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AN ANALYTIC APPROACH TO TEMPERATURE DISTRIBUTION
IN A THINWALLED COMBUSTION CHAMBER

INTRODUCTION

A practical (or non-academic) heat conduction problem consists
of two things, viz,, a physical situation and a mathematical
description of that physical situation, It is somewhat misleading
to consider only the physical and mathematical descriptions; the
transition from physical to mathematical is most often difficult and
sometines exceedingly laborious, It therefore seems apparent that a
detailed description of a heat conduction problem should include three
things: (1) a physical justification of the problem, (2) a logical
trangition from the physical to the mathematical deseription, and
(3) the mathenatical description,

In order to introduce the problem contained in this paper,

Item (1) above should be dwelt upon, Consider the following physical
situation: Air is blown through and over the outside of a thinewalled
metal duct., About midway through the duct, fuel is added to the air;
the fuel evaporates and burning is somehow initiated, The burning is
presumed to be violent, i,e,, burning occurs in a high-tenperature,
high-pressure, low-velocity air streanm.

Now consider the thin-walled duct, A quasi-discontinuous heat
transfer takes place along its inside surface, Over the leading
inside half of the duct, there will be heat transfer from the duct to
the air stream, Over the aft inside half, there will be heat transfer

from the hot combustion products to the duct wall; the transition is



nearly discontinuocus, Over the outside surface of the duct, there is
a near-steady heat transfer from the duct to the air streanm,

The system described is shown schematically in Figures 1 and 2,
Over approximately three quarters of its bounding surface, heat is
being taken away from the duct since over this surface the body
temperature is greater than the environment temperature (see Figure 1).
Over the remaining quarter of the surface, heat is being added to the

duct from the hot combustion products, Representative dimensions are

as indicated in Figure 1.
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Figure 1, Sectional schematic of the physical problenm
showing duct, flow direction, ete, TFuel is
added in the vicinity of Station (0) and
burning starts at Station (L), +Q indicates
heat flow to duct, =Q heat flow from duct.

Typical dimensions are: r = 12", t = 1/l",
2L = L8",
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Figure 2, Sectional schematic showing duct, annular
flame stabilizer, flow direction, etc, Fuel
is added in the vicinity of Station (0) and
burning initiated at Station (L),

In such a flow system, flame is usually stabilized in the wake of
a bluff body, The flame-stabilizing apparatus is ordinarily referred
to as a flameholder, An annular or "wall" flameholder is congidered
here and is shown in section in Figure 2, Unless the fuel used is a
monopropellant (i.,e,, needs no oxygen to burn), it is ordinarily
injected into the air stream through nozzles upstream of the combustion
zone, This is also indicated in Figure 2,

The scope of the problem is not restricted to heat addition in
ducts, A similar problem arises in fuel-rod and moderator designs for
nuclear-reactor piles where the rod and/or moderator are half
submerged in, e.g., a boiling liquid, The similarity is especially
evident if the moderator and/or fuel is in the shape of a thin
circular layer,

Another refinement of the same problem occurs in embedded steam

pipes when the designer wishes to restrict heat flow to one direction,



This is sometimes done by covering only half the circumference of the
pipe with insulation. In any event, the nature of the problem is not
restricted to jet burners although that is the situation to be treated
here.

After a mathematical model of such systems is formulated, analysis
of the model usually proceeds with the formulation of differential
equations describing heat flow in terms of physical characteristics,
space variables, and time. The general differential equation of heat
conduction was formulated by Jacques Fourier over 100 years ago, For

constant conductivity and an absence of sources and sinks it is:

Eki%‘% = Div {Orad e} T T T T T P e s

where: © = temperature or temperature function, °F

t = time, secs.
. Btu

C = specific heat
pec. cea,m
¥ = density, 22;%
ft.

k = thermal conductivity, m

The divergence and gradient may be expressed in any convenient gspace
variables. The exact formulation of the problem also includes
conditions to be imposed on the boundary of the mathematical model and
sometimes includes an initial condition (or condition at time zero).
Furthermore, heat conduction problems are customarily categoriszed

according to whether or not the heat flow from point to point is a



function of time, If heat flow is not a function of time, Equation (A)
reduces to:

Div {Grad e} B By ik sasierarsnsdudt st s vibnadiins ot
and is ordinarily called a steady-state problem, If heat flow is a
function of time, Equation (A) holds and is ordinarily called a
transient problem,

The mathematical model chosen to represent a given physical system
is (as mentioned previously) never exact, Certain simplifying assump-
tions are customarily made in order to make the problem mathematically
tractable, The boundary and initial conditions imposed on the Fourier
heat conduction equation are most often approximations ol the actual
gystem conditions,

In the system which has been described, combustion gas tempera-
tures are often as high as 2,000°F, Structural failures at the
trailing edge and juncture ol the flameholder and duct are common=-
place occurrences, Furthermore, severe vibrations are often induced
in the duct wall, In order to analyze whether the structural failures
and/or induced vibrations are thermodynamic in origin, the temperature
distribution and temperature gradients in the wall of the duct need to
be known,

The overall objective of this paper is to find a useful analytical
approach to the temperature distribution in such a system, Both the
steady-state and transient problems are attempted,



SUMMARY

A thin-walled circular duct with airflow through and over it and
heat addition over the aft inside half is considered, The formal
statement of the problem in the rectangular region 0<x<2L, O<y<t

is:
2 2
o % 3 2O . 0
Ox &)}
such that:
o8
Sz "0
0,y
28 =0
ox
2L,y
28 2r©
oY
x,0 x,0
-re , 05x<L
9SS = x,t
oY

xt | -r (sl - k), Lex<2L
x,t

An approximate solution is expanded in a finite portion of an
infinite series as follows:

N
e(x’y) e Co (14— W)-}—Z cn Cos Anx {Q- )ny-p xz:r_r. e Any}
n=l

The forn of the solution appears to be convenient for computations

with either a desk calculator or computer; approximate values of the



coefficients C, are shown to be given by the solution of an (N + 1) by
(N + 1) segment of an infinite system of equations,

It is furthermore shown that the corresponding infinite series
solution converges everywhere in the rectangular region except at two
exceptional points where no proof is attempted, It is also shown that
the convergence is uniform for O€y<t,

Typical system parameters are calculated in Appendix A; these
values are used in a mmerical example problem, The error of the
results of the example problem appears to be on the order of T10%F
in a 500°F range,

Several exact solutions of the transient problem (temperature
zero at time zero) are attempted, Two of the attempted solutions are
unsuccessful, The use of a LaPlace integral transform seems to yleld
a solution, but it is in such a complicated form that it does not
appear useful for calculations,

It seemed appropriate under these circumstances to search for
either local solutions or bounds of the transient temperature, The

ssio
expre e 3
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Tseﬁ-l’rﬂ(-lr;l)z n n

T B, (r+a (an-r )

ﬁnCotPna-i-r:O;n:l, 2’ 3, tew

appears to be an approximate solution of the transient problem near
the trailing edge.



Two problems which appear to bound the transient temperature
distribution along the aft half of the duct are pointed out; no
analysis of either of the problems is attempted.

Several approaches to the exact solution of the transient
problem are pointed out and one (combined Fourier and LaPlace trans-
form) is recommended for further study, Some recommendations
concerning thermal stresses and thermally induced vibrations are also
noted,



THEORETICAL DISCUSSION

It was mentioned previously that the general differential equation
of heat conduction was derived by Jacques Fourier over 100 years ago.
This equation has been derived in several ways in the literature,

Boelter, et al, (1, p. III-7 to III-9) derive Fourier's heat
conduction equation using a heat balance on an arbitrary volume, The
derivation includes the use of Green's theorem and is rather elegant,
Sokolnikoff and Redheffer (12, p, Lll) use Gauss's divergence theorem
in a similar derivation on an arbitrary volume,

Both Ingersoll (7, p. 12) and Wylie (17, p. 206) use a heat
balance on a rectangular parallelepiped to derive Fourier's heat
conduction equation, Although these derivations are less elegant
than those of Boelter and Sokolnikoff, they are more physically
meaningful, The following derivation therefore follows closely those
given by Ingersoll and Wylie,

Several preliminary observations should be accepted before
continuing to the actual derivation, These are:

1, Energy can neither be created nor destroyed,

2, Extensive experiments have shown that heat energy
flows in the direction of decreasing temperature,

3. Heat is defined as energy in transition due to a
temperature difference; the quantity of heat
required to produce a given temperature potential
in a body is proportional to the mass of the body

and the temperature potential,



k., The idea of heat flux, Imagine two parallel
planes each of area A and distance Ax apart from
each other, The temperature on each face is a
constant and there is a temperature drop AT
between, From observation (2) above, heat energy
will flow from the hotter to the colder plane;
the quantity of heat AQ transferred in time At
is:

_ AT
AQ= -k A (at).

k is a material constant called the thermal

conductivity with unite B’% .
hr.-£1,°=F/ft,

Rearranging and taking the 1limit,.,
1 80 . _x AT

X 7t ax

Lin (11t %—%) = Linm (-k-ﬁ%)
Ax-=0 ax-=0
At—=0 At—=0

1 9Q__, 2T
L %= X

The term on the left ia commonly called the heat

-

flux W, i.e.,
ST Btu
Wsak 2o We Heat Flux
ox’ * hr.-ft,2

Consider the infinitesimal volume in Figure 3.
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> Figure 3,

There are no heat sources or sinks in this volume and it is assumed
to be both homogeneous and isotropic with respect to all three space
variables, temperature, and time,
A number of heat transfer modes take place in this volume as
follows:
1, Heat energy is carried out of or into all six
faces of the cube by reason of the temperature
gradient normal to the faces, Most generally,
this heat transfer may be assumed to take place
by conduction,
2., Heat energy is stored within the infinitesimal
cube if the temperature is a function of time,
Using idea (1) above, viz., energy can neither be created nor
destroyed gives:
Heat stored = heat in by conductiofus.eeecessrsssssscasans(l)

This is a heat balance on the infinitesimal volume,



Using idea (3) above, the left term in equation (1) is
Heat stored = AQ = C,0mAT; AQ = quantlty of heat, Btu

Btu
Cp = gpecific heat, ™o

Am = mass of cube, 1lb,
AT = temperature difference, °F

Heat stored = C, (¥A xAyAz)AT; An =¥AxAyAsz
b,
ft 3

L

¥ = density,

Alternatively, for an infinitesimal increment of time At,

W = CPK AXAyAS -%%.....-...............-.....(2)

Turning attention now to the right-hand term of equation (1), the
anount of heat flowing into the rear face of the infinitesimal cube in
the x~direction per unit time is:

AQ o _ ya O

pos 3%
x
y +1/2ay
z +1/2Aa3

AQ o o 9T
<t * kayAz =%

X
v+ 1/28y
z+ 1262

The notation % indicates that the derivative is taken at

x
y + /28y
z + 1/202

the point (x, y + 1/2Ay, z + 1/248), The negative sign indicates



that if the gradient -g—: is negative, heat flow is in the positive
x-direction,
The heat gained through the front face in the x-direction is

found by the same sort of reasoning to be:

X+AX
y + 1/2ay
z +1/202

A spimilar line of reasoning holds in the orthogonal y- and
z-directions to give:

Heat in at
v --kAxos_g%
¥y
x + 1/2ax
24—1/263
y+Ay = kAxAB%
Y +AY
x+ 1/20x
z+ 1/202
z =-kAxAy%
z
x +1/2ax
y +1/20ay
z+Qz = kAxAy%%
:+017
x+ 1/24x
y+ /28y

Turning now to the heat balance described by equation (1), there is,..
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Dividing by the volume OxAyAz, we have alternatively,..

a1 = -3z
9% ox =g oy
AT - X+AX x TY+AY | ¥
o Y33 ax . DY T
ot =l
oz Y
Z+ 03 z
¥ AZ

Taking the limit in all variables gives...

ot L
oX ox
Iim C KAT=Lmk X+AX x*
AX
Ax—-0 Ax—0
ay—0 ay—0
az—0 Az—0 T - or
at—0 Ot—0 Ay oY
y+Aay ¥
+ Ay -
a1 .21
z T
Z2+A0 3 A
3 Y

The 1imit on the left is independent of x, y, and %, just as the
limits on the right depend only upon one space coordinate, Further,



the 1imit of a constant times a variable is the constant times the

linit of the variable, Using these facts,

St .3t
3x 99X
C KLim s k Lim X+A X X
At-so—*: x>0 ax o
a1 - 31|
QY QY| ¥
+ Lim J+roy +
Ay-0 ay
ar _ar
o2 I
+ Linm 2+4A 2 :’
Az->0 as

Proceeding to the limit indicated gives

m 2 2 2
CU a.l’k ST aT+aT}
L {E?*a? FYsd

T . X 82'1' L 8% 82'1‘
ot T o Ot
The material constant UkT' is sometimes abbreviated as ©C and was
p

termed by Kelvin as the "thermal diffusivity," Using this
abbreviation,

aT’ aZT 2T azT} .'...'.........................(3)
ot oc{a? - i |

Equation (3) is one form of Fourier's heat conduction equation,
In order to facilitate calculations on certain geometries, it may be

transformed to other coordinate systems by use of the chain rule for
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partial derivatives, These transformations may be found in almost any
advanced calculus text (17, p. 589) and will not be discussed here,

Analogous to boundary conditions imposed on the solution of
ordinary differential equations, it is necessary to express formulae
describing initial and boundary conditions on a partial differential
equation, The solution of the differential equation is customarily
forrulated in a form containing unknown constants, These constants
are generally determined by imposing initial and/or boundary conditions
on the formal solution,

The initial condition is a formulation of the temperature at that
time arbitrarily taken as zero, In general, the temperature at time
gero would be some function of the space coordinates, The initial
condition might then be formulated as:

T = £(x,y,2)
t=0
A stricter interpretation of this initial condition is "The solution
of Fourier's heat conduction equation must be such that its limit as
time approaches zero is f(x,y,z)." Formulated strictly mathematically,
the initial condition would be

Lim (T(x,y,2,t)) = £(x,y,2)
-0

In the general case, Fourier's heat conduction equation 1s solved
for a surface or a volure, For such a case, certain conditions would
need to be met on a bounding line or surface, Such surface conditions

generally fall into one of five categories, as follows:



1.

2,

3e
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Prescribed Surface Temperature., This boundary

condition supposes that one of the boundaries 1s
maintained at some prescribed temperature, This
boundary condition is rather easy to work with
(it has been studied extensively) but it is
ordinarily difficult to specify a temperature on
a given surface for most physical problens,

No Heat Flux Across a Surface., This condition

arises most generally on a surface that is well
insulated, In such a case, there would be litile
heat flux; as an approximation, it night be
assumed that there was no heat flow, This

condition is prescribed by:

% = 0; n = an outward drawn normal

Surface to the surface.,

Prescribed Flux Across the Surface, This boundary

condition is useful, e.g., when a body is poorly
insulated, Under these circumstances, the heat
flux from the body to the insulation might be
stipulated, The heat flux would in general be
some function of space variables and time and
would be formulated as:

oT

=T = £(x,y,2,t)
Surface



L, Newton's Law of Cooling, If heat transfer takes

place by radiation and/or convection into some
surrounding medium, the heat flux may be assumed
proportional to the temperature difference between
body and medium, In fact, many investigators

(11, p. 20L) in the heat-transfer field derive
empirical relations for heat transfer coefficients
on the supposition that this is true, Experience
has shown it to be a good approximation for
convective heat transfer, especially if the
temperature difference between body and medium

is not large., The mathematical formulation of

the boundary condition is:

ST
3n

=-rfT
L

Surface

where: r = h/k
h = heat transfer coefficient, —-—-Bit%——
hr,=ft.=F

- Btu
k S thermal conductivity of body, ————e
’ hr,-ft,2-0F
5T

Due account must be taken of the sign depending
upon the direction of heat transfer,
5. The Mutual Surface of Separation Between Two Media

of Conductivities K and K;, Along the interface

between the two media, heat energy is neither created

18
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nor destroyed and the heat flux must therefore be
constant at that surface, i.e,,
xl.:.;l-xz.:.;g; N = An outward drawn normal
to the surface of separa-
tion,

Once a problem has been reduced to a mathematical model, several
fundamental approaches might be used in the solution of the mathe-
matical model. The division between approaches is rather arbitrary;
as often as not, one or more methods complement a basic approach, By
way of a gross survey, approaches might be broken into five categories,
viz,, experimental methods, analytical procedures, graphical methods,
numerical procedures, and analogies or models,

Experimentel techniques are generally employed when a few
specific temperatures in a region need to be known, If a fine
network of temperatures is needed, equipment and installation costs
would be prohibitive and the results subject to much error,

On some occasions, it has been useful to establish temperature
distributions by the use of "thermal paints," A thermal paint changes
color when raised to a specified temperature and may be used to
bracket the temperature on some given surface, These paints have a
tendency to peel off under service and usually indicate temperatures
within, say, a T50°F range.

Analytical procedures are usually desirable in attacking a heat
conduction problem since they are ordinarily the least expensive from
an equipment standpoint, Analytical procedures usually fall into one

of two classifications: (1) the classical method of separation of
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variables and (2) operational transform methods, These methods may
be found in any mathematical physics text (12, pp, LS5-50L).

Graphical methods are sometimes employed for crude approximations
of temperature distributions in relatively simple systems
(11, pp. LL=51), Such methods afford at best an estimate unless a
great deal of time is expended; they seem to have little application
for the purposes of this paper,

Numericel methods of analysis have been extensively developed
during the past ten years; the digital computer has had a marked
impact in the area of heat conduction, Digital computers are
especially useful in solving systems of equations which sometimes
arise in heat conduction problems, The systens of equations are
ordinarily handled with some iterative scheme; convergence criteria
for such iterative methods have attracted much attention,

The most serious drawback of a digital computer lies in the fact
that it is rather expensive, ifany small concerns in industry cannot
afford such equipment and must resort to analytical procedures or rent
computer time,

Some work has been done in the area of analogles and models of
heat conduction phenomena, Such analogles might be made with either
electrical or hydraulic systems., Analog computers have been of some
use in such electrical analogies, but are expensive in comparison
with digital computers, For that reason, they have largely been

overshadowed by the digital computer in the area of heat conduction,
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LITERATURE SURVEY

A, Steady State

The general problem of heat conduction in a two-dimensional
region wag studied by Jacques Fourier many years ago, In fact, his
study on the conduction of heat in a semi-infinite strip led him to

the expansion of unity, viz,,

1-%{%::-%603 3x+%0095x- ....} ;-%T-dx‘-iL.

This prompted Fourier to consider expansion of an arbitrary function
in a trigonometric series,

A survey of the more elementary problems is gilven in Carslaw and
Jaeger (2, pp. 142-152), Problems somewhat similar to the one
presented in this paper are treated on pages 1L6-1L9 of Carslaw and
Jaeger, They are all attacked in the classical manner,

Problems which give rise to infinite systems of equations are
treated in Kantorovich and Krylov (8, pp. 5L~68). Two examples of
such problems are treated, Properties of infinite systems of

equations are also outlined on pages 20-llL.,

B, Transient Case

Thiruvenkatachar treats a transient problem similar to the one
presented here by treating it as a two-region problem
(15, pp. 255-262), The problem lends itself to eylindrical

coordinates and he attacks it with the LaPlace transform,
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Tranter (16, pp. 10L-110) treats the subject of combined use of
relaxation methods and integral transforms, Such methods appear to
have some use in the present problem; the method will be dwelt upon
in the Results section,

Under some circumstances, relaxation-type procedures may be used
in transient, two-dimensional problems, In general, only elementary
problems have been solved in this manner,

One notable exception to this is given in the literature
(L, pp. 1155-1161). Hellman, et al,, treat a rather complicated
system by numerical methods., It appears that the solutions obtained
leave much to be desired from the standpoint of accuracy but the
problem appears unassailable by any technique other than numerical,

A more or less generalized f{inite-difference method of attack
for transient two-dimensional problems is given by Liebman
(10, pp. 129-135), He treats both one- and two-dimensional transient
problems and gives a rather simple example of a two-dimensional

problem,



RESULTS AND CALCULATION

STEADY STATE PROBLEM

Before proceeding to a formal problem statement, the assumptions
underlying the mathematical model should be dwelt upon, The physical

problem was described in the Introduction section and will not be

repeated here,

At first glance, the problem seems to lend itself to cylindrical
coordinates, Fourier's heat conduction equation in cylindrical
coordinates is:

d2r 1 97,1 920 9% _. 3T
E-ARICEA T AR
T = temperature, °F
r = radius space variable, ins,
Q@ = angular space variable, radians
z = axial space variable, ins,
We are considering steady state so that ST = 0 and there is no
temperature variation in the @ -direction so -§—2-§ = 0; Fourier's

2 2
equation reduces to g—§+ 1 39T, 3Tz,
r

r of az§

32r 21 27
Recall now that each of the terms -a._x!, a—yg, and ai;z in
Fourier's heat conduction equation (3) resulted from considering heat
flow in the x, y, and z directions respectively., From a similar
derivation on a cylindrical wedge (1, p., III-10), it can be shown
% 1

that the terms +1 ST 44 the 1ast equation arise from
2T S

23
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considerations of heat flow in the re-direction, loreover, the term

%. .g% arises due to the curvature of the duct; this may be seen from

a comparison of the last equation with the heat conduction equation
2 2
for a two-dimensional flat plate, which is 27t L 2T 0

32 By

Now consider the heat conduction in the r-direction, It is well

known (1, p. ITa-8) that for thin circular shells, i,e., where

outside radius _
inside radius

within four percent error by using an equivalent flat plate area or

2, the heat flow in the radial direction is given

by neglecting the curvature of the shell,
Typical dimensions for the system considered here show that the

ratio g?fideder:ﬁ is much less than 2, Hence the curvature of the

plate, i.e,, the t.erm%. .g.f:, nay legitimately be neglected leaving:

D21 27
+ =0
ﬁ j
This is LaPlace's equation and might just as well be expressed in the

more familiar form:

32 821 - op

-0 T S temperature
— + =Y s
Ox 8?

x = space variable, in,
space variable, in,

oy
LU

The problem statement must include appropriate conditions on the
boundary, For reference purposes, a section of the duct-wall is

shovn in x-y coordinates in Figure L,



: e
L 2L
p 4
Heat
Added

Figure li, Cross-section of the duct wall in
x,y coordinates,

A1l the heat added to the rectangle is added on the surface
¥y =t in L<x<2L, The length of the rectangle is (as mentioned
previously) roughly 100 times the width, Most of the heat lost in
the interval 0<£x<L will be fron the surfaces y # 0 and y & t since
they have a much greater heatetransfer area, As a result, the heat
flux at the surface x = 0 is very small so thats

g% =0
x=0

Heat will be lost from the surface y = 0 by convection and
radiation into the air stream along that surface, The air stream
will inerease slightly in temperature from the left to the rizht end,
Assume along this surface that Newton's law of cooling holds and that
the temperature rise of the air stream is small enough to be
negligible, Then:

ST

-a—y- =rO

y®0

3 r = combined radiative and
convective heat transfer
coefficient, 3, -1,

y=0

©= temperature difference
between surface and air
stream, OF,

25
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Consider heat transfer along the surface x = 2L, Two factors
tend to produce heat flow in the x-direction along x = 2L, They are:
(1) the influence of the heat transfer discontinuity at x = L and
(2) a temperature difference (if any) between the duct and ambient
fluid, Using the same line of reasoning as along x = 0, the influence
of the discontinuity will probably be negligible, It appears that the
heat energy added along y = t near x = 2L will tend to flow straight
across the metal since this 1s the path of least resistance, Further-
more, it appears that the gas temperature along x = 2L is on the same
order of magnitude as the duct temperature so that convective and
radiant heat losses from this surface are minimized, These
considerations point to the fact that the heat transfer along x = 2L
may be described by:

_g_'l_'
ox
x = 2L

The boundary condition along the surface y = t is much harder to
describe, If it is assumed that the temperature of the hot combustion
products is constant over the interval L<x=2L and that an "average"
velocity may be ascribed to the hot gases in that interval, then
Newton's law of cooling may be used to describe the boundary condi-
tion, A detailed analysis of the heat transfer coefficients is
carried out in Appendix A; the boundary condition is:



27

-ro, 0£x<L

@lw
<3

ygt -rl (e"k)’ L‘-xéZL

r = combined radiative and convective
heat transfer coefficient in
0<x<L, in.=1

ry s combined radiative and convective
heat transfer coefficient in
L<x<2L, in.,=1
k = a constant temperature, viz., the
difference in temperature between
hot gases and air stream, °F.
Using the transformation ©= T - T ambient? Uhe formal statement

of the problem is:

2% . 3%
_a?+_c9_y-§ :o.oa'oooooco.ooooaoocnoao-.oooo--oco.'ooooo..o'(h)
=) =
%; "000oonooooooo.tol.00.-.-.00.0-0.-000-000-oocnoococn(S)
O,y
%% :Ooooooocoooooo.on-ocooooo-oooopoo-oooo.ooco-oooooo(6)
2L,y
% :r@ ooooo.coooooo-oo-oooouv-oooocooocoo--o.o-oo(7)
x,0 x,0
-r@ » 0<£x<L
30 x,t
_ay e 2 .-...........-.......(3)
x.t -rl{e, -k} s Lex<2L
* x,t
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The expression:

A =X A.rr A\
S(x,y) = C, (1+W)+ch Cos A x {. J+$ e n"} soqsl9)
n=l

xn 3%} ns 1, 2’ 3,0..

satisfies (L), (5), (6), and (7). It remains then to adjust the
coefficients C, to satisfy boundary condition (8). Using equation (9),
boundary condition (8) gives:

c°r+Z %An Coa>\nx {;':-*T: ant - .-xnt} = nocooooooo-oou-.ooo(m)

n=l
=

-rC, (1+rt) - rZCn Coa)-nx {o' )\nt+§!£:, ,Anf'} , 0£x<L

n-
B n=l

=)
-r10o(1+rt) - rlch Cos )\nx {o'kﬂt-k i—nt:- eAnt}.,,rlk, L<x <2l
n
n=l

The sequence of functions { Cos )nx} is orthogonal in the
interval (0, 2L) but not in (0, L) or (L, 2L). The expressions on
the right of equation (10) are therefore non-orthogonal due to their
interval,

Since this last expression is a function only of x by reason of
the terms {Cos )nx} s We may rid the expression of the x space=-
variable according to the method of Fourier. Multiplying equation (10)
by Cos Axdx where m = 0, 1, 2,... on the assumption that termise
integration is legitimate (see Appendix C), integration in the

appropriate intervals gives:
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2L
C,r 5 Cos A xdx +

ot 2
ch* { . k AT & 'Ant} 4 LCosknx Coskmxdx=

2L

L
=-r Gy (1+rt) S; Cos A pxdx + ry (k = Cy (1+rt)) Cos A jxdx -
L

oo z "
- :'Z!ZIu {e' >°t+.;\:_.: e)‘nt} J; Cos A x Cos ) xdx =

n=l

- + 2L
- rliCn {. nt+ -;nTi e Ant} ‘SI: Cos Anx Cos Amxdx. ccccc TR (ll)
n
n=l

Rearranging equation (11) gives:
2L
=ry (k = Cy (L+rt)) A Cos A xdx +

2L L
+Cor coc)mxdx +r C, (1+rt)5 Coakmxdx+
0

A
ch)‘ { n” A w¥ 'Ant} 5;21‘008 Apx Cos )\ xdx =
o )\ + L
ch{ t r n"‘} 5; Cos Ayx Cos )\ xdx +

..rlch {e Ant %;: A ‘} 5 Co8 A X COB A jXdXeeesannanseas (12)

n
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The terms on the left of equation (12) depend only upon m since
2L
j Cosz\mx Coe andx is not zero only when m = n, Arbitrarily,
0
call the term in brackets Bm .+ The evaluation of the integrals

’

is carried out in Appendix Bj the result is:

n=, Co{rL(B +rt)+ rL(1 +n)} %

[e=)
2(r= ? * P 5
o’ (I‘T:.'l)L cn {.- Ant_‘_ An.: .xnt} i = rlkL..ocooo'(13)

n

ot o (o) [ Aot - P

- Si mTT
2T—I|i {(r-rl)(l'rrt) Co + rlk} an = ﬁm,n..............(lh)

-+ )L A A"
nfn, Bun ® - (rnrl) 2 cn{°- by Y -: Xnt}
o oL ,
Sin (m+n) 3 Sin (m-n) 3~

(o %
m

L +
ﬂ’ ﬁm’n - °ix;;fl'>—’ cm{.- )‘mt'_’_:__m_feAmt}"“““““”".(16)

Equations (13), (14), (15), and (16) represent an infinite system

of equations of the form:
(=]

CmI % DmnCn+ Bn’ mlo, 1’ 2’ 3,000
n=0
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It is shown in Appendix C that the solution of a finite segment of the
system of equations (13), (1L), (15), (16) gives approximate solutions
of the coefficients C,. It is also shown there that the use of these
approximate values of C, give an approximate solution to the problem
posed.

An approximate solution of the problem posed is then given by:

N
©(x,y) = C, (1+ ry)+Z Cp Cos Apx {o"\nr+ .;_3; & nY} a34(11)
nel
Where the Cp are solutions of a segment of system (13), (1L), (15),

and (16) and N is a finite number.
A
Consider the expression An*:

n
This function is not well behaved; if some value of )\, = P{% is

in the summand of equation (17).

close to the value of the heat transfer function b AntT becomes

-

very large. Schematically, it behaves as shown in Figure 5.

A totic
+ to o'l . o 2
-r
A +r
—> N
ln-'r

<]

>‘n* T
ApT*

Figure 5. Schematic of the function

With the heat transfer function r derived in Appendix A, the

break in the curve occurs in 9<n<10., In order to arrive at a
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Ag'T
reasonably good approximation of the temperature, the break in )“ =
n

would at least need to be bracketed. As a first approximation, it

might therefore be assumed that twenty terms of the infinite system
(13), (1b), (15), and (16) are required.

The analysis of this system of twenty equations in twenty
unknowns Cp may be handled rather easily by noting that the terms on
the main diagonal, i.e., terms for which m = n, are invariably the
largest terms in each equation. The finite system of twenty equations
is in shorthand notation as follows:

Ro,0 Cot 49,1 ©y ¥ A5 Gp+ eeet Ay 19 C1g = By
Al,O CO + Al,l Gl + Al’z C2+ sen + A1’19 019 - Bl

82,0 0+ 42,1 O+ Ay 5 Cot eoe ¥ho 99 Cg = By

LA AR R R R R R R R R N N R R R R Y

A19,0 00 . A19,1 cl + A19’2 cz‘f‘ eees + A].9"].9 019 s Bl9

The Am are known coefficients and the By are also known,

"
Using a superscript to indicate the iterative order of the

approximation and noting again that the principal terms are on
the main diagonal, neglect the terms to the right of the main

diagonal and write:
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(1) - Bo
c A
0 %o
cl(l) =8 =40 o'V
hoa
6 (1) 2 Bp = Ay o o1 - A2,;A°1(1)
2 82,2
1
o) = By - A0 Gt - Ana 6. ... .- An,n-l Cé-%
)

n,n

As 2 second approximation, use the complete zeroth equation to

arrive at 00(2) and carry out the same operations previously indicated:

(2) g B =4, C =492 Cp ~ eee = A 19 Cg

0 %,0
(2)
(2) sB1 =M O
2 M1
cp(®) = B2 = M20 G2 < 44 ¢,(2)
Ro,2
(2)
cn(2) =B =450 62 - An 1 6™ ... . gn-1 Cn-1
Ann

The procedure may be repeated until the desired accuracy of results
is obtained.

Using this iterative procedure in conjunction with the typical
constants from Appendix A, the system of equations (13), (1), (15),
and (16) was solved for Cos Cps sees Cig+ It was found that the

second iteration produced no change in the fourth decimal place except
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for Co; the process was accordingly stopped after two iterations. The
results, i.e., 60(2), 01(2), eesny 019(2) are given in Appendix D along
with several plots of the temperatures obtained by using equation (17)
with twenty terms,

In order to estimate the error in the temperatures given in
Appendix D, consider the region of interest from a physical stand~
point. The typical thickness or y-dimension is one-fourth inch as
compared to a typical total length or x-dimension of L8 inches, The
only heat transfer to the left end, i.e., to x = 0, is by means of

conduction along the plate in the minus x-direction (see Figure 6).

) 3
i Heat Lost
1/hl

¥ l Heat Lost Heat Added

y Figure 6, Schematic of Region.
There is a much greater tendency for the heat to escape from surfaces
Yy =0 and y = t in the single crosse~hatched region because these
surfaces present a far greater area for convective heat transfer than
the cross-sectional area presents for conduction along the plate.
These considerations point to the fact that the temperature at
the left end of the region should be close to the ambient temperature.
The series solution (17) using the twenty coefficients in Appendix D
gives a temperature range 311.2°F to 313.3°F or temperatures about
13°F above ambient along x ® 0 (recall that the ambient temperature
assumed was 300°F). The temperature at the left end therefore checks

the physical considerations remarkably well.
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In order to estimate the temperature on the right end of the
region, consider an element taken out of the region in Figure 6 at
x = 2L, i.e.,, at the right end. Such a rod is shown in Figure T3

since the derivatives _g L % £ 0 on the right end, the rod's
curved surface is effectively insulated,

i

k9
'y

Figure 7., Element taken from body in the
vicinity of x = 2L,

=

The heat flow in this rod is therefore one dimensional and for
steady state,

2
aaﬁa : o.‘...I.ll".'......’.......'....Il.I.......'..'.(ls)
J

—a-; =r1 (1500 -el )ooocooo-ooooc.--ooc.o-ooc-ao(19)
7=t y=t

o0 &

S =r
y=0

......................................(20)

¥y=0

where boundary conditions (19) and (20) coincide with those used in
the actual problem at the right end, ©= T = 300°F as before.



The solution of this problem is straightforward; it is:

1500 ry

e(Y) -r1+ rr t+1r

LI s vl slransansatvessssapasiEl)

At the points y 2 0 and y = t, equation (21) gives:
© (0) = LL6°F
©(t) = 515°F
so that the temperatures are TL6°F and B15°F respectively.

The solution of equation (21) is shown superimposed on the result
of the series solution (17) using twenty coefficients in Appendix D,
Figure 3D, It may be seer there that the slope of the two curves is
nearly the same and that the temperatures differ by only a few degrees.

The trends exhibited in the temperature plots in Appendix D may
also be checked by physical considerations. Referring again to
Figure 6, the heat added along y = ¢t in the interval L<x<2L will
have more tendency to conduct straight across the metal duct than it
will to be conducted along the plate in the x-direction except in the
vicinity of x = L. The temperature on the left half of the duct
should be close to ambient since there is a much larger surface area
for heat convection away from the plate than there is for heat
conduction along the plate in the minus x~direction.

These physical considerations lead to the conclusion that the
temperature distribution in the x-direction (i.e., along any y=
constant) should bes

1. about ambient in 0<£x<L except within several

thicknesses of x = L.



2., about the same as the right-end temperature in
L<x<2L except within several thicknesses of
x=L,

3+ in the vicinity of x = L = 24", there should be
a sharp ri&e in temperature from roughly ambient
to the right-end temperature.

Three temperature plots along y = 0, y = 0.12", and y = t = 0,25"
are given in Appendix D as Figure 1D, All three plots exhibit the
characteristics outlined from physical considerations., Temperatures
in the left half of the duct are nearly ambient, in the right half
nearly the same as the right-end temperature, and there is a sharp
rise in temperature at the middle of the duct.

Two temperature plots along x = L = 24" and x = 2L = 8" are
given in Appendix D as Figures 2D and 3D. Both plots show a quasi-
linear characteristic as they should. A temperature plot along
x = 0" has not been included since the error in the temperatures
given by equation (17) appears to be on the order of five times as
great as the actual variation of temperature in the vicinity of
x =0,

Barring the exceptional point x = 22", the results of the
analysis appear to deviate L10°F from a mean curve. A more refined
analysis considering perhaps thirty equations in thirty unknowns

would probably reduce this deviation considerably.
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The point x = 22" appears to have an exceptionally large error.
No matter what value of y is taken, the temperature at x = 22" could
be no less than amblent and the series solution (17) with N = 19 gives
the temperature here as roughly 50°F below ambient.

It was pointed out in Appendix C that there was a likelihood of
a many~-valued solution at (L, t), It is well known that a finite
number of terms in a trigonometric expansion cannot accurately
represent a many-valued function and this fact is ordinarily manifested
as Gibb's phenomenon or an oscillation in the region of the non-unique
solution. Although the evidence is superficial, the error at x = 22¢
appears to be due to Gibb's phenomenon.

Several isothermal lines are plotted in Figure LD, Appendix D.
Such a plot is sometimes convenient for visualization of the direction
of heat flow,

As a matter of interest, it should be mentioned that the steady-
state problem just considered may also be treated as a twoe-region
problem. Separate the given region into the parts 0<x<L and
L£x<2L and match the temperature function and its first derivative
along the common face x = L, This approach gives rise to an infinite
system of equations just as the noneorthogonal series approach did and
therefore seems to have no inherent advantage other than perhaps being

slightly more elegant.
TRANSIENT PROBLEM

The assumptions used in the transient problem are the same as

those for the steady-state problem insofar as the space coordinates
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are concerned. It is only necessary to treat the assumption(s) used
in the initial condition.

In any high-velocity flow system, wall friction becomes apprecia-
ble. An adiabatic wall assumes a temperature between the bulk
temperature of the stream and the stagnation or total temperature.

The wall in the given system has flow over both the inside and outside
and there is therefore little or no heat transfer across the wall
during cold flow or prior to the time burning is initiated, This
indicates that the wall will come to a temperature close to the
adiabatic wall temperature during the soaking period. The adiabatic
wall temperature is given by:

Taw = Tn * Ngp (Tg = T Th = :'dg::g:“":‘l%?

Npp = Recovery factor

Tg = Stagnation
temperature, °F

T, = g:lk temperature,

At a Mach Number of 0.5 as is supposed here, there is very little
difference between the bulk and stagnation temperatures and the
adiabatic wall temperature is thus very nearly the same as the bulk
stream temperature.

If it is assumed that there is a negligible difference between
bulk stream temperature and adiabatic wall temperature at time zero,

the transient problem reduces to:

2 2
a e 8 e % ..Q.Q.OO...O......“0..'0..0....0(22)

St B
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RI=)
_a_x =o.ooo.-‘-'----o-ooocoo.onooooo.oo-c'-on'-coo(23)
0,7,t
3_2 =o.....'......".......C................‘...(ah’
2L,y,t
i? = re ..0.....0.....’....Q..Q....‘..'l..(zs)
x,0,t x,0,t
-rd » 0£x<L
x,8,%t
aney : , ’ 0......”..‘.(26)
<
S e A B
e = o....l........0."....l‘.....000..0.....-....(27)
Xy¥ 50
in.2, -1
where: k ® (thermal diffusivity, iBe )

sec,
T = a constant

t ¥ time, secs.
Thickness in the y-direction is indicated as "a" rather than "t" to
avoid confusing it with the time t.

The transient problem as stated above was first attacked by the
classical method of separation of variables. Using such an approach
leads to serious difficultiesy superficial inspection of the problem
shows that this leads to a situation with n equation and (n+ 1)
unknowns. No approach to this difficulty seemed available.

It seemed feasible that this difficulty might be overcome by

treatment as a two-region problem, i.e., by splitting the rectangular



region into the two parts O<x<L and L<x<2L and matching the
temperature function and its derivative on the common boundary x = L.
The same difficulty arose here as with the classical approach.

Both of these attacks seem to break down because of the

imposgibility of satisfying both space and time conditions simlta-
neously,

It therefore seemed promising to use the LaPlace transform
to temporarily rid the problem of the time-variable.

o
By defining ©(x,y,s) = S e"*Y ©(x,7,t) dt, the problem as
0
posed reduces to:

28 2¢ -
a e + a ez -kse .o.....0.0...l...'............0...(28)
91 Sy
% : o......'...."........'..0‘..........0.'..0‘.(29)
0,y
%-x = o..l.....'........'..'l..l.l.I.Illl........'(ao)
2L,y
%y .ré ....’......'.......!..0.'.0.‘!......?.(31)
x,0 x,0
98 _[-r8& , 0¢x<L
_? -
Xyt

- .0...‘..'.‘.0...00.0(32)
-1 (8 -0, Lexent

The transformed problem may be attacked by the classical method of
separation of variables.

The expression



é(X:Y)S) - Eo’g (L+xy)+

ZE“" oo £12 fircZee Jmiafy my}

ks +d.n2 -r

esssea(33)

satisfies (28), (29), (30), and (31) above. The use of boundary
condition (32) leads to an infinite system of ‘equations as before
except that the s-variable appears in the system. Without going into
great detail, the system of equations which gives the coefficients
Ep,g (Which are now functions of &) is:

For m = 0,

E {rL (3 +ra)+r1L (1+ra)}*‘

O’a
e n 1T
2(r-r;)L B B, .8 =p Sin ryTL
- = Z%"{B: : e D8 . ¢ np'af nT e eees(3h)
n=]l ’
For m f 0,
EnsPm,s L {M e ‘3"1:3& -8 {Sm”a} -
. ’ Pm,s ¥
_g& (o w )L+ ) Eo +:'1'1' SinEg'
T r 3 T3 = = Km’n...................(35)

where Bm,s = /ks+K 2 and CCm 3‘2“15., mel, 2, 3,000

The Km,n are given by:
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For m # n,
w -
o (r::l)LZ »8 3;_?"_-' oy, o “"a} ]
:;;
T T
8in (m+n) =5 Sin (m-n) =3
. g m+n 3 men si4¢(36)
For m = n,
L B -
Km,m . -(—r::;-]LEm" {-ﬁ—::%‘sm’aa.* e Bm,sa oooooooo.ooaoo(37)

The similarity of this system of equations to the steady-state system
obviates a detailed discussion of their derivation.

The similarity of this system to the steady-state system further
indicates that a finite segment of the resulting infinite system
might again be used to obtain an approximation to the LaPlacian
functions En,a in terms of s. Theoretically, the En, a could then be
expressed as functions of s and placed in equation (33) so that the
inversion might be performed.

Following this line of reasoning, a four<by-four block of the
system (3L), (35), (36), (37) was reduced to four equations in four

unknowns, The first of these equations is:



i = jka+oC12 +r ,/ks+cfl2 a -jkuilz r
gy, fero? 1yl
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2, 2 (r+r)L Jks+0f.1 +r jka+(x12 a 'jk’*oc }
2 s8

Jks +O(l -

]

2
"3 T A
Jks+aCp2 or

(rery)L - {?kl+0C22 +r \}ks+0C22 a =-[/ks+0y2 a

where xn = E!T%o

Considering that the En’, are functions of s, the reduction of
four such equations in four unknowns looms as a most formidable task.
The inversion of the result would be even more formidable., Another
consideration is this: Even if approximate expressions for the En,c
could be determined and the inversion performed, the error of the
results would probably be intolerable judging from the steady-state
solution.

In order to get an accurate solution to this problem, twenty or
more equations in twenty or more unknowns would probably need to be
reduced. With proper manpower and facilities, such a solution might
be accomplished. The circumstances under which this paper was
prepared forbade such an undertaking.

It should be noted that (in theory at least) the problem is
solved; it seems more appropriate, however, to search for either a

numerical or approximate approach to the transient problem.
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Consider the region in the vicinity of x = 2L, i.e., at the
trailing edge of the duct. The transient response of the trailing
edge can be found rather simply by noting that the temperature
gradient is zero in the x-direction. If an element such as that
shown in Figure 8 is taken out of the trailing edge, it will there=
fore be effectively insulated in the xs-plane.

y

—
M

Figure 8. Element taken from right end of region.
The y-axis has been reversed for
convenience.

The combustion process is more stable near the trailing edge
since it has had time to proceed to near completion. It seems
reasonable under these circumstances to assume that the temperature
of the face y = 0 is held constant since the heat absorbed by the
trailing edge will not influence the gas temperature considerably.
As before, it might be assumed that the heat transfer from the face
Yy = a follows Newton's law of cooling.

The considerations outlined on page 39 again lead to the
conclusion that the initial temperature of the element will be

constant and of the same magnitude as the gas temperature,
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The problem then is a transient, one-dimensional problem and its

formal statement is as follows:

x.g% = %% oooo.;ocoooooocooooo.ooooooooouooo-ooaooooo(3h)

--r('r

=z 18000000000000005.00..ooooooooctoo"oooooocooooo(36)

0,t

ﬂ -300) .....00....'0.000.0000'0.0(35)
QY .

a,t a,

-3

T = 3w...............l'.'...'......l‘.....'.'.'0...(37)

¥,0

where: T = temperature, °F

OC = thermal aiffusivity, %%éz

Others as before
The transformation ©= T « 300 reduces the problem to:

2
W-aa%- - %et ...u........-.....................-.....(38)

%@i = -r@

a,t

000-00.--...0-oocoooo.ootoo.ouuo00500(39)

a,t

el ‘ 1500.....l......l‘I."........l................‘(ho)
0,t

: o.........O....'.l.....00..'.....0.0‘00.......C.(hl)

e
¥,0

The result is well known; it may be found in Carslaw and Jaeger
(5, ps 105). The result is:
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]me = -1-+Tr£a—ll. Z(Bn+r2) = g SinBJ oooo.o..o..(m)
e Z Bn {” a( an*rz)}
n=1

The 5n'a are the positive roots of:

Bp Cot B 8+ ® Ouceevrnrccscsanscacrsanresseassassssssees(lil)
This approximate result should apply in the region of the duct near
the trailing edge.

The transient temperature distribution near the center of the
duct, i.e., near x = L, is not nearly as amenable to analysis as that
near the trailing edge, In fact, the analysis in this region leads to
the same problems as were described at the beginning of this section.
A method of bounding the transient solution in L<x<2L will be
described; a detailed analysis will not be attempted.

Consider the region L<x<2L. The part of this region near
x = 2L has a rather small temperature gradient in the x-direction
during steadyestate, Since this same gradient is zero at time zZero,
it is possible to bracket or bound the temperature response by
considering Figure 7 and the following two problems:

Problem 1,

& = 9%
K %{ - ?y+¢(y)ooooooocoooocoaoooa-oooocoocooo-ooQQOO(M)

=r©

Q)
oy

ooo-ooooooo.ocnooo.ooo.ccooooaoooooootooooo(w)

0,t

0,t

)..0.000.0.....OI..O..CCC........000.(h6)

a,t

a,t

e < OOIC.OO..O'Q.O'O..'IO.l."..'..O.I...O..0....00'.'.0.(1‘7)

Y,0
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Problem 2,

. 3%

%% o)
x - ......0..II..........'..'.l....................(ha)
ay!

= r©
0,t

.l..'.’......‘l"’.....00...00..l".'..l..l(h9)

0,t
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)OCI......O.Q..0.0..ll.lllll....'....(so)

a,t

A
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=r (k =6
a,t

= 0.......DC.O.A..‘...O....O..0.0...OI....'C‘..........(Sl)

e

¥,0

Problem 1 treats the transient problem in L< x<2L with a
function (P(y) replacing the heat stored in the element due to change
of temperature gradient in the x-direction. The function ¢ (y) may
be chosen knowing the temperature gradients in the x~direction at
steady-state,

Problem 2 treats the transient problem as though {(y) = 0, as
it would be at time gero. In both cases, the change of temperature
gradient in the x-direction is treated as though there were a heat
source in the element,

One other alternative method of approximating the transient
temperature distribution is to resort to numerical methods. This
problem is difficult to treat directly by numerical methods because
of its three~dimensional character (two space variables and time),

It is possible, however, that an integral transform other than

the LaPlace transform might be used in conjunction with numerical
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methods. This subject is treated in some detail in Tranter

(16, p. 10L4) although his treatment does not cover the present case.
Consider the transient problem (22), (23), (2L), (25), (26), and

(27). It is possible to eliminate the x space-variable by using a

finite Fourier integral transform defining

e P ’ t = e x’ > t) co’ dxo..........ooov.t 52

An iterative technique may now be used to solve the one-dimensional
transient problem approximately and the values of ©(P) thus derived

may be inverted using the well-known inversion formula
@

© =00+ £ ) B(P) 008 Prererrreerrerirereessunessnnns(53)
P=1
Furthermore, it may be useful to use an approach involving both
a LaPlace and 2 finite Fourier cosine transform. In this manner, it
appears that the transient problem might be reduced to an ordinary
differential equation with certain conditions to be met. Such a
technique is by no means well known and might prove to be both

thought=provoking and rewarding.
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CONCLUSIONS AND RECOMMENDATIONS

An approximate solution of the steady-state problem embodied in
equations (L), (5), (6), (7), and (8) is:

N
O(x,y) = C, (1+ry)+Z: Cp Cos A nX {e- AnY +.ii;. .7\1;7 R 1))
=
n=1
Ap = 5L

Approximate values of the coefficients C, are given by the solution
of a finite N-dimensional segment of the infinite system of equations
(13), (1k), (15), and (16).

A simple iterative procedure for the system of equations (13),
(14), (15), and (16) is given, Although this procedure is intended
for calculations on a desk calculator, the same procedure or more
exact procedures may be easily programmed on a digital computer.,

The proof of the validity of the solution (54) does not pre=-
suppose any magnitudes of system constants and the results are there-
fore extendable to other similar systems.

Typical system constants are outlined in Appendix A and an
example is worked out in some detail. Using N = 19 in equation (ShL)
and the iterative procedure outlined previously, the example problem
solutions appear to deviate from a mean curve on the order of %10°F,
Since the range of temperatures considered is about 500°F, the
deviation appears to be within tolerable limits.
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It therefore seems appropriate to conclude that the sclution (54)
of the steady-state problem (L), (5), (6), (7), and (8) is not only
accurate and useful but suitable for desk calculator techniques.

Several approaches to the exact sclution of the transient
problem (22), (23), (2L), (25), (26), and (27) were discussed and it
does not appear that any of them are very useful. It seemed approe
priate therefore to search for either an approximate solution or at
least some way of indicating the bounds on the solution.

At the extreme right end of the region, i.e., near x = 2L, the
well-known solution (L42) should give a good idea of the transient
temperature response of the trailing edge of the duct. Over the aft
half of the duct, the transient response appears to be bounded by
solutions of the two problems (LL), (L5), (L6), (L7), and (L8), (L9),
(50), (51). No analysis of these bounds was attempted.

It is recommended that & study be made of the thermal stresses
which result from the steady-state temperature distribution., The
solution of this thermal stress problem would be highly useful not
only to the jet-propulsion industry but aleo to the nuclear industry,

It is further recommended that a study be made of the possibility
of thermally induced vibrations In a duct (or plate) of the sort
considered here. Such a study would also be useful to the industries
Just mentioned.

It furthermore appears that it may be possible to solve the
transient problem by the use of both a LaPlace and Fourier transform.

By using a LaPlace transform to rid the problem of the time variable
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and a finite Fourier cosine transform to lose the x space-variable,
it may be possible to reduce the transient problem to a rather complex
ordinary differential equation. Although there are many difficulties
inherent in such a method, the approach mizht be fruitful; it is
recommended that this approach be attempted.

The only check on the validity of the steady-state solution
posed has been through analysis, Although this analytical verification
indicates the mathematical solution to be correct, it should be noted
that such verification does not extend to the physical problem. It
therefore appears that an experimental verification of the analytical
results of the steady~-state problem would be appropriate.
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APPENDIX A: ANALYSIS OF HEAT TRANSFER COEFFICIENTS

Humble, et al, (6, p. 3uB) derive an empirical relationship for
a heat transfer coefficient that seems appropriate along y = ¢t in the
interval 0<x<L. Humble's relationship is derived using data in the
freestream Reynold's number range 104 < (Rn)p < 106, The bulk
Reynold's number of the leading inside half of the duct and the outside
of the duct is on the order of 10 x 106, However, no more suitable
relationship can be found; turning to Humble's formulas

g 008 4 OOh 2 '0.1
= 0'031‘ (PFVBD) (w) (%) .....l.....'(u)
= kp

12

Subscripts: B indicates bulk properties of the
air stream

F indicates freestream conditions

Symbology: h = heat transfer coefficient,
Btu

#
hr.=ft.c-°F
D = characteristic diameter, ft.

kp = freestream thermal conductivity,
Btu

1b.
Cp = freestream air density, —%
£t.

VB = bulk velocity, %
1bey

= freestream viscosit;
“r ¥s Tt. sec.

(Cp)p = freestream specific heat, ﬁ%?uﬁ

L = characteristic length, ft.



In order to define the heat transfer coefficient, some initial
properties must be known. These values should be representative of
the physical situation; choose the following parameters:

(a) My = Mach number = 0.5
(b) Tp = Total air stream temperature = 800°R

(e) P Static pressure = 3 atmospheres

B
(d) D

2 ft., L = L ft.

e) kp = 0,020, _Btu
(&) kp hr.-ft.-OR

These parameters fix all the properties in the equation of Humble,
i.e., in equation (14).

T
The Mach number fixes the ratio T-'%
total

T
-T; = 00952

Tp = 0.952(800)°R = 302°F

The assumed value of Pp coupled with the temperature gives:

P E ; b,
PBE%;'M.IIM =°-156-rwm

The Mach number fixes the velocity...
VM (19.1) /T = 0.5(L9.1)(800)Y/2 = 691 £ps
The viscosity is a function of temperature only...

,U .5 lbom
"3 # 1,80 (2077) gpmts

56
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The dimensionless groups in equation (1A) are

i’DV 0.156(2)(691) - 6
Re = 13.5 (10
(Re)p = —5-1—25-;-11 % (105 3.5 (10°)
L ﬁ.l‘\‘
(3) e
0. o5
(7r), = 2 = 220 L0007 (3600) 0,677

The heat transfer coefficient is then:

k
h=b£ (0.03L) (Re) (Pr>p°h (5) fres

= 2:020k (0,031) (135(205))0+8 (0,677)0+b

h = 150
% hr.-rt.5-°r

An order-of-magnitude check of this heat transfer coefficient may
be arrived at by the Martinelli analogy of transfer of heat and
momentums

(Re)y = 13.5 (106)
(Pr)g = 0.68
(Nu)g ~ 20%; (8, p. 213)

T

h=§(m%

= 0.0204 h
% .-ft. -°F

h — 102 _.f—t—.!.—- ch‘ck

The heat transfer coefficient given by equation (14) thus appears

to be a2 good estimate on the leading inside half of the duct.
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Consider now the heat transfer coefficient along the outside
surface of the duct, i.e., along y = 0 in the interval 0 <x<2L. In
such a region, McAdams (11, p. 2L2) recommends the following relation-
ship for the heat transfer coefficient based on log-mean temperature

difference:

.6 (% 0.53 =5,%§§(;%)0.2 (E:_:E) (EE,_(.J) 2/3
s0 that:

hy, ® 0,020 Cpy® (g%) vere (;/E%)-O'z (fg/) B tamstatl)

where: hy = heat transfer coefficient based on log-mean

temperature difference, ﬂ-}——
o-ft. -OF

Dy = outside diameter of annular cooling air, in.
D; = inside diameter of annulus, in.

Dg = equivalent diameter of annulus, in.

1b,
G = flow rate, _'5_—“
ft.C=sec

Others as before.
The subscript B indicates bulk or freestream conditions.

Take Dy = 2l inches as before and let D, = 26 inches.

Dy ) 053 156053
(Dl) (ﬂ‘-)

Dg 2D, - Dy =2 in,

=~ 1.0

1b, 1b,
G = PV = 0,156(691 —s—— = 108 —2-—"
B ) ftc -SOO. fto -800.

kg 2020k Fteow -6y __Btu
= o =il o=
B 3600 S€C. = 5,66 (107) Tt.-sec,-OR
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Equation (2A) then gives hy = 19 —_Bt‘“j_oﬁ'
hr.-fto e

Although the latter heat transfer coefficient is based upon the
log-mean temperature difference and is a bulk coefficient, it should
be fairly representative of the local heat transfer coefficients
glong the outside edge y = 0 of the duct.

Since this analysis is not concerned with exact wvalues but with
representative values, assume that the heat transfer coefficients
along the two surfaces just analygzed are the same, i.e,, assume that:

h =150 __Btu ; Yy =50, 0ex<2L

hr.-ft.4«°R y=t, 0<x<L

Consider the heat transfer in the combustion zone, i.e., along
vy®t, L<x<2L., There is some evidence (13, p. L9) that the bulk
velocity of the combustion products in the wake of a flameholder is
nearly as high as the freestream velocity four or five baffle widths
downstream. Since the baffle width is on the order of one and one-

half inches, assume that the following bulk velocities exist:

Flamsholder
Position
4>/ Freestream Velocity
Flame
Velocity
o 12" 2"
Axial Distance

Figure 1A, Assumed velocity distribution in the
wake of the flameholder,



From Figure 1A, the average velocity isi

1
v +V
V.. = 2 F.sf F.S. =.£ Vp,s,3 F.S. indicates freestream

Vove = 0.75 (691) f£pg

Assume that the temperature in the wake is constant due to the
violent mixing and that it has a value of 1800°F,

The pressure distribution in the wake of a flameholder is complex,
especially during burning. A qualitative look (1l, p. 31) indicates
a low~pressure region in the immediate wake, a small rise in pressure
for perhaps a baffle width, and a gradual decay further downstream.
Suppose then that the average pressure in the wake of the flameholder
is 90 percent of the freestream pressure, i.e.,

Pave = 0.90 (LL.1) psia = 39.7 psie

Suppose further that there is complete combustion with Cgthg as

fuel. Such a situation is unlikely, but should lead to a reasonable

approximation of the heat-transfer coefficient. This assumption gives:
s 5 ore B (5) nesey oo B (5

08H18 * 12 % 02 * h-’ Na"')Bmz + 9}&0 + h? Nzo-;oooooooooooo-o(”)

The gas constant R, %Eillgi for the products of combustion is
cm-

given by:
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n n n
(R) = ‘ﬁl Rl+ ‘;12' Ra + 'n'é RBQ--oo-oouooo-ootocoﬁoaoooooooc(m)

products
where my,2,3 = No. of moles of (1) Cog, (2) HyO, and (3) N,.
n = total No. of moles
= nl + D2 + n3
R1,2’3 = gas constant for (1) COp, (2) Hy0, and (3) No.
Using the assumed chemical reaction (3A) in (LA):

(®) (55.2) + &5 (85.8) + & (55.2); By 5 5 are for one
producta '55 éﬁ a atmosghero pressure.

~ 59.5 fto"lb.
om'

The perfect gas equation then gives:

(@) %3 symbols as before,
products
39 . u‘h lb‘m
. ft.§
= 0,0k25 2em
£t.°

Using the polycomponent Wassiljewa method (9, p. 1) to determine the
fluid's thermal conductivity:

ky ko

kF n - o+ oooooo.oooo(SA)
1+Al('??'j 1+4p (lyz) 1+A l-y)

where by definitions

Al (l'yl) =y2 A1-2+y3 Al.3o.oooooooo-ooooooooooocnooo'ooooo(éA)

12 (l'yz) =y Az.l 2 e 7 Az- b-ooo-ooooo.o'o-oo.ocooolnooooooo(?A)
1 3723

A3 (l-yB) 'n A3_l+y2 A3.2¢tooo.oooooo-oouoo'ooooooooo-otoo(BA)



The notation in equations (5A), (6A), (7A), and (BA) is as follows:
Subseript: (1) indicates 0y
(2) indicates H,0
(3) indicates N,
i=j indicates gas (i) mixed with gas (j)
A = Wassiljewa constant
¥ = mole fraction
Lenoir's data (9, p. 11) has been extrapolated in Figure 2A to arrive
at the coefficients Aj.3+ Using equations (6A), (74), and (8A) with

appropriate values from Figure 2A gives:
by (Leyy) = g2 (0.38) + &L (0.55) = 0.46

by (17p) = g (0.595) + B (0.73) = 0.6

A3 (1-y3) = Zr (0.82) + & (0.87) = 0.22

Extrapolation of thermal conductivity data in McAdams (11, p. L4S7)
to 1800°F gives:
ky = 0.0486 il

kp % 0.059 Ry

k3 = 0,049 g2 o

So that equation (5A) gives:

kp = 0.0L486 . _ 0.059 0.0L9
1l+== 14+ = 1+

= 0,0591 . Btu



tH1
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Viscosities for several representative industrial gases are given by
Hirschfelder, et al. (5, p. 933). Taking a mixture of 85 percent Np,
10.8 percent C0p, 2 percent 02, and 2,2 percent Hy as representative
givest

lb.m

= 32.7 (1076)
+=58C,
Extrapolating data given by McAdams (11, p. L6L) gives for the

specific heat of the combustion gases:

(Clg =7 + Y +y 3 Subscripts and notation as in
% Pt T2 Gt 73 3 equation (5A4).

= & (0.309) + Zr (0.57) + &L (0.288)

= 0,331 E&uw

Before proceeding, two things should be noted: (1) equation (14)
gives the heat transfer coefficient in terms of bulk flow conditions,
and (2) the data used in deriving equation (1A) was taken in a flow
system with only one gas, viz., air.

In the interval L<x <2L being treated here, there is a striated
flow; there is airflow in the core and combustion product flow along
the inner wall of the duct. It seems apparent that heat transfer to
the duct in this regicn is controlled principally by the combustion
products due to their high temperature, However, it does not appear
to be quite legitimate to use properties of the combustion products

in equation (1A) since they are as much local as bulk conditions.
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Moreover, it also appears to be slightly illegitimate to extend
an equation derived on the basis of homogeneous flow to a situation
with striated flow.

No heat transfer coefficient correlation appears to be available
for a complicated flow system as we have here. On the assumption that
it is legitimate to use somewhat localigzed flow conditions and treat

striated flow by using equation (14), we obtain:
kp) /€50 |08/ G 4| Ok /o \0u1
h= o.ozh(n..) ( o ) —{;_EP (5)

; -6
= 0.03L [ 0:0591 o.ohzsgswgz 0.8 (o. 31(32,7)10 )o.h
Bh( : ) (32.7 (20-9) JT%;;IL'

= 68,0 IFB%Y’ Yy=t, Lex<e2l
‘m

The modified heat transfer coefficient r is defined as

b

Ey =4

where r ® modified heat transfer coefficient, in,~1

h = heat transfer coefficient, _____2_Btu
hry=in,4=CF

k = thermal conductivity of the duct, E"BitL'UF
e=llle=

McAdams (11, pe LL7) lists data on thermal conductivities of various
steels; this data indicates that for a steel duct, k is on the order

Btu
of 20 m. Using this value gives:



Btu
—_—
r:hzlsohro“ o-OF fto)
k 20 Btu 12 in,
ine y=t, 0¢x<L

r = O.er? 3 y=t, Lex<2L




APPENDIX B: EVALUATION OF INTEGRALS

In the evaluation of the integrals introduced previously, there
are three cases to consider, viz.,
(1) mAn,m#ZoO
(2) m=n, m=0
(3) m=0
Necessary integrals are broken down into these three categories in
the work that follows,
It will be helpful to recall that the characteristic values
(eigen values) of the problem X are given byt
An - E!ni:; mnS0, 1, 2500
The necessary integrals are as follows:

For m #n, m #0,

L
5 CoaAmx CoaAnxdx.S“ (>‘n+’\n)x /I‘+Sin(>n-)\n)x /L
0 0

0 it Am* A p)

m+n m=n

Foos ) Coshyxix = - L ) 5in (n+ 3", $in (an) T
2 ™ T m+n = m=n

o L {Sin (m+n) ‘g' . Sin (m-n) %
m

L
= 2L T
\S;Coa),xdx £ sin 2L

2L

=2l g ml
) Cos A pedx = - 2L sin &1

2L
j; Cos A xdx = 0



Form=n, m #0,

L L { (L
5; Cos)\mx Cos A pxdx = So Coaz)\mmdx ‘-'-5: S; Cos? ) x () dx)

L L
2L (mTTx 1 m
s"—f{-m‘_ /o e 0/}
%
2L
Cos me 009>\nxdx=L
0

2L
Cos )\_x Cos ) xdx = &
A .mXO. nx i

For m = 0,

2L 2L
S Cos Ayx Cos A xdx = Cos A xdx = L /2L 20
0 0 >\n 0

2L 2L
Cos Axdx = ) dx = 2L
0

0
L
S CoeAmxd.x =L
0
2L
Cos A pxdx = L
L
gL%lA Cos/\mxdx = Sin)\nx - -l Sin BT
0 B " An [o BT G 3
2L SinAx [2L o o5

3 CO')\nIGOl/\mxdx=Tn— ; S-ﬁSinT
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APPENDIX C: PARTIAL PROOF OF STEADY-STATE PROBLEM

Equations (13), (1k4), (15), and (16) in the Results section
describe an infinite system of equations, i.e., an infinite number
of equations in an infinite number of unknowns. This system of

equations may be written:

For m = 0,
% 2(r-ry)L Sin T
Oo & =5 L3 +7E) + LT rf)sl $
‘e- Agt . AntT Ant rpkL
: e vt rrl§+rt)+rif(1+ rt)
For m é 0,

o B { = Jnt-,-/\mt}J, el {1 % 4Rt o= Aat] -

2-0y & (rrpere) 2T

(¢ 2]

(r-rl)L Agtt At o Rk Sin (m+n) -2- Sin (m-n) T
T e (gt it
n=l
ngm
- 2r1kL Sin'-ng-
m m

For convenience, call: Ay = Cy

Ap = Cy {___in:: eAnt‘ + o'lnt}
n
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For m = 0,

[+ 2]
2(r-ry)L sin &5
= - —
AO Tr{rL(3 +rt) + rlL(l + rt)} An n ¥
n=l
rlkL
+m+rt)+r11‘(1+ﬁ) 00'...0......C.....QI.O...O.'O.l......(lc)
For m § 0,
ApT At =t
A, mT ___,,_,X-re MN'eg "M : (r+r1)L
z )m"r >\mt -Amt 2
i +e
m

3 mTT
= - A {% (r-!‘l)(l +rt)} ¥ o

m
e
é (r-ry)L ZAn {Sin(m-l-n) g- A Sin(m-n) %L} r 2r kL Sin %TL
n m+n m=n T m
n=1
);m:: .kmt_")‘mt
Call: O = W/ 1

AntT At =t
i o mY, m
Ap=T ¥ .

&K = (r+rL

Sc that:
s i fii o &
Ay = - 10{-17- (1"1'1)(1"'”‘)} Mo, voc

o 2]

4 2(r.rl)LZ Sin (m+n) -g— Sin (men) %L }

m (m+n)(mOp+cC) 5 (m=n)(m&,+cC)

n=l

npm
- 2r1kL Sin "'.%I'

pr—— ..I..........C...C."’..'.'....‘..........(2c)

v m20m+m<£
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We now have the system of equations:

= ol
G n{rL(§+rt)+r1L(f+rf)} Ay el
n=1

rlkL (1c)
+rrL(§+rt)+-rlm-{-n) LR R R RN RN R NN N I )

g m
Ay = = Ay {..hTIT-'. (r-ry)(1+ rt)} i%“: -

o

N 2(1'-1°1)LZ‘l { Sin (m+n) %L Sin (men) g‘ }
o Bl n

T W+ n) (mOproC ) (mn)(mOg vy |

n=1

nFm
miT
_ 2r1kL Sin =5~
T meOptmC

-.........................................(20)

where m =1, 2, 3, L,...

This system of equations may be written in the shorthand form:

o0

ATI SZDm’n A.n"i‘ bm ..-..oocoo--oooo.oooo.oooooooocnoono(3°)

n=0
For the system of equations (1C) and (2C), it has been established by

Kantorovieh (8, p. L3) that:
@ @

If ? Dm,n2 and l:),,,2 converge, the given system (3C) has a
oo
m,n=0 n=0

unique solution satisfying the condition that Anz converges and

n=0
these solutions are given by the method of segments,



o
Consider ? bm2
m=0
oo o
? bm2 = b02+ ? bm2

m=0 m=1
For the system of equations under consideration here
rykL
b, = 1
°©  TL(3+7TL) + riL(1+rt)

_ 2kl Sin 5
" m m26m+mcc

(e o)

= 2 mir . 2
2. ( r, kL ) 2+ (grlu,) (Sin =5-)
m m3 +rt)+ !‘11:(1"‘ rt) T (m26m+ n@;’
m=0 m

@©
s B+%
6 Z ( (zm_lﬂ; 6m+ma:)z; (3 and J are constants.

Ap® At - ¢
*,\m—.r’“ "

Now, Op =T Amn' )n and ©,—TT as m—»>© .

m~T

(o)
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The summand of Zb 2 is therefore on the order of lE and convergence

m=0
is thus guaranteed.
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Consider % Di 2 and McLaurin's test...
3

m,n=0

"If a function f£(x,y) is positive and steadily decreases

to zero as x and y tend to infinity, then the double

b UL

series Z— Z f(m,n) converges or diverges accordingly

0 0

® Ao
as S S f(x,y)dxdy converges or diverges."
0 0

D2

as m—»o and n—eo,

S:’ ) Hanyaain = 5:

5:

® 2
e
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0 m

Q0

!

2
5_-,161' (rerp)?(1+ rt)?
0

Sin2

2 ans |
Do dn+ ) Dﬁ’ndn dm

miT
.

(

mze mt m&?

2(u+n)-1-5- Sin?(m-n)

L+ 4]
+5 h(r-rl) 2L2
Te

—

Sin
! (me)?

s i.e,, f(m,n), is positive and steadily decreases to gero

dn +

(m-n)!_.né} =

The first integrand in the brackets does not depend on nj the

second integrand is odd in n and hence vanishes,

tos
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The integral reduces



Sw Sa ” 162 stn? '

r(,)dMn:SO (r=r)2(1+rt)?
0o ‘0 5 ?rrl)(+ ) (mem+moc)
@ §uf mTr

P rptaer? | Ty
m

It is sufficient now to note that the integrand is on the order of
iu and rather obviously converges. It must therefore be concluded on
the basis of the theorem stated previously that:
(1) The system of equations (1C) and (2C) has a unique
solution and the sum of the squares of the solutions
A, converge, i.e., Anz converges.
n=0
(2) Approximate solutions %(n) of the system of equations
(1C) and (2C) are given by the method of segments, i.e.,
by considering only a finite number of equations in a
finite number of unknowns. Concisely, Idim ‘n(n) = A,
n—sco

Consider now the convergence of the solution of the steady-state

equation, The solution posed was as follows:

0

O(x,y) = C, (L+ry)+ Cos A .x {e' AV, An'T Apy
gL % Co8 A f
n=l
An
cn .
AnT gt o= Ant

An-r

Tl
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Rewriting the solution in a form involving the alternative coefficients

Apt

«©
e 2
O(x,y) = 4 (Q+ry)+ Ay Cos A x /B
n=l a2 ki o Ant
xn-!‘

Consider convergence of the solution along y = O where:
© Agtr

1+ 2
©(x,0) = Ay+ A, Cos 9-%;—“- An”
AR? At =Ant
n n
n=l — D e

f)
It has been shown that > Anz converges., Although we have no

0
idea how the terms A.n"’ behave, the series may be rearranged since it

is absolutely convergent. Arrange the terms so that as n increases,
An2 decreases monotonely.

An order of magnitude estimate of the A,'s may be deduced. I%
«© oo

T

is well known thatZ %‘. diverges and therefore: ? Anz 42'
1

0 1
Moreover, both summands are bounded and monotone decreasing so that:

sl

2. 3
Rl

i o

;5 3 = a constant

B

Furthermore, the An's may be considered as monotone decreasing since
Anz had this property.



The term Cos BI'X is bounded.

o0 AntI
1+ R.n-r
ity e converges, then
AgtT e/\nt+ M lnt
1 A, =T
n
o i Si ]
nTx An*~T
Cos =37 converges since the latter
Z *n Agrr A t At i
1 An' = +e

summand is bounded by the first.
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For n> N where N is finite, the terms i n+: are always positive.
n-
=2 . n+r N N Anptr A Aqt?t
S 1 - 1+ A -r 1+ =
+r ln =Z A < +Z. i in -
— Ag'T 2 nt o= Ant n'T Apt t o't Apt  =Ant
Lz F° 13;-?°“*°% V.o 1re

The first sum on the right of the equality is finite and hence does
r
not influence the convergence. For the second sum, At is always
ApT
positive. Since the exponentials are invariably positive, the
following inequality may be written:

Agrr
1T X S
< m; n>N and (31is a constant
oy +e
e

Replacing the summation in 1<n<N above by a constant OC , we there-

fore have:



[

© - AgtT f=e)
A= 2
©(x,0) = +Z Cos 2N X n <o+
Sl b (I Tcds - s v Tabe oak TR TpW))
1 P e +e N

The convergence of the latter sum is well known and since it bounds
the given sum, the given sum converges along y = O,

Consgider the convergence of the solution in the region 0< y<t:

At -
f___n_’_'_ eV, " Y

O(x,y) = Ay (L+xy)+ Z Cos 271X
’ Ay Ap Cos == 1 TdT Aoh. oAt
n=1 —Rn-l' e +e

As before, restrict attention to n>N; we may write the inequality:

’;n"': oY, o-l“y lntr et Y, o-)'ny
A, Cos DX \n:r 3 1n+: At
_&%‘Ant’_‘-h‘t /i" _Ai__?clnt+,° n
< L é—ﬁ;—{n{ 3 ﬁ = constant
7w oem
Antr At

since -i-n.—r-el as n—>c and e~ "1~ is bounded, Recalling now that

ln = 2& and that we are considering the region 0<y<+t, we may write:

G oA alter)it
Ja &t i

So that in 0<y<+t, the solution summand is bounded by an exponential

function and obviously converges.
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Consider the convergence of the solution along y = t. Here we

have:

o
©(x,t) = Ay (1+ rt)+Z A, Cos E%EE
1

For convenience, call z = -% and rewrite the sum:

©(x,t) = Ay (1+-rt)+Z A, Cos nsz
1

Since Ay (1+rt) is a constant and Aj < =_, consider the sum

o0 /v
S(x,t) ﬁ@Z Cos nz
R

Consider Dirichlet's test, which is as follows:

=)

. Zﬁn(l) B,(2z) is uniformly convergent if the partial

o

1

sums of the series A,(z) are uniformly bounded and if
1

the functions Bp(sz) converge uniformly to O, the convergence
being monotone for each fixed x."
Now let: A (z) = Cos nz

(,,)z...]:..
e

The interval 0<x<2L which is under consideration is equivalent to
00

the interval 0<g <77, The partial sums of ? Cos nz are uniformly
1



9

— §>0, in the interval 0&z< T, By(x) = L
Sin 58 Yo

tends monotonely and uniformly to zero since it does not depend upon x.

bounded by K =

o
Therefore, ? L8 B2 converges uniformly in the interval S<g <77
n

X
or in S<x<2L,

o oo
Now, A, Cos E;{E is bounded by / /3 L. Cos 9.2.? and the
e
1

latter converges. It must be concluded therefore that the proposed

solution:
o0

O (x,t) = Ay (1+rt)4-Z A, Cos 9%5
1

converges along ¥ = t in the interval §<x<2L where §> 0.

It is not difficult to show that the proposed solution is in fact
uniformly convergent when y<t., Consider the Welerstrass m-test as
followss

"Let ? Un(x,y) be a series of functions all defined for
nsl

sets E; and E, of values of x and y respectively. If
ao

there is a convergent series of constants ? Mp such that:
n=l

'Un(x,y)l £ My for all x and y in E; and E,,
then the series Un(x) converges absolutely for each x and

¥ in Ey and E, and is uniformly convergent in (E, E;)."



80

Using the bound Ane-}— derived previously, for y<t we have:
n

Cos BITX An're ik R
Ap ¥y = c e “;ﬁiaacomtant
Ag'T ‘lnt+°- Apt /0 E<tey

AnT

and the latter converges for all y<t as was shown. By Weierstrass's
test, the solution is uniformly convergent in y<t.

According to two other well~known theorems, the term=by-term
integration carried out in equation (11) is therefore legitimate and
we may expect a bounded error in the region of consideration by using
only a finite number of terms in equation (17) as long as y<t.

Since we may approach y = t arbitrarily close, it seems pointless to
show uniform convergence along y = t.

Consider again the proposed solutiont

o<
s .
O (x,5) = Cy (1+ ry)+ Z Cq Cos lnx{ x:-: e, o 1&'}
nsl
-r© s 0¢€x<L

subject to: 29
SF -r1(© = k), Lex<2L

x,t
It is a simple matter to show that these last two expressions satisfy
the originally posed problem. It follows that these expressions are
indeed a solution (although not necessarily a unique solution) of the
original problem.

By way of summary, it has been shown that a solution of the

infinite system of equations (1C) and (2C) derived for the coefficients



Chy n =0, 1, 2, 3,...does exist and that this solution is unique.
It was shown further that an approximate solution to the infinite
system is given by the method of segments.

It was next shown that the proposed solution:

0
©(x,y) = C, (L+ry)+ ch Cos A x 2 Agtt ,)ny4_ .")*ny}
1

An™T

converges everywhere in the given region except at the point (0,t).
The convergence at (0,t) will not be discussed further.

It is furthermore likely that the approximate solution posed is
not unique at (L,t) since the boundary condition is many-valued at
that point. No analysis of the uniqueness of the solution at (L,t)
will be attempted.

The values of the constants (heat transfer coefficients,
conductivity, etc.) have never influenced the results of this proof.
The proof therefore remains valid for whatever system constants are
chosen and the results of this analysis apply to similar systems.

In concise summary, it follows that the expression

N
~ Agtt A il
S(x,y) ¥C, (1+ry)+ Cos BIX {_ﬂ_ 4 n?}
STLE Bg WA+ 2T 2 s Raod wbio v LAl
1

where the C, are given approximately by using the method of segments
on equations (1C) and (2C) and N is any finite number is evidently
an approximate solution of the posed steady-state problem except at

the points (0,t) and (L,t) where no proof was attempted.
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(1)

(2)
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APPENDIX Dt NUMERICAL RESULTS

Approximate values of the coefficients Cn(z) are given in
Table 1D.

Plots of temperature distribution from twenty-by-twenty system
of equations along selected lines are given in Figures 1D

through LD.
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Table 1D

cn(a)

221.8387
1218,9719
'3900652
=99.3313
8.6593
23.9996
°2o6213
-6.5809
0.6571
0.8231
0.1213
1.390L
-0.h4L53
-202527
0.5686
2,5330
=0.6022
"2 oSbSS
0.577%9
2.4357
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APPENDIX E: GLOSSARY OF TERMS

Alphabetic Letters

'
"

thickness of duct wall, in.

.
"

unknown coefficient; the symbol A represents a Wassiljewa constant
in Appendix A.

b = free or standing term
B = free or standing term
C = unknown coefficient

D = known coefficient as on page 30; this symbol indicates diameter,
in. throughout Appendix A,

e = base of Napierian logarithms
E = unknown coefficient

£(x,y,2) should be read "function of x, y, and z."

G = mass velocity of fluid, ;1-%5

h = heat transfer coefficient, ._lt'EET
h’l‘.-ft. - P

k = thermal conductivity, E—Btflé_!’?’ the symbol k represents a constant
temperature as on page 27 and in Appendix C.

K = a constant

L = length, in,

m = a summation index; m indicates Mach number in Appendix A.
M = a constant

n = a sunmation index

N = a constant

P ® fluid pressure, -li—z'-é-



o
]

= Fourier transform variable

Q = heat flow, g:g

modified heat transfer coefficient, in.=1

e |
n

R = gas constant, %
Im.

8 = LaPlace transform variable

t = thickness of duct wall in the steady-state problem; t indicates
time, sec. in the transient problen,

T = temperature, °F except when used with the perfect gas equation
where it is absolute temperature, °R,

V = velocity, %.

space variable, in,

M
]

¥ = space variable, in,

% ® space variable, in,

Creek Letters

2
X's thermal diffusivity, i_:%_; the symbol CC denotes an eigen value
in the transient prob]a.em.

P=aa constant for the steady-state problem; a function of s for the
transient problem.

¥ = deneity, }-b.’j; the symbol ¥ denotes a constant in the transient

problem, in,

x should be read "change of x."
€ = an arbitrarily small constant
© = temperature difference s OF
A= an eigen value

1b
K N
= fluid ViBCOSity’ m—:

E esa constant
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1b,
(¢ = fluid density, —2=
in.3

(D & angular space coordinate

Subscr:lgta

e indicates an effective value
m indicates the mj"h value, where m = 1, 2, 3,,.,
n indicates the nid value, where n = 1, 2, 3,...

& indicates that the quantity is 2 function of the LaPlace transform
variable s



