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If populations are assumed to have common covariance structures, the 
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transformation. The leave-one-out cross-validation procedure results in a rank-
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Algorithms have been developed for calculating the updated eigenstructure 
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in much faster computation of error rates, especially when the number of 

variables is large. 

The bias and variance of an estimator that performs leave-one-out cross-

validation directly on the principal component scores (without re-computation 
of the principal component transformation for each observation) is also 
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ESTIMATION OF DISCRIMINANT ANALYSIS

ERROR RATE FOR HIGH DIMENSIONAL DATA

Chapter 1

INTRODUCTION

With the advent of high-speed microprocessors, high-capacity storage 

devices, and many other technological advances, today's instrumentation allows 
the rapid collection of vast amounts of data. Unfortunately, the analysis of 
such data is hindered by theoretical and computational considerations. 
Chemists are one group who have experienced such problems, and in response 

the formal area of chemometrics (or chemostatistics) has evolved. Statisticians 
have also recognized that traditional statistical methods may fail when applied 

to large, complicated data sets, but have made little progress in developing new 

analytic procedures. These issues have been addressed in the Institute of 
Mathematical Statistics' cross-disciplinary research review (1990) and the 

American Statistical Associations' Challenges for the 90's (Spiegelman, 1989). 

In addition, differing terminologies impede understanding between the fields 

(Kowalski and Wold, 1982). 

Response-curve data are typical in chemical and other areas of research 

either as a single response measured over time or along some spatial axis or as 
an observation composed of multiple responses that have some ordinal 

relationship. The percentage of a certain chemical's retention in a certain 
substance over time would be an example of the former case, while the 
percentage of light absorbed at several different wavelengths by a certain 
substance (light absorbance curves) would be an example of the latter case. In 
both cases, the data tends to be highly dimensional and highly correlated, and 

it is not uncommon that the number of variables (responses, features) measured 
greatly exceeds the number of response curves observed. Depending on the 

questions to be investigated with the data, in the former case of repeated 

measurements of a single response, time series analysis may be the appropriate 

analytical tool. But in the latter case of multiple responses across some axis, 
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with which this thesis is primarily concerned, traditional multivariate statistical 
methods, or some variation thereof, are usually applied. 

It is not unusual for the observations to fall into distinct classification 
groups that can be observed at the time the original response curves are 
gathered. With such information available, the common goals include 
developing a model to characterize the data to gain a better understanding of 
the underlying response-curve structure and to allow for data reduction, and 
developing classification rules for future unknown observations. This will also 

facilitate the understanding of the data structure in relation to the groups. 
In developing a model to describe this data, reducing the dimensionality 

is of primary importance. Methods for data reduction and modeling are 
numerous, but in the applied literature we find the most common procedures 
employed with response-curve data (grouped or ungrouped) are principal 
component analysis and factor analysis. For grouped data in which 
discrimination is desired, this may be followed by linear discriminant analysis. 

The specifics of these procedures, however, tend to vary throughout the 

literature. This thesis reviews this practice, looks at its implications for a given 

data set, and offers computationally efficient alternatives. 

The organization of this thesis is as follows. 

In Chapter 2, the methodology and terminology of linear models, 
principal component analysis, and linear discriminant analysis are introduced. 

Additionally, the chapter reviews the literature relevant to the analysis of 
response-curve data when a response curve is an observation composed of 
multiple responses having some ordinal relationship and the curve has some 

meaningful classification that can be noted at the time of measurement. 

Chapter 3 presents a data set typical of physical and chemical 
applications, a data base of spectral reflectance curves of wood surface features. 

This data set, a collection of grouped response curves, exhibits the 

characteristics of high dimensionality and high correlation in terms of the 

original variables measured. The initial goal in analyzing this data was to 

determine a model that achieves maximal data reduction while maintaining the 

reproducibility of the original data. A secondary goal, since the type of wood 

surface feature could be observed at the time of the spectral reflectance 



3 

measurement, was to develop classification procedures and to determine to the 
regions of the spectrum that were the most discriminating. 

A review of the literature, the analysis goals, and a preliminary 

statistical analyses of the data set led to the application of principal component 
analysis followed by linear discriminant analysis. However, the problem of 

estimating discrimination misclassification rates (error rates) with the reduced 

data arises. In particular, performing the cross-validation estimation procedure 
for error rates requires re-calculating the principal component decomposition 

and discriminant functions of the training sets, a very lengthy process. The 
alternative is to perform the cross-validation procedure on the principal 
component scores without re-calculation of the principal component 

transformation. These statistical analyses of the spectral reflectance data are 
reviewed in Chapter 3. 

If common covariance structures between populations are assumed, the 

pooled covariance matrix may be used for decomposition in principal 

component analysis. The leave-one-out cross-validation procedure results in a 
rank-one change in the pooled covariance matrix for each observation left out. 
Algorithms have been developed for calculating the updated eigenstructure 
under rank-one changes, and in Chapter 4, one particular algorithm is 

incorporated to calculate the orthogonal decomposition of the updated pooled 

covariance matrix. Use of the algorithm results in much faster computation of 

the estimated error rates, especially if the number of original variables is very 

large. The parallelism employed in the algorithm is another advantage as 
computers employing parallel processing become more widely available. 

Chapter 5 gives a more detailed comparison of the error rate estimators 
for the wood data set under varying conditions, including changes in the 
number of variables in the spectral reflectance curve, the number of principal 
components kept for discrimination, the number of groups (wood surface feature 

types), and the number of observations (sample size). 

In Chapter 6 the faster alternative of performing leave-one-out cross-

validation directly on the principal components without recomputating the 

principal component analysis for each observation is compared to the rank-one 

procedure. The bias and variance of the estimators is investigated using 
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simulated normally distributed data that exhibits characteristics similar to the 
observed spectral reflectance data. 

Chapter 7 summarizes the findings of this thesis and offers suggestions 

for further research. 
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Chapter 2

LITERATURE REVIEW

Usually when first analyzing a data set, the simplest statistical 
procedures are used unless there is an indication prior to the application of the 

procedures that the assumptions for their use are violated. After the simple 
procedures have been applied, the results may indicate that more complicated 
procedures are necessary for the proper evaluation of the data. Such is the case 

in the applied literature for the analysis of response curves. 

General Methodology Linear Model 

Consider having a population of response curves that are measurable by 

some means at a fixed set of points. It is possible to characterize a random 

curve from the population by the random vector x = [x1 x2 xj,]' where xj, 

j=1, 2, , p, are the individual measurements at the points represented by j. 

Unless the researcher has a particular nonlinear model in mind for describing a 
response curve, it is commonly assumed x can be represented by a multivariate 

linear model, not only because of the linear model's simplicity but because 

examination of its residuals may show the assumptions underlying its use are 

being violated and, hence, suggest a more complicated model. 

Specifically, let the linear model for x be expressed as 

x G -y + = gk + (2.1) 
k=1 

where m < p, 'Y = [71 72 -yj is a parametric vector, c [ci E2 Ep] is 

the residual vector, and G = [ g1 g2 gm ] with gk = [ gk(1) gk(2) 

gk(p)Y. The gk( ) may represent polynomial functions, trigonometric functions, 

or some other suitable functions that depend on the nature and structure of the 

response curve. In this context, the gk( ) are referred to as basis functions, and 

the response curve is just a linear combination of these basis functions. 

Examples in the literature for modeling optical response curves include 

Legendre polynomials (Healey and Binford, 1987), band-limited trigonometric 
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functions (Stiles et al., 1977), unit step functions (Stiles and Wyszecki, 1962) 
and empirical orthogonal functions (Cohen, 1964). Moon and Spencer (1945) 
appear to be the first to have used polynomials for this purpose but it is 
unknown what type of polynomial basis functions they used as they only 

reported their polynomial coefficients. 

Typically, a sample of n observations X = [ xl x2 ] i, where each 

; is a response curve, is gathered from the population of interest. This data 
can be used for estimating the model (2.1) with iterated least-square methods 

(Wold, 1966). This results in the basis functions gk( ) being estimated by the 

empirical orthogonal functions, otherwise known as the principal components. 

(In this respect, with G being considered unknown, the model can also be 

viewed as a nonlinear model.) 

Among the assumptions of model (2.1) are the additivity of the error and 

the independence of the observations (experimental units). 

Preprocessing Data Reduction and Modeling 

Methods for data reduction and modeling are numerous, but in the 
applied literature we find the most common procedures employed with response 

curve data are principal component analysis and factor analysis. Principal 

component analysis has been applied to spectral reflectance curves (Cohen, 
1964, Maloney, 1986, Healy, 1989, and Tominaga and Wandell, 1989, Parkkinen 

et al., 1989), radiation curves of paper (Grum and Wightman, 1960), spectral 

response curves of neurons in monkeys (Young, 1986), spectral densities of 

patches of color film (Morris and Morrissey, 1954), spectral irradiance curves of 
daylight (Judd et al., 1964), absorbance curves (Rao, 1964, Cochran and Home, 
1977), transmittance curves (Parkkinen and Jaaskelainen, 1987), mass spectra 

(Rozett and Peterson, 1975, 1976, Justice and Isenhour, 1975, Hoogerbrugge et 

al., 1983), motor torque over time (Church, 1966), and so on. Simonds (1963) 
appears to have laid much of the foundation for many of these applications 

when he described the use of principal component analysis for hypothetical 

photographic and optical response curves. 

In the chemical literature, we are likely to find that principal component 

analysis has been done as part of a factor analytic model (see Rozett and 

Peterson, 1975 and 1976, Justice and Isenhour, 1975, Malinowski and Howery, 
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1980, Sharaf et al., 1986), usually without distinction from the closely related 
principal factor analysis. Principal component analysis is actually a special case 

of principal factor analysis with certain constraints (see Mardia et al., 1982). 
Malinowski and Howery claim in their book Factor Analysis in Chemistry that 
before 1980 nearly 100 chemical articles had employed factor analysis, 
indicating the popularity of the procedures. These are commonly referred to as 
preprocessing techniques implying that further data analysis is likely. 

Gnanadesikan (1977) offers a nonlinear approach to principal component 

analysis, called generalized principal component analysis, that can be used when 

the data can be characterized by some nonlinear coordinate system. See Hastie 
and Stuetzle (1989) for a recent iterative approach to finding such a coordinate 
system, referred to as principal curves. Multidimensional scaling offers yet 
another nonlinear data reduction method by describing the data set in terms of 
a distance matrix which is analyzed by either a metric or nonmetric technique. 

The distances need not be Euclidean distances; they may represent 

dissimilarities or similarities between objects. With Euclidean distances, 
however, the classical multidimensional scaling approach essentially yields the 

linear method of principal component analysis. See Mardia et al. (1982), 

Gnanadesikan (1977), or Green (1978) for mathematical formulations. 

General Methodology Principal Component Analysis 

Principal component analysis offers data reduction, the ability to find 
linear combinations of the original variables with relatively large (or small) 

variability, and, in the single population case, the ability to transform 
correlated variables into uncorrelated ones. The extension of principal 
components to more than one population will be discussed later. Following the 
terminology of Mardia et al. (1982), assume we have a random vector x = [x1 x2 

xp]' from some population with mean p and covariance E. The principal 
component transformation is defined as 

Y= fl ' (x p) (2.2) 

where /3 is a pxp orthogonal matrix (1313' = /3'/3 = I) such that E = /3A /3' where 
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A = diag()1, A2, , Ap) with Al > A2 > > Ap > 0. Define 

,3], then the i-th principal component of x is/3 = [th /32 

Yt = (x 

or, sometimes (without mean adjustment), 

(2.3)yi /VP = /3ix 

The column vector /3, is referred to as the i-th vector of principal 

component loadings. In this construct, the principal components are 
uncorrelated, the variance of the i-th principal component is the eigenvalue Ai, 
and no standardized linear combination of x has a variance larger than Al. The 
linear combination a'x is a standardized linear combination when E ail --,- 1. 
Verification of these properties and additional properties may be found in 

Mardia et al. (1982). It should be noted that principal components are not 
scale invariant; the random vector x measured on a different scale is likely to 

have another principal component transformation. 

The principal components of a sample are defined in a manner analogous 

to the principal components of a population. Define the sample data matrix 

from the population as 

X = [x1 x2 xn] (2.4) 

where each p-vector xi is an observation and n is the number of observations 

from the population. Now, in the above, replace E by some statistic 2 which is 

symmetric and positive semidefinite. Then just take the spectral decomposition 

of 2, which is say VDV' where V = [v1 v2 vp] is the matrix of eigenvectors 

and D = diag(d1, d2, , dp), d1 > d2 > > dp , is the diagonal matrix of 

eigenvalues. 

Under the assumptions of population normality and positive definite 

covariance structure, the maximum likelihood estimates for the population 
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eigenvalues and eigenvectors are those obtained from the spectral decomposition 
of the unbiased sample covariance matrix, S (Flury, 1988). Note 

Yc)/ = VDV/=Edvvi (2.5)S= 1 t (xi jt)(xi k k k 
n 1 i=1 k = 1 

where 

E Xi 

x = i=1 (2.6) 
n

is the sample mean and n is the number of observations. The k-th sample 
principal component (without adjustment for the mean) can be written as 

lik = XV k 

If, say, r population characteristic roots (eigenvalues) are the same, there are 
some modifications (Flury, 1988). In this situation, the eigenvectors associated 

with the equal eigenvalues can be chosen arbitrarily as long as they are 

orthogonal to each other and span an r-dimensional subspace that is orthogonal 
to the remaining eigenvectors (that are associated with the distinct 

eigenvalues). 

Data reduction and modeling in principal component analysis is achieved 

by writing each observation as a linear combination of the empirical functions, 

or eigenvectors of E, 

xi = E vkuki ei 
k = 1 

where uki is the i-th element of the k-th principal component vector and q < p. 
One attempts to choose q such that the remainder, ;, can be considered noise. 

Variations and Extensions of Principal Component Analysis 

For the single population case with little or no distributional 

assumptions, the choice of t in principal component analysis varies throughout 

the literature and may depend on the actual application. In addition to the 
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variance-covariance matrix, the correlation matrix is a popular choice since it is 

the variance-covariance matrix of the standardized variables. A standardized 
variable is the column of observations corresponding to the variable of interest 

divided by the appropriate standard deviation. If variables are measured on 

different scales or there are large differences in the variables' variances, 
performing principal component analysis on the correlation matrix will remove 
the influence of scale. As Green (1978) points out, other sum-of-product 
matrices that can be decomposed include the raw sums-of-squares and cross-

products, and the mean-corrected sums-of-squares and cross-products. 

For several populations, principal component analysis is not as well 

defined as in the single-population situation. Assuming a common covariance 

structure for the populations simplifies matters somewhat, but there remains 
the decision of what estimator of E ( = El = = Eg) to use. The maximum 
likelihood estimator of E, S = E n3S,/n with n = E n3, is a reasonable choice 
(Krzanowski, 1984). Anderson (1984, p. 405) derives this estimator for the 

likelihood ratio test of equal covariance matrices. Because this estimator is 
biased, however, other statisticians prefer the unbiased estimator (given in 2.8) 
(Manly and Rayner in likelihood ratio tests, 1987, and Flury, 1988). Other 
linear combinations of single population estimators may be used, such as the 
within-group sums-of-squares and cross-products matrix or some type of pooled 

correlation matrix. 

If modeling is of less importance than data reduction and retainment of 

among-group variation for discrimination, then decomposition of the total sums­

of-squares and products matrix, or some variant thereof, may be a more 
suitable approach. Hoogerbrugge et al. (1983) uses the total covariance matrix 
in preprocessing before discrimination; Rao (1958) suggests this alternative in 
testing mean differences between groups; and Church (1966) also uses total 

variation in his analysis of response curve data. Taking single observations 
from identifiable groups do not allow estimation of within-group variation; in 

this case, the overall variation is the only alternative. For the illustrative 
example in Chapter 3, modeling the within-group variation is more important 
and the within-group variation dominates any of the between-group variations. 

The application of principal component analysis when other relationships 

besides equality are assumed between population covariance matrices has been 
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investigated by several researchers. Krzanowski (1979), apparently the first to 

publish on this subject, mathematically compared principal component 
subspaces between groups to obtain a measure of similarity. Flury (1988), who 
has summarized much of his and others' work, constructed a hierarchy of 
covariance matrix relationships that includes proportionality, common 

eigenvector structures, and partially common eigenvector structures. Although 
the theoretical work for the common principal component model (ie., common 
eigenvector structures) appears well-founded, the results for the proportional 

and partially common eigenvector structures are based on approximations from 
the common principal component model and are still under investigation. 
Flury's methods are developed with the assumption that the sample covariance 
matrices have a Wishart distribution (as in the case of normal i.i.d. 

observations). 

Following his order-of-covariance-matrix relationships, Flury (1988) 

partitions the likelihood ratio statistic to test structural associations between 

covariance matrices. Manly and Rayner (1987) similarly break down the 
likelihood ratio test according to a somewhat different hierarchy. 

Graphical comparison procedures as well as formal tests for the equality 

of covariance matrices exist. Seber (1984) provides a good discussion. The M-
test, an unbiased version of the likelihood ratio test based on multivariate 
normal distributions, compares generalized variances of the individual groups to 

the generalized variance of the pooled groups. Generalized variance is 

mathematically defined as the determinant of the covariance matrix. 
Unfortunately, the test is well-known to be nonrobust because of its sensitivity 
to nonnormality and kurtosis; also, the test was developed for populations with 
positive definite covariance matrices. See also Anderson (1984). 

Seber (1984) also describes graphical procedures for examining equality 
of covariance matrices. These include comparisons between groups of traces or 

determinants of the corrected sum-of-squares matrices and comparisons between 

groups of the transformed distinct elements of the covariance and correlation 

matrices. The latter procedure becomes prohibitive as the number of variables 

increases. 

If no covariance relationships between groups are assumed, then one 

proceeds as if the population covariance matrices are unequal. In such 
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instances, one should analyze using separate principal component models, one 
for each group. SIMCA, a supervised learning procedure popular for analyzing 
chemical data (to be discussed later), employs such disjoint principal 
component models. Under the assumption of equal covariance matrices, such a 
scheme would fail to utilize all available information and would require more 
data since more parameters must be estimated. 

Data Reduction With Principal Component Analysis 

Data reduction in principal component analysis can be achieved as 

outlined earlier by choosing a number of the first components, q, that is fewer 

than the original number of variables, p (i.e., q < p). This is based on the fact 
that the smaller components contribute less towards the total variance than do 
the larger ones, implying that the variation explained by the smaller 
components is of less importance and essentially noise. Total variance is 
mathematically defined as the sum of the variances of all variables or, 

equivalently, the trace of the covariance matrix. In principal component 
analysis total variance is given by the trace of the matrix that is decomposed 
and, depending on the choice of matrix, can have different interpretations. 
Data reduction should not be attempted if small components contribute 
substantially. 

Assuming the sample eigenvalues are in decreasing order, d1 > d2 > 
dp, many procedures for the selection of q exist, including 

(i) choosing q by Cattell's scree test, which plots the eigenvalues (or 
their contribution to total variation) in decreasing order. An 'elbow' in the 
plot, i.e. where the change in the ordered eigenvalues takes a noticeable jump, 

indicates the number of components, q, to keep. (Mardia et al., 1982, Green, 
1978, Malinowski and Howery, 1980) 

choosing q so that E di / E di > a, where the di are the observedE(ii)

ordered eigenvalues and a defines some percentage. (Mardia et al., 1982) 

(iii) choosing the maximum q so that min {dq} > d (Kaiser's 
criterion), where dq is the observed q-th ordered eigenvalue and d is the average 

of all the eigenvalues. (Mardia et al., 1982) 
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(iv) choosing q so that the test of the hypothesis H: Aq = )tq +1 = = ''p 
fails (known as isotropy test, Barlett's sphericity test, Barlett's test of 
homogeneity). This test is usually applied sequentially. (Mardia et al., 1982, 
Flury, 1988, Green, 1978) 

(v) choosing q using PRESS, predicted residual sum of squares (Wold, 

1978, Krzanowski, 1987). 

With the exception of Barlett's test, these tests are rather subjective. 

In the factor analysis literature there exist many more tests for determining the 
dimensionality of the factor space (see Malinowski and Howery, 1980, pp. 72­

86). All are developed for the single-population situation and thus do not 
consider that smaller components may carry discriminating information. These 
above tests will be explored for a grouped-data example in Chapter 3. 

The PRESS statistic is generally a measure of prediction error associated 
with a particular principal component model. The PRESS statistics for 
different models are then compared by an F-test or other ratio criteria. Wold 
(1976, 1978) and Krzanowski (1987) have both proposed using cross-validation 

in calculation of the PRESS statistics, although their application of cross-
validation differs. Wold (1976) initially introduces what is called the single-

cross procedure (Stone, 1974) followed by a double-cross procedure (1978). 

Krzanowski has suggested that only a single element of each observation be 

withheld for the cross-validation. 

Measurement of response-curve data can be costly and principal 
component analysis can also be used to identify redundant variables. It is 
unknown how the methods of variable elimination using principal component 

analysis would perform for highly correlated response curve data. The method 
of elimination based on removing the variables most heavily weighted in the 
low-order components is likely to be unstable and yield results incompatible 
with instrumentation (since many instruments only work for equal interval 

sizes). Furthermore, in the presence of group structure the choice of estimator 

for E would probably affect variable exclusion, and either help or hinder 

discrimination. 
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Supervised Learning 

If the data has distinguishable groupings, it is likely the researcher will 
want to develop discrimination rules not only to gain a better understanding of 

the underlying data structure, but to determine if more or fewer measurements 
(variables) or observations (sample size) should be made and to allocate future 
unknown observations. With groups known a priori, one of the most common 
and simplest methods for classification is linear discriminant analysis. The wide 

availability of statistical software (SAS, SPSS, Statgraphics, BMPD, etc.) and 
the procedure's simplicity contribute to its popularity, not necessarily its 
appropriateness for a particular problem. 

General Methodology Linear Discriminant Analysis 

Suppose there are g distinct groups of r-dimensional populations each 

with an associated probability density f3( ) and it is desired to classify an 

unknown observation x = (x1, x2, , xr) based on its measurements. 
Discriminant analysis is the development of rules separating Or into disjoint 

regions such that any point x is assigned to the group k with the highest 
probability of occurence in the region containing x, that is, k such that 

fk(x) = max f (x).
j 

If the populations are known to be normally distributed with means /13 
and common covariance E (El= E2 = = E9), the maximum likelihood 

discriminant rule allocates x to the group which minimizes the square of the 

Mahalanobis distance 

D2 = minx , )1 1 (x µj). (2.7) 

Note this requires E to be nonsingular; if E is singular then this rule must be 
modified by replacing the inverse of E with a generalized-inverse of E (Rao and 

Mitra, 1971, p. 204). This rule establishes linear boundaries separating the 

groups; if the populations have different covariance structures (Ei Ej for 

some i # j), then the boundaries should be quadratic since the intersecting 
contours of the covariance structures will be nonlinear. 
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Suppose the population parameters, pi, j = 1, 2, g, and E, are 
unknown, but n3 observations are observed from each population j, j = 1, 2, 
g. The sample maximum likelihood discriminant rule is the maximum 
likelihood discriminant rule with the unbiased estimators 3-5 and 

E (n3-1) Si
=1 

S (2.8)n g 
of pi and E, respectively, substituted into (2.7). S is called the pooled or 

within-group covariance matrix. For the special case g = 2, the sample 
maximum likelihood rule simplifies, classifying an observation x as coming from 

population 1 if and only if 

W(x) = (Xi 7C2)1 1 (x + X2)) > 0. (2.9)
2 

See Mardia et al. (1982). 

Linear discriminant analysis provides a discriminating model of the data; 

that is, it gives us a representation of the data in a way such that the ratio of 
the between-group variation to the within-group variation is nearly maximized 

for each pair of groups. In fact, this is the criterion for Fisher's linear 
discriminant functions, a heuristic, nonparametric approach to discriminant 
analysis. The sample maximum likelihood discriminant rule for multinormal 

populations with equal covariance matrices and Fisher's linear discriminant 
functions will be similar if the sample group means are nearly collinear; they 
will be equal if the sample group means are exactly collinear (Mardia et al., 
1982). Prediction of the original observations (excluding the classification 
variable) from a discriminating model is unlikely to perform well; another 

method of modeling should be used for this purpose. 

Alternatives to Linear Discriminant Analysis 

Linear discriminant functions are the basis of Nilsson's linear learning 

machine (LLM), a supervised learning method of pattern recognition, used by 

chemists and others (Nilsson, 1965). Other supervised learning techniques 

common in the chemical literature include K-Nearest Neighbors (KNN), 
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SIMCA, and the more generalized Bayes classification analysis, of which linear 
discriminant analysis is a special case. Neural networks, which have evolved 
from Nilsson's LLM, are gaining popularity as pattern classifiers as software 

availability increases. 

SIMCA is an acronym for many things including Soft Independent 

Modeling of Chemical Analogy, Statistical Isolinear Multiple Components 

Analysis, SIMple Classification Program, etc. See Wold and Sjostrom, 1977, 
and Kowalski and Wold, 1982. SIMCA was put forth by Wold (1976) when he 
described the suitability of separate principal component models for purposes of 
modelling and classification for applications in chemistry and biology. Others 
in pattern recognition had proposed disjoint principal component models for 

classification, but it was Wold who brought the idea to the chemical 

community. For each group a separate principal component analysis is 
performed; a new observation is then classified based on smallest residual fit. 

No relationships between groups are assumed. SIMCA is very similar to the 

subspace method used by Parkkinen and Jaaskelainen (1987) for their 
classification of transmittance curves and reflectance curves. 

Data Reduction Prior to Classification 

Besides prediction, other reasons that modeling should precede 
classification analysis are that response curve data tend to be highly correlated 

and that the ratio of variables to observations may be greater than one 
(Hoogerbrugge et al., 1983). Applying linear discriminant analysis to this type 
of data will result in unstable discriminant function estimates since the 
discriminant function depends on the inverse of E. Rao and Mitra (1971) 

address this problem by suggesting that the null space of E be considered. 

Some authors have promoted the use of more robust estimates of E in 
the linear discriminant function, usually based on the assumption that 

insufficient sample sizes relative to dimensionality produces poor results (and 

thus outliers are overly influential, see Peck and Van Ness, 1982, Rand les et al., 

1978). Friedman's regularized discriminant analysis (1989) is also established 

along these lines. 
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Cheng et al. (1992) suggest a rank decomposition method for addressing 
the problems of singularity of the sample covariance matrix in the calculation of 
Fisher's discriminant functions. They compare this to generalized-inverse and 
perturbation methods. Biscay et al. (1990) introduce modified Fisher's Linear 
Discriminant Analysis which uses a metric that combines Euclidean distance (in 

principal component space) and Mahalanobis distance (in space orthogonal to 
the principal component space). 

Kshirsagar et al. (1990) outline two-stage discriminant analysis, which 

divides variables into smaller groups such that sample size is greater than the 
number of variables. They calculate discriminant functions on these smaller 
groups, then combine them for an overall discriminant function. One problem 
in applying this method to spectral data would be the division of the variables 
into smaller groups. However, the authors do provide a good discussion of the 
application of principal component analysis prior to linear discriminant analysis. 

Discriminant Analysis Error Rates 

The maximum likelihood discriminant rule is actually a special case of 
the Bayes discriminant rule when prior probabilities of classification are equal. 

In this context, posterior probabilities of classification and misclassification 

associated with allocating a random observation to a particular population can 
be discussed. For further information about the Bayes discriminant rule see 

Mardia et al. (1982). Posterior probabilities of misclassification, also referred to 

as error rates, help judge the effectiveness of classification or discriminant rules. 
They are estimated by various techniques including resubstitution, cross-

validation, and bootstrapping, among others. Commonly, the probabilities of 
misclassification for the populations are assumed equal and an overall estimate 
of the probability of misclassification is reported as a general measure of the 
performance of the discriminant functions. 

Resubstitution estimates the probability of misclassification for a 

population by the proportion of observations from that population which when 
substituted into the sample discriminant rule are allocated to another 
population. The resubstitution estimate is called an apparent error rate. This 
method tends to be overly optimistic, that is, biased towards zero. 
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Cross-validation and bootstrapping are sample re-use methods; they 
calculate the estimates by using portions of the original sample. Cross-
validation repeatedly divides the original sample into two exclusive groups. For 
one group, the training set, the discrimination rule is calculated, and then the 
observations in the second group, the evaluation set, are classified by this 

discrimination rule. The observations in the evaluation set then become 
members of the training set, while a set of observations in the training set that 

have yet to be classified become the new evaluation set. The discriminant rule 
is re-calculated on this new training set, and the members of the new evaluation 

set are allocated according to this rule. This process of evaluation is repeated 
until all observations in the sample have been classified. The estimates of the 
posterior probabilities of misclassification are calculated by the percentages of 

observations that have been misallocated. When the second group is of size 
one, this method is referred to as the leave-one-out method. 

Subtracting from the resubstitution estimate an estimate of its bias gives 
the bootstrap estimate. The estimate of bias is obtained by resampling: many 
samples, each of size n, are taken from the original sample and for each an 

estimate of the bias is calculated; these estimates are averaged over all the 
samples to get an overall estimate. 

Error rates, or probabilities of misclassification, are computed for 

classification rules to determine the effectiveness of a particular rule for 

separating groups in a data set and to compare among the different rules. The 
sample re-use methods of cross-validation and bootstrapping are generally 

acknowledged to be better estimators of error rates than resubstitution 
(Snapinn and Knoke, 1988); however, these procedures are computationally 

intensive, especially with a large number of variables and/or a large number of 

observations. Although bootstrapping appears to be the better estimator, cross-
validation is computationally less expensive in terms of time and complexity 
and, thus, is often the method of choice. The bootstrap estimator is due to 
Efron (1979), while the leave-one-out cross-validation estimator is credited to 

Lachenbruch (1967) and Lachenbruch and Mickey (1968). Snapinn and Knoke 

(1988) provide a nice review, as well as comparison, of many misclassification 

error rate estimators. 



19 

When performing discrimination analysis on the principal components it 
should be noted that components associated with the most variation are not 
necessarily the best discriminators. Common forward variable selection 
procedures in discriminant analysis are outlined in Habbema and Hermans 
(1977). These include Wilk's Lambda (U statistic), the F statistic, and 
maximal estimated correct classification rate. Variable selection will be 
explored for the spectral data set with Wilk's Lambda and the minimal 
estimated error rate, since the U and F statistics are essentially equivalent for 

variable selection. 

Rank-One Methods 

Since the leave-one-out cross-validation estimator of the linear 

discrimination's error-rate is commonly used by practioners (because of its 
properties and wide availability), it was desired to investigate its 
appropriateness for data that has previously been reduced by principal 
component analysis. The principal component transformation, however, uses all 
of the data, while the cross-validation principle is to remove the influence of 

subsets of observations. To prevent the introduction of bias into the estimator, 
then, the principal component transformation should be recalculated prior to 

the calculation of the discriminant functions. 

As noted the leave-one-out cross-validation procedure results in a rank-

one update in the pooled covariance matrix. This update in the pooled 
covariance matrix when an observation is deleted has been noted recently by 

Friedman (1989) in his treatise of regularized discriminant analysis, although 
earlier references are likely to be found. 

If all components up to a certain number are used in the discriminant 
analysis, the process of re-evaluation of the principal component model minus 
one observation may be sped up with a sequential procedure developed by H. 

Wold (1966) in addition to the rank-one methods by Bunch et al. (1978) alluded 

to in Chapter 1. The structure of the rank-one procedure allows the 
recalculation of components independent of each other; components unnecessary 

for discrimination do not have to be recomputed. This independence also 

allows for parallelism, which has been exploited by Cuppen(1981) and Dongarra 

and Sorensen (1987), in their treatment of the symmetric eigenvalue problem. 
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Surely it will outperform sequential methods in parallel processing 
environments. 

Many researchers have taken advantage of the rank-one procedure of 
Bunch et al. In statistics, as mentioned earlier, Krzanowski (1983, 1986, 1987) 

and Eastment and Krzanowski (1982) have used the algorithm in the 

computation of the PRESS statistic for determining the number of components 
to keep and for variable selection in principal component analysis. In signal 
processing, where data covariance matrices are modified adaptively for time-

varying signals, De Groat and Roberts (1990), Schreiber (1986), and Yu (1991) 

have made use of the Bunch et al. rank-one updating procedure; only zero-mean 
processes were considered. And in chemistry, Hemel and van der Voet (1986) 
applied the rank-one procedure in their development of software of multivariate 

classification techniques in chemistry. Specifically, the procedure was used for 
the evaluation of the leave-one-out cross-validation estimators in SIMCA, but 
the authors do not mention how the algorithm is actually implemented. 
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Chapter 3

APPLICATION OF CROSS-VALIDATION ESTIMATION

The data to be analyzed in this thesis, spectral reflectance curves of 

Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] veneer clear wood, were 

obtained as part of a project to develop better color scanning systems for the 

wood products industry. A wood surface's spectral reflectance is the primary 
element affecting its color as described in Brunner et al. (1990). The 
researchers on the project have studied the color of Douglas-fir veneer in three-
dimensional color spaces, such as RGB, Yxy, Lab, etc., that are common to 
optical scanning systems (Brunner et al., 1990, Brunner et al., 1992, Maristany 
et al., 1991, and Maristany et al., 1992). To remove the influences of lighting 

and camera sensors of the machine vision system on the colors observed in the 

three-dimensional color spaces, it is necessary to study spectral reflectance 

curves. 

Establishing a database (a large collection) of observed curves will aid in 
the development of more effective optical scanning systems by allowing 
researchers to see the affects in three-dimensional color spaces of hypothetical 

lights, camera sensors, and filters. In addition, modeling the curves will give a 

more basic understanding of the true color of wood. 

Clear wood, that is, wood devoid of defects, such as knots, pitch streaks, 
pitch pockets, fungal stain, and other irregularities, usually exhibits distinct 

growth traits. As a tree ages the inner cells of the stem eventually die, forming 
heartwood, while new, living cells grow around the outer circumference of the 
stem, forming sapwood. The heartwood cells are chemically and physically 
different than the sapwood cells; the former containing extractives (various 
phenolic substances) and the latter containing sugars, starches and fats. The 

extractives give Douglas-fir heartwood a characteristic pinkish color, while the 

Douglas-fir sapwood is a less distinctive yellow-white. 

Tree growth is fastest in the spring, producing large, relatively thin-

walled cells (earlywood), while smaller, thick-walled cells are formed in the late 

summer (latewood). These alternating bands of thick and thin walled cells are 
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called growth rings, or annual rings, and are visibly evident in the cross-section 
of most wood species. The difference in cell wall thickness between the 
earlywood and latewood is thought to affect brightness (luminance) as opposed 
to true color (chromaticity), especially in sapwood. This would be seen as an 

overall shift in the spectral response curve rather than a change in shape. In 
most veneers the transition between earlywood and latewood is more gradual 

and less obvious because veneers are taken from the tangential surface. A more 

general discussion can be found in Panshin and de Zeeuw (1980) and a U.S. 

Forest Products Lab report on wood as engineering material (1974). 

From a preliminary experiment, 50 response-curves (spectral reflectance 

curves) were obtained from each of sapwood earlywood, sapwood latewood, 

heartwood earlywood, and heartwood latewood of a single Douglas-fir veneer 

specimen. The locations of the observations on the specimen were randomized. 

Typical curves are illustrated in Figure 3.1(A)-(D). Theoretically, the response-

curves are limited to values between zero and one, but some of the observed 
curves exceed one as a result of excess interface reflection within the 

measurement process. The lighting that produced this has subsequently been 

corrected but the updated data has yet to be gathered. It is anticipated the 
actual curves will exhibit characteristics very similar to those in this 
preliminary data set, so our analysis procedure should apply. 

Response-curves are not constrained to be smooth, although the spectral 
response curves of naturally occurring materials are typically smooth, that is, 

continuous-looking (Mac Adam, 1981). The smoothness exhibited by these 

curves invites the possibility of characterizing them by other means than 
principal components, such as low order polynomials or Fourier series. 
Representing spectral reflect ances by finite dimensional linear models is 

supported by many researchers, including Maloney (1986), Buchsbaum and 

Gottschalk (1984), and Stiles et al. (1977). In their work, these researchers are 
interested in developing models that approximate all natural objects well, thus, 
they do not want to completely rely on an empirical model. In contrast, 
empirical orthogonal functions seem very suitable for the goals of the project 

from which this data arose. (In fact the use of polynomial functions and 

Fourier series were investigated as bases for this particular data set, but they 
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did not perform as well in modeling the data set as the principal component 
models.) 

Descriptive Statistics 

Although earlywood and latewood occur within heartwood and sapwood, 

the groups will be treated individually; nested designs are beyond the scope of 

this thesis. Define the data matrix for the j-th group, j = 1, 2, 3, 4 for sapwood 
earlywood, sapwood latewood, heartwood earlywood and heartwood latewood, 

respectively, as 

Xi = [ X1 i X23 Xni, .1 

where n3 is the number of observations for this group (as in (2.4)). The p-
dimensional vector defines the i-th response curve from the j-th group with 
each element of the vector corresponding to the observed percentage of spectral 

reflectance at a particular wavelength. In this chapter, p is 71, as the spectral 
reflectance, at a particular location of the piece of wood, was measured every 
ten nanometers over the range 400 to 1100 nm. 

Several observed spectral reflectance curves for each wood type are 

displayed in Figures 3.1(A)-(D). Douglas-fir wood tends to be pinkish-red; this 

is confirmed by the general shape of the curves which show less blue light 

reflectance (at the lower wavelengths) and more red light reflectance (at the 
wavelengths 600-700 nm). The variations within each group are significant, and 
are thought to be large differences in brightness and not color, as color is 
determined by the shape of the curve (Brunner et al., 1990). Researchers 

sometimes remove this excess variation by normalizing each observed response-

curve (Tominaga and Wandell, 1990, Tominaga, 1991). However, in developing 
a database, it is of interest to characterize all of the variation associated with 
the data set. Decomposition into variance components, although beyond the 
scope of this thesis, would be desirable for this type of data. 

The j-th group mean and group sample covariance are given by (2.6) 

and (2.5), respectively. Figure 3.2 shows the mean response vectors for each 

group. The general shapes between sapwood and heartwood are rather distinct; 

in the visible light range (approx. 400-700 nm) the heartwood is less reflectant 

than the sapwood owing to its darker color. The heartwood latewood does 
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appear to reflect more red and less blue than the heartwood earlywood 
suggesting there is a color difference between them; this would be visualized as 
the heartwood latewood having a more reddish appearance. The shapes of the 
sapwood earlywood and sapwood latewood mean curves of Figure 3.2 are less 

distinct from each other, with the exception of the sapwood latewood reflecting 
more red and near-infrared light than the earlywood. 

The standard deviations of spectral reflectance at each wavelength are 
presented in Figure 3.3. Albeit these figures do not illustrate the relationships 
between spectral reflectances at different wavelengths, they show the 

commonality between the variance structures of the groups of wood. The 

standard deviations show an increase and then level off between 4 and 6 with 

several peaks near the same wavelengths. 

Constant variance is a desirable trait as no spectral reflectance at a 
particular wavelength or band of wavelengths will be overly influential in the 

decomposition of the covariance matrix. Although this can be achieved by 
standardization with decomposition of the correlation matrix, a simple one-to­

one transformation of the data vector ;3 would be preferred, especially since 

the spectral reflectance is measured on the same scale across wavelength. 
Figures 3.4(A) and (B) demonstrate the effects of simple transformations, such 
as the logarithm (3.4A) and square root (3.4B), of the response-curves (non­

percentage data) on the standard deviations. In addition other transformations 
of the curves were explored, but in no case did the variance achieve nearly 
complete constancy across the spectrum. 

Test for Equality of Covariance Matrices 

Several tests for the equality of covariance matrices were briefly 

described in the literature review of Chapter 2. The M-test for equality of 
covariance matrices among populations, or any of its approximations, should 
not be used in this situation as the sample covariance matrix for each wood 

group is singular. This is a result of having fewer observations in each group 

(50) than observed variables (71). 

The graphical procedure based on the traces of the mean-corrected sum­

of-products matrices falling on a straight line indicates the covariances are 

somewhat similar. Using the actual reflectances (as opposed to the percentage 
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reflectance) to avoid problems of scale, the traces of the mean-corrected sum-of­

products matrices are 9.3512, 11.9040, 11.3450, and 8.8330 for heartwood 

earlywood, heartwood latewood, sapwood earlywood, and sapwood latewood, 

respectively. These are ordered and plotted against quantiles of the gamma 
distribution with an estimated shape parameter 63.0 and scale parameter 6.1 
(see Figure 3.5(A)). The graph illustrates that the ordered values fall relatively 
close about a straight line. 

A similar graphical procedure based on the geometric mean of the 

positive eigenvalues of the mean-corrected sum-of-products matrices also 

illustrates the similarity of the covariance matrices. The geometric means of 
positive eigenvalues of the mean-corrected sum-of-products matrices are 1.0289, 

1.1937, 0.9471, and 1.0791 for heartwood earlywood, heartwood latewood, 

sapwood earlywood, and sapwood latewood, respectively. In Figure 3.5(B), the 

estimated gamma distribution has a shape parameter of 143.4 and scale 
parameter of 135.0. This graph illustrates that the ordered values fall almost on 
a straight line giving a stronger indication of the similarity of the covariance 

matrices. 

The preceding graphical procedures compare only a part of the 
covariance structures, that is, they examined only the magnitudes the of 
eigenvalues without looking at the directional aspects (eigenvectors) of the 

structures. It should also be kept in mind that only four points are being 
compared. 

Principal Component Analysis 

Although only 50 spectral reflectance curves were observed per group, it 

is still possible to decompose the individual group covariance matrices Si of 
(2.4) as would be done following SIMCA. It should be noted, however, that in 
the context of modeling, the number of parameters being estimated far 
outweighs the amount of independent information available. It is probably wise 

not to place too much emphasis on these analyses. 

Eigenstructure plots (i.e., scree plots and eigenvector plots) for each 

wood group are given in Figures 3.6 through 3.9. The eigenvalues and 

eigenvectors, although not identical for each group, reveal likenesses such that 

the violation of the assumption of equal covariance matrices among groups may 
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be unimportant. In fact, the procedures for comparing population covariance 
structures suggested that the eigenvalues are similar (see preceeding section). If 

all the information is pooled together, it may provide something more useful 

than if the groups were analyzed separately. 

Geometrically, the eigenvectors can be compared using Krzanowski's 

between-groups comparison of principal component subspaces (Krzanowski, 

1979). Comparing the principal component subspaces of sapwood earlywood 
and sapwood latewood it appears that the first four to seven eigenvectors are 
very similar (see Krzanowski, 1979, for discussion of similarity). This says that 
the major sources of variation appear to be common among the two groups. 

The angle between the first eigenvectors is 4.8° (in 71-dimensional space); 

Figures 3.6(B) and 3.7(B) show that they do have similar characteristics. If the 

principal component subspaces of two dimensions are compared, they come 

within 2.1° of each other. With seven-dimensional subspaces, the subspaces are 
within 0.3° of each other. Higher dimensional principal component subspaces 

are closer, but the eigenvectors associated with the smaller variations begin to 
deviate from each other. 

Krzanowski extends this comparison of subspaces when there are more 

than two groups, such as when comparing the four groups sapwood earlywood, 
sapwood latewood, heartwood earlywood, and heartwood latewood. In this 

situation, six-dimensional principal component subspaces appear to capture 

similar major sources of variation among the four groups. With six-dimensional 

subspaces the maximum angle between the first eigenvectors of the groups and 

the vector defined as the closest to the four subspaces is 0.4°. The maximal 
deviation on the sixth eigenvector is 26.0°. 

If all of the group covariance matrices are pooled together, part of the 
resulting eigenstructure is depicted in Figure 3.10; the eigenstructure based on 
the pooled covariance matrix for the two groups of sapwood is illustrated in 
Figure 3.11. The spectral reflectances of the sapwood earlywood and sapwood 

latewood groups are much more difficult to distinguish as suggested by the 

mean spectral reflectance curves of Figure 3.2 and as analyzed later in this 

chapter. As this usually means more borderline classification probabilities, 

these wood types will be used to illustrate methods for classifying between two 

groups. 
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How well the principal component model based on common population 

covariance matrices for four groups depicts the observed spectral reflectance 
curves is displayed in Figures 3.12(A) and (B). For each graph, the solid curve 
is an observation, the dashed line represents the observation as predicted from 
the first principal component, the dotted line represents the observation as 
predicted from the first two components, and the dash-dot line represents the 
observation as predicted from the first three components. In these two 
instances, it appears that at least two components may be necessary to 
adequately predict the response curves. See the following section on the PRESS 
method for retaining components for a numerical indication of prediction. 

The variables, spectral reflectances across the spectrum, are all measured 

on a common scale and do not show excessive variation across the spectrum. 

Thus, it would be common practice to just perform principal component 
analysis on the covariance matrix (either the pooled or the total). For 
curiosity's sake, however, the correlation matrix from the pooled covariance 

matrix was also decomposed. Notice in Figure 3.13(A) the likeness of the first 
three eigenvectors of the correlation matrix to zero-, first-, and second-degree 

polynomials. 

In the remainder of this thesis, principal component analysis will be 
performed on the unbiased estimate of a common population covariance matrix, 

that is, the pooled covariance matrix of (2.8). 

Retaining Components 

The guidelines for choosing the number of meaningful principal 

components were outlined in Chapter 2. The results for the spectral reflectance 

data set are described below. 

Cattell's scree tests for determining the number of meaningful principal 
components in describing all wood types and the sapwood groups are basically 

illustrated in Figures 3.10(A) and 3.11(A), respectively. They are repeated in 
Figures 3.14(A) and (B) to show the relative contributions of the ordered 
components to the total variation. Since the first component contains over 90% 

of the total variation while the remainder of the components contributions 

decrease geometrically, these plots indicate one component should be sufficient 

in explaining the variation. 
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Below Table 3.1 gives the number of components necessary to attain a 

certain percentage of the total variation along with the actual percentage 
retained for all groups and for the two sapwood groups. 

Table 3.1. Number of Components Retained Based on Percentages. 

90% 95% 99% 99.9% 

All wood 1 (92.35%) 2 (96.84%) 4 (99.28%) 8 (99.937) 

Sapwood 1 (93.54%) 2 (97.46%) 4 (99.54%) 7 (99.93%) 

Under Kaiser's criterion, the number of eigenvalues that exceed the 
average eigenvalue is three for both the all wood situation and the sapwood 

situation. The average eigenvalue in the decomposition of the pooled 
covariance for all groups is 29.774 and in the decomposition of the pooled 

covariance matrix for sapwood is 29.004. Although difficult to visualize where 
the average eigenvalues fall because of the scale of the graphs, Figures 3.10(A) 

and 3.11(A) display the ordered eigenvalues. 

Application of the PRESS statistic following the leave-one-out scheme as 

outlined in Chapter 2 results in ten components being retained when all wood 
groups are considered and eight components when the sapwood groups are 
considered alone. Let xij be the i-th response curve observed from the j-th 
group. If )1,3 is the corresponding predicted response curve from a q-

dimensional principal component model, then the PRESS statistic can be given 

by 
n 

PRESS(q) = ;311 21 
3=1 i=1 

where g is the number of groups and n = E n3 is the total number of observed
3=1 

response curves. Notice this is the mean-squared-error. Table 3.2 summarizes 
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these average squared deviations based on progressively larger principal

component models.

Table 3.2. Summarization of PRESS(q).

PRESS(q)

q All Wood Sapwood

1 113.15 88.67

2 25.44 48.26

3 14.88 26.99

4 5.38 7.70

5 4.00 5.77

6 3.78 4.94

7 3.10 2.80

8 2.99 2.39

9 1.92 2.36

10 0.49 0.91

11 0.48 0.80

12 0.48 0.79

13 0.40 0.74

14 0.25 0.39

15 0.17 0.28

The test of sphericity based on Barlett's approximation results in about 
67 components being retained for the four groups and 66 components for two 

groups. A problem with this test is that the geometric mean, which is used in 
the denominator of the test statistic, is nearly zero. 

The results of the methods for choosing the number of meaningful 

components vary quite a bit considering the range of total variation explained 

by them. As is common with many analyses, the researcher is essentially left 

with the decision of choosing the number of components that he or she feels 
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adequately represents the data. Between two and four principal components 
probably are sufficient; with four components predictability is substantially 

improved. Several papers discussing principal component models for spectral 
data suggest that between five and eight dimensions are best (Maloney, 1986, 

Parkkinen, et al., 1987), but these researchers are concerned with a much 
broader class of spectral reflectance curves. 

The number of components retained for each of the preceeding methods 

is summarized in Table 3.3. 

Table 3.3. Number of Components Retained. 

Test All Wood Sapwood 

Cattell's Scree 1 1 

95% 2 2 

99% 4 4 

99 . 9% 8 7 

Kaiser's Criterion 3 3 

PRESS 10 8 

Test of Sphericity 67 66 

Linear Discriminant Analysis 

As stated in the Literature Review, calculation of the discriminant 
functions on highly correlated data could result in meaningless discriminators 
since their calculation depends on the inverse of the pooled sample covariance 

matrix. Figures 3.15(A) and (B) show the discriminant function for sapwood 
earlywood in both the four group and two group instances. Interpretation of 

these plots is difficult: it could be said the functions are contrasting 

neighboring values or the functions look like noise (as a result of unstable 

estimates). Based on the magnitudes of the coefficients, the method of 

calculation and the relationship of spectral reflectances at neighboring 

wavelengths, it is likely to be the latter. In fact, the condition numbers of the 
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pooled sample covariance matrices for the four wood types and the two sapwood 
types are 6.6 x 106 and 3.5 x 107, respectively. These were calculated by taking 
the ratio of the largest singular value to the smallest. 

If the data is so highly correlated that the pooled sample covariance 
matrix is near-singular or ill-conditioned, before attempting discriminant 

analysis the data should be reduced in some manner, either by eliminating 

redundant variables or transforming the set of variables. A similar situation 
arises when insufficient data has been gathered; however, because of the nature 
of this data it seems that obtaining more observations will not remove the ill-

conditioning of the estimator of covariance. This was mentioned earlier, and for 
the situation where the variables have an ordered relationship, the principal 

component transformation seems to be a logical choice. After the 
transformation and data reduction, discriminant analysis is performed on the 
new data set. For example if three principal components are chosen for 
modeling the data, the discriminant functions can be calculated based on these 
components. 

In determining the effectiveness of such a procedure, it is a good idea to 
first look at scatterplots of several of the principal components to see if pairs of 

components may have separation of the groups. Figures 3.16(A)-(E) show 
scatterplots for several pairs of the first five principal components with each 

point being labelled with the corresponding wood type. From these plots, it can 
be seen that the second component is a very good discriminator, the third 

provides some separation between heartwood latewood and the other wood 

types, and the first component does not seem to provide any discriminating 
variation at all. The fifth component also provides good separation between the 
heartwood and sapwood, while the fourth component shows some slight 
separation between the heartwood and sapwood groups. 

The discriminant functions for the four wood types based on the first five 
principal components is given in Table 3.4. Note these coefficients are based on 

the standardized principal components to help give some indication of which 

components are important for discrimination for each group. From the table, 
the coefficients show that the second and fifth principal components appear to 

be helpful in differentiating heartwood from sapwood, while the third principal 

component seems to provide additional separation between the heartwood 
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earlywood and heartwood latewood, especially in conjuction with the second or 
fifth components. Looking back at the eigenvectors of Figures 3.10(B) and 
3.10(C), this suggests that the sapwood and heartwood differ in the blue-green 
region of the spectrum (around 500 nm) and in the higher wavelengths of the 

near-infrared region (1050-1100 nm) and that they also differ in the blue and 
red regions, and that the heartwood earlywood and heartwood latewood differ 

across the spectrum especially in the contrast of the red and low near-infrared 
regions (700-900 nm) to blue-green and higher near-infrared regions. 

Table 3.4. Discriminant Functions for All Wood ( x 10-1). 

Principal 

Component SE SL HE HL 

1 0.076 0.079 0.072 0.076 
2 0.405 0.518 0.976 1.217
3 -1.202 -1.226 -1.017 -1.639
4 -3.958 -4.208 -3.318 -3.524
5 0.994 0.114 5.984 6.148 

Using the leave-one-out cross-validation estimator of error-rate, the 

group-estimated misclassification rates are 0.22, 0.38, 0.06, and 0.08 for sapwood 
earlywood, sapwood latewood, heartwood earlywood and heartwood latewood, 

respectively. The overall estimate of misclassification is 0.185. With the 
sapwood alone the estimated error-rates are 0.22 for sapwood earlywood and 
0.36 for sapwood latewood, and the overall estimate of misclassification is 0.29. 
The overall cross-validation error rate estimate for the sapwood raw data is 
0.33, that is, using the raw data without prior reduction does result in 

somewhat worse classification. Table 3.5 provides a breakdown of the 

classifications when discriminant analysis is performed for all four wood groups 

using the first three principal components. 
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Table 3.5. Wood Classifications. 

Actual Wood Classified Wood Type 

Type Sap Early Sap Late Heart Early Heart Late 

Sap Early 39 11 0 0 

Sap Late 18 31 1 0 

Heart Early 0 0 47 3 

Heart Late 0 0 4 46 

One problem encountered in arriving at these estimates is the time 
involved, since when an observation is removed the principal component 

transformation as well as the discriminating functions are recalculated. On a 
personal computer equipped with a 80386 processor and 80387 math coprocessor 

running at 25 MHz the total time for the four-group case (200 observations) was 
57.9 minutes, while for the two-group case (100 observations) was 22.6 minutes. 

The number of floating point operations required was 998 million for the former 

case and 387 million for the latter case (see next section for discussion of 

floating point operations). This is summarized as the original method in Table 
3.6 for the four groups and Table 3.7 for the two sapwood groups. Obviously 

faster alternatives, such as those mentioned in the objectives, are desirable. 

Table 3.6. Algorithm Comparisons for Four Groups. 

Flops Time Mean Absolute 
Method (million) (minutes) Error ( x 10 -4) 

Original 997 . 9 57.9 
Short-cut 6 . 3 2 . 2 3 . 7 

Rank-one Update 38.2 6 . 0 0 . 0 
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Table 3.7. Algorithm Comparisons for Two Groups. 

Flops Time Mean Absolute 
Method (million) (minutes) Error ( x 10 -4) 

Original 386 . 6 22.6 
Short-cut 4 . 2 0.5 4 . 2 

Rank-one Update 15.9 2 . 4 0 . 0 

To emphasize that the order of the principal components does not 
necessarily correspond to discriminating variation, discriminant analysis 

variable selection procedures were performed on a subset of components. If the 
first ten components are retained and forward stepwise variable selection is 
performed on them, the second, third and fifth components carry the most 
discriminating information in terms of minimizing the estimate of overall 

misclassification rate (in both the four and two group cases). In fact, using the 
second and third components for discrimination, as opposed to the first three, 

reduces the overall cross-validation estimate of error rate to 0.17 and 0.26 for 
the four groups and two groups, respectively. Forward stepwise variable 

selection using Wilk's Lambda results in the second, tenth, and first 
components being kept for the sapwood data set and the second, fifth, and third 
components for the all wood data set. 

Costs of Calculation 

From the preceding section it is apparent that faster alternatives are a 
necessity in obtaining these error-rate estimates. What follows is a general 
discussion of the number of floating point instructions and time costs involved 
in the calculation of the cross-validation error-rates estimates stated above; this 

will allow the introduction of other, faster options. 

A floating point operation (flop) is an arithematic operation such as the 

addition, subtraction, multiplication, or division of two floating point numbers. 

The number of flops required by an algorithm is one measure of its 

performance; other measurements, such as time, may give a truer image of a 
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computer implementation of the algorithm. Of course, different 
implementations of the algorithm on different computers can have vastly 
different times associated with them, whereas the measurement of floating point 

operations should be rather consistent. See Golub and Van Loan (1989) for 
further discussion. 

Suppose there are g groups from which nj observations are gathered in 
each group, j = 1, g, and that the total number of observations is n= E nj. 
Further suppose that each observation is a p-vector, and that q principal 2 

= 1 

components are chosen for discrimination. When one observation from group i 
is left out, the number of flops necessary: 

1. to calculate the pooled covariance matrix is (2n + 3g 2)p2 + 
(n 1) 4p + 3g. (See Appendix A.) 

2. to compute the eigenvalue decomposition of the pooled covariance 
matrix as implemented in MATLAB (1989), the software used for this study, is 
approximately 9p3. 

3. to calculate the principal components is 2npq. (If the total 
covariance matrix is used, as opposed to the pooled covariance matrix, then 
steps 2 and 3 could be combined by computing the singular value 
decomposition.) 

4. to estimate the posterior probability for the left-out observation based 
on the linear discriminant function is 2q3 + (2n + 5g 2)q2 + (5n + 3g 
5)q + 9g 1. (See Appendix A.) 

This must be calculated n times, once for each observation. The number 
of misclassified observations in step 4 gives the leave-one-out cross-validation 

estimate of the discriminant function's error-rate. 

Since the intention of a principal component model is usually to allow 
for data reduction by elimination of noise, from a practical point of view, steps 
1 through 3 could be computed just once and, then, step 4 calculated n times, 

once for each observation. This results in what is referred to as the short-cut 

estimator. By assuming the principal component model has no error, however, 

a small amount of bias is introduced. This will be discussed in Chapter 6. 

(Using this short-cut procedure, the number of flops necessary in step 4 can be 
reduced by using Barlett's identity (Bartlett, 1951).) 
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For the same situation with three components, as outlined in the prior 
section, the number of flops required to calculate the short-cut overall 
misclassification estimates of 0.185 and 0.3 is 6.3 million and 4.2 million for the 

all wood and sapwood cases, respectively. Only 130 and 32 seconds are needed 

to obtain these estimates, respectively. See Tables 3.6 and 3.7. 

In Tables 3.6 and 3.7 the mean absolute errors between the classification 

probabilities of each observation for this short-cut method and the original 
method are listed. Overall, the short-cut method appears to approximate the 
probabilities rather well. As a consequence, the overall misclassification 

estimates of error rate are very close to the original estimates listed in the 
previous section, with a slight difference when the two sapwood groups were 

analyzed. (These calculations were based on six digits of accuracy.) 

The number of flops in step 1 can be reduced by taking advantage of the 
fact that the pooled covariance matrix minus one observation can be obtained 
by some simple calculations from the pooled covariance matrix based on all the 

observations. This simple perturbation of the covariance matrix, which is more 
specifically known as a rank-one update in the covariance matrix, combined 
with the idea that a complete decomposition is unnecessary in step 2 allows for 

a relatively fast algorithm by Bunch et al. (1978) to be employed. The 
application of this algorithm in this context is fully described in the next 
chapter and summarized in Tables 3.6 and 3.7 as the rank-one method. 
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Figure 3.1. Spectral reflectance curves for five different sample sites of 
A sapwood earlywood, B) sapwood latewood, C) heartwood earlywood, and 
D heartwood latewood. 
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Figure 3.1. (continued) 
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Figure 3.2. Mean percentage spectral reflectance curves by wood group. The
solid, dashed, dotted, and dash-dotted lines are the mean curves for sapwood 
earlywood, and sapwood latewood, heartwood earlywood, heartwood latewood, 
respectively. 
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Figure 3.3. Standard deviations of spectral reflectance curves by wood group.
The solid, dashed, dotted, and dash-dotted lines are the standard deviation 
curves for sapwood earlywood, and sapwood latewood, heartwood earlywood, 
heartwood latewood, respectively. 
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Figure 3.4. Standard deviations of transformed spectral reflectance curves by 
wood group. The solid, dashed, dotted, and dash-dotted lines are the standard 
deviations for spectral reflectance curves from heartwood earlywood, heartwood 
latewood, sapwood earlywood, and sapwood latewood, respectively, as 
transformed by A) logarithms and B) square-roots. 
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Figure 3.5. Graphical comparisons of the group covariance matrices using A) 
the traces of the groups' sum-of-products matrices and B) the geometric mean 
of the positive eigenvalues of the groups' sum-of-products matrices. 
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Figure 3.6. Part of the eigenstructure of the sapwood earlywood group sample 
covariance matrix. A) plots the first ten ordered eigenvalues, B) plots the first 
(solid line), second (dashed line), and third (dash-dotted line) eigenvectors, and 
C) plots the fourth (solid line), fifth (dashed line), and sixth (dash-dotted line) 
eigenvectors. 
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Figure 3.7. Part of the eigenstructure of the sapwood latewood group sample 
covariance matrix. A) plots the first ten ordered eigenvalues, B) plots the first 
(solid line), second (dashed line), and third (dash-dotted line) eigenvectors, and 
C) plots the fourth (solid line), fifth (dashed line), and sixth (dash-dotted line) 
eigenvectors. 
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Figure 3.8. Part of the eigenstructure of the heartwood earlywood group sample
covariance matrix. A) plots the first ten ordered eigenvalues, B) plots the first 
(solid line), second (dashed line), and third (dash-dotted line) eigenvectors, and 
C) plots the fourth (solid line), fifth (dashed line), and sixth (dash-dotted line) 
eigenvectors. 
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Figure 3.9. Part of the eigenstructure of the heartwood latewood group sample
covariance matrix. A) plots the first ten ordered eigenvalues, B) plots the first
(solid line), second (dashed line), and third (dash-dotted line) eigenvectors, and
C) plots the fourth (solid line), fifth (dashed line), and sixth (dash-dotted line)
eigenvectors. 
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Figure 3.10. Part of the eigenstructure of the pooled covariance matrix for all 
four groups. A) plots the first ten ordered eigenvalues, B) plots the first (solid 
line), second (dashed line), and third (dash-dotted line) eigenvectors, and 
C) plots the fourth (solid line), fifth (dashed line), and sixth (dash-dotted line) 
eigenvectors. 
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Figure 3.11. Part of the eigenstructure of the pooled sample covariance matrix 
for the two sapwood groups. A) plots the first ten ordered eigenvalues, B) plots
the first (solid line), second (dashed line), and third (dash-dotted line) 
eigenvectors, and C) plots the fourth (solid line), fifth (dashed line), and sixth 
(dash-dotted line) eigenvectors. 
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Figure 3.12. Each graph, A) and B), illustrates how well an observed 
reflectance curve (solid line) is predicted from subsequent principal component 
models. The dashed line is the predicted curve using the first principal 
component, the dotted line is the predicted curve using the first two principal 
components, and the dash-dotted line is the predicted curve using the first three 
principal components. 
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Figure 3.13. Several of the eigenvectors of the pooled correlation matrix for all 
four groups. A) plots the first (solid line), second (dashed line), and third
(dash-dotted line) eigenvectors, and B) plots the fourth (solid line), fifth
(dashed line), and sixth (dash-dotted line) eigenvectors. 
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Figure 3.14. Scree plots of the first ten ordered eigenvalues from the pooled 
covariance matrix for A) all four wood groups and B) the two sapwood groups. 
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Figure 3.15. Discriminant function coefficients for sapwood earlywood based on 
the raw data from A) all four wood groups and B) the two sapwood groups. 
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versus the third, C) plot of the third versus the second, D) plot of the fourth 
versus the second, and E) plot of the fifth versus the second. 
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Figure 3.16. (continued) 
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Figure 3.16. (continued)
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Chapter 4

RANK-ONE MODIFICATIONS

Effect on Sample Covariance Matrix by Leaving Out One Observation 

Removal of an observation from the pooled covariance matrix results in 
a rank-one change in the pooled covariance matrix. Friedman (1989) states this 
without proof in his article on regularized discriminant analysis for biased 
estimators of the populations' covariance matrices. It will be shown here for 
the unbiased estimator of common covariance and shown in decomposition form 
in order to apply a fast procedure for updating the eigenstructure. 

Define the data matrix (as in Chapter 2) for the j-th group as 

Xi = [X1j X2 i Xni, 

where x23 is the i-th observed p-vector from this population and ni is the 
number of observations from this population. Then the j-th group mean and 
group sample covariance are 

nj 

i=i
£ xij

Ycj =
nj

n 
1 E k,xij xj)(xii xj)' . 

Without loss of generality suppose that the n9 -th observation of the g-th group 
is deleted. First it will be shown that a multiple of the updated group 
covariance matrix Sg is a multiple of the original group covariance matrix 
minus a rank-one matrix, that is, 

n
(ng-2) Sg = (ng-1) Sg ) (Xn X )1(xng gn g 1 'g 
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Define 

n -1 
= 1 v--,g

2.4 xin 1 :=1. g9 

= 1

n 1 (ngkg xn 
g, 

) = 1

n 1 (xng'g Xg ) 

n -1
8 = 1 

(Xi kg)( - kg)ixig
n 2 i=i g 

Then, 
n -1

(ng 2) = E (xig kg)(xig ig)i
i=i 

n -1 
1 1= E (xig kg + (xn kg))(Xig + (xn g)) 

i n 1 g'g n 9 1 g'g 

n -1
9

= E Rxig kg)(xig k g)/ + 
1 

(Xn kg)(Xn kg) / + 
gi=1 (ng- 1)2 g 1 g 

1 
(xzg kg)(Xn kg) I + 

1 
kg)(Xig kg),]\X n9'9gn 1 n 1

9 9 

n -1 
1= E (xig - kg)(x,g k )1 + (xn g) (X g)1g, g,n 1 

n -1 
91 

[ E (xi kg)] (Xn k g),n g 

n9-1 
1 

(Xn C g) [ E (xig kg)
n 1 g'g 2= 

n -1 n -1 
Rewriting E (xig g) = E Xig (n 1) kg 

i = 1 i = 1 

= n9 X9 
91 

(n9 1) k 

= (x,ig,g kg). Thus, 

n -1 
(n9 2) Sg = E (xig Xg) ( g)1

i =1

1 (x g )(Xn g X9),.
n 1 ng'g
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Add and subtract (xg,g - kg)(x - )1 to obtaing7a. 

ng ng
= E (xig rcg)(xig ytgY (xn kgYg7g kg)(Xn ,g

i =1 n 1 

ng
= (ng 1) Sg (Xngg xg)(xn k )/. (4.1)g,gn 1 

Assuming that there are g groups, let n = E nk, the total number of 
/5= 1.

observations. The pooled covariance matrix is defined as 

1 gS = E (nk Sk.n - g k =1 

The updated pooled covariance matrix is 

g 1 ng -21 c-­E (nk Sk 
n g -1 1=1 n g 

From (4.1) substitute in (ng 2) § 

1 g 1
= 

[ E (nk 1) Sk (ng Sgn- g- 1 = 1 

ng 
(x kg )(X ,g k )1] 

n 1 n9 

ng1 
[ (nk 1) Sk (Xn kg )(Xn ,gg, g YcgYin-g-1 k.1 n 1 

n -g ng 
[S kg)(Xn (4.2)n -g -1 (n g)(n 1) (Xng,g 

This shows the rank-one change in the pooled covariance matrix by the deletion 
of one observation from the data set. 



59 

It will be shown that if the spectral decomposition of S is VBV', then 

n g ng 
= [VBVI (xn kg)(xn ,g kg)11n g 1 (n g)(ng 1) 

n g ng
V [B Vi(xng,g Ycg)(xr, gY V J 

1n g (ng)(ng-1) 

n g= V [ (D pZZ') Vin g 1 

where D = B , 

Z = V1 (xTig,g kg) 

and 
ng 

P = (4.3)
(n- Mng-1) 

For the purposes of this algorithm it is computationally more efficient to keep 

the coefficient (n g) / (n g 1) on the outside of the matrix D pZZ' 

rather than multiplying it through. If the orthogonal decomposition of 

D pZZ' = Vi5V , (4.4) 

then the orthogonal decomposition of S is given by 

n g
= ( n g 1 D) V'V' (4.5) 

Algorithm for Estimating Updated Eigenstructure 

Golub (1973) presents the basic eigenproblem of finding the orthogonal 

decomposition of a diagonal matrix with a rank-one modification as in (4.4) and 

suggests several alternatives for solving it. Bunch et al. (1978) have expanded 
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on one of Golub's propositions by providing explicit computations of the

updated eigenvalues and eigenvectors. The eigenvalues of (4.4), di, i 17 P7 

have been shown to have precise bounds (Wilkinson, 1965), 

< < +1 for i 1, p 1, and 
cip < dp+pn 

The eigenvalues iii are chosen to satisfy 

det(D + pZZ' = 0 

which is equivalent to 

det(D AI) det(I+ p(D AI) 'ZZi) = 0 

when the elements (2, i = 1, p, of Z are non-zero. Since D is a diagonal 
matrix, this can be reduced, as Golub (1973) claims, to 

fi (di A) (1 +p (32 ) 0.
1.1 =1 di A 

The eigenvalues are then computed by finding the zeros of 

j2
w(A) 1+ p= 

3 = I dj 

Bunch et al. (1978) reformulate this problem to improve the precision of 
eigenvector estimates by first denoting *di = di + pvi satisfies w(iii) = 0, i = 1, 

p. The i-th eigenvalue is, thus, computed by solving wi(v) = 0 where 

w =(v) =1+ tki(v)+0,(v) 

and 

Oi(v)= EJ=1 siv 

Oi(V) = Ej =i+1 sjv 
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di d2 
bj 

Approximating functions should make use of the fact that on the interval (0, 
Si +1) the function Tki( ) is decreasing and convex and the function O ( ) is 
increasing and convex. Rational functions are used as local approximating 
functions of Oi and cbi at a point uk, 0 < uk < vi. A new approximation uk +1 of 
vi is obtained by defining the rational functions q /(r u) and s + t /(6 u) such 
that 

r 
q 

Uk 
S+ = Ok 

11/4 
(4.6) 

q = Oki 8+ t = I

(r uk)2 (6 uk)2 

where S = + i, 11)k = i(uk), )1! = (u k) , etc. Thus, the approximation uk +1 

is found by solving 

q = 1+ +r Uk +1 +1 

The solution to this quadratic equation is found to be 

Uk 4_ = uk 2b/ (a + Va2 4b ) 

where 

a = (7(1 + cbk) + 7,bk2/01! ) / c + Ok/Ok' 

b = (1`0-70k) (cOk' ) 

C = 1 + OkerOki 

w = 1+ Ok+Ok 

= Uk 
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For the case i = p, this reduces to 

1-Fikk 
Uk +1 

Oki 

since cbi( ) 0. Bunch et al. (1978) show that these estimates converge 
quadratically to the true eigenvalues. 

Initial values uc, for vi, i < p, are calculated from 

r 2 t2 - /- .2 
S i 1 '33+1+ E 

uo 8.--8.6i+1 uo 9 =1
j#1,1+1 3 1+ 

p 1 p 1 

For i = p, take u0 = E vi = (xr, k)1(xr, 5t) E 0,
1 =1 = 1 

Once the i-th eigenvalue is computed, the associated eigenvector can be 

calculated directly without iteration. This is based on a thereom in Bunch, et 
al. (1978). To compute the eigenvectors Q = W of S first note they must 
satisfy 

Sqi = cdigi , i =1, p 

where c = (n g)/(n g 1) and 4i = VVi . Multiplying by V', this implies 

= 0 

V' [ cV(D + pZZ') V' ] V' + = 0 

[ c(D + pZZ') + cai] V'41 = 0 

cpZZ') vi = 0 

where Di = cD = c ( D diI) . Bunch et al. show this is 

equivalent to 
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= OD, "Z, ( p + ZiD,Z) 9 = 0, 9 arbitrary (nonzero). 

= OVD,'Z 

To satisfy normalizing constraints (Vii, = 1, choose 9 = 11D, -1Z11 2 

It should be noted that in the case of equal eigenvalues, the above rank-

one algorithm can be accelerated further with what Bunch et al. call deflation. 
See Bunch et al. (1978) for details. 

Results For Wood Data Set 

In applying this algorithm, the leave-one-out cross-validation error rate 
estimates are the same as the original process of re-evaluation outlined in the 
last chapter. In fact, it produces the same classification probabilities for each 
observation as the original process to at least six decimal places (see Mean 

Absolute Error in Tables 3.6 and 3.7). However, since only the first three 
components need to be updated for each observation removed, it takes 38 

million flops and six minutes to calculate the estimate of the misclassification 

rate for the four group case and 16 million flops and 2.4 minutes for the two 
group case, a 96% decrease in flops and a 90% decrease in time for both cases 

(see Tables 3.6 and 3.7). This increased computational efficiency does not 

include the advantage of the updated pooled covariance matrix (4.2) being 
diagonal when the original or rank-one methods are used. 

Modifications to the Bunch et al. algorithm 

DeGroat and Roberts (1990) replace Bunch's et al. second rational 

function approximation .s t I (8 u) with s/(t u) claiming this simplification 

is slightly faster and less complex. This algorithm also converges quadratically 
to the true eigenvalues (proof in DeGroat's thesis), but does not converge 

monotonically as does Bunch's et al. (This is why DeGroat and Roberts feel 

their approximation is faster.) 
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Convergence of the Estimated Eigenstructure 

The eigenvalues of the updated eigenstructure converge quadratically as 
mentioned above. The norm of each eigenvector error is shown through 
perturbation analysis to be bounded by a multiple of the error in the associated 
eigenvalue scaled with the minimal change in the eigenvalues. See Bunch et al. 
(1978) for details. Bounds on the posterior probability estimates, and, hence, 
bounds on the leave-one-out cross-validation error rate estimate can be 
established. 

Efficiency of the Rank-One Method in Flops 

The number of flops necessary for this rank-one update method is on the 
order of qp2, where p and q are as described in the prior chapter. The pooled 

covariance matrix is calculated once taking (2n + 3g)p2 + 4np + 3g flops; the 
complete decomposition of this matrix requires approximately 9p3 flops; and for 
each observation, the rank-one adjustment is used to calculate the updated 

eigenvectors in approximately 5gp2 flops. The number of flops to compute the 
principal components and discriminant function posterior probabilities remains 
the same as outlined in the previous chapter and Appendix A. 
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Chapter 5 

EXPERIMENTAL RESULTS 

This chapter contains results, in particular misclassification error rates 
and program running times and flops, as pertaining to the wood data set. The 
primary focus of this chapter is to offer comparative results under different 

conditions to examine the effects of number of variables in the response curve, 
the number of components kept, the number of groups involved, and the 
number of response curves (observations). It should be kept in mind the results 
are from MATLAB implementations of the methods on a personal computer 
with a 80386 microprocessor (with math co-processor) running at 25 mHz. 

Floating point operation (flop) counts for each of the three methods of 
estimating the discriminant function error rate should be similar to the 
formulas outlined in Chapter 3 and 4. Let p be the number of variables in the 
spectral reflectance curve, q be the number of principal components kept for 
discrimination, n = ni be the total sample size (the number of response 
curves), and g be the number of groups. Then, assuming that g is typically 
rather small and q is also small (in comparison to p and n), the flop counts are 
roughly 

[(2n 3g)p2 

for the original meth
9p3]n 2n2pq 

od, 
2n2g2 

(2n + 3g)p2 9p3 2npq 

for the short-cut method, and 
2n2g2 

(2n 3g)p2 9p3 + 5np2q 2npq 2n2g2 

for the rank-one method. Thus, small changes in g and q should not have much 
affect on flop counts. 

The experiments compare the three procedures for cross-validation 

estimation of the overall error rate, the original method of calculation, the 

method utilizing the rank-one change in the pooled covariance, and the short­

cut method. The first experiment compares the three procedures based on two 
principal components using all the observations from the two groups sapwood 
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earlywood and sapwood latewood (50 observations per group 100 observations 

total). Figure 5.1(A) shows the changes in floating point operations (flops) as 
the number of original variables is increased while Figure 5.1(B) shows the 

changes in computation times. In all cases the estimate of overall error rate 
was 0.27 suggesting that with a large number of observations, the short-cut 

procedure is the best alternative. 

The second experiment repeats the first experiment but uses only half of 
the original observations from the two groups sapwood earlywood and sapwood 
latewood (25 per group). See Figure 5.2(A) and (B) for the flop counts and 
computation times. When the number of original variables was 11 or 15, the 
estimate of overall error rate was 0.22 in all three procedures, while the 
estimate was 0.24 if the number of original variables was 19, 24, or 71. Only in 

the case where 36 original variables were used was there a discrepancy in the 
estimate: it was 0.22 for the original and rank-one methods and 0.24 for the 
short-cut method. 

Again, repeating the first experiment this time with only one-fifth the 
original observations from the two sapwood groups (10 per group), the results 

are summarized in Figures 5.3(A) and (B). In this situation the estimate of the 
error rate increases to 0.35 when 11 of the original variables are used and 0.30 

when 15, 19, 24, 36, and 71 original variables are used. As in the first 
experiment, there is no difference between estimates by the three procedures. 

When the third experiment is repeated, that is on the 20 observations, 

but using four principal components for discrimination, there is a difference in 
the overall error rate estimate between the different cases. For 11 original 
variables the estimate is 0.30 for the three procedures, but for more than 11 
original variables the estimate drops to 0.25 for the long and rank-one 

procedures and stays at 0.30 for the short-cut procedure. The flops and 
computation times are given in Figures 5.4(A) and (B). Notice in this case that 
although flop counts for the original method dominate for all instances, the 

implementation of the rank-one algorithm does not have a time advantage until 
the reflectance curves contain at least 24 measurements per observation. With 

so few observations, the sequentialness of the rank-one algorithm in a single 

processor environment coupled with the iterativeness of eigenvalue updating are 

the reasons for the longer times. 
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Repeating the first experiment except using the first three principal 
components for discrimination, there are slight increases in number of flops and 
computation times. See Figures 5.5(A) and (B). It is interesting that adding 
the third component increases the error-rate estimates to about 0.29. 

The first experiment was also repeated for the sapwood groups, but only 
the second and third components were kept for discrimination. Figures 5.6(A) 
and (B) show that the original method computationally performs the same as in 
the first experiment, the rank-one updating method shows a slight decrease in 
flops and slight increase in time, while the short-cut method shows a slight 
increase in flops. Using the second and third components, but not the first, 
improve the cross-validation error-rate estimate slightly to 0.26. 

The last experiment compares the procedures using all the observations 
from all four wood groups, sapwood earlywood, sapwood latewood, heartwood 

earlywood, and heartwood latewood, when the first three principal components 

are kept for discrimination. That is, there were 50 observations per group for a 
total of 200 observations. Figure 5.7(A) shows the tripling effects on the 
number of flops of the methods as compared when the two groups were used 
(100 observations total Figure 5.5(A)). The effects on the computation times 
differ among the procedures: the short-cut times are almost five times longer, 
the original method times are about four times longer, and the rank-one update 
method times are about triple. See Figure 5.7(B). In all three procedures the 
cross-validation error-rate is 0.165 when 11 original variables are used, 0.190 

when 19 and 36 original variables are used, and 0.185 when 71 original variables 
are used. 
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Figure 5.1. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first two principal components for the two 
sapwood groups with 50 observations per group. A) is the number of floating
point operations and B) is the time in seconds to compute the error rates. 



69 

n 

11 15 19 24 36 71 
Number of Original Variables 

B 200 

180 

160­ s 

140­

120­

60­

40­

20­

0 
11 15 19 24 36 71 

Number of Original Variables 

Short-Cut MI Rank-One Ul, Original 

Figure 5.2. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first two principal components for the two 
sapwood groups with 25 observations per group. A) is the number of floating 
point operations and B) is the time in seconds to compute the error rates. 
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Figure 5.3. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first two principal components for the two 
sapwood groups with ten observations per group. A) is the number of floating 
point operations and B) is the time in seconds to compute the error rates. 
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Figure 5.4. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first four principal components for the two 
sapwood groups with ten observations per group. A) is the number of floating 
point operations and B) is the time in seconds to compute the error rates. 
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Figure 5.5. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first three principal components for the two 
sapwood groups with 50 observations per group. A) is the number of floating 
point operations and B) is the time in seconds to compute the error rates. 
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Figure 5.6. Procedure comparison graphs for calculating the discriminant 
function error rate based on the second and third principal components for the 
two sapwood groups with 50 observations per group. A) is the number of 
floating point operations and B) is the time in seconds to compute the error 
rates. 
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Figure 5.7. Procedure comparison graphs for calculating the discriminant 
function error rate based on the first three principal components for all four 
wood groups with 50 observations per group. A) is the number of floating point 
operations and B) is the time in seconds to compute the error rates. 
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Chapter 6

DISCUSSION OF SHORT-CUT ESTIMATOR

At the conclusion of Chapter 3 the short-cut estimator for the 
discriminant function's misclassification rate was illustrated for the wood data 
set. As seen in the last chapter, there are some slight differences in the 
estimates it produces versus the lengthy procedure of recalculation. However, 
for the wood data set, it generally performs satisfactorily considering its time 
savings. It can be envisioned that certain data sets could be troublesome for 
this estimator, especially if there are several influential outliers. Thus, a more 
theoretical discussion of its bias is called for. 

Mean Square Error 

To simplify the discussion it will be assumed that there are only two 
populations of interest, such as the spectral reflectances from sapwood 

earlywood and sapwood latewood or their dimensionally-reduced counterparts, 

that have equal prior probabilities. The overall short-cut cross-validation 
estimator of error rate will presumably give an estimate of the conditional 
misclassification probability, that is, assuming population normality, the 

probability that a random observation, Y, from one of the populations Nq(71, 

4) or Nq(72, xii) is incorrectly classified as coming from the other population 
...". 

based on the sample discriminant rule, 4. ((2.9) in Chapter 2). This conditional 
misclassification probability has several names and is referred to as actual error 
rate (Snappin and Knoke, 1989, Rutter et al., 1991) or conditional error rate 
(Snappin and Knoke, 1984, 1988, 1989). 

For two normal q-variate populations, ir1 and 72 with distributions 
Nq(71, 4) and Nq(72, 1), respectively, and with equal priors and equal costs of 

misclassification, the actual error rate is given by 

a(1) = 2 [1 a2(i) + cflia 
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where 

ce,(4) = P (W(Y) < 0 Y2 , Sy Y e ri) .I , 

W( ) was given as definition (2.9) in Chapter 2. Since W(Y) is normally 

distributed, these probabilities are given by 

[71 (Y1 + Y2)/2] Sy -1 (Y1 Y2) 
(6.1) 

[ (Yi Y2) I Sy -1 *Sy -1(Y1 Y2) 1/2 

where cl)( ) is the standard normal distribution function. Conditional on the 
observed sample, this error rate is thus conditional on Y1, Y2 and Sy, the usual 
population means and common covariance matrix estimators. See Morrison 
(1976) for derivation. 

Leta denote the short-cut leave-one-out estimator of actual error rate 
(or other estimator of error rate of interest) and a( -) denote the actual error 
rate, as described above, based on the sample discriminant rule 4" from a given 

training set. A common measure of performance is the mean square error 

(MSE) 

MSE = E { [ a ca( -) ] 2 }. (6.2) 

The expectation in (5.2) is taken over all possible training sets (of a particular 

sample size); this is why Snappin and Knoke (1984) call the MSE unconditional. 
The MSE measures the average closeness of a to a(i) given the training sample 
for which the discriminant rule is calculated; and it is equal to (expected 
bias)2 + total variance, where expected bias is the expected bias between the 
estimators and total variance is the variance of their difference. 

Monte Carlo Sampling Results 

Using Monte Carlo sampling, the MSE for the short-cut estimator can be 

evaluated by generating samples from known, p-multivariate normal 

populations with means pi and ii2 and common covariance E with rank q < p, 

that is, Np(pi, E) and Np(p2, E). Then applying a known orthogonal 
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transformation a system of rank q is obtained. These new variables are also 
normally distributed since they are linear combinations of the original variables, 
so (6.1) can be used in evaluating (6.2). 

To investigate the bias in relation to data that has a similar structure as 
the wood data, the sapwood earlywood and sapwood latewood sample parameter 

estimates were treated as known normal population parameters, µle it2, and E. 

The spectral decomposition of E is given by VDV'. A random vector z is 
generated according to N40, I), that is, a random, standard normal p-vector. If 

x, = VD/z + , where IP = diag F/p) and i = 1 or 2, then x, 
E). Let n = n1 + n2 , where n, is the number of observations from 

population i. In Matlab, for each sample n random, standard normal vectors 

were generated; then n1 were transformed as x1 and n2 were transformed as x2. 

For each generated sample, first the necessary principal components 

were calculated, say q of them, and then the short-cut cross-validation estimate 

of discriminant analysis error rate was calculated from these q components. 

Based on the earlier assumptions of normality and that principal components 
are simply a linear transformation of the original data, the vector of q scores, 

y*.Vglx*, where x* is a future observation from population i, given the 
generated sample is also normally distributed N,i(Vg'it,, Vq1EN7q). Here Vq = 

i/2 is the matrix of the first q eigenvectors from the decomposition of 

= S, the generated sample's pooled covariance matrix. To obtain the 
corresponding actual error rate for this generated data set -y, = Vq'it, and = 
Vq/EV,i, and the estimates from the sample principal components, and Sy, 

were substituted into (6.2). 

The MSE was investigated by the above technique for the sapwood 

spectral reflectance measurements taken from wavelengths 400 to 1100 every 50 

nanometers (p=15 wavelengths). Total sample sizes were n = 20, 30, 50, and 
100 with equal group sizes n1 = n2 = 10, 15, 25, and 50. One thousand Monte 
Carlo samples (data sets) were generated for each of the sampling conditions. 

Figure 6.1 illustrates the behavior of the MSE as the number of principal 

components, q, kept varies from one to fifteen, especially the importance of 

larger sample sizes. On this scale, the number of components kept for 
discrimination has little effect for the larger group sizes. 
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Figures 6.2(A)-(D) show each MSE curve for group sizes 10, 15, 25 and 
50, respectively, broken down into its respective parts of (expected bias)2 and 
total variation. These graphs show that the major contributor to the MSE is 
the total variation. In fact, the variation associated with the cross-validation 
error rate estimator dominates. Interestingly, there is little correlation between 
the estimators on an individual sample basis. These graphs also show that for 
the smallest sample size the expected bias tends to increase with the number of 
components are kept for discrimination. This is to be expected as a large 
number of parameters are being estimated from relatively little information, 
especially in relation to the subspaces that are associated with smaller amounts 
of total variation. With 25 or 50 observations made from each population this 
effect disappears as these larger samples apparently contain sufficient 

information for more accurate estimation and the influence of individual 

observations is reduced. 

As an illustration of the bias of the short-cut estimator when assuming 

normality, Figures 6.3(A)-(D) give the rank-one cross-validation, short-cut 

cross-validation, and expected actual error rate (true error rate) estimates from 
the above Monte Carlo sampling procedures for the respective group sizes. 

From these figures, the short-cut error rate appears more conservative than the 
true error rate, especially for the smallest sample size, while the rank-one cross-
validation more accurately estimates the true error rate, although it also has a 
small amount of conservatism. The degree of conservatism disappears as 

sample size increases causing the short-cut estimator to become more accurate. 

Based on the increasing characteristic of these error rate estimates after 
a subset of components is kept for discrimination, it is important not to keep 
too many components with a small amount of data. Even with a group size of 
25, this phenomenon is still visible, but disappears when group size is increased 

to 50. It would interesting to incorporate variable selection into this process to 
assess effects on bias. 

In the situation with a small number of observations, it appears that 
individual observations become more influential in the estimation of the higher 

order components which has an effect on the short-cut estimator. It is 

uncertain whether this increased influence is because of almost equal 

eigenvalues or almost equal to zero eigenvalues; in either case, when the entire 
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subspace is included the short-cut error rate estimate returns to the true 
estimate. 

The above Monte Carlo sampling procedure was also carried out for the 
two groups, heartwood earlywood and heartwood latewood, to determine the 

effects on the MSE for groups with better separation and a farther distance 

between their means. The response of the MSE for the two groups of 
heartwood is given in Figure 6.4 for the group sizes 10, 15, 25, and 50. This 

graph illustrates that the MSE based on these two groups declines until the 
three principal component model, then levels off. For the group sizes of 10, the 
MSE begins to rise after a minimum at eight components; this is largely a 
result of the small amount of information available as more parameters are 
estimated (see Figure 6.5). Figures 6.6(A)-(D) show the bias. Only the small 
sample size case experiences much conservative biasing; the better separation 
between these groups promotes the use of the short-cut error-rate estimator. 

To explore the effects of bias for response curves containing more 

measurements, the above sampling procedure was performed on the two 

sapwood groups with spectral reflectances simulated at 36 wavelengths. Figures 

6.7(A)-(C) illustrate the results for the group sizes of 15, 25, and 50. For the 
smaller group sizes of 15 and 25, the short-cut cross-validation error rate 

estimator exhibits conservative bias. This bias disappears when the larger 
group size of 50 is considered. 
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Grp size 10 ---+-- Grp size 15 Grp size 25 -9-- Grp size 50 

Figure 6.1. Mean square error for the short-cut cross-validation estimator of 
error rate based on the two groups of sapwood with 15 original measurements 
per response curve. 
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Figure 6.4. Mean square error for the short-cut cross-validation estimator of 
error rate based on the two groups of heartwood with 15 original measurements 
per response curve. 
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Chapter 7

DISCUSSION AND CONCLUSION

The goals of this thesis included reviewing methodologies for data 
reduction, modeling, and classification of grouped response curves, looking at 

the implications for a given data set, and offering computationally efficient 

alternatives. 

A database of spectral reflectance curves of wood surface features was 

presented and analyzed in Chapter 3. A review of the literature, the analysis 
goals, and a preliminary statistical analysis of the data set led to the application 
of principal component analysis followed by linear discriminant analysis. For 

this data set, the various methods of determining the number of components to 
keep for modeling yielded widely different results. In addition, none of the 

methods are designed for the purpose of maintaining discriminating variation. 
Kshirsagar et al. (1990) provide a starting point for the two group case by 

suggesting that those eigenvectors that are orthogonal to the mean differences 

be thrown away. 

In the application of linear discriminant analysis for this data set a 
problem of estimating discrimination misclassification rates (error rates) with 

the reduced data arose. In particular, performing the cross-validation 
estimation procedure for error rates required re-calculating the principal 
component decomposition and discriminant functions of the training sets, a very 
lengthy process. The alternative of performing the cross-validation procedure 
on the principal component scores without re-calculation of the principal 
component decomposition showed little difference in the error rate estimates for 
the presented data, but substantial improvements in computer time and 
operations. 

In assuming common covariance structures between the populations, the 

pooled covariance matrix was used for decomposition in the principal 

component analysis. As described in Chapter 4, the leave-one-out cross-

validation procedure results in a rank-one update in the pooled covariance 

matrix for each observation left out. Algorithms were developed for calculating 
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the updated eigenstructure under rank-one updates, and one particular 
algorithm was incorporated to calculate the orthogonal decomposition of the 
updated pooled covariance matrix. Use of the algorithm resulted in much 

faster computation of the estimated error rates than the lengthy process. 

The error rate estimators for the wood data set under varying conditions, 
including changes in the number of variables in the spectral reflectance curve, 

the number of principal components kept for discrimination, the number of 

groups (wood surface feature types), and the number of observations (sample 
size), were compared in Chapter 5. In most instances, the faster alternative of 
performing leave-one-out cross-validation directly on the principal components 

without recomputating the principal component analysis for each observation 
performed satisfactory, especially considering the time savings and simplicity 

involved. 

Although the short-cut estimator performed almost equivalently as the 

original estimator for this data set, it was unknown if this was happenstance or 
related to the distribution of the data set. Chapter 6 explored the bias and 
variance of the estimators using simulated normally distributed data that 
exhibited characteristics similar the observed spectral reflectance data. Under 
the assumption of normality the short-cut estimator appeared to be somewhat 
conservatively biased when the sample size was small in comparison to the 

number of original variables. However, the variance of the estimators really 

overshadowed any differences that may exist. This again implies that nothing 
is really lost by using the short-cut estimator for the wood data set. 

Further exploration of this bias and variance of the estimators may 
prove useful, as it seems that data that is not normally distributed could cause 
problems. For example, data sampled from a population with a heavily-tailed 
distribution would be more likely to have several observations that could 
readily influence the principal component decomposition, which in turn might 

overly influence the discriminant functions. 

It would also be interesting to study effects on the bias and variance of 

the estimators in association with variable selection procedures available for 

discriminant analysis. And if there exist instances where the short-cut 

estimator seems inappropriate, then further research could be conducted on the 

rank-one procedure. 
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APPENDIX 

This appendix will show how the number of floating point operations 

(flops) for certain steps of the algorithms were derived. These were given in 
Chapter 3. Since the programs were written in MATLAB, the calculations are 
based, in part, on MATLAB's implementations of specific functions. 

Suppose there are g groups from which n3 observations are gathered in 

each group, j = 1, g, and that the total number of observations is n= E ni. 
Further suppose that each observation is a p-vector, and that q principal 

3 
-1 

components are chosen for discrimination. It will first be shown that the 
number of flops necessary to calculate the unbiased estimate of the pooled 

covariance matrix is (2n + 3g) p2 + 4np + 3g. 

For each group sample covariance matrix, (2n3 + 1)p2 + 4n3p + 1 flops 

are required. 4n3p flops are necessary to adjust the observations for the mean, 

2nd p2 are necessary to 'square' the mean-corrected observation matrix, and 
p2+1 are necessary to divide the sum-of-squares matrix by n 1. See the 

MATLAB M-file cov.m. 

The pooled covariance matrix then requires an additional 2gp2 + 2g 

flops. Thus the total number of flops to calculate the pooled covariance matrix 

is E (2n3p2 + 4np p2 1) + 2gp2 + 2g = (2n + 3g)p2 + 4np + 3g. When 
3 1

one observation from group j is left out, this reduces to (2n + 3g 2)p2 + 

4(n 1)p + 3g. 

To estimate the posterior probability for the left-out observation based 

on the linear discriminant function the number of flops needed is 2q3 + (2n + 

5g 2)q2 + (5n + 3g 5)q + 9g 1. This includes (2n + 3g 2)q2 + 

(n 1) 4q + 3g flops to compute the pooled covariance matrix, approximately 
2q3 flops to compute the inverse of the pooled covariance matrix (a closer 

approximation is 13q3/6, see Golub and Van Loan, 1989), and 2gq2 + (n + 

3g 1)q + 6g 1 flops to compute posterior probabilities. Note that if the 

squared Mahalanobis distance from the left-out observation y to the i-th group 



96 

mean is given by d;2(y) = (y yi) S-1 (y yi), then the posterior 

probability that y belongs to group i is given by 

exp{ di2(y)}
P(1IY) = y

exp{ di2(y)}
j =1 




