
SUPPLEMENT 1: SPATIAL PATTERNS OF FLOUNDER DISTRIBUTION 

Figure S1. Spatial variation in bottom temperatures (images) and arrowtooth flounder 

natural log-transformed catch per unit effort (n km
-2

, bubble sizes) from the groundfish 

survey during four years with contrasting flounder abundance (B) and bottom 

temperature (T). The thermometer on the upper right corner of each plot indicates the 

relative flounder population biomass (from the stock assessment report) in each year. The 

years shown are (A) 1986, low B and low T, (C) 1987 low B and high T, (D) 2007 high B 

and low T, and (E) 2003 high B and high T. Also the 2
o
C isotherm and the 200m isobath 

are shown in white and grey, respectively. 

 

 



SUPPLEMENT 2: EXPLANATIONS OF GENERALIZED ADDITIVE MIXED MODELS 

The additive formulation is:  

 



x(, ,y,t) =1By 2T(, ,y,t)  g1[K(, )] +g2[D(, )]  s1(,)e(, ,y,t)   (1) 

 

where xy,( φ, λ ) is the natural logarithm of flounder numerical cpue (+ 1) at a particular 

location φ, λ (identified by longitude and latitude degrees), in year y. α1 and α2 are slope 

coefficients describing the effects of total population biomass (B) and local water 

temperature (T) on the local flounder cpue, g1-2 are univariate smooth functions (thin 

plate regression splines, Wood 2004, 2006) used to capture the relationship between 

flounder cpue and sediment size (K), depth (D) where the survey occurred, s1 is a 2-

dimesional smoothing function (thin plate regression spline, Wood 2004) that captures 

the underlying spatial distribution of flounder which is not otherwise captured by the 

other covariates.  

We can build upon the formulation in (1) by including a nonadditive interaction 

between B and T and by making their effects spatially variable. Namely,  

 



x( , ,y,t) = g1[K( , )] +g2[D( , )]  s1(,)+

+s2 (,) T( , ,y,t) +s3 (,) By +s4 (,) T(, ,y,t)  By  e( , ,y,t)

  (2) 

 

where s2-4 are two-dimensional smoothing functions that define the local linear effect of 

T, B and their interactions (T•B) on x, respectively. In essence s2-4 define a landscape of 

linear slopes for their respective covariate terms. Here, it is assumed that T and B have 

linear effects on x, but such effects can be nonadditive and spatially variable. The one 



constraint imposed by this and the following formulation is that the changes of slopes 

associated with B, T and T•B are smooth, that is twice differentiable (26).  

 The third and most complex formulation assumes that the effect of B, T and T•B 

may change in relation to the overall biomass of flounder (B). It is further assumed that 

such change occurs abruptly, once the overall flounder biomass (B) crosses a threshold 

value (B*), to be estimated within the model. Namely,  

    



x( , ,y,t) = g1[K ( , )] +g2[D( , )]  s1(,) ey,( , ) 

+
s2(,) T( , ,y,t) +s3 (,) By +s4 (,) T( , ,y,t)  By   if By    B*

s5(,) T( , ,y,t) +s6(,) By +s7(,) T( , ,y,t)  By    if By    B*





 (3) 

   

  

where  s2-4 and s5-7 are two sets of two-dimensional smoothing functions that define the 

local linear effect of T, B and their interactions (T•B) on x, before and after the change of 

phase induced by an increase of flounder population biomass.  
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SUPPLEMENT 3: TIME SERIES OF FLOUNDER OCCUPANCY, BIOMASS AND WATER 

TEMPERATURE IN THE BERING SEA 

Figure S3. Time series of arrowtooth flounder standardized and actual biomass (top 

panel) from stock assessment reports, average bottom temperature in the middle shelf of 

the Bering Sea (middle panel) and occupancy of flounder (bottom panel) measured as the 

number of consistently sampled stations in which at least one individual was caught.   

 



SUPPLEMENT 4: AIC PROFILE OVER POSSIBLE VALUES OF FLOUNDER POPULATION BIOMASS. 

Figure S4. AIC profile in relation to different threshold values of standardized flounder 

population biomass.  



SUPPLEMENT 5: LINEAR MODELS OF FLOUNDER OCCUPANCY 

In addition to the GAMM, and as an additional test to the nonadditive species-

environment and nonstationary abundance-occupancy hypotheses we fit two linear 

models to the time series of flounder occupancy, measured as the number of consistently 

sampled stations occupied by flounder in any given year (Fig. S1). Both models include 

an effect of flounder biomass and average water temperature and their interactions, but 

the first model is stationary (i.e., no changes of B and T effects through the time 

examined) while the second is nonstationary, with a change of the abundance and 

temperature effects before and after a threshold biomass level, estimated from the model 

3 (Supplement 2). 

In agreement with the GAMM analysis, the linear models indicate that the time 

series of flounder occupancy is best and more parsimoniously fit with a nonadditive and 

nonstationary linear model, which assumes the same threshold of the spatial analysis 

(Table S1). Before 1995, water temperature was the only significant variable affecting 

flounder occupancy. In contrast, after 1995, flounder occupancy was significantly 

affected by water temperature and by its interaction with biomass (Table E1).  

 



TABLE S1. Estimates and significance of coefficients from two linear models fit to the to 

the time series of flounder occupancy in relation to water temperature (T) and flounder 

population biomass (B) shown in Fig. S3. Also reported are the respective Akaike 

Information Criteria (AIC) and adjusted R
2
 for each model.  

 

Model Terms Estimate Standard error P value 

Stationary Intercept 67.79 10.74 <0.001 

AIC = 242.82 T 13.79 5.83 0.026 

R2 = 64.2% B 7.60 4.62 

0.113 

 B:T 3.47 2.86 0.237 

     

Nonstationary Intercept 81.24 9.36 <0.001 

AIC = 216.20 T|Y≤1995 11.85 4.85 0.046 

R2 = 86.8% T|Y>1995 -49.98 9.89 <0.001 

 B|Y≤1995 -6.08 8.69 0.560 

 B|Y>1995 2.24 3.89 0.389 

 B:T|Y≤1995 5.08 4.86 0.136 

 B:T|Y>1995 32.66 4.49 <0.001 

 

 


