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INEQUALITIES FOR THE NUMBER
OF INTEGERS IN A SUM OF

SETS OF GAUSSIAN INTEGERS

Let A be a set of positive integers and for any

positive integer n denote by A(n) the number of inte-
gers of A which are not greater than n Then the

Schnirelmann density of A is defined (15, p.65) to be
the quantity

a = gib 411)
n

Thus the set of 1 positive integers would have
Schnirelmann density 1, the set of all odd positive inte-
gers would have Schnirelmann density Jlis and the set of
all even positive integers would have Schnirelmann density
0,

B,scovitch (1, p. 246) introduced the density

and Erdcis (

A(n)glb n41

p 66) the density

a = gib
1 n>k

where k is the smallest positive integer not contained
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in A. (Eras assumed k > 1 but we omit this require
ment.)

For any two sets of positive integers A and

define the sum Id
C MB a b, a+b I a G A, b B

Schnirelmann (15 p. 652) proved that if a, y are the
Schnirelmann densities of A, C respectively, then
yZa+P- ap, and Landau p. 57) proved that

p a 1 implies 1

In a famous paper by Mann it
526) that

y4 in
13)

This result is usually referred to as the u+ Theorem.

In the same paper is proved (10, p. 526-527) a result
which implies that for any positive integer n not in
e have

and this inequality can be strengthened, by application
of a result in a later paper (11, p. 250-252) to the
relation
(1 B(n)

for any positive integer n not in C.

In a still more recent paper 12, p. 9 409 2) Mann



(2) C(n)+1 611/..:411/...±-1
n+1

This in uality is strengthening of the inequality

(2.1) C(n) A(m)+11( )
n m

which Mann proved n order to obtain the
In this thesis we will be concerned w attempts

to extend the above definitions and theorems to sets of
Gaussian inteciers, that is, numbers of the form x + yi
Where x and y are real integers The sets discussed
above were subsets of the set of positive integers; in
our work we will consider subsets of the et

yi x and y are nonnegative
real integers, x + y Oj

For two subsets A and of Q we will let A(S) de-

Theorem.

note the number of Gaussian integers in A CIS. In parti
cular, then, Q(S) is just the number of elements in S

Whenever we use the notation A(S) the set S will consist
of all Gaussian integers in a given bounded region of the
complex plane and therefore will be finite. For any two
subsets A and B of Q we define the sum set C = A+B

as we did for sets of real integers. The notation AB

+

3

proved a theorem which implies, in our notation, that for
any positive integer n either C(n) r n or there exists
a positive integer in not in C such that < n and



st gib
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will occasionally be used to denote the set of all
ments of A which are not in B.

Very little work has been done in this area;
the author% knowledge, Cheo (3, p.2) is the only one to
have extended the concept of Schnirelmann density to the
Gaussian integers. His definition is * follows; Let

+ yoi be any number in Q, and let S be the set

of all x +yi in Q such that Y Yo

Then for any subset A Q,

We will refer to the ghig,dpnsitv of A a

discuss the theorems obtained by Cheo for this density,
as well as prove some similar theorems, in Chapters 1
and 2. These theorems also involve modifications of the
Cheo density.

Cheo was able to show by means of an example that

the u+p Theorem is not valid for his density, but a result
analogous to (2.1) for subsets of Q may still be true.
Cheo's example at east does not furnish a counter-
example. This result would be the statement that if

+ yoi is any element of Q which is not in C and

S is the set of all x + yi in Q h

yo then there exists an element x1 + y i in S



which is not in C such that if T

x + yi in Q with x / xi and

(2.2) A(T + B(T)
(T)

Inequality (2.1) implies the p Theorem for sets 0

real positive integers, but the analogous inequality
(2.2) does not imply the a+p Theorem for subsets of g.

While Cheois definition of density is very natu-
ral and simple it proves to be a somewhat difficult one
with which to work. Accordingly, we will modify it in
the following way.

u = gib

s the set of all
yl then

t R b$ e

and y

(see Figure

ha density of

t ytiDefinition 1.

numbers in Q, which 0 <

and y> 1

of all x + yi in Q for which

S 1, and let R **

Than for any subset A of Q we de

A to be the quantity



We will look upon this density as the extension of

gib

the Schnirelmann density to subsets of Q. It will also
be necessary to have an extension of the ErdOs density,
which we define as follows.

Definition 2. If A is any subset of
modified density of A is the quantity

MR) 1] B(R)

taken over all sets R of the type described in Defini-
tion 1 for which A(R) < Q(R)

Whether or not the (4.13 Theorem is valid for the

density of Definition 1 is still a matter of conjecture;
however, it is shown in Chapter 3 that

for every set R of the type described in Definition 1
for which the x yli, Xt t1 are not in C.
This extension of the inequality he main result



of the thesis.
The reader will notice that Theorem 1.1 and the

theorem of Cheo's quoted in Chapter I both require that
all numbers ji, j = 1, 2, shall be contained in
the sets A and B. and that this same condition on
is needed in the theorem of Cheo's which is quoted at the
end of Chapter 2. The arguments used to prove these the-
orems are essentially one-dimensional, and these strong
hypotheses are required in order to carry out these ar-
guments. The proofs of Theorems 2.1, 2.2, and 3.1 are
two-dimensional and no such restrictions need be placed
on A and B.

t appears that the methods used to prove the
theorems of Chapters 2 and 3 can be equally well applied
to sets of lattice points in n-dimensional space if den-
sity is suitably defined. The amount of exposition re-
quired is then greatly increased, of course, and we have
omitted all such work from this thesis.

The method used to prove inequality (3) above can

also be used to give a new proof of (I) This proof, plus
a second new proof, is presented in the Appendix.



and let the Cheo density of C be ya (see Introduc.

titan, p04) Let A be the set of all numbers

(1) + pi

and

Yc

CHAPTER

A EO-TYPE" THEOREM

t A and B be two sub

ji is in A, B

+ p

such that a + ji is in A, j 0,

A (x) be the number of elements

a < x where x is any non-negative integer. Similarly
define B B (x), C and C (x). Let S be the set

f all x y

nt

Cheo p. 10)

ith

B (x)
= glb for 0 and

2, and

gib

for an

proved the following theorem:
Po+ pn

= gib where

gm 0, 1, 2, (2) 1 a, tp 2 po

2, then

The method used by Cho° to prove this heorem

ii f AA with



min (Y0 y*)

gib

f there is a positive integer not
k be the smallest such integer,

taken over all sets S of the type

described above for which and let y'

f there is no positive integer not con-

A
glb gibx +

gib

9

involve (among other things) using one.dimensional argu-
ments on the sets Aj and C and then summing the

inequalities thus obtained over all j such that ji is
contained in a set S of the type described above. Theo-

em 1.1 below is somewhat similar to Chem's; our proof

uses the inequality (2) in the Introduction and is simpler
than his

Theo

contained in C

(1) 0 + Pi 5. 1 and a1 po s 1 for all 3Itg 0,1,2,

and (2) ji A, B for all 2, then
yf f p

Pro y0i be n element of Q with

$ the set of all x + yi in Q with

'f'tamed in C For all j mit 0, 1 2,



or

i andC Also, the fact thatj

B, for j > 0 and Vitt C A
0 o

RfC 1 D l[A4] KB ) and ICJ
all jm. 0, 1, 2,

is in A and

implies that

A01 4. Rtfy for

)+1

10

and y < 0. Le be the set of all positive in

tegers a such that + ji is in A . Similarly defi
R(13.1]and RDCi] Since ji is in Ay B and C

if j > 0 we have (Aj) ) a Aj( 1 j > 0

and REA0) x ) * A0( 0) with like relationships for the

Then for j > 0, applying Mann' .960 theorem

(see Introduction, page ) either C ( 1 and

or there a positive integer m not in such

that and

)44 RCA (m



( 4 )

( 5)

ewise

> k p.

Therefore, in either case,

Applying the same theorem to CO3 and noting that

(0 o)

(x ) A 80(m) 4. 1

xo + m+11

)(y0+1)

S) + 1) (c0

we have

Po

We now add the inequalities (4) and to obtain
C0(x0) Cl(x ) C ( = C(S)



Therefore,

for all sets $ of the type used in defining ya, and

Y* + p .

Now for sets S of the type used in defining .e*

we clearly have

Suppose x0+ yo

(4) obtained f

now hay.

From (4),

+1
Ci(x0) 2 (ao p0+ ai + 13j)

j > 0. By adding these inequalities we obtain
C (xo) + + Cy (x)at C(S)

)(y
2 ( *Po)

(y0+1)..2
2

+f3

a' +13

4. a0 + A ) .

12

is in Q, < lc. The inequality

j > 0 is still valid. For j 0 we



This gives us

and, therefore,
> a

which completes the proof.

It is obvious that the of Theorem 1.1 is al

ways less than or equal to the p of Cheo's heor

We will now show that this is also true of the 09
Accordingly, let S be any set of the type described in
the first paragraph of this chapter.
Then

Q(S) (a' + ) .

13

for all sets S such that a

then C(S) y Q(S) and



ye > U 4-

1,0 = Qt 011.

where the al are those defined in the

statement of Theorem 1.1. Since this
these sets S, it follows that the
rem is greater than or equal to the
Consequently, if yc y' then Theorem

For Theorem 1.1 the

rue for all
of Cheo s theo-
of Theorem 1.1.

1 cannot give

a stronger result than Cheo's theor
The two theorems are not really comparable when

ye but the following example illustrates the re-

suits for one such

Example: Let A B = 3k+1. 3k+Ji I k 0,1.2."
and j .2 1,2,.1 Then C [3k+1. 3k+2 3k+j

3k+1+ji I k 0, 1, 2, and j 2,

that 25 2/3 and y 1/2.

For Cheo $ theorem V* 4*

= 1/4, and

We see

3 and

14



CHAPTER II

ANALOGUES OF TWO THECREMS
OF SCHNIRELMANN AND LANDAU FOR

GAUSSIAN INTEGERS

t was mentioned in the Introduction that if A
and B are two sets of positive integers C . A + B.

p, y the Schnirelmann densities of A B, C respec-

tively, then a + p 1 implies y =1, and, in any
case, y > a 4, p 4. Cheo (3, p. 6) was able to es-
tablish the first of these theorems for his density, and
we will now prove both of them for the density defined
in Definition 1 of the Introduction. The proof of

Theorem 2.1 is essentially that given by Cho°.

Theorem 2.1 A and B be two subsets of
Q, C A+B, and a, , y the densities of A, B C,
respectively. 1 then y

Proof We know y < 1. Hence, assume y < 1

Now y = gib C 1 implies there exists a set

of the type used in defining the density such that

C(R0) < Q( which in turn implies that there exists

a numberxo + yoi contained in Q but not in C. We
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may let ao be the set of all x yi in Q such that

x y < y Then for any x + yi in a either

x + yi is in A, or x + yi (xo+y (bl+boi) for

some b1+ b5i in B ri Re, or neither, but never both.

Sint x0+ y not in t cannot be in A. Also,

Pi (X0 yoi) (b + bet) for any boi

since B does not contain 0. Hence, we have

A(a ) + ) < )

and

which is a c radiction, Therefore,

Theo em 2 t A and B be two subsets of Q,

C A + B, and y the densities of A, B C, rifts

pectively. Then

Proof: If 1 or i is missing A then
a 0 and the theorem is obvious. Hence,.w assume
and i are in A. Also if A m Q then y a nd

again the theorem is obvious, We will, therefore, assume
that there exists a set a of the type used in defining

the density such that A(R0) < Q(Ro



aj + a3i. Note that a1 + aji is not in Li

In order to effect this partition of H

be the smallest real integer for which there exis

a real integer x such that x
2

either (x +1) a'i or x ( +1)j

be the smallest such x. (The existence of ti

follows from the fact that 1 and are in A. If
x + yi is in Ro and ei he y<a or y = al and

x < at' then x + vi is in A. Nnw let

be that number in H such that

will speak of

(2) for any x

n A

Yi

being "based on" the n

and a

of the type used in defining

I 4' Yi e

contained

in AflR, but

Let

<
le

and ay, x in for any

17

et H be the set of all x yi which are in

but not in A By the choice of Re H is not

empty. We want to partition H into disjoint, non..
empty subsets I. of the following

type: For each there exists a

number

in Ro such that

the density, and



41,1 m) + n)i in Q su

max(m,n) 00 there exists x+yi in Q but not in H

with a1 x < 41

more than one such 41

which 44 inima

number in H such tha

ditions (1) (2), ( )

44 1minimal. Then

since

(4.4

does not axis x+yi not in H for which

and al

41 1 i or

with in

1,t
n)i with

the choice of 4,1 1 1

al S
nating numbers 41 4,1

manner as long as possib
numbers 4- + 4,1n 1,1 n

(x x yi G Q x+yi

ither 41..1+ 4.1

< y

I have 2,1

e, and

3.

> 0, n 0, and there

H pick that one

i be thatnal

satisfies the con-

4,1

which contradicts the hoice o

t4 (t1 m)m)+(4

0 and n = 0, and we have a contradiction on
WOAlso, 1 have

41 for the same reason. We continue, des

in this

the last of the
Let the set L =k

0,

and



Then the set L

Because of the way

M x+yilx+yi e Q, x+yi A a j

s' <y<h) E
A. not, we wou

19

U L U U L isofthealt n

was formed, the s

i. J

must contain at least one point

d have h1 + h5i in Lj) Let

so there

such that a1 1-11 Let

ail be the smallest real integer for which there exists

al integer x such that x + m

same type as the L described above.

f H Ll is not empty let a be the smallest real

integer for which there exists a real integer x such

that x + ai is in A (IR but either (x+1) + a;i
or x + (a' + is in H LI a be the

smallest such x and form the set L0 based on

in the same way as was done for L1 substitutin

for 4. We continue forming sets L1, Lst, in this

manner as long as possible. Call the last set formed

Suppose there exists a number 111 hai in

(LIU " U L ). We know that hs

are two possibilities:
i) There exists a set based on



and for any x' y'i x + a in Q with

< y/ < ha have x'+ y'i in H. Let ak be the

Then eventually our method of forming
would lead us to form a setL

smallest such
the sets L1,

we would not have h

0 We have

the aj + aji upon which the

exists a number x+yi in A n

y < h fi, for example, since ha > 0 by choice of

Again, among these numbers we can find ak + ai Just as
in (i) which must eventually be chosen as the base for a
set Lk which would include h + hal.

Hence the set LI U "6 U Lr exhausts

Figure 2 illustra and A such that 1 i GAs Ro

and A(RØ) < Q(R0) for which the set H has been parti-

tioned in the manner described above. The dots represent
points of A and the circles points of H.

h5i in H (

j > h1 whenever

UL

11

20

ased. Then there

based upon ak which would include and

such that hit



(a3 ali) + (b1 + bgi)

not in A. Hence,

C(Ro A(R

> A(R

o have

Q(R0) Re

a +ati
8 .8 9

0 1 ) 6--9 a
aV.

, +X' c:
6,, /if

Figure 2

is in C n L and, therefore,

4. 13(

so we substitute to get
C(R0) A Ro + p Ro) - A(110)]

zg A R R

21,

Now, for each j 1, we note that the
set L'= [(x-a3) + (Ys* 3)i I x+yi lE Lj), and that

Q(L)= Q( bl+ b5i is in B L,



a[A(R0))

c(R0)
Urj

A (x)
gib

2, then

We divide both members of this nequali

obtain

Since this relationship holds for any

A(R0) Q(R0) it must also hold for any

C(R0) < Q(R0),

Ms*, and 1 implies (1- )(1-p) o,

Or 1 > a + Hence, if C(R0) = Q(110) than

C(no)
CITITITT

Since this relationship holds for every set

P (LP

such that

such that

If B contains all numbers

type used in defining the density must have

y > a + p
Although Cheo did not prove Yc

for all sets A, B, C MB, he did prove the following
theorem: Let A and B be subsets of Q C A +

and lot Pc and yebe the Cheo densities of B and C.

Let A be the set of 1 real integers in A, and



ce and I this conclusion o

implies Yc

We Ca

B for j 1, 2.

Ye

a p .

used to establish Theorem 2.2, since it would be neces-
sary that the sets Li be of the type S used in de-

Li

and

sove the requirement that ji
by means of an argument like that

would have to be

such that for each

A fl R0

cI <

x+yi f a1+ai)

This is not always possible as the reader can easily ve-
rify by means of the example shown in Figure 3. Again,

the dots are points of A while the circles are points
of H. The sit Ro is the set of all rfYi in Q with

2

and a

fining the Cheo density, and thus
partitioned into sets Li,

Li there exists a number

number i in H for

and



VOn in Corollary 2.1 below, then used this result to prove 

the statement of Corollary 2.2 for sets of positive int.. 
gers (15, p. 655). Our proofs are essentially the same 

as his. 

Schn elmann (15, p. 652-653) extended the result 
ap for sets of positive integers to that gi- 

be the density of Al 

a1 a5 

'the density 

sets of Q n > 2, and define the sum set A 4. An = 

I 
al 0$ each 5iC Ai U 1010 

n). (This addition is clearly commutative 

and associative, and if n = 2 is equivalent to the sum 

set defined in the Introduction.) Let d(Al 

Proofs If n = 2 The 2.2 implies 

d(Al+ A as 

or 

1. d(At 

Assume that for some integer k 2 ha v 

1 - d(A1+ + A ) 



Then

d

and the prcof
at k be a real integer, k 1 We will call

A a basic t of Q of order k A + A

k summands (or kA) equals Q who k is minimal.

Coro1.arv 2,2. If the density a of A is posi-
tive then A is a basic set of Q.

Proofs There exists an integer such that

(1-q 16 Then Corollary 2,1 implies that
1 - d(nA) < n <

and

From Theorem 2.1, d(nA) + d(nA) > 1 implies d(nA + nA

or 2nA m Q. Note that the order of A is less than or
equal to 2n.

ie.
Ak+l

d Al+

1

s complete.



CHAPTER III

ANALOGUE OF A THEOREM OF MANN
FOR GAUSSIAN INTEGERS

A and B are two sets of positive integers,
C = A and if n is any positive integer not in Co

then Mann has proved a result that implies that

C(n) a1(n+1) + B(n) where al is the Erd;s density

of A (see page 2). We will now extend this theorem to

sets of Gaussian integers. Accordingly, throughout the

remainder of this chapter it is to be understood that A
and B are subsets of Q and C A + B. Also, al is

the modified density of A described in Definition 2 of
the Introduction. Our theorem is then the following:

Theorem 1. Let R be any set of the type used

to define a for which the numbers

are not in C. Then

C(R) > [Q(R) 1] R(R)

We will need to make frequent reference to sets

of two special types. For convenience we will define

them here.

26
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Definiton 3. A set S will be said to be of
type S1 if it satisfies the following conditions 2,
and either 1,

There exist in Q numbers X y

Yui0 xi Yli, xi + yo1v V
1,

X/ = Y1 I>Y11,->- Y*1

Y1 Yu Y2,and if for

u, there exists +x, yli with

then y
Xt. 1

o

equivalently, if for any xm 1

there exists xt yti with 2 < n < v such thatn

Ya > yri thenx x' ). Not that the requirement+ n-1

that xu yui be in Q implies that if u = I then

x + y1

such that X3

X = x X2

any m = 2

1 such that

Q, X<max (x3, Ye) > 0. Let T = [x+yi 1 x+yi

Yi y Ye] If v > 1 t

ix+yi I x+yi E Q, xl

T4 i,x+yi 1 x+yi E Q, <

= (x+yi 1 x+yi e Q, x4.1 < x

If u > 1 let T3= [x+yi(x+yi e Q,

(x+yi 1 x+yi E Q, x

Tues.. (x+yi 1 +yi e Q,
1.10,



Then if u =v=1 5= 1. Ifu v then
S I - (.1" U e* Li T:.f),If u > 1, v 411, 1 then

T - (T1U Tu./ ) If u v > 1, then

T . (T V 4-, U T Li Tt Li .. U I'u

There exist numbers Yi. Xs Yi

ith X1 < such that [a+yi j x+yi e Q0

x5)a

There exist numbers X Yli x y

Q with Yi > Ys such that S [x+yilx yi e Q, x

Yi Y

2. B(8)

xl

3 If bl+ ba

in S but not in C then

in Q. That is,

equality in at least one of these cases.
Figure 4 illustrates a set S of the type de-

scribed in requirement 1 above S being those points
Q which are on and within the solid lines. The set I
consists of all points of Q in the entire rectangle.
The reader will note that S is a set R R' where

R' C: R and R',R are sets of the type used to define
the density.

C(s) >

in B n s and

(9 95i) (b

and

ba

28

b with strict in-s



S but no

Figure 4

Pefinitkon A. A set S will be said to be o
type S° if it satisfies the following conditions 2,

There exist numbers x+ y + y in

Q9 1, such that if t > I then x and

yi Let Sr x+yi 1 +yi C Qa X Y Yrb

Then . (In other words,

S is of the same type as the set R used to define a

and

(S) - C(S)
3. if b1+ NS. is in

C then

S and in

in Q.

The reader will note that a set S may satisf



S be a set of type
fying requirement 1 of Definition 3, and le
set of all x+yi in S such that

°**, u. Let $' be the sot of all (x+yi)

(xi yi) for which x+yi is in Si and

x+y +yii Let St =S U .00

S = S U US .) Then Q(S

sati
Si bathe

(Clearly,

30

ondi

both

s just a translation

conditions or 1",2,3 of Definition 3 and a
tions 1, 2, 3 of Definition 4. Thus S may be

type S° and type

We will now prove three lemmas which wi

needed for the proof of Theorem 3.1.

Proofs If I then S'
of all points of S except one, and Q(S') Q(S)

Assume that for some k > 1 we have Q(S9 < Q(S)
whenever u < k. and consider u k+1 (see Figure 5)



Define sets

and

Then

Q(S'k)

FIGURE 5

** follows:k+1 k+1

+yi 1 x+yi E So < Y <

[(x+Yi) (Yk- Yk+1) I "14
(x+yi) (xk rvyi

Q(W

CgSk

> Q(Sk

Q(Si USJ4.1



or

k = I then St

Q SI U St

Q(11/)

Q(Slu

Q(S

the induction hypothesis
Q(S1 U U SI) < Q(S1 U

Q(S) Q(W)

Therefore,

o(s) Q SI U + Q(W) + 1

Q(S')

1:1(s9 Q(S)

Lemma 3.2.

C(S)

Proof: A

nition 3.
We know

St +Q(S (S'.I,J

is any set of type S then

[Q(S)) + B(S).

satisfies requIrement I of Deft

(Si

n S is not empty. b° bea

k > 1 then

the largest real integer for which there exists s
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integer bi° such that b(i) + bi B fl S and

bo + b° = max (b b bt a I a 1

if b + b'i C Bes b'fbail ° + b°i, b'
a 3. a 1

max tb1 + bsj, then b: > ID: Likewise, let g:

the largest real, integer for which there exists a real

integer g such that gi g:i is in S but not in

C and g2 + g° = max (gl gl + C 5, g+ gsi

Define the set S in Lemma 3.1. Let B(S)

r > I, Q(S) c(s) 9c1, and Q(S') A(S gA.

The set of all ( bai) with b b

in B fl S gives r numbers in Q (Definition S, qui-

rement 3) which are not in A4 since suppose

(g2 + g:i) (31 + bsi) asi e A. Then g2

(s1 + Alai) + (bs, bsi) EC which is a contradiction.

We also show that these r numbers are in Since

bl+bsi is in S. there exists an Sj as defined in

baiEB

i is in Si. This Implies

92 and bs < g:, so

Let b + bI a

bt j
b -n=y

nce

Lemma 3.1 such that b

j < bi, y b2. But bl

g: + g:i is also in j
+ (yj + n)i Then

so (go.. m) (g:

5). (That



Then

Lik

(g: g:i)

sets are disjoint. Hence, suppose that for some gl+ gsi

(b1 ) = I -m)+(

which is in SI and, therefore, in

se, the possibly empty) set of

(be+ b01) with g+gi in S but not in
1 2 1 a

921 1g(1.4 g21 gives gc 1 numbers which

but not in A. We must show that these two

that we must have

But this,

Hence, g2

diction.

b°

We add these uslities to obtain

g:) (b!+ b:) a (b1+

The method of choosing i and b°+ bi implies

bi b i)

b+ b 10(b°+ (1i)
1 a

gx+91i)-(b i).

Therefore, the two sets are disjoin

we have

g1 ga d b°+

implies > g and bo > b2.a

d we have obtained a contra..

C and

are in St

Pt% g:i (and, therefor



and

Q(s)

Q(s)..ge Q(S ) gA+ Q(S) 4,r0

We recall that 0(S).Q(S1).1 > 0 (Lemma 3 1), and note
that S' is a set of the type R used to define al

Hence, we may write

C(S) A(S1)+N(S)-Q(S')-1) B(S)

o1N(S')+1) + atiA(S)-Q(S')*1) S)

* allQ(S)) B(S)*

Thus, the Lemma is established for any set S of
type Si which satisfies requirement 1. If S

fies requirement 11 we may let uml and xl+y Xl+Yi

in the above, or if satisfies requirement 1" we may

lot uml and x Nisi The proof will then be

the same, except that now CAS Q(S ) 1 0 and

Lemma 3.1 is not needed.

3.3. If $ is any set of type then

(S) ) B(S).

B(S)0. Then C(S)=A(S)

c(s)

Prgmit( ) Suppose

a1[Q(s) + 1) + a(s).
(ii) Suppose S(S)

g:+ g:i as in the proof of L

35

Then define bp,

3.2. Let Q(S)4k(S)*VA.



191)

[(914.

gc:+

A which now wtli be in S. The number

in the first of these
assume

and

(b1 +bai) b baiEBrIS)1

-(1)14 b:i 191+ 9 ES, gl+ i gl+

give us gc -1 + r distinct numbers not in

g:i = ..(43

second set, then

which is impossible. There

of these two sets. However,

o4-Rns.
(bf+ bp.) cont

+ b°+ b°
s *

gi is in neither
is in S but not

36

B(B) = r 1, 4(S) C( scg 1 Again, the two sets

not

nod in the

A 9c

Q(S-d`gc Q A 41 r.
C(S) A(S) B(S)

in C, hence not in A.

Since S a t of the pE R used to

fine a1 we have



Figure 6

(it) Suppose there are two gaps of C in R.

(Consideration of this case is not necessary for
proof, but is included for greater clarity.) Then we

may have t=1, in which case x14.y1i is one of the gaps

and the othei umber g gni in R R (see

37

Q(s) B(S)

e are now ready to prove Theorem 3.1.

any set of the type described in the statement of the the-
orem. We will use induction on the number of elements of

R which are not in C, such elements being referred to

in the following as nu of C in R.

(i) Suppose there is just one gap of C in R.

Then we must have and x is that gap (see

Figure 6) If bl+ b2i e B rl R then (x141 i)-(

is in Q Therefore. R is a set of type S0 and we

may apply Lemma 3.3.

Figure 7a) we may have t=2 and the two gaps are

x fyli and x2415i see Figure 7b).



Figure 7a

the case illustrated in Figure 7a
and let W

R is of type S (W) 0

type Sl and V is of type Se Hence,

COO C(V) + C(W

al[Q(v) + I

allQ(R) 1

If
B(W

In the

B(V) 4' ILQ(W)]

B(R).

illustrated in Figure 7b let
(x+yilx+yi C Q, x <x2, y< 1/1)

[x+yilx+yi EQ, xs< x x1, y< Yi)

fx+yilx+yi CQ, x <x2, yl< y

B(W5) = 0 thenR is ype S.

type St0 where J=2 or

is of type Se where

2.

then

hen W

Figure lb

V= +yilx+yi 64,

B(W) = 0 then

set of

and

38



bi

i Assume the theorem i true for any set

the proper type in which there are less than k gaps

of C for an integer k > 3 a set of the
proper type in which there are k gaps of Co of which

are the points x xt yt ,i< t < k

If B(R) 0 then R is a
we are done. Hence. assume B(R) >

9

such that x+bai E B fl Ro

The set

Ex+yilx+yiERxb y > b5)

then contains precisely one element of B. Also, b + b i

Figure Figure 8b

Let b2 be the largest real integer for which

there exists a integer

and let bi be the largest such



and we

b*+ b*i*

e done.

in B n R

then again R is
Otherwise,

for which there exists an integer b; such that

b'+ bi ER rl B and bl > , Then the set

There is at least one gap of C in namely

xt+YI Let g be the smallest real integer for which

40

is R U U R (for notation, see Definition I

of the In oduc on); hence, there exists an integer
such that 1 and be biki is in Rs. This

implies that x54y5i is in W, that is, Q(W)-C(W) 1.

Case 1 Q(W)C(W) k, or all k gaps of C

Figure 8a) This implies that bl

and b (R then R is a set of type

I then there exist numbers

ith b b*i b+ b b* < b* 1 a a

Let gi be the smallest real integer for which there

exists a real integera such that (31 gsi is a gap

of C in W. If b* S g for all. b*+ b*i in B (*II R
1 1 1 2

set of type S° and we are done.

b: be the smallest real integer

fx+yi I x yi E R. x

is of type (Note that W. co tai

91+ i, so B(W) > 1 Q(Wi (w4) >



gl g:i a

R -W1. If we have b for all b b:i in Br(R

then is of type S. If not, let b be the

smallest real integer for which there exists 4 real
ger bs such that bw + bi E B fl (R-W1) and b"a I S

Then the set

Case 2.

Then R-W conta

gaps of C. Let h'

= [x yi 1 x yi E'.W4, bflji

(Note that W5 contains bl

may continue this process until we him

disjoint sets such that

U U Wn'

of type Si. Then

C(R) c( w) C(

1[Q( ) + 11 +

al[Q( )]

N(R)+1] B(

w) C(W) <k (

of type Si Ws,

B W )

least one but no more than k-1

be the largest real integer for

Figure )

which there exists a real integer x such that x +

is a gap of C in RW, and let hi, be the largest

41

b'i and
X

of type

cq, )

Constructed

there x such thai



such x. (Not. that

h be the largast real in

/111 < h and there exists

a gap of C in R-W and let h be the largest such x*

as long as possible. We will thenContinue this proce

gaps of

=

is
rem

C in RW, h

1 such that hl

(If yit then

RJ x yi I x+y

m, and let R

gaps of C in V. Elements

B flV will have b< b

ready a set of typo

into n disjoint subsets

42

hi = Yti if bt> Let

f one exists,

h such that x

hm+ 11;i

> h1 andh <

i yli
h y < hp,

U 111:1. Since

of the type described in the statement of Theo-

in which the number of gaps of C is less than
have

(R') > [Q(R') + 1 R')

by the induction hypothesis.

Let .(W U Ri). Because of the way in which

the h1+ h' h+ were chosen, there can be no

if any exis

Hence either W U V is al

or we may partition WUV

oh of typeSI,
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n precisely the same manner as was done for the set R

in Case 1

Th

we had a point

C in

and a gap girt

v(n-s.)(n-1)i

that bln-1)

gives us

C(R) C(R') c( w) C(

%MR') 1)+B(R') 1[Q( ))+B(W

IN( )) + B(Wn

1 ] B(R

i of

Ql[Q(R)

which completes the proof.

The hypothesis of Theorem

xt+y i be gaps of C

a point bl+ bli

a point b(3711

4)1.of C

requirement in Mann's theorem that n be a gap of Co

We can now see that this is somewhat more than is neces-

sary, however; in constructing the disjoint subsets
R in Case 1 and of W U V in Case 2

B in W, (wit b(n

Let S be the smallest subscript such that

that the numbers

analogous to the

and a gap gi+ gai of

B and a gap 91

of(n.
2

point

(110.1 i could not be included in
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W, 1 <$St From the method of construction of
W we know that is in

Wn
x> b "1) ands

Thus the requirement thatYti

exist a gap g

in R even if B(R) = 0. This last requirement is ne-
cessary, since if B(R) = 0 then C(R) A(R) and we

cannot conclude that AU a [Q(R) + 1) unle
1

A(R) < Q(R).)

Corollarx 3.1,. Define for the set B in the
same manner as a wes defined

1
or the set A. Let y: =

gib

of C in R such that

taken over all R satisfying the hypotheses

is then sufficient to in-

of type would be

of The I Then

Proof,: For any set R satisfying the hypotheses
of Theorem 3.1 we have

C(R) [Q(R)+1]

x + y i be gap* of C

sure obtaining a last

enough farourpurposes, howev require that R be

so chosen that for any point b1+ b5i in B ri R there

b g and that there at least one gap of C



and

T heref o

taken over all R satisfying the hypotheses of Theorem

3.1. Then

Proof. We have

C(R) IN(R) + 1] + B(R)

Q(R)1+ B(R),

Corollary 3.2. Let

(Definition 1, Introduction) and

be the density of B

Te 9

for any set R satisfying the hypotheses of Theorem

Therefore,

Yi

The following example shows that yl may equal

a + p and thus that the conclusion of Corollary 3.1 is

in a sense, the best possible.



nvolved an
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Example 1. Let A B l, 2,
in Q with x>5 or y>2 Then C asti, 2.
1+i, 2+1., 3+i, all x+yi in Q with x>5 or
and we have

41 P 2/5, . 4/5,

The proof of Theorem 3.1 given here

induction on the number of Gaussian integers in the set
R which were not in the sum set C the induction hypo-

thesis being applied only to a subset R' of R which

was known to contain fewer of these gaps of C than
did R. Mann's proof of the corresponding theorem for
sets of positive integers, C(n) 1(n+1) + B(n) for

n not in C, is carried out by induction on the number
of gaps of C in the interval I 74 (x I 1 < x < n) How

ever, his proof involves the application of the induction
hypothesis in two different ways; in one case it is
applied to a smaller interval which is known to contain
one less gap of C than I, and in the other case it is
applied to a new C which contains C as a proper

subset.

Mann's approach yields a quite simple and elegant
proof for the theorem in the one-dimensional case, and it
is only natural to attempt to apply similar methods to
the sets of Gaussian integers. Difficulties are soon en-
countered, however. It appears that the extension to the
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Gaussian integers of Mann's method of transforming C

the new set CI requires the existence in R of a gap

x y i of C such that for any other gap gl+ g5i of

C in R wehave gi yo This precludes

consideration of sets R of the type described in the

statement of Theorem 3.1 for which t>1. If we restrict

ourselves to sets R for which tI we find that the

case in which Mann transformed C to the new set CI

one dime ion now yields to almost precisely the same

treatment, but the other case presents difficulties which

seem to the author to be insurmountable since apparently

use of the induction hypothesis will require

considerstienof sets R' for which / may be greater than 1.

Attempts to find other ways of transforming the

set C to a new set Ci to which the induction hypothe-

sis could be applied were also unsuccessful, Among these

attempts was one which led to a new proof of the theorem

for sets of positive integers the second of the two

proofs given in the Appendix to this thesis. A trans-

formation of the type described therein can be success

fully carried out for sets of Gaussian integers whenever

the set R has been so chosen so that for some subscript

so 1 < s to there exists a number b1 ba
in

such that (or ) and



Ys

of C not equal to x

t is not necess

48

and such that

strict ourselves to sets a in which t=1 in order to
use this transformation; however, the case in which the
transformation cannot be used has not yet been resolved.

There are, of course, other approaches to this
theorem. Artounting process" devised by Besicovitch (1,
Pe 246-248) has been used in several 'says to prove the
theorem for the one-dimensional case (9 pib 20..29) and

may perhaps be extendible to the Gaussian integers.
Attempts to apply a transformation developed by Dyson

(4, p. 8-14) to the theorem for the one-dimensional case
have so far not been assful p. 30-37 but this
transformation cannot be completely dismissed as a pos-
sibility.
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APPENDIX

TWO NEW PROOFS OF A THEOREM
OF MANN

The investigations which led to the proof o
Theorem 3.1 produced two new proofs of the corresponding

theorem for sets of positive integers. The first of
these is just a specialization of the proof presented
in Chapter however, this specialization is so much
simpler that it is of interest to have it presented se-
parately. The second proof involves the use of a new

transfor tion on the set B. We restate thetheorem:

Theorem A.1. Let A and B be two sets of posi
tive integers, and C MB. Let be the Erdos den-

sity of A. Then

C( (n+l) +

for any positive integer n not in C.

will apply our first new method of proof
to Theorem A.2 below, which is the theorem actually proved

by Mann, and then show that Theorem A.2 implies Theorem

Al.

Theorem A.2. Let A and B be two sets of non-
negative integers with 0 in Ay in B. Let C be



the set of all naubers of h form a+b where a is in
A, b is in B. Let a1

Then

for any positive integer n not in

be the Erd6s density of A.

(Note: In the

no

52

definition A(n) is still the number of positive

integers in A which are less than or equal to n. Also,

B(n) and C(n) are interpreted similarly.)

Proof: Let be the set of all positive nte-
ger* and for any se S of positive integers let A(S)

denote the number of integer in A (1 5. Choose any po-

sitive integer no which is not in C.

1 b < bs be all the integers in

Let r be the maximum j such that ( ) I( J)
where S b1. Then there exists a gap

n of C such that br < n < b (If B is a finite
set of r elements we have only br<

t be the largest gap of C such that

b<
n1

< br+1 o let
co

whichever isr
(If br+1 does not exist, then n1* no If

let St 1 x e I, bx b,4.l}



fx

> The

f A in S.
gaps of C

such that n

<

egers

let gc

then the set of

g p of C in

be the

the other

I(S) g

This is equivalent to
C(S1) A(S1 B(S )

LI(S;) + ] + Si

= al[I(S )3 B(S

If we are done. can

a set Sas we did Si, using instead of b1 and

1 number o

egers n-br

gives

These are each less than

. Letting

gc ps of A

hence dist nc

gA be the total number of gaps of A

thus sho

(1) 1.

k is the smallest pos&tive integer not in
then k since nt -1 is not in A. Therefore,

k s in Hence from ( have



c(sh) I(Sh) where bt I br+1

IxES x > br i. Proceeding n the same1 2

manner as before and noting that kES' since
2

where n is the gap of C in S2 which
2

corresponds to ni in we obtain

instead of br,t being the maximum h such that

We must now show that Theorem A.2 implies Theorem

A.1, which has been shown before 9, P. 9). at A and
B be two sets of positive integers, C is A + B, A'

A U CO) B* B U [Oh C* C U (0). Then CI is the
set of all a b where a is in A' and b is in Bl.

Let B be the set of 1 b 1 with b in B' C1

the set of all a+b+1 with a in and b+1 in B1.

If n is a gap in CI (therefore a gap in C), then n+i

54

let

Eventually we mus ye at set whose right

end point is
no

Then

*

k < r+i



I
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I is a gap in,. The sets A', Bs
satisfy the hypo*

theses of Theorem A.2, and so we must have

Ci(n+1) (n+1) + B(n)

where al is the Erdgs density A' or, equivalen Y,

A. But (n 1) vs C(n) + 1 and (n ) = B 1.

Therefore

C ( n+1) n)

h implies Theorem A.I.
2. We will apply our second new method of proof

to Theorem A.1 directly. Let A and B be any two sets
of positive integers, C A + B. Let ki be the small-
est positive integer not in A.

Suppose n is a positive integer not in C such

that C(n) n-I. Since A is a subset of C we must

have kl<

any si ve in such that IS x< n
then either x is in B, or x is of the form n-a

for some a in A and less than n or neither, but
not both. The integer n is neither in B nor of the
form n-a. Therefore,

C(n) n,.4 A(n)

(M ) B(n)

Thus the theorem is established for the a gal)



of C and we proceed by induction on the number of
gaps of C which are less than or equal to a given gap.
To be more precise, we assume that if C(n) >

(2)

by the induction hypothesis. Also,

for any integer x then eit x is in 8, or x

of the form nra for some in A such that

T r or neither, but not both. Aga

neither. We have 1 > k , so w

write

2 and n not in Co then

+1) 4 B(n

Ign

be the first r gaps o

We distinguish two cases*

> (nr r)

Adding he inequalities (1) and (2) gives the desired
result

for some integer
C(n)a (n+1)

Let n/

so that C(n )

i) Suppose nr. n

(1 C(nr



ii) Suppose n nr* may assume thatr -

the largest set such that A + B = C in the inter-
val from 1 to n. or, in other words, that B consists

of all integers in this interval except those of the set

1 ,S aeAU[0), a

57

B(n )

of the set [ k 1 j tj The largest element

which are less tha All th gaps of C are also

gaps of A, so t 1.

Ei(nr) a 0 then C A in the interval from

1 to n and C( ( ) ( + I) 4, B( Hence,

x is in B, 1 < x < n then

th.re ex positive integer y such that x + y =

If y is in A then x + y is in C However, n

not in C. Therefore, y is a gap of A and there
exists j such that and y = kj. This JAI..

plies that the elements of B will be found among those

then it will also be established for
that A 4 B = C. since necessaril

and B(n) B4

Let k1< k2< k be all the gaps o

any set B' such

is a subset



of this set is

are assuming

xl n1 then xr-
Then there exists such that

1 call

< ki, so

s not in B. Suppose

We

quently, not in B, and the assumption B(nr)1

implies t 2, Let j be the smallest subscript such
that k in B (That is, xj is the

largest element o less than n .)

some i<r, then there exists

kh such that and k * ISn Xf k

implies that 1 h <j. Hence, there can be at most j
gaps of C greater than x and we must have nr.j

This implies ro.

know that each of the integers

is not in B.

let C A 4. B

For each 1 <h< have

in 5, and hence there ex u h that

and

yl is in A.

C. Cons,'

Yi

yi ri x * k
x 1. iheref ore,

If x4 were in B we would ha



i <r, a 2g0 or aE A, such thai

This implies ni > We also know

so n.
1

can only be one of the gapsnrso,u.

Since n - a is in

in C Hence,

but not mor than

Thus we have

BI(n

and

(3) C( ) C r B(nr

By the induction hypothesis,

(4) Ct

Adding and (4), we obtain

C(nr 1) + B(n

59

0 or aEA, we have

have added at least one eleme

elements, in forming




