FIELD BEHAVIOR AND PROCESSING CHARACTERISTICS OF SWEET CORN HYBRIDS GROUN IN 1953-54

A. P. Sidwell ${ }^{1}$, W. A. Frazier ${ }^{2}$, and R. F. Cain ${ }^{3}$

Growing and processing sweet corn is an important Oregon industry, particularly in the Willamette Valley. Oregon farmers in 1954 planted 14,200 acres of sweet corn and harvested 36,000 tons for canning and 27,200 tons for freezing.

As most of the product is shipped to markets outside the State, yield must be high and quality good to maintain an economically sound industry. The hybrid seed used to plant the acreage is a main factor affecting yield and quality. A number of seedsmen offer various hybrids for use by the industry. These vary in their ability to produce from both the yield and the quality standpoint.

To aid in developing information concerning these points, the Oregon Agricultural Experiment Station regularly conducts trials of meny sweet corn hybrids from various seedsmen. This is a report of resuits of the 1953 and 1954 trials. Several better known hybrids were planted in replicated plots to obtain detailed information, while others were planted in single plots. The latter trials are considered as observational in nature.

EXPERTMENTAL METHODS
(Replicated Tests)
A. Raw Product.

The hybrids included in the replicated tests were: Vear 1953:
(1) F. M. Cross, (2) Rogers' Golden Crosi, (3) Robson's Golden Cross, (4) Iochief, (5) Prosperity. Year 1954: (1) F. M. Cross, (2) Rogers' Golden Cross, (3) Robson Golden Cross, (4) Prosperity. Seed sources were as follows: for F. M. Cross, the Ferry Morse Seed Co.; for Rogers' Golden Cross and Iochief, the Rogers Bros. Seed Co.; for Robson Golden Cross, the Robson Seed Farms; for Prosperity, the Corneli Seed Co.

Plantings were made early in May during both years on Chehalis soil near Corvaliis, Oregon. In 1953, 550 pounds per acre of 10-16-8 fertilizer were applied, at the time of planting, in a band $1 \frac{1}{2}$ inches to the side and $2 \frac{1}{2}$ inches deeper than the seed. A side dressing of 200 pounds of ammoniun nitrate was made 2 months after planting. The 1954 program was identical except that 750 pounds of 10-16-8 were applied at planting time. Irrigations were made at appropriate 10-day intervals.

The plots were single row, 25 feet long. In 1953, 6 replications were planted, and all replications harvested on the same day. In 1954, 8 replications were planted and 4 harvested on each of 2 days.

1. Instructor, Food Technology Department.
2. Frofessor, Horticulture Department.
3. Associate Professor, Food Technology Department.

Miscellaneous Paper No. 26, Agricultural Experiment Station, Oregon State College, Corvallis.

The 1953 season was characterized by cool temperatures in May. The corn was planted on May 5, 1953 and the days to harvest period varied from 120 to 129 days. The 1954 summer was generally cool and a period of from 128 to 142 days was required to bring the corn to harvest.

B. Processing Technique.

Upon receipt of the husked corn the ears were examined and all obviously overmature and imnature ears were removed. A $3 / 16$ inch chisel was used to remove 2 rows of kernels from each ear for moisture determinations and other tests made on the fresh material.

Each lot was blanched 5 minutes in boiling water, spray cooled, then cut with a No. 2 Sprague Sells Cutter. The cut corn was then cleaned on a small rod type washer and passed across a draining screen. Ten ounces of corn were filled intc cellophane liners, cartoned and sealed, then frozen at $-20^{\circ} \mathrm{F}$. and transferred to $-5^{\circ} \mathrm{F}$. storage the following day.

Corn to be canned was filled into 307×409 " C " enameled cans at the rate of $13 \frac{1}{2}$ ounces to which 40 grains of salt were added. Cans were then filled with water at $180^{\circ} \mathrm{F}$. , sealed at 18 -inch vacuum and then processed 50 minutes at $240^{\circ} \mathrm{F}$. in a vertical retort. This technique was used both seasons.

C. Evaluation of Processing Characteristics.

1. Analytical Methods -- Moisture was determined by drying in a vacuum oven for 24 hours at $70-75^{\circ} \mathrm{C}$. Color was determined on the Hunter Color and Color Difference Meter. Five readings from each sample were averaged and recorded. Succulometer readings were made from 100 -gram samples and pressed at 500 pounds per square inch for 3 minutes. This sample was later used for pericarp determinations, by recombining the solid and liquid portions. Two hundred milliliters of water were added to 100 grams of this recombination and the resultant slurry was blended in a Waring Blender for 5 minutes. Two aliquots of 50 grams each of the blend were weighed and washed through tared 30 -mesh Monel screens, followed by thorough washing. The screens were then dried at $100^{\circ} \mathrm{C}$. for 2 hours, cooled, and reweighed. The increase in weight, multiplied by 6, was recorded as percentage pericarp.

The Alcohol Insoluble Solids (A.I.S.) determinations were made according to the "Methods of Analysis" of the A.O.A.C. for this factor in peas. Kernel size (or width) is the total space, in centimeters, occupied by 20 kernels when placed together shoulder to shoulder. Total and reducing sugars, calculated as glucose, were determined by the Somogyi method.

Shear press determinations were made on the Maryland Shear Press. Fortygram samples were used in 1953 and 150-gram samples in 1954; therefore, there is a difference in the readings due to this change in procedure.

The samples of canned corn were prepared for analysis by draining on an 8 -mesh draining screen for 3 minutes. Frozen samples were thawed by cooking for 5 minutes in water salted at the rate of 40 grains per 250 milliliters, and then drained as above.
2. Human Evaluations - The canned and frozen whole kernel corn was scored for (1) color and (2) tenderness and maturity, by graders from the Agricultural Marketing Service (A.M.S.). All samples were coded to conceal their identity.

Canned and frozen samples were also evaluated for eating quality and appearance by a panel of staff members and graduate students from the Horticulture and Food Technology Departments. Usually 12 people evaluated the samples. Eating quality was judged in darkened booths to minimize color differences between samples. Appearance was judged in a sample cutting room having good light exposure. A Macbeth "Daylight" lamp was also available for those who desired its aid.

Frozen samples were cooked for 10 minutes in water salted at the rate of 40 grains per 250 milliliters. Canned corn was heated before being served. Four or five samples were presented at each sitting, and the judges asked to rank the samples independently for appearance and for eating quality. Ranks were then converted to scores and subjected to statistical analysis. The scores are presented in tables 3 and 4 .

RESUITS
 (Replicated Plots)

A. Field Evaluation.

It will be seen (Tables 1 and 2) that both years F. M. Cross was harvested earliest. Prosperity gave the highest total yield both years but the differences between the hybrids with respect to their yields of husked, marketable corn were not significant.

B. Quality Evaluation.

Four of the five hybrids planted in the replicated trials of 1953 were replanted in 1954 so that two seasons' results are available for the four hybrids. Iochief was grown only in the single row trials in 1954.

1. Color -- Results for the two seasons show that hybrids were considerably different in color (tables 3 and 4). This is best shown by comparison of "Rd", which measures lightness (higher "Rd" indicating lighter color). Fresh samples of Prosperity and F. M. Cross had high "Rd" values both years. F. M. Cross, however, darkened considerably when canned in 1953 and received a low score in appearance by the panel judges. The color of F. M. Cross in 1953 was also of low purity as compared to the other hybrids and fresh and canned samples showed lower dominant wavelength. These two factors indicate less yellowness, probably due to lower quantity of pigments. The frozen samples of F. M. Cross packed in 1953 received poor appearance ratings by the staff panel, but with the exception of 1 sample, averaged 9 out of a possible 10 in the A.M.S. score for color.

In 1954 F. M. Cross was sufficiently light in color when harvested, dropped but two points in "Rd" when canned, and was scored high by A.M.S. graders. Frozen samples were also scored high by A.M.S. inspectors and the color data indicated them to be of good yellow color of high purity.

The color of Prosperity was good both years of the test. The drop in "Rd" due to canning was 5 points in 1954 but since the "Rd" was above 35 when the corn was fresh, the canned product was still sufficiently light to receive an average score of 8.1 by the A.M.S. inspector and first rank by the panel judges (table 4).

Robson Golden Cross Bantam corn canned in 1953 received a high score from the A.M.S. inspector, while the frozen product received a score of 8.8 points. However, panel judgments gave this hybrid low rank as compared to the others. It is believed that the slightly lower dominant wavelength, indicating less yellow hue (toward grey), explains the reaction of the panel. In 1954, the color of Robson Golden Cross Bantam was particularly poor, being quite dark when canned. The "Rd" data indicate that the corn was rather dark when received ("Rd" - 31.91). Thus, when the corn was heat processed, the consequent darkening was critical. The canned product had an "Rd" of 28.12 and was graded " C " by the A.M.S. inspector and also was given a low preference rating by the panel (table 4). The frozen product did not darken as much and received a score of 8.6 from the A.M.S. grader. However, the preference of the panel for the frozen product was low.

The color of Rogers Golden Cross corn in 1953 was good, but the 1954 samples were rather dark when received, and thus the canned product received poor acceptance by the A.M.S. grader and the panel (table 4). The reduction in " Rd^{\prime} " when frozen was not so great, thus the corn was sufficiently light to receive a good score from the A.M.S. inspector. The panel rating of the frozen product, however, was third to Prosperity and F. M. Cross in 1954.

Seasonal effects on color were exhibited, thus making interpretation of the performance of the hybrids rather difficult. It would appear, however, that Prosperity gave the most consistently good color and Robson Golden Cross the most consistently poor color. The color of Rogers Golden Cross and F. M. Cross was markedly different during the two seasons.
2. Eating Quality- The A.M.S. scores for "Tenderness and Maturity" for both the canned and frozen corn were high for all the hybrids both years of the test and differences between the scores for this factor were not significant. All were within the Grade A range (tables 3 and 4). Panel judgments of the eating quality of the hybrids, however, indicated significant differences among them. The two Golden Crosses, Rogers and Robson, ranked high in eating quality both years, both canned and frozen (tables 3 and 4). F. M. Cross was lowest in rank in both the canned and frozen state in 1953 and the frozen product was low in eating quality in 1954. The canned product of F. M. Cross was not significantly lower than the Golden Crosses (Rogers and Robson) in 1954.

Iochief ranked lower than the Golden Crosses in the 1953 canned samples. The frozen product ranked significantly lower than Rogers Golden Cross but the difference between Robson Golden Cross and Iochief was not quite large enough to be significant (table 3).

The differences between Prosperity and the Golden Crosses in 1953 were not quite great enough to be significant; but, in 1954, the eating quality of Prosperity was not equal to that of Robson Golden Cross and Rogers Golden Cross according to the panel judges.

In general Rogers Golden Cross and Robson Golden Cross received greater preference for eating quality for the 2 seasons of this work. Among the probable causes for this may be the percentage of pericarp. These two hybrids produce corn of lower pericarp content, according to the analytical data (tables 3 and 4). Prosperity and F. M. Cross have consistently shown high pericarp content in both the canned and frozen product (tables 3 and 4). Another possibility is the higher percentage of total sugars found in the two golden crosses during analyses made in 1953.

The remaining analytical determinations, which include Succulometer, Shear Press readings, and Alcohol Insoluble Solids, have not been of value in the rationalization of the differences in Panel evaluations of the hybrids. However, it will be noted that the Shear Press readings for frozen corn are consistently higher than those for canned corn (tables 3 and 4). This is due to the heat process in canning.
3. Cutoff Percentage -- These percentages were calculated on the basis of sorted, husked corn and are consequently high. It is not believed that any reproducible differences between the hybrids were indicated. The low cutoff percentage showm by Robson Golden Cross in 1953 did not recur in 1954, suggesting that the low condition in 1953 was related to harvest maturity.

SINGLE PLOT TESTS

In addition to the hybrids on which detailed information was developed by the replication technique, a larger number of hybrids were grown in single plots for observational purposes. Since these were not in replicated plots, data on them are not as reliable as from the 4 or 5 hybrids discussed previously. It may, however, be indicative of the possibilities of these hybrids. In the Station's program, the single plot tests serve as a screening trial for new material, the most promising of which are planted in replicated plots later on.

The culture and processing technique used was the same as for the replicated plot material. Quality information was abridged in 1953 but expanded in 1954.

RESULTS
(Single Plot Rests)

A. Field Characteristics.

These data are presented in tables 5 and 6. Since these observation plots were not replicated, only rough comparisons for yielding ability should be made. The early varieties, as is usually the case, were lower yielding as a group than midseason or late types. The heaviest yielding and most promising of these new lines of corn will be planted again in 1955.

B. Quality Evaluation.

1. Color -- In 1953 the only information on color was that obtained by grading by the A.M.S. Scores on the canned product were, in general, more variable than those on the frozen product, indicating that the color of some hybrids is particularly sensitive to canning (table 7).

In 1954 both A.M.S. grades for color and "Rd" readings from the Hunter instrument were taken. Though these data represent single plot observations, it appears that some of these hybrids may be too dark, especially when changes due to processing have been considered. On the other hand Victory Golden, NK 30715, NK Tons of Gold, Prospector, Seneca Crown, KVF 51-360, KVF 51-20, Iochief, and Iosquaw appear to be sufficiently light in color, and of such color stability to be promising enough for further conideration (table 8).
2. Eating Quality -- An A.M.S. inspector scored these samples for tenderness and maturity and most or them were also judged by the staff panel. The agreement between these judgments is only fair, since the A.M.S. score does not indicate flavor differences.

According to the staff panel judgments, certain of these hybrids produce corn of better eating quality than others (table 8). When favorable judgment for this factor coincides with good color rating to indicate good overall quality, then these hybrids merit special attention. Victory Golden, Golden Hybrid 1910, and KVF 5l-20 show this possibility (table 8).

Table 1. Field Behavior of Sweet Corn Hybrids 1953 Replicated Trials

Variety	Days to harvest	Tons per acre yield		Marketable ears per acre (x 100)
		Total	Husked marketable	
Iochief.....	128	8.90	4.98	187
Prosperity ...	129	10.83	5.02	220
Golden Cross Bantam.....	125	9.41	5.00	223
FM Cross.....	120	9.29	5.11	176
Golden Cross Bantam	125	9.21	4.62	202
L.S.D. .. . 05		1.05	N.S.	17
L.S.D. . . 01		1.44	N.S.	23

Table 2. Field Behavior of Sweet Corn Hybrids -1954 Replicated Trials

Variety	Days to harvest	Tons per acre yield		$\begin{aligned} & \text { Marketable } \\ & \text { ears per } \\ & \text { acre }(\times 100) \end{aligned}$
		Total	Husked marke table	
FM Cross.	128 and 131	10.3	5.1	193
Golden Cross Bantam.....	135 and 138	11.6	5.5	234
Golden Cross Bantam.....	138 and 140	11.4	5.6	245
Prosperity...	140 and 142	13.3	5.6	240
L.S.D. . . . 05		1.3	N.S.	29
L.S.D. . . 05		1.7	N.S.	40

Variety	Moisture	Pericarp Per cent	A.I.S.I* Per cent	$\begin{gathered} \text { Kernel }^{2} \\ \text { size } \\ \text { Cms. } \end{gathered}$	Shear ${ }^{3}$ press Lbs.	Succulometer Mls.	Cutoff Per cent	Hunter color readings			Reducing total	
	Per cent							Rd ${ }^{\text {D }}$	Dominant** wave length	Purity Per cent	Sugars Per cent	Sugars Per cent
F. M. Cross...	75.46	1.75	21.24	17.07	221	18.5	62.81	34.54	576.5	50.0	1.81	3.70
G.C.B. Rogers	73.33	1.47	21.39	19.01	202	20.3	58.71	34.81	577.0	52.6	2.16	5.78
G.C.B. Robson	75.78	1.30	20.27	19.32	265	18.9	46.38	37.59	577.0	52.0	4.02	5.44
Iochief	73.11	1.79	21.27	15.33	267	18.4	60.34	--	--		1.64	4.15
Prosperity....	70.79	1.78	21.01	15.63	242	18.0	60.77	36.43	577.0	53.2	0.84	3.91
L.S.D. --. 05	1.33	0.36	N. S.	0.75	22	N. S.	2.28	1.56	--	--	0.42	0.67
CAMNED												
Variety	Moisture	Pericarp	A.I.S.*	Shear ${ }^{3}$	Succulo meter Mls.	Hunter color readings			P.M.A. score		Eatingt Quality	$\begin{aligned} & \text { Appear-* } \\ & \text { ance } \end{aligned}$
	Per cent	Per cen	Per cen	press Lbs.		Rd Dominant** Purity			Color	urity		
									8.6	38	4.57	4.9
F. M. Cross.	80.86	1.24	15.72	176	17.6	28.99	578	40.7	8.6	38.1	.	4.9
G.C.B. Rogers	78.89	1.02	17.08	153	18.8	29.80	578.5	50.7	9.0	38.5	2.14	2.94
G.C.B. Robson	80.67	0.86	17.03	154	19.7	32.01	577.8	49.5	9.8	39.0	2.11	3.63
Iochief...	78.14	1.58	17.15	199	16.5	29.78	578.5	50.0	9.2	38.6	3.60	2.49
Prosperity....	77.35	1.26	16.79	169	17.2	32.34	578.5	51.4	9.2	38.8	2.57	1.03
L.S.D. --. 05	1.25	0.13	F	22	1.84	1.45	--	--	N.S.	N.S.	0.50	0.27

[^0]Table 4. Quality Evaluation of Fresh, Canned, and Frozen Sweet Corn -- 1954 Replicated Plots (values are means of eight replications)

FRESH												
Hybrid			Moisture Per cent	Cutoff Percent		Hunter color readings						
			R ${ }^{\text {d }}$			$\begin{aligned} & \text { Domina } \\ & \text { wave len } \end{aligned}$	ngt	PurityPer cent				
F. M. Cross. G.C.B. Rogers G.C.B. Robson Prosperity \qquad \qquad \qquad \qquad L.S.D. 05				72.44	$\begin{array}{r} 59.89 \\ 64.23 \\ 61.04 \\ 63.21 \\ 2.52 \end{array}$		35.38	$\begin{aligned} & 577.0 \\ & 577.4 \\ & 578.2 \\ & 578.0 \end{aligned}$		$\begin{aligned} & 48.5 \\ & 52.4 \\ & 57.5 \\ & 55.5 \end{aligned}$		
			71.19	31.40								
			70.52	31.91								
			71.70	35.16								
				2.15								
Hybrid	moisture Her cent	Pericarp Per cent	CANNED									
			Shear press Pounds	Succulometer M1s.	Hunter color readings			$\frac{\text { A.M.S. }}{\text { Color }}$	$\frac{\text { A.M.S. }}{\text { T. } \& . M_{i}}$	Panel score		
					Rd	Dominant wave length*	Purity Per cent			Eating	Appesr	
F.M. Cross.....	76.96	1.46	480	16.5	33.42	582.0	58	9.5	36.8	+0.03	+0.37	
G.C.B. Rogers..	77.42	1.15	544	22.6	29.57	582.4	49	6.8	38.0	+0.36	-0.57	
C.C.B. Robson..	77.99	1.21	544	19.8	28.12	582.6	50	6.3	37.6	+0.31	-0.76	
Prosperity.....	76.30	1.51	513	19.8	30.15	582.5	49.8	8.1	36.6	-0.80	+0.90	
L.S.D. --. 05		. 12	N.S.	2.4	2.15		--	1.15	N.S.	0.57	0.31	
				T R 0	Z EN							
Hybrid	Moisture	Pericarp	Shear press	Succulometer		ter color rea	adings	A.M.S.	A.M.S.	Panel	score	
	Per cent	Per cent	Pounds	M1s.	Rd	Dominant wave length:	Purity Per cent	Color	T.\& M.*	Eating qualityt	Appearance \dagger	
F. M. Cross....	73.73	1.53	542	11.7	32.57	581.0	60°	10.0	47.4	-0.59	+0.31	
G.C.B. Rogers..	74.76	1.36	570	14.2	31.36	581.5	54	9.0	45.9	+0.28	-0.45	
G.C.B. Robson	73.39	1.55	591	12.0	30.06	581.3	59.4	8.6	46.3	+0.83	-0.78	
Prosperity....	74.27	1.73	546	15.8	30.95	578.0	60	8.4	46.0	-0.59	+0.84	
L.S.D. - - . 05		. 12	N.S.	2.3	2.15			0.7	N.S.	0.69	0.38	

[^1]

(1) Key to seed sources:

Planted May 5, 1953.
(3) Multiply figures in these columns by 100 to secure number of ears per acre.
(4) Early in season, several ears were measured to secure length and diameter, and the range of variability recorded; for later varieties the system was changed, with 10 ears being measured, and the average taken, of length and diameter, for these 10 ears.
winches did dress ress
-(pənuţuo) ς əтq®む
Table 6. Field Behavior of Sweet Corn Hybrids- -1954 Single Plot Trials (2)

Table 6. Field Behevior of Sweet Corn Hybrids--1954 Single Plot Trials (2) (Continued).

\[

$$
\begin{aligned}
& \text { (2) Since these observation plots are not replicated } \\
& \text { it must be clear that yield data should not be } \\
& \text { given major emphasis, Data are presented largely } \\
& \text { to show overall characteristics and possible } \\
& \text { promise of new introductions and breeders' lines. } \\
& \text { (3) iultiply figures in these columns by } 100 \text { to secure } \\
& \text { total ears per acre. }
\end{aligned}
$$
\]

R - Fogers Bros., Seed Co., Idaho Falls, I

Table 7. A.M.S. Quality Scores and Cutoff Percentages-Single Replicate Sweet Corn Accessions 1953

Hybrid and Source	Cutoff	$\frac{\text { P.M.A. quality scores }}{\text { Frozen }} \frac{\text { Canned }}{}$				Remariks
	Per cent	Color	Maturity	Color	turit	
Seneca Warrior (Roisson)...	59.0	8	47	6	37	poor color
Seneca Arrow (Robson).....	63.5	$4-3$	32	8	37	Immature
Wisconsin Hybrid 338x316..	61.3	9	47	9	38	--
8755-3 (Crookham).	57.0	4	32	8	38	Inmature
9746-10 (Crookham)........	54.0	9	48	9	38	Small ears
Frost Gold (Hoodruff).....	50.8	10	48	10	39	Long slender ears
KVF 51-10 (Corneli).	57.3	10	49	10	38	Very good
Banquet (Crookham)........	59.0	10	46	9	37	Trouble in cutting
White Silk Iochief (Rogers)	55.5	10	49	9	38	--
Golden Harvest (Rogers)...	57.8	10	47	9	38	Large ear, big kernel
Golden Hybrid 53N (Rogers)	59.0	9	48	9	38	--
Golden Harvest (Harris)...	55.1	10	47	9	37	$\begin{aligned} & \text { Large ear, big } \\ & \text { kernel } \end{aligned}$
Golden Hybrid 52F (Rogers)	57.1	10	49	10	38	--
Golden Hybrid 1910 (Woodruff)	59.7	9	48	10	39	--
Wisconsin Hybrid 355x2604 -	58.5	10	48	9	37	Rough appearance

Of these accessions, only KVF 51 is indicated as having characteristics superior to Golden Cross Bantam.

[^0]: Eating \dagger Appear-*

 FROZEN

 0_{0}
 0
 0
 0
 0
 0
 0
 0

[^1]: * In millimicrons wave length.
 ** Agricultural larketing Service "Tenderness and Waturity" Score.
 t In this table, the lower the panel score the lower the preference for that hybrid.

