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In this dissertation we will extend three foundational results of one-relator group

theory. Magnus' Freiheitssatz [15] states that if P = (X, t : r) is a one-relator

presentation and the relator r strictly involves the generator t, then the free group

with basis X embeds in the group G(P). Lyndon's Identity Theorem [14] describes the

module structure of the relation module of a one-relator presentation. The Identity

Theorem allows one to construct an Eilenberg-Maclane space of type K(G, 1) for

G (P). Brodsldi [4] showed that each torsion free one-relator group is locally indicable.

Howie [9, 10, 11] then generalized all three of these results to the setting of one-

relator products (A * B)Ir of locally indicable groups A and B. Another approach

to generalizing the Freiheitssatz and Identity Theorem is to consider multi-relator

presentations. Anshel [1] made the first big step when she proved an extension of

the Freiheitssatz for a class of two relator presentations in 1990. Bogley [2] extended

Anshel's Freiheitssatz to a class of multi-relator presentations and proved an analogue

of the Identity Theorem for these presentations.
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We will continue in this generalization by considering relative presentations. A

relative presentation is a triple P = (A, X : R) where A is a group, X is a set, and

R is a set of words in the free product A * F(X) where F(X) is the free group with

basis X. The group presented by the relative presentation P is the quotient group

(A * F(X))IN where N is the normal closure of R. We say that the Freiheitssatz holds

for the relative presentation P if the natural map of A into G(P) is injective. Our

results concern the case when the coefficient group A is locally indicable. Following

Anshel [1] and Bogley [2], we formulate hypothesis on a relative presentation P under

which i) the Freiheitssatz holds for P, ii) there exists an analogue to the Identity

theorem by construction of a K(G(P), 1), and iii) the group G(P) is locally indicable.

In attempts to simplify the conditions necessary for future generalizations, we ex-

plored the theory of polygons of groups and a natural question arose. In conclusion,

we will discuss the natural question of when the colimit of the graph of groups rep-

resented by an edge of a polygon of groups embeds in the colimit of the polygon of

groups.
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Local Indicability and Relative Presentations of Groups

DEFINITIONS

1.1 Combinatorial Group Theory

Let F be a group and X be a subset of F. We say that F is a free group

with basis X, denoted F(X), if for any group G and function ç : X G,

there exists a unique homomorphism zi; : F(X) G such that Ooi=0 where

i is the inclusion of X into F(X).

A word w in the alphabet X is a finite sequence w = xx. . xc. where

each xi E X and Ei E {-1, 1}. A cancelling pair in w occurs when xi = xi+1 and

Ei -Ei+i for some i E {1, , n 1}. One can reduce the word w by removing

any cancelling pairs. A word is freely reduced if it contains no cancelling pairs.

For every set X, there exists a free group F(X) with basis X. Define

F(X) = {w : w is a reduced word in the alphabet X}.

Let w and w' be two reduced words in the alphabet X such that w = 241 .

and w' = y, where the x2, y E X, and the Ei, 73 E {-1, 1}. Define the

binary operation w * w' to be the reduction of the word x11 ynirm.

The set F(X) under the operation * is a free group with basis X [13, Theorem

42.1)].



Let A and B -be groups with presentations P = (X : R) and Q = (Y : S)

respectively. The free product of A and B, denoted A * B, is defined to be the

2

A presentation P is a pair P = (X : R) where X is a set and R is a set of

words in the free group F(X). The elements of the set X are called generators,

and the elements of R are called relators. The normal closure of a set R in a

group G, denoted < R >, is the smallest normal subgroup of G that contains

the subgroup generated by R. An alternate definition of this subgroup is the

set

.9-irg:gEA* F(X), r E

i.e. it is the subgroup generated by the relators and their conjugates. The group

presented by 2, denoted G(P), is the quotient group F(X)I < R>.

If a group G has presentation P = (X : R), we can define a homomorphism

: G --> H to any group H by defining 0(x) for each x E X such that OH = 1

in H. In fact, every map from G to H is determined by an assignment of the

basis X.

Theorem 1.1 PO For every group G, there exists a presentation P such that

G G(P).

Proof: For the generating set take

X = {g : g E G}.

Consider the homomorphism : F(X) + G induced by the identity function

from X = G to G. Let the set of relators be defined as

R = {w : w E ker 0}.

Then, by the First Isomorphism Theorem, G G(P). 0



3

group presented by the presentation (X, Y : R, S). Elements of the free product

A * B are words of the form w = a1b1a2b2 ank, where each cti E A and each

bi E B. The length of the word w, denoted jw 1, is 2n.

Theorem 1.2 [16, Lemma IV(4.1)J The free product A * B is uniquely deter-

mined by the groups A and B. Moreover, A* B is generated by two subgroupsA

and B which are isomorphic to A and B respectively, and such that A n B = 1.

This theorem indicates that the free product A * B is independent of the choice

of presentation of the groups A and B.

Now suppose that there exist a group C and isomorphisms a: C ---> CA < A

and 8: C CB < B where CA is a subgroup of the group A and CB is a

subgroup of the group B. Let A G (P) where P = (X : R) and B = (2)

where Q = (Y: S). We define the free product of A and B amalgamated along

C, denoted A *c B, to be the group presented by the presentation R, = (X, Y:

R, S, a(c)13(c)-1 V c E C). Groups of this form are referred to as free products

with amalgamation. Every element of the free product with amalgamation A *c

B can be represented by a word of the form w = aibi (Ink, where each

ai E A CA and each bi E B CB-

Theorem 1.3 [16, Theorem IV(4.3)] The inclusions of A and B into the free

product with amalgamation A *c B are injective.

A relative presentation is a triple of the form P = (A, X : R) where A is

a group, X is a set, and R is a set of words in the free product of the group

A and the free group F(X). The group presented by this relative presentation

G(P) is the quotient group A * F(X)I < R >. Note that if the group A is

trivial, then the relative presentation (A, X : R) is equivalent to the ordinary

group presentation (X : R).



and X(n+1) is the quotient space obtained from the disjoint union

Bg±') u X(n)

by identifying all points z e S7,1 C Bral+1 with their image ç& e X(n). The

map 0 extends to a map cbc,: Bg+' X(n+1). The set

crctt+ oce (13((en+1) 5)

is an open (n + 1)-cell in X(n+1). The map ç called the attaching map for

the (n + 1)-cell cna+1, and the map Oa is called the characteristic map for the

(n + *cell cri.

The subspace X(n) of the CW-complex X is called the n-skeleton of X. The

topological space X is defined to have the weak topology with respect the the

4

A generalized presentation is a triple (A, B : R) where A and B are groups

and R is a set of words in the free product A * B. The group presented by a

generalized presentation is the quotient group (A *B)IN where N is the normal

closure of in the free product A * B.

1.2 Topological Models for Groups

An CW-complex is a topological space X with the structure

X(°) C X(1) X(n) c X(n+1) C C U>0 x() X

where X(') is discrete and, for n > 0, each X(n+1) is obtained from X(n) by

attaching (n + *cells. In other words, we are given an induced family of

spherical maps
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collection {X(n) : n > 0}. With this topology, the topological space X is a

compactly generated, paracompact, Hausdorff space, and locally contractible

hence semi-locally simply connected [22, Chapter II, Section 1]. Also, the CW-

complex X has a universal cover (i.e. simply connected covering space) X [18,

Chapter 14, Section 5, Theorem 5.3].

We say that a path-connected topological space K is aspherical if every

spherical map Sn K of the n-sphere into the space K for n > 2 can be

extended to a map Bn+' K of the (n+1)-ball into the space K. A topological

space X is contractible if it has the homotopy type of a point. It is acyclic if it

has trivial reduced homology in all dimensions.

Theorem 1.4 The following are equivalent for a CW -complex X.

The complex X is aspherical;

The universal cover X of X is contractible;

The universal cover .5-t of X is acyclic.

Sketch of Proof: To show that (1) implies (2), build a contraction map to

a point in X inductively. Start with a map on the 0-cells to a fixed point of

X by using the path-connectedness of the universal cover. Then extend this

map to a map on the 1-cells by using the fact that the universal cover is simply

connected. You can continue to extend at each dimension since X is aspherical.

To show that (2) implies (1), just lift any map of the n-sphere Sn into X to

the universal cover I. The implication (3) implies (2) is a consequence of the

Hurewicz homomorphisms and (2) implies (3) is because the reduced homology

of a point is trivial.
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Any map f : X Y between CW-complexes is cellular if f (X(n)) C 17(n)

where X(n) denotes the n-skeleton of the complex X. The next theorem is called

the Relative Cellular Approximation Theorem.

Theorem 1.5 [22, Corollary 11(4.6)J Let f : X Y be a map of CW -

complexes and suppose that A is a sub-complex of X such that flA : A --÷ Y

is cellular. Then there exists a map g : X Y such that

i) the map g is homotopic to the map f,

The map g is cellular, and

the map glA = f IA

Lemma 1.6 For n > 3, if K(n) is a n-complex, and a (n +1)-complex K(n+1)

is constructed by attaching (n + *cells to K(n) , then 7FiK(n+1) 7TiK(n) for

i E , n 11.

Proof: Let the map i : K(71) K(n+1) be the inclusion of the CW-complex

KO') into the CW-complex K(n+1) . Then it suffices to show, for every i E

{1, ,n 1} that the induced map i# : 7ri(K(12)) 72(K(n+1)) is an isomor-

phism. Let [f] E 71-i(K(n+1)). Every element of the group 71-i(K(n+1)) can be

represented by a based map f : (Si, *) (K1), xo) where the point * is a

basepoint for Si and xo is a 0-cell of K(n+1) . By the Relative Cellular Approxi-

mation Theorem, there exists a based map g (Si, *) (K(z), x0) C (K(), x0)

that is homotopic to the map f.

(K(), x0) (K('), x0)

].;\ if
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But the map g represents an element [g] of the group 7ri(K(n)) and since the

map g is homotopic to the map f, i# ([g]) = [f] so we can conclude that the

homomorphism i# is surjective.

Now consider an element [g] E keri#. The element [g] is represented by

a based map g : (Si, *) (K(n) x0). Since i#([g]) is trivial in 71i(K(7/4.1)),

there exists an extension of the based map g o i f : (Si, *) ---÷ (K(n+1), xo)

to a based map f : (Bi, *) (K('), x0) where Bi is the i-ball. By the

Relative Cellular Approximation Theorem, the based map f is homotopic to

a map : (Be, *) (K(), x0) C (K(n), x0). But this map is homotopic to

a.n extension of g to the i-ball, therefore the element [g] is trivial in the group

1-(K()) and the homomorphism i# is injective.

1.2.1 K (G , *complexes

Given a group G and an ordinary group presentation P = (X : R) for G, we

can build a 2-complex K(P) such that gri(K(P)) G in the following manner.

Take a single 0-cell which we will call the basepoint of K (P). To form the one

skeleton of K(7'), denoted K(1), attach an oriented 1-cell to the base point of

K(P) for each generator x E X by glueing its boundary to the base point. The

one-skeleton K(1) is a one point union of oriented circles that is in one-to-one

correspondence with the generators of the presentation.

Theorem 1.7 [19, Lemma 11(2.1)] The fundamental group of K(1) is isomor-

phic to the free group F(X).

Now, for every r E R, label the boundary of a 2-cell, denoted c9.2, by the word

r E F(X) 'n-i(K(1)) and use this label as a map to attach the boundary of

each 2-cell to the one-skeleton K(1). The 2-complex K (P) is the union of K(')
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and these 2-cells. This 2-complex will be referred to as the standard 2-complex

associated to the presentation (X : R).

Theorem 1.8 [19, Theorem 11(2.3)] The fundamental group of K(P) is iso-

morphic to the group G(P).

Let G be a group. A CW-complex Y is said to be a K(G,1)-complex if it

satisfies the following conditions:

Y is connected.

r1(Y) L' G.

Y is aspherical.

Theorem 1.9 [291 For every group G there exists a K(G,1)-complex.

Proof: Let P be a presentation such that G G(7') and start with the standard

2-complex associated to P, denoted K(P). This complex will be equal to the

2-skeleton of our K(G, *complex K. Construct K(3) by attaching a 3-cell to

K(P) for every map from the n-sphere S' into the complex K(P). Then, by

the Relative Cellular Approximation Theorem, each map from Sn to K(n+1)

is null-homotopic in 1((n+1.) and by Lemma 1.6, 71(K(3)) :=2 G. Now proceed

inductively. Given K(n) build K(n+1) by attaching an (n + 1)-cell for every

map of Sn into K(n). Then each map of the n-sphere Sn into K(n+1) is null-

homotopic by the Relative Cellular Approximation Theorem. By Lemma 1.6,

71(K()) G for every n > 3. Let K = Un>3K(n). Consider any map from

Sk into K for k > 1. By the Relative Cellular Approximation Theorem, this

map is homotopic to map of Sk into K (n) for some n > 3. This implies that the

fundamental group r1 (K) is isomorphic to the group G and that K is aspherical,

therefore the CW-complex K is a K(G,1)-complex.



1.2.2 Homology and Cohomology of a Group

The next theorem shows that homotopy invariants for a K (G, 1)-complex

are group invariants which enables us to define the homology and cohomology

of any group G.

Theorem 1.10 [22, Theorem V(7.2)J The homotopy type of a K (G, *complex

depends only on G, i.e., if X and Y are K(G,1)-complexes and 0 : 7r1X 4 7137

is an isomorphism, then there exists a map f : X > Y such that f# = 0:

71-1X 4 riY and f is a homotopy equivalence.

Before we define the homology and cohomology of a group G, we need to

define the augmented cellular chain complex for a CW-complex. The augmented

cellular chain complex for a CW-complex K is a sequence

" C3234 c2 224 c1 z --+ o

that is defined in the following manner. For i > 1, each Ci is defined to be the

group H2(K(), K(-1)) where K(z) denotes the i-skeleton of the CW-complex K

The group Hi(K(i), K('-')) is free abelian with basis in correspondence with

the i-cells of K. The module Co is defined to be Co = Ho(K(°). The map

: Co Z sends each generator to the element 1 E Z. The boundary maps

are defined by compositions

He(K(i)) Hi_2(K(i-2))

9

Hi (10), K(i-1)) "ii (K(z-1), K(2-2))

H1 (K('))
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The horizontal sequence is the cellular chain complex that we are defining. The

downward and upward sequences are the long exact homology sequences for the

pairs (K(i), K(2-1)) and (K(2-1), K(2-2)) respectively.

Now consider the augmented cellular chain complex for the universal cover

K of a CW-complex K. The 0-cells of k are in one-to-one correspondence with

the elements of the group 71(K). Each n-cell of k corresponds to a lift of an

n-cell of K at a specific 0-cell of K. We can define a group action of 711(K) on

the augmented cellular chain complex of the universal cover as follows. For any

h E 71(K), let the element h take the n-cell lifted at vertex g E 71(K) to the

n-cell lifted at vertex h * g E 71(K).

Let G be a group defined multiplicatively. Then ZG is the free Z-module

generated by the elements of G with multiplication induced by the multiplication

of the group G. One can check that it is a ring and it is often referred to as

the integral group ring of G. A ZG-module consists of an abelian group A and

a homomorphism from ZG to the automorphism group of A. In other words,

a ZG-module is an abelian group A with a G-action on A. Using the action of

71(K) on the augmented cellular chain complex of the universal cover, we see

that Ci(k) is a ZG-module where G 71(K).

Let K be a K(G, 1)-complex for G. Let k denote the universal cover of

the complex K and C1k- denote the augmented cellular chain complex of the

universal cover K. The homology of the group G with coefficients in M is defined

by

Hi(G; M) OG M).

The cohomology of G with coefficients in M is defined by

Hz (G; M) := Hi (H omG(C,,k , M)).
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These definitions of homology and cohomology of a group use a topological

model. You can also define these invariants in a purely algebraic fashion. Let R

be a ring. An R-module P is said to be projective if whenever M is an R-module

and : M P is a surjective R-module homomorphism, then M = ker 069P.

All free R-modules are projective.

A resolution of an R-module M over the ring R is an exact sequence of

R-modules of the form

... P2 -4 Pi -4 M -> O.

An abbreviation for the resolution is to write e : P + M. If each Pi is a

projective(free) module, it is a projective(free) resolution.

Let G be a group and : P M be a projective resolution of Z over ZG

and M be a ZG-module. The homology of the group G with coefficients in M is

defined by

Hi(G; M) := Ili(P OG M).

The cohomology of G with coefficients in M is defined by

Hz (G; M) := Ili(HomG(F, M)).

Let K be a K(G, 1) for a group G, and let k denote the universal cover of K

which is contractible since K is aspherical. The augmented cellular chain com-

plex of k is a free resolution of Z over ZG ([5, Proposition I(4.2)]). Hence this

definition of homology and cohomology of groups is equivalent to the previous

definition. See Chapters I, II, and III of [5] for more details on these definitions.
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1.2.3 A K(C,, *complex

Let e be a positive integer. We will now give an explicit construction of

a K(G,, *complex where Ge is the cyclic group of order e. Start with the

standard 2-complex K associated to the presentation (x : xe) and consider the

augmented cellular chain complex of the universal cover k of K.

C2 2-4 c, -L-> z o

The universal cover k has e 0-cells. The 0-cells are conneCted by e 1-cells

to form a circle that is subdivided into e sections. You then attach e 2-cells

by lifting the 2-cell of K at each 0-cell. Therefore C, = ZG, for i = 0, 1, 2.

Pick a basic lift of the 0-cell of K as the base point for K. This 0-cell will

represent the generator 1 in Co ZGe. Now choose the lift of the 1-cell of K

at the base point of K to be the basic 1-cell of K. This 1-cell will represent the

generator 1 in C1 ZGe. Similarly, lifting the 2-cell of K at the basepoint of

K will give a 2-cell that represents the generator 1 of C2 = ZGe. The boundary

map ai takes the basic 1-cell to the element x 1 times the basic 0-cell. Let

N = 1 + x + xe-1 be the norm element. The boundary map 82 takes

the basic 2-cell to the element N times the basic 1-cell. Now our cellular chain

complex has the following form:

ZG ZG ZG Z 0.

Let x be an element of ZG for some group G. The set of all elements z E ZG

such that z * x = 0 in ZG is called the annihilator of x and denoted AnnzGex.



Lemma 1.11 (/) AnnzGe(x 1) = We * N

(2) AnnzGeN = ZGe* (x 1).

Proof: Since the universal cover is simply connected, H1 (K) = 0, therefore

ker irnô2.

The the submodule ker al is the annihilator AnnzGe(x 1). By the definition

of a2, we know the submodule im .02 is all multiples of N in We. Therefore we

can conclude that AnnzGe(x 1) = * N.

Now we will show that AnnzGeN * (x 1). It is clear that the

submodule ZGe* (x-1) is contained in AnnzGeN so assume that e E AnnzGeN.

We will show that e E We * (x 1). Write e such that

e-1
e =

i=0

Then

e-1
(E nixi) * N 0
i=0

by our assumption. However, xi * N = N for every i E 10, . . . ,e 1}, so our

equation becomes

e-1
E ni * N = 0
i=0

which implies that

e-1
E ni O.
i=o

Now consider the following calculation.

13



e = no + nix + n2x2 + + ne_iXe-1
e-1

= no nox + nox + nix + Eix
i=2

-1
= no(1 x)+ (no + ni)x + nixi

i=2

no(1 x) + (no + ni)x (no + n1)x2 + (no + n1)x2 + n2x2 +
i=3

e-1

(no + (no + ni)x)(1 x) + (no + ni + n2)x2 Enx
i=3

E E x3) (1 x)
i=0 j=0

e-1

The previous observation that E o is the condition necessary to end this
i=o

process. This calculation shows that e = g * (x 1) where

g E E
i=0 jr--0

Therefore e E ZG, (x 1) and AnnzGeN = ZG, (x 1).

Go back to our cellular chain complex of the universal cover k and note that

ker 02 = H2(K) 72(K). We just showed that ker 02 is the set of all multiples

of N. To extend our sequence, we need to attach a 3-cell to K such that the

boundary of a basic lift of this 3-cell corresponds to the element x 1 time the

basic 2-cell in C2. Since AnnzGeN = ZG, (x 1), the extended sequence will

be exact.

C3 .1* x-1
2 t--1. v () 0

Now continue this process by attaching a cell in each dimension with bound-

ary maps alternating between N and (x 1). This construction will produce

a CW-complex K such that 'xi (K) Ge by Lemma 1.6 and the cellular chain

14



15

complex of the universal cover of K will be exact. The exactness of the se-

quence implies that the universal cover has trivial reduced homology, therefore

it is acyclic. By Theorem 1.4, the CW-complex K is aspherical, therefore it is

a K(G,, *complex. Note that K is an infinite dimensional CW-complex.

We can use this construction to compute the homology of the cyclic group

of order e. In fact, we find that

H2n+ 1 (Z/eZ) Z/eZ

for every 71 > 0.

Corollary 1.12 If X is a finite dimensional aspherical CW -complex, then

71(X) is torsion free.

Proof: If H <G is a finite subgroup of G, then a K(G, *complex would have

to contain a K(H, *complex as a sub-complex. Then either H is trivial, or it

contains a cyclic subgroup. If it contains a cyclic subgroup, a K(H, *complex

would be infinite dimensional, therefore H must be the trivial subgroup.

In the general setting, building K(G, *complexes is very difficult and many

tools are employed to construct aspherical spaces. The next theorem, referred

to as Whitehead Amalgamation, is one such tool.

Theorem 1.13 Whitehead Amalgamation 1-23.1 Suppose that Z is a union

of connected aspherical CW -complexes X and Y, which intersect in a connected

aspherical sub-complex X fl Y. If the inclusions of X n Y into X and Y induce

monomorphisms on fundamental groups, then Z is aspherical.



2 ONE-RELATOR THEORY

In this chapter, we will present some fundamental results of one-relator

group theory by Magnus, Lyndon and Brodskii. James Howie has generalized

each of these results to the setting of one-relator products. The principal results

of this dissertation, presented in Chapter 3, continue to generalize these results

to the setting of multi-relator groups.

2.1 The Freiheitssatz

Given a presentation of the form P = (x1, x2, , xn, t : r), one says that

the relator r strictly involves t if it is not conjugate to a word involving only

the xi's. In 1930, Magnus proved the following result, which is referred to as

the (One Relator) Freiheitssatz.

Theorem 2.1 [15] Given a presentation of the form 'P = (x1, x2, . . . , xn, t : r)

where r is a word in the generators that strictly involves t, the inclusion induced

homomorphism from the free group on basis {x1, . . . , xr} into G(P) is injective.

We can restate this property for generalized presentations in the following

way. Given the relative presentation P (A, X : R), we say that the Frei-

heitssatz holds for P if the inclusion induced homomorphism j : A > G(P) is

injective.

16
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Definition 1 A group G is said to be locally indicable if every non-trivial,

finitely generated subgroup of G admits a surjection onto the integers.

Howie generalized Magnus' Freiheitssatz to the setting of one-relator prod-

ucts of locally indicable groups in 1981.

Theorem 2.2 [9, Theorem 4.3] Suppose G = (A * B)/N, where A and B are

locally indicable groups and N is the normal closure in the free product A* B of

a cyclically reduced word r of length at least 2. Then the canonical maps A G

and B G are injective.

The conditions on the relator r ensure that it is not conjugate in A * B to

an element of A or B

2.2 The Identity Property

Another property I will work with in this dissertation is the Identity Prop-

erty. Consider the ordinary group presentation P = (X : r) with just one

relator r. Let N be the normal closure of the element r in the free group

F(X). The abelianization of the subgroup N, denoted Nab, is the quotient

group N 1[N, N] where [N, N] is the subgroup of N generated by the commuta-

tors {nTin2-in1n2 : n1, n2 E N} of the group N.

Let G --= G (P) . We can define a G-action on Nab which is induced by

conjugation in F (X). The element g=wN E G(P) will act on n[N, E Nab

by

g * n[N, = wnw-1[N,

Recall that a ZG-module is an abelian group with a G-action. Therefore, Nab

is a ZG-module. Moreover, since N is generated by the element r and its
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conjugates, Nab is generated as a ZG-module by the element r[N, N] determined

by the relators r of P. The relation module for the presentation P is defined to

be the ZG-module Nab.

Let r = qe, where e is maximal and q is the root of the relator r in F(X).

Note that the element q commutes with r in F(X), therefore the element qN E

G acts trivially on r[N, N] giving us the relation (qN 1) * r[N, N] = 0 in the

relation module Nab. In 1950, Lyndon proved the following theorem which he

referred to as the Simple Identity Theorem.

Theorem 2.3 [14] Given a one-relator presentation (X : r) for a group G,

the relation module is a ZG-module generated as a ZG-module by the element

r[N, N] and with defining relation (qN 1) * r[N,N] = 0 where q is the root of

the relator r in F(X), i.e. the kernel of the surjective module homomorphism

: ZG Nab

induced by 741) = r[N,N] is given by ker ir = ZG * (q 1).

We can now generalize this property to the setting of relative presentations

as follows. For a relative presentation P = (A, X : R), let N be the normal

closure of the set of relators R in the free product A * F(X). Then define

Nab to be the abelianization of the group N. If G = G(P), then define a G-

action on Nab that is induced by conjugation in A * F(X). Define the action of

g = wN E G(P) on the element n[N, N] E Nab by

g * n[N, N] = wnw-l[N, N]

Under this action, the abelian group is a ZG-module. Moreover, it is generated

as a ZG-module by the set of elements {r[N, N] : r E R} which are determined
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by the relators of the presentation P. We will define the relation module for the

relative presentation P to be the ZG-module Nab.

Since the G-action is induced by conjugation, if an element g E A * F(X)

and a relator r ERc A*F(X) commute in A* F (X), then gN e G(P) will act

trivially on r[N, N]. Therefore (g N 1) * r[N, .A.T] = 0 which gives us a relation

for N&.

Lemma 2.4 Let w E A*B be a cyclically reduced word in the free product of

free product length at least 2. Write w = qe where q is not a proper power. Then

the centralizer of the word w in the free product A * B is the cyclic subgroup

generated by q.

Proof: By Corollary 4.1.6 in [16] we know that the centralizer of the word w is

a cyclic subgroup, say the subgroup generated by s. Since w qe , the element q

will commute with w, so q is in the centralizer, i.e. q = sn for some n > 1. But

we assumed that q is not a proper power, therefore n = 1 and the centralizer of

w is the cyclic subgroup generated by q. 0
e()For every relator r E R, write r = qrr where qr is the root of the relator

r. By the previous lemma, the centralizer of r is generated by qr, so we will

always have the relations, (qr 1) * r[N, N] = 0 when our relators are proper

powers. These relations are often referred to as the trivial relations. The relative

presentation P = (A, X : R) is said to have the Identity Property if, as a ZG-

module, Nab is generated by the set fr[N, N] : r E RI and the set of trivial

relations
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are defining relations, i.e., the kernel of the surjective module homomorphism

qr:@TER ZG
Nab

given by 7r(1,) = r[N, N] is given by ker = ED,ER ZG* (qr 1). Lyndon also

proved that the Identity Property also held for a special class of multi-relator

presentations that are referred to as staggered presentations.

2.2.1 Computing Cohomology and Homology of a Group

The identity property allows Lyndon to construct a free resolution of Z

over ZG which he used to compute the homology and cohomology of one-relator

group G. Let G be a one-relator group. This implies that there exists a pre-

sentation of the form P = (X : r) where r is a single relator. Construct the

standard 2-complex K(7)) for the presentation P.

Now consider the augmented cellular chain complex of the universal cover

K of the 2-complex K associated to G(P).

C2 -24 c1 j4 co z o

One notes that each ZG-module C2 = ZG for i E {0, 1, 2}. Recall from the

definition of the augmented cellular complex that the boundary map 82 factors

through the group Hi (k(1)). The group Hi (k(1)) (71-1 (k(i))).b. We will show

that H1 (K(')) Nab by showing that 7ri(k(1)) -L2 N. Consider the following

diagram.
k

PI
K(') K

A path in the one-skeleton of the universal cover k(1) is a loop in k(1) if and

only if its image under p is trivial in 71(K). Therefore,



P.(71(k(1))) = ker (is, : T1K(1) 7riK) =- N.

Since p is injective, 71(k(1)) N. Thus, Hi (k(1)) Nab. Now we will use the

information provided by the Identity Theorem to extend the augmented cellular

chain complex to a resolution of Z over ZGe.

Theorem 2.5 [12, Proposition 1] If the presentation P = (X : R) has the

Identity Property, then the image of the root q of the relator r in G(P) has

order e where r = qe.

From this theorem, we can conclude that the cyclic subgroup of order e is

isomorphic to the subgroup Q generated by the element q in the group G.

To form the free resolution, start with the resolution of the cyclic group of

order e with generator q, denoted Q, given in [5].

q-1 N q-1
. ZQ ZQ ZQ Z 0

where N 1 + q + + q' is the norm element.

Now apply the functor ZG Oc2 . The module ZG is a free right ZQ-module

since Q < G, so this functor is exact.

ZG OQ ZQ ZG OQ ZQ ZG 0(2 ZQ ZG 0(2 Z 0

But ZG 0Q Z Z[G/C2] N" in Lyndon's case. So this is a resolution of

N'. In the multi-relator case, Nab erERZ[GiQd. We can form a resolution

of Nab by resolving each summand and then using the direct sum of all the

resolutions.

We will use the resolution of the relation module Nab to extend the aug-

mented cellular complex that we began with. The Identity Property implies

that ker a, = ZG * (q 1) where the relator r = qa. We also know that

21



ker = 112(k):-.$): 72(K).

Therefore the ker 52 is equal to the image of the homomorphism from the

resolution of Nab so we can extend the augmented cellular chain complex with

the resolution of Nab. This extension will give you a free resolution of Z over

ZG.

This construction allowed Lyndon to prove that a one-relator group has

finite cohomological dimension if and only if it is torsion free, and that if it is

torsion free, the cohomological dimension is at most 2.

2.2.2 The Pre-Aspherical Model

Now let's examine the connection between the Identity Property and as-

phericity. Given a group G, let (X : R) be an ordinary group presentation for

G. Build a topological space as follows. Take one 0-cell, and for each x E X

attach an oriented circle, SI to the 0-cell to form the one skeleton of K, denoted

K(1). Note, 71K(1) F(X) by Theorem 1.7
e(r)For every r E R, write r = qr where e(r) is maximal and qr is the root of

the relator r. Let a(r) : De(1(r)) sel(r) K(1) be a loop in K(1) representing

the word qr as an element of F(X) 7r1 K(1). This map defines a way to attach

De to K(1). Let D be the one-point union of De(r) for each r E R and a be

the map induced by the set of maps {a(r) : r E R} from D to K(1). Let K

be the union of K(1) and D where for every r E R, C D is identified with

its image under a in K(1). The complex K is called the pre-aspherical model

and was first introduced by Dyer and Vasquez in [7]. The two skeleton of K,

denoted K(2) is equivalent to the standard 2-complex associated to the given

presentation of G.

22
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Theorem 2.6 [7] Suppose that a : Kl is a loop in a 1-complex Kl,

and that e is a positive integer. Let K be the union of K' and De, where each

element of 1:4. = S1 is identified with its image in 10. under a. If a does not

represent a proper power in 71K1, then K is aspherical.

Theorem 2.6 is equivalent to Lyndon's Identity theorem. In fact, the free reso-

lution constructed as a consequence of the Identity Property gives instructions

on how to build the pre-aspherical model since it can be viewed as the cellular

chain complex of the universal cover of a K(G, 1).

We can generalize the pre-aspherical model to relative presentations and

generalized presentations. To build the pre-aspherical model K(P) = K for a

generalized presentation P = (A, B : R), start with the one point union of a

K(A,1)-complex KA and a K(B, 1) complex KB, denoted KA V KB. Now for

every r E R, there exists a based loop a(r) : SI (KA V KB)(1) that represents

e(qr where r = r) and qr is the root of the relator r. Let the CW-complex De be

the K(G,1)-complex for the cyclic group of order e. Attach the CW-complex

D =V rERDe(r) to (KA V KB)(1) by a = VreR a(r) and let pre-aspherical model

K equal this complex.

Note that for each relator r E R, the CW-complex K has a 2-cell c7.2 C De(r)

that is attached along path OM : Sl K(') which traverses the path a(r) e(r)

times. By the Seifert Van Kampen Theorem, 71(K) G = (A*F(X))IU where

U =< R>. If B is a free group, the generalized presentation is equivalent to

a relative presentation so we can build a pre-aspherical model for the relative

presentation since a K(G, 1)-complex for a free group F(X) is a one point union

of circles that is in one-to-one correspondence with the basis X.
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Go back to the setting of G = (A * B)IN where N is the normal closure of

the single relator r in the free product A * B. Write r = qe where q is the root

of the relator r.

Theorem 2.7 [11, Theorem 1] Let (A, B : r) be a one-relator generalized pre-

sentation in which the relator r has free product at least 2 and A and B are

locally indicable groups. Then the pre-aspherical model of this generalized pre-

sentation is aspherical.

This theorem is equivalent to saying that the generalized presentation P has

the identity property when A and B are locally indicable groups and r is a word

of free product length at least 2. Once again, if B is a free group, this reduces

to the case of relative presentations.

2.3 Locally Indicable Groups

Recall that a group is locally indicable if every non-trivial, finitely generated

subgroup admits a surjection onto the integers. In 1980, BrodskIi announced

the following theorem.

Theorem 2.8 [4] Torsion-free 1-relator groups are locally indicable.

Other examples of locally indicable groups include free groups and knot

groups [10]. The following two theorems show that one can construct further

examples of locally indicable groups using free products and one-relator presen-

tations.

Theorem 2.9 If the groups A and B are locally indicable, then their free prod-

uct A * B is locally indicable.
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Sketch of Proof: Let H be a non-trivial finitely generated subgroup of A * B.

The Kurosh Subgroup Theorem [16, Corollary IV(4.9.1)] implies that H is the

free Product of a free group F and the intersection of H with conjugates of the

subgroups A and B.

H F * (*igiAik1) * 33 3j

The Grushko-Neumann Theorem [16, IV(1)] then implies that since H is finitely

generated, the total number of factors is finite and each Ai and B.; is finitely

generated. Since H is non-trivial, at least one free factor must be non-trivial.

Any non-trivial free factor will be a finitely generated subgroup of a locally

indicable group, therefore admit a surjection onto the integers. Then by first

projecting H onto this factor, then following by this surjection, we see that

H admits a surjection onto the integers and the free product A * B is locally

indicable. 0

Theorem 2.10 [10] Let A and B be locally indicable groups, and let G be the

quotient of the free product A * B by the normal closure of a cyclically reduced

word r of length at least 2. Then the following are equivalent:

G is locally indicable;

G is torsion-free;

r is not a proper power in A * B.



3 NEW RESULTS FOR SEMI-STAGGERED
PRESENTATIONS

3.1 Results for Ordinary Group Presentations

In 1990, Anshel [1] published a Freiheitssatz statement for a class of two

relator groups. She extended Magnus' approach to the one-relator case by

developing what she termed an independence hypothesis for a two relator pre-

sentation of the form P = (X, y, z : R, S) and proving that the inclusion of

the free group with basis X into the group G(P) is injective. Her methods,

like Magnus', were combinatorial. This theorem was a first step in attempting

to generalize 1-relator group theory to multi-relator groups. In 1991, by inter-

preting Anshel's conditions in a topological setting, Bogley proved that a larger

class of multi-relator presentations that includes Anshel's two relator presenta-

tion have the Identity Property. He also extended her Freiheitssatz to this class

of multi-relator groups.

Let P = (A, X: R) be a relative presentation where A is a group, X is a set,

and R is a set of cyclically reduced words representing elements in A * F(X)

where F(X) is the free group with basis X. Let G(P) = (A * F(X))IU where

U =< R>. Also, let H = (A * F(X))IN where N =-< A U R>. Thus His

obtained from G by "killing" the (normal closure) of A.

After cyclic permutation, we can assume that each r E R has the cyclically

reduced form

r = xictix2a2 xnan
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where xi is a word in F(X) , a, E A, and i> 1. Now define Pr to be the subset

of cosets of N



Pr {xiN, x1x2N, x1 xriN 1N}.

The set Pr is the set of initial segments of the relator r modulo A. Let H =

UrER Pr C H. If 12 is a subset of H, define 12' = 12 {1N}. Now we are ready

for the definition of a semi-staggered presentation.

Definition 2 A relative presentation P (A, X : R) is semi-staggered if

the following three conditions are satisfied:

.1:7 0 0 for every r E R;

There exists linear orderings on R and H' such that if r, s E R

and r < s then min < min P: and max Pr' < max

H. is a basis for a free subgroup of H.

Anshel and Bogley's results are stated in the following theorem.

Theorem 3.1 If P is semi-staggered in A as defined above and A is a free

group, then

1) 11] the Freiheitssatz holds for P, and

12.1 the presentation P has the Identity Property.

3.2 New Results

In this dissertation, I will generalize the arguments of Anshel and Bogley

to prove the following theorems.

Theorem 3:2 If the relative presentation P =< A, X : R> is semi-staggered

and A is a locally indicable group, then the pre-aspherical model of P is aspher-

ical.

27
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Theorem 3.3 (Freiheitssatz) If the relative presentation P =< A, X : R > is

semi-staggered and A is a locally indicable group, then the inclusion of A into

G(P) is an injection.

Theorem 3.4 If the relative presentation P =< A, X : R> is semi-staggered,

A is a locally indicable group, and no relator is a proper power, then the subgroup

NIU of the group G(P) is locally indicable.

Corollary 3.5 If in addition to the assumptions made in Theorem 3.4 the group

H is locally indicable, then the group G(P) is locally indicable.

Proof: Consider the short exact sequence

1 N G(P) H G(P) N -4 1.

Let F be a non-trivial finitely generated subgroup of G(P). If the image

q(F) is not the trivial subgroup in H, then it is a non-trivial finitely generated

subgroup of H and since H is locally indicable, there exists a surjective homo-

morphism : q(F) Z and Ooq:F > Z is a surjective homomorphism from

F to Z. If F C ker q, then F is a non-trivial finitely generated subgroup of N

which is locally indicable so F admits a surjection onto Z.

3.3 Connection to Identity Property

For a relative presentation, we define the relation module to be the abelian-

ization of the normal closure of the set of relators, denoted Nab. For every

r E R, write r = qre(r) where qr is the root of the relator r.

Corollary 3.6 (Identity Theorem) If the relative presentation P = (A, X : R)

is semi-staggered and A is a locally indicable group, then the relation module

Nab is generated by the set { r [N, .1\1] : r E R} and the set of trivial relations



{(qr 1)[N,N] : r E R}

are defining relations, i.e. the kernel of the surjective homomorphism

IF :(BrER ZG
Nab

given by 1(1r) = r[N,N] is given by ker 7r = EDTER ZG * 1).

Proof: Let K be the pre-aspherical model for the semi-staggered presentation

P = (A, X : R). The CW-complex K has the structure

K = K(A, 1) v (vx, ua (UrER Dr)

where Dr is a K(G, 1) for the cyclic group of order e(r) with attaching map

a. Let L K(A, 1) V (vs (UrER DP)). The CW-complex L is a

sub-complex of K. If none of the relators are proper powers, then L = K.

Let p: L L be the universal cover of L. Let Z = K(A, 1) U L(') which is

a sub-complex of L. Then 7 = /3-1. (Z) is a connected sub-complex of Z.
= p-i (Z)
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Consider the exact homology sequence for the pair (Z, 7).

H2(Z) 112(i) H2(1; Z) II1(Z) 111(Z)

Since L is simply connected, Hi (Z) = 0. The group B-1(7) is defined to be the

abelianization of 7r1(Z). A path is a loop in the universal cover if and only if

its image under p is trivial in L, so 71(7) N, hence H1(7) Nab which is

the relation module for the relative presentation P. The group H2(Z, Z) is the

free abelian group on generators corresponding to the 2-cells of Z Z since this

space contains no cells of higher dimension. Therefore, H2(L, Z) @re'? ZG.

Lastly, the group 112(L) 72(L) 7r2(L). Under these observations, our exact

sequence becomes the following:



(L) 294 Ak
rER

zc _024 Nab 24

To show that the relative presentation P has the Identity Property, it suffices

to show that ker 02 = ED,ER ZG * (47, 1). Since K is aspherical by Theorem

3.2, and K is built from L by adding only cells of dimension 3 and higher, 7-2L

is generated by the attaching maps of the 3-cells that you add. These are the

3-cells needed to build the Dr for each r E R. For every relator r = gre(r), we

attach a 3-cell to L necessary for the construction of a K(G, 1) for the cyclic

group of order e(r). In Chapter 1, Section 2, we saw that these attaching maps

correspond to the elements qt. 1, so 72(L) is generated by the boundary of

these maps. The ker 6°2 72(L), therefore the ker Ak= ..7.ERZG * (q7. 1).

3.4 Constructing Examples

To construct examples of semi-staggered presentations P = (A, X : R), we

will start with the group H G(P)/U where U is the normal closure of the set

A UR. For H, one must choose a group who has a free subgroup with a basis H.

The first step is to linearly order H. Now let A be any locally indicable group

and your basis for the free subgroup of H be the set 01, b2, b3, b4, . . 1 with

indicated linear ordering. Construct your relators in the following manner:

= ai 1 b2 (112 b3 a) 3 k

r2 = b1 a21 1)1+1 a22... bm a2 m-1

where each relator has free product length at least 2, 2 < 1 < k, and each ao is

an element of the group A. One can continue this process of "staggering" the

basis elements to build a set of relators. Note, if you start with an infinite basis
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for the free subgroup of H, you can build an infinite number of relators. The

presentation P = (A, H : ri) is semi-staggered. At this point, none of the relators

are proper powers. One can construct a new semi-staggered presentation by

replacing any non-empty subset of the relators S < {r} by the set

{se. : e, > 2, s E

which adds proper powers to the presentation. In the case where none of the

relators are proper powers, if you choose H to be a locally indicable, group, then

by Corollary 3.5, the group G(P) is locally indicable.



4 PROOFS OF THEOREMS 3.2 - 3.4

4.1 A Preliminary Lemma

To prove Theorem 3.4 we will need the following lemma that shows that a direct

product of locally indicable groups is locally indicable.

Lemma 4.1 Let K and {K, : a E A} be CW-complexes such that the complex

K = U0EAK0, every compact sub-complex of K is contained in K, for some

a E A, and for every a, 0 E A there exists a such that K, U K C

If 7r1K0 is locally indicable for each Ka, then TiK is locally indicable.

Proof: Let K and {K, : a c AI be as above and let H be a finitely generated

subgroup of 71(K). Assume that H does not admit a surjection onto the in-

tegers. We will show that H is trivial in 71(K). Since H is finitely generated,

there exist x1,... , xr, in (K) such that H =< x1,. , xr, >. The complex

K is a union of sub-complexes K, and each compact sub-complex of K is con-

tained in some K,. Therefore, we can find an element N E A and elements

in 71(KN) such that the homomorphism induced by the inclusion of KN into K

sends each x to the element xi in 71(K).

Since H does not admit a surjection onto the integers, the abelianization of

H, denoted Has', is finite. Then, for every i, there exists an integer ei such that

E [H, 5_ 7r1(K).

Say that 42 = wi where wi is a product of commutators of H. Then xez = 1

in 71K, i. e. xi-e'wi is a trivial loop in K so, without loss of generality, we can

assume that there exists a disk map di : B2 ---+ K such that the boundary of

di is equal to xi-ez wi.
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Let T E A so that KN C KT and KT supports each disk map di. Since

KN C KT, the image of x under the inclusion induced homomorphism i#

71(KN) 7ri(KT) is an element xi: of 71(KT). Let HT be the subgroup

of 71-1 (KT) that is generated by the 4 Note that this is a finitely generated

subgroup of the locally indicable group 7r1 (KT). Since KT supports each disk

map di, each generator (x7) E [HT, HT]. It follows that the abelianization of

HT is finite, therefore there exists no surjective homomorphism from HT onto

the integers. Since 71 (KT) is locally indicable, we conclude that HT is the trivial

group. The inclusion of KT into K induces a surjective homomorphism from

HT onto the subgroup H of 71-1(K), therefore H must be trivial. 0

4.2 Topological Models for the Proof

Now we will build the pre-aspherical model K (P) = K for a relative presentation

P = (A, X : R), we start with the CW-complex K (A, 1) V (VxEx SI). Note

K(1) C K (A,1) V MEx SD.

Now for every r E R, there exists a based loop a(r) : K(1) that represents

the root q,. of the relator r, i.e. r = q(r) and e(r) is maximal. We say that qr is

the root of the relator r. Let the CW-complex De be a K(Ce, 1)-complex for the

cyclic group Ce of order e. Attach the complex D V rERDe(r) to the 1-skeleton

KW by the induced map a = Vrelz a(r) and let K equal the resulting complex.

Note that for each r E R, the complex K has a 2-cell er2 C De(r) that is attached

along path 13(7) : S1 -4 K(') which traverses the path a(r) : S1 K(1) e(r)

times. By the Seifert Van Kampen Theorem, 71(K) G(P) = (A * F(X))/U

where U =< R >.
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Recall that N .< A U R >A.F(x). Let p : K be the regular covering

of K such that pp (ri (-K-)) = NIU 7riK = G(P).

The 0-cells of K are in one-to-one correspondence with H = (A * F) N, so

we can choose a labelling of the 0-cells by elements of the group H. At each

vertex of K, there will be a lift of each 1-cell of K. For every x E X, the lift

of SI at the vertex h = wN will be a 1-cell of K with initial vertex wN and

terminal vertex wxN. Let T = p-1(VxEx

At each vertex there will also be a lift of K(A, 1) C K. We will call the

lift of the sub-complex K(A, 1) of K at the vertex h E H the "rose" at vertex

h, denoted V(h). Then p-1(K(A,1)) =UhEH V(h). In fact p-1(K(A, 1)) =

K(A, 1) x H where H represents the discrete set of 0-cells of K. We will

examine more carefully the lift, for each r E R, of the sub-complex De(r) of K.

Note, for the remainder of the paper, we assume that the relative presenta-

tion P = (A, X : R) is semi-staggered.

Lemma 4.2 For every r E R and for every h E H, the loop a(r) lifts at 0-cell

h in K to a loop a(r,h) in K(1). Moreover, the image of a(r, h) is contained

in T U (UkEhP V(k)) and a(r,h) strictly involves at least one 1-cell from eachr

rose V(k) for every k E hPr. The loop a(r,h) does not represent a proper power

in 71K(1).

Proof: The path )3(r) lifts to a path ,3(r, h) in k which begins at h = wN

and traverses a path in T that covers the non-empty path x1 and ends at

vertex wxiN. Then it travels a lift of al in the rose V(wxiN). For m =

1, , n - 1, /3(r, h) travels from wx, xr,iN to w xi . znix,i+iN and lifts to

an essential loop in the rose V (wxi xn,+1N) covering am±i.
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This implies that im(0(r, h)) C T U (Uk EhP, V (k)) and strictly involves at

least one 1-cell from each rose V (k) for each k E hPr. Since im(a(r, h)) =

im(f 3(r, h)), we also know that im(a(r, h)) involves at least one 1-cell from each

rose V (k) for each k E hPr. Now we will show that a(r, h) lifts to a loop at

h = wN E H.

Since r = q,!(r), it suffices to show that qr E N. Note that qrN E Pr and

(qr = q,!(r) N = r N = 1N. However, by assumption, the subgroup generated

by II is free, hence torsion free so qrN = 1N. Therefore qr E N and a(r) lifts

to a loop at h. We will show that a(r, h) is not a proper power in 7r1K(1) by

way of contradiction. If a(r, h) was a proper power it would transverse a loop

-y(r, h) : S1 K at least 2 times. Since the covering map p is continuous, the

image of ry(r, h) under p would be a loop 7 in K. Then the image of a(r, h)

under p would transverse the loop 7 at least 2 times. But the image of a(r, h) is

a which is not a proper power, therefore we have a contradiction and conclude

that a(r, h) is not a proper power. 0

Now for r E R, let

[r] = fp E : min /3; <p < max Pr'} U {1N} c

For h E H, let

E(r, h) = De(r)U T U (UkEh[r]V (k))

where S1 (r) De (r ) is identified with its image ine

T U (Ukehp, (k)) g T U (UkEh[rjV (0)

by a(r, h). This identification is well-defined by Lemma 4.2. If e(r) = 1, then

De is a single 2-cell, denoted c2 (r, h) attached by a(r, h).
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In particular, k (r, h) has a single 2-cell outside T U (Uh[riV(k)) with at-

taching map 13(r, h). Moreover, the sub-complex17(r, h) of K contains the lifts

at h of all k-cells in De(r) C K for k > 2.

Lemma 4.3 For every k EhP, the inclusion induced homomorphisms

71(77 U (Uko/EhP; V(1))) (K (r, h)) and

71 (7 (0) 711 (K , h))

are injective.

Proof: By Lemma 4.2, the attaching map Nr, h) for the 2-cell c2 (r, h) strictly

involves the rose V (k). By the condition (Si) of the definition of a semi-

staggered presentation, the attaching map 0(r, h) also strictly involves the rose

V(1) for some k 1 E h.137. The Seifert Van Kampen theorem implies that

(71(K (r, h)) (V(k) * 7r1 U (UkotEhp,, V(/))))/ < r

The group ri(V(k)) is locally indicable since it is isomorphic to the group

A. The group 7ri (V(k)) * (T U (H V(/)) is locally indicable since it

is a free product of a free group and locally indicable groups. Since 3(r, h)

strictly involves V(k) and V(1), the relator r has free product length at least 2.

Therefore, Theorem 2.2 implies that the inclusion of each factor into 7r1 (K (r, h))

is injective.

For h E H, let K (h) = UrER Kfr, h). Note that if g E H = Aut(p), then

gr-C(r, h) gh) and so gr (h) = 7(gh) and 17 = UhER--g(h)

The method of proof used is to construct the covering space K as a union of

smaller pieces. The following lemmas will show that the conclusions hold for
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each of these pieces. Then compact supports, covering space properties, and

Lemma 4.1 will provide the final step to prove Theorems 3.2 - 3.4.

Lemma 4.4 Let h E H. Then

.17(h) is aspherical;

if r E R, then the inclusion of K(r,h) into K(h) induces a monomor-

phism of fundamental groups; and

if e(r) = 1 for every r E R, then 71-1(7(h)) is locally indicable.

Proof: To show that K(h) is aspherical, you consider maps of the n-sphere

Sr' into K (h). The image of each of these maps is a compact set in K (h).

Compact supports says that each compact set in K(h) is contained in a fi-

nite sub-complex of K(h). Moreover, every finite sub-complex is contained in

X = T U (Ukehn V (k)) U (1:1 O(r(O, h)) where each r (i) E R. If X is aspher-

ical for every finite subset {r(1),... , r(n)} then we can conclude that K(h) is

aspherical. Therefore it suffices to show (1)' X is aspherical. A similar simpli-

fication can be made for part (2). Let [f] be an element in the kernel of the

inclusion induced homomorphism i# : 7r1 (K (r, h)) (K(h)). To show this

map is injective, we need to show that [f] is trivial. The element [f] is repre-

sented by a map f : K. Since [f] E ker i#, there exists an extension of f

to a map g : B2 K(h). By compact supports, this map g is supported in a

finite sub-complex of K (h), therefore by a complex X as before for some choice

of finite subset of R. If the inclusion induced homomorphism on fundamental

groups from K (r, h) into X is injective, it would imply that the element [f]

is trivial in 71(K(r, h)) Therefore, it suffices to show that (2)' the inclusion

induced homomorphism from r1 ((r, h)) into 71(X) is injective. For part (3),

if we show that the collection of complexes X for each finite subset of relators

satisfies the conditions of Lemma 4.1, it will suffice to show that (3)' if e(r) = 1
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for every r E R, then 71(X) is locally indicable. To see that the conditions

of Lemma 4.1 are upheld, note that every finite sub-complex is contained in

a complex X for some finite subset of relators. Also, the union of two such

complexes corresponds to the complex associated to the union of the two finite

subsets of relators, which is a finite subset of R. Therefore the conditions for

the Lemma are upheld. We will now prove (1)', (2)', and (3)' by induction on

the number n of relators.

For n = 1, the Lemma 4.2 provides that a(r(1), h) does not represent a

proper power in 7r1(K(r(1), h)(1)). It follows that X = (r(1), h) is aspherical

by Theorem 2.7. The result (2)' is trivial in the case n -= 1.

If e(r) =1, then K (r, h) = T U (U clip, V (k))l. c2 (r, h). By (Si) and Lemma

4.2, there exists ko E h.13r such that a(r, h) strictly involves at least one 1-cell

of V(Ico). Consider the following decomposition of K (r, h):

K (r, h) = (T U (UkookEhP,. V (k))) U V(ko) U (r,

By the Seifert Van Kampen Theorem,

ri (17(r, h)) = 7ri(T U (UkookEhP, V (k)) * 711V(ko)/ < r

But 71-1(V(k0)) is locally indicable because it is isomorphic to A which is locally

indicable by assumption. The group 7ri (T U (UkookEhpr V (k)) is locally indicable

because it is a free product of a free group with locally indicable groups. By

(Si), the relator r is a word of at least length 2 in the free product and by

assumption is not a proper power. Therefore, by Theorem 2.10, 71.K(r, h) is

locally indicable. This completes the n = 1 case.

Now suppose n> 1. Without loss of generality, we may assume that

r(1) < r(2) < < r(n)
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in the ordering on R. Set Y UV]. TC (r (m) , h) so that X = YUE (r (n) , h) .

The complexes Y and (r (n) , h) are aspherical by our inductive hypothesis.

Also, if e(r) = 1 for every iE {1, , n}, 7r1.37. and TriK(r, h) are locally

indicable by our inductive hypothesis.

Claim: Let W = h[r (n 1)] n h[r (n)]. Then

Y n K (r (n), h) = T U (UkEw V (k))

Reason: From the definitions, it is clear that

Y n K (r (n) , h) = T U (Ukes V (k))

where S = h[r (m)]) n h[r (n)]. It would suffice to show for each 1 <m <

n 1, that h[r (m)] n h[r (n)j c h[r (n 1)]. If 1N p E h[r (m)] n h[r (n)] then

by (S2)

h min P*-1) < h min Pr(n) p h max Pr.(m) < <h max Pr(n-1)r(n

and so p E h[r (n 1)] and the claim follows.

By the claim, the intersection YnK(r(n), h) is contained in K (r (n 1), h) c

Y. Also, recall that

Y n K (r (n) , h) = T U (UkEw V (k))

where W = h[r (n 1)] n h[r (n)]. Therefore the inclusion of the intersection

Y n K(r(n), h)

into Y is the composition

Y n K (r (n) , h) T U (HkEh[r(n-i)] V (k)) K (r (n 1), h) Y- - ,
which gives the induced composition on fundamental groups
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7-1(Y n K (r(n), h)) T u (UkEh[r(7,_1)] V (k))) (r(r(n 1), h))
k#

iri(Y)

The homomorphism i# is injective because it can be viewed as the inclusion of

a factor of a free product into a free product. The induced homomorphism j * is

injective by Theorem 2.2, and the induced homomorphism k# is injective by our

inductive hypothesis. Therefore the inclusion of the intersection Y n K (r (n), h)

into Y induces a monomorphism on fundamental groups. By a similar argument,

one can show that the inclusion of the intersection Y nK (r (n), h) into K (r (n) , h)

also induces a monomorphism on fundamental groups. Since

Y n (r (n) , h) = T U (UkEw V (k))

is aspherical, we see that X is aspherical by Whitehead Amalgamation. The

Seifert Van Kampen Theorem tells us that 71(X) is the free product with amal-

gamation

71-1(Y) *ri(YnK(r(n),N) ini Ck (r (TO h))

Therefore the induced homomorphism from 71(K(r(n), h)) into 71-1 (X) is injec-

tive by the theory of free products with amalgamation which proves (2)'.

By condition (S2) of a semi-staggered presentation, the map /3(r, h) associ-

ated to the 2-cell corresponding to the relator r (n) that is lifted at the 0-cell

h of K strictly involves a 1-cell of the rose V (h max F()). Moreover, by the

previous claim, the rose V (h max /3;(7)) is not contained in the complex Y. Let

the set M = h[r (n)] h[r (n 1)] and the set = M h max Pr.( n . For (3)',

consider the following decomposition of X:

X = (Y U (Ukem, V (k))) U V (hmax Pr.(n) U hCr2(n)

Then, by the Seifert Van Kampen Theorem,
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= 11-1(Y U (UkEmi V (k)))* (71(17(h max F))))/ < r(n) >.

By (Si), r is a word of at least length 2 in the free product and not a proper

power by assumption. The group 71(Y U (H V (k))) is locally indicable by

our inductive hypothesis and the fact that a free product of locally indicable

groups is locally indicable, and the group ri (V (h max /1(n))) is locally indicable

since it is isomorphic to the group A. By Theorem 2.10, 7r1X is locally indicable.

0

Now let .1) denote the subgroup of H that is generated by H. By (83), (1. is

a free group with basis H.

Lemma 4.5 Let 110, h1,... , tin be distinct elements of H where n is a positive

integer. Then

Unm=07?(hm) is aspherical;

for i = 0,..., n, the inclusion of k(h) into UL0 K (hm) in-

duces a monomorphism, of fundamental groups; and

if e(r) = 1 for every r E R, then (U1=0 r(hm,)) is locally

indicable.

Proof: Partition H into the cosets of (1). Note that if the coset

h(1) h' (I) for h, h' E H,

then 71.-C (h) fl 7-((h') = T. The inclusion of T into T U V (k) induces a monomor-

phism on fundamental groups by the theory of free products since

iri(T U V (k)) 711(T) * 71. (V (10)-
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Then by Lemma 4.3, the inclusion of T UV (k) for some k E h.137.* into K (r, h) for

any relator r and any 0-cell h of K induces a monomorphism on fundamental

groups. By Lemma 4.4, the inclusion of K(r,h) into K (h) induces a monomor-

phism on fundamental groups. Therefore, since a composition of injective maps

is injective, the inclusion of T into K(h) induces a monomorphism on funda-

mental groups. Once we know that this induced homomorphism is injective, we

can show that R(h) U 17(h') is aspherical by Whitehead Amalgamation which

proves (1) for this case. Furthermore, e know that the inclusions of 71-1(r(h))

and 71-1(k(h')) into 71 (R-(h) U k(1-0) by the theory of free products with amal-

gamation since 71-1(k-(h) U k(1/1)) 7ri (K (h) *,1(T)K (h')) by the Seifert Van

Kampen Theorem, therefore (2) is satisfied for this case.

The free product with amalgamation structure of 71(TC-(h) U K (h')) is un-

fortunately not enough to show that this group is locally indicable. To see this,

we must consider a collection of sub-complexes of K (h) UK (h') and then apply

Lemma 4.1. First assume that all relators are not proper powers. Let

E {TU (UkEhn V(k))U (UkEhin V(k))U (U7=1 c2(r h)) U (U7=1 c2(s(i),11`))

r(1),... , r(n) and s(1), . . . , s(m) are finite subsets of R}

be a collection of sub-complexes of K (h) U K (h'). We will show that the fun-

damental group of each of these is locally indicable.

If a sub-complex X E E has no additional 2-cells c2 (r, h) or c2 (s, h'), then the

fundamental group of X is a free product of a free group with locally indicable

groups hence locally indicable. So assume that there is at least one additional

2-cell. We will proceed by induction on the number t of 2-cells. For t 1,

assume that the one additional 2-cell is lifted at the vertex h and is associated

to the relator r. By (Si), there exists at least 2 roses that the attaching map

)3(r, h) strictly involves, say V(k1) and V(k2). By the Seifert Van Kampen
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Theorem, the fundamental group of the sub-complex is the free product with

amalgamation

71.(T U (UkiokEhriuhin V(k)) * 71(V(ki))/ < r >>.

This group is locally indicable by Theorem 2.10. Now let t> 1. Without loss of

generality, just consider the additional 2-cells associated to the vertex h. None

of these 2-cells will share a rose with a 2-cell lifted at h' since h and h' are

from distinct cosets of <I By (S2), their is a linear ordering on the 2-cells lifted

at h and the roses that they use. Without loss of generality, let r(n) be the

maximum relator of the set { r(1), , r(n)} and let k1 = h max P). Then

the attaching map )3(r(n), h) strictly involves the roses V (h) and V(k1) and no

other additional 2-cell uses the rose V(ki). Let M fk E hil U h'll : k kJ"

Then the Seifert Van Kampen Theorem implies that the fundamental group of

this sub-complex is the one-relator free product

71(T U (UkEm V (k)) U (U7.111 c2(r(i), h)) U (U7=1 c2(s(i) h'))) * 7ri(V(ki)/ <

r(n)

which is locally indicable by Theorem 2.10 since the first factor is locally in-

dicable by our inductive hypothesis and the second factor is isomorphic to the

locally indicable group A. Therefore every sub-complex in the collection E

has locally indicable fundamental group. Moreover, every finite sub-complex of

K (h) U K (h') is contain in an element of E and the union of two element of E

is contained in E, therefore by Lemma 4.1, 7r-i (l-(h ) uk (le)) is locally indicable

if no relators are proper powers.

The lemma is now proved for the case where the intersection K (h) nx(h') =

T. Now recall that R(h) is homeomorphic to its translate g K (h) = K (gh) so

it suffices to prove the lemma in the case where each ho, hn, are distinct
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elements of the trivial coset 14) = .1). Under this assumption, the result is proven

by induction on n.

For the case n = 0, all three results are consequences of Lemma 4.4. Now

assume that n > 0. Without loss of generality, we may assume that lho >

1141 for i = 1, , n where Ihd indicates the length of the element h in the free

group c1. Set X = E(hi) and Y -= -.Phi) so that X = Y UK(h0).

Let U =-- (Uin-1 hill) n holl. Lemma 1 in [2] implies that this intersection U

is contained in a singleton. This implies that there exists an element ko E horl

such that

T C Y (h0) c Tu v(ko)

If Y n K (ho) = T, then the result follows by the same arguments given above.

Otherwise, select r E R such that ko E hoPr. By (Si) and Lemma 2, the attach-

ing map 13(r, ho) for the 2-cell c2 (r, h0) of K (r, ho) strictly involves some 1-cell of

a rose other than V(ko). By Lemma 4.3, the inclusion of Y nk(ho) = T UV (ko)

into K (ho, r) induces a monomorphism of fundamental groups. By Lemma

4.4, the inclusion of K (r, 120) into K induces a monomorphism on fundamental

groups, therefore the inclusion of Y n k(h0) into 7? (h0) induces a monomor-

phisms of fundamental groups since it is the composition of these two monomor-

phisrns. Similarly, there exists an m E {1, , n} such that ko E hnill and

the 2-cell c 2 (r, hm) of K (r, hm) strictly involves some 1-cell of the rose V(k0)

and any other rose, so the inclusion of Y n K(h0) into K (r, 140 and then into

K (hni) induces a monomorphism of fundamental groups. By part 2 of the in-

ductive hypothesis, the inclusion of Y K (14n) into Y induces a monomorphism

of fundamental groups, therefore the inclusion induced homomorphism from

71(Y n K (ho)) into 71(Y) is a monomorphism.



45

The complexes Y and k-(ho) are aspherical by part 1 of the inductive hy-

pothesis. By applying Whitehead Amalgamation, X = YUX (ho) is aspherical,

therefore proving part 1 of the lemma. To show part 2, note that the Seifert

Van Kampen Theorem implies that the group iriX is a free product of 9r-1Y and

7r1K(ho) with free subgroup amalgamated. In particular, iriK (ho) embeds into

7r1X. Further, if m = {1,... , n}, then by the inductive hypothesis, 71-1K (hm)

embeds into 71Y, therefore into riX by the theory of free products with amal-

gamation.

To show part (3), by Lemma 4.1, it suffices to show that 7r1X is locally

indicable where X = Y U (UkEhon V (k)) U c2(r(1),1/0) U U c2(r(rn), Ito) with

fr(1), , r(m)} being any finite subset of the set R of relators. We will show

this by induction on m. For m = 1, let k* be a vertex of K such that the

attaching map 0(r, 10 strictly involves the rose V (k*) . Consider the decompo-

sition X = (Y(H kEholl V (k))) U V (k.) U hoc. By the Seifert Van Kampen

Theorem,

7r1X 7r/ (37 U (Uk.OkEhoil V(k)) * 7ri(V(k.)))/ < r >.

By (Si), r is a word of at least length 2 in the free product and not a proper

power by assumption, so by Theorem 2.10, 7r1X is locally indicable.

Now consider the general case. Let m > 1. Without loss of generality, we

can assume that

r(1) < r(2) < < r(m)

under the linear ordering given by (S2). By (Si) and (S2) there exists a

k0 E 1/01I such that the attaching map for c2 (r (m), Ito) strictly involves a 1-

cell of V(k0) and no other 2-cell outside the rose involves it. Then consider the

following decomposition of X:
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X = (Y U (H V (k)) U (UM' hoc.(i))) U V (ko) U hoc, 2.(,2)

Then by Seifert Van Kampen,

ir1X= (71(Y U (U14k0Eh0ll V (k)) U (Lfil-11 hocF.(i))) * 711V(k0))/ < r >>.

The first factor of the free product is locally indicable by our inductive hypoth-

esis and the second one is locally indicable since it is isomorphic to the group

A. Applying Theorem 2.10, we conclude that 71X is locally indicable.

Theorem 3.2 If the relative presentation P =< A, X : R> is semi-staggered

and A is a locally indicable group, then the pre-aspherical model of P is aspher-

ical.

Proof: It suffices to show that the covering space K of K is aspherical. This

follows from Lemma 4.5 by compact supports.

Theorem 3.3 If the relative presentation P =< A, X : R > is semi-staggered

and A is a locally indicable group, then the inclusion of A into G(P) is an

injection.

Proof: It is enough to prove that the inclusion of K(A,1) into K induces a

monomorphism of fundamental groups. Lifting through the covering p at the

0-cell 1N, it is sufficient to prove that the inclusion of V(1N) into K induces

a monomorphism of fundamental groups. Let r be any element of R. By (Si)

and Lemma 4.2, the attaching map for the 2-cell of K(r, 1N) strictly involves

a 1-cell of a rose other than V(1N). By Theorem 4.3 in [9], the inclusion of

V(1N) into K(r, 1N) induces a monomorphism of fundamental groups. Using

Lemma 4.4 and Lemma 4.5 together with compact supports, it follows that the

inclusion of V(1N) into K induces a monomorphism of fundamental groups.



47

Theorem 3.4 If the relative presentation P =< A, X : R> is semi-staggered,

A is a locally indicable group, and no relator is a proper power, then the subgroup

N < G(P) is locally indicable.

Proof: Let the collection S2 of sub-complexes of K be defined to be

Q = {UhEm (h) : M is a finite subset of H}.

Every finite sub-complex of K is contained in an element of 12 for some finite

subset {h1, , hn,} C H. Also, the union of any two elements of 12 is also

a union of complexes K (hi) for a finite number of elements hi, therefore an

element of the collection Q. The result follows by applying Lemma 4.1 to the

collection Q.
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5.1 Overview of Proofs

The downside to the methods begun by Anshel are that the hypotheses

are complicated. By switching to the topological setting, Bogley was able to

interpret how Anshel's conditions affected the covering space associated to the

normal subgroup NIU of the fundamental group of the pre-aspherical model.

Recall that for a relative presentation P = (A, X : R),

G = G(P) = (A* F(X))IU

where U =< R> and the group H = (A* F(X))11V, where n A U R>.

When one examines the conditions of a semi-staggered presentation, we find

that they impose conditions on how the 2-cells are attached to the covering

space K. The conditions fall into two classes. The first two conditions (Si) and

(S2) are "local" conditions and regulate the how of the lifts of the 2-cells of K

overlap when lifted at a fixed vertex in the covering space K.

A graph of groups is a graph together with a set of groups under certain

conditions. Each vertex and edge of the graph is assigned a group with the re-

striction that each edge group must embed in the vertex groups of its boundary.

The fundamental group of the graph of groups is the colimit of the diagram,

i.e. if there exists a group H and homomorphisms from each vertex and edge

group to the group H, the colimit G would be the group such that these ho-

momorphisms determined a unique homomorphism from G to H such that the

diagram commuted.

The conditions (Si) and (S2) imply that we can view

71(K (r(1), h) U ...0 K(r(n),h))

48
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as the fundamental group of a tree of groups (a graph of groups where the un-

derlying graph is a tree). Without loss of generality, assume that r(1) < r(2) <

< r(n) under the linear ordering given by (S2). There is a vertex for each

relator r(i) and the vertex group associated to the vertex r (i) is 71 (K (r(i), h)).

There is an edge ei connecting vertex r (i) to vertex r(i + 1) for each i in

{1,... , n 1}. The edge group for the edge ei is (R7 (r (i), h) n -1-7(r(i + 1), h)).

The graph of groups structure is a geometric way to view that each presenta-

tion (A, X : r(1);... , r (n)) is staggered in the sense introduced by Lyndon in

[14], so that the presentation P = (A, X : R) could be thought of as "locally

staggered".

The last condition (S3) is a "global" condition, and it determines how the

lifts of the 2-cells of K overlap when lifted at distinct vertices. The condition

(S3) implies that the one-skeleton of the covering space K, which is the Cayley

graph of H, contains a tree. This fact was used when we invoked Lemma 1 from

[2] in the proof of Lemma 4.5. Lemma 1 in [2] used the freeness of the subgroup

1) to predict how the lifts of 2-cells at different vertices would overlap.

In efforts to weaken the conditions of Theorems 3.2 - 3.4, one could consider

implying the condition that the group H be word hyperbolic. The Cayley graph

of a word hyperbolic group is "tree-like" in its spreading, but they could contain

closed loops locally. To solve the local problem that these closed loops introduce,

the connection of the staggered conditions to a tree of groups has lead us to try

to apply the theory of polygons of groups, which is a generalization of graphs of

groups. When we weaken condition (S3) to the condition that the group H is

word hyperbolic and try to represent the group 71 (K (r (1), h) U... U K (r (n), h))

as a graph of groups, the chain could now lie on a loop which is a segmented

circle instead of a tree.
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Polygons of groups can provide information on these closed loop graphs since

each one can be pictured as a polygon.

5.2 Polygons of Groups

Gersten and Stallings [21] developed the theory of polygons of groups by gener-

alizing graphs of groups. In that paper, they introduced non-spherical triangles

of groups, however all of their results hold for any non-spherical polygons of

groups.

A polygon of groups is a polygon with an assignment of groups to the ver-

tices, edges and face of the polygon under certain restrictions. Each edge group

must be a subgroup of the vertex groups of its boundary. The face group must

be a subgroup of each edge group, and hence each vertex group. An example

of a square of groups is shown below.
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V2V1

Ti

E1,2

E4,1 F E2,3

U4 73

V4 E3,4 V3

The Vi are the vertex groups. The group Ei is the edge group and is a

subgroup of Vi and V. The group F is the face group and is a subgroup of each

of the edge groups and hence a subgroup of each of the vertex groups. Let a,

denote the inclusion of Ei,3 into V, and 7-3 denote the inclusion of E2,3 into V.
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We will label the parts of the polygon by the name of the group associated to

each part.

To define the measure of an angle of the polygon, consider the inclusion

induced map

p3 : Ei *F Ej,k Vi

where *F Eijc is the free product of E and E3,k amalgamated along the

subgroup F. An element in the free product with amalgamation Ez,j *F Elj,k

can always be represented by a reduced word w = al bia2b2 anbri where the

E E,3 and the bi E E3,k. The length of the word w is defined to be 2n and

is denoted jw. 1. Note that the length will always be even. If the homomorphism

pi is injective, define the angle at Vi to be 0. Otherwise, let wi be a non-trivial

word of shortest length in kerp3. The angle at V3 is then defined to be it-rd. We

say a polygon of groups is non-spherical if the sum of the angles of the polygon

is less than or equal to (s 2)7r where s is the number of sides of the polygon.

Each polygon of groups represents a new group which is the colimit of the

diagram. There is a topological way to view the colimit as well the algebraic

one mentioned in the preamble of this chapter. Construct a topological space

K in the following manner For each vertex group V, choose a K(Vi, 1) that

contains a K(Ei 1) and a K(Ek,i, 1) as a sub-complex. This choice is possible

since if H is a subgroup of a group G, there exists a presentation P for G that

contains a sub-presentation R. C P such that H = G(7Z) [16, Theorem 11(2.6)].

Use this presentation for G to build the standard 2-complex associated to the

presentation P. We can extend this 2-complex to a K(G, *complex and it will

contain a sub-complex that is a K(II, *complex for the subgroup H. For each

edge group take a K(E 1) x / where I is the closed unit interval. Attach

the "edge spaces" to the "vertex spaces" by identifying K(E,J, 1) x {0} with
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its image under the given inclusions of the edge groups into the adjacent vertex

groups in K(Vi) and K(E,1) x {1} with its image in K(Vi, 1). Then take a

K(F, 1) xP for the face group F where P is a 2-cell in the shape of the polygon.

By a similar argument as above, we can find a copy of the K(F,1)-complex as a

sub-complex of each edge complex. Attach K(F, 1) x P to the existing space by

identifying K(F,1) x OP with its image in the existing space as defined by the

give inclusions of F into all edge and vertex groups. This construction forms

the complex K. The fundamental group of K is isomorphic to the colimit of

the polygon of groups.

The theory of polygons of groups is an extension of Bass-Serre theory, for

graphs of groups. Graphs of groups assign groups to the vertices and edges of

the graph with the condition that each edge group embed in the vertex groups

of its boundary. Each sub-complex of the one-skeleton of the polygon of groups

is a graph of groups. For example, each edge

represents a graph of groups. The colimit of this graph of groups is the free

product of Vi and V3 amalgamated along the subgroup E2 . This graph of

groups is a standard example from Bass-Serre theory and is discussed in [17]. An

important result for graphs of groups is that there exists a tree which the colimit

of the graph of groups acts on such that the orbit graph is isomorphic to the

original graph of groups [17]. In polygons of groups, Gersten and Stallings have

generalized this result. For each polygon of groups r, there exists a contractible

2-complex L called the building for r such that the colimit G of r acts on L

and the orbit graph GIL is isomorphic to r [21].

The term building comes from the theory of Coxeter groups. Tits showed

that the two descriptions of buildings are the same under certain conditions.
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Theorem 5.1 [6, Theorem 4.2] For non-spherical polygons of groups, the build-

ing described by Gersten and Stallings is a building in the Coxeter sense of the

definition if and only if the vertex links of the polygon all have diameter 71.

5.3 Results and Conjectures

In 1991, Gersten and Stallings proved the following theorem.

Theorem 5.2 [21] For any non-spherical polygon of groups, the natural maps

of the vertex groups into the colimit of the polygon G are injective.

In [21], the proof is given for the case of a non-spherical triangle of groups,

but the arguments hold for any non-spherical polygon of groups.

5.3.1 A Natural Question

In attempting to apply this theory to semi-staggered presentations, we

arrived at the question, under what conditions would the colimit of an edge

of the polygon (when viewed as a graph of groups) embeds in the colimit of

the polygon. Precisely stated, the question is under what circumstances is the

natural map Vi *E V3 G from the free product with amalgamation of

two adjacent vertex groups to the colimit of the polygon G be injective? An

equivalent question is under what conditions will the tree that the colimit of an

edge of the polygon of groups acts on embed in the building L of the polygon

of groups. In the investigation of this question, we have limited ourselves to

consider only non-spherical polygons of groups. This is partly because with

spherical examples, the vertex groups need not necessarily embed in the colimit,



V3

The map f is injective by assumption. If a2 *1-1 were injective, p3 would be

injective by commutativity of the diagram, and hence the angle opposite edge

E1,2 would have measure O.

If 71 a2 is not injective, let x ale, a2c2 . . . ancr, be a word representing a

non-trivial element of the ker (7-1 * a2) with n minimal. Since n is minimal, we

can conclude that each a, is an element of E3,1 - F, each is an element of
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which can be the trivial in any event. Also, in our attempts to apply this theory

to semi-staggered presentations, we would also need to know that the vertex

groups embed in the colimit. The case for triangles of groups seems to be a

special case and a first step has been made.

Theorem 5.3 Let A be a triangle of groups. If the inclusion of the colimit of

an edge of L. into the colimit of A is injective, then either

i) the measure of the angle opposite that edge is equal to 0, or

the measure of an adjacent angle is 7.

Proof: Let G be the colimit of the triangle of groups A. The colimit of the

edge of the triangle when viewed as a graph of groups is the free product with

amalgamation V, *E Without loss of generality, assume that the natural

map f : V1 *E1,2 V2 -4 G is injective and consider the following commutative

diagram.

E2,3 *F E3,1
02 * Ti

P3
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E2,3-F (see Theorem 4.4 in [16]). Since the element x E ker *0-2, the element

x is trivial in V1 *E1,2 V2. This fact implies that some cti or ci is an element of

E1,2. Without loss of generality, assume ci E E1,2. The element c, F, therefore

ci E E1,2 - F which implies that there exists a non-trivial element g E E1,2 - F

such that ci = g. Recall that map p2 E2,3 *F E1,2 G is used to compute

the angle at vertex V2. The non-trivial element cig-1 E ker 132 and is a word of

free product length 2. This fact implies that the angle at vertex V2 is equal to

7r.

Corollary 5.4 If A is a non-spherical triangle of groups and the inclusion of

the colimit of an edge of A into the colimit of the triangle A is injective, then

the angle opposite the edge has measure 0.

Proof: By Theorem 5.3, either the angle opposite the edge has measure 0, or

an adjacent angle has measure 7r. Assume that an adjacent angle has measure

7r. Since the triangle is non-spherical, the sum of the measure of all angles must

be less than or equal to 77, therefore, the other two angles of the triangle must

have measure 0, therefore the angle opposite the edge will always have measure

0. 0

Theorem 5.5 Given a triangle of groups, if the angle opposite an edge of the

triangle has measure 0, then the inclusion of the colimit of that edge of the

triangle into the colimit of the triangle is injective.

Proof: Let G be the colimit of the triangle of groups A. The colimit of the

edge of the triangle when viewed as a graph of groups is the free product with

amalgamation Vi *E Without loss of generality assume that the angle

opposite the edge E1,2 has measure 0 and consider the following commutative

diagram.



The fact that the angle opposite edge E1,2 has measure 0 implies that the

homomorphism p3 is injective. Let the word w a1b1a2b2 . anbn, be a reduced

word representing an element of the ker f such that each cti E V1 and each

E V2. It would suffice to show that the word w is trivial in

Since w E ker f, it represents a trivial element of the colimit of the triangle

G. Recall that in Section 5.1, we constructed a topological space K such that

ri(K) G. This implies that each element of the group G is represented by a

map

K

of the circle into the topological space K. Since the element w is trivial in G,

there exists and extension

of the map a to the disc.

Following the method taken by Gersten and Stallings in the proof of Theorem

5.2 we consider the natural map r : K A when we view the triangle A

as a 2-cell given by sending the K(Vi, 1)-complex to the vertex V, the space

K(Ei,j, 1) x I to the edge Eij, and the space K(F, 1) x P where P is a 2-cell

in the shape of a triangle to the face F of A. Let p be a point in the center of

the face F and draw a perpendicular line from the point p to each edge of the

triangle. Call the resulting graph the triod T of A.
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E3,1 *F E2,3
T1 * 0-2

171 *E1,2 V2

P3



Consider composition r o d as a map from B2 to the triangle A.

B2 K

The inverse image of the triod T, (r o a)-1(T), is a graph on the 2-ball. Each

vertex of this graph is a pre-image of the point p, so has valence 3. Since the

triod T separates the three vertices of the triangle A, we can label each region

of the graph by a vertex of A. Note that since r oa- takes the boundary of the 2-

ball into the edge E1,2, each region touching the boundary of the 2-ball must be

labelled by either vertex V1 or vertex V2. If we show that this graph is equivalent

to a graph with no regions labelled by vertex V3, then the graph would represent

an extension of a into the sub-complex K(V1, 1) U (IC(E1,2, 1) x I) U K(V2, 1) of

K which would show that the element w is trivial in VI *E1,2 V2.

Assume there is a region labelled by V3. Define a loop 3 in the 2-ball to

be the boundary of this region. Since all the regions adjacent to this region

must be labelled by the vertices V1 and V2, the loop )3 represents a path that

travels back and forth from the complex K(E2,3, 1) x {1/2} to the complex

K(E3,1, 1) x { 1 / 2 } . By sliding the loop out away from the V3 region, we get a

new loop that is homotopic to i3 and whose image under the map d represents

an element c of the group E2,3 *F E3,1. The image of the disk enclosed by the

new loop under a- is an extension of the map of the boundary, which implies

that the element c is trivial in the vertex group 173. By assumption, the map

P3 E2,3 *F E3,1 V3 is injective, so the element c is trivial in E2,3 *F E3,1-

This implies that the disk bounded by the loop /3 can be replaced by a disk

that does not contain a region labelled by V3. Therefore we have reduced the

number of regions labelled by 173 by one, and since there will only be a finite

number of them, continuing this process will produce a graph with no regions

labelled 173.
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5.3.2 A Few Examples

Theorems 5.3 and 5.5 imply that the inclusion of the colimit of an edge

of the triangle into the colimit of the triangle does not happen very frequently.

This observation may be somewhat disappointing, but it turns out that triangles

seem to be a special case, and there are many more positive outcomes for this

question in polygons with n > 4 sides. Here are some examples.

Example 1: Start with a square of groups as pictured in the beginning of

section 5.1 of this dissertation. Define the vertex groups to be dihedral groups

with presentations

V1 is presented by (x1, x2 : 4 4, (X4X2)m1),

V2 is presented by (x2, x3 : 4, (X2X3)7772),

V3 is presented by (x3, x4 : 4 (x3x4)m3), and

V4 is presented by (x4, xi xi, 4, (x4x1)m4)

where mi > 2 for i = {1, 2, 3, 4}. Then the edge groups are presented by

E1,2 is presented by (x2 : 4),

E2,3 is presented by (x3 : X3),

E3,4 is presented by (x4 : Xi),

E4,1 is presented by (x1 : 4).

Let the face group be trivial. The colimit of an edge will be the group presented

by the presentation

e (xi, Xj,Xk : (XiXj)rrh ,(XjX0mj)
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where (i, j, k) is one of the triples in the set { (1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)1.

The colimit of the square will be the group presented by the presentation



= (xi, x2, x3, x4 : x3, x3, xi, (x1x2)7n1 , (x2x3)m2 , (x3x4)n3 , (x4x1)m4).

Claim 5.6 For each edge of the square in Example 1, the inclusion of the colimit

of the edge into the colimit of the square will be injective.

Proof: To see that this inclusion is injective, we will need employ the theory

of Coxeter groups. A Coxeter system is a triple (W, S, m), where W is a group,

S is a subset of W, and m is a function

m:SxS>NUoo

such that

for all s,t E S, m(s,t) = 1 if and only if s t;

m(s,t) m(t, s) for all s,t E S;

W has presentation of the form (S : (st)m(s4), s,t E 5).

The group W is called a Coxeter group. Let (W, 5,m) be a Coxeter system

and let T C S. Let WT denote the Coxeter group associated to the system

(WT, T, TrilTxT) and W' be the subgroup of W generated by the subset T.

Theorem 5.7 [3, Chapter IV, Section 1.8, Theorem 2(i)1 The natural map

WT WT is an isomorphism.

Note that the colimit of the square W is a Coxeter system with generating set

S = {x1, x2, x3, x4}. Let A {xj, xi, xk} . Theorem 5.7 implies that WA, which

is equal to the colimit of the edge, is a subgroup of W, the colimit of the square.

Therefore the inclusion of the colimit of an edge of this square into the colimit

of the square is injective.

59



G(P) G(Q(i,j,k)) *<ai,ak> G(Q(k,1,))-
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In fact, the form of Example 1 can be generalize to any polygon with greater

than 4 sides and Theorem 5.7 will imply the the colimit of the edge is a subgroup

of the colimit of the polygon.

Example 2: Start with a square of groups as pictured in the beginning of

section 5.1 of this dissertation. Define the vertex groups as follows:

V1 is presented by (a1, a2 : aTia2a1 = 4)

V2 is presented by (a2, a3 a2-1a3a2 =

V3 is presented by (a3, : a3-1a4a3 =

V4 is presented by (ail, al : a4-1 aia4 = 4).

Now define the edge groups so that Ei is the group presented by (ai : ). Once

again, we will let the face group be the trivial group.

The colimit of the edge Ei, will be the group presented by

Q(i,j,k) = (Cti, aj,ak : aT1aa= a, aTlakai ,----- az)

where the triple (i, j, k) is an element of the set

{(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)1.

The colimit of the square of groups is the group presented by

P (al, a2, a3, a4 :aa2a1 = a, a2-1a3a2 a3-1a4a3 = a, aVa1a4 = 4).

In [8], Higman showed that the inclusion of the group G(Q(i,j,k)) into the group

G(P) was injective by showing that

Therefore we can conclude that the colimit of any edge of this square of groups

embeds in the colimit of the square of group.
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These two examples show us that there are some interesting cases where the

inclusion of the colimit of an edge of a polygon into the colimit of the polygon

is injectiye.
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