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INEQUALITIES FOR THE NUMBER
OF INTEGERS IN A SUM OF
SETS OF GAUSSIAN INTEGERS

INTRODUCTION

Let A be a set of positive integers, and for any
positive integer 'n denote by A(n) the number of inte~
gers of A which are not greater than n. Then the
Schnirelmann density of A is defined (15, p.65) to be
the quantity

a = glb ﬁﬁa).
n

Thus the set of all positive integers would have
Schnirelmann density 1, the set of all odd positive inte~
gers ﬁould have Schnirelmann density %, and the set of
all even positive integers would have Schnirelmann density
0.

Besicovitch (1, p. 246) introduced the density

* :
a = glb §+“ '

n
and Erdos (5, p. 66) the density

a = glb 2*”

1 ndk
=

where k 4is the smallest positive'integer not contained
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in A, (Erdos assumed k > 1, but we omit this require-
ment., )

For any two sets of positive integers A and B,
define the sum set
C=A+B ={ a, b, atb | a €A, bEB }.
Schnirelmann (1%, p. 652) praved that if a, B, v are the
Schnirelmann densities of A. B. C, respectively, then
Y2 a+ P - af, and Landau (8, p.'57)‘prcvad that

a+ P g 1 1mplies Y= 1«

| I“ a famuus paper by Mann it is shown (10. Pe 523—
_‘526) that | |
y 2 min (1, a+f) .

This result is usually referred to as the a+B Theorem.
In the same paper is proved (10, p. 526=527) a result
which implies that for any positive integer n not in C

we have
| c(n) 2 @ (n+l) + B(n)‘.

and this inequality can be strengthened, by application
of a result in a later paper (11, p. 250-252), to the
relation

(1) C(n) 2 a, (n+l) + B(n)

for any positive integer n not in C.

In a still more recent paper (12, p. 911-912) Mann
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proved a theorem which implies, in cur notation, that for
any positive integer n either C(n) = n or there exists

a positive integer m not in C such that m ¢ n and

(2) Cni +1 > A(m)m+*§§m) +1

This inequality is a strengthening of the inequality
c{n) Alm)+ B(m)
(2.1) Ao 2B

which Mann prove& in order to obtain the a + 8 Theorem.
In this thesis we will be concerned with attempts
to extend the above dafinitiéns and theorems to sets of
Gaussian integers, that is, numbers of the form x + yi
where x and Yy are real integers. The sets discussed
above were subsets of the set of positive integers; in

our work we will consider subsets of the set

Q= {x+yi | x and y are non-negative

real integers, x + vy > 0} .

For two subsets A and S of Q we will let A(S) de-
note the number of Gaussian integers in A N1 3. In parti-
cular, then, Q(S) is just the number of elements in S.
Whenever we use the notation A(S) the set S will consist
of all Gaussian integers in a given bounded reglon of the
complex plane and therefore will be finite:. For any two
subsets A and B of Q we define the sum set C = A+4B

as we did for sets of real integers. The notation A-B
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will occasionally be used to denote the set of all ele-
ments of A which are not in B,

Very little work has been done in this area; to
the author's knowledge, Cheo (3, p.2) is the only one to
have extended the concept of Schnirelmann density to the
Gaussian integers. His definition is as follows: Let

X, t Yo be any number in Q, and let S be the set
of all x +yl in Q such that x £ x,, Y £y,

Then for any subset A of Q,

AlS
Gc ® gib @%ﬁ} *

We will refer to a_. as the Cheo density of A and will

discuss the theorems obtained by Cheo for this density,
as well as prove some similar theorems, in Chapters 1
and 2. These theorems also involve modifications of the
Cheo density.

Cheo was able to show by means of an example that
the a+f Theorem is not valid for his density, but a result
analogous to (2.1) for subsets of Q may still be true.
Cheo's example, at least, does not furnish a counter-
example. This result would be the statement that if
X * Y,i 1is any element of Q which is not in C and

S 1s the set of all x + yl in Q with x £ x,,

Yy £y, then there exists an element x

.t yzi in 8



5
which is not in C such that if T 4is the set of all
x+yl In Q with x {x, and y <y, then

(2.2) g_%_} > AT eB(I)

Inequality (2.1) implies the a+P Theorem for sets of
real positive integers, but the ahalaguus inequality
(2.2) does not imply the o+p Theorem for subsets of Q.

| While Cheo's definition of density is very natu-
ral and simple, it proves to be a somewhat difficult one
with which to work. Accordingly, we will madify’it in
the following way.

Definition 1. Let x, + yli. ey xg 4 yti be
t numbers in Q, t 21, for which 0 < x, < ++¢ < x,
and yg > *tc >y, 20 if t > 1. Let R, be the set
of all x +yi in Q for which x £ and y £ yg»
§ =1, **, t, and let R=RU*** UR, (see Figure 1).

Then for any subset A of Q we define the density of
A to be the quantity

A}R
a« = glb ﬁ*—} .



xt+yti

Figure 1

We will look upon this density as the extension of
the Schnirelmann density to subsets of Q. It will also
bevnscasﬁary to ane an extensien‘af the Erdés density,
which we define as followi;

Definition 2. If A 1is any subset of Q the
modified density of A is the quantity

A(R

¢, = glb T

taken over all sets R of the type described in Defini-
tion 1 for which A(R) < Q(R).

Whether or not the a+p Theorem is valid for the
density of Definition 1 is still a matter of conjecture;
however, it is shown in Chapter 3 that

(3) C(R) 2 o, [Q(R) + 1] + B(R)
for every set R of the type described in Definition 1
for which the X, +y, 4y *rry xg 4 y¢l are not in C.

This extension of the inequality (1) is the main result



of the thesis.

The reader will notice that Theorem l.l and the
theorem of Cheo's quoted in Chapter 1 both require that
all numbers Jji, j =1, 2, ***, shall be contained in
the sets A and B, and that this same condition on B
is needed in the theorem of Cheo's which is quoted at the
end of Chapter 2. The arguments used to prove these the-
orems are essentially one~dimensional, and these strong
hypotheses are required in order to carry out these ar-
guments. The proofs of Theorems 2,1, 2.2, and 3.l are
two~dimensional, and no such restrictions need be placed
on A and B.

It appears that the methods used to prove the
theorems of Chapters 2 and 3 can be equally well applied
to sets of lattice points in n-~dimensional space 1f den~
sity is suitably defined. The amount of exposition re-
quired is then greatly increased, of course, and we have
omitted all such work from this thesis. |

The method used to prove inequality (3) above can
also be used to give a new proof of (1). This proof, plus

a second new proof, is presented in the Appendix.



CHAPTER 1
A "CHEO-TYPE" THEOREM

Let A and B be two subsets of Q, C = A+B,
and let the Cheo density of C be vy, (see Introduc-
tion, p.4). Let Ay be the set of all numbers a + ji

such that a + ji isin A, j =0, 1, 2, ***, and let
Aj(x) be the number of elements a + ji of A, with

a <x where x is any non-negative integer, Similarly
define Bj. Bj(x), Cj, and Cj(x). Let S be the set

of all x+yl in Q with x <x,, vy £y, foran
element X, + Y, i of Q.

Cheo (3, p. 10) has proved the following theorem:

< g+ Illg’aa”
Let o' = gib s%g%gy sy P' = gib 2 ) D where

By(x) B (x)
By = gib ;1;*1 for 3 >0 and B, = gib % .

(1) a' +By<1, §=0,1,2 *°, (2) 12 a" + B' 2 By

and (3) ji 4is in A, B for all j =1, 2, ***, then
Yc?.’.ﬁ"’ﬁ"

The method used by Cheo to prove this theorem
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involves (among other things) using one-dimensional argu-

ments on the sets &j, Bj, and Cj and then summing the

inequalities thus obtained over all j§ such that Jji dis
contained in a set $ of the type described above. Theo-
rem 1.1 below is somewhat similar to Cheo's; our proof
uses the inequality (2) in the Introduction and is simpler
than his. |

Theorem 1,1, If there is a positive integer not
contained in C, let k be the smallest such integer,

let y* = glb &2 77 teken over all sets S of the type
described above for which x, 2 k, and let y' =
min (y o v*). 1If there is no positive integer not con=-

tained in C let y' = Y.+ For all j=0,1, 2, *°*

A(x) B, (x)
let Gj = glb 'x‘l;"'r y Bj = g;:b prary « Let

. a4 *** 4 o ﬁ $ vor B
0 n o n
a! = glb » P' = gf];b 71 o« 1f

n+l

(1) a, + By <1 and ay + B, <1 forall j=0,1,2 .uu,
and (2) 3ji is in A, B for all j =1, 2, **+, then

Y 2at P

Proof: Let x + y,i be an element of Q with

x, 2 k, & the set of all x +yi in Q with x < x,
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and y £ Y, Let Q[Aj] be the set of all positive in-

tegers a such that a 4+ ji is in A . Similarly define
®[B,] and R[C,]. Since Ji is in Ay, By, and C
if 3> 0 we have Q[Aj](xa) = Aj(xa)~l for all 3 > 0
and S(Aol(xe) = A (x,), with like relationships for the
Bj and Cj + Also, the fact that ji 1is in Aj and

By for J >0 and tlt C = A, + By implies that
elc,] 2 &lA;] + RB,) and #[C,] 2 RlA,] + R[B;] for

all =0, 1, 2, ¢+ .
Then for J > 0, applying Mann's 1960 theorem
(see Introduction, page 3) either Cj(xa) = x, + 1 ard

Cylx ) |
220 =124, 4 By,

L4

Cy(x,)
TFT 2940,
or there exists a positive integer mnot in R[C;] such

that m < Xg and

Q[CJ}(xg)-ﬁl R Q[Aol(m) "f Q[Bj](m)*l
x, + 1 - m+ 1 '

o

or

Cilx,) A,(m) + B.(m) ,
~%~ng > 0 e { - > ag + ﬁj .

®
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Likewise,

| C.(x,) |
I 295+ B

Therefore, in either case,

, X, * 1
(4) Cj(”o) 2 =5 (aa B, + ay 4 33) .
Applying the same theorem to C,, and noting that

X, 2 k implies Ge(xa) < x,, Wwe have

C.ix,) +1 Alm) + B (m) + 1
L) L0 Q" , L

Xg + 1 - m+ 1
Xg ¢+ 1
(5) Colxg) 2 (xg*+ 1)(ay + B.) + 51 - 1

2 (x,+ 1a, + B)

ot 1 |

= g (G, + B, + ay + B,) .

We now add the inequalities (4) and (5) to obtain
Ca(xo) + Cz(xa) b ver 4 CY ("'9) " C(S)

L

(x +1)(y +1) Xl
Z Xa 5 ye . (ao*sﬁ),’.ﬁi‘“ . («eévtp*g‘ye
3 LR R
Byreees By )
x5+1)(y;¢l)

gt (a'4B')

(xé* l;(yb*l) (gt,ﬁy)*

oy

= [Q(s) + 1] (a' + B*) .
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Therefore,

for all sets S of the type used in defining <«*, and

Yt 2 at+pr.

Now for sets S of the type used in defining ¢*

we clearly have

cﬁ%g.}s ?‘ T(éTlIS".“ 2: al + s‘ .

Suppose Xot yei is in Q, 1 ¢ x, < k. The inequality

(4) obtained for 3§ > O is still valid. Fer J =0 we

now have
CQ(XQ)
Xq 1 2 Gy + ﬁa '
) xa '
Ca(xﬂ) 2 5 (ae + Bo +a ¥ 3»’ .
From (4),

Xot 1

Cj(xa) 2 =5 (“ﬁ + B * ay ¢ Bj) ’
J > 0. By adding these inequalities we obtain
Co(xu) § sen & QY (x@) = C($8)

°
iy, ¥1)=2 +1
> (xg+ }(;g* ) (a4B,) + f%:“ (ae+...*uya+gn+‘..¢syg)
(xeil)(yo*l)~2 (x°$l)(y°¢l)

» (arept) + —L X0 (a1 4 1)
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= 341(at.§51)*g‘.§%ﬁ__}-(qt¢gt)

= Q(s) (a* + ﬁ') .

Hence,
SR

for all sets S such that x, 2 1. Finally, if x, =0

then C(S) = Yo * Q(s) and
TOR

Yo 2 o' + B

This gives us

and, therefore,
' 2a + B

which completns the proof.

It is obvious that the B' of Theorem 1.1 is al-
ways less than or equal to the P' of Cheo's theorem.
We will now show that this is also true of the a''s.
Accordingly, let S be any set of the type described in
the first paragraph of this chapter.

Then
Aglxg) + A (x)) 4vee4 Aya(x )

A(S
‘ (xo*D) (v,+1)

o

ag(xo+1) + a‘(xﬂ+l}*"'*ayg(xa+l}

2 "(x°¢1) (y°+1)
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a 4+ o $ ses & g
© 1

Yo

yﬁ‘tl'
2 e,

where the a« , «

o Fyr ttte Gy a' are those defined in the

o
statement of Theorem l.1. Since this is true for all

thase‘sats 8, it follows that the a' of Cheo's theo~
rem is greater than or equal to the o' of Theorem l.l.

Consequently, if vy, = y' then Theorem 1.1 cannot give

a stronger result than Cheo's theorem.
The two theorems are not really comparable when

¥' < y.» but the following example illustrates the re-

sults for one such case.

Example: Let A =B = {3k41, 3k+ji | k = 0,1,2,°+>
and j = 1,2, +++}, Then C = [3k+1, 3k+2, 3k+ji,
3k+l+ji | k=0, 1, 2, *++ and J =1, 2, *++ ], We see
that y, = 2/3 and ¢' = l/2.

For Cheo's theorem the a' = 1/4, B' = 1/3, and
Ye > a' + B'. For Theorem 1.1 the a' = B' = 1/4, and
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CHAPTER II

ANALOGUES OF TWO THEOREMS
OF SCHNIRELMANN AND LANDAU FOR
GAUSSIAN INTEGERS
It was mentioned in the Introduction that if A

and B are two sets of positive 1nteg§rs. C=A+B,
a, B, ¥ the Schnirelmann densities of A, B, C, respec~

tively, then a + B > 1 implies vy = 1, and, in any
case, 7i2,a + B - af. Cheo (3, po. 6) was able to es-
tablish the first of these theorems for his density, and
we will now prove both of them for the density defined
in Definition 1 of the Introduction. The proof of
Theorem 2.1 is essentially that given by Cheo.

Theorem 2,1; Let A and B be two subsets of
Q, C = A+B, and «, B, vy the densities of A, B, C,
respectively., If a+ f 21 then y = 1.

Proof: We know y £ l. Hence, assume +y < 1.
Now Y= géb g{%% < 1 implies there exists a set
R, of the type used in defining the density such that
C(R,) <QR,), which in turn implies that there exists

a number x, + yai contained in Q but not in C. We
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may let R, be the set of all x + yi in Q such that
x £ X Y S Y, * Then for any x + yi in R either
x +yl isin A, or x4+ yl= (x +yi) - (b+b,1) for
some b,+ b,i in B N Reo, or neither, but never both,
Since x,+ Yol is not in C it cannot be in A, Also,
Xo+ yei.#'(xo*yai) - (b,+ byi) for any b +b,i in B
since B does not contain 0. Hence, we have

AR, + B(R)) <Q(R)) - 1,
and

A(R ) + B(R )
: 2. <1
“+ P Q) |

which is a contradiction, Therefore, vy = l.

Theorem 2.2. Let A and B be two subsets of Q,
C=A+B, and a, B, y the densities of A, B, C, res-
pectively. Then vy > a + B - af. A

Proof: If 1 or 1 4is missing from A then
@ =0 and the theorem is obvious. Hence, we assume 1
and i are in A. Also, if A =Q then y = a =1, and
again the theorem is obvious. We will, therefore, assume

that there exists a set R, of the type used in defining

the density such that A(R,) < Q(R,).
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Let H be the set of all x + yi which are in

R, but not in A, By the choice of R , H is not
empty. We want to partition H into disjoint, nons

> 1, of the following

L

- empty subsets L, ***, L, r
type: For each Lj. 3 =1, +++, r, there exists a
number 8 + a31 in ANR,, anda set Ls coﬁtaiﬁud
in R, such that Ly 1s of the type used in defining
the density, and Ly= {x +yi) + (aj*asi)lx + yi E'L;} .
We will speak of Lj as being "based on" the number
»aj + asi; Note that a, + 331 is not in Lj.
In order to effect this partition of H we let
a; be the smallest real integer for which there exists
a real integer x such that x + ail is in A ﬂ:Ra, but
either (x +1) + ali or x + (aJ+l)i 1is in H. Let a,
be the smallest such x. (The existence of a + aji

follows from the fact that 1 and { are in A. If
x +yli is in R, and either y <a] or y=a] and
x <ay, then x +yi is in A.) Now let &, ,+ 0,4
be that number in H such that (1) a, £ Li,;‘ al < L:.z'

(2) for any x +ylAa+all in Q with 8, <x < xg,x

and a! <y < 1; , wehave x +yl in H, (3) for any
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(£, ,+m) + (4! +n)i in Q such that m20, n 20,
1 4 ) .

max(m,n) > O, there exists x+yi 4in Q but not in H
with a <x <4y y+m, a] <y <4y +n. If there is

more than one such 4, ,+ lg’xi in H pick that one for
which 1 | is minimal, and let £2,1*'£5;z1 be that
‘number in H such that &@‘3¢ Lg’,i satisfies the con~
ditions (1), (2), (3), L%,x* Lg.ii,# &1.1+ &i,zi' and
44 1 minimal. Then we will have 4] , > 1220
since {f 43 , =1) & elther 4, + 4] 1=

(&3,1*M) + (&§’1+ n)i with m > 0, n = 0, and there
does not exist x+yi not in H for which a,<xg L",* m
and a] <y < &;'1+ n, which cohtxadiets the choice of
&,’1+ ££,1i? or else 4@,1* Li'ii ’.(La,x* m)+(£;'1+ n)i

with m >0 and n =0, and we have a contradiction on

the choice of &, ,+ 4! .1, Also, we will have

| | 4
a, £ 4&,1< £1‘1 for the same reason. We continue, desig-
nating numbers ‘L1’1+ Li;xi* l%'1+ Lg'ii, *++ in this

manner as long as possible, and call the last of these

i, Let the set Lk,z =

numbers 4 '
¢ n :1* Lﬂxii

1
{x+yi | x+yli € Q, x+yi # a{b a;i. 315 x £ Lk.;"'ﬁ‘lﬁq,;}‘
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Then the set La = Lz,i U La,;""' Lani’i is of the
same type as the Lj described above.
If H e« L, is not empty let a; be the smallest real
integer for whi#h there exists a real integer x such
that x + a;i is in A.FXRQ, but either (x+1) + a;i
or x + (al +1)i 4s in H =~ 1L,. Let a, be the
smallest such x and form the set L, based on a,+ ali
in the same way as was done for L,, substituting H-L,

for H, We continue forming sets L,, Lg, *°* in this

manner as long as possible. Call the last set formed L,.

Suppose there exists a number h, + hni in
H« (LU -=*+ UL ). We know that h, 2 a}, so there

are two possibilities:
(i) There exists a set L; based on

a; + ji such that ay £ hyo aj L hye Let j be
minimal, Because of the way Lj was formed, the set
M= {xtyllx+yli € Q, x+yi £ ag + aji, ay<x<hy,

‘3 L£y£h } € R, must contain at least one point of
A. (If not, we would have h + hi in Lj.) Let
aé, be the smallest real integer for which there exists

a real integer x such that x + aki is in ANM
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and for any x' + y'i A x + ati in Q with x < x' £ hy,
ag <y'<h,, we have x'+ y'i in H. Let ay be the

.smallest such x. Then eventually our method of forming

the sets L:' La’ «ss would lead us to form a set Lk
based upon a, + agl which would include h,+ hyi, and
we would not have h,+ hgi in H - (Liu e UL

(1) We have a; > h, whenever hy2 aj for all
the ay + 331 upon which the Lj are based. Then there
exists a number x+yli 4in A NR, such that x £ h,,
y £ hy (4, for example, since h, > O by choice of a;).
Again, among these numbers we can find 8y + aii Just as

in (i) which must éventually be chosen as the base for a

set L, which would include h + h.i.

Hence, the set L, U *** UL, exhausts H.
Figure 2 illustrates sets R, and A such that 1,i €A
and A(R)) < Q(Ra) for which the set H has been parti-

tioned in the manner described above. The dots represent

points of A and the circles, points of H.
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Now, for each j =1, +++», r, we note that the

set L5 = {(x-aj) + (yfag)i | x*yi~€'L3}, and thét

Q(Lj) = Q(L}). If byt byl is in B N L}, then
(aj + aii) + (b, + byi) isin CN Lj and, therefore,

not in A, Hence,
C(R,) 2 A(Ry) + B(L]) + +-+ + B(L])

2 A(R,) + BIQ(L) + +++ + Q(LI)].

We also have

Q(R,) = A(Ry) = Q(H) = Q(L}) + *** + Q(L}),

80 we substitute to get
C(R,) 2 A(R_) + BIQ(R,) ~ A(R,)]

= A(R ) [1-p] + Bla(R )]



2 alQ(R )] (1 - B] + BlQR)] .
We divide both members of this inequality by Q(R,) to

obtain

Since this relationship holds for any R, such that

A(R,) <Q(R,) it must also hold for any R, such that

‘c(ao) < Q(Re)¢

Alse, 12 a and 128 implies (1l-a)(1l-B) 2 O,
or 12 a+p - af. Hence, if C(R,) = Q(R,) then

C(Ba} > a+ B -~ af .
W‘_ > - »

Since this relationship holds for every set R, of the

type used in defining the density we must have

yzad‘@‘dﬁ.
Although Cheo did not prove y_ 2 6. + B, - a.B,

A

for all sets A, B, C = A+B, he did prove the following
theorems Let A and B be subsets of Q, C = A % B,
and let ﬁc and ¥, be the Cheo densities of B and C.
Let Aq be the set of all real integers in A, and

Ag(x)
X

ag = glb « If B contains all numbers ji,

J=1, 2, **+, then
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Yo 2 85 * B - o Bce

Since a, 2 a, and B, < 1 this conclusion, of course,

¢
implies Yo 2 9 * B, ~ ab..

We cannot remove the requirement that ji be in
B for j =1, 2, ¢+++ by means of an argument iike‘fﬁat
used to establish Theorem 2.2, since it would be ﬁecax»
sary that the sets L} be of tha‘type S wused in de~
fining the Cheo density, and thus H would have to be
partitioned into sets L,, !**..Lr ‘such that for each

Lj there exists a number a; + aji in ANR, anda
number £3 + 451 in H for which a, £4,, aj lﬁ;
and .

I.j Qy{x+yilx+yi € Ry, ajgxsbj. a;ﬁyﬁ&j. x+yi #fﬁj*ﬁgi}*

This is not always possible, as the reader can easily ve-
rify by means of the example shown in Figurc 3. Again,
the dots are points of A while the circles are points
of H. The set R, 1s the set of all x4yl in Q with

x £x, and y £ ¥Yy,.
0 - e ‘ x 4y i
O—0O0—0O oo
(g C O O
ie¢ © 0O ©

Figure 3
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Then
1 - d(A,+ oo + A+ Ak+1) =1 - d([A1+~~~*Ak]

+ “k*l)
S (L= dlags ove 4 4)) (1= a,,)
S(1=a) e (lea) (1eg,,),
and the proof is complete.
Let k be a real integer, k 2 1., We will call
A a basic set of Q of order k if A +***+ A with

k summands (or kA) equals Q where k is minimal.

Corollary 2,2. If the density a of A is posi-
tive then A is a basic set of Q.

Proof: There exists an integer n 2 1 such that

(1-a)" <% . Then Corollary 2.1 implies that
1 - d(na) < (1-a)" < %,
and
d(nA) 2 4 . |
From Theorem 2.1, d(nA) + d(nA) > 1 implies d(nA + nA)=l,
or 2nA = Q. Note that the order of A 4is less than or
equal te 2n.
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CHAPTER 111

ANALOGUE OF A THECREM OF MANN
'FOR GAUSSIAN INTEGERS
If A and B are two sets of positive integers,
C=A4+B, and if n is any positive integer not in C,
then Mann has proved a result that implies that
C(n) 2 a,(n+l) + B(n) where a, is the Erdos density

of A (see page 2). We will now extend this theorem to
sets of Gaussian integers. Accordingly, throughout the

remainder of this chapter it is to be understoed that A
and B are subsets of Q and C = A + B. Also, a, Iis

the modified density of A described in Definition 2 of
the Introduction, Our theorem is then the following:

Theorem 3.1. Let R be any set of the type used

to define a, for which the numbers x, + yxi. see,

Xyt yti are not in C. Then
C(R) 2 a, [Q(R) + 1] + B(R) .

We will need to make frequent reference to sets
of two special types. For convenience we will define

them here.



27
Definitien 3. A set § will be said to be of
type S if it satisfies the following conditions 2, 3,
and either 1, 1', or 1",

1, There exist in Q numbers X + Y i, X + Y1,
X, 4 v,i, v, xyt Yuip x) + Y;iv trty x; * Y‘}i» U, v21,

such that X, < x; Coeee < x! o= X, ?1 =y >~t*>y;2,Y3.

X, = x <0< Xy £ Xgo Yxa,yi>'f'> Yy = Yoo and if for

any x,+ ymi, m= 2, ***, u, there exists x; +'yéi with

1 <ngv-l such that x, > x! , then y ., <y2, (or,

equivalently, if for any Xp * Ypiy m=1, *°°, u-l,

there exists x'

ntyl with 2<n <v such that

Y, > Yje them x_ .. < x! Note that the requirement

n~s)’

that x,*+ v, be in Q implies that if u =1 then

max (X,, Yg) > 0. Let T = {x+yi | x+yl € Q, X, < x £ X

Y, 2y2Yg)e If v>1, let

-

= txtyl | xtyd €Q, %) <x Sxfy vy 2Y 2> 3l

Ty = {x+yi | x*yiye Quxg < x < x5 4, 2y> y;}. ses
Ty = {xtydl | x4yl €Q, x}_, <x<xb v 2y > vy} .
If u>1 let T = {xtyifxtyl € Q, x <x<x,, y1>ygyu},
Ty = {x+yi | x+yi € q, Xg< X < Xgy Y y g yu}.f"‘.

Tu»z" {x+yi | x+yi € q, XpegS X S X0 Yyt ¥V 2 Yu}‘
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Then if u=v=1, 8§ = T. If u=1, v>1, then
§ =T - (T} U - LIT;;i).If u>1l, v=1, then
S=T = (Tlu ves UTu-x)" If u>»1l, v>1, then

§ =T (TU e UT _ UTH U e UT? )

1'. There exist numbers X,+ Yi, Xp + Yi in
Q with X, < X, such that 8 = {x+yi | xtyi €Q,
y=Y, X <x<X}. -

1", There exist numbers X ¢ Yii, X+ Y¥,1i in
Q with Y, > Y, such that» $ = {x+y1}i*yi €Q, x =X,
Y, 2y 2 Y}

2, B(8) 21, AQ(s)~-c(s)21.
3. If b, + b,i is in BNS and g, + g i is

in S but not in C then (g,+ g i) - (b, + byi) is
in Q. That is, g, 2 b, and g, 2 b, with strict in~

equality in at least one oflthese cases.

Figure 4 illustrates a set S of the type de-
scribed in requirement 1 above, S being those points of
Q which are on and within the solid lines. The set T
consists of all points of Q 4in the entire rectangle.
The reader will note that $ is a set R - R' where
R' CR and R',R are sets of the type used to define
the density.
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Definition 4. A set S will be said to be of
type 8% if it satisfies the following conditions 1, 2, 3.

1. There exist numbers x,+ y,i, ***, x¢+ y,i 1in
Qy t 21, such that if t > 1 then xg < ¢*c <x, and

Y¢> *** >y, Let S = {x+yl | x+yl €Q, x < x4 ¥ £ Yr}’

r=1, **¢, t. Then S =S,U *** US,. (In other words,

8 1is of the same type as the set R used to define a

and a,.)

2. Qs) -c(s) 2 1.
3. If b+ bi 1s in BNS and g,+ gi 1is in

8 but not in C then (g,+ g,i) - (b, + byi) 1is in Q.

The reader will note that a set S may satisfy
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conditions 1,1', or 1",2,3 of Definition 3 and also condie
tions 1, 2, 3 of Definition 4. Thus S may be of both
type S° and type S% , k

We will now prove three lemmas which will be

needed for the braof of Theorem 3.1l.

Lemma 3.1, Let S be a set of type &' satis-
fying requirement 1 of Definition 3, and let $j be the
set of all x+yli in § such that x 2 Xge Y 2 Yje

j=1, ***, u. Let 85 be the set of all (x+yi) -
(xj+ yﬁi) for which x+yi is in $; and

x+yi #'xj+yji. Let S' =S] U~ s US!, (Clearly,
$=5 U+t uUs.) Then Q(s') <Q(S) - L.

Prooft If u=1 then S8' is just a translation
of all points of S except one, and Q(S') = Q(S) ~ 1.
Assume that for some k > 1 we have Q(S') < Q(S) ~ 1

whenever u < k, and consider u = k+l (see Figure 5).
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FIGURE 5

Dofina sets W, $k+x’ S$X*  as followst

k+t

W= ix*yi l X*Yi € S, qu-; .S 4 < Yk}a
Sy41 = {(x+y1) + (y,- Yisa )i | xtyi €8, .},
Spey = {(x4yl) = (Xppy = %) | xtyt € sk“}
Then

Q(s}) + 1 + Q(W) = Q(sk) + Q(w)

= Q8 Y 3k+x)

2 Q(S U Sk+1

= Q(Si U $ﬁ+x) + 1,
and

Qlsg) + a(w) 2 (s} usy,.).
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If k=1 then Q(Sf US! ) =0Q(s'). If k > 1 then

Q(S; U «+e USE) + QW)
= Q(S] U eer USE )4Q(SE)-QUISY U eoets)  Jr8T,)
+ Q(w)
> QSIU ves ’u sk%)w(sltu Si*:)“q( [S'lu«-ut,sé‘;]
N [sg U sg,, D)
=Q(S] U e USHUSE )
= Q(s')g‘
From the induction hypothesis
Qsy U eer USE) < QIS U esr US) -1
= Q(g) - Q(W) - lq
Therefore,
Q(s) 2 Qls] U ¢« Ust) +Q(w) +1
2Q(s') + 1,
or

Lemma 3.2. If S is any set of type S! then
c(s) 2 a [Q(s)] + B(S).

- Proofs Assume S satisfies requirement 1 of Defi-
nition 3.
We know the set B NS is not empty. Let bg be

the largest real integer for which there exists a real
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integer bf such that bg +bli €BNS and
b + b = max {b, + by| b, + b1 €EB NS }. (That is,
if bl + bli € BMS, bl+bli ¥ bY + bJi, bf + b=
max {b, + by}, then bf > b! .) Likewise, let g2 be

the largest real integer for which there exists a real

integer gg such that gg +g2i is in S but not in
C and g + g = max {g, + g | 9, + 9gd €S, g,+ gi €Cl.

Define the set S' as in Lemma 3.1. Let B(S) =
r21, Q8)-cC(s)=g,21, and Q(S') - A(8') = g,.

The set of all (gf + gd1) - (bi + bﬁi} with b, + byi

in B NS gives r numbers in Q (Definition 3, requi-
rement 3) which are not in A, since suppose

(g + g21i) - (b, + byi) = a, + az1 € A. Then g? + g3t =
.(a1 + a‘i) + (b‘ + bai) € C which is a contradiction.

We also show that these r numbers are in S's Since
bitbgi is in §, there exists an Sy as defined in
Lemma 3.1 such that b, + b,1 is in 8;. This implies
xj $bys ¥5$ bye But b < g7 and by < g3, 80

gy + 994 is also in Sy. Let b + byl = (x4 +m)

+ (y; + nli. Then gy ~m2b ~m=x, gi-n 2 b -n=y,,

so (gfv m) + (gg - n)i is in $4. Hence
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0 4 g4} = Oum)+{gOn )
0‘% (g9 + gai) (b1 + bni) = [(gx m)+(g9-n)i]
- (xj + yji) which is in 85 and, therefore, in S',

Likewise, the (possibly empty) set of all
(9,+ 941) - (b0+ bi) with g + g,i in S but not in

C and g + g, #’gg* goi gives g - 1 numbers which
are in S5' but not in A. We must show that thoke two

sets are disjoint, Hence, suppose that for some g¢,+ gl
# g0 + 991 (and, therefore, b+ bi ¥ b+ b1} we have

(g9+ 991) - (b, + byi) = (g,+ g 1)-(b+bJ1).
Then f
0 L+ S
9,* by = 9,* b,

9g*t bg = 9p% by
We add these nqﬁalities to obtain

(g0+ g3) + (%4 18) = (g,+ g,) + (b+ b.).
The method of choosing g2+ g9i and b+ bJi implies

that we must have g%+ g2 = g, + g, gnd bf+ b = b+ by.
But this, in turn, implies g2 > g, snd bJ > b,.
Hence, g+ by ¥ g .+ b, and we have obtained a contra-

diction.
Therefore, the two sets are disjoint,



Qs) - g, 2Q(8) ~g, - 1+r,
and | | |
QlS)-g,2 QlS') = g+ Q(S) = Q(S*)~14r.

We recall that Q(S)-Q($')~1 > O (Lemma 3,1), and note
that S' 1is a set of the type R used to define a, .

Hence, we may write
c(s) 2 Als*)+[Q(8)-a(s")-1] + B(S)
2 a fa(s?)+1] + o [Q(s)-Q(S")-1]+B(S)
= a;[Q(g)] + 3(5)0

Thus, the Lemma is established for any set § of
type S! which satisfies requirement 1. If § satis-
fies requirement 1' we may let u=l and X +y,i = X +Yi

in the above, or if S satisfies requirement 1" we may

let u=l and x,+yi= X 4+ Yyi. The proof will then be
the same, except that now Q{S) ~ Q(S') = 1 =0 and
Lemma 3.1 is not needed.
‘Lemma 3.3. If S is any set of type 5% then
c(s) 2 a,[Q(s)+1] + B(S).

Prooft (i) Suppose B(S)=0. Then C(8)=A(S)
2 a (Q(s) + 1] + B(s).
(1) Suppose B(S) 2 1. Then define bJ+ bJi,

g9+ g21 as in the proof of Lemma 3.2. Let Q(S)wA(ﬁ)*gA.
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B{S) =r 21, Qfs) »~cC(8) = 9.2 1. Again, the two sets
0 0 - ‘ ; =]
{g0+ 921 - (b,+ b 1) | b+ b4 €B NS} and
{(g,+ 9,1)-(b0+ b1} lg,+ 9,1 €S, 9.+ 9,1 €C, 9,4 g8
¥ g0+ 924} give us g.~1 + r distinct numbers not in
A which now will be in S, The number gf% g:i is not
in the first of these sets since 0 ¢ B NS. If we
assume g$+ gzi = (gi* gai) - (b%+ bgi) contained in the
second set, then
0 - RO
9, =9, ~ b »
) - ho
9, =9, ~ by »
and
, 04 a04 hO4 KO
9,% 9= 9% 95t byt by
0
> ‘32 + dg »
which is impossible. Therefore, g2+ gJji is in neither

of these two sets., However, gf+ ggi is in S but not

in C, hence not in A,
Since S is now a set of the type R used to de~

fine a, we have

g5 2 9. * 1,
Q(S“)*gé 2 Q(S)'QA +r,

c(s) 2 A(s) + B(S)
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2 afQ(s) + 1] + B(s) .

We are now ready to prove Theorem 3.1. Let R be
any set of the type described in the statement of the the-
orem. We will use induction on the number of e¢lements of
R which are not in C, such elements being referred to
in the following as gaps of C in R.

(i) Suppose there is just one gap of C in R.

Then we must have t=1 and x + y,i is that gap (see
Figure 6). If b,+ b,i € B AR then (x,+y,i)-(b,+bi)

is in Q. Therefore, R 1is a set of type 5% and we

may apply Lemma 3.3.
x 4y, i

Figure 6

(i1) Suppose there are two gaps of C in R.
(Consideration of this case is not necessary for the
proof, but is included for greater clarity.) Then we

may have t=1, in which case x,+y,i 1is one of the gaps
and the other is a number g;+ gyi in R, =R (see

Figure 7a), or we may have t=2 and the two gaps are

x,ty,1 and x +y i (see Figure 7b).
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Figure 7a Figure 7b

In the case illustrated in Figure 7a let V={x+yi|x+yie€Q,
x<9g.,yS$9, andlet W=R-V. If B(W) =0 then

R ié of type 8% If B(W) > 0 then W 1is a set of
type S* and V is of type 8% . }ﬁunce‘.
C(R) = c{v) + C(w) ' |
2 o, [Q(v) + 1] + B(V) + o, (Q(W)] + B(W)

= a,[Q(R) + 1] + B(R).

In the case illustrated in Figure 7b let
W, = {x+yilx+yt € Q, x £ Xgr ¥ £ Y;}s

W, = {x¢yilx+yi € Q, x,< x $x,, ¥ £ V,}s

Wy = {x+yi|x+yl €Q, x § x,, Y, <y & Yel-
1f B(Wg) = B(Wy) = O then R is of type S8°. If
a(wj) > 0 where j=2 or 3 ;then NJ is of type S* and
W UMW, is of type S° where wk"u W, if J=3 and

W,

% aW‘ if j=2.
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(ii1) Assume the theorem is true for any set of
the prbpoz type in which there are less than k gaps
of C for an integer k > 3. Let R be a set of the
proper type in which there are k gaps of C, of which
t are the points x,+y i, °***, xgyti,lg t £ ke |
If B(R) = 0 then R 4s a set of type S° and

we are done. Hence, assume B(R) > l.

Xety,d ) T Xty d
'V : l x‘dﬂy‘i
i ' LO ‘ ‘
‘ .
| bPtbgi ~ -~ -~
. X, 4v,i | R* 173 0
b g __ ' _ 1 e
o ?ﬁ;&b;i: wa
1 08
Figure 8a ' Figure 8b

Let by be the largest real integer for which
there exists a real integer x such that x+b,i € B NR,
and let b, be the largest such x. The set

W= {x+tyl | x+yi €R, x 2 by Y2 bﬂ}

then contains precisely one element of B. Aléo, bi*b'ai
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is in R = RU «++» UR, (for notation, see Definition 1

of the Introduction); hence, there exists an integer s
such that 1 < s <t and by+ bei is in R,. This
implies that xg+ygl 1s in W, that is, Q{w)-c(w) 2 1.
Case 1. Q(W)«C(W) = k, or all k gaps of C in
R are in W (see Figure 8a). This implies that by< x,
and bg< y,. If B(R) =1 then R 4is a set of type S°
and we are done. If B(R) > 1 then there exist numbers
b+ bgi in B NR with bj+ byi # b+ byi, by < by
Let g, be the smallest real integer for which there
exists a real integer g, such that g+ g,i' is a gap

of C in W, If b’:sgi for all h’:+ b’:i in BNR
then again R 1is a set of type $° and we are done.
Otherwise, let b; be the smallest real integer

for which there exists an integer b; such that
bi+ bi €ERNB and b > g,. Then the set
W, . {xtyf | x+yi € R, x < b!}
is of type 89, (Note that W contains b 4 b,i and
g,+ 9,4, s0 B(W ) 21, QW) - (W) 2 1)
There is at least one gap of C in R~W,, namely

x;+y,i. Let g; be the smallest real integer for which
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there exists g such that g; + gii is agapof C in
R-W . If we have b% < g! for all b}+ bgi in BN(R-W,
then R-W, =W, 1is of type S'. If not, let b} be the

smallest real integer for which thaxe4sx1§ts a real intg»

; 18 : e : Y v "o ogt,
ger b such that b; + b:i €BnNn(R wx) and by > g/
Then the set

W, = {x+yi | x+yl €R-W, x < b}

is of type 8. (Note that W, contains b! + bli and
g; + gji.) We may continue this process until we have
»constructed n disjoint sets W,, Wy, <¢++, W such that
R=W U-*+UW, W 1is of type 8% Wy, °°°, W, are
of type 5. Then
C(R) = C(W,) + C(W,) + ++» + C(W)
2 o fQ(w ) + 1] + B(W J+a [Q(W )]+B(W,)
+ 00+ a [Q(W,)] + B(W,)

= a,[Q(R)+1] + B(R).
Case 2, 1 £ Q(W) - C(W) <k (see Figure 8b).
Then R-W contains at least one but no more than k-1

gaps of C. Let h; be the largest real integer for
which there exists a real integer x such that x + hli

is a gapof C in R-W, and let h, be the largest

)
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such x. (Note that h,+ hii = x4 y,i if b,> x4.) Let
h; be the largest real integer, if one qxi&tt.,for which
hi < h! and there exists x > h, such that x + hii is

a gap of C in ZR-W, and let h, be the largest such x.

Continue this pfazoss as long as possible. We will then
have m gaps of C 4in R-W, h 4 hii, ***, h ¢ héi.

k-l 2 m 2 1, such that h! > *** > h' and h.< «+s< hy
if m> 1. (If by>vy,, then h+ hii = x .+ y,i,)

Let Rj = {x+yi | x+yl1 €Q, x < hss ¥y & h}},
J=1, ***, m, and let R' =R{ U ¢+ U Ry+ Since R'

is a set of the type described in the statement of Theo-
rem 3.1 in which the number of gaps of C is less than

k, we have

C(Rr') 2

k.

s, [Q(R") + 1]+ B(R')

by the induction hypothesis.
Let V=R -(WUR')., Because of the way in which

the h,+ hii, <=, hy+ hii were chosen, there can be no
gaps of C in V. Elements b:* b:i. if any exist, In
B NV will have b: £ by« Hence, either W UV is al-
ready a set W, of type S!, or we may partition WUV

into n disjoint subsets Wy *ony Voo each of type &%,
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in precisely the same manner as was done far the set R

in Case 1.

This gives us
C(R) = C(R') + C(W,) + «+» + C(W,)
2 a, [Q(R")+1]+B(R" )+a_[Q(W ) ]+B(W,)
+ co 4 a falw, )] + B(W)) |
= a#[Q(R) +1 ] + B(R),

which completes the proof. ,
The hypothesis of Theorem 3.1 that the numbers
X3ty 1,7, xuty,l be gaps of C 1is analogous to the

requirement in Mann's theorem that n be a gap of C.
We can now see that this is somewhat more than is neces-
sary, however; in constructing the disjoint subsets

Wy, ***y W, of R inCasel and of WUV in Case 2

we had a point b,+ byi of B and a gap g,+ gai of
C in W,, a point Db+ bgi of B and a gap g;*bggi

of C in W, ***, a point bﬁ#*')* bg“‘“)i of B

and a gap gin“)+ gi"“’Bi of C in W

ey ? and a point

(" e p{"1)s of B an W, (with b{N"t)s g(n8), g

that bi“'i)+ bi““‘)i could not be included in ﬁn‘xl.

Let S be the smallest subscript such that x_ +y 1 is
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in W, 1 <8 <t. From the method of construction of

W, we know that xQWysi is in W, x 2 bfn'#)¢ and

Yg2 b&“’*)y ‘Thus the requirement that x,+ y,i, +*,
Xyt yti be gaps of C in R is then sufficient to in-
sure obtaining a last set W, of type $*, It would be

enough for our purposes, however, to require that R be

so chosen that for any point b+ b,i in B NR there
oxist a gap g+ g,i of C in R such that b, g,,
bo< g and that there exist at least one gap of C

in R even if B(R) = 0. (This last requirement is ne~-
cessary, since if B(R) = 0 then C(R) = A(R), and we
cannot conclude that A(R) 2 o [Q(R) + 1] unless

A(R) < Q(R).)

Corollary 3.1. Define Bx for the set B in the
same manner as a  was defined for the set A. Let Y; =
glb %%%%?T taken over all R satisfying the hypotheses
of Theorem 3.1. Then

Y; 2 ai*ﬁg’

Proof: For any set R satisfying the hypotheses
of Theorem 3.1 we have
C(R) 2 a,[Q(R)+1] + B(R) ,
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and

Therefore, |
Yy 2 8 By
Corollary 3.2. Let B be the density of B
(Definition 1, Introduction) and y' = glb’%f%**gu

taken over all R satisfying the hypvthoscs of Theorem
3.1. Then

Y2 o +B.

‘ oof: We have |
C(R) > az[Q{R) + 1] + B(R)

> o, [Q(R)]+ B(R),

c{'a; > a + B{ag

2ea +B

and

for any set R satisfying the hypotheses of Theorem 3.1.
Therefore, |
""' _)_'_az*f'ﬂ.
The following example shows that 7; may equal
a + B1 and thus that the conclusion of Corollary 3.1 is,

in a sense, the best possible.
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Example 1. Let A =B = {1, 2, 1, 1+i, all x+yi
in Q with x5 or y»2}. Then C = {1, 2, 3, 4, &,
148, 241, 3+1, all x4yl in Q with x>5 or y22},
and wo have a - B, = 2/5, y) = 4/5. |

The proof of Theorem 3.1 given here involved an
induction on the number of Gaussian integers in the set
R which were not in the sum set C, the induction hypo-
thesis being applied only to a subset R' of R which
was known to contain fewer of these gaps of C than
did R. Mann's proof of the corresponding theorem for

sets of positive integers, C(n) 2 a,{(n+l) + B(n) for

n not in C, 1is carried out by induction on the number
of gaps of C in the interval I = {x | 1 £ x < n}. How-
ever, his proof involves the application of the induction
hypothesis in two different ways; in one case it is
applied to a smaller interval which is knewn to contain
one less gap of C than I, and in the other case it is
applied to a new set C, wh;eh contains C as a proper

subset.

Mann's approach yields a quite simple and elegant
proof for the theorem in the one-dimensional case, and it
is only natural to attempt to apply similar methods to
the sets of Gaussian integers. Difficulties are soon en-

countered, however. It appears that the extension to the
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Gaussian integers of Mann's method of transforming C to
the new set C, requires the existence in R of a gap
Xyt ygi of C such that for any other gap g,+ g,i of
C in R we have ¢,< xy and g,< Yo+ This precludes

consideration of sets R of the type described in the

~ statement of Theorem 3,1 for which ¢>1. If we restrict

ourselves to sets R for which ¢t=1 we find that the

case in which Mann transformed C to the new set ,G; in

one dimension now yields to almost precisely the same
treatment, but the other case presents difficulties which
seem to the author to be insurmountable since apparently
use of the induction hypothesis will require considera~
tion of sets R' for which t may be greater than 1.
'Attampts to find other ways of transforming the
set C to a new set C, to which the induction hypothe-

sis could be applied were also unsuccessful. Among these
attempts was one which led to a new proof of the theorem
for sets of positive integers, the second of the two
proofs given in the Appendix to this thesis. A trans-
formation of the type described therein can be success-
fully carried out for sets of Gaussian integers whenever
the set R has been so chosen so that for some subscript

8, 1 <s <t, there exists a number b+ byi 4in B

such that x . <b <x, f(or 0<b<x, 1if s=t) and

$
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Yg.1< bgg vs (er 0 < b <y, if s=1), and such that
there exists a gap g,+ g,1 af C not equal to «x.+ y,i
with b < g and b,<g,. It is not necessary to re-

strict ourselves to sets R in which t=1 1in order to
use this transformation; however, the case in which the
transformation cannot be used has not yet been resolved.

There are, of course, other approaches to thi;
theorem. A'counting process™ devised by Besicovitch (1,
pe 246-248) has been used in several ways to prove the
theorem for the one-dimensional case (9, p. 20-29) and
may perhaps be extendible to the Gauasi&n‘iatqurk;
Attempts to apply a transformation developed by Dyson
(4, p. 8=14) to the theorem for the one-dimensional case
have so far not beea»zus:asefnl (9, p. 30-37), but this
transformation cannot be completely dismissed as a pos~
sibility. |
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APPENDIX

TWO NEW PROOFS OF A THECREM
OF MANN

The investigations which led to the proof of
Theorem 3.1 produced two new proofs of the corresponding
theorem for sefs of positive integers. The first of
these 'is just a specialization of the proof presented
in Chapter 3; however, this specialization is so much
simpler that it is of interest to have it presented se-
parately. The second proof involves the use of a new

transformation on the set B. We restate the theorem:

Theorem A.l. Let A and B be two sets of posi~

tive integers, and C = A+B, Let al be the Erdos den~
Cln) 2 ai(n¢1) + B(n)

for any positive integer n not in C. |

1. We will apply our first new method of proof
to Theorem A.,2 below, which is the thaerem‘actually proved
by Mann, and then show that Theorem A.2 implies Theorem
A.l,

Theorem A,2. Let A and B be two sets of non-
negative integers with O in A, 1 in B. Let C be
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the set of all numbers of the form k*b where a is in
A, b is in B, VLQt @, be the Erdos density of A,
Then

C{n) 2 a,n + B(n)

for any positive integer n not in C. (Note:t 1In the
definition of a,, A(n) is still the number of positive

integers in A which are less than or equal to n, Alse,
B{n) and C(n) are interpreted similarly.)

Proof: Let I be the set of all positive inte-
gers, and for any set S of positive integers let A(S)
denote the number of integers in A N 8. Choose any po-

sitive integer n, which is not in C. Let

o

1 =Db, < bg<+++ be all the integers in B.

Let r be the maximum J such that c(sd)=1(s?)
where SJ = {x | b< x g bj}. Then there exists a gap
n of C such that b, <n<b,.. (If B is a finite
set of r ele&ents we have only b_< n.)

Let n, be the largest gap of C such that

br < n1< br+; or let n = N, whichever is smaller.

b 3

(1f b.,, does not exist, then n = nge) If n,<ny

let S, ={x | x€1, b<xg bﬂfl}.,, If n=n let
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S, ={x | x€1, b<x<n}. utsgu&¢“xesﬂ
x > b}. The r integaré n,=b,> !mnV)kn#-bk, a¥¢ gaps
of A in Si. If we let g,  be tha’tatal number of
| gaps of C in 31 then the set of all integers n«br
such that n 18 a gap of C in S;, n #’ﬁ&,‘ @?V35V,
9. =4+ gaps of A in S, »Th&ae are oagh less than
ny= b,y hence disfinat fro& the éther r 4§aps. ‘Letting
g, be the total number of gaps of A in S _we have |
thus shown | | | |
(1) g 2r+g, -1l

If k 4is the smallest positive integer not in A
then k < n,~l, since n -1 is not in A. Therefore,
k is in S]. Hence, from (1) we have

I(Sz) - ge 2 I(Sl) ~gptr- 1
= I(s]) - gy * T .
This is equivalent to
c(sx) 2 A(s;) + B(Si)

> a&[I(S;) + 1] + B(s,)

= “1[1‘5;)3 + B(Sx)‘

If n,=n

s o We are done. If “x< n, we can form

a set S, as we did S,, using b, instead of b, and
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b.yy 1instead of b,, t being the maximum h such that

‘hy o 1rehy o h _ ‘ +
c(s™) = 1(s") wmrg S {x | by, Sx<b ]} We let

$p = {x=b ,, | x €8, x> b_ f. Proceeding in the same

manner as beforc, and noting that k €S! since

kL ng- b, where n is the gap of C in Sgr,wﬁich

corresponds to n "in 3‘.- we obtain

1

Evéntually we must arrive at 2 set 35 whose right
end point is n_. Then

Clng) = C(8,) + ==+ +C(S,)
2 ay[1(8,)] + +r + a,[1(54)]
4+ B(S,) + *** 4 B(Sj)

We must now show that Theorem A.2 implies Theorem
A.l, which has been shown before (9, p. 9). Let A and
B be two sets of pasitivi integers, C = A+ B, A' =
Aufo}, B =BU {0}, C'=CU{0}, Then C' {is the

set of all a+b where a is in A' and b is in BR'.
Let B, be the set of all b+l with b in B', C,

the set of all a+b+l with a in A' and b+l in 81.

"If n is a gap in C' (therefore a gap in C), then n+1
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is a gap in Cl. The sets A'Y, B:’ C, satisfy the hypo~

3

theses of Theorem A.2, and so we must have
Cy(n+l) 2 ay(n+l) + B(n)

where a, is the Erdos density of A' or, equivalently,
A, But C,(n+l) =C(n) + 1 and By(n+l) = B(n) + 1.

Therefore,
C(n) 2 a,(n+1) + B(n)

which implies Theorem A.l.

2, wWe will apply our second new method of proof
to Theorem A.l directly. Let A and B be any twn,#cts
of positive integers, C = A + B, Let k, be the small~
est positive integer not in A.

suppose"n is a positive integer not in C such
that C(n) = n-l., Since A is 2 subset of C we must

have k, < n.

If x 4is any positive integer such that 1 < x<n
then either x is in B, or x 1is of the form n-a
for some a in A and less than n, or neither, but
not both. The integer n 1is neither in B nor of the

form n-a. Therefore,
C{n) = n-1 2 A(n) + B(n)
2 a,(n+l) + B(n) .
Thus the theorem is established for the first gap
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of C, and we proceed by induction on the number of
gaps of C which are less than or equal to a given gap.
To be more precise, we assume that if C(n) 2 n « (r-l)
for some integer r > 2 and n not in C, then
C(n) 2 o,(n+l) + B(n).

Let n,<ng< *++ < n. be the first r gaps of
C, so that C(nr) = n.-r. We distinguish two cases.

(1) Suppose n.-n__ >k . We have

(1) Cln..,) 2 a(n._ +1) + Bln,_ )

by the induction hypothesis. Also, if n. , < x £ n,

for any integer x then either x 1is in B, or x ‘is

.-a for some a in A such that

of the form n,

l1 <a 1, or neither, but not both. rAgain;,

s rn n:‘-;*

n, 1is neither. We have n_-n

r f o 1” 1 ?.;k,;v L 30‘ we may

rn

write

(2) clng) =€ (n__ ) = n -

r~ Oras

2 o, (n_-n

£ Mp.y) + Bn.) = B(n

r~1)'
Adding the inequalities (1) and (2) gives the desired
result,

Cln,) 2 a,(n+1) + Bln.).
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(i) Suppose n < k,. We may assume that

" Mreg 2 %
B 1is the largest set such that A + B = C in the inter~

val from 1 to n, or, in other words, that B canéiata
of all integers in this interval except those of the set
S ={x | x= -8, 1<1<r, aGA Q {0}, a<n,},
for if we can prove C(nx) 2 qi(nr* 1) + B(nr) for this
B then it will also be esﬁasiishid féﬁréﬁfvséﬁuxﬁ' such

that A + B' =C, since nteissarily B' is a subset of
B and B(n.) 2 B'(n.).

Let k,< k,< **+ <k, be all the gaps of A
which are less than n.. All the gaps of C are also

gaps of A, so ¢ 2 r-l > 1,

If B(n.) =0 then C =A in the interval from
1 to n, and C(n.) = A(n.) 2 a (n.+ 1) + B(n ). Hence,
we assume B(n ) 2 1. If x is in B, 1 £ x < ng, then
there exists & positive integer y such that x +y = n..

If y is in A then x +y is in C. However, n_ is

not in C. Therefore, y 1is a gap of A and there
exists J such that 1 < Jj<t and y= kje This im-

plies that the elements of B will be found among those
of the set {n_- kjl =1, *«+, t}. The largest element
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of this set is n.= k,, which we will call x,. We
If

are assuming n_- e, <Ky 80 x =n.~k <n

r 3 ey’

X, = n

r.1 then x, is not in B. Suppose x, < n._ ..

Then there exists y, such that x,+y, =n,_ ., and
Yy = Moy = x,<nge x= ko Therefore, y, is in A,
If x, were in B we would have n, . in C. Conse-

quently, x, 1s not in B, kandvthe assumption Q(nr)zj

implies t 2> 2. Let j be the smallest subscript such
that Xy = .~ kj is in B. {That is, Xy is the

largest element of B less than "r‘}
If x;<n; for some 1 < r, then there exists
kh such that XJ* kh L ﬂi‘, and kh" ﬂi“»' st ﬂx"" XJ’ kj

implies that 1 < h £ j. Hence, there can be at most

gaps of C greater than x , and we must have n$*j<xj.
This implies Mpey <n, - kjﬂa{ see <n~kSn. ..
We know that each of the integers n.- kj“!' ***y Nk,
18 ﬁot in Bq LQt B&” B U {ﬂr"kj‘1, ‘e, Hr' k;}' and
let Cl = A+ Biﬁ
For each n.-k,, 1 <h<J -1, we have n.- k.

in S, and hence there‘exists ng - a such that
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l1<i1£r, a=0 or ac€aA, #uch that n.- k= ng-
a>n, 4o This implies ny > n _,. We also know i ¥ r,
so n. can only be one of the gaps Npu{jot)? Tty Mplge
Since ny~a is in B,, a=0 or a€A, we have
n, in C ., Hence, we have added at least one element,
but not more than j - 1 elements, to C in forming C,.
Thus we have

By(n.) = Blng) =3 ~12¢C,(n) «Cn,) 21,

and
(3) C{n.) - C,{n.) 2 B(n,) ~ B, (n_).
By the induction hypothesis,
(4) Cyln.) 2 ay{n + 1) + B,(n) .
Adding (3) and (4), we obtain

Cln,) 2 a (n + 1) + B(n,) .





