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&N ANALYTIC APOACH TO TEMPRATUIU DISTRItßUTION 
IN A TIIIN..WALLED COMBUSTION C1AI.R 

INTRODUCTION 

A practical (or non-acaderiic) heat conduction problera consists 

of two thiflgs, viz., a physical situation and a riatheatica1 

description of tt physical situation, It is somewhat ais1eadin 

to consider only the physical and 'ìathetatica1 descriptions; the 

transition from physical to iatherratica1 is :.ost often difficult and 

sometimes exceedingly laborious. It therefore sees apparent that a 

detailed descrIption of a heat conduction problem should include three 

things: (i) a physical justification of the problem, (2) a logical 

transition from the physical to the mathematical description, and 

(3) the -athe-atica1 description. 

In order to introduce the problem contained in this paper, 

Item (i) above should be dwelt upon. Consider the following physical 

situation: Air is blown through arid over the outside of a thin-walled 

metal duct. About midway through the duct, fuel is added to the air; 

the fuel evaporates and burning is soraehow initiated The Uurnin i8 

presuied to e violent, i.e., burning occurs in a high-tenperature, 

high-pressure, low-velocity air streai. 

Now consider the thin-walled ducts A quasi-discontinuous heat 

transfer takes place along its inside surface. Over the leading 

inside half of the duct, there will be heat transfer from the duct to 

the air atreazi. Over the aft inside half, there will be neat transfer 

from the hot combustion products to the duct wall; the transition is 
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nearly discontinuous. Over the outside surface of the duct, there s 

a near-steady heat transfer fron the duct to the air stream. 

The system described is shown scheaticafly in Figures i and 2. 

Over aporcirately three quarters of its boundirt: surface, heat is 

being taken away froc: te duct since over this surface the body 

te:perature is greater than the environrent terperature (see Figure 1). 

Over the remaining quarter of the surface, heat is being added to the 

duct from the hot coribustion products. Representative dthensions are 

as indicated in Figure 1. 
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Figure 1. Secti.onal schematic of the 7hysic&l problen 
showing duct, flow direction, etc. Fuel is 
added in the vicinity of Station (o) and 
burning starts at Station (L). Q indicates 
heat flow to duct, -Q heat flow from duct. 

Typical dimensions are: r l2, t 17W', 

2L a ¿,3 
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FiFure 2. Sectional sche;iatic showiru duct, annular 
f1a'e stabilizer, flow direction, etc. Fuel 
is added :1n the vicinity of Station (0) and 
burning initiated at Station (L), 

In such a flow ysth- flame is usually stailized in the wake of 

a bluff body. The fla-e-stabilzin.c apparatus is ordinarily referred 

to as a flaneholder. An annular or t?wall flaeholder is considered 

here and is shown in section in Figure 2 . Unless the fuel used is a 

monopropellant (i.e., needs no oxygen to burn), it is ordinarily- 

injected into the air stream through nozzles upstrear.i of the combustion 

zone. This is also indicated in Figure 2, 

The scope of the problen is not restricted to heat addition in 

ducts, A si:dlsr roble: arises in fuel-rod and ioderator desiyns for 

nuclear-reactor piles where tie rod and/or :coderator are hail 

subnered in, e.G., a bollin liquid. The sinilarity is especially 

evident if the rioderator and/or fuel is in the shape of a thin 

circular la:er. 

Another refíneent of the sane problei occurs in embedded steen 

pipec when the designer wishes to restrict heat flow to one direction. 



This is sometimes done by covring only half the circumference of the 

pipe with insulation. In any event, the nature of the problem is not 

restricted to jet burners although that is the situation to be treated 

here. 

After a mathematical model of such systems is formulated, analysis 

of the model usually proceeds with the formirulation of differential 

equations describing heat flow in t'rins of physical characteristics, 

space variables, and time. The general differential equation of heat 

conduction was formulated by Jacques Fourier over 100 years ago. For 

constant conductivity and an absence of sources and sinks it is: 

cr66 
t= Dlv Orad . . . . . . . . . . . ............... . . . . . . (A) 

where: ê = temperature or temperature function, °F 

t time, secs. 

Btu 
C specific heat, 

density, 
lb.m 

ft. 

B tu k thermal conductivity, 
sec .-ft.-°P 

The divergence and gradient may be expressed in any convenient space 

variables. The exact formulation of the problem also includes 

conditions to be imposed on the boundary of the mathematical model and 

sometimes includes an initial condition (or condition at time zero). 

Furthermore, heat conduction problems are customarily categorized 

according to whether or not the heat flow from point to point is a 



functior oi. ti..e. If heat flow is not a function of time, &juation (A) 

reduces tot 

Div Ç tradG = O.................... . 

and is ordinarily called a 3thady-state prob1e:. If heat flow is a 

function of time, ivation (A) holds and is ordinarily called a 

transie ¡it prohler. 

The ¡ìathematical rode1 chosen to represent a riven physical system 

1s (as :entioned previously) never exact, Certain simplifying assunp- 

tiens are custOEaarily :.ade in order to make the problem nathernatically 

tractable, The boundary and initial conditions inposed on the Fourier 

heat conduction equatiDn are most oftan approxinations oi the actual 

systerr conditions. 

In the system which has been described, combustion as tempera- 

tures are often as high as 2,000°F, Structural failures at the 

trailing edge and juncture of the fl&-'eholder and duct are comon- 

place occurrences. Furthermore, severe vibrations are often induced 

in the duct wall. In order to analyze whether the structural failures 

and/or induced vibrations are ther;:odynanic in ori:in, the temperature 

distribution and temperature gradients in the wall of the duct need to 

be known, 

The overall objective of this paper is to find a iseful analytical 

approach to the ta:perature distribution in such a system. Ioth the 

steady-sath and transient problems are attempted. 
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A thin..walled circular duct with airflow through and over it arid 

heat addition over th aft inside half is considered. The for1 
ataterent of the problem in the rectan:ular regIon O x 2L, O y t 
is: 

;2e 2e 
2 

such that: 

e 

O,y 

e 

2L,y 

r 

=re 
x,O x,O 

1- re , 
x,t 

x,t r1 (9 - k) , Lx2L 
x,t 

Ari approximate solution is expanded in a finite rtion 01' an 

lafinute series as follows: 

e(x,r) Co (i+r) C Cos 
f 

e e 

riz]. 

flif 
n 

The f orn, of the solution appears to be convenient for corìputationa 

with either a desk calculator or corputr; approxiniath values or the 
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coefficients C are shown to be given by the $olution or an (N + i) by 

(N +- i) acgent of an infinite syster of equations. 

It is furthernore shown that the corresponding infinite series 

solution converges everywhere in the rectangular region except at two 

exceptional points where no proof is attetpted. It is also shown that 

the convergence is unifor'i for Oyt. 

Tynical system pararneters are calcu1atec in Apnendix A; these 

va1iies are used in a nurrical exaniple problen. The error of the 

results of the exanple problem appears to be on the order of t10°F 

in a EOOF range. 

Several exact so1ution or the transient problem (temperature 

zero at tire zero) are attenpted. Two of the atte:rpted solutions are 

unsuccessful, The use of a LaPlace inte:'ral transform seems to yield 

a solution, but it is in such a conplicat.ed forn that it does not 

appear useful for calculations. 

It seemed appropriate under these circumstances to search for 

either local solutions or bounds of the transient teperature . The 

exnression: 

2( 

s-r)e e :lr(a-y) n 
loo i + ra 

(r -- a ( 

,2 
r2)) 

s Cot a + r O; n 1, 2, 3, 
n 

appears to be an approximate solution of the transient problem ar 

the trailing edge. 
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Two probleris which appear to bound the transient terìperature 

distribution along the aft hail' of t:-ie duct are pointed out; no 

analysis of either of the prob1ozs is atteripted. 

Several approaches to the exact solution of the transient 

problon are pointed out and one (combined Fourier and LaPlace trans- 

form) is reconriended for further study. Some recoendations 

conccrnin thornal stresses and thornally inclucod vibrations are also 

noted, 



THiORÌTICAL DISCUSSION 

It was nentioned previously that the general differential equation 

of heat conduction was derived by Jacques Fourier over 100 years ago. 

This equation has been derived in several ways in the 11trature. 

l3oelter, et al. (1, o, III-7 to III-9) derive Fourier's heat 

conduction equation using a heat balance on an arbitrary volune. The 

derivation includes t:e use of Green's theoren and is rather e1eant. 

Sokolnikoff and Redheffer (12, t. use Gauss's divergence theorem 

in a similar derivation on an arbitrary vo1uie. 

Both Inerso1l (7, p. 12) and Wylie (17, p. 206) use a heat 

balance on a rectangular parallelepiped to derive Fourier's heat 

conduction equation. Although these derivations are less elegant 

than those of 3oelter and Sokolnikoff, they are more physically 

reaningfu1. The following derivaton therefore follows closely those 

given by Inorso11 arid Wylie. 

Several preliminary observations should be accepted before 

continuing to the actual derivation. These are: 

1. Enerr can neither be created nor destroyed, 

2. Extensive exerinents have shown that heat energy 

flows in the ,3irecton of decreasing thrirature, 

3. Heat is defined as energy in transition due to a 

tenperature difference; the quantity of heat 

required to produce a iiven temperature potential 

in a body is proportional to the mass of the body 

and the temperature potential. 



lo 

. The idea of heat flux. Iiaaine two parallel 

planes each of area A and distance Ax apart frOEn 

each other. The teìperature on each face is a 

constant and there is a terìperature drop 4T 

between. Fron observation (2) above, heat energy 

will flow from the hotter to the colder plane; 

the quantity of heat A Q transferred in tite A t 

is: 

= - k A (At). 
AX 

k is a r-aterial constant called the thermal 

conductivity with imita 
Btu 

t. 

Rearranging and taking the lirit.., 
i AQ AT - 
Tt ax 

Lim( *) 
A x-40 
A t ->0 

i .Q 
-5t:- -;E 

Lii 
(- 

k 

A X -'0 
at-o 

The ter: on the left is conmonly called the heat 

flux W, i.e., 
w : - k .-&; W Heat Flux, 

Btu 

x hr.-ft.' 

Consider the infin!tesiaal volunie in Figire 3. 



X 
Fjure 3. 

z 

y 

There are rie heat sources or sinke in this volune arid it Ls atsurted 

to be both hoioeneous and isotropic with respect to all three space 

variables, teripe rature, and tine. 

k nunber of heat transfer rodes take lace in this volune as 

foUows: 

1. Heat energy is carried out of or into all six 

faces of the cube by reason of the teperatu 

gradient normal to the faces. yost generally, 

this heat transfer may be assuzred to take place 

by conduction. 

2. Heat energy is stored within the infinitesirnal 

cube if the ternerature is a fune tion of tine. 

Using idea (i) above, viz., enerí- can neither be created nor 

II 

destroyed gives: 

Heat stored heat inby conduction.. .............. .......(l) 
This is a heat balance on the infinitesimal volue. 
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Using idea (3) above, the left term in equation (1) is 

Heat stored C,ó m4T; Q = quantity of heat, Btu 

specific heat, 

mass of cube, 

T temperature difference, °F 

Heat stored C (Axyz)AT; Ax 

lb. density, ' 

Alternatively, for an infinite sinai increment of tiìe t t, 

Heat Stored 
lJnitTime . 

Turning attention now to the right-hand terri of equation (1), the 

aount of heat flowin into the rear face of the inuinitesizial cube in 

the x-direction per unit time is: 

AQ:kA T 

- 
X 

y 4- l/2y 
z + l/2Az 

- : -kyz At 
X 

y l/2y 
z 4- l/2Éz 

The notation indicates that the derivative is taken at 
X 

y 4- l/2y 
z 4- l/2A.z 

the point (x, y + l/2ty, z + 1/2Az). The negative sign indicates 



that if the gradient is negative, heat flow is in the positive 

x-direc ti on. 

The }at gained throu.gh the front face in the x-direction is 

found by the sa'e sort of reasoning to be: 

u kAyz 
X +X 
y 1/2 Ay 
z + 1/2Az 

A ii1ar lina of rcasonin holds in the orthoronel y- and 

z-directions to give: 

Heat in at 

y _kAXZT 

y+Ayu kixz 

z -kAxAy.... 

z-t-Az 

+ 1/2 Ax 
z 

y +Ay 
X + 1/2 Ox 
z+ 1/20z 

X + 1/2Ox 
y -i- 1/2Oy 

X t- 1/2 Ax 
y+ 1/2Ay 

13 

Turning now to the heat balance described by equation (1), there is.., 



Th 

(r CAxAyAzi:kAyAz (-5-j --- ) " Ix4-Ax Ix 

(T 4kAxAz 
_. ) \ y4-Ay y 

kAxAy( ) '\ Iz+Az I z 

Divid!w, by the volwe AxAyAz, 'we have alternatively... 

- - 

I 
X4-AX I y+.ay Iy 

AX 

Z+AZ z + AZ 

Tgkin the mit in all variables cives... 
(T 

6x 

Lin C 
AT Lin k 

p 7Ç 
¡ 

Ax 

Ay-0 
¿Z-5O 

At-'O At-sO 

Ay 

X -4- 

T 

-- 
24-AZ Z +- AZ 

The mit on the left is in&pendent of x, y, and z, just a the 

units on the right depend only upon one sce coordinate. Further, 



the unit of a constant times a variable s the constant times the 

limit of the variable. Usine these facts, 

/ TI TI 

CLira ATk Lim Ix 

At-O Lo 
TI TI 

+ Lim Iy+Ay 
LIy-4O 

1 

ITI 

z+z iz Lim _ 
AzO AZ 

?roceedinç to the limit indicated cives 

C c T 2 a 2T e 2T 
p -: 

aT k 2T 2T 2T I 

--;- cpb- ja2z2f 
The material constant k is sraetime3 abbreviated as OC and was 

cp 

termed b Kelvin as the "thermal diffusivity." Usirv this 

abbreviation, 

T_Q(a2T 2T 2T 
(3) 

--t 
e 

i 2 a z2 J 

S I S I e ....... 

Equation (3) is one foz of ?ourier's heat conduction equation. 

In order to facilitate calculations on certain geOEaotries, it nay be 

transfored to other coordinate systems by use of the chain rule for 
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partial derivatives . Thcc transfoiaton3 iay be found in aJ.ot any 

advanced calculus text (17, p. 39) and will not be discussed here. 

ktalogou8 to boundary e onditions imposed on the solution of 

ordinary differential equations, it i necessary to ecoress f oru1ae 

describing Initial and boundary conditions on a partial differential 

equation. The solution of the differential equation s custoraarily 

formulated in a forflì containing unknown constants These constanta 

are generally determined by iriposing initial and/or boundary conditiona 

on the f ormai solution. 

The initial condition is a formulation of tne temperature at that 

time arbitrarily taken as zero. In general, the temperature at time 

zero would be some function of the apace coordinates, The initial 

condition might then be formulated as: 

T f(x,y,z) 

t,=O 

A stricter interpretation of this initial condition is "The solution 

of Fourier's heat conduction equation imist be such that its limit as 

time approaches zero is f(x,y,z)." Formulated strictly mathematically, 

the initial condition would be 

Lin (T(x,y,z,t)) : f(x,y,z) 
t-* o 

In the general case, Fourier's heat conduction equation is solved 

for a surface or a voluíìo, For such a case, certain conditions would 

need to be et on a hounding line or surface. Such surface conditions 

generally fall into one of five categories, as follows z 
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1. Prescribed Surface Temperature. This boundary 

condition supposes tt one of the boundaries is 

iaintaincd at sore prescribed tenperature. This 

boundary condition is rather easy to work with 

(it has been studied extensively) but it is 

ordinarily difficult to specify a thierature on 

a given surface for nost physical problems. 

2. No Heat Flux Across a Surface. This condition 

arises most enera1ly on a surface that is well 

insulated. In such a case, there would be little 

heat flux; as an approximation, it might be 

assuied that there was no heat flow. This 

condition is prescribed by 

TI - 
-- I 

- O; n an outard drawn normal 
to the surface. 

I Surface 

:3. Prescribed Flux Across the Surface. This boundary 

condition is useful, e.g., when a body is poorly 

insulated. Under these circumstances, the heat 

flux from the body to the insulation mizht be 

stimilated, The heat flux would in general be 

some function of space variables and tt and 

would be formulated as: 

TI 
I = 

£(x,y,z,t) 
Surface 



L Newton' s Law of Cooling . If ieat transfer t.aes 

place by radiation and/or cowection into soue 

s-rroundin :ediu, the heat. flux ay be ssur.d 

proportional to the teriperature diierence betreen 

body and 7:lediUIa. In fact, i'iany inve3tiators 

(u, p. 23I) in the heat-transfer field derive 

empirical relations for heat transfer coefficients 

on the supposition that this is true. xperience 

has shown it to be a good approximation for 

convectivo heat transfer, especially if the 

temperature difference between body and medium 

is not 1are. The nathenatical formulation of 

the boundary condition is: 

DT (T -T 

Suracc Surface Surroundina 
Ieditun 

whore: r = h/k 

h heat transfer coefficient, 
hr.-ft.2-°F 

k : ther!ai conductivity of body, 
tu 

S 

flue account nuat be taken of t.he sign depending 

upon the direction of heat transfer. 

, The Nutua]. Surface of Separation Detween Tio Media 

of Conductivitics K1 and K2. Along the interface 

between the two nedia, heat energy is neither created 
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nor destroyed nd the heat flux iust therefore be 

cofl3tailt at that surface, i.e, 

K1 
2; 

N = An outward drawn noia1 
to the surface of separa- 
tion. 

Once a proh1ei has been reduced to a xathernatica1 rode1, several 

fundamental approaches ri.ght be used in the solutioi of the nathe- 

matical :iode1. The division between approaches is rather arbitrary; 

as often as not, one or more methods cornpleiient a basic approach. By 

way of a {?085 survey, approaches aight be broken into five categories, 

viz., experinenta1 methods, analytical procedures, graphical methods, 

nuzerical procedures, and arialogie3 or models. 

E'xperimenta1 thchniques are generally eîip1oyd when a few 

specific temperatures in a region need to be known. If a fine 

network of temperatures is needed, equipment and installation costs 
would be prohibitive and the results subject to much error, 

On some occasions, it has been useful to establish temperature 

distributions by the use of "thermal paints." A ther-a1 paint chances 

color when. raised to a specified temperature and ay be used to 

bracket the temperature on some given surface. These paints have a 

tendency to peel off under service and usually indicate temperatures 

within, say, a tO°F range. 

Analytical procedures arc usually desirable in attacking a heat 

conduction problem since they are ordinarily the least expensive fron 

an equipient standpoint. Analytical procedures usually fall into one 

of two classifications: (1) the classical method of separation of 
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variables and (2) oDerational transform methods. These methods may 

be found in any athematica1 physics text (12, pp. -01). 
Graphical methods are scnetimes employed for crude approximations 

ol' temperature distributions in re1atvely simple systems 

(ii, pp. Ijb-l). Such methods afford at best an estimate unless a 

great deal of time is expended; they seer to have little application 

l'or the purposes of this paper, 

Nuxtorica1 methods of analysis have been exten.sve1y developed 

during the past ten years; the digital connuter has had a 

impact in the area of heat conduction. Digital computers are 

especially useful tri solvin systems of equations which sometimes 

arise in heat conduction problems, The syste:s of equations are 

ordinarily handled with sorne iterative scheme; convergence criteria 

for such iterative methods hive attracted much attention, 

The most serious drawback of a di4tal cociputer lies in the fact 

that it is rather expensive, any small concerns in industry cannot 

afford such equipment and must resort to analytical procedures or rent 

computer time. 

Some work has been done in the area of analogies and models of 

heat conduction phenomena, Such analogies might be made with either 

electrical or hydraulic systes. Analog computers have been of some 

use in such electrical analogies, but are expensive in comparison 

with digital computers, For that reason, they have largely been 

overshadoied by the di.ital coiputer in the area of heat conduction. 
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LITERATURE SURVEY 

A. Steady State 

The general problem of heat conduction in a two-dinensional 

region was studied by Jacques Fourier many years ago. In fact, h18 

study on the conduction of heat in a oemi-infinite strip led him to 

the expansion of unity, viz,, 

1.LICosx_!Cos3x+Cosx_....Ì ) 

-xL. 
3 

This prompted Fourier to consider expansion of an arbitrary function 

in a trigonometric serics. 

A survey of the more e1eentary problems is given in Carsiaw and 

Jaeger (2, pp. lt2-12). Problems somewhat similar to the one 

presented in this paper are treated on pages 1?L6-1l9 of Carsiaw arid 

Jaeger. They are all attacked in the classical manner. 

Problems which give rise to infinite systeas of equations are 

treated in Kantorovich and Krylov (8, pp. -68). Two exaup1es of 

such problems are treated, Properties of infinite systems of' 

equations are also outlined on paes 2-W. 

B. Transient Case 

Thiruvenkatachar treats a transient problem similar to the one 

presented here by treating it as a two-region problem 

(15, pp. 2-2(2 ). The problem lends itself to cylindrical 

coordinates and he attacks it with the LaPlace transform. 



Tranter (16, pp. lob-110) treats the subject of combined use of 

relaxation rethods and ntegra1 transforms. Such methods appear to 

have some use in the present problem; the method will he dwelt upon 

in the Results section. 

Under some circumstances, relaxation-type procedures may be used 

in transient, to-dimensiona1 problems. In enera1, only elementary 

prob1e:s have been solved in this manner. 

One notable exception to this is given in the literature 

(ti, pp. u1-1161). lielinan, et al., treat a rather conplicated 

system by nwerica1 rmethod3. It appears that the solutions obtained 

leave much to be desired from the standpoint of accuracy but the 

problem appears unassailable òy any technique other than nunerical. 

A ore or less enera1ized finite-difference method of attack 

for transient two-dimensional problems is riven by Liebman 

(lO, pp. 129-135). !e treats both one- and two-dimensional transient 

problems and gives a rather simple example of a two-dimensional 

problem. 
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RESULTS A1D CALCULATION 

STEM)Y STATE FOBLE1 

Before proceedin to a f orua]. problem statenent, the assumptions 

underlying the mathematical nodel should be dwelt upon. The physical 

problem was described in the Introduction section arid will not he 

repeated here, 

At first glance, the problem seems to lend itself to cylindrical 

coordinates, Fourier's heat conduction equation in cylindrical 

coordinates is: 

i T i 2T 2T - 

'r = temperature, °F 

r = radius space variable, ins. 

argular space variable, radians 

z axial space varia1e, ins. 

W are consideriní steady state so that T O and there is no 

2 

temperature variation in the -direction so O; Fouriert s 

-m2 , ry m2 
equation reduces to " .- .± .i + 

L 

Sr2 r r 

Recall now that each of the terras 2T d 2T, 
and 2T 

&x_ ? 
Fourier's heat conduction equation (3) resulted from considering heat 

flow in the x, y, and z directions respectively. From a similar 

derivation on a cylindrical wedge (1, p. iii-10), it can be shown 

m2 , 

that the terms ' i. ± _ in the last equation arise from 
r2 r &r 
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considerations of heat flow in the r-direct±on, oreover, the thr 

! ! arises due to the curvature of the duct; thi8 may be seen fron rr 
a comparison of the last equation with the heat conduction equatIon 

f or a two-dimensional flat plate, which i + O. 

Now consider the heat conduction in the r-direction, It, is wefl 

known (i, p. lIa-8) that for thin circular shells, i.e., where 

outside radius ' 2 the heat flow in the rad±al direction is given 
inside radius - 

within four percent error by using an equivalent flat plate arca or 

by neglecting the curvature of the shell. 

Typical dimensions for the systen considered here show that the 

outside rdu ratio .- .. is much less than 2 Hence the curvature of the 
inside racius 

plate, i.e., the thr i, nay legitimately be neglected leaving: 

2T 2T 

r cz2 

This is LaPlace's equation and night Just as '.refl lie e:Drcssed in the 

more familiar form: 

2T 2T : 0 T thliperature, °F 
2 

X space variable, in 

y : space variable, in, 

The problem statertent must include appropriate conditions on the 

boundary. For reference purposes, a section of the duct-wall is 

shown in x-y e oordinates in Fir;ure I. 
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t[ 
____ 

L 2L 

}at 
Added 

Figure .. Cross-section of the duct wall in 
x,y coordinates. 

All the heat added to the rectan1e is died on the surface 

y = t in L'x2L. The length of the rectangle is (as mentioned 

previously) roughly loo tines the width. Nost of the heat lost in 

the interval Ox'-L will be frOE the surfaces y O and y : t since 
they have a -uch greater heat-transfer area. As a result, the heat 

flux at the surface x : O is very snail so thats 

- sO 

X 20 

heat will be lost from the surface y : o by convection and 

radiation into the air strean along that surface The air strea 

will increase SljrultlY in terperature fror. the left to the riht end. 

Assume along this surface that Newton' s law of cooling holds and that 

the teìrnerature rise of the air streaxn is snail enough to be 

negligible . Then: 

T 
= rê 

; 
r : conhined radiative and 

i convective heat transfer 
I 
y O IY O 

coefficient, 

0= temperature difference 
between surface and air 
stream, °F. 
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Consider heat transfer a1on the surface x u 2L, Two factors 

tend to produce heat flow in the x-direction along x : 2L. They are: 

(i) the influence of the heat transfer discontinuity at x - L and 

(2) a terperature difference (ir any) between the duct and ambient 

fluid. Using the same line of reasoning as a1ong x O, the influence 

of the discontinuity will proab1y be negi:, It appears that the 

heat energy added along y a near x s 2L will tcnl to flow straight 

across the netal since this is the path of least resistance. Further- 

snore, it appears that the gas tenperature along x a 2L is on the aaie 

order of nagnitude as the duct tenperature so that convective and 

radiant heat losses fron this surface are 
rniniiized0 These 

considerations point to the fact that the heat transfer along x = 2L 

may be described by: 

&x o 

X = 2L 

The boundary condition along the suriace y : t is nuch harder to 

describe,. If it is as8uraed that the temperature of the hot combustion 

products is constant over the interval L'x2L and that ar "average" 

velocity may be ascribed to the hot gases in that interval, then 

Newton's law of cooling may be used to describe the boundary condi- 

tion. A detailed analysis of the heat transfer coefficients is 

carried out in Appendix A; the boundary condition is: 
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TI Ox'-L 

(G - k), Lx2L at 

r a combined radiative and convective 
heat transfer coefficient in 
Ox'L, in. 

r1 combined radiative and convective 
heat transfer coefficient in 
L'x2L, in.1 

k : a constant temperature, viz., the 
difference in temperature between 
hot gases and air stream, °F. 

Usiri the transformation es T - T bit' the formal statement 

of the problem is: 

a2e 
+ - o .............. ......s.. 2 2 

= o ......... ......... ..... ........ .............. .....() 

O,y 

oa O..,, ...... ....... ............. 
2L,y 

c_ 
a rE 

. ........ I........... ........ 

x,O x,O 

(-re I Ox'L 
aG -J 

x,t 

B 

,L-x2L 



2 

The expression: 

co 

ê(x,y) C0 (1+)7c 
-r 

e 

11=1 

\nTT - 
n - -i n - 1, 2, 3,... 

satisfies (1), (s), (6), and (7). It remains then to adjust the 

coefficients C to satisfy boundary condition (8). Using equation (9), 
boundary condition (8) gives: 

nsl 

-rC0 (1+ rt) -rC CO!X 
{ 

OxL 
: 

( t \+r )t -r1C0(H-rt) - ri[Cn Co >x <j0 
n n +r1k, L'-x2L 

The sequence of functions {Cos >x} is orthogonal in the 

interval (o, 2L) but not in (O, L) or (L, 2L). The expressions on 

the right of equation (io) are therefore non-orthogonal due to their 
interval. 

Since this last expression is a function only of x by reason cf 
the terms Cos , ve may rid the expression of the x space- 

variable according to the method of Fourier. Multiplying equation (10) 

by Cos >mXdx where m = O, 1, 2,... on the assuntion that ternrwise 

Integration is legitimate (see Appendix C), integration in the 

appropriate intervals gives: 
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Ç2L 
C0z' 

¼)O 
Cos\mXdx+ 

___ t 2L 
- n Cos Cos )xcix = 

n1 

(L 2L 
r C0 (1+rt) \ Coz)xdx + r1 (k - C0 (1+rt)) \ Cos)xdx - Jo 

I, L 
- je_t +r ent Cosx Coamxdx - 

n1 
cz 

(' 2L 
ç -t +r j C08X Co5mxdX ..... 

j L 
n1 

Rearranging equation (ii) g1ves 

_r1 (k - C0 (1 + rt)) 

L + 

C2L ('L 
+ C0r Cos >txdx - r C0 (1 4 rt) j Cos )xdx 

o o 

c{ntr t _Àt ("2L 

) -r e j C08.\flX Cosxdx 
n o n1 

ti (ThL 

Co xdx 
r 

> )+r > =- Cje ni n 
e n 

n 
n]. 

_rlCn{ent+eXnt}Th2LCosmxCo8Anxx.............(l2) 
n 1 
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The terms on the left of equation (12) depend only upon m since 
C2L 

J 
Cos) x Co8Xxdx is not zero only when m n. Arbitrarily, 

m 

call the term in brackets The evaluation of the integrals 
m,n 

is carried out in Appendix B; the result is 

n0, C0rL(3frt)+- r1L(1#rt) 

nfl- 
e>nt Sifl2 

r1kL........(13) + 
TI 

n1 

, C1() e' -e_>t1 + 

2L 
(r_r1)(l4rt)Oo+rik} 

Go 

e th 
(r-ri)L1_Xt \ >t} 

TTL,fl 
> -r 

n nl 
Tr 11 ¡Sin (mn) Sin (m-n) 

+ 
In-n 

t. 
m4-n 

(r+r1)L Cmef À > t? - m,ri 2 
e m 

In 

Equations (13), (i1), (is), and (1) represent an infinite system 

of equations of the forni: 
w 

cm 
¿_____ 

min C+ B; m O, 1, 2, 3,... 

n) 
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It is shown in Appendix C that the solution of a finite segment of the 

system of equations (13), (iLs), (is), (16) gives approximate solutions 

of the coefficients C. It is also shown there that the use of these 

approximate values of C give an approximate solution to the problem 

posed. 

An approximate solution of the problem posed is then given by 

N 

e(x,y) C0 (14)+T; Cosx 
+r eA nY] ...(17) 

.i.. 

n.1 

.here the C are solutions of a segment of system (13), (Th), (is), 

and (16) and N is a finite number. 

Consider the expression 
> 

in the sumrnand of equation (17). 

This function is not well behave; if some value of !L is 
close to the value of the heat transfer function r, 

A+r 
becomes 

very large. Schematically, it behaves as shown in Figure 5. 

t' 

I 

\\ 

I ".. Asytotic 

I 

1 
+ 

I 

X-s-r 
I 

x 

)n+ r 
Figure 5. Schematic of the function 

> nr 
With the heat transfer function r derived in Appendix A, the 

break in the curve occurs in 9nlO. In order to arrive at a 
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) r 
reasonably good approximation of the temperature, the break in 

would at. least need to be bracketed. As a first approximation, it 
might therefore be assumed that twenty terms of the infinite system 

(13), (lii), (1g), and (16) are required. 

The analysis of this system of twenty equations in twenty 

unknOwns C1 may be handled rather easily by noting that the terms on 

the main diagonal, i.e., terms for which in n, are invariably the 

largest terms in each equation. The finite system of twenty equations 

is in shorthand notation as follows t 

A0,0 C0 + A0,1 C1 + A02 C2 + ... + A019 C19 a 

Ai,o C0 A1,1 C1 + A1,2 C2 i- ... i- A1 C19 

A2,0 C0 + A2,1 C1 4- A2,2 C2 ... + A2,19 C19 132 

.. . . .. I 4 0* ...... .. . .. 1 ............ 
A19,0 C0 A191 C1 i- A192 C + ... + A1919 

C19 = 19 

The A are known coefficiente and the B are also known, ¡n, n 

UeIIIg a superscript to indicate the iterative order of the 

approximation and noting again that the principal terms are ori 

the main diagonal, neglect the terme to the right of the main 

diagonal and write: 
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I3 

A3,0 

(i) - A1,0 (1) 

A1,1 

C2 = 
-A,0 CQ(1) -A21 c1(1) 

A22 

e.... e. ..i..S. Ce. 0q .. bi..... i e 

(1) 
(1) = 

-A,0 (1) 
- 

w 
- 1n-1 Ca_i 

A 
n,n 

As a second approximation, use the complete zeroth equation to 

arrive at and carry out the sane operations previously indicatedi 

c02) 
B0 -A01 C1 

- 0,2 C2 - .. - A0,19 C19 

A0,0 

c1(2) : 
- A110 (2) 

A11 

= 
B2 - A2,0 c02) 

- 

A2,2 

C i*...e.. s ese...... s...... e s.. 
(2) 

c 
(2) = -AnO 2) -A1 c1(2) -Ann_i Cn_i 

n 

The procedure may be repeated until the desired accuracy of results 

is obtained. 

Uain this iterative procedure in conjunction with the typical 

constants from Appendix A, the system of equations (13), (iL.), (is), 

and (16) was solved for C3, C1, ..., 
l9' was found that the 

second iteration produced no chance in the fourth decima]. place except 
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for C3; the process was accordingly stopped after two iterations. The 

results, I.e., c3(2), 1(2), c) are riven in Appendix D along 
with several plots of the temperatures obtained by using equation (17) 

with twenty terms. 

In order to estimate the error in the temperatures given In 

Appendix D, consider the region of interest from a physical stand- 

point. The typical thickness or y-dinnsion is one-fourth inch as 

conipared to a typical total length or x-dinsion of 1.8 inches. The 

only heat transfer to the left end, i.e., to x : O, is by means of 

conduction along the plate in the minus x-direction (see Figure 6). 

148"- 

HeatLost 

1/14N W% 
Heat Lost Heat Added 

Figure 6. Schematic of Region. 

There is a much greater tendency for the lient to escape from surfaces 

y = O and y t in the single cross-hatched region because these 

surfaces present a far greater area for convective neat transfer than 

the cross-sectional area presents for conduction along the plate. 

These considerations point to the fact that the temperature at 

the left end of the region should be close to the ambient temperature. 

The series solution (17) using the twenty coefficients In Appendix D 

gives a temperature range 311.2°F to 313.3°F or temperatures about 

13°F above ambient along x O (recall that the ambient temperature 

assumed was 300°F). The temperature at the left end therefore checks 

the physical consIderations remarkably well. 



3 

In order to estimate the temperature on the ri'ht end of the 

region, consider an e1enrit taken out of the region in Figure 6 at 
x 2L, i.e., at the right end. Such a rod is shown in Figure 7; 

since the derivatives O on the ri.ht end, the rod's ax z 

curved surface is effectively insulated. 

l,II 

¿y 

X 

Figure 7. Element taken from body in t 
vicinity of x 2L. 

The heat flow in this rod is therefore one dimensional and for 
steady state, 

2 
: o ............... .............. ........ 

cy 

c 

: r1 (100 s )................ ...... 
yt 

- 
r ......... ...,.. ......... .........(20) 

y yJ 

where boundary conditions (19) and (20) coincide with those used in 

the actual problem at the right end. 9 T - 300°F as before. 
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The solution of this rob1em is straic:iitforward; it i5: 

1Do r 
e () : (i+-ry) ......... .(21) r1 + r r1 t ± r 

At the points y O and y t, equation (21) gives 

e(o) = 

6(t) : 

so that the temperatures are 71i6°F and 81°F respectively. 

The solution of equation (21) is shown superimposed on the result 

of the series solution (17) using twenty coefficients in Appendix D, 

Figure 3D. It may be seen there that the slope of the two curves is 

nearly the sa and that the temperatures differ by only a few degrees. 

The trends exhibited in the tenperature plots In Appendix D may 

also be checked by physical considerations. teferring again to 

Figure 6, the heat added along y t in the interval L'-x2L will 

have more tendency to conduct straight across the metal duct than it 

will to be conducted along the plate in the x-direction except in the 

vicinity of x L. The temperature on the left half of the duct 

should be close to ambient since there is a much larger surface area 

for heat convection away from the plate than there is for heat 

conduction along the plate in the inus x-direction. 

These physical considerations lead to the conclusion that the 

temperature distribution in the x-direction (i.e., along any y. 

constant) should bei 

1. about ambient in Ox'-L except within several 

thicknesses of x L. 
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2. about the same as the right-end temperature In 

Lx2L except within several thicknesses of 
x L. 

3. in the vicinity of x L 2W0, there should be 

a sharp rise in temperature from roughly ambient 

to the right-end temperature. 

Three temperature plots along y O, y : O.12', and y t 

are given in Appendix D as Figure 1D. All three plots exhibit the 

characteristics outlined from physical considerations. Temperatures 

in the left half of the duct are nearly ambient, in the right half 

nearly the same as the right-end temperature, and there is a sharp 

rise in temperature at the middle of the duct. 

Ti.'o temperature plots along x L = 2W' and x 2L Li8" are 

given in Appendix D as Figures 2D and 3D. Both plots show a quasi- 

linear characterjstc as they should. A temperature plot along 

X O has not been included since the error in the temperatures 

given by- equation (17) appears to be on the order of five times as 

great as the actual variation of temperature in the vicinity of 

X R 

Barring the exceptional point x 22" , the results of the 

analysis appear to deviate t].00F from a mean curve. A more refined 

analysis considering perhaps thirty equations in thirty unknowns 

would probably reduce this deviation considerably. 
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The point x = 22" a;pears to havf an exceptionally large error. 

No matter what value of y is taken, the temperature at x 22" could 

be no less than arnbient and the series solution (17) with N = 19 gives 

the temperature here as roughr O0F below anient. 

It vas pointed out in Appendix C that there was a likelihood of 

a many-valued solution at (L, t). It is well known that a finite 

number of ternis in a trigonoimetric expansion cannot accurately 

represent a many-valued function and this fact is ordinarily manifest.ed 

as Gibb's phenonnon or an oscillation In the region of the non-unique 

solution. Although the evidence is superficial, the error at x : 22" 

appears to be due to Gibb'a phenomenon. 

Several isothermal lines are plotted in Figure bD, Appendix D. 

Such a plot is ometins convenient for visualization of the direction 

of heat flow. 

As a matter of Interest, it should be mentioned that the steady- 

state problem just considered may also be treated as a two-region 

problem. Separate the given region into the parts O x L arid 

Lx2L and match the temperature function and its first derivative 
along the common face x a L. This approach gives rise to an infinite 

system of equations just as the non-orthogonal series approach did and 

tierefore seems to have no inherent advantage other than perhaps being 

slightly more elegant. 

TRAI;SIENT PiOBLEX 

The assumptions used in the transient problem are the sane as 

those for the steady-state problem insofar as the space coordinates 
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are concerned. It is only necessary to treat the assumption(s) used 

in the initial condition. 

In any high-velocity flow system, wall friction becors apprecia- 

ble. An adiabatic wall assuns a temperature between the bulk 

temperature of the stream and the stagnation or total tenperature. 

The wall in the given system has flow over both the inside and outside 

and there is therefore little or no heat transfer across the wall 

during cold flow or prior to the time burning is Initiated. Tie 

indicates that the wall will come to a temperature close to the 

adiabatic wall temperature during the soaking period. The adiabatic 

wall temperature is given by 

TA11, T 4 N (T5 - Tm); = Adiabatic wall 
temperature, °F 

NRF - Recovery factor 

Ts Stagnation 
temperature, OF 

Tm Bulk temperature, 

At a Mach Number of 0.5 as is supposed here, there is very little 

difference between the bulk and stagnation temperatures end the 

adiabatic wall temperature is thus very nearly the same as the bulk 

stream temperature. 

If It is assumed that there is a negligible difference between 

bulk stream temperature and adiabatic wall temperature at time zero, 

the transient problem reduces to: 

2 
_ 

e2e 
k a) .......................,.........(22) 

x2 y2 



Io 

:0....... ...(23) 
0,y,t 

i..... el...... 

2L,y,t 

r ...... ............ I... 

x,0,t x,0,t 

, 

___ 
_rexat 

Ix,a,t r1 ( el -T), Lx2L 
x,a,t 

e:0... ............ II ......... ..(21) 
x,y,0 

where: k (thermal d.iffusivity, 
sec. 

T : a const.ant 

t : secs. 

Thickne58 in the y-direction is indicated as "aa rather than 

avoid corifusing it 1th the tine t. 

The transient problem as stated above was first attacked by the 

classical zthod of separation of variables. Iisir such an approach 

leads to serious difficulties; superficial inspection of the problem 

shows that this leads to a situation with n equation and (n1 1) 

unknowns. No approach to this difficulty seemed available. 

It. seemed feasible that this difficulty might be overcome by 

treatment as a two-region problem, i.e., by splitting the rectangular 
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region into the two parte O x . L arid L x 2L and mat chine the 

te.îiperature function and its derivative on the common boundary x = L. 

The same difficulty arose here as with the classical approach. 

Both of these attacks seem to break down because of the 

impossibility of satisfying both space and time conditions simulta- 

neous].y. It therefore seemed promising to use the LaPlace transform 

to temporarily rid the problem of the time-variable. 

By defining )(x,y,$) etG(x,y,t) dt, the problem as 

posed reduces to: 

+ - = O............. 
cX2 &y2 

......(29) 

O,y 

........ . ............ . .......(3o) 
2L,y 

........ ...... ...... ........ ...(31) 

x,O x,O 

- f.. 
rO , Ox'-L 

- - .. 
x,t (- r1 - L'-x2L 

The transformed problem may be attacked by the classical method of 

separation of variables. The expression 
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(x,y,$) E (i+ry)+ 
0,8 

r fiic2' y 
Cos e 

+e 

satisfies (28), (29), (30), and (31) above. The use of boundary 

condition (32) leads to an infinite system of equations as before 

except that the s-variable appears in the system. Without going into 

great detail, the system of equations which gives the coefficients 

E8 (which are now functions of s) is: 

For R 

E 1rL (3 + ra) r1L (14 
s 

?. 

w 
nir 

a ....(31) 
2(r-r1)L (,8+r 

e 
P,5a 

- 
1,5a] Sin -r r1TL 

-t- 

if ,Sj3 -r n s 
(_ 

n,8 
n]. 

For m fi 0, 

Em,sPm,g L 
r 

e m,sa 
- _ - 

-r 

mil 

(y) 

where 
m,s 

: /k3«m2 and 
m r1' 

in 1, 2, 3,... 

The are given by: m,n 



For n j n, 

00 

rn,n 

(r-r1)L 

n-1 
nm 

For in : 

-i-r 
(3 a - a 

e e 

lt ir 

{ 

Sin (rn-+- n) - Sin (rn-n) 
. .(36) 

rn-n In 4-fl 

(rr1)L ______ 
e 1fl8 + e rn,m 2 m,sr 

(37) 

En 

+r 3 a 

The similarity oí this sy5tein of equations to the steady-state system 

obviates a detailed discussion of their derivation. 

The si!nhlarity of this eystem to the steady-state system furthr 
indicates that a finite segment of the resulting infinite system 

might again be used to obtain an approdrnation to the LaFlacian 

functions E in terrns of s. Theoretically, the E could then be n,5 n,s 

expressed as functions of s and placed in equation (33) so that the 

inversion might be performed. 

Folloidrig this line of reasoning, a four-by-four block of the 

syetem (314), (3g), (36), (37) was reduced to four equations in four 

unknowns. The first of these equations is: 



ÇJks c12'+ r Jk8 +C(2 a _Jks.cfj2 r( 
e -e 

J- 

(rr1)L ÍJc7*r J2a 
E 

2 1,s _____ e 

LJks+12' -r 
J - 

2 
(r-r1)L [Jr a 

- 
- 11 

E2,5 

Llks+22_r 

where CÇ EI. 

Considering that the E,5 are functions of s, the reduction of 

four 5uch equations in four unknowns looms as a most formidable task. 

The inversion of the result would be even more formidable, Another 

consideration is this: Even if approximate expressicns for the 

could be determined and the inversion performed, the error of the 

results would probably be intolerable Judging from the 5teady-8tate 

solution. 

In order to get an accurate solution to this problem, twenty or 

more equations in twenty or more unknowns would probably need to be 

reduced. With proper manpower and facilities, such a solution might 

be accomplished. The circumstances under which this paper was 

prepared forbade such an undertaking. 

It should be noted that (in theory at least) the problem is 

solved; it seems more appropriate, however, to search for either a 

numerical or approximate approach to the transient problem. 
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Consider the region in the vicinity of i 2L, i.e., at the 

trailing edge of the duct. The traisient response of tue trailing 

edge can be found rather sinply by noting that the tenerature 

gradient is zero in the x-direction. If an elen2ent such as that 

shoim in Figure 8 is taken out of the trailing edge, it wifl there- 

fore be effectively- insulated in the x2-plane. 

¶ 

1/14" 

X 

z 

Figure 8. E1onnt taken from right end of region. 
The y-axis has been reversed for 
convenience. 

The combustion process is :iore stable near the trailing edge 

since it has had time to proceed to near completion. It seems 

reasonable under these circu-nstances to assun that the tenperature 

of the face y z Q j held constant since the heat absorbed by the 

trailing edge will riot influence the gas temperature considerably. 

As before, it might be assund that the heat transfer from the face 
y = a follows Newton's law of cooling. 

The considerations outlined on page 39 again lead to the 

conclusion that the initial tençerature of the elennt will be 
constant and of the same magnitude as the gas temperature. 
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The problem then is a transient, one-dimensional problem and its 
forma]. statement is as follows: 

Q32T aT 
£1y2 

3 

R -r (TI - 300) 

ia,t a,t T 1800..... . . . . ... . . ... . .. . . .. . . . . . . .. . .. . . ... . . (36) 
0,t 

T R 

y,0 

where: T s temperature, °F 

OC. thermal diffusivity, 
see. 

Others as before 

The transformation ê T - 300 reduces the problem to: 

cx. - .........................................(38) 

-rOI .....................................(39) 

a,t a,t 

Io,t 

: 

y,0 

The result is wel]. known; it may be found in Carsiaw and Juger 

(5, p. 105). The result is: 
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e -1r(a-y) 2(-r) eflt 
15O itra 

fr-t- a( 2 r2)J 

The are the positive roots oft 

Cot 
n 
a.r a 

This approximate result should apply in the region of the duct near 

the trailing edge. 

The transient temperature distribution near the center of the 

duct, i.e., near x L, is not nearly as amenable to analysis as that 

near the trailing edge. In fact, the analysis in this region leads to 

the same problems as were described at the beginning of this section. 

A method of bounding the transient solution in L' x2L will be 

described; a detailed analysis will riot be attenqted. 

Consider the region L'x2L. The part of this region near 

x : 2L has a rather small teuerature gradient in the x-direction 

during steady-state. Since this same gradient is zero at time zero, 

it is possible to bracket or bound the temperature response by 

considering Figure 7 and the folloiirg two problems: 

Problem 1, 

K ae - a2e 
t 2 ............... . '.'. i 

ely 

rG ............. ........ 
o,t o,t 

r r1 (k - )....................................(16) 
a,t a,t 

: Q ............. . . . . . . . . . . . . . . . . . ........... , 
y,O 



Problem 2, 

K..... . ,,.,...s»s . ......(I8) 

: rS .. . I eIe . s...... . .. e..... .049) 

O,t 3,t 

r1 (k )...... ........... . 

a,t 

o...... ............... . 
y,O 

Problem i treats the trar.sient problem in L ' x 2L wìth a 

function (y) replacing the heat stored in the e1ennt due to change 

oÍ temperature gradient in the x-direction. The function 4(y) may 

be chosen knoiing the temperature gradients in tite x-direction at 

steady-state. 

Problem 2 treats the transient problem as though c(y) : O, 

it would be at. ti zero. In both cases the change of temperature 

gradient in the x-direction is treated as though there iere a heat 

source in the element, 

One other alternative method of approximating the transient 

temperature distribution is to resort to numerical methods, This 

problem is difficult to treat directly by numerical methods because 

of its three-dimensional character (two space variables and time). 

It is possible, however, that an integral transform other than 

the LaPlace transform might be used in conjunction with numerical 



methods. This subject is treated in some detail in Tranter 

(16, p. 13t) although his treatment does not cover the present case. 

Consider the transient problem (22), (23), (2L), (25), (26), and 

(2?). It is possible to eliminate the x space-variable by using a 

finite Fourier integral transforrn defining 

2L 
y, t) G(x, y, t) Cos Px 

o 

An iterative technique may now be used to solve the one-dimensional 

transient problem approximately and the values of e(P) thus derived 

may be irivert.ed using the well-known inversion formula 

®=.-(o).* 
.__2IIIö(P)cosPx.,... ('3) 

Furthermore, it may be useful to use an approach involving both 

a LaPlace and a finite Fourier cosine transform. In this manner, it 

appears that the transient problem might be reduced to an ordinary 

differential equation with certain conditions to be met. Such a 

technique is by no means veil known and might prove to be both 

thought-provoking and rewardirw. 



So 

CONCLUSIONS AND RJCONMENDATIONS 

An approximate solution of the steady-state problem embodied in 

equations (Ii), (5), (6), (7), and (8) isi 

e(x,y s c0 (l+)+Ï 

..nlr 
n- 

C Coakxe1 n ..... 
2... -r 

Approximate values of the coefficients C are given by the solution 

of a finite N-dimensional segment of the infinite syetem of equations 

(13), (iii), (15), and (16). 

A simple iterative procedure for the system of equations (13), 

(iL), (iS), and (16) is given. Although this procedure is intended 

for calculations on a desk calculator, the sanie procedure or more 

exact procedures may be easily programmed on a digital computer. 

The proof of the validity of the solution (Sii) does riot pre- 

auppo8e any magnitudes of system constants and the results are there- 

fore extendable to other similar systems. 

typical system constants are outlined in Appendix A and an 

example is worked out in some detail. Using N 19 in equation (SL) 

and the iterative procedure outlined previously, the example problem 

solutions appear to deviate from a mean curve on the order of ti°F. 

Since the range of temperatures considered Is about 5OOF, the 

deviation appears to be within tolerable limits. 
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It t'erefore seori appropriate to conclude that the solution (5t) 

of the teady-st.ate problen (Li), (s), (6), (7), and (8) i5 itot only 

accurate uef.t1 but uitah1e for iek calculator techrLques. 

.ever&l approaches to te exact scltion of the trar.sient 

problen (22), (23), (21k), (25), (26), und (27) were discsscd and it 
does not appear that any of them are very useful. It soerd appro- 

priate tierefore to search for either an approximate solution or at 

lcnst way of thdicatIrt tho bounds on ta aolution. 

At tie extr&me right end of the regiofl, i.e., near x ' 2L, th. 

well-known solution (12) ehould give a i:ood Idea of the tran8ient 

tetperuture resoonse of the trailing edge of the duct. Over the aft 

hail' of the duct, the transient response appoirs to be bounded by 

solutions of th two roblems (LL), (L5), (6), (Li?), and (t8), (19), 

(so), (si). No anaiyi of these botnds was attempted. 

It is recomnded tt a study be made of the thermal stresses 

which result from te steady-state temperature distribution. The 

solution ol' this thrmti1 stress problem would be highly useful not 

oril.y to the Jet-propulaton industry but aleo to the nuclear industry. 

It i further reoonmended that a 8tLLdy be made of the possibility 

of thermally induced vibrations In a duct (or plato) of the sort 

considered here. euch a study would also bs useful to t* industries 

just øntioned. 

It furtherrcre appears tat it rny be possible to solve the 

transient problem by tu use of both a La9lace and Fourier trrtnsforn. 

y using a La1ace trsnsfori to rid the problem of the tIrne variable 



and a finite Fourier cosine transform to 108e the x space-variable, 

it may be possible to reduce the transient problem to a rather complex 

ordinary differential equation. Although there are many difficulties 

inherent in such a method, tne approach :ht be fruitful; it is 

recommended that this approach be attempted. 

The only check on the validity of the steady-state solution 

posed has been through analysis. Although this analytical verification 

indicates the mathematical solution to be correct, it should be noted 

that such verification does not extend to the p1raical problem. It 

therefore appears that an exerirrntal verification of the analytical 
results oí' the steady-state problem would be appropriate. 



BIBLIOGRAPH( 

1. Boelter, L. N. K., et al. Heat transfer notes. Berkeley, 
University of California Press, l918. (University of California 
Syllabus Series). 

2. Carsiaw, il. S. and J. C. Jaeger. Conduction of heat in solids. 
London, Oxford University Press, l9I8. 386p. 

3. Dusinberre, G. M. Nuntorical analysis of heat flow. ew 1ork, 
NcGraw-.11, 19t9. 227p. 

4. Heilman, S. K., et al. Use of numerical analysis in the 
transient solution of a two dimensional heat transfer problem 
with natural and forced convection. American Society of 
Ìechanical Engineers Transactions 78d15-ll6l. l96. 

S. Irschfelder, J. O., et al. Viscosity and other physical 
properties of gases and c-as mixtures. American Society of 
Mechanical Engineers Transactions 71:921-937. l9I9. 

6. Humble, LeRoy V. , et al. Measurement of average heat transfer 
and friction coefficients for subsonic flow of air in smooth 
tubes at high surface and fluid temperatures. 1951. iSp. 
(u. s. National Advisory Committee for Aeronautics. Report 
no. 1020). 

7. Ingersoll, Leonard R., et al. Heat conduction with encineering, 
geological, and other applications. Madison, The University of 
üsconsin Press, 19St. 325p. 

8. Kantorovich, L. V. and V. I. Krylov. Approximate methods of 
higher analysis. Groningen, The Netherlands, P. Noordhoff, Ltd., 
1958. 681p. 

9. Lenoir, John M. Thermal conductivities of gases at atmospheric 
pressure. Fay-etteville, University of Arkansas, 1953. lßp. 
(Arkansas Engineering Experiment Station. Bulletin no. 18). 

10. Liebman, C. The solution of transient heat flow and heat 
transfer problems by relaxation. British Journal of Applied 
Physics 6,129-135. 1955. 

11. NcAdams, William H. Heat transmission. New York, McGraw-F.1l, 
l95L. 532p. 

12. Sokolnikoff, I. S. and R. M. Redheffer. Mathematics in phy8iCs 
and modern engineering. New York, McGraw-I-fill, 1958. 810p. 



13. Symposium (International) on Combustion. Vol. . Combustion in 
engines and combustion kinetics, 5ynpos1um, Univer8ity of 
Pittsburgh, 19L. New York, Reinhold, 19. 8O2p. 

1h. Synìposium (International) on Combustion. Vol. 3. Combustion 
and flame arid explosion phenomena, Symposium, Univer3ity of 
wisconsin, l98. Baltimore, Williams and Ñilkins, l99. 718p. 

l. Thiruvenkatachar, V. R. A case of combined radial and aidai 
heat flow in composite cylinders. Quarterly of Applied 
Mathematics lOdO2p. October 192. 

16. Tranter, C. J. Integral transforms in mathematical physics. 
New York, John Wiley and Sons, 196. l33p. 

17. ylie, C. R., Jr. Advanced engineering mathematic8. New York, 
McGraw-1-1111, 19l. 6140p. 



APPENDI CES 



APPENDIX A: ANALYSIS OF HEAT TRAZSFER COEFFICIENTS 

Humble, et al. (6, p. 3h8) derive an empirical relationship for 

a heat transfer coefficient that seems appropriate along y t in the 

interval 0-x'-L. Humble's relationship is derived using data in the 

freestream Reynold's number range io4 (Re)F io6. The bulk 

Reynold's number of the leading inside half of the duct and the outside 

of the duct is on the order of lo x 106. However, no more suitable 

relationship can be found; tuiming to Humble's formula: 

'FVBD°8 (cp)FP 
0.14 -0.1 

0.03h 

( F ) 
kF ) c ) 

___ F L 

Subscripts: B indicates bulk properties of the 
air stream 

F Indicates freestream conditions 

Syuibology: h heat transfer coefficient, 
Btu 

hr -ft 2 

D characteristic diameter, ft. 

kF freestreani thermal conductivity, 
Btu 

hr.-ft.-°P 

eF freestream air density, 

VB a velocity, 
lb. /1 _ freestream viscosity, 

r ft. sec. 

: freestream specific heat, BtU 

lbm °R 

L characteristic length, ft. 



In order to define the heat transfer coefficient, some initia]. 

properties must be knom. These values should be representative of 

the p1sical situation; choose the following parameters: 

(a) MB Mach number 

(b) TT Total air stream terriperature = 800°R 

(o) 
B 

Static pressure 3 atmospheres 

Cd) D:2ft.,L:hft. 

(e) kF O.O2OL Btu 

hr.-ft.-0R 

These parameters fix all the properties in the equation of Humble, 

i.e., in equation (lA). 

The Mach number fixes the ratio Ttatjc 

T a O.92 

TF O.92(5OO)°R 302°F 

The assumed value of B coupled with the temperature gives: 

(c B 14.l(l4? : o.l6 lb.m B 'Ç 53.1762) 

The Mach number fixes te velocity... 

VM = 0.(19.l)(800)'2 691 fp 

The viscosity is a function of temperature only... 
__) : 1.60 (io) m 

B ft. seo. 
300°F 



The dirnsoniese groups in equation (lA) are 

'°DV 0.156(2)(691) 
13.5 (106) - g 

i.6o (io) 

"Ls -0.1 

( ) 

(:r) 
Cr/I 0.2h (i.6o(1o)) 

F k 0.O20L 
(3600) 0.677 

The heat tranefer coefficient is then: 

0.8 (Pr)0 L'0.1 h = (0.031L) 
F 

0.020L 
- 2 

(0.03h)(13(10))°8 (o.677) 

h150 Btu 

hr. -ft.2-°F 

An order-of-magnitude check of this heat transfer coefficient may 

be arrived at by the Martinelli analogy of transfer of heat and 

momantwn: 

135 (106) 

T o.68 

(NU)B 10h; (8, p. 213) 

I hD 

h : (l&) 

- 3.020.& Btu 

hr.-ft. 

- 
2 

Btu 
h 102 check 

hr. -ft.2-°F' 

The heat transfer coefficient gi'n by equation (lA) thus appears 

to be a good estimate on the 1eadin inside half of the duct. 



Consider now the heat transfer coefficient alonE the outside 

surface of the duct, i.e., along y = O in the interval 0x2L. In 

such a region, McAdams (11, p. 2I2) recommend8 the following relation- 

ship for the heat transfer coefficient based on log-mean temperature 

difference: 

0.87 () 
O.3 

_____ 
'DG \ 

0.2 / 2/3 

- 0.023 () k ) 

so that: 

IDEO \ -0.2 
hL z 0.020 CPB0() (0r') 

2/3 

where: hL heat transfer coefficient based on log-mean 

temperature difference, Btu 

hr.-ft.2-°F 

D2 = outside diameter of annular cooling air, in. 

D1 inside diameter of annulus, in. 

DE equivalent diameter of arinulus, in. 

G z flow rate, lb.m 

ft.2 -sec 

Others as before. 

The subscript B indicates bulk or freeatream conditions. 

Take D1 : 2L inches as before and let D2 26 inches. 

/D2\3 26 
0.3 

ç) -() - 
1.0 

DE _ D2 - D1 : 2 in. 

1m 
: 108 

lbm G ßV : o.16(69l) 
ft.2-sec. ft.2-sec. 

Btu 

Btu 
O.020 

ft.-.-°R 
.66 (io) 

ft.-sec.-0R 
k 

sec. 
B 

3600 
hr. 



Btu Equation (2A) then gives hL 1149 

Although the latter heat transfer coefficient is based upon the 

log-nean temperature difference and Is a bulk coefficient, lt should 

be fairly representative of the loca], heat transfer coefficients 

along the outside edge y O of the duct. 

Since this analysis is not concerned with exact values but with 

representative values, assume that the heat transfer coefficients 

along the two surfaces just analyzed are the same, i.e., assume that 

h : Btu y = O, Ox42L 
hr.-ft.2-R y t, O'x'.L 

Consider the heat transfer in the combustion zone, i.e., along 

y = t, L'.x2L. There is sorne evidence (13, p. 19) that the bulk 

velocity of t combustion products in the wake of a flaholder is 

nearly as high as the freestrean velocity four or five baffle widths 

downstream. Since the baffle width is on the order of one and one- 

hail' Inches, assume that the foflowing bulk velocities exist: 

Flame 
Velocity 

Flame holder 

j Position 

Ou 12" 2I" 

Axial Distance 

Figure lÀ. Assumed velocity distribution in the 
wake of the flameholder. 



From Figure lA, the average velocity isi 

lv 
V F.S.4 VFS 

= Vp5 F.S. indicates freestream ave 2 t 

Va : (691) 1PS 

19 
sec. 

Assume that the temperature in the 'wake is constant due to the 
violent midnr and that it has a value of 1800°F. 

The pressure distribution in the wake of a flanieholder is complex, 

especially during burning. A qualitative look (iii., p. 31) indicates 

a low-pressure region In the immediate wake, a small rise in pressure 

for perhaps a baffle width, and a grdua1 decay further downstream. 

Suppose then that the average pressure in the wake of the flameholder 

is 90 percent of the freestream pressure, i.e., 

rave = 0.90 ().i) psia = 39.7 psis. 

Suppose further that there is complete combustion with C8}4j as 

fuel. Such a situation is unlikely, but should lead to a reasonable 

approximation of the heat-transfer coefficient. This assurtption gives i 

+ 79 ¡2 C5H18 + .?4 
2 (-) N2-> 8002 9}i0 -t- 

(.%) 
N2 

C8H18 + 12 
2 N2-8002 + 9H0 + L7 112 

f t.-lb. The gas constant R, 
1b.m°R 

for the products of combustion Is 

given by: 
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n1 n3 () = - R -4- - R -e- -R3...... (bA) 
products 

where n1,2,3 No. of ¡noies of (i) CO2, (2) }J20, and (3) N2. 

n tota). No. of moles 

= nl + n2 + n3 

R1,2,3 gas constant for (i) CO2, (2) H20, and () 
Using t!e assumed chemical reaction (3A) in (hA): 

(R) (5.2) (85.5) 4 (55.2); R1,2,3 are for one 
products 

atmosphere pressure. 

---'-- 
ft.-ib. - 
1b.0R 

The perfect gas equation then gives: 

(c') -; symbols as before. 
products RT 

= (39.7)(1hI4' lbm 
59.5 (2oO5 .3 

lb. 
O.0b25 m 

ft.3 

Using the polycomponent Wassiljewa íthod (9, p. iii) to determine the 

fluid's thermal conductivity: 

k1 k2 _____________ kF i-y 4- 
1 

(5A) 
1+Ai(11) i+A2('2 1+A3í1 

" Y2/ '. 13/ 
where by definition: 

A1(1-y1)y2A1_2y3A1_3......... ..... ...................(6A) 

A 
2 (l-12) Y1 A21 j- 13 A2_3......... ....... 1Ie ....... 
A3(l13) '11A31y2A32.......... ......... 
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The notation in equations (EA), (óIt), (7A), and (OEA) is as follows: 

Subscript: (1) indicates GD2 

(2) indicates 

(3) indicates N2 

i-j indicates gas (i) mixed with gas (j) 

A : assiljewa constant 

: 1e fraction 

Lenoir's data (9, p. 11) has been extrapolated in Figure 2A to arrive 

at the coefficients Aj...j. Using equations (6A), (7A), and (BA) with 

appropriate values from Figure 2A gives: 

A1 (1-ii) (0.38) + (0.) o.6 

A2 (1-y-2) a (°9) + (0.73) 0.61 

A3 (l-y3) (0.82) + (0.87) 0.22 

Extrapolation of thermal conductivity data in NcAdams (11, p. 7) 

to 1800°F gives: 

k1 o.oL86 Btu 
hr.-ft.-"F 

Btu k2 0.09 
hr.-ft.-F 

Btu 
k3 0.09 

hr.-ft.-°F 

So that equation (SA) gives: 

k 0.0L86 0.0S9 0.019 
F 0.L6(6L) 0.61(61) D.22(64 

: 0.091 Btu 
hr.-ft.-0 
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Viscosities for several representative industrial gases are iven by 

Hirschfelder, et al. (, p. 933). Taking a mixture of 8 percent 
2' 

10.8 percent Co2, 2 percent 02, and 2.2 percent 
2 

as representative 

gives 

= o.00OL86 poise 

L lb. 
32.7 (io) 

ft. -sec. 

Extrapolating data given by McAdarns (11, p. 14614) gIves for the 

specific heat of the combustion gasest 

(CP)F a ii Cp1+ 2 13 Cr3; Subscripts and notation as in 
equation (.A). 

a (°°) -- (57) +- (0.288) 

0.331 
lb.rn_or 

Before proceeding, two things should be noted: (1) equation (lA) 

gives the heat transfer coefficient in ternis of bulk flow conditions, 

and (2) the data used in deriving equation (lA) was taken in a flow 

system with only one gas, viz., air. 

In the interval L x 2L being treated here, there is a striated 

flow; there is airflow in the core and combustion product flow along 

the inner wall of the duct. It seems apparent that heat transfer to 

the duct in this regicn is controlled principally by the combustion 

products due to their high temperature. However, it does not appear 

to be quite legitimate to use properties of the combustion products 

in equation (lA) since they are as much local as bulk conditions. 
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Moreover, it also appears to be slightly illegitizate to extend 

an equation derived on the basis of homogeneous flow to a situation 

with striated flow. 

No heat transfer coefficient correlation appears to be available 

for a complicated flow system as we have here. On the assuntion that 

it is legitimate to use somewhat localized flow conditions and treat 

striated flow by using equation (LA), we obtain: 

h O.O31() eFVBD 
O.8(_,a 0.14 

( F J kF ) _____ 
F F ¡L 

0.0314 
(0.09l) (o.o1425(l9)2\ 0.8 (0.33l(32.7)lO 0.14 

32.7 (10 )) 
0.0591 ) 

Btu : 68,0 
lbmOF Y t, L'-x2L 

The modified heat transfer coefficient r is defined as 

r 
k 

where r modified heat transfer coefficient, in. 

h : heat transfer coefficient, Btu 

hr.-in.2-.°F 

k thermal conductivity of the duct, Btu 
br.-in.-°F 

McAdams (U, p. 141a) lista data on thermal conductivities of various 

steels; this data indicates that for a steel duct, k is on the order 

of 20 Btu 
. Using this value gives: 

hr. -ft.2-°F 



Btu 

r 
iSo 

hr.-ft.2.-°F / _ ft. 
k 

20 
Btu i2 

hr.-ft.-°F 

r : 0.625e ï 0, 0x2L 
ifl. 'y t, 0'x'L 

r h 68.0 
k 20(12) 

r1 O.283 
t, L'-x2L 



APPENDIX 13i EVALUATION OF INTEGRALS 

In the evaluation of the integrals introduced previously, there 
are three cases to consider, viz., 

(1) mn,mO 
(2) rn n, ni O 

(3) mO 
Necessary integrals are broken down into these three categories in 

the work that follows, 

It 'w-111 be helpful to recall that the characteristic values 

(eigen values) of the problem are given byi 

)% -inrr 
ni -t : Q, 1, 2,... 

The necessary integrals are as follows: 

For TU n1 ni O, 

s 0Lcos;\1x Co8\xdx (XpÀn)X /L Sin 

Io (ÀmÀn) 

R L [Sin (m+n) f Sin (m-n) - 

_( ml-n rn-n 
J C2L ir 

L in (ni + n)r Sin (rn-n) f 
¼) 

Cos > mX Cos\xdic - 
L 

C L 
\ Cos xdx : a... 3j 

mIT -r- 
fl2L 
\ Qo3;\mxdx:__ 

''L mir 

(2L 
JCos xdx O 

o 

¡L 

/0 

67 
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For in n, !fl 

Cos>xdx = 
J 

Cog2)xdx J_. 
U ()dx) 

o o 

2L (IUÌTX / L mlix 

i 

+ Sin 
L 

_L 

2L 

JCos>xCos>xdxL 
o 

ç-' 2L 

jL 
Cosx CO8.;\XdX u 

For n O, 

r2L 

' 

Cos)x cos.)xdx 
o 

I,- 2L Sin)x 
_1 

Cos)x& - 
>Ifl 

12L fl2L 
\ Cos .\ xdx \ dx : 2 L 
LI0 

Jo 

(_ L 

s) 
Cosxdjc L 

o 

(Th 2L 

' 

Cosxdx L 
L 

sL Oo111xdx : 
L 

o >n 
/0 

I 

I =0 
/0 

i' 2L Sin>x 2L niT 

:: 

cos)x Cos)\xdx 
, -r >n 

L 

:-- in 
L 



APPENDIX C: PARTIAL PROOF OF STEADY-STATE PROBLEN 

Equation8 (13), (itt), (1g), and (16) in the Results section 

describe an infinite system of equations, i.e., an infinite number 

of equations in an infinite number of unknowns. This system of 

equations may be written 

For ra O, 

V- ( nTl 2(r-r1)L 
J 

Sin y 
C0 - ffrL(3#rt)+L(1+rt) n j 

{e Ant + n 
e 
Àt r1kL 

As-r 
J 

rL(3rt)r1L(li-rt) 

For m 

mir ( m1r e2mt -emtL (r i-r1)L m+r e&mt A t - Cm r 'm 2 
'm 

e 

m]T 

= - C0 ! (r-r1)(lrt) Sinr 

(r-r1)L T )--r A À n (ni+nj - Sin (m_n)f? 
ntçi 

+- n e n __________ __________ - 

n-1 
nm 

2r1kL Sin 

ir 

For convenience, ca11 A0 C0 

: ()i-r t ....x An Cn;:&e +e 



For ni : 

2(r-r1)L Sin 
A - 
O i-rjrL(3+rt)riL(1+rt) n 

n1 

r kL 
+ 
rL(3rt)tr1L(1-4-rt) 

For ni O, 

e 

A 

.>m4r >mt)mt 
mir >r ______ 

me_mt + (r+rl)L1 = 
e 

mIT 

- (r-r1)(1frt) S1flm_ - 

(r-r))L 
A 

Ísmn(rnn) f Sin(rn-n)_f 2rkL Sin 

Tt / n 
rn + n rn-n j - ir ni 

n1 

)tr em_em 
¿ Call: e 

j 
r eAmtetJ 

(r-t-r1)L 

So that: 

70 

- mît 
Sin 

A111 : - A0{ (r:1)(l+rt) 

2(r-r)L ÇSin (m4n) f Sin (rn-n) f - 
iT 

__An)(p) + 
(m_n)(mGm+c*-) - 

n1 
n#m 

rnIT 

- 2r1kL Sin --- , ...................................... (2C) 
-Tr rn2Om±mcJ 
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e now have the steri of equations: 

2(r-r1)L Sin 
it, = - __________________________________________ 

rr{rL(3-t-rt)4-riL(1rt) n + 

n ] 

+ 
r1kL 

rL(3-s-rt)+-r1L(1-4-rt) ..(ic) 

mir 
- A0 {± (r-r1)(1+rt) Sin 

___________ 
- 

2(r-r1)LÇ Sin (ni+n) Sin (m-n) 

n1 
nm 

fun- 2r kL Sin - 
ir 2 e .................. I I I I S S I I I * I 

where m 1, 2, 3, h,... 
This system of equations may be written in the shorthand form: 

AA+ b ...............................,..,.(3c) 

For the system of equations (ic) and (2C), it has been established by 

Kantorovich (8, p. b3) that: 

IfÏ Dm,n2 andb2 converge, the gin system (3C) has a 

m,n m V- 
2 unique solution satisfying the condition that/An convergea and 

nID 
these solutions are given by- the method of segments. 
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Consider 1bm2 

TIbm2 c b02+ bm2 

For the system of equations under consideration here 

r1kL 
b ° rL(3+rt)r1L(1+rt) 

miT 
2r-1kL Sin 

bm T 

miT2 
2 

- ( 
r1kL 

) 
2 (2rjkL 2 (Sin y') 

mJ 
rL(3+rt)r1L(1+rt) + \ ir (m20+mcc)2 

co 

2II((2m_1)2GmmcC)2' 
1 

and are constants. 

mCi 

I >mr emt_e mt) 
m 

- mt+ e - mt 
6 as 

- m4T )¼ 
e 

The sumrnand of brn2 is therefore on the order of ! ad converrence 

is thus guaranteed. 



73 

Consider ) D2 and icI.aur1n's test... 
,n,n 

ni, nuO 

If a function f(x,y) is positive and steadily decreases 

to zero as x and y tend to infinity, then the double 

series2 [ f(ni,n) converges or diverges accordingly 
as 

5' 5' f(x,y-)d.xdy converges or diverges." 00 
i.e., f(ni,n), is positive and steadily decreases to zero 

as rn -boo and n-b CK 

t-w v 
\ \ f(m,n)dnn \ 

5' 
diîdn 

u0 'i0 
'JO 

i 

c D2 

+ o L° m,0 

cHI -' 
Sin2 

mir i 
16L2 

)2(l+rt)2 --- dn 
: 

2 
(r-r1 

(m2emx)2 
I_ I 

Tr 2 rr 
I 'io 

I 

(\ 

1(r-r1)2L2 SSin2(mfn)- Sin (m-n)j 
i 

Tr2 ()2 (mr.)2 J 
dn 

The first integrand in the brackets does not depend on n; the 

second integrand is odd in n and hence vanishes. The integra]. reduces 

to 



2 miT s 
f(m,n) drndn \ 16L 

(r-r1)2(lrt)2 
Sin -r 

dm 
o o 'o r2 (m2Gmcx.)2 

= 16L2 

u2 
(r_r1)2(14rt)2 

mii sjn2- 
Jo (m2em+ma)2 

dn 

It is sufficient now to note that the integrand is on the order of 

and rather obviously converges. It must therefore be concluded on 

the basis of the theorem stated previously that: 

(1) The system of equations (ic) and (2C) has a unique 

solution and the sum of the iquares of the solutions 

A converge, i.e., A2 converges. 

(2) Approximate solutions A(n1) of the system of equations 

(1C) and (2C) are given by the method of segments, i.e., 

by considering only a finite number of equations in a 

finite number of unknowns. Concisely, Lim A) 
n - co 

Consider now the convergence of the solution of the steady-state 

equation. The solution posed was as follows: 

).+r (x,y) : C0 (l+ry)+ Cn Cog x {e'u1Y 
-r e 

n1 

A 
n 

Cn : r 
eflteflt 

;\ 
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Rewriting the solution in a form involving the alternative coefficients 

e(x,y) (l+ry)+ 

(+r 
À-r 

A Cos 
*r 

e e 

Consider convergence of the solution along y O where: 

-- Ar 
e(x,O) A0+ Co 

nUx 
1 

n:]. 4e 
J 

It has been shown that converges. Although we have no 

O 
idea how the terms 2 behave, the series may be rearranged since it 

is absolutely convergent. Arrange the terms so that as n increases, 

A2 decreases monotonely. 

An order of magnitude estinte of the An's may be deduced. It 

is well om that diverges and therefore: An2 

Moreover, both summands are bounded and monotone decreasing so thati 

) 

Il 

An'-j3, . - a constant 

y/n 

Furthermore, the An's may be considered as monotone decreasing since 

2 had this property. 
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The term Co5 n1TX is bcunded. 

Ir 

1 

A+r t-&)t 
i 

converges, then 

A+r 
i + An-r 

conrgez since the latr 
A 

Cos 
2L nr t -A t( 

A_re e 
suminßnd is bounded by the first. 

For n N where N is finite, the terms n are always positive. r 

N 

i + -r i + A -r i 

A r A r A + r ___- n __ - A*r .t-Aflt An+rAt..Àt 
N eAnte1t i 

The first sum on the right of the equality is finite and hence does 
Ai-r not influence the convergence. For the second sum, is always 

positive. Since the exponentia,ls are invariably positive, the 

followinz inequality may be written: 

A r 
A 

Ar A t -À t - e fe n 
An-r 

/ ___ 
Sin h (t) nN and3is a constant 

Replacing the summation in in'=N above by a constantcC, we there- 

fore have: 
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niix)( 
Ar 

cc; (x,O) : Coi 
2L *r eAflte_t LSin h(t) 

The convergence of the latter sum is well known and since it bounds 

the given sum, the given sum converges along y O. 

Consider the convergence of the solution in the region Oy'-t: 

ee) 
G(x,y) aA0 (1+)+GoaZ) X-r 

J 
Xr t 
n-r. 

As before, restrict attention to n-N; we may write the inequalitys 

A Coi Âr 
A 

I Ar Aj 
L_2:_ J 

-r - 
Y/_7 ::: e 

-;t 

: -L P e 
Ay 

¿3 : constant 
fi? ;kt 

As-ir since - i as fl-QO and e n is bounded. Recalling now that 

and that we are considering the region O -y- t, we may write a 

1 

-1 At I n e n 

-n( 
ç-:? 

So that in O'-y'-t, the solution summand is bounded by an exponential 

function and obviously converges. 
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Consider the convergence of the solution along y t. Here we 

have: 

co 

e(x,t) : (1rt)+ Cos 
2L 

i 
For convenience, cal]. z and rewrite the sum: 

e(x,t) (lrt)L A Cos 

Since A0 (1rt) is a constant and .._, consider the sum 

G(x,t) COS flZ 

i 
Consider Dirichiet's test, which is as follows: 

n A(z) B(z) is uniformly convergent if the partial 
£____ w i 
sums of te series / A(z) are uniformly bounded and if 

LT 
the functions B(z) converge unirorm].y to O, the convergence 

being monotone for each fixed x." 

Now let; A(z) Gos nz 

B n 

The interval O X 2L which is under consideration is equivalent to 

the interval O z '7. The partial suma of ) Cos nz are uniformly 

i 



bounded by K '>0 in the interval 0z41T. ß(x) 
5in5 Yin-T 

tends rnonotonely and uniformly to zero since it does not depend upon x. 

co 

Cos nz 
converges uniformly in the interval S'-z i7 Therefore, 

i 

or in x2L. 

Now,A Cos is bounded by Cos nrnx and the 

latter converges. It must be concluded therefore that the proposed 

solution: 

nTTx e(x,t) A0 (1+rt)f Gos 
2L 

i 

converges along y t in the interval x2L where S>0. 

It is not difficult to show that the proposed solution is In fact 

uniformly convergent when yt. Consider the Weierstrass m-test as 

follows i 

"Itu(x,y) be a serles of functions all defined for 

nal 

sets E1 and E of values of x and y respectively. If 

cc 

there is a convergent series of constants 
) 

v such that: 

nl 

I 

U(x,y) : M for all x and y in E, and E2, 

then the series U(x) converges ab8olutely for each x and 

y in E1 and E2 and is uniformly convergent in (E1, Ea)." 



Using the bound derived previously, for y-t we 'iave: 

A+r xy Ar?rI 
e I 

Gos j 

- is a constant e 
E<t-y 

I e 11+0 fl 

and the latter converges for all y-t as was shown. y Weierstrasss 

test, the solution is uniformly convergent in y'-t. 
According to two other well-known theorems, the term-by-term 

integration carried out in equation (11) is therefore legitimate and 

we may axpect a bounded error in the region of consideration by using 

only a finite number of terms in equation (17) as long as yt. 

Since we may approach y t arbitrarily close, lt seems pointless to 

show uniform convergence along y t. 

Consider aain the proposed solution i 

ê(x,y) = C0 (1+ )+ C Cos j er e 
n1 

subject to: I = 
5_re , OxL 

c:;)yI 
I 
x,t L 

-r1(e - k), L'-x2L 

It. is a simple matter to show that these last two expressions satisfy 

the originally posed problem. It follows that these expressions are 

Indeed a solution (althouGh not necessarily a unique solution) of tha 

original problem. 

By way of sumrary, it has been shown that a solution of the 

infinite system of equations (ic) and (2C) derived for the coefficients 



8]. 

C, n 0, 1, 2, 3,...does exist and that this solution is unique. 

It was shOwn further that an approximate solution to the infinite 

system is -'iven by the rthod of segnnts. 

It was next shown that the proposed solution; 

G(x,y) C0 (i+r)+C Cosx Ár 

converges everywhere in the given region except at the point (0,t). 

The convergence at (o,t) will not be discussed further. 

It is furthermore likely that the approximate solution posed Is 

not unique at (L,t) since the boundary condition is many-valued at 

that point. No analysis of the uniquene8s of the solution at (L,t) 

will òe attented. 

The values ol' the constants (heat transfer coefficients, 

conductivity, etc.) have never influenced the results of this proof. 

The proof therefore renains valid for whatever system constants are 

chosen arid the results of this analysis apply to similar systems. 

In concise suzßinary, it follows that the expression 

G(x,y) C0 (lry)*c Cos 

where the an are given approximately by using the rithod of segments 

on equations (ic) and (2C) and N is any finite number is evidently 

an approximate solution of the posed steady-state problem except at 

the points (o,t) and (L,t) where no proof was attented. 
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APPENDIX Th NUMERICAL RESULTS 

(1) Approximate values of the coefficients c(2) are given in 

Table 1D. 

(2) Plots of temperature distribution from twenty-by-twenty aystem 

of equations along selected lines are given in Figures 1D 

through D. 
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APPENDIX E: GLOSSARY OF TER?1S 

Alphabetic Letters 

a thickness of duct wall, in. 

A : unknown coefficient; the symbol A represents a Wa8siljewa constant 
in Appendix A. 

b free or standing term 

B free or standing term 

C unknown coefficient 

D known coefficient as on page 30; this symbol indicates diameter, 
in. throughout Appendix A. 

e : base of Napierian logarithms 

E unknown coefficient 

f(x,y,z) should be read "function of X, y, and z." 

G mass velocity of fluid, 
lb. 

2 hr -ft. 

h lat transfer coefficient, Btu 

nr.-ft.2-F 

k thermal conductivity, the symbol k represents a constant 

temperature as on page 27 arid in Appendix C. 

K = a constant 

L length, in. 

in a summation index; in thdicates Mach nuiiiber in Appendix /. 

M : a constant 

a summation index 

N a constant 

lb. 
p fluid pressure, 

2 



P = Fourier transform variable 

Btu Q : heat. flow, 
sec. 

r modified heat transfer coefficient, in. 
n gas constant, ft1 

lb.mR 

s = LaPlace transform variable 

t thickness of duct wall in the steady-state problem; t indicates 
time, sec. in the transient problem. 

T temperature, °F except when used with the perfect gas equation where it is absolute temperature, OR. 

V = velocity, 
sec. 

x space variable, in. 

y space variable, in. 

z space variable, in. 

Greek Letters 

.2 :. thermal diffusivity, 
; the symbol denotes an eigen value 

in the transient problem 

p = a constant for the steady-state problem; a function of s for t1 transient problem. 

. : density, lb. the symbol denotes a constant in the transient 
n. 

problem. 

X should be read "change of x." 

E : arbitrarily small constant 

E: temnerature difference, °F 
;k = an eigen value 

-z, = fluid viscosity, lb. 

in.-sec. 

a a constant 



lb. 
fluid density, In 

in .3 

(j) : anrular space coordinate 

Subscripts 

e indicates an effective value 

in indicates the value, where m 1, 2, 3,... 
n indicates the value, there n : 1, 2, 3,... 

s indicates that the quantity is a function of the LaPlace transform variable s 


