Sciences. 1989: IEEE Computer Society. 

25. Christel, M.G. and K.C. Kang, Issues in Requirements Elicitation. 1992, 
Carnegie Mellon University. 

26. Staufer, L.A. and R.A. Slaughterbeck-Hyde, The Nature of Constraints and 
their Effects on Quality and Satisficing. Design Theory and Methodology, 
1989. 

27. Fung, R.Y.K., K. Popplewell, and J. Xie, An Intelligent Hybrid System for 
Customer Requirements Analysis and Product Attribute Targets 
Determination. International Journal of Production Research, 1998. 36(1): 
p. 13-34. 

28. Hauser, J. and D. Clausing, The House of Quality. Harvard Business 
Review, 1988: p. 69-73. 

29. Fung, R.Y.K., R. Shouju, and X. Jinxing. The prioritisation of attributes in 
customer requirement management. in Systems, Man, and Cybernetics, 
1996., IEEE International Conference on. 1996. 

30. Thompson, D.M.a.F., M.H., QFD A Systematic Approach to Product 
Definition, in 43rd Annual Quality Congress Transactions. 1989: Toronto, 
Canada. 

31. Suther, T.W. and A. Sharkey. Customer requirements research: providing 
input to quality function deployment. in Customer Driven Quality in 
Product Design, IEE Colloquium on. 1994. 

32. Adler, T.R., The innovation process: interpreting customer requirements. 
Aerospace and Electronic Systems Magazine, IEEE, 1994. 9(6): p. 17-25. 

33. Nagamachi, M., Kansei Engineering. 1989, Tokyo, Japan: Kaibundo 
Publisher. 

34. Leveson, N., The Role of Software in Spacecraft Accidents. AIAA Journal 
of Spacecraft and Rockets, 2004. 41(4): p. 564-575. 

35. Otto, K., Wood, K., Product Design. 2001, Upper Saddle River, NJ: 
Prentice Hall. 

36. Sommerville, I. and P. PSawyer, Requirements Engineering, A Good 
Practice Guide. 1997, England: John Willey & Son Ltd. 



67 
 

37. Zahran, S., Software Process Improvement: Practical Guidelines for 
Business Success. 1998, Reading, Massachusetts: Addison Wesley 
Longman. 

38. Jiang, L., A. Eberlein, and B.H. Far, Combining Requirements Engineering 
Techniques - Theory and Case Study, in 12th IEEE International 
Conference and Workshops on the Engineering of Computer based Systems 
(ECBS '05). 2005. p. 105-112. 

39. Jiang, L., et al., A Methodology for the Selection of Requirments 
Engineering Techniques. Software and Systems Modeling, 2008. 7(3): p. 
303-328. 

40. Macfarlane, I.A. and I. Reilly. Requirements Traceability in an Integrated 
Development Environment. in Second IEEE International Symposium on 
Requirements Engineering. 1995. York, U.K.: IEEE Computer Society 
Press. 

41. Rounds, K.S. and J.S. Cooper, Development of Product Design 
Requirements Using Taxonomies of Environmental Issues. Research in 
Engineering Design, 2002. 13(2): p. 94-108. 

42. Wickens, C.D., et al., Introduction to Human Factors Engineering (2nd 
Edition). 2003: Prentice-Hall, Inc. 

43. Dulac, N., et al. On the Use of Visualization in Formal Requirements 
Specification. in International Conference on Requirements Engineering. 
2002. 

44. Henley, E.J.a.K., H., Probabilistic Risk Assessment:  Reliability 
Engineering, Design, and Analysis. 1991: IEEE. 

45. Blischke, W.R., Prbhakar Murthy, D.N., Reliability: Modeling, Prediction, 
and Optimization. 2001: Wiley-Interscience. 

46. Shalevev, D.M.a.T., J., Condition-Based Fault Tree Analysis (CBFTA): A 
New Method For Improved Fault Tree Analysis (FTA), Reliability and 
Safety Calculations. Reliability Engineering and System Safety, 2007. 
92(9): p. 1231-1241. 

47. Walker, M., Bottaci, L., and Papadopoulos, Y., Compositional Temporal 
Fault Tree Analysis, in Lecture Notes in Computer Science. 2007, 
Springer: Berlin/Heidelberg. p. 106-119. 

48. Gomes, P., et al., The importance of retrieval in creative design analogies. 
Knowledge-Based Systems, 2006. 19(7): p. 480-488. 

49. McAdams, D.A. and K.L. Wood, A Quantitative Similarity Metric for 
Design-by-Analogy. Journal of Mechanical Design, 2002. 124(2): p. 173-
182. 

50. Goel, A.K., Design, analogy, and creativity. IEEE Expert, 1997. 12(3): p. 
62-70. 

51. Goel, A.K. and S.R. Bhatta, Use of design patterns in analogy-based 
design. Advanced Engineering Informatics, 2004. 18(2): p. 85-94. 



68 
 

52. Andrews, P.T.J., T.M.M. Shahin, and S. Sivaloganathan, Design reuse in a 
CAD environment -- Four case studies. Computers & Industrial 
Engineering, 1999. 37(1-2): p. 105-109. 

53. Data Process Techniques, International Business Machines. 
54. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H., Engineering Design: A 

Systematic Approach. Vol. 3rd. 2007: Springer Verlag. 
55. Ullman, D.G., The Mechanical Design Process. 1997, New York, NY: 

McGraw-Hill. 
56. Tumer, I.Y., Stone, R.B., Mapping Function to Failure Mode During 

Component Development. Research in Engineering Design, 2003. 14(1): p. 
25-33. 

57. Hutcheson, R.S., McAdams, D. A., Stone, R.B. Function-Based 
Behavioral Modeling. in ASME International Design Engineering 
Technical Conferences & Computers and Information in Engineering 
Conference. 2007. Las Vegas, Nevada. 

58. Kurtoglu, T., Tumer, I.Y., A Graph-Based Framework for Early 
Assessment of Functional Failures in Complex Systems, in ASME 
International Design Engineering and Technical Conference and 
Computers and Information in Engineering Conferences. 2007: Las Vegas, 
Nevada. 

59. Stone, R.B., Tumer, I.Y., The Function-Failure Design Methoc. Journal of 
Mechanical Design, 2005. 127(3): p. 397-407. 

60. Hirtz, J., Stone, R.B., McAdams, D.A., A Functional Basis for Engineering 
Design: Reconciling and Evolving Previous Efforts. Research in 
Engineering Design, 2002. 13(2): p. 65-82. 

61. Stone, R.B., Wood, K.L., Development of a Functional Basis for Design. 
Journal of Mechanical Design, 2000. 122(4): p. 359-369. 

62. IDEF Manual.  2006; Available from: http://www.idef.com. 
63. Nagel, R.L., Stone, R.B., McAdams, D.A., A Process Modeling 

Methodology for Automation of Manual and Time Dependent Processes, in 
ASME International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference. 2006: 
Philadelphia, PA. 

64. Nagel, R.L., Stone, R.B., McAdams, D.A., A Theory for the Development 
of Conceptual Functional Models for Automation of Manual Processes, in 
ASME International Design Engineering Technical Conferences and 
Computers and Information in Engineering Conference. 2007: Las Vegas, 
NV. 

65. Nagel, R.L., Stone, R.B., Hutcheson, R.S., McAdams, D.A., Donndelinger, 
J., Function Design Framework (FDF): Integrated Process and Function 
Modeling for Complex System Design, in International Design Engineering 
Technical Conference and Computers and Information in Engineering 
Conference. 2008: Brooklyn, NY. 



69 
 

66. Hutcheson, R.S., McAdams, D. A., Stone, R.B., Tumer, I.Y., A Function-
Based Methodology for Analyzing Critical Events, in International Design 
Engineering Technical Conference and Computers and Information in 
Engineering Conference. 2006: Philadelphia, PA. 

67. Bualat, M., Edwards, L., Fong, T., Broxton, M., Flueckiger, L., Lee, S.Y., 
Park, E., To, V., Utz, H., Verma, V., Kunz, C., MacMahon, M., 
Autonomous Robotic  Inspection for Lunar Surface Operations, in 6th 
International Conference on Field and Service Robotics. 2007. 

68. Stoker, C.R., Gonzales, A., Zavaleta, J.R., Moon/Mars Underground Mole, 
NASA Ames Research Center. 

69. Dabney, T., Hernandez, L., Scandura Jr., P.A., Vodicka, R., Enterprise 
Health Management Framework - A Holistic Approach for Technology 
Planning, R & D Collaboration and Transition, in International 
Conference on Prognostics and Health Management. 2008: Denver, CO. 

 
 


