AN ABSTRACT OF THE THESIS OF

This thesis is concerned with the analysis of heat transfer in a tube with forced flow under conditions of an arbitrary variation of wall heat flux both axially and circumferentially. This total study is separated into two distinct problems which are presented separately.

The first is the case of a Newtonian fluid in laminar flow with allowance made for the inclusion of axial heat conduction, viscous heat dissipation and heat generation. Secondly, the problem of laminar flow of a non-Newtonian fluid is considered. Axial conduction is not included in this problem since it is likely negligible in those cases where non-Newtonian effects are significant.

Heretofore, no general method has been available for obtaining solutions to these problems. Analytical results are given in such generality and completeness that many of the previously reported work in the heat transfer literature in laminar tube flow are limiting cases of the present work.

In the first problem, the solution is expanded in a power series form that accounts for any arbitrary variation of wall heat flux around the circumference that can be expressed in terms of a Fourier series expansion. Substitution of this series into the energy equation leads to an eigenvalue problem. The first 12 eigenvalues and eigenfunctions have been obtained numerically. The resulting eigenfunctions are not orthogonal and therefore the power series expansion coefficients cannot be obtained by the usual analytical schemes. A least squares method was used to determine these coefficients.

For the limiting problem of uniform wall heat flux around the circumference with the inclusion of axial conduction, the eigenfunctions and eigenvalues are in excellent agreement with previously reported work: however, two additional considerations were made to correct errors made in the heat transfer literature. The first was the determination of coefficients of the non-orthogonal power series expansion and, second was the inclusion of the nonvanishing axial conduction term at the tube entrance which was not included in earlier asymptotic expressions for the temperature. Both of these considerations are included in the numerical procedures in this work.

The problem where wall heat flux varies circumferentially but axial fluid conduction is neglected is another limiting case of the present work. For the special case of uniform wall heat flux, the eigenfunctions, eigenvalues, and expansion coefficients agree well with those in the existing literature.

The same analytical techniques were employed for the second problem. The resulting eigenfunctions for this problem are orthogonal, therefore the power series expansion coefficients were determined by utilizing the orthogonality property of the eigenfunctions. For the special case of power-law pseudo-plastic fluids with uniform wall heat flux the eigenfunctions, eigenvalues, and the expansion coefficients are in excellent agreement with previously reported values.

Finally, by an illustrative example, it was concluded that circumferential wall heat flux variation has a pronounced effect in both Newtonian and non-Newtonian heat transfer results.

Analysis of Heat Transfer, Including Axial Conduction, for Laminar Tube Flow with Arbitrary Circumferential Wall Heat Flux

by

Mohammad Faghri

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Completed December 1973

Commencement June 1974

APPROVED:

Redacted for privacy

Professor of Mechanical Engineering in charge of major

Redacted for privacy

Head of Department of Mechanical Engineering

Redacted for privacy

Dean of Graduate School

Date thesis is presented December 11,1913

Typed by Clover Redfern for _____ Mohammad Faghri

To my father, to whom I owe my undying gratitude for his encouragement, sacrifice, and advice.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere appreciation to my major professor and thesis advisor, Dr. James R. Welty, who guided, aided, and encouraged me in every aspect of this work. Over the past three years, I have come to admire his patience and high scientific ability.

I am indebted to Dr. Robert E. Wilson, Dr. Lorin R. Davis, Dr. Charles E. Smith, and Dr. Robert W. Thresher of the department of Mechanical Engineering and Dr. Mysore N.L. Narasimhan, Dr. John W. Lee and Dr. Ronald B. Guenther of the department of Mathematics who were of great help to the author, both during his graduate work, and during the course of this study.

I wish to thank my brother Amir, who assisted me with the numerical and graphical methods in this work.

TABLE OF CONTENTS

Chapter		Page		
l. NEW		TONIAN PROBLEM		1
	1.1	Introdu	ction	1
		1.1.1	Literature Review	1
		1.1.2	Present Investigation	8
	1.2	Formul	ation of Problem	10
		1.2.1	Energy Equation and Boundary Conditions	10
		1.2.2	Elimination of the Heat Source and the	
			Dissipation Terms	14
		1.2.3	Fully-Developed and Entry Length	
			Differential Equations and Boundary	
			Conditions	16
	1.3	Discuss	sion of Solution	18
		1.3.1	The Fully-Developed Temperature	18
		1.3.2	The Thermal Entry Length	26
			1.3.2.1 Analysis of the Eigenvalue	
			Problem	27
			1.3.2.2 Determination of an Integral	28
			1.3.2.3 Determination of Expansion	
			Coefficients	29
		1.3.3	Complete Solution	36
		1.3.4	Calculation of the Average Mean Fluid	
			Temperature	-38
		1.3.5	Calculation of Nusselt Number	41
		1.3.6	Axial Non-Uniform Wall Heat Flux	44
		1.3.7	Limiting Solution for Pe $\rightarrow \infty$ (No Axial	
			Fluid Conduction)	45
	1.4	Special	Examples	47
		1.4.1	Cosine Heat Flux Variation Around the	
			Tube Periphery	47
			1.4.1.1 Asymptotic Examples	48
			1.4.1.2 Thermal -Entry-Length Examples	
			for Peclet Number of Infinity	50
			1.4.1.3 Thermal -Entry-Length Examples	
			for Finite Peclet Number	53
	1.5	Results		58
		1.5.1	Numerical Determination of the Eigenvalues,	
			Eigenfunctions, and Expansion Coefficients	58
		1.5.2	Discussions of Results for the Special	<u> </u>
			Example $q(\phi) = q_{av}(1+b \cos p\phi)$	81

Page

Chap	ter	Page	
2.	NON-NEWTONIAN PROBLEM		
	2.1 Introduction	104	
	2.1.1 Literature Review	104	
	2.1.2 Present Investigation	108	
	2.2 Formulation of Problem	109	
	2.2.1 Governing Equations and Boundary		
	Conditions	109	
	2.2.2 Fully-Developed and Entry-Length-		
	Equations and Boundary Conditions	115	
	2.3 Discussion of Solution	117	
	2.3.1 The Fully-Developed Solution	117	
	2.3.1.1 Calculation of the Average Mean		
	Fluid Temperature	121	
	2.3.2 The Thermal Entry Length Solution	122	
	2.3.2.1 Analysis of the Eigenvalue Problem	123	
	2.3.2.2 Determination of Expansion		
	Coefficients	124	
	2.3.3 Complete Solution	127	
	2.3.4 Calculation of Nusselt Number	128	
	2.3.5 Axial Non-Uniform Wall Heat Flux	131	
	2.4 Special Examples	131	
	2.4.1 Cosine Heat Flux Variation Around the		
	Tube Periphery	131	
	2.4.1.1 Asymptatic Examples	131	
	2.4.1.2 Thermal-Entry-Length Examples	133	
	2.5 Results	137	
	2.5.1 Numerical Determination of the Eigenvalues, Eigenfunctions, and Expansion Coefficients	137	
	2.5.2 Discussions of Results for the Special		
	Example $q(\phi) = q_{av}(1+b \cos \phi)$	145	
3.	CONCLUSIONS AND RECOMMENDATIONS	167	
4.	NOMENCLATURE	169	
	BIBLIOGRAPHY	175	
	APPENDICES	182	
	Appendix A: Table A. l	182	
	Appendix B: Figure B.1	191	
	Appendix C: Table C. l	209	

LIST OF TABLES

1.1. Comparison of eigenvalues, eigenfunctions at tube wall,	
and expansion coefficients for uniform wall heat flux $(p = 0)$ and Peclet numbers of 5, 10, 20, 30, 50 and 100 with the result of Hsu [19].	59
1.2. Comparison of the function $(\frac{7}{24} - r + 2 + \frac{r+4}{4})$ and its 12-term least squares expansion in the range of $0 \le r + \le 1$ for uniform wall heat flux (p = 0) and Peclet number of 10.	63
1.3. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 1 and Peclet numbers 5, 10, 20, 30, 50 and 100.	65
 1.4. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 2 and Peclet numbers of 5, 10, 20, 30, 50, and 100. 	67
1.5. Comparison of the function $(-r+)$ and its 12-term least squares expansion in the range $0 \le r+ \le 1$ for $p = 1$ and Peclet number of 5.	69
1.6. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 1, 2, 3, 4, 5, 6 and Peclet number of infinity (no axial conduction).	77
1.7. Comparison of eigenvalues, eigenfunctions and expansion coefficients for Peclet number of infinity (no axial conduction) and for uniform wall heat flux with the results of Siegel, Sparrow, and Hallman [59] and Hsu [18].	80
 Comparison of local Nusselt number for the circular tube; constant wall heat flux; no axial conduction (Pe →∞) with the results of Kays. 	81
 Local Nusselt numbers for laminar tube flow with uniform wall heat flux, and Peclet numbers of 5, 10, 20, 30, 50, and 100. 	82

- 2.1. Comparison of eigenvalues, eigenfunctions and expansion coefficients for the Newtonian problem (s = 2) and uniform wall heat flux (p = 0) with the results of Hsu and Siegel, Sparrow, and Hallman.
- 2.2. Comparison of eigenvalues, eigenfunctions, and expansion coefficients for pseudo-plastic fluids and uniform wall heat flux with the results of Michiyoshi and Matsumoto [36] and Mitsuishi and Miyatake [39].
- Comparison of local Nusselt numbers for the circular tube; constant heat rate; thermal entry length with Kays [25].
- 2.4. Local Nusselt numbers for laminar flow of power-law non-Newtonian fluids in the thermal entrance region of a circular pipe with uniform wall heat flux where x+ = ((2s)/(s+2)) ((x/r₀)/(Re Pr)).

Appendix Tables

- A. 1. Tabulation of the first 12 eigenfunctions for p = 0, 1, 2 and different Peclet numbers.
 182
- C.1. The first 12 eigenvalues, eigenfunctions and expansion coefficients for p = 0, 1, 2, 3, 4, 5 and for several values of the non-Newtonian behavior index.

209

139

145

LIST OF FIGURES

Figure		Page
1.1.	Physical model and coordinate system.	
1.2.	Variation of eigenvalues with Peclet number for $p = 0$.	70
1.3.	Variation of eigenvalues with Peclet number for $p = 1$.	71
1.4.	The first two eigenfunctions for different Peclet numbers and for $p = 0$ (i.e., uniform wall heat flux).	73
1.5.	The first two eigenfunctions for different Peclet numbers and for $p = 1$.	74
1.6.	The first two eigenfunctions for different Peclet numbers and for $p = 2$.	75
1.7.	The third and fourth eigenfunctions for different Peclet numbers and for $p = 0$.	76
1.8.	Entrance-region local Nusselt numbers for uniform wall heat flux and for different Peclet numbers, employing least squares expansion coefficients.	5 83
1.9.	Entrance-region local Nusselt numbers for uniform wall heat flux and for different Peclet numbers, employing the approximate expansion coefficients.	84
1.10.	Entrance-region local wall-to bulk temperature differ- ence for uniform wall heat flux and for different Peclet numbers, employing least squares expansion coefficients	. 86
1.11.	Entrance-region local wall-to bulk temperature differ- ence for uniform wall heat flux and for different Peclet numbers, employing the approximate expansion coefficients.	87
1.12.	Illustration of effect of prescribed wall heat flux varia- tion $q(\phi) = q_{av}(1 + \cos \phi)$ on wall-to bulk temperature difference and local Nusselt number, at the location far away from the entrance.	88

- 1.13. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .1.
- 1.14. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .04.
- 1.15. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .02.
- 1.16. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .01.
- 1.17. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1+2 \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .1.
- 1.18. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1+2\cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .04.
- 1.19. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1+2\cos\phi)$ and axial conduction on wall-to bulk temperature difference at the location x+=.02.
- 1.20. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1+2\cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .01.
- 1.21. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location x + = .1.

89

90

91

92

94

95

96

97

Figure

	-	
1.22.	Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location $x + = .04$.	99
1.23.	Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location $x + = .02$.	100
1.24.	Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location $x + = .01$.	101
1.25.	Entrance-region local wall-to bulk temperature differ- ence for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the angular position $\phi = 0$ (i.e., maximum wall heat flux).	102
1.26.	Entrance-region local Nusselt numbers for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the angular position $\phi = 0$ (i.e., maximum wall heat flux).	103
2.1.	Velocity distribution for power-law fluids.	113
2.2.	The first two eigenfunctions for different non- Newtonian fluid behavior index, s, and for $p = 0$.	141
2.3.	The first two eigenfunctions for different non- Newtonian fluid behavior index, s, and for $p = 1$.	142
2.4.	The first two eigenfunctions for different non- Newtonian fluid behavior index, s, and for $p = 2$.	143
2.5.	The third and fourth eigenfunctions for different non- Newtonian fluid behavior index, s, and for $p = 0$.	144
2.6.	Entrance-region local Nusselt numbers for uniform wall heat flux and for different non-Newtonian fluid behavior index, s.	147

Figure

	Figure		Page
	2.7.	Entrance-region local wall-to bulk temperature difference for uniform wall heat flux and for different non-Newtonian fluid behavior index, s.	148
	2.8.	Illustration of effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location far away from the entrance (i.e., $x + = 1$)	150
3	2.9.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .1$.	15 1
	2.10.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .04$.	152
	2.11.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .02$.	153
	2.12.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .01$.	154
	2.13.	Illustration of effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location far away from the entrance $(x + = 1.0)$.	155
	2.14.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .1$.	156
	2.15.	Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location $x + = .02$.	157

Figure

- 2.16. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .01.
- 2.17. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location far away from the entrance (x + = 1.0).
- 2.18. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .1. 161
- 2.19. Local Nusselt number variation for prescribed wall heat flux of $(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .04. 162
- 2.20. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .02.
- 2.21. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .01. 164
- 2.22. Entrance-region local wall-to bulk temperature difference for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian fluid behavior index, s, at the angular position $\phi = 0$ (i.e., maximum wall heat flux).
- 2.23. Entrance-region local Nusselt numbers for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian fluid behavior index, s, at the angular position $\phi = 0$ (maximum wall heat flux).

Appendix Figures

B.1. Graphical representation of the first five eigenfunctions for p = 0, 1, 2 and for different Peclet numbers.

Page

158

159

163

166

191

ANALYSIS OF HEAT TRANSFER, INCLUDING AXIAL CONDUCTION, FOR LAMINAR TUBE FLOW WITH ARBITRARY CIRCUMFERENTIAL WALL HEAT FLUX

1. NEWTONIAN PROBLEM

1.1 Introduction

1.1.1 Literature Review

Research in the area of laminar forced convection to conducting fluids (i.e., liquid metals) in ducts, either with uniform wall temperature or uniform wall heat flux has been relatively sparse. This is because of the complexities encountered in the analysis of such problems.

Most work dealing with the asymptotic analysis of conducting fluids has involved problems with the uniform wall temperature. For this case the fully-developed Nusselt number is affected by axial conduction; i.e., $Nu_t = f(Pe)$. This is demonstrated by the work of Pahor and Strnad [41] who determined the asymptotic Nusselt number in pipe flow as a function of the Peclet modulus. Labuntsov [27], by a power series method, arrived at similar results. In a later work, Pahor and Strnad [42] extended their work to consider a semi-infinite parallel plate geometry. They expressed their solution in terms of confluent hypergeometric functions and gave expressions for the relation $Nu_t = f(Pe)$ for very high and very low Peclet numbers. Ash and Heinbockel [2] improved and generalized the work of Pahor <u>et al.</u>, and also considered the non-orthogonality of the eigenfunctions in the determination of the expansion coefficients.

For the case of uniform wall heat flux, the axial conduction has no effect on the asymptotic Nusselt number since the fully-developed fluid temperature increases linearly. This was verified experimentally by Petukhov and Yushin [45], Eckert and Peterson [10] and Emery and Bailey [11] who independently showed the asymptotic Nusselt number for the case of uniform wall heat flux in conducting fluids to be 4.36 in contrast to the previous experimental work by Johnson, Hartnett and Clabaugh [23] who obtained values as low as 1 for the Nusselt number.

The case of slug flow with a thermally developing temperature profile has been the subject of a number of papers in the axial conduction literature. In this simplified case one can achieve a separable solution to the energy equation with the inclusion of the axial conduction term. This leads to a simple ordinary differential equation in the direction perpendicular to flow for which the eigenfunctions are orthogonal. Hence the constants for the series expansion are obtained in the usual analytical manner. Wilson [72], as early as 1904, solved this problem for parallel plates subject to a step change in wall temperature. Poppendeik and Harrison [48] explored both analytically

and experimentally the same problem for parallel plates and tubes. Schneider [55] examined the analogous problem in his classical paper for both parallel plates and tubes under conditions of finite wall resistance, and for both a uniform and a step discontinuity in the ambient temperature. The calculated mean fluid temperatures, Nusselt numbers, and thermal entry lengths were compared with corresponding predictions for the case of no axial conduction, and it was suggested that the effect of axial conduction was negligible for Peclet numbers larger than 100. Taitel, Bentwich and Tamir [66] investigated the role of upstream and downstream boundary conditions on the heat or (mass) transfer for a two-dimensional channel. Solutions were obtained in the form of Fourier integrals the inversions of which were carried out numerically. As an example, three types of thermal boundary conditions were considered. In all cases there was a central heating section with the fluid flowing into an insulated semi-infinite conduit. The situations prevailing upstream of this section varied. It was found that these situations have a substantial influence when the Peclet number is low, and the heating section is short.

Extensions of the axial conduction problems with the assumption of a parabolic velocity profile were achieved by various methods. In this case it can be verified that the classical method using separation of variables fails; nevertheless, one may assume a series expansion as a product of an exponential function and some unknown function of

radius. Substitution of this series into the energy equation leads to an ordinary differential equation in the radial direction. This equation is no longer a usual "Sturm-Liouville" type differential equation, in fact it is a more "generalized Sturm Liouville system" [60] with nonorthogonal eigenfunctions. Hence, the determination of expansion coefficients becomes extremely difficult.

To overcome the difficulties encountered in the evaluation of the expansion coefficients, Millsaps and Pohlhausen [38] and later Singh [61] expanded the solution to the ordinary differential equation in the radial direction as an infinite series of Bessel functions for the case of pipe flow with uniform wall termperature. The same idea was utilized by Agrawal [1] for parallel plates subject to a step change in wall temperature. He represented the eigenfunctions by a Fourier sine series. The major drawback in the above method is directly related to the computational difficulties encountered in evaluating the eigenvalues, since it requires solving determinants of infinite order. Furthermore, the higher eigenvalues are very hard to evaluate; therefore, only the first five of them were reported.

Jones [24] examined the case of tube flow in a study that was similar to that of Singh [61], but he considered a step change in wall temperature and solved the governing differential equation by Laplace transformation.

Schmidt and Zeldin [54] used a finite difference technique and

considered both parallel plates and tubes subjected to the condition of uniform wall temperature. They presented local and average Nusselt numbers and mean fluid temperatures as functions of Peclet number. It was observed that the values of fully-developed Nusselt numbers are increased as the Peclet number is decreased. This trend is in agreement with that predicted by Labuntsov [27]. These authors also established a criterion which is useful for predicting the conditions under which axial conduction may be ignored.

Nelson, Rust, and Iachetta [40] obtained a numerical solution for heat conducting and heat generating fluids flowing between isothermal parallel plates. Their results indicated that axial conduction increases or decreases the Nusselt number depending on the heat source strength.

The literature that has been discussed so far concerns either a uniform or a step change in the wall temperature. We shall now discuss the very few papers that consider either a uniform or a step change in wall heat flux.

Hsu [19] solved the problem for a tube with fully-developed velocity profile and uniform wall heat flux. He expressed his solution in terms of an infinite series and the radial ordinary differential equation resulting from his analysis was integrated numerically by Runge-Kutta methods to obtain the eigenvalues and corresponding eigenfunctions. He made two errors in his analysis of the problem.

First, he determined the coefficients of his non-orthogonal expansion by assuming the eigenfunctions to be orthogonal with respect to a known weighting function and neglected the non-orthogonal cross terms. Secondly, the non-vanishing axial conduction term at the tube entrance was not included in the asymptotic expression for the temperature solution. Pirkle and Sigillito [46,47] mentioned the errors made by Hsu, but they did not suggest any remedy for the first error and they did not include any numerical correction for the coefficients of expansion.

Hennecke [17] used a finite difference technique and considered a tube geometry under the conditions of both a uniform step change in wall temperature and wall heat flux. He showed that axial conduction upstream of the heated section plays a decisive role in the heat transfer. Recently, Hsu [21] analyzed the same problem that was solved by Hennecke and considered a step change in wall heat flux for both parallel plates and tubes. He developed a series solution and the eigenvalues and the corresponding eigenfunctions were obtained numerically. Also a set of orthogonal eigenfunctions were constructed from non-orthogonal eigenfunctions utilizing the Gram-Schmidt orthonormalization procedure. The expansion coefficients were then determined using the constructed orthogonal eigenfunctions. His results are in excellent agreement with those obtained numerically by Hennecke. In another publication, Hsu [20] analyzed the flow through

an annulus having an adiabatic inner wall and an outer wall subjected to a step change in heat flux, utilizing similar mathematical techniques.

The simultaneous development of thermal and velocity profiles for ordinary fluids was extended to liquid metals for a tube geometry and uniform wall heat flux by McMordie and Emery [34]. These authors solved the governing momentum and energy differential equations numerically employing the finite difference methods. This problem was further extended by Loc [28] to consider the timedependent heat transfer phenomenon in the entrance region of a circular tube. The solution is based on three different computing schemes: a numerical method, and two analog methods.

The integral method was extended to problems with axial conduction by Taitel and Tamir [65]. They demonstrated that heat (or mass) transfer solutions can be obtained in closed form fashion and with satisfactory accuracy. Results for the Graetz problem [8, 56] and other problems with axial diffusion were reported.

Literature in the area of non-uniform or arbitrary variation of wall heat flux or wall temperature axially or circumferentially in liquid metals is indeed sparse and with the exception of the paper by Burchill, Jones, and Stein [9], there exists no other published work. These authors examined a symmetrical annular space with arbitrary axial variation of heat flux at the walls of a section between two

infinitely long adiabatic inlet and outlet sections. They considered turbulent flow with a slug flow velocity profile.

1.1.2 Present Investigation

The objective of this investigation is to solve analytically the problem of heat transfer in a circular tube with an arbitrary circumferential wall heat flux for the case of a developing temperature profile including the effect of axial conduction.

The solution is expanded in a power series form that accounts for any arbitrary variation of heat flux around the circumference that can be expressed in terms of a Fourier expansion. Substitution of this series into the energy equation leads to an eigenvalue problem. The first 12 eigenvalues and the corresponding eigenfunctions have been obtained numerically. The resulting eigenfunctions are not orthogonal and therefore the power series expansion coefficients cannot be obtained by usual analytical schemes. A least squares method was used in this work to determine these coefficients. The final solution was then generalized for any arbitrary variation of wall heat flux in the axial direction.

For the limiting problem of uniform wall heat flux around the circumference and a finite Peclet number, the eigenfunctions and eigenvalues reduces to those of Hsu's [19]; however, two additional considerations are made here, the first being the determination of coefficients of the non-orthogonal power series expansion and second, the consideration of the nonvanishing axial conduction term at the tube entrance which was not considered by Hsu. Both of these considerations are included in the numerical procedures in this paper.

The problem where wall heat flux varies circumferentially but axial fluid conduction is neglected is another limiting case of the present work. The first 12 eigenvalues and eigenfunctions and expansion coefficients are included for values of the parameter p ranging from p = 0 (i.e., the case of constant wall heat flux condition) to p = 5 (up to fifth harmonic variation in the circumferential wall heat flux). For the special case of uniform wall heat flux (p = 0), the eigenfunctions, eigenvalues, and expansion coefficients agree well with values reported by Siegel, Sparrow, and Hallman [59] and Hsu [18].

Finally, a simple result has been obtained for a cosine heat flux variation around the tube periphery which illustrates all the limiting cases and shows how simultaneous influence of circumferential wall heat flux and axial fluid conduction may have a pronounced effect on the wall temperature in a liquid metal cooled reactor.

1.2 Formulation of Problem

1.2.1 Energy Equation and Boundary Conditions

The problem to be considered is represented schematically in Figure 1.1. We consider a viscous conducting fluid flowing in steady, laminar, incompressible fashion through the tube of constant radius, r_0 . The wall heat flux varies circumferentially according to the general function, $q(\phi)$.

Figure 1.1. Physical model and coordinate system.

The applicable form of the energy equation is

$$\rho c_{\mathbf{p}} u_{\mathbf{x}} \frac{\partial t}{\partial \mathbf{x}} = k \left(\frac{\partial^2 t}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}} \frac{\partial t}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial \mathbf{x}^2} \right) + \frac{\mu}{g_c J} \left(\frac{\partial u_{\mathbf{x}}}{\partial \mathbf{r}} \right)^2 + Q \quad (1.1)$$

where ρ is density, c is the specific heat, k is the thermal p conductivity, μ is the coefficient of viscosity, u is the axial

velocity, $t(x, r, \phi)$ is the local fluid temperature, J is conversion factor from mechanical to thermal units, g_c is a conversion factor, i.e., 32.174 lb ft/(lb sec²), and Q is the heat generation rate per unit volume.

It is assumed throughout this work that the physical properties of the fluid are constants. Since these properties vary with temperature, the results hold for relatively small difference in the temperatures.

The axial velocity, u_x , for the case of steady, laminar, fully-developed flow is

$$u_{x} = 2v \left[1 - \left(\frac{r}{r_{0}}\right)^{2} \right]$$
 (1.2)

where the mean velocity, v, is constant. The boundary conditions on t are as follows:

$$\mathbf{t}(\mathbf{0},\mathbf{r},\boldsymbol{\phi}) = \mathbf{t}_{\boldsymbol{\phi}} \tag{1.3a}$$

$$\mathbf{t}(\infty, \mathbf{r}, \phi) = \mathbf{t}_{\mathbf{fd}}$$
(1.3b)

$$k \frac{\partial t}{\partial r} (x, r_0, \phi) = q(\phi) \qquad (1.3c)$$

$$t(x, 0, \phi) = \text{finite}$$
(1.3d)

$$t(x, r, \phi) = t(x, r, \phi + 2\pi)$$
 (1.3e)

i.e., t is single-valued

$$\frac{\partial t}{\partial \phi}(\mathbf{x}, \mathbf{r}, \phi) = \frac{\partial t}{\partial \phi}(\mathbf{x}, \mathbf{r}, \phi + 2\pi)$$
 (1.3f)

i.e., t is continuous

where the fluid temperature at the entrance of the heated section is t_{ϵ} and $t_{fd}(x, r, \phi)$ represents the fully-developed temperature distribution.

A solution is sought to Equation (1.1) subject to conditions specified in Equations (1.2) and (1.3a-f) for $t(x, r, \phi)$ and for the pertinent heat transfer parameters, the Nusselt number, $Nu(x, \phi)$, and the wall temperature.

Equation (1.1) can be represented in terms of the following dimensionless variables:

$$\Theta = \frac{t - t_{\epsilon}}{q 2r_0 / \pi k}$$
(1.4a)

$$\mathbf{x} + = \frac{\mathbf{x}/\mathbf{r}_0}{\operatorname{Re}/\operatorname{Pr}}$$
(1.4b)

$$\mathbf{r} + = \frac{\mathbf{r}}{\mathbf{r}_0} \tag{1.4c}$$

$$u + = \frac{u}{v}$$
(1.4d)

where

$$\overline{q} = \int_0^{2\pi} q(\phi) d\phi \qquad (1.4f)$$

with the requirement that $\overline{q} \neq 0$.

Performing the necessary transformations we obtain for the energy equation

$$\frac{u+}{2} \frac{\partial \theta}{\partial x+} = \frac{\partial^2 \theta}{\partial r+^2} + \frac{1}{r+} \frac{\partial \theta}{\partial r+} + \frac{1}{r+^2} \frac{\partial^2 \theta}{\partial \phi^2} + \frac{1}{\text{Re Pr}} \frac{\partial^2 \theta}{\partial x^2} + \frac{1}{\frac{\pi}{2} \frac{\partial^2 \theta}{\partial x^2}} + \frac{\pi}{\frac{\pi}{2} \frac{\mu v^2}{g_c J} \frac{\partial u+}{\partial r+} + \frac{1}{2} \frac{\partial^2 \theta}{\partial \phi^2} + \frac{2\pi}{2} \frac{\partial^2 \theta}{\partial x^2} + \frac{1}{2} \frac{\partial^2 \theta}{\partial x^2}$$
(1.5)

and for the velocity distribution

$$u + = 2(1 - r + ^{2})$$
 (1.6)

With u+ from Equation (1.6) substituted into (1.5) the complete form of the energy equation becomes

$$(1-r+^{2})\frac{\partial\theta}{\partial x+} = \frac{\partial^{2}\theta}{\partial r+^{2}} + \frac{1}{r+}\frac{\partial\theta}{\partial r+} + \frac{1}{r+^{2}}\frac{\partial^{2}\theta}{\partial \phi^{2}} + \frac{1}{\operatorname{Re}\operatorname{Pr}}\frac{\partial^{2}\theta}{\partial x+^{2}} + \operatorname{Kr}^{2} + Q'$$
(1.7)

where

$$K = 16\pi \left(\frac{v^2}{2g_c Jc_p}\right) \left(\frac{k}{\overline{q}r_0}\right) Pr \qquad (1.7a)$$

and

$$Q' = \frac{Qr_0}{\overline{q}} \frac{\pi}{2}$$
(1.7b)

The boundary conditions, in terms of our dimensionless variable are:

$$\Theta(0, \mathbf{r}+, \mathbf{\phi}) = 0 \tag{1.8a}$$

$$\theta(\infty, r+, \phi) = \theta_{fd}(\infty, r+, \phi)$$
 (1.8b)

$$\frac{\partial \theta}{\partial \mathbf{r}+} (\mathbf{x}+, \mathbf{1}, \mathbf{\phi}) = \frac{\mathbf{q}(\mathbf{\phi})}{\overline{\mathbf{q}}} \frac{\pi}{2}$$
(1.8c)

$$\theta(\mathbf{x}+, 0, \phi) = \text{finite}$$
 (1.8d)

$$\theta(\mathbf{x}+,\mathbf{r}+,\phi) = \theta(\mathbf{x}+,\mathbf{r}+,\phi+2\pi) \qquad (1.8e)$$

$$\frac{\partial \theta}{\partial \phi} (\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\partial \theta}{\partial \phi} (\mathbf{x}+,\mathbf{r}+,\phi+2\pi)$$
(1.8f)

1.2.2 Elimination of the Heat Source and the Dissipation Terms

These terms can be eliminated from the energy equation by the following linear transformation

$$\theta = \Theta + \hat{\mathbf{f}}(\mathbf{r}+) \tag{1.9}$$

where Θ is thermal distribution when heat source and dissipation terms are neglected. The substitution of Equation (1.9) into Equations (1.7) and (1.8) yields the following problems in \hat{f} and Θ :

$$\mathbf{\hat{f}}'' + \frac{1}{r+}\mathbf{\hat{f}}' + Kr + \frac{2}{r+}Q' = 0$$
(1.10)

subject to the boundary conditions

$$f'(1) = 0$$
 (1.11a)

$$f(0) = finite$$
 (1.11b)

and

$$(1-r+^{2})\frac{\partial\Theta}{\partial x+} = \frac{\partial^{2}\Theta}{\partial r+^{2}} + \frac{1}{r+}\frac{\partial\Theta}{\partial r+} + \frac{1}{r+^{2}}\frac{\partial^{2}\Theta}{\partial \phi^{2}} + \frac{1}{\operatorname{Re}\operatorname{Pr}}\frac{\partial^{2}\Theta}{\partial x+^{2}}$$
(1.12)

subject to the boundary conditions

$$\Theta(0, r+, \phi) = 0$$
 (1.13a)

$$\Theta(\infty, \mathbf{r}+, \phi) = \Theta_{\mathbf{fd}}(\infty, \mathbf{r}+, \phi) \qquad (1.13b)$$

$$\frac{\partial \Theta}{\partial \mathbf{r}+} (\mathbf{x}+, \mathbf{1}, \mathbf{\phi}) = \frac{\mathbf{q}(\mathbf{\phi})}{\overline{\mathbf{q}}} \frac{\pi}{2}$$
(1.13c)

$$\Theta(\mathbf{x}+,\mathbf{0},\boldsymbol{\phi}) = \text{finite} \qquad (1.13 \text{ d})$$

$$\Theta(\mathbf{x}+,\mathbf{r}+,\boldsymbol{\phi}) = \Theta(\mathbf{x}+,\mathbf{r}+,\boldsymbol{\phi}+2\pi) \qquad (1.13e)$$

$$\frac{\partial \Theta}{\partial \phi}(\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\partial \Theta}{\partial \phi}(\mathbf{x}+,\mathbf{r}+,\phi+2\pi)$$
(1.13f)

Equation (1.10) may now be solved directly with boundary conditions (1.11a, b) incorporated yielding

$$\hat{f} = -\frac{K}{16}r^{+4} - \frac{Q'}{4}r^{+2} + \text{constant } \frac{1}{4}$$
 (1.14)

where the constant of integration is still undetermined.

As shown above, the viscous dissipation and heat generation terms can be easily eleminated by the linear transformation given by Equation (1.9). We will disregard the contributions of these terms in futher discussion of the present work.

 $\frac{1}{1}$ The constant is determined to be $\frac{Q'}{12} + \frac{K}{96}$.

1.2.3 Fully-Developed and Entry Length Differential Equations and Boundary Conditions

We seek an exact solution, $\Theta(x+, r+, \phi)$, satisfying Equation (1.12) and the associated boundary conditions given by Equations (1.13a-f). Equation (1.12) is a linear differential equation. By experience with heat conduction problems of similar form, a solution can be obtained having the form

$$\Theta + (\mathbf{x} +, \mathbf{r} +, \phi) = \Theta(\mathbf{x} +, \mathbf{r} +, \phi) - \Theta_{\mathrm{fd}}(\mathbf{x} +, \mathbf{r} +, \phi)$$
(1.15)

in which $\Theta_{fd}(x+,r+,\phi)$ is the asymptotic solution obtained far downstream where the temperature profile is fully developed, and $\Theta+$ is the entry region solution.

Combining Equations (1.12), (1.13), and (1.15), and noting that for the case of a fully-developed temperature profile, $\partial \Theta_{\rm fd} / \partial x + = {\rm constant}$, we obtain differential equations and associated boundary conditions for the two regions as follows:

$$\frac{\partial^2 \Theta_{fd}}{\partial r^2} + \frac{1}{r^2} \frac{\partial \Theta_{fd}}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \Theta_{fd}}{\partial \phi^2} = (1 - r^2) \frac{\partial \Theta_{fd}}{\partial x^2} \qquad (1.16)$$

$$\frac{\partial \Theta}{\partial \mathbf{r}^{+}} (\mathbf{x}^{+}, \mathbf{1}, \mathbf{\phi}) = \frac{\mathbf{q}(\mathbf{\phi})}{\overline{\mathbf{q}}} \frac{\pi}{2}$$
(1.16a)

$$\Theta_{\mathrm{fd}}(\mathrm{x}+,0,\phi) = \mathrm{finite}$$
 (1.16b)

$$\Theta_{fd}(x+, r+, \phi) = \Theta_{fd}(x+, r+, \phi+2\pi)$$
 (1.16c)

$$\frac{\partial \Theta}{\partial \phi} \mathbf{fd} (\mathbf{x}^+, \mathbf{r}^+, \phi) = \frac{\partial \Theta}{\partial \phi} \mathbf{fd} (\mathbf{x}^+, \mathbf{r}^+, \phi^{+2}\pi)$$
(1.16d)

$$\frac{\partial^2 \Theta}{\partial r^+} + \frac{1}{r^+} \frac{\partial \Theta}{\partial r^+} + \frac{1}{r^+} \frac{\partial^2 \Theta}{\partial \phi^2} = (1 - r^+) \frac{\partial \Theta}{\partial x^+} - \frac{1}{\operatorname{Re} \operatorname{Pr}} \frac{\partial^2 \Theta}{\partial x^+}$$
(1.17)

$$\Theta + (0, \mathbf{r} +, \phi) = -\Theta_{\mathbf{fd}}(0, \mathbf{r} +, \phi)$$
(1.17a)

 $\Theta + (\infty, \mathbf{r} +, \phi) = 0 \tag{1.17b}$

$$\Theta + (x+, 0, \phi) = \text{finite}$$
 (1.17c)

$$\frac{\partial \Theta}{\partial \mathbf{r}^+}(\mathbf{x}^+, \mathbf{1}, \mathbf{\phi}) = 0 \tag{1.17d}$$

$$\Theta + (\mathbf{x} +, \mathbf{r} +, \phi) = \Theta + (\mathbf{x} +, \mathbf{r} +, \phi + 2\pi)$$
 (1.17e)

$$\frac{\partial \Theta}{\partial \phi}(\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\partial \Theta}{\partial \phi}(\mathbf{x}+,\mathbf{r}+,\phi+2\pi)$$
(1.17f)

Equation (1.16) was solved by Reynolds [49] for the fullydeveloped temperature profile with axial conduction neglected. He considered an arbitrary variation of heat flux that was symmetrical about an axis through the center of the pipe. A solution was then obtained for the case of a tube with constant heat flux over a portion of its circumference, insulated over the remainder, and then generalized by superposition to obtain a solution for an arbitrary heat flux, $q(\phi)$.

In this paper we utilize a Fourier series approach. The formulation of this complete problem includes effects of both axial conduction and a developing temperature profile.

1.3.1 The Fully-Developed Temperature

For the case of a fully-developed temperature profile we have the condition

$$\frac{\partial \Theta_{fd}}{\partial x} = \frac{d \Theta_{m}}{dx} \Big|_{x \to \infty} = \text{constant} \qquad (1.18)$$

An energy balance, for a tube with wall heating as shown in Figure 1.1, yields the following expression

$$\pi r_0^2 \rho v c \frac{dt_m}{dx} dx + \pi r_0^2 \frac{dq_{axial}}{dx} dx = dx \int_0^{2\pi} q(\phi) r_0^2 d\phi \qquad (1.19)$$

The axial heat flux and fluid temperature are related according to

$$q_{axial} = -\frac{1}{\pi r_0^2} \int_0^{2\pi} \int_0^{r_0} k \frac{\partial t}{\partial x} r dr d\phi$$

and it follows that

$$\frac{\mathrm{dq}_{axial}}{\mathrm{dx}} = -\frac{\mathrm{k}}{\pi r_0^2} \frac{\mathrm{d}}{\mathrm{dx}} \int_0^{2\pi} \int_0^{r_0} \frac{\partial t}{\partial x} (x, r, \phi) r \mathrm{d}r \mathrm{d}\phi \quad (1.20)$$

Combining Equations (1.4f), (1.19) and (1.20) and solving for $\frac{dt_m}{dx}$ we obtain

$$\frac{dt_{m}}{dx} = \frac{\partial t_{fd}}{\partial x} = \frac{\overline{q}}{\pi r_{0}\rho vc} + \frac{k}{\rho vc\pi r_{0}^{2}} \frac{d}{dx} \int_{0}^{2\pi} \int_{0}^{r_{0}} \frac{\partial t}{\partial x} r dr d\phi \qquad (1.21)$$

This equation may put in nondimensional form by introducing

$$Pe = Re Pr = \frac{2\rho vcr}{k}$$

and other dimensionless variables defined in Equations (1.4a-d) to yield

$$\frac{\mathrm{d}\Theta_{\mathrm{m}}}{\mathrm{d}\mathbf{x}+} = \frac{\partial\Theta_{\mathrm{fd}}}{\partial\mathbf{x}+} = 1 + \frac{2}{\pi\mathrm{Pe}^2} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}+} \int_0^{2\pi} \int_0^1 \frac{\partial\Theta}{\partial\mathbf{x}+} (\mathbf{x}+,\mathbf{r}+,\phi)\mathbf{r}+\mathrm{d}\mathbf{r}+\mathrm{d}\phi$$
(1.22)

Integrating Equation (1.22) for Θ_{fd} from zero to x+, we obtain

$$\Theta_{fd} = x + \frac{2}{\pi P e^2} \left[\int_0^{2\pi} \int_0^1 \frac{\partial \Theta}{\partial x} (x + r + \phi) r + dr + d\phi \right]_0^{x+} + f + (r + \phi)$$
(1.23)

We now use Equation (1.15) and let $x + \rightarrow \infty$; Equation (1.23) thus becomes

$$\Theta_{fd} = x + \frac{2}{\pi Pe^2} \left[\int_0^{2\pi} \int_0^1 \frac{\partial \Theta}{\partial x_+} (\infty, r_+, \phi) r_+ dr_+ d\phi \right]$$
(1.24)
$$- \int_0^{2\pi} \int_0^1 \frac{\partial \Theta}{\partial x_+} (0, r_+, \phi) r_+ dr_+ d\phi + f_+(r_+, \phi)$$

The first integral in this equation is zero by the boundary condition

given by Equation (1.17b). Thus our expression for Θ_{fd} becomes

$$\Theta_{\rm fd} = x + -\frac{2}{\pi {\rm Pe}^2} \int_0^{2\pi} \int_0^1 \frac{\partial \Theta}{\partial x} (0, r+, \phi)r + dr + d\phi + f + (r+, \phi) \quad (1.25)$$

The form of the function $f+(r+,\phi)$ is expressed as a differential equation obtained by substituting Equation (1.25) into (1.16). Simplification of this result yields the following equation and boundary conditions in $f+(r+,\phi)$

$$\frac{\partial^2 \mathbf{f}_+}{\partial \mathbf{r}_+^2} + \frac{1}{\mathbf{r}_+^2} \frac{\partial \mathbf{f}_+}{\partial \mathbf{r}_+} + \frac{1}{\mathbf{r}_+^2} \frac{\partial^2 \mathbf{f}_+}{\partial \phi^2} = (1 - \mathbf{r}_+^2)$$
(1.26)

$$\frac{\partial f+}{\partial r+}(1,\phi) = \frac{q(\phi)}{\overline{q}} \frac{\pi}{2}$$
(1.26a)

$$f+(0,\phi) = finite$$
 (1.26b)

$$f+(r+,\phi) = f+(r+,\phi+2\pi)$$
 (1.26c)

$$\frac{\partial f_{+}}{\partial \phi}(\mathbf{r}_{+},\phi) = \frac{\partial f_{+}}{\partial \phi}(\mathbf{r}_{+},\phi+2\pi) \qquad (1.26d)$$

To eliminate the difficulty arising from the non-homogeneity in Equation (1.26), we express the function f+ as the sum of two functions in the form

$$f+(r+,\phi) = F(r+,\phi) + W(r+)$$
 (1.27)

and include $(1-r+^2)$ in the formulation of the one-dimensional, W(r+), problem. The two problems which result are now
21

$$\frac{\partial^{2} \mathbf{F}}{\partial \mathbf{r}^{2} \mathbf{F}} + \frac{1}{\mathbf{r}^{2}} \frac{\partial \mathbf{F}}{\partial \mathbf{r}^{2}} + \frac{1}{\mathbf{r}^{2}} \frac{\partial^{2} \mathbf{F}}{\partial \phi^{2}} = 0 \qquad (1.30)$$

$$\frac{\partial F}{\partial r+}(1,\phi) = \frac{q(\phi)}{\overline{q}} \frac{\pi}{2} - \frac{1}{4}$$
(1.30a)

$$F(0, \phi) = finite$$
 (1.30b)

$$F(r+,\phi) = F(r+,\phi+2\pi)$$
 (1.30c)

$$\frac{\partial F}{\partial \phi}(r+,\phi) = \frac{\partial F}{\partial \phi}(r+,\phi+2\pi) \qquad (1.30d)$$

and

$$\frac{1}{r+} \frac{d}{dr+} \left(r + \frac{dW}{dr+} \right) = (1-r+^2)$$
(1.31a)

$$W(0) = finite$$
(1.31b)

Equation (1.31a) may be solved directly with boundary condition

(1.31b) incorporated, yielding

$$W = \left[\frac{r+2}{4} - \frac{r+1}{16}\right] + constant$$
 (1.32)

where the constant is still undetermined.

A product solution for $F(r+,\phi)$ is assumed of the form

$$\mathbf{F}(\mathbf{r}^+, \mathbf{\phi}) = \mathbf{R}(\mathbf{r}^+) \Phi(\mathbf{\phi}) \tag{1.33}$$

which allows the variables in Equation (1.30) to be separated yielding

$$r + \frac{2}{R} \frac{R''}{R} + r + \frac{R'}{R} = -\frac{\Phi''}{\Phi} = +\lambda^2$$
 (1.34)

The requirement that the equation in Φ , i.e., in the homogeneous direction, be a characteristic-value problem dictates a positive sign for λ^2 .

The resulting equation and boundary conditions are now

$$\frac{d^2 \Phi}{d\phi^2} + \lambda^2 \Phi = 0$$
(1.35)

$$\Phi(\phi) = \Phi(\phi + 2\pi) \tag{1.36a}$$

$$\frac{\partial \Phi}{\partial \phi} (\phi) = \frac{\partial \Phi}{\partial \phi} (\phi + 2\pi)$$
(1.36b)

and

$$r + \frac{2}{dr + 2} \frac{d^2 R}{dr + 2} + r + \frac{dR}{dr + 2} - \lambda^2 R = 0$$
 (1.37)

$$R(0) = finite \qquad (1.38a)$$

The solution to Equation (1.35) is

$$\Phi = A \cos \lambda \phi + B \sin \lambda \phi \qquad (1.39)$$

The physics of the problem requires that Φ be single-valued. This condition, which is expressed by (1.36a) can be satisfied when the circular functions of Equation (1.39) have a common period 2π . The same requirement also serves to determine the permissible values of the separation constant

$$\lambda = n$$
 where $n = 0, 1, 2, ...$ (1.40)

Thus Equation (1.39) becomes

$$\Phi = A_0 + A_n \cos n\phi + B_n \sin n\phi \qquad (1.41)$$

where n = 1, 2, 3, ...

It is clear that Φ , besides being single-valued, is continuous and thus automatically satisfies the second boundary condition given by (1.36b).

Equation (1.37) is an Euler equation and has the solution

$$R = Cr + {}^{\lambda} + Dr + {}^{-\lambda}$$
(1.42)

Combining Equations (1.40) and (1.42), we obtain

$$R = Cr + {n + Dr + {-n}}$$
(1.43)

Boundary condition (1.38a), requires the coefficient D be zero. Equation (1.43) may now be expressed in the following form.

$$R = \begin{cases} C_0 & \text{when } n = 0 \\ C_n r + n & \text{when } n = 1, 2, 3, \dots \end{cases}$$
(1.45)

Combining Equations (1.33), (1.41), and (1.45) we obtain

$$F(r+,\phi) = C_0 A_0 + \sum_{n=1}^{\infty} C_n r + (A_n \cos n\phi + B_n \sin n\phi)$$
 (1.46)

and with the constants combined this becomes

$$F(r+,\phi) = a_0 + \sum_{n=1}^{\infty} r + (a_n \cos n\phi + b_n \sin n\phi)$$
 (1.47)

Finally, the non-homogeneous boundary condition (1.30a) is expressed

 \mathbf{as}

$$\frac{\partial F}{\partial r+}(1,\phi) = \sum_{n=1}^{\infty} nr + n^{n-1} (a_n \cos n\phi + b_n \sin n\phi) \Big|_{r+1}$$
$$= \frac{q(\phi)}{\overline{q}} \frac{\pi}{2} - \frac{1}{4}$$

or

$$\sum_{n=1}^{\infty} n(a_n \cos n\phi + b_n \sin n\phi) = \frac{q(\phi)}{\overline{q}} \frac{\pi}{2} - \frac{1}{4}$$

which allows the Fourier coefficients to be evaluated in the usual manner.

The completed solution for $f+(r,\phi)$ from Equation (1.26) may now be summarized

$$f+(r+,\phi) = \left(\frac{r+2}{4} - \frac{r+4}{16}\right) + \sum_{n=1}^{\infty} r+^{n} (a_{n} \cos n\phi + b_{n} \sin n\phi) + A_{0}$$
(1.48)

where

$$a_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \cos n\phi \, d\phi \qquad (1.49a)$$

$$b_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \sin n\phi \, d\phi \qquad (1.49b)$$

 $A_0 = constant$ (still unknown) (1.49c)

We may now express the fully-developed temperature profile by combining Equations (1.25) and (1.48) to obtain

$$\Theta_{fd}(\mathbf{x}+,\mathbf{r}+,\phi) = \mathbf{x}+ + \frac{\mathbf{r}+^2}{4} - \frac{\mathbf{r}+^4}{16} - \frac{2}{\pi Pe^2} \int_0^{2\pi} \int_0^1 \frac{\partial \Theta}{\partial \mathbf{x}+} (0,\mathbf{r}+,\phi)\mathbf{r}+d\mathbf{r}+d\phi + \sum_{n=1}^{\infty} \mathbf{r}+^n (a_n \cos n\phi + b_n \sin n\phi) + A_0 \qquad (1.50)$$

where a_n and b_n are given by Equations (1.49a, b). $A_0^{\frac{2}{}}$ is still to be determined. The complete solution for Θ_{fd} awaits a knowledge of Θ + so that the integral in Equation (1.50) might be determined.

The fully-developed portion to the problem has been solved to this point by a direct use of Fourier series methods. In the next section we shall proceed to solve the entry portion of the problem.

 $\frac{2}{2}$ This constant is determined to be $\frac{-7}{96}$.

1.3.2 The Thermal Entry Length

Consideration will now be given to the problem of solving for $\Theta+(x+,r+,\phi)$ as posed in Equation (1.17). The classical separation of variables method fails when the axial conduction term is retained in the governing energy equation. Nevertheless, a series expansion of the convenient form

$$\Theta + (\mathbf{x} +, \mathbf{r} +, \phi) = \sum_{n=1}^{\infty} \sum_{p=0}^{\infty} e^{-\lambda_{np}^{2} \mathbf{x} +} R_{np}(\mathbf{r} +) (a_{np} \cos p\phi + b_{np} \sin p\phi)$$
(1.51)

may be assumed; it may be noted that boundary condition, Equation (1.17b), is satisfied by this expression. Substituting Equation (1.51) in (1.17) and simplifying, we see that Θ + satisfies the equation and the boundary conditions provided that $R_{np}(r+)$ is the solution of the following ordinary differential equation and its associated boundary conditions

$$\frac{1}{r+} \frac{d}{dr+} \left(r + \frac{dR_{np}}{dr+} \right) + \left[\lambda_{np}^2 \left(1 - r + \frac{\lambda_{np}^2}{Pe^2} \right) - \frac{p^2}{r+2} \right] R_{np} = 0$$
(1.52)

$$\frac{dR_{np}(1)}{dr+} = 0$$
 (1.53a)

$$R_{np}(0) = finite$$
(1.53b)

The terms, λ_{np} , and R_{np} are, respectively, the eigenvalues and

eigenfunctions of the above equation; p is an integer parameter. For p = 0, Equation (1.52) reduces to the characteristic equation for the case with no circumferential variation. The Peclet number, Pe, is also a parameter in Equation (1.52). For $Pe = \infty$, Equation (1.52) reduces to the limiting problem of no axial conduction. Therefore, Equation (1.52) is a general characteristic equation to a variety of heat transfer problems.

Mathematically, Equation (1.52) is not a usual "Sturm-Liouville" type differential equation, in fact it is a more generalized Sturm-Liouville differential equation with non-orthogonal eigenfunctions. Singh [60] showed the orthogonality relationships for the "generalized Sturm-Liouville" system; however, his analysis is in error. Therefore, the orthogonality relationships for the generalized Sturm-Liouville problem are not as yet available in the literature.

<u>1.3.2.1</u> Analysis of the Eigenvalue Problem. The eigenfunctions of Equation (1.52) cannot be expressed in terms of simple functions. Thus we are forced to employ a power series to obtain

$$R_{np}(r+) = \sum_{i=0}^{\infty} b_{i;np}(r+)^{i+p}$$
(1.54)

It is easily found that the coefficients b_{i;np} satisfy

$$b_{i;np} = \frac{\lambda_{np}^2 \left\{ b_{i-4} - \left[1 + \left(\frac{\lambda_{np}}{Pe} \right)^2 \right] b_{i-2} \right\}}{i(i+p)}$$
(1.55)

where

$$b_{i;np} = zero$$
 if (i-4) and (i-2) < 0
 $b_{i;np} = 1$ if i = zero.

Every coefficient b_{i;np} is equal to zero whenever i is odd, so Equations (1.54) and (1.55) become:

$$R_{np}(r+) = \sum_{i=0}^{\infty} b_{2i;np}(r+)^{2i+p}$$
(1.56)

$$b_{2i;np} = \frac{\lambda_{np}^{2} \left\{ b_{2i-4} - \left[1 + \left(\frac{\lambda_{np}}{Pe} \right)^{2} \right] b_{2i-2} \right\}}{2i(2i+p)}$$
(1.57)

The eigenvalues are determined by the equation

$$\sum_{i=0}^{\infty} b_{2i;np}(2i+p) = 0$$
 (1.58)

following from (1.56) and boundary condition (1.53a).

<u>1.3.2.2</u> Determination of an Integral. With the present knowledge of the form of Θ_+ , the integral in Equation (1.50) may be determined as follows

$$\int_{0}^{2\pi} \int_{0}^{1} \frac{\partial \Theta}{\partial x^{+}} (0, r^{+}, \phi) r^{+} dr^{+} d\phi$$

$$= -\int_{0}^{2\pi} \int_{0}^{1} \sum_{n=1}^{\infty} \sum_{p=0}^{\infty} \lambda_{np}^{2} R_{np} (r^{+}) (a_{np} \cos p\phi + b_{np} \sin p\phi) r^{+} dr^{+} d\phi$$

$$= -2\pi \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^{2} \int_{0}^{1} R_{n0} (r^{+}) r^{+} dr^{+}$$
(1.59)

which follow from the orthogonality properties of the sine and cosine functions.

The solution to the fully-developed portion is now expressed in the following form by combining Equations (1.50) and (1.59).

$$\Theta_{fd}(\mathbf{x}+,\mathbf{r}+,\phi) = \mathbf{x}+ + \frac{\mathbf{r}+^2}{4} - \frac{\mathbf{r}+^4}{16} - \frac{7}{96} + \frac{4}{16^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 \int_0^1 R_{n0}(\mathbf{r}+)\mathbf{r}+d\mathbf{r}+ + \sum_{n=1}^{\infty} \mathbf{r}+^n (a_n \cos n\phi + b_n \sin n\phi)$$
(1.60)

<u>1.3.2.3 Determination of Expansion Coefficients</u>. Condition (1.17a) is used to determine the coefficients of expansion in Equation (1.51), i.e., a_{np} and b_{np} . Substitution yields

$$\sum_{n=1}^{\infty} \sum_{p=0}^{\infty} R_{np}(r+) [a_{np} \cos p\phi + b_{np} \sin p\phi] = -\Theta_{fd}(0, r+, \phi) \quad (1.61)$$

Combining Equations (1.60) and (1.61), we obtain

$$\sum_{n=1}^{\infty} a_{n0} \left[R_{n0}(r+) + \frac{4\lambda_{n0}^2}{Pe^2} \int_0^1 R_{n0}(r+)r+dr + \right]$$

+
$$\sum_{n=1}^{\infty} \sum_{p=1}^{\infty} R_{np}(r+)(a_{np} \cos p\phi + b_{np} \sin p\phi)$$

=
$$\frac{7}{96} - \frac{r+^2}{4} + \frac{r+^4}{16} - \sum_{n=1}^{\infty} r+^n(a_n \cos n\phi + b_n \sin n\phi)$$
(1.62)

We next define a parameter, $\hat{\Theta}_{fd}$, and three expansions of the form

$$\hat{\Theta}_{fd}(r+,\phi) \equiv \frac{7}{96} - \frac{r+^2}{4} + \frac{r+^4}{16} - \sum_{n=1}^{\infty} r+^n [a_n \cos n\phi + b_n \sin n\phi] \qquad (1.63a)$$

$$A_{0}(r+) = \sum_{n=1}^{\infty} a_{n0} \left[R_{n0}(r+) + \frac{4\lambda_{n0}^{2}}{Pe^{2}} \int_{0}^{1} R_{n0}(r+)r + dr + \right]$$
(1.63b)

$$A_{p}(r+) \equiv \sum_{n=1}^{\infty} a_{np} R_{np}(r+)$$
 (1.63c)

$$B_{p}(r+) \equiv \sum_{n=1}^{\infty} b_{np} R_{np}(r+)$$
 (1.63d)

We now combine Equations (1.62) and (1.63) to obtain

$$\hat{\Theta}_{fd}(\mathbf{r}+,\phi) = A_0(\mathbf{r}+) + \sum_{p=1}^{\infty} [A_p(\mathbf{r}+)\cos n\phi + B_p(\mathbf{r}+)\sin n\phi]$$
 (1.64)

Equation (1.64) is a complete Fourier series expansion of $\hat{\Theta}_{fd}$. Therefore

$$A_0(r+) = \frac{1}{2\pi} \int_0^{2\pi} \hat{\Theta}_{fd} d\phi \qquad (1.65a)$$

$$A_{p}(r+) = \frac{1}{\pi} \int_{0}^{2\pi} \hat{\Theta}_{fd} \cos p\phi \, d\phi \qquad (1.65b)$$

$$B_{p}(r+) = \frac{1}{\pi} \int_{0}^{2\pi} \hat{\Theta}_{fd} \sin p\phi \, d\phi \qquad (1.65c)$$

Combining Equations (1.63) and (1.65) we obtain

$$\frac{1}{2\pi} \int_{0}^{2\pi} \hat{\Theta}_{fd}(r+,\phi) d\phi = \sum_{n=1}^{\infty} a_{n0} \left[R_{n0}(r+) + \frac{4\lambda_{n0}^{2}}{Pe^{2}} \int_{0}^{1} R_{n0}(r+)r + dr + \right]$$
(1.66a)

$$\frac{1}{\pi} \int_{0}^{2\pi} \hat{\Theta}_{fd}(\mathbf{r}+,\phi) \cos p\phi \, d\phi = \sum_{n=1}^{\infty} a_{np} R_{np}(\mathbf{r}+) \qquad (1.66b)$$

$$\frac{1}{\pi} \int_0^{2\pi} \hat{\Theta}(\mathbf{r}+,\phi) \sin p\phi \, d\phi = \sum_{n=1}^{\infty} b_{np} R_{np}(\mathbf{r}+) \qquad (1.66c)$$

In order to determine the coefficients a_{n0} , a_{np} , and b_{np} we must be able to expand an arbitrary function of r+, say, g(r+) in terms of the eigenfunctions of the characteristic Equation (1.52). As mentioned before, the eigenfunctions of Equation (1.52) are not orthogonal with respect to any known weighting function on the interval of integration. Therefore, we proceed as follows: Let Equations (1.66a-c) be expressed in the general form

$$g(r+) = \sum_{n=1}^{N} a_n R_n(r+) \cong y(r+)$$
 (1.67)

Equation (1.67) represents the integral appearing in the left side of Equations (1.66a-c) with g(r+) expressed in terms of a finite series of N terms, symbolized as y(r+). In this work N = 12.

In place of satisfying Equation (1.67) at n points (point matching) it is often preferable to require that y(r+) and g(r+) agree as well as possible (in some sense) over a domain D of greater extent. This method to satisfy Equation (1.67) involves the minimization of the integral of the square of the error in D (i.e., least squares). More generally, it is required that the squared error be multiplied by the weight $\omega(r+)$ before the integration. We now require that the squared error meet the condition

$$E(a_1, a_2, \dots, a_N) = \int_0^1 \omega(\mathbf{r}+) \left[g(\mathbf{r}+) - \sum_{n=1}^N a_n R_n(\mathbf{r}+) \right]^2 d\mathbf{r} + = \text{minimum}$$

Expanding yields

$$E(a_{1}, a_{2}, ..., a_{N}) = \int_{0}^{1} \omega(r+) \left[g^{2}(r+) - 2g(r+) \sum_{n=1}^{N} a_{n}R_{n}(r+) + \sum_{n=1}^{N} \sum_{m=1}^{N} \sum_{m=1}^{N} a_{n}a_{m}R_{n}R_{m} \right] dr+$$

= minimum

Minimizing with respect to each coefficient a_r , we require that

$$\frac{\partial}{\partial a_{\mathbf{r}}} \int_{0}^{1} \omega(\mathbf{r}+) \left[g^{2}(\mathbf{r}+) - 2g(\mathbf{r}+) \sum_{n=1}^{N} a_{n}R_{n}(\mathbf{r}+) + \sum_{n=1}^{N} \sum_{n=1}^{N} a_{n}a_{m}R_{n}R_{n} \right] d\mathbf{r} + = 0$$

Interchanging the order of differentiation and integration and expanding we have

which, in expanded form, becomes

$$\begin{bmatrix} \int_{0}^{1} \omega(\mathbf{r}+)R_{1}^{2}(\mathbf{r}+)d\mathbf{r}+ & \dots & \int_{0}^{1} \omega(\mathbf{r}+)R_{1}(\mathbf{r}+)R_{N}(\mathbf{r}+)d\mathbf{r}+ \\ \int_{0}^{1} \omega(\mathbf{r}+)R_{2}(\mathbf{r}+)R_{1}(\mathbf{r}+)d\mathbf{r}+ & \dots & \int_{0}^{1} \omega(\mathbf{r}+)R_{2}(\mathbf{r}+)R_{N}(\mathbf{r}+)d\mathbf{r}+ \\ \vdots & & \vdots \\ \int_{0}^{1} \omega(\mathbf{r}+)R_{N}(\mathbf{r}+)R_{1}(\mathbf{r}+)d\mathbf{r}+ & \dots & \int_{0}^{1} \omega(\mathbf{r}+)R_{N}^{2}(\mathbf{r}+)d\mathbf{r}+ \end{bmatrix} \begin{bmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{N} \end{bmatrix}$$

$$= \int_{0}^{1} \omega(\mathbf{r}+)g(\mathbf{r}+)R_{1}(\mathbf{r}+)d\mathbf{r}+$$
$$\int_{0}^{1} \omega(\mathbf{r}+)g(\mathbf{r}+)R_{2}(\mathbf{r}+)d\mathbf{r}+$$
$$\vdots$$
$$\int_{0}^{1} \omega(\mathbf{r}+)g(\mathbf{r}+)R_{N}(\mathbf{r}+)d\mathbf{r}+$$

For any arbitrary variation of circumferential wall heat flux, g(r+)is known. The next and most time-consuming step is the evaluation of the integrals for the coefficients of the matrix in Equation (1.69). Note that these coefficients are symmetric, making the computation somewhat easier. In this work, we choose $\omega(r+) = r+(1-r+^2)$, the weighting function when axial conduction is absent. Finally, the simultaneous equations (1.69) are solved numerically to obtain the expansion coefficients.

Pirkle and Sigillito [47], by an alternative method, suggested that a_{n0} in the expansion (1.66a) be determined approximately for

34

(1.69)

sufficiently large Peclet numbers by

$$a_{n0} \approx \frac{1}{4} \frac{\int_{0}^{1} r + \left[2(\frac{\lambda_{n0}}{Pe})^{2} + 1 - r + ^{2}\right] \left[R_{n0}(r +) \frac{4\lambda_{n0}^{2}}{Pe} \int_{0}^{1} R_{n0}(r +) r + dr + \right] \left[\frac{7}{24} - r + ^{2} + \frac{r + ^{4}}{4}\right] dr + \frac{1}{24}}{\int_{0}^{1} r + \left[2(\frac{\lambda_{n0}}{Pe})^{2} + 1 - r + ^{2}\right] \left[R_{n0}(r +) + \frac{4\lambda_{n0}^{2}}{Pe} \int_{0}^{1} R_{n0}(r +) r + dr + \frac{1}{2}\right] \left[R_{n0}(r +) + \frac{4\lambda_{n0}^{2}}{Pe} \int_{0}^{1} R_{n0}(r +) r + dr + \frac{1}{2}\right] dr + \frac{1}{(1.70a)}$$

We generalize their results to determine the coefficients of expansion of Equations (1.66b, c) in the following forms

$$a_{np} \approx \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + ^{2}\right] \left[\cos p\phi\right] \left[\hat{\Theta}_{fd}\right] \left[R_{np}(r+)\right] d\phi dr +}{\int_{0}^{1} r + \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + ^{2}\right] R_{np}^{2}(r+) dr +}$$
(1.70b)
$$b_{np} \approx \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + ^{2}\right] \left[\sin p\phi\right] \left[\hat{\Theta}_{fd}\right] \left[R_{np}(r+)\right] d\phi dr +}{\int_{0}^{1} r + \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + ^{2}\right] R_{np}^{2}(r+) dr +}$$
(1.70c)

It is verified by the method of least squares (i.e., Equation (1.69)) that Equations (1.70a, b, c) are valid for Peclet numbers greater than 100 at every axial position. Since the main effect of axial conduction occurs with low Peclet numbers, such an approximation to the coefficients of expansion is not valid when axial conduction is of importance.

1.3.3 Complete Solution

At this point the solution to the thermal entrance region is completed. We may now add this solution to the fully developed portion, using Equations (1.15), (1.51), and (1.60) to obtain the complete solution as follows:

$$\Theta(\mathbf{x}+,\mathbf{r}+,\phi) = \mathbf{x}+ + \frac{\mathbf{r}+^2}{4} - \frac{\mathbf{r}+^4}{16} + \sum_{n=1}^{\infty} \mathbf{r}+^n [\mathbf{a}_n \cos n\phi + \mathbf{b}_n \sin n\phi] + \frac{4}{Pe^2} \sum_{n=1}^{\infty} \mathbf{a}_{n0} \lambda_{n0}^2 \int_0^1 \mathbf{R}_{n0} (\mathbf{r}+)\mathbf{r}+\mathbf{d}\mathbf{r}+ + \sum_{n=1}^{\infty} \mathbf{a}_{n0} e^{-\lambda_{n0}^2 \mathbf{x}+} \mathbf{R}_{n0} (\mathbf{r}+) + \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2 \mathbf{x}+} \mathbf{R}_{np} (\mathbf{r}+) [\mathbf{a}_{np} \cos p\phi + \mathbf{b}_{np} \sin p\phi] + \operatorname{constant} \frac{3}{2}$$
(1.71)

where

$$a_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \cos n\phi \, d\phi$$
$$b_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \sin n\phi \, d\phi$$

$$\frac{3}{7}$$
 This constant is determined to be $\frac{-7}{96}$

and a_{n0} , a_{np} , and b_{np} are obtained exactly by the numerical solution of the simultaneous Equations (1.69), and approximately for sufficiently large Peclet numbers and far away from the entrance (i.e., x + > .04) by Equations (1.70a, b, c). The eigenfunctions and eigenvalue, R_{np} and λ_{np} respectively are obtained from Equations (1.56) and (1.58). If viscous dissipation and heat generation are also present, we may use Equations (1.9), (1.14), and (1.71) to express the most complete solution to the thermal profile as

$$\theta(\mathbf{x}+,\mathbf{r}+,\phi) = \Theta + \hat{\mathbf{f}}(\mathbf{r}+) = \mathbf{x}+ - (1+\mathbf{K})\frac{\mathbf{r}+^{4}}{16}$$

$$+ (1-Q')\frac{\mathbf{r}+^{2}}{4} + \sum_{n=1}^{\infty} \mathbf{r}+^{n}[\mathbf{a}_{n}\cos n\phi + \mathbf{b}_{n}\sin n\phi]$$

$$+ \frac{4}{\mathbf{P}e^{2}}\sum_{n=1}^{\infty} \mathbf{a}_{n0}\lambda_{n0}^{2}\int_{0}^{1}\mathbf{R}_{n0}(\mathbf{r}+)\mathbf{r}+\mathbf{d}\mathbf{r}+ + \sum_{n=1}^{\infty} \mathbf{a}_{n0}e^{-\lambda_{n0}^{2}\mathbf{x}+}\mathbf{R}_{n0}(\mathbf{r}+)$$

+
$$\sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2 x} R_{np}(r+)[a_{np} \cos p\phi + b_{np} \sin p\phi]$$

+ constant $\frac{4}{}$

$$\frac{4}{1}$$
 The constant is determined to be = $\frac{-7}{96} + \frac{Q'}{12} + \frac{K}{96}$

1.3.4 Calculation of the Average Mean Fluid Temperature

In this section we determine the average mixed mean temperature of the fluid by two alternative methods. First the average mixed mean fluid temperature is obtained by integrating Equation (1.22) from 0 to x+. Second the definition of mixed mean fluid temperature is employed and Equation (1.71) is integrated over the flow cross-section. Finally, by comparing these two methods, the unknown constant in Equation (1.71) is determined.

Integrating Equation (1.22) for Θ_{mean} from 0 to x+ and employing Equations (1.15), and (1.18), we obtain

$$\Theta_{\text{mean}}(\mathbf{x}+) = \mathbf{x}+ + \frac{2}{\pi P e^2} \left[\int_0^{2\pi} \int_0^1 \frac{\partial \Theta_+}{\partial \mathbf{x}+} (\mathbf{x}+,\mathbf{r}+,\phi)\mathbf{r} + d\mathbf{r} + d\phi - \int_0^{2\pi} \int_0^1 \frac{\partial \Theta_+}{\partial \mathbf{x}+} (0,\mathbf{r}+,\phi)\mathbf{r} + d\mathbf{r} + d\phi \right]$$
(1.72)

The last integral in Equation (1.72) was obtained previously, and is given by the Equation (1.59). The first integral in this equation is obtained by the same procedure. Substituting yields

$$\Theta_{\text{mean}}(\mathbf{x}+) = \mathbf{x}+ + \frac{4}{Pe^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 \int_0^1 R_{n0}(\mathbf{r}+)\mathbf{r}+ d\mathbf{r}+ - \frac{4}{Pe^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 e^{-\lambda_{n0}^2 \mathbf{x}+} \int_0^1 R_{n0}(\mathbf{r}+)\mathbf{r}+ d\mathbf{r}+$$
(1.73)

It is apparent from this expression that $\Theta_{m}(x+)$ does not vary linearly with x+. However, far from the entrance region, the last term in Equation (1.73) goes to zero and Θ_{mean} varies linearly with x+ i.e.,

$$\frac{\mathrm{d}\Theta}{\mathrm{d}x^+}\Big|_{x^+ \to \infty} = 1$$

For the special case where axial conduction is absent (i.e., $Pe \rightarrow \infty$), the last two terms of Equation (1.73) go to zero and Θ_{mean} varies linearly with x+. It is worth noting that the circumferential variation part of the wall heat flux does not have any effect on the fluid mean temperature. This point will become clear when we derive the mean fluid temperature by integrating Equation (1.71). Finally by comparing Equation (1.73) with Equation (1.24) of Hsu [19], we observe that Hsu made an error in his analysis, and did not include the exponential term that appears in Equation (1.73).

The average mean fluid temperature is defined by

$$\Theta_{\text{mean}} = \frac{\int_{0}^{2\pi} \int_{0}^{1} \left[2v(1-r+2)\Theta(x+r+\phi) \right] r + dr + d\phi}{\int_{0}^{2\pi} \int_{0}^{1} \left[2v(1-r+2) \right] r + dr + d\phi}$$

Simplifying, we obtain

$$\Theta_{\text{mean}} = \frac{2}{\pi} \int_{0}^{2\pi} \int_{0}^{1} \left[r + (1 - r + 2) \Theta(x + r + \phi) \right] r + dr + d\phi \qquad (1.74)$$

Substituting Equation (1.71) into (1.74) and carrying out the integration yields

$$\Theta_{\text{mean}} = \mathbf{x} + -\frac{7}{96} + \frac{4}{\text{Pe}^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 \int_0^1 R_{n0}(\mathbf{r}) \mathbf{r} + d\mathbf{r} + \frac{1}{2} \sum_{n=1}^{\infty} a_{n0} e^{-\lambda_{n0}^2 \mathbf{x}} + \int_0^1 \mathbf{r} + (1 - \mathbf{r}) R_{n0}(\mathbf{r}) d\mathbf{r} + \text{constant}$$
(1.75)

When axial conduction is not present, it can be proved that the last integral appearing in Equation (1.75), (i.e.,

$$\int_{0}^{1} r + (1 - r + 2) R_{n0}(r +) dr +$$

reduces to zero; however, when axial conduction is present this integral does not reduce to zero. To evaluate this integral, we

substitute for $r+(1-r+^2)R_{n0}(r+)$ from the characteristic Equation (1.52) and carry out the resulting integration by parts to obtain

$$\int_{0}^{1} r + (1 - r + {}^{2})R_{n0} dr + = -\frac{\lambda_{n0}^{2}}{Pe^{2}} \int_{0}^{1} r + R_{n0}(r +)dr + (1.76)$$

Combining Equations (1.76) and (1.75) we obtain

$$\Theta_{\text{mean}} = \mathbf{x} + \frac{7}{96} + \frac{4}{\text{Pe}^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 \int_0^1 R_{n0}(\mathbf{r}) \mathbf{r} + d\mathbf{r} + \frac{4}{\text{Pe}^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 e^{-\lambda_{n0}^2 \mathbf{x} +} \int_0^1 \mathbf{r} + R_{n0}(\mathbf{r}) d\mathbf{r} + + \text{ constant}$$
(1.77)

By comparing Equations (1.73) and (1.77), we find the unknown constant to be $-\frac{7}{96}$.

1.3.5 Calculation of Nusselt Number

The Nusselt number is defined as

$$Nu(x,\phi) = \frac{2h(x,r_0,\phi)r_0}{k} = \frac{k\frac{\partial t}{\partial r}(x,r_0,\phi)}{t_w t_m} \frac{2r_0}{k}$$

or equivalently

$$Nu(x,\phi) = \frac{q(\phi)2r_0}{(t_w - t_m)k}$$
(1.78)

where $t_w(x, \phi) = t(x, r_0, \phi)$, the wall temperature, and $t_m(x)$ is the mixed mean temperatures.

It will be convenient to represent the heat flux distribution in the form

$$q(\phi) = \overline{q} f(\phi) \qquad (1.78a)$$

where \overline{q} is given by

$$\overline{\mathbf{q}} = \int_0^{2\pi} \mathbf{q}(\mathbf{\phi}) d\mathbf{\phi} \qquad (1.78b)$$

and $f(\phi)$ is a specified angular variation. With this specification on $q(\phi)$, Equation (1.78) reduces to

$$Nu(x+,\phi) = \pi f(\phi) \left[\frac{\overline{q^2 r_0 / k\pi}}{t_w - t_m} \right]$$
(1.79)

Now, expressing Equation (1.71) in terms of mean fluid temperature by combining with Equation (1.73) we obtain

$$\frac{t - t_{m}}{\overline{q}^{2}r_{0}/k\pi} = -\frac{7}{96} + \frac{r + ^{2}}{4} - \frac{r + ^{4}}{16} + \sum_{n=1}^{\infty} r + ^{n}[a_{n} \cos n\phi + b_{n} \sin n\phi] + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}\lambda_{n0}^{2}e^{-\lambda_{n0}^{2}x +} \int_{0}^{1} R_{n0}(r +)r + dr + \sum_{n=1}^{\infty} a_{n0}e^{-\lambda_{n0}^{2}x +} R_{n0}(r +) + \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} e^{-\lambda_{n0}^{2}x +} R_{n0}(r +)[a_{np} \cos p\phi + b_{np} \sin p\phi] \quad (1.80)$$

When the wall heat flux is specified, the wall temperature is the unknown quantity that is usually of most practical interest. It is found by evaluating Equation (1.80) at r+=1 to yield

$$\frac{t_{w}^{-t}}{\overline{q}^{2}r_{0}^{-}/k\pi} = \frac{11}{96} + \sum_{n=1}^{\infty} (a_{n} \cos n\phi + b_{n} \sin n\phi) + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}\lambda_{n0}^{2}e^{-\lambda_{n0}^{2}x+} \int_{0}^{1} R_{n0}(r+)r+ dr + \sum_{n=1}^{\infty} a_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + \sum_{n=1}^{\infty} a_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^{2}x+} R_{np}(1)[a_{np} \cos p\phi + b_{np} \sin p\phi]$$

$$(1.81)$$

Finally, we solve for $Nu(x+, \phi)$ by using Equations (1.79) and (1.81) to obtain

$$Nu(x+,\phi) = \pi f(\phi) \left\{ \frac{11}{96} + \sum_{n=1}^{\infty} (a_n \cos n\phi + b_n \sin n\phi) + \frac{4}{Pe^2} \sum_{n=1}^{\infty} a_n \partial_{n0}^2 e^{-\lambda_{n0}^2 x} \int_0^1 a_{n0} (r+)r + dr + \sum_{n=1}^{\infty} a_{n0} B_{n0}^{(1)} e^{-\lambda_{n0}^2 x} + \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} e^{-\lambda_{np}^2 x} B_{np}^{(1)} a_{np} \cos p\phi + b_{np} \sin p\phi \right]_{(1.82)}^{-1}$$

1.3.6 Axial Non-Uniform Wall Heat Flux

The temperature solution obtained for uniform axial heat input can be used to generate solutions for any arbitrary specified axial variation of wall heat flux, using superposition. This is possible because of the linearity of the energy differential equation. Following the approach used by Siegel, Sparrow, and Hallman [59], for any arbitrary axial heat flux variation of the form $\hat{Q}(x+)$, the thermal distribution is

$$\frac{t-t_{\epsilon}}{r_0/k} = \int_0^{x+} \hat{Q}(\zeta) \frac{\partial \Theta}{\partial x+} (x+-\zeta, r+, \phi) d\zeta \qquad (1.82*)$$

where Θ is the solution for uniform axial input.

Substitution for Θ from Equation (1.71) into Equation (1.82*) yields

$$\frac{t-t}{r_0/k} = \int_0^{\infty} \left\{ 4-4 \sum_{n=1}^{\infty} a_{n0} \lambda_n^2 R_{n0}(r+) e^{-\lambda_{n0}^2(x+-\zeta)} - 4 \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2(x+-\zeta)} \lambda_{np}^2 R_{np}(r+) + x \left[a_{np} \cos p\phi + b_{np} \sin p\phi\right] \right\} \hat{Q}(\zeta) d\zeta$$

1.3.7 Limiting Solution for $Pe \rightarrow \infty$ (No Axial Fluid Conduction)

For the limiting case where axial conduction is not of importance, the Peclet number goes to infinity, and Equations (1.71), (1.81), and (1.82) simplify to

$$\Theta = \mathbf{x} + -\frac{7}{96} + \frac{\mathbf{r} + ^{2}}{4} - \frac{\mathbf{r} + ^{4}}{16} + \sum_{n=1}^{\infty} \mathbf{r} + ^{n} [\mathbf{a}_{n} \cos n\phi + \mathbf{b}_{n} \sin n\phi]$$

$$+ \sum_{n=1}^{\infty} \mathbf{a}_{n0} R_{n0} (\mathbf{r} +) e^{-\lambda_{n0}^{2} \mathbf{x} +}$$

$$+ \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^{2} \mathbf{x} +} R_{np} (\mathbf{r} +) (\mathbf{a}_{np} \cos p\phi + \mathbf{b}_{np} \sin p\phi) \qquad (1.83)$$

$$\frac{t_{w} - t_{m}}{q^{2} \mathbf{r}_{0} / k \pi} = \frac{11}{96} + \sum_{n=1}^{\infty} (\mathbf{a}_{n} \cos n\phi + \mathbf{b}_{n} \sin n\phi)$$

$$+ \sum_{n=1}^{\infty} \mathbf{a}_{n0} R_{n0} (1) e^{-\lambda_{n0}^{2} \mathbf{x} +}$$

$$= \sum_{n=1}^{\infty} (\mathbf{a}_{n0} \mathbf{x} + \mathbf{x}_{n0} \mathbf{x} + \mathbf{x}_$$

+
$$\sum_{n=1}^{\infty} \sum_{p=1}^{-\lambda_{np} x+} R_{np}(1) [a_{np} \cos p\phi + b_{np} \sin p\phi]$$
(1.84)

$$Nu(x+,\phi) = \pi f(\phi) \left\{ \frac{11}{96} + \sum_{n=1}^{\infty} (a_n \cos n\phi + b_n \sin n\phi) + \sum_{n=1}^{\infty} a_{n0} R_{n0} (1) e^{-\lambda_{n0}^2 x +} (1.85) + \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2 x +} R_{np} (1) [a_{np} \cos p\phi + b_{np} \sin p\phi] \right\}^{-1}$$

where λ_{np} , R_{np} are the eigenvalues and eigenfunctions of the following "Sturm Liouville" system.

$$\frac{d}{dr+}\left(r+\frac{dR_{np}}{dr+}\right) + \left[r+(1-r+^2)\lambda_{np}^2 - \frac{p^2}{r+}\right]R_{np} = 0 \qquad (1.86)$$

$$\frac{dR_{np}}{dr+}(1) = 0, \quad R_{np}(0) = \text{finite}$$

As the eigenfunctions R_{np} of Equation (1.86) form a complete orthogonal set in the interval (0,1) with respect to the weighting function, $\omega = r + (1 - r + ^2)$, we have the following orthogonal property.

$$\int_{0}^{1} r + (1 - r + {}^{2})R_{np}(r +)R_{mp}(r +)dr + = 0 \quad np \neq mp$$
 (1.87)

The coefficients of expansion in Equations (1.83), (1.84) and (1.85) (i.e., a_{n0} , b_{n0} , b_{p}) are calculated exactly by the following relationships which are obtained after utilizing the orthogonal property of the eigenfunctions given by Equation (1.87).

$$a_{n0} = +\frac{1}{4} \frac{\int_{0}^{1} r + (1 - r + 2)(\frac{7}{24} - r + 2 + \frac{r + 4}{4})R_{n0}(r +)dr +}{\int_{0}^{1} r + (1 - r + 2)R_{n0}^{2}(r +)dr +}$$
(1.88)

$$a_{np} = + \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + (1 - r + 2) \cos p\phi \hat{\Theta}_{fd} R_{np}(r) d\phi dr}{\int_{0}^{1} r + (1 - r + 2) R_{np}^{2}(r) dr}$$
(1.89)

$$b_{np} = + \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + (1 - r + 2) \sin p\phi \, \hat{\Theta}_{fd} R_{np}(r) d\phi \, dr}{\int_{0}^{1} r + (1 - r + 2) R_{np}^{2}(r) dr} \qquad (1.90)$$

1.4 Special Examples

1.4.1 Cosine Heat Flux Variation Around the Tube Periphery

As an illustrative case, a cosine circumferential heat flux distribution of the form $q(\phi) = q_{av}$ (1 + b cos p ϕ) is considered. A functional relationship of this form is of special interest. Furthermore, the simultaneous effects of circumferential wall heat flux variation and axial conduction on the convection process are investigated. The following cases are considered. <u>1.4.1.1 Asymptotic Examples</u>. Letting $x + \rightarrow \infty$, Equations (1.71), (1.81), and (1.82) reduce to

$$\Theta(\mathbf{x}+,\mathbf{r}+,\phi) = -\frac{7}{96} + \mathbf{x}+ +\frac{\mathbf{r}+^2}{4} - \frac{\mathbf{r}+^4}{16} + \frac{4}{\mathbf{Pe}^2} \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 \int_0^1 R_{n0}(\mathbf{r}+)\mathbf{r}+ d\mathbf{r}+$$

$$+\sum_{n=1}^{\infty}r+{}^{n}[a_{n}\cos n\phi + b_{n}\sin n\phi] \qquad (1.91)$$

$$\frac{t_{w}^{-t} - t_{m}}{\overline{q} 2r_{0}^{-k\pi}} = \frac{11}{96} + \sum_{n=1}^{\infty} (a_{n} \cos n\phi + b_{n} \sin n\phi) \qquad (1.92)$$

$$Nu(\phi) = \frac{\pi f(\phi)}{\frac{11}{96} + \sum_{n=1}^{\infty} (a_n \cos n\phi + b_n \sin n\phi)}$$
(1.93)

Solving for a_n, b_n, \overline{q} , and $f(\phi)$ using Equations (1.49a, b) and (1.78a, b) we obtain the following coefficients.

$$a_{p} = \frac{b}{4p}$$
, $b_{n} = 0$, $f(\phi) = \frac{1+b\cos\phi}{2\pi}$, $\overline{q} = 2\pi q_{av}$. (1.94)

Substituting for a_n , b_n , \overline{q} , and $f(\phi)$ from (1.94) into (1.91), (1.92), and (1.93) we obtain

$$\frac{t-t_{\epsilon}}{q_{av}r_{o}/k} = -\frac{7}{24} + 4x + r + r^{2} - \frac{r+4}{4} + \frac{br+p}{p} \cos p\phi$$
$$+ \frac{8}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}\lambda_{n0}^{2} \int_{0}^{1} R_{n0}(r+)r + dr + \qquad (1.95)$$

$$\frac{t_{w}^{-t} - t_{m}}{q_{av} r_{0}^{-}/k} = \frac{11}{24} + \frac{b}{p} \cos p\phi \qquad p = 1, 2, 3, \dots \qquad (1.96)$$

Nu(
$$\phi$$
) = $\frac{1+b\cos\phi}{\frac{11}{48}+\frac{b}{2p}\cos p\phi}$ p = 1, 2, 3, ... (1.97)

For the special case with p = 1, Equation (1.97) becomes

$$Nu(\phi) = \frac{1+b\cos\phi}{\frac{11}{48} + \frac{b}{2}\cos\phi}$$
(1.98)

which is the solution obtained by Reynolds [49].

Equation (1.97) demonstrates that axial conduction does not influence the asymptotic Nusselt number. This was verified experimentally by Petukhov and Yushin [45], Eckert and Peterson [10], and Emery and Bailey [11]. It is interesting to note that axial conduction does influence the local fluid temperature given by Equation (1.95).

For the case of uniform wall heat flux, b = 0, Equations (1.95), (1.97) reduce to

$$\frac{t - t_{\epsilon}}{q_{av}r_{0}/k} = -\frac{7}{24} + 4x + r + r^{2} - \frac{r + 4}{4} + \frac{8}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}\lambda_{n0}^{2} \int_{0}^{1} R_{n0}(r+)r + dr + (1.99)$$

and

$$Nu = \frac{48}{11}$$
(1.100)

Finally, for the case where axial conduction is not present, Peclet number goes to infinity and Equations (1.99) and (1.100) yield

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + r + r^{2} - \frac{r+4}{4} - \frac{7}{24}$$
(1.101)
Nu = $\frac{48}{11}$ (1.102)

which are the asymptotic values given by Siegel, Sparrow, Hallman [57] and Kays [25].

<u>1.4.1.2</u> Thermal-Entry-Length Examples for Peclet Number of <u>Infinity</u>. Equation (1.63a) is reduced to the following form using Equation (1.94)

$$\hat{\Theta}_{fd} = \frac{7}{96} - \frac{r^2}{4} + \frac{r^4}{16} - \frac{br^2}{4p} \cos p\phi \qquad (1.103)$$

Now, the coefficients a_{n0} , a_{np} , and b_{np} are obtained after substitution for $\hat{\Theta}_{fd}$ from Equation (1.103) into Equations (1.89) and (1.90).

$$a_{n0} = \frac{\int_{0}^{1} r + (1 - r + 2)(\frac{7}{96} - \frac{r + 2}{4} + \frac{r + 4}{16})R_{n0}(r +)dr +}{\int_{0}^{1} r + (1 - r + 2)R_{n0}^{2}(r +)dr +}$$
(1.104a)
$$a_{n0} = \frac{-b \int_{0}^{1} (1 - r + 2)(r +)^{p+1}R_{np}(r +)dr +}{(1 - r + 2)(r +)^{p+1}R_{np}(r +)dr +}$$
(1.104b)

$$a_{np} = \frac{0}{4p \int_{0}^{1} r + (1 - r + ^{2}) R_{np}^{2}(r +) dr +}$$
(1.104b)
$$b_{np} = 0$$

The numerators of (1.104a, b) are simplified by substituting for $(r+)^{p+1}(1-r+^2)R_{np}(r+)$ from the characteristic Equation (1.86) and integrating twice by parts to obtain the following general equations for the expansion coefficients.

$$\hat{a}_{n0} = 4a_{n0} = \frac{-R_{n0}^{(1)}}{\lambda_{n0}^2 \int_0^1 r + (1 - r + ^2) R_{n0}^2 (r +) dr +}$$
(1.105a)

$$\hat{a}_{np} = \frac{4p}{b} a_{np} = \frac{-R_{np}^{(1)}}{\lambda_{np}^2 \int_0^1 r + (1 - r + 2)R_{np}^2(r +)dr +}$$
(1.105b)

The above equations were used to evaluate the expansion coefficients with axial conduction absent (i.e., Peclet number $\rightarrow \infty$).

For the case where the circumferential heat flux varies according to $q(\phi) = q_{av}(1+b\cos\phi)$, the only non-zero coefficients are \hat{a}_{n0} , and \hat{a}_{n1} . The expressions for fluid temperature, wall temperature, and Nusselt number are obtained by simplifying Equations (1.83), (1.84), and (1.85) using (1.94).

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + r + r^{2} - \frac{r+4}{4} - \frac{7}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{-\lambda_{n0}^{2}x+}$$

+ b cos $\phi \left[r + + \sum_{n=1}^{\infty} \hat{a}_{n1}R_{n1}(r+)e^{-\lambda_{n1}^{2}x+}\right]$ (1.106)

$$\frac{t_{w} - t_{w}}{q_{av} r_{0}/k} = \frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}(1) e^{-\lambda_{n0}^{2} x +}$$

+ b cos $\phi \left[1 + \sum_{n=1}^{\infty} \hat{a}_{n1} R_{n1}(1) e^{-\lambda_{n1}^{2} x +} \right]$ (1.107)

Nu(
$$\phi$$
, x+) = $\frac{2(1+b\cos\phi)}{\frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + b\cos\phi\left[1 + \sum_{n=1}^{\infty} \hat{a}_{n1}R_{n1}(1)e^{-\lambda_{n1}^{2}x+}\right]}$ (1.108)

For the case of uniform wall heat flux, b = 0, the only non-zero expansion coefficients are \hat{a}_{n0} . Equations (1.106), (1.107), and (1.108) thus reduce to

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + -\frac{7}{24} + r^{2} - \frac{r^{4}}{4} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r)e^{-\lambda_{n0}^{2}x+}$$
(1.109)

$$\frac{t_{w} - t_{m}}{q_{av} r_{0} / k} = \frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}^{-\lambda_{n0}^{2} x +}$$
(1.110)

Nu(x+) =
$$\frac{2}{\frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}^{-\lambda_{n0}^{2} x+}}$$
 (1.111)

which are the expressions obtained by Siegel, Sparrow, and Hallman [59].

1.4.1.3 Thermal-Entry-Length Examples for Finite Peclet

<u>Number</u>. For this case Equations (1.66a, b, c) reduce to the following expressions after substituting for $\hat{\Theta}_{fd}(r+,\phi)$ from Equation (1.103) and expressing a_{n0} and a_{np} in terms of \hat{a}_{n0} and \hat{a}_{np} :

$$\frac{7}{24} - r^{2} + \frac{r^{4}}{4} = \sum_{n=1}^{\infty} \hat{a}_{n0} \left[R_{n0} + \frac{4\lambda_{n0}^{2}}{Pe^{2}} \int_{0}^{1} R_{n0}(r^{2})r^{2} dr^{2} dr^{2}$$

$$-\frac{(r+)^{p}}{p} = \sum_{n=1}^{\infty} \hat{a}_{np} R_{np}(r+) \qquad (1.113)$$

For the case where the circumferential heat flux varies according to $q(\phi) = q_{av}(1+b \cos \phi)$, the only non-zero coefficients are \hat{a}_{n0} , and \hat{a}_{n1} . Equation (1.113) for p = 1 becomes

$$-\mathbf{r} + = \sum_{n=1}^{\infty} \mathbf{\hat{a}}_{n1} \mathbf{R}_{n1}(\mathbf{r}+)$$
 (1.114)

In Equations (1.112) and (1.114), we need to expand $(\frac{7}{24} - r + 2 + \frac{r + 4}{4})$ and (-r+) in terms of the non-orthogonal eigenfunctions of the characteristic Equation (1.52). These equations are of the same form as Equation (1.67), where $g(r+) = (\frac{7}{24} - r + 2 + \frac{r + 4}{4})$ in Equation (1.112), and g(r+) = (-r+) in Equation (1.114). Therefore, the procedure outlined for the solution of Equation (1.67) (i.e., least squares) given by the expression (1.69) can be utilized to obtain \hat{a}_{n0} , \hat{a}_{n1} .

For sufficiently large Peclet number Equations (1.70a, b, c) reduce to the following expressions by using Equation (1.103) for $\hat{\Theta}_{fd}$.

$$\hat{\mathbf{a}}_{n0} \simeq \frac{\int_{0}^{1} \mathbf{r} + \left[2\left(\frac{\lambda_{n0}}{Pe}\right)^{2} + 1 - \mathbf{r} + 2\right] \left[R_{n0}(\mathbf{r} +) + \frac{4\lambda_{n0}^{2}}{Pe^{2}} \int_{0}^{1} R_{n0}(\mathbf{r} +) \mathbf{r} + d\mathbf{r} + \right] \left[\frac{7}{24} - \mathbf{r} + \frac{7}{4} + \frac{4}{4}\right] d\mathbf{r} + \frac{1}{24} \left[\frac{\lambda_{n0}}{Pe^{2}} + \frac{1}{24} + \frac{1}{4}\right] d\mathbf{r} + \frac{1}{24} \left[\frac{\lambda_{n0}}{Pe^{2}} + \frac{1}{24} + \frac{1}{24}\right] d\mathbf{r} + \frac{1}{24} \left[\frac{\lambda_{n0}}{Pe^{2}} + \frac{1}{24}\right] d\mathbf{r} + \frac{$$

$$\hat{a}_{np} \approx -\frac{1}{p} \frac{\int_{0}^{1} (r+)^{p+1} \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + 2 \right] R_{np}(r+) dr +}{\int_{0}^{1} r + \left[2(\frac{\lambda_{np}}{Pe})^{2} + 1 - r + 2 \right] R_{np}^{2}(r+) dr +} \qquad p > 0 \quad (1.116)$$

The determination of the coefficients of expansion for finite Peclet number was outlined above. We now proceed to determine the expressions for fluid temperature, wall temperature, and Nusselt number for the special problem where $q(\phi) = q_{av}(1+b\cos\phi)$ and the Peclet number is finite.

Substituting for a_n , b_n , \overline{q} , and $f(\phi)$ from Equation (1.94) in (1.71), (1.81), and (1.82), we obtain

$$\frac{\frac{t}{w} - t}{q_{av} r_{0}/k} = \frac{11}{24} + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} \hat{a}_{n0} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x +} \int_{0}^{1} R_{n0} (r+)r + dr + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0} (1) e^{-\lambda_{n0}^{2} x +} + b \cos \phi \left[1 + \sum_{n=1}^{\infty} \hat{a}_{n1} R_{n1} (1) e^{-\lambda_{n1}^{2} x +}\right]$$

(1.118)

$$Nu(x+,\phi) = 2(1+b\cos\phi) \left\{ \frac{11}{24} + \sum_{n=1}^{\infty} a_{n0}^{n} R_{n0}^{(1)} e^{-\lambda_{n0}^{2} x+} + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}^{n} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}^{n} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}^{n} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n0}^{n} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n0}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n1}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n1}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} a_{n1}^{n} R_{n1}^{(1)} e^{-\lambda_{n1}^{2} x+} \int_{0}^{1} R_{n1}^{(r+)r+} dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} A_{n1}^{(r+)r+} dr + \frac$$

For the special case of a finite Peclet number and uniform wall heat flux, b = 0, and \hat{a}_{n0} are the only non-zero expansion coefficients. Equations (1.117), (1.73), (1.118) and (1.119) reduce to

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + -\frac{7}{24} + r + 2 - \frac{r+4}{4} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{-\lambda_{n0}^{2}x+} + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} \hat{a}_{n0}\lambda_{n0}^{2} \int_{0}^{1} R_{n0}(r+)r + dr +$$
(1.120)

$$\frac{t_{m} - t_{\epsilon}}{q_{av} r_{0}/k} = 4x + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} \hat{a}_{n0} \lambda_{n0}^{2} \int_{0}^{1} R_{n0}(r+)r + dr + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} \hat{a}_{n0} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2}x+} \int_{0}^{1} R_{n0}(r+)r + dr + (1.121)$$
$$\frac{t_{w} - t_{m}}{q_{av} r_{0}/k} = \frac{11}{24} + \frac{4}{Pe^{2}} \sum_{n=1}^{\infty} \hat{a}_{n0} \lambda_{n0}^{2} e^{-\lambda_{n0}^{2} x^{+}} \int_{0}^{1} R_{n0}(r+)r+ dr + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}(1) e^{-\lambda_{n0}^{2} x^{+}}$$
(1.122)

$$Nu(x+,\phi) = 2\left\{\frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + \frac{4}{Pe^{2}}\sum_{n=1}^{\infty} \hat{a}_{n0}\lambda_{n0}^{2}e^{-\lambda_{n0}^{2}x+}\int_{0}^{1}R_{n0}(r+)r+dr+\right\}^{-1}$$

$$(1.123)$$

Equation (1.123) for Nusselt number is in excellent agreement with Equation (25) of Hsu [19]; however, Hsu made an error in his analysis and obtained the following expressions for the fluid temperature and mean temperature in place of the Equations (1.120) and (1.121) of this work.

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + -\frac{7}{24} + r + 2 - \frac{r+4}{4} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{-\lambda_{n0}^{2}x+}$$
$$\frac{t_{m}-t_{\epsilon}}{q_{av}r_{0}/k} = 4x + -\frac{4}{Pe^{2}}\sum_{n=1}^{\infty} \hat{a}_{n0}\lambda_{n0}^{2}e^{-\lambda_{n0}^{2}x+}\int_{0}^{1}R_{n0}(r+)r + dr +$$

1.5 Results

1.5.1 Numerical Determination of the Eigenvalues, Eigenfunctions, and Expansion Coefficients

Using the CDC 6400, the first 12 eigenvalues and eigenfunctions of the characteristic Equation (1.52) for p = 0, 1, 2 and Peclet numbers of 5, 10, 20, 30, 50, 100 have been obtained. The resulting eigenvalues and eigenfunctions are used to determine the expansion coefficients. For low Peclet numbers (i.e., Pe = 5, 10, 20), the expansion coefficients are obtained by the method of least squares, and for sufficiently high Peclet numbers (i.e., Pe = 30, 50, 100) expressions (1.115) and (1.116) are used to evaluate these coefficients.

For the limiting problem of uniform wall heat flux (p = 0), the eigenvalues and eigenfunctions at the tube wall are in excellent agreement with the corresponding values obtained by Hsu [19]. However, Hsu made an error in the determination of the coefficients of the nonorthogonal expansion in assuming the eigenfunctions to be orthogonal with respect to a known weighting function. In this work, the expansion coefficients for the case of uniform wall heat flux are obtained from Equation (1.112) in conjunction with the least squares method and also by the approximate method of Equation (1.115). Table 1.1 presents a comparison of the eigenvalues, eigenfunctions, and expansion coefficients with the results of Hsu. The accuracy of

	(p	= 0 and P	eclet number	rs of 5, 10, 20,	30, 50 and 100	
	with the result of Hsu [19].					
n	λ _{n0}	R _{n0} (1)	an0 (Eq. 1.116)	an0 (Least Squares)	$\int_0^1 r R_{n0}(r) dr$	
(1)	Pe = 5: Present	Work				
1	3, 5988876	4640022	4967833	4.9325154E-01	0520689	
2	5.2843136	. 3339972	2670201	-2.0048448E-01	. 0115080	
3	6.5834339	2701109	. 1580058	1.0508700E-01	0034233	
4	7.6746650	.2321182	1019974	-6.4090176E-02	.0013057	
5	8.6323615	2064987	.0713815	4. 3044300E-02	0005982	
6	9. 4954903	. 1877844	0531438	-3.0714883E-02	.0003129	
7	10.2872754	-, 1733598	.0414194	2.2742068E-02	0001803	
8	11.0228168	. 1618080	-, 0334093	-1.7175562E-02	.0001117	
9	11.7125652	1522894	. 0276672	1.3031320E-02	0000733	
10	12.3641008	. 1442712	0233943	-9.7518042E-03	.0000503	
11	12.9831251	1373971	. 0201122	6.9646387E-03	0000357	
12	13.5740531	. 1314191	0175332	-4.2965751E-03	. 0000262	
(1)	Pe = 5: Hsu					
1	3.598889	464000	. 499297		-,0520686	
2	5.284307	. 333996	222230		.0115073	
3	6.583434	270110	. 119823		00342328	
4	7,674666	. 232117	0741155	•	.00130576	
5	8.632364	206498	. 0507140		000598351	
6	9. 495 494	.187784	0372547		. 000313020	
7	10.28728	173359	.0287822		000180393	
8	11.02282	. 161807	0230710		.000111756	
9	11.71257	152289	.0190197		0000732955	
10	1 2. 364 10	.144271	0160251		.0000502644	
11	12. 98313	137397	.0137418		0000357868	
12	13.57406	. 131418	0119519		. 0000262429	
<u>(2)</u>	Pe = 10: Present	t Work				
1	4, 3345060	4837456	. 4644293	4.7237908E-01	0748196	
2	6.7407717	.3595440	2690251	-2. 1571311E-01	. 0236097	
3	8.6329181	2891267	.1782808	1.2123166E-01	0082918	
4	10.2294108	. 2457087	1207206	-7.5291985E-02	. 0033425	
5	11. 6291065	2165869	.0851330	5.0338981E-02	0015403	
6	12. 8875272	. 1955923	0628566	-3.5515532E-02	.0007951	
7	14. 0389783	1796149	.0483573	2.5987096E-02	0004498	
8	15.1061298	. 1669579	0384892	-1.9424350E-02	.0002736	
9	16. 10 4777 5	1566224	.0314878	1.4614688E-02	0001764	
10	17.0464 0 29	.1479812	026,3388	-1.0868418E-02	.0001192	
11	17.9396407	1406198	. 0224336	7.7339315E-03	0000836	
12	18.7911687	.1342521	0193966	-4. 7822892E-03	.0000606	

Table 1.1. Comparison of eigenvalues, eigenfunctions at tube wall, and expansion coefficients for uniform wall heat flux

		D (1)	^a		
n	$^{\wedge}$ n0	$R_{n0}^{(1)}$	n0 (Eq. 1.116)	n0 (Least Squares)	$\int_{0}^{r+R} \int_{0}^{n0} (r+) dr+$
	1				· · · · · · · · · · · · · · · · · · ·
(2)	Pe = 10. Hen				
1	4 33450	- 483746	465121		- 0748186
2	6. 74077	359544	243045		. 0236096
3	8, 63292	289127	. 146465		00829184
4	10. 22941	. 245709	0935418		.00334237
5	11. 62911	216587	. 0636698		00154025
6	12.88753	. 195592	0459578		.000795171
7	14.03898	179615	.0348186		000449866
8	15.10614	.166958	0274142		. 000273804
9	16.10479	156622	.0222471		000176604
10	17.04642	. 147981	0184983		.000119493
11	17.93967	140620	.0156844		0000840654
12	18.79121	.134252	0135174		.0000611847
<u>(3)</u>	Pe = 20: Presen	t Work			
1	4.8005295	4912222	. 4304247	4. 4606273E-01	0895407
2	8.0019897	. 3840379	2431798	-2.1505890E-01	. 0396699
3	10.6608834	3172395	. 1834832	1.3338288E-01	0183183
4	12.9605450	.2698456	1402822	-8.8874666E-02	.0086871
5	15.0008331	2359056	. 1060923	6.1570983E-02	0043330
6	16. 8440194	.2110246	0806391	-4. 3976762E-02	.0023008
7	18.5326903	1921503	.0623488	3.2172446E-02	0013021
8	20. 0971657	.1773431	0492739	-2.3912511E-02	.0007817
9	21.5596125	1653850	.0398166	1.7864440E-02	0004945
10	22, 9366366	.1554932	0328417	-1. 3203726E-02	. 0003273
11	24. 2409663	1471475	.0275850	9.3694540E-03	0002251
12	25.4825642	. 1399905	0235374	-5.8410022E-03	.0001601
	_				
(3)	<u>Pe = 20: Hsu</u>				0005 100
1	4.800531	491220	. 430415		0895402
2	8.001987	. 384036	234730		. 0396696
3	10. 66088	317238	.166261		-,0183180
4	12.96054	. 269844	119841		,00868695
5	15,00083	235905	. 0865912		00433295
6	16.84402	. 211024	0636293		. 00230079
7	18.53269	192149	.0479774	1. a.	00130200
ð	20.097163	• 177342	03/2045		. 000/01/44
9 10	21.339010	103384	. 0296261		UUU4943 <i>41</i> 000297900
10	22. 930034	. 155492	U241548		00032/270
11	24. 240905	14/14/	. 0201002		-, 000223132 0001c009E
12	25.482564	.139990	01/0199		. 000100085

Table 1.1. Continued.

n	λ_{n0}	R _{n0} (1)	² n0 (Eq. 1.116)	$\int_0^1 r R_{n0}(r) dr$
(4) $Pe = 30$; Pr	esent Work			
1	<u>4 9361184</u>	- 4921947	4175560	- 0936872
2	8, 5096337	. 3914558	2202316	. 0473239
3	11, 6259614	3320388	. 1707199	0257199
4	14. 3925222	. 2872632	~. 1414867	. 0140391
5	16.8876479	-, 2523569	. 1156219	0077367
6	19. 1655642	. 2253145	0928546	.0043706
7	21, 2658440	2042589	.0741678	0025572
8	23. 2187473	.1875953	0595367	. 0015565
9	25.0478587	1741355	. 0483265	0009860
10	26.7717379	.1630417	0397749	.0006487
11	28.4051300	1537297	. 0332155	0004419
12	29.9598780	. 1457879	0281277	. 0003105
(4) Pe = 30: Hs	<u>u</u>			
1 .	4.936112	492193	. 417538	0936862
2	8.509624	.391455	217097	.0473232
3	11.62595	332037	. 162101	0257195
4	14.39252	. 287262	128337	.0140389
5	16.88764	252356	. 100492	00773653
6	19. 16556	.225313	0778508	. 00437049
7	21.26584	204258	.0603902	00255717
8	23.21874	.187594	0473469	. 00155651
9	25.04785	174135	.0377057	000985976
10	26.77173	.163041	0305544	.000648680
11	28.40513	153729	.0251900	000441857
12	29.95988	.145787	0211041	. 000310501
(5) Pe = 50: Pre	esent Work			
1	5.0173058	4924689	. 4090588	0961193
2	8.8834123	. 3947255	1967150	. 0531370
3	12. 4592203	3422159	.1449343	0334161
4	15.7692798	. 3045142	1253637	. 0215704
5	18.8422179	2735544	. 1123305	0139016
6	21.7081511	. 2472212	0994928	. 0089239
7	24. 3933444	2249510	.0863158	0057418
8	26. 9198292	.2063090	-,0736674	.0037303
9	29.3063511	1907546	.0623035	0024613
10	31.5690681	.1777263	0525553	. 0016555
11	33.7219403	1667241	.0444302	0011373
12	35.7769994	.1573384	0377606	.0007986

Table 1.1. Continued.

n	λ _n 0	R _{n0} (1)	^a n0 (Eq. 1.116)	$\int_0^1 r R_{n0}(r^+) dr^+$
	a			
(5) $Pe = 50$: Hsu	E 017200	100 107	400055	0061182
1.	5.017300	492407	. 409055	-, 0501105
2	0.883403	. 394/24	196069	0224156
3	12,43921	342214	. 142521	0554150
4 E	15. / 092/	. 304513	120395	. 0213701
5	18.84221	2/3553	. 104848	0139013
0	21.70814	. 24/220	0902077	.00892372
/	24. 39333	224950	.0761521	005/416/
8	26. 91982	. 206308	0634100	.00373022
9	29.30634	190754	.0524720	00246125
10	31.56906	. 177725	0434252	. 00165546
11	33.72193	166723	.0361056	00113734
12	35.77699	. 157338	0302437	. 000798583
(6) Pe = 100: Prese	<u>nt Work</u>			
1	5.0546124	4925134	, 4049395	0972221
2	9.0831132	. 3954485	1813803	. 0562345
3	12, 9813489	3455282	. 1190075	0386110
4	16.7603522	. 3128848	0949691	. 0283288
5	20. 4151358	2884159	.0848006	0213526
6	23. 9431293	. 2682358	-, 0799935	.0162288
7	27, 3457161	2505043	.0767858	0123255
8	30.6270282	. 2344012	0734708	.0093203
9	33.7925506	2196304	.0694380	0070147
10	36.8482018	.2061234	0646618	.0052621
11	39. 7999002	1938678	,0593875	0039432
12	42.6534229	. 1828318	0539230	.0029588
(6) Pe = 100: Hsu				
1	5.054612	492511	. 404939	0972214
2	9.0830997	. 395447	181328	.0562338
3	12.98133	345527	. 118765	0386104
4	16.76034	.312883	~.0943193	.0283284
5	20. 41511	288415	.0835024	0213522
6	23.94311	.268235	0778545	.0162285
7	27.34569	250503	.0737151	-,0123252
8	30.62701	.234400	0694983	.00932010
9	33.79253	219629	.0646957	00701453
10	36,84818	. 206122	0593462	.00526199
11	39.79988	193866	.0537122	00394315
12	42.65341	.182830	0480897	. 00295876

the expansion coefficients obtained by the present work for p = 0

(i.e., uniform wall heat flux) can be checked by comparing the exact function $(\frac{7}{24} - r + \frac{2}{4} + \frac{r + \frac{4}{4}}{4})$ in (1.112) in the range of $0 \le r + \le 1$ and its 12-term least squares expansion for Peclet number of 10. This is done and the results are presented in Table 1.2.

Table 1.2. Comparison of the function $(\frac{7}{24} - r + \frac{r+4}{4})$ and its

	for uniform wall heat flu	ix $(p = 0)$ and Peclet number of 10.
r+	$\frac{7}{24} - r^2 + \frac{r^4}{4}$	$\sum_{n=1}^{12} \hat{a}_{n0}(R_{n0}(r+) + \frac{4\lambda_{n0}^2 \alpha_{n0}}{Pe})$
0.00	. 29167	. 29002
. 05	28917	. 28891
. 10	. 28169	. 28231
. 15	. 26929	. 26889
. 20	. 25207	. 25198
. 25	.23014	. 23057
. 30	. 20369	. 20336
. 35	. 17292	. 17285
.40	. 13807	. 13847
. 45	. 09942	. 09908
.50	. 05729	. 05721
.55	. 01204	. 01251
. 60	03593	03633
.65	08621	08637
.70	13831	13760
.75	- 19173	19228
. 80	24593	24640
. 85	30033	29875
.90	35431	35567
. 95	40721	40911
1.00	45833	43168

12-term least squares expansion in the range of
$$0 \le r + \le 1$$
 for uniform wall heat flux (p = 0) and Peclet number of 10.

*
$$a_{n0} = \int_0^1 R_{n0}(r+)r+ dr+$$
.

The determination of eigenvalues, eigenfunctions, and expansion coefficients when axial conduction is included in a tube with an arbitrary circumferential wall heat flux is the main concern of the present work. For a cosine heat flux variation of the form $q(\phi) = q_{av}(1+b\cos\phi)$, the only non-zero expansion coefficients are a_{n0} and a_{n1} . The eigenvalues, eigenfunctions, and expansion coefficients for p = 1 are presented in Table 1.3. The expansion coefficients were obtained by the method of least squares for Pe = 5, 10, 20, and by Equation (1.116) for Pe = 5, 10, 20, 30, 50, 100. The accuracy of the coefficients of expansion for p = 1, and Pe = 5 was checked by comparing the exact function (-r+) in Equation (1.114) and its 12-term least squares expansion. Table 1.5 shows the comparative results.

For cases involving variation of wall heat flux in the form $\cos p\phi$ or $\sin p\phi$ ($p \neq 0, 1$), additional coefficients, a_{np} and b_{np} , are required. For p = 2, the related coefficients are given in Table 1.4. The expansion coefficients were obtained by the approximate Equation (1.116).

In Figures 1.2 and 1.3 the eigenvalues for p = 0, 1 are plotted versus Peclet numbers. The magnitudes of the eigenvalues increase with Peclet numbers and asymptotically approach the values for the case of no axial conduction near a Peclet number of 100. This indicates the effect of axial conduction to be negligible for Peclet numbers exceeding 100. This conclusion was also reached by Schneider [55],

n	λ1	R _{n1} (1)	an1 (Eq. 1.116)	n1 (Least Squares)	$\int_0^1 r R_{n1}(r) dr$
Pe =	: 5				
1	2. 3395655	.5034665	-1. 4861969	-1.5191623E+00	. 2179911
2	4.4798990	1308452	1. 1298933	8.8401336E-01	. 0005677
3	5.9496839	. 0647956	8617741	-6.3939142E-01	. 0038437
4	7.1376609	0401927	. 6634440	4.9323282E-01	.0006991
5	8.1589039	.0280160	5362122	-3.9963237E-01	.0006354
6	9.0676209	0209600	. 4526074	3.3390404E-01	, 0002561
7	9.8940812	.0164431	3946338	-2.8342888E-01	,0002107
8	10.6571099	0133464	. 3523228	2.4148925E-01	.0001153
9	11.3693258	.0111140	3200987	-2.0410134E-01	. 0000951
10	12.0396638	0094421	. 2947022	1.6840418E-01	0000608
11	12. 6747203	.0081514	2741236	-1.3148986E-01	.0000510
12	13.2795272	0071304	. 2570740	8.8061658E-02	.0000357
<u>Pe =</u>	<u>= 10</u>				
1	2.6695425	. 4696647	-1.5055578	-1.5523524E+00	. 2076048
2	5.5982739	1309244	1. 3021184	9.8436316E-01	0065759
3	7.7140852	.0661968	-1.1911105	-7.7064946E-01	.0050551
4	9. 4470416	0409682	. 9738070	6.0857278E-01	. 0000932
5	10.9395496	.0284266	7838679	-4.9014303E-01	.0007459
6	12.2654614	0211918	. 6442110	4.0323442E-01	.0001594
7	13.4684788	.0165833	5443459	-3.3671212E-01	.0002257
8	14. 5765360	0134362	. 4717776	2.8277229E-01	.0000897
9	15.6085876	.0111745	4175380	-2.3618108E-01	.0000976
10	16.5781218	~.0094844	. 3757993	1.9310344E-01	.0000515
11	17.4951109	.0081820	3428099	-1.4987862E-01	.0000513
12	18.3671596	~.0071531	. 3161269	1.0043446E-01	.0000316
<u>Pe =</u>	<u>= 20_</u>				
1	2.8197826	. 4536019	-1.5040813	-1.5422761E+00	. 2026325
2	6.4672994	1283298	1. 2326335	1.0061598E+00	0123783
3	9.3694705	.0677853	-1. 4076279	-8.6554199E-01	. 0071692
4	11.8350853	0426121	1. 3968095	7. 4194318E-01	0011056
5	13.9978558	.0295308	-1. 2466193	-6.2542009E-01	.0011225
6	15.9351062	0218906	1.0633712	5.2351322E-01	0000750
7	17.6980099	.0170330	8984101	-4. 3769187E-01	. 0002976
8	19. 3224687	0137356	.7644877	3.6507794E-01	.0000280
9	20.8344119	.0113810	6593968	-3.0216865E-01	. 0001146
10	22. 2530309	0096315	.5773102	2. 4497449E-01	, 0000300
11	23.5928677	.0082898	5126529	-1.8918506E-01	. 0000560
12	24.8651860	0072340	. 4610324	1. 2758978E-01	. 0000225

Table 1.3. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 1 and Peclet numbers 5, 10, 20, 30, 50 and 100.

n	λ _{n1}	R _{n1} (1)	^ a	$\int_0^1 r^+ R_{n1}(r^+) dr^+$
Pe = 30				
1	2.8545778	. 4498334	-1.5022573	. 2014624
2	6.7747463	- 1263716	1,1175630	0142855
3	10. 1060500	.0678991	-1.3334928	.0083909
4	13.0364491	0435948	1,5110602	0020467
5	15.6603235	.0305244	-1.5220368	. 0015572
6	18.0423447	0226581	1. 4107798	0003433
7	20.2282494	.0175836	-1.2503466	. 0004125
8	22. 2524521	0141264	1.0876408	0000504
9	24. 1416343	.0116617	9429579	.0001471
10	25.9167186	0098370	.8214723	. 0000031
11	27.5942514	.0084434	7218267	.0000664
12	29, 1874493	0073511	. 6406117	.0000114
<u>Pe = 50</u>				
1	2.8735619	. 4477705	-1.5009765	. 2008212
2	6.9802511	1246824	1.0000705	0154775
3	10. 6992998	. 0672620	-1.1034367	. 0094188
4	14. 1388678	0440567	1,3498381	0031129
5	17.3263081	.0315592	-1.5751142	. 0022441
6	20. 2923130	0237911	1.6938552	0008407
7	23.0652471	.0185858	-1.6963028	. 0006903
8	25.6690302	0149384	1.6138519	0002397
9	28. 1238534	.0122971	-1.4854820	. 0002480
10	30.4470629	0103296	1. 3414231	0000694
11	32.6536637	.0088263	-1.2001143	.0001041
12	34. 7566170	0076514	1,0707484	0000187
<u>Pe = 100</u>				
1	2.8818326	. 4468702	-1.5003515	. 2005413
2	7.0818961	1237271	. 9272440	0160374
3	11.0437856	. 0664633	8656810	. 0099990
4	14, 8831962	0437110	. 9498700	-, 0038894
5	18.6004398	.0317845	-1.1274227	. 0029304
6	22.1915814	0245038	1.3542831	0014884
7	25.6562355	.0196010	-1,5852410	.0011865
8	28.9973910	0160734	1.7819754	0006439
9	32.2200108	.0134205	-1.9201843	. 0005328
10	35.3298632	0113665	1.9913475	0002883
11	38.3328769	.0097447	-1.9996337	.0002519
12	41.2348869	0084454	1.9567307	0001313

Table 1.3. Continued.

n	λ _{n2}	R _{n2} (1)	an2 (Eq. 1.116)	$\int_0^1 r^+ R_{n2}(r^+) dr^+$
Pe = 5				
1.	3. 4032501	.2886589	-1,1399639	. 1100950
2	5.1919365	0510299	1.5343697	. 0033174
3	6.5267768	. 0193056	-1. 7016999	. 0014768
4	7.6353599	0097093	1.7866822	. 0003713
5	8. 6030167	.0056906	-1.8533652	. 0002033
6	9. 4724912	0036724	1.9176613	.0000885
7	10. 2686159	.0025328	-1.9824711	. 0000555
8	11.0072811	0018340	2.0477723	. 0000307
9	11.6993673	. 0013785	-2.1130731	. 0000210
10	12, 3527068	0010672	2. 1779397	. 0000133
11	12. 9731578	. 0008462	-2.2420706	. 0000097
12	13, 5652373	0006844	2. 3052797	. 0000066
Pe = 10				
1	4. 2046331	.2367058	-1.2466088	. 0952002
2	6.6495793	0486234	1.9417994	. 0004143
3	8,5690872	. 0187870	-2.3281859	. 0015878
4	10.1825054	0094801	2. 4705531	. 0002272
5	11.5929365	.0055629	-2.5155926	. 0002027
6	12.8585696	0035938	2.5342931	. 0000686
7	14.0151227	.0024814	-2. 5514134	. 0000536
8	15.0860360	-,0017988	2. 573652 9	. 0000259
9	16.0875504	.0013535	-2.6017719	. 0000201
10	17.0314196	0010489	2.6348909	. 0000117
11	17.9264526	.0008325	-2.6718690	. 0000092
12	18. 7794436	0006739	2.7117010	. 0000060
<u>Pe = 20</u>				
1	4. 7440574	. 2019163	-1.2952157	. 0849643
2	7.9392155	0452397	2.1763953	0022875
3	10. 6041449	.0182943	-3.0511640	. 0019445
4	12.9130467	0093400	3.6035989	0000289
5	14.9615274	.0054807	-3.8445755	. 0002371
6	16. 8111609	0035329	3.9020239	. 0000295
7	18.5048086	.0024345	-3.8773293	.0000566
8	20.0731614	0017627	3.8260465	. 0000166
9	21.5386797	.0013255	-3.7734555	. 0000200
10	22.9181788	0010269	3.7292457	. 0000087
11	24.2245346	.0008151	-3.6960409	. 0000089
12	25.4678149	0006599	3.6735833	. 0000048

Table 1.4. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 2 and Peclet numbers of 5, 10, 20, 30, 50, and 100.

n	λ _{n2}	R _{n2} (1)	an2 (Eq. 1.116)	$\int_0^1 r^{+} R_{n2}(r^{+}) dr^{+}$
Pe = 30				
1	4. 9068008	.1916800	-1.2992654	. 0819042
2	8.4693752	0431430	2.1380454	0032706
3	11.5823963	.0178774	-3. 2078639	. 0022069
4	14. 3511697	0092941	4. 1805761	0002303
5	16.8506410	.0054884	-4.8286529	. 0002915
6	19. 1330938	0035372	5.1511607	0000102
7	21.2374062	.0024317	-5.2479027	. 0000662
8	23. 1937137	0017558	5.2185955	. 0000069
9	25. 0256612	. 0013172	-5. 1316559	.0000218
10	26.7 519063	0010187	5.0263589	.0000056
11	28. 3872856	.0008074	-4. 9225993	. 0000092
12	29.9437167	0005631	4. 8291691	. 0000036
Pe = 50				
1	5.0057308	.1855412	-1.2978482	. 0800572
2	8.8647177	0412323	2.0094935	0039035
3	12. 4349672	.0172178	-2.9999170	. 0024511
4	15.7420018	0091433	4.2451264	0004715
5	18.8142162	.0055032	-5.5089888	.0003919
6	21.6809832	0035837	6.5570951	0000825
7	24. 3678100	.0024708	-7.2798271	. 0000946
8	26.8962058	0017814	7.6858694	0000145
9	29.2846342	.0013318	-7.8438536	. 0000296
10	31. 5491292	0010258	7.8337849	0000014
11	33.7036099	.0008100	-7.7231245	.0000115
12	35.7601053	0006529	7.5604440	. 0000009
<u>Pe = 100</u>				0700050
1	5.0515937	. 1827191	-1.2959977	.0792050
2	9.0777881	0400753	1.8908883	0042009
3	12.9735566	.0165830	-2.5721933	. 0025920
4	16.7502419	0088304	3. 4810749	0006576
5	20. 4030340	.0053917	-4. 6822397	. 0005046
6	23. 9294779	0035824	6. 1446411	0001811
7	27.3310077	. 0025185	-7.7554763	.0001527
8 IC	30.6117390	0018433	9.3629719	~. 0000599
9	33.7770876	.0013909	-10.8247955	.0000553
10	36.8328760	0010758	12.0411245	-,0000212
11	39.7849263	.0008496	-12.9650754	.0000223
12	42.6389335	0006832	13, 5956081	0000077

Table 1.4. Continued.

	$0 \le r + \le 1 \text{ for } p =$	1 and Peclet number of 5.
r+	(-r+)	$\sum_{n=1}^{12} a_{n1}R_{n1}(r+)$
0.00	0.00000	0.00000
. 05	05000	04908
. 10	10000	10011
.15	15000	15045
.20	20000	19959
. 25	25000	24992
.30	30000	30041
. 35	35000	34973
. 40	40000	39980
.45	45000	45044
.50	50000	49984
.55	55000	54965
.60	60000	60051
. 65	65000	64999
. 70	70000	69935
.75	75000	75065
.80	80000	80035
. 85	85000	84843
. 90	90000	90143
.95	- 95000	95183
1.00	-1.00000	97340

Table 1.5. Comparison of the function (-r+) and its 12-term least squares expansion in the range 0 < r+ < 1 for p = 1 and Peclet number of 5.

Figure 1.2. Variation of eigenvalues with Peclet number for p = 0.

Figure 1.3. Variation of eigenvalues with Peclet number for p = 1.

Singh [61], and Hsu [21] in their analyses of heat transfer including axial conduction for both uniform wall temperature and uniform wall heat flux conditions. In Figures 1.4, 1.5, 1.6, the first two eigenfunctions are shown for p = 0, 1, 2 (i.e., R_{00} , R_{10} , R_{01} , R_{11} , R_{02} , R_{12}) and for several values of Peclet number. Figure 1.7 presents similar plots for the third and fourth eigenfunctions for p = 0. Finally, the first 12 eigenfunctions for p = 0, 1, 2 and Peclet numbers of 5, 10, 20, 30, 50, 100 are included in tabular form in Appendix A. The first five of these eigenfunctions are also represented in graphical form in Appendix B.

For the limiting problem with no axial conduction (i.e., $Pe = \infty$) the eigenfunctions and eigenvalues were obtained from the Sturm Liouville System given by Equation (1.86). The expansion coefficients were determined by (1.104a,b). The first 12 eigenfunctions, eigenvalues, and expansion coefficients are tabulated for p = 1, 2, 3, 4, 5, 6 in Table 1.6. These coefficients can be used to determine heat transfer parameters for any arbitrary circumferential wall heat flux that can be expanded in Fourier series up to sixth harmonics. For p = 0 the heat flux is uniform and the eigenvalues, eigenfunctions, and expansion coefficients agree with those reported by Siegel, Sparrow, and Hallman [59], and Hsu [18]. The comparison of these results are presented in Table 1.7.

Figure 1.4. The first two eigenfunctions for different Peclet numbers and for p = 0 (i.e., uniform wall heat flux).

Figure 1.5. The first two eigenfunctions for different Peclet numbers and for p = 1.

Figure 1.6. The first two eigenfunctions for different Peclet numbers and for p = 2.

n	λ _{nl}	R _{n1} (1)	â _{nl}
p = 1			
1	2.8846257	. 4465660	-1.5001310
2	7.1182769	1233654	.8985212
3	11.1789014	. 0660488	7457699
4	15.2093411	0432979	.6623509
5	19.2281902	. 0314396	6068484
6	23.2412108	0242920	.5661359
7	27.2508383	.0195713	5344534
8	31.2582968	0162501	. 5087942
9	35.2642749	.0138029	4874053
10	39.2691926	0119344	.4691822
11	43.2733218	.0104673	4533880
12	47.2768465	0092889	.4395086
	λ_{n2}	$R_{n2}^{(1)}$	a
p = 2			
1	5.0675055	. 1817437	-1.2951616
2	9.1576064	0396193	1.8356290
3	13.1972247	. 0162605	-2 .2988208
4	17.2202294	0085882	2.7163616
5	21.2355173	.0052132	-3.1023198
6	25.2465312	0034583	3.4645495
7	29.2549056	.0024404	-3.8080073
8	33.2615237	0018022	4.1360765
9	37.2669082	.0013783	-4.4511969
10	41.2713893	0010837	4.7552018
11	45.2751869	.0008715	-5.0495135
12	49.2784213	0007140	5.3353055

Table 1.6. Eigenvalues, eigenfunctions at tube wall, and expansion coefficients for p = 1, 2, 3, 4, 5, 6, and Peclet number of infinity (no axial conduction).

n	λ _{n3}	R _{n3} (1)	â _n 3
p = 3			
1	7.2301356	. 0692356	-1.6041884
2	11.2076358	0137637	3.6963680
3	15. 2 211958	. 0047047	-6.2348480
4	19.2343237	0021021	9.2193919
5	23.2448353	.0011017	-12.6253758
6	27.2531765	0006421	16.4299365
7	31.2599023	.0004038	-20.6137504
8	35.2654301	0002688	25.1605122
9	39. 2 7005 4 5	.0001871	-30.0562931
10	43.2739839	0001350	35.2890294
11	47.2773684	.0001003	-40.8481299
12	51.2803505	0000763	46.7261154
	$^{\lambda}$ n4	R _{n4} (1)	â
p = 4			
1	9.3792135	.0252401	-2.3213776
2	13.2723388	0049034	7.4314469
3	17.2549085	.0014777	-15.8125201
4	21.2546254	0005792	28.1040147
5	25.2582950	.0002688	-44.8874390
6	29.2627184	0001402	66.7027453
7	33.2670067	. 0000797	-94.0598892
8	37.2709209	0000484	127.4452276
9	41.2744245	.0000309	-167.3256194
10	45.2775446	0000206	214.1513339
11	49.2803425	.0000142	-268.3581004
12	53.2833256	0000101	330.2625627

Table 1.6. Continued.

n	λ_{n5}	R _{n5} (1)	â _{n5}	
p = 5				
1	11.5098951	.0089607	-3.6425719	
2	15.3489579	0017523	14.9425283	
3	19.2994476	. 0004851	-38.4763055	
4	23.2827812	0001716	79.9319957	
5	27.2774053	. 0000720	-145.8859799	
6	31.2764169	0000341	243.7046747	
7	35.2772488	. 0000177	-381.4989950	
8	39.2788376	0000099	568.0910053	
9	43.2807099	. 0000059	-812.9862309	
10	47.2826436	0000036	1126.3510676	
11	51.2846273	. 0000024	-1518.9028058	
12	55.2897 8 56	0000016	2005.3450201	
	λ _{n6}	R _{n6} (1)	ân6	
p = 6				
1	13.6194985	.0031385	-5.9785255	
2	17.4320392	0006226	30.0137091	
3	21.3537711	.0001630	-90.9529902	
4	25.3192435	0000533	216.4815922	
5	29.3030107	.0000205	-444.5872727	
6	33.2951536	0000090	824.7249759	
7	37.2914389	. 0000043	-1418.9510664	
8	41.2898936	0000022	2302.0232011	
9	45.2895293	. 0000012	-3567.4619251	
10	49.2898175	0000007	5318.5921954	
11	53.2897917	.0000004	-7680.4664374	
12	57.5404175	0000002	9271.8561870	

Table 1.6. Continued.

	Siegel,	Sparrow,	Hallman		Hsu			Present Work		
n	λ_{n0}^2	R _{n0} (1)	â _{n0}	λ_{n0}	$R_{n0}^{(1)}$	\hat{a}_{n0}	λ _{n0}	R _{n0} (1)	\hat{a}_{n0}	
1	25.6796	492517	. 403483	5.067504	492517	. 403483	5.0675055	4925166	. 4034832	
2	83.8618	. 395508	175111	9. 157609	. 395508	175110	9. 1576064	. 3955085	1751100	
3	174. 167	345872	. 105594	13. 19722	345874	. 105592	13. 1972247	3458737	. 1055917	
4	296.536	. 314047	0732804	17. 22023	. 314046	0732824	17. 2202294	. 3140465	0732824	
5	450. 947	291252	. 0550357	21.23552	291251	. 0550365	21.2355173	2912515	. 0550365	
6	637.387	. 273808	043483	25.24653	. 273807	0434844	25.2465312	. 2738070	0434844	
7	855.850	. 259852	. 035597	29. 25491	259853	. 0355951	29.2549056	2598530	.0355951	
8				33. 26152	. 248332	0299085	33. 2615237	. 2483320	0299084	
9				37. 266 91	238590	. 0256401	37.2669082	2385904	. 0256401	
10				41. 27139	. 230199	0223337	41. 2713893	. 2301993	0223336	
11				45.27519	222863	. 0197069	45. 2751871	2228631	. 0197068	
12				49. 27846	. 216370	0175765	49. 2784663	. 2163696	0175763	

Table 1.7. Comparison of eigenvalues, eigenfunctions and expansion coefficients for Peclet number of infinity (no axial conduction) and for uniform wall heat flux with the results of Siegel, Sparrow, and Hallman [59] and Hsu [18].

1.5.2 Discussions of Results for the Special Example $q(\phi) = q_{av}(1+b \cos p\phi)$

With the numerical information obtained in the previous section, we may investigate the simultaneous effects of circumferential wall heat flux and axial conduction on wall temperature and Nusselt number in the entrance region of a tube. Using the obtained eigenvalues, eigenfunctions, and expansion coefficients, the dimensionless wall temperature difference and the local Nusselt numbers have been calculated for various values of the parameters Pe, x+, b, and ϕ from Equations (1.118) and (1.119).

For the well-known limiting case with uniform wall heat flux (b = 0) and no axial conduction, a comparison of these results with Kays' [25] table (8-6) is given by Table 1.8 of the present work.

x +	Kays' Table (8-6) Nu (x+)	Present Work Nu (x+)		
. 001	·	15.758		
.002	12.00	12.537		
.004	9.93	9.986		
.010	7.49	7.494		
.020	6.14	6.148		
.040	5.19	5.198		
.10	4.51	4.514		
∞	4.36	4,364		

Table 1.8. Comparison of local Nusselt number for the circular tube; constant wall heat flux; no axial conduction (Pe $\rightarrow \infty$) with the results of Kays.

For finite Peclet numbers and uniform wall heat flux there are no tabulated Nusselt number values and the Nusselt values obtained in graphical form by Hsu [19] are in error as mentioned before. Table 1.9 presents values of local Nusselt number for various Peclet numbers. Nusselt values for $Pe = \infty$ are also included in the last column for comparison.

Table 1.9. Local Nusselt numbers for laminar tube flow with uniform wall heat flux, and Peclet numbers of 5, 10, 20, 30, 50, and 100.

x+	Pe = 5 Nu(x+)	Pe = 10 Nu (x+)	Pe = 20 Nu (x+)	Pe = 30 Nu (x+)	Pe = 50 Nu (x+)	Pe = 100 Nu (x+)	Pe = ∞ Nu (x+)
.002	43.306	31.989	23.228	31.075	20.631	15.071	12.537
.004	30.748	21.575	15.645	15.623	12.462	10.711	9.986
.01	17.655	12.399	9.573	8.800	8.019	7.633	7.494
.02	11.455	8.474	7.039	6.586	6.314	6.191	6.148
.04	7.771	6.218	5.552	5.348	5.254	5.212	5.198
.1	5.321	4.780	4.593	4.546	4.526	4.517	4.514
8	4.364	4.364	4.364	4.364	4.364	4.364	4.364

Graphical representation of the Nusselt numbers tabulated in Table 1.9 is shown in Figure 1.8. If the least squares method for the expansion coefficients had not been employed, the Nusselt number values obtained for low Peclet numbers, would have been larger. This is seen by comparing Figure 1.8 and Figure 1.9. Figure 1.8 corrects Hsu's [21] Figure 4 and illustrates that, as Peclet numbers decrease, the Nusselt values increase in the entrance region and approach 4.364 as $x \rightarrow \infty$ for any Peclet number. This was

Figure 1.8. Entrance-region local Nusselt numbers for uniform wall heat flux and for different Peclet numbers, employing least squares expansion coefficients.

Figure 1.9. Entrance-region local Nusselt numbers for uniform wall heat flux and for different Peclet numbers, employing the approximate expansion coefficients.

verified experimentally by Petukhov and Yushin [45], Eckert and Peterson [10], and Emery and Bailey [11] who independently showed the asymptotic Nusselt number for the case of uniform wall heat flux in liquid metals to be 4.36. Figure 1.8 also illustrates that the entry length increases as Peclet number is decreased. Figure 1.10 shows the relationship between dimensionless wall temperature difference and dimensionless axial distance, for the case of uniform wall heat flux for different Peclet numbers. It is observed that as Peclet number decreases the dimensionless wall temperature decreases in the entrance region and approaches a constant value asymptotically. If the least squares method for the expansion coefficients had not been employed, the wall temperature values for low Peclet number, would have lower values. This is seen by comparing Figures 1.10 and 1.11.

For the case where the heat flux varies around the circumference (i.e., b = 1), the dimensionless wall temperature difference (Equation 1.118) has been plotted in Figure 1.12 as a function of angular position ϕ at a section where fully-developed conditions exist (i.e., x+=1). Since the asymptotic wall temperature is not affected by axial conduction, this plot corresponds to Figure 5 of Reynolds [49] who solved the asymptotic problem with no axial conduction. Figures 1.13, 1.14, 1.15, and 1.16 present corresponding plots for the thermal entrance region (i.e., x+=.1,.04,.02,.01), and Peclet numbers of 5, 10, 20, 30, 50, and 100. It is seen that

Figure 1.10. Entrance-region local wall-to bulk temperature difference for uniform wall heat flux and for different Peclet numbers, employing least squares expansion coefficients.

Figure 1.11. Entrance-region local wall-to bulk temperature difference for uniform wall heat flux and for different Peclet numbers, employing the approximate expansion coefficients.

Figure 1.12.

Illustration of effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ on wall-to bulk temperature difference and local Nusselt number, at the location far away from the entrance.

Figure 1.13. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x + = .1.

Figure 1.14. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x + = .04.

Figure 1.15. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x + = .02.

Figure 1.16. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .01.
there is a significant variation in the dimensionless wall temperature difference $\frac{t - t}{\alpha - r_0/k}$ around the tube periphery for the case of a circumferential wall heat flux and axial fluid conduction. By comparing these plots, it is seen that the effect of axial conduction on wall temperature becomes more pronounced in the entrance region. Increased values of the heat flux parameter, b, result in increased temperature variations around the circumference for a given Peclet number as seen by Figures 1.17, 1.18, 1.19, 1.20. The local Nusselt number has been plotted in Figures 1.21, 1.22, 1.23, 1.24 as a function of angular position ϕ . It is found that the local Nusselt number varies over a wide range around the circumference of a tube in the case of a cosine heat flux variation. Furthermore, axial conduction has a pronounced effect on local Nusselt numbers. This effect becomes more significant in the entrance region. Also note that the Nusselt number is infinity at the point where the wall temperature is equal to the mean fluid temperature and becomes negative when the wall temperature is less than the bulk temperature.

Finally, dimensionless wall temperatures and Nusselt numbers are plotted as a function of dimensionless axial position for different Peclet numbers, at the location of maximum heat flux ($\phi = 0$) in Figures 1.25 and 1.26.

Figure 1.17. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .1.

Figure 1.18. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .04.

Figure 1.19.

Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x+ = .02.

Figure 1.20. II fi ti

Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and axial conduction on wall-to bulk temperature difference at the location x + = .01.

Figure 1.21. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location x + = .1.

Figure 1.22. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location x + = .04.

Figure 1.23.

Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location x + = .02.

Figure 1.24.

Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the location x + = .01.

Entrance-region local wall-to bulk temperature difference for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the angular position $\phi = 0$ (i.e., maximum wall heat flux).

Figure 1.26. Entrance-region local Nusselt numbers for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different Peclet numbers at the angular position $\phi = 0$ (i.e., maximum wall heat flux).

2. NON-NEWTONIAN PROBLEM

2.1 Introduction

2.1.1 Literature Review

In recent years there has been an increasing effort concerned with the theoretical solution of heat transfer for laminar non-Newtonian tube flow with axisymmetric heating, either with uniform wall temperature or uniform wall heat flux.

Grigull [15] obtained an asymptotic, downstream Nusselt number with a uniform wall heat flux for fluids obeying both the powerlaw and Bingham plastic constitutive equations. Beek and Eggink [3] and Valstar and Beek [70] extended the work of Grigull and considered boundary conditions of both uniform heat flux and uniform temperature in parallel plates and tubes. They showed that the Nusselt number depends primarily on the ratio of maximum velocity to mean velocity. Their results for power-law and Bingham plastic fluids are included in the summary article by Rohsenow [51]. Matsuhisa and Bird [32] obtained similar results for Ellis fluids. Michiyoshi [35] extended the work of Beek and Eggink, and Grigull to Bingham plastic fluids and included the effect of an internal heat source for the condition of uniform wall heat flux.

Sestak and Charles [57] analyzed the influence of arbitrary heat

generation terms in the limiting Nusselt number, for non-Newtonian fluids with uniform wall heat flux, by a technique similar to one used by Lyon [30] for liquid metals which does not involve calculating temperature profiles in advance. Expressions were developed by Skelland [62] for asymptotic Nusselt numbers for power-law and Bingham plastic fluids in tubes and parallel plates by assuming a cubic polynomial profile for both cases of uniform wall temperature and uniform wall heat flux. Payvar [44] included the effect of viscous dissipation and developed expressions for the asymptotic Nusselt numbers for three widely used models, namely, the power-law fluids, Bingham plastics, and Ellis fluids.

The case of a fully-developed velocity profile, but thermally developing temperature profile has been the subject of many papers. Lyche and Bird [29] extended the Graetz-Nusselt problem [8,56] to non-Newtonian fluids using the power-law constitutive equation. They used a separation-of-variables technique to reduce the energy equation into two ordinary differential equations, functionally relating the temperature in the axial and radial directions respectively. The radial ordinary differential equation was solved with the appropriate boundary conditions to give the first three eigenfunctions, eigenvalues, and expansion coefficients. Whiteman and Drake [71] examined the case of uniform tube wall temperature in a study that was similar to that of Lyche and Bird. Whereas the latter authors obtained Nusselt numbers

averaged over the heat transfer section, Whiteman and Drake presented only local values of Nusselt number, although over a somewhat larger range of Graetz numbers.

Wissler and Schecter [73] showed how the Graetz-Nusselt problem could be solved to include heat transfer to a slurry behaving as a Bingham plastic, and following other works [4,7,14,67,68] they considered cases for which heat is generated in the fluid. Foraboschi and Federico [12] extended this problem further to the case where the volumetric heat generation rate varies linearly with local temperatures for power-law non-Newtonian fluids.

For the uniform heat flux boundary condition, the work of Siegel, Sparrow, and Hallman [59] pertaining to Newtonian fluids was extended to non-Newtonian fluids according to the Prandtl-Eyring formula by Shenk and Van Laar [58] and according to power-law and Ellis models by Bird [5]. Schechter and Wissler [53] extended the work of Sparrow and Siegel [53] for Newtonian flow of a heat generating fluid to non-Newtonian flow of a Bingham plastic fluid with constant heat generation and an insulated wall boundary condition. Michiyoshi <u>et al</u>. [36] extended the work of the latter authors and included not only the case of a thermally insulated wall but also the cases of uniform wall heat flux and uniform wall temperature. Michiyoshi [37] also considered the power-law heat generating, pseudo-plastic fluids for both a uniform wall heat flux and uniform wall temperature. Their results for no internal heat generation, with uniform wall temperature, agree very well with those of Lyche and Bird [29], and in the case of uniform wall heat flux with a special result of this work, i.e., constant wall heat flux.

Mitsuishi and Miyatake [39] adopted the Ellis model, involving three parameters, for the cases of both uniform wall temperature and uniform wall heat flux. The first three eigenvalues and eigenfunctions and coefficients of the expansion between two limiting values of Newton's law and power-law were obtained. Their eigenvalues, eigenfunctions, and expansion coefficients are in excellent agreement for the case of powerlaw fluids and a uniform wall heat flux with a special result of this work.

The combined hydrodynamic-entry length problem for Newtonian fluids [16, 26, 31, 69] was extended to non-Newtonian powerlaw fluids by McKillop [33] and later by Yau and Tien [74] using different techniques. Samant and Marner [52] extended the work of McKillop [33] to include Bingham plastic fluids.

Literature in the area of non-uniform or arbitrary variation of heat flux or wall temperature around the periphery of a tube is indeed sparse and, with the exception of the paper by Inman [22] who extended the work of Reynolds [49] to non-Newtonian power-law fluids with variable circumferential wall temperature or heat flux, there exists no other published work.

2.1.2 Present Investigation

The objective of this investigation is to extend the work of Inman [22] to solve the problem of heat transfer in a circular tube with an arbitrary circumferential wall heat flux for the case of a developing temperature profile for power-law pseudo-plastic fluids. The solution is expanded in a power series form that accounts for any arbitrary variation of heat flux around the circumference that can be expressed in terms of a Fourier expansion and the expansion coefficients and the related constants are obtained numerically. This solution is then generalized for any arbitrary variation of wall heat flux in the axial direction.

For the limiting case of power-law pseudo-plastic fluids with uniform wall heat flux, the eigenfunctions at the tube wall and the eigenvalues reduce to Table 1 of Michiyoshi and Matsumoto [36] and Table 4 and 5 of Mitsuishi and Miyatake [39]. Only the first five eigenvalues, eigenfunctions, and related constants were obtained by these authors. This is not sufficient for special problems where the infinite series in the temperature solution converges slowly (i. e., axial variation of wall heat flux is present). In this work the first 12 eigenvalues, eigenfunctions, and the expansion coefficients are obtained.

The problem of Newtonian fluids with an arbitrary circumferential wall heat flux is another limiting case of the present work. The first 12 eigenvalues, eigenfunctions, and expansion coefficients are included for values of the parameter p ranging from p = 0(i.e., the case of uniform wall heat flux) to p = 5 (up to fifth harmonic variation in the circumferential wall heat flux). For the case of uniform wall heat flux (p = 0), the related coefficients agree well with the values reported by Siegel, Sparrow and Hallman [59] and Hsu [18]. Finally, a simple result has been obtained for a cosine heat flux variation around the tube periphery which illustrates all the limiting cases and shows how the simultaneous influences of circumferential wall heat flux and non-Newtonian behavior may have an effect on heat transfer results.

2.2 Formulation of Problem

2.2.1 Governing Equations and Boundary Conditions

The problem to be considered is represented schematically in Figure 1.1. A non-Newtonian fluid is flowing in laminar fashion through the tube of constant radius, \mathbf{r}_0 . The wall heat flux varies circumferentially according to the general function, $q(\phi)$, which can be expressed in terms of Fourier expansion. The applicable form of the governing equations are as follows:

Equation of continuity:
$$\frac{\partial \rho}{\partial \hat{\theta}} = -\nabla \cdot \rho \vec{u}$$
 (2.1)

Equation of motion:
$$\rho \frac{D\vec{u}}{D\hat{\theta}} = -\nabla P - \nabla_{\theta} \vec{\tau} + \rho \vec{g}$$
 (2.2)

Equation of energy:
$$\rho c_{\mathbf{v}} \frac{Dt}{D\hat{\theta}} = -\nabla \cdot \vec{q} - t \left(\frac{\partial P}{\partial t}\right)_{\mathbf{v}} \nabla \cdot \vec{u} - \tau : \nabla \vec{u} + Q$$
 (2.3)

in which \vec{u} is the local fluid velocity, P is the static pressure, t is the temperature, \vec{q} is the heat flux vector, $\vec{\tau}$ is the stress tensor, $\tau:\nabla u$ is heat production due to viscous dissipation, \vec{g} is acceleration of gravity and Q is the heat generation rate per unit volume. The following assumptions are made:

- (a) The physical properties of the fluid (ρ, c_{1}, k) are constant.
- (b) The viscous dissipation and heat generation are negligible.
- (c) The axial conduction term is neglected; this is true in a practical sense for non-Newtonian fluids.
- (d) The velocity profiles are fully developed; non-Newtonian fluids are generally very viscous with a short hydrodynamic entry length.
- (e) External forces are neglected.
- (f) Fourier's law is valid.

Equations (2.2) and (2.3), for steady state flow in cylindrical tubes may be simplified under these assumptions to:

Equation of motion:
$$\frac{dP}{dx} + \frac{1}{r}\frac{d}{dr}(r\tau_{rx}) = 0$$
 (2.4)

Equation of energy:
$$\frac{u(r)}{a} \frac{\partial t}{\partial x} = \frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{1}{r^2} \frac{\partial^2 t}{\partial \phi^2}$$
 (2.5)

Where $t(x, r, \phi)$ is the local fluid temperature and a is the molecular thermal diffusivity.

For the power-law fluids, the rheological or constitutive equation is

$$\tau_{rx} = -m(\frac{du}{dr})^n \qquad (2.6)$$

in which m and n are constants which must be determined for the particular fluid in question. Experimental data of the McEachern [75] indicates that the model predicts pressure drop versus flow rate data reasonably well if attention is paid to the range of shear stress over which the parameters are evaluated.

Substitution of Equation (2.6) into Equation (2.4) and solution subject to the usual boundary conditions [u(0) is finite and $u(r_0) = 0]$ yields:

$$u = \frac{n}{n+1} \left[-\frac{dP}{dx} / 2m \right]^{1} / n \left[r_{0} \right]^{(n+1)/n} \left[1 - \left(\frac{r}{r_{0}} \right)^{(n+1)/n} \right]$$
(2.7)

Using the definition of mean velocity and Equation (2.7) we obtain

$$\mathbf{v} = \frac{1}{\pi r_0^2} \int_0^1 2\pi r_0 \mathbf{u}(\mathbf{r}) d\mathbf{r} = \frac{3}{3n+1} \left[-\frac{d\mathbf{P}}{d\mathbf{x}}/2\mathbf{m} \right]^{1/n} \left[\mathbf{r}_0 \right]^{(n+1)/n}$$
(2.8)

The local velocity is expressed in terms of mean velocity by elimination of the term $\left[-\frac{dP}{dx}/2m\right]$ between Equations (2.7) and (2.8) to obtain

$$\frac{u}{v} = \frac{3n+1}{n+1} \left[1 - \left(\frac{r}{r_0}\right)^{(n+1)/n} \right]$$
(2.9)

If n = 1 the fluid is Newtonian and Equation (2.9) reduces to the usual parabolic velocity profile; if n = 0 plug flow is obtained. Figure 2.1 portrays velocity profiles for several values of n. In this work, we limit our investigation to the values of the index n in the range 0 < n < 1 i.e., pseudo-plastic fluids. For convenience of the analysis we define

$$\mathbf{s} = \frac{\mathbf{n}+1}{\mathbf{n}} \tag{2.10}$$

and rewrite Equation (2.9) to obtain

$$\frac{\mathbf{u}}{\mathbf{v}} = \frac{\mathbf{s}+2}{\mathbf{s}} \left[1 - \left(\frac{\mathbf{r}}{\mathbf{r}_0}\right)^{\mathbf{s}} \right]$$
(2.11)

Note at r = 0, $u = u_{max}$, and Equation (2.11) reduces to

$$\frac{u_{\max}}{v} = \frac{s+2}{s}$$
(2.12)

We now express Equation (2.11) in terms of maximum velocity using Equation (2.12)

$$\frac{u}{u_{\max}} = \left[1 - \left(\frac{r}{r_0}\right)^{s}\right]$$
 (2.13)

Note that, if s = 2 the fluid is Newtonian; if $s = \infty$ plug flow is obtained, and s = 1 is the limiting case of dilatant fluids.

h

Figure 2.1. Velocity distribution for power-law fluids.

Our consideration is now directed to Equation (2.5), the energy equation, and after the substitution for the velocity function from Equation (2.13) we obtain the following partial differential equation for the temperature profiles:

$$\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial t}{\partial r} + \frac{1}{r^2} \frac{\partial^2 t}{\partial \phi^2} = \frac{u_{\text{max}}}{a} \left[1 \left(\frac{r}{r_0} \right)^s \right] \frac{\partial t}{\partial x}$$
(2.14)

Subject to the boundary conditions:

$$\mathbf{t}(\mathbf{0},\mathbf{r},\mathbf{\phi}) = \mathbf{t}_{\boldsymbol{\phi}} \tag{2.14a}$$

$$k \frac{\partial t}{\partial r} (x, r_0, \phi) = q(\phi) \qquad (2.14b)$$

$$t(x, 0, \phi) = finite$$
 (2.14c)

$$t(x, r, \phi) = t(x, r, \phi + 2\pi)$$
 (2.14d)

$$\frac{\partial t}{\partial \phi} (\mathbf{x}, \mathbf{r}, \phi) = \frac{\partial t}{\partial \phi} (\mathbf{x}, \mathbf{r}, \phi + 2\pi) \qquad (2.14e)$$

Equation (2.14) may be represented in terms of the following dimensionless variables:

$$\theta = \frac{t - t_{\epsilon}}{\overline{q 2r_0}/\pi k}$$
(2.15a)

$$\mathbf{r} + = \frac{\mathbf{r}}{\mathbf{r}_0} \tag{2.15b}$$

$$\mathbf{x} + = \frac{2\mathbf{s}}{\mathbf{s}+2} \quad \frac{\mathbf{x}/\mathbf{r}_0}{\operatorname{Re}\,\operatorname{Pr}} = \frac{2\mathbf{v}}{u_{\max}} \quad \frac{\mathbf{x}/\mathbf{r}_0}{\operatorname{Re}\,\operatorname{Pr}} \tag{2.15c}$$

$$u + = \frac{u}{v}$$
(2.15d)

where

$$\overline{q} = \int_{0}^{2\pi} q(\phi) d\phi \qquad (2.15e)$$

with the requirement that $\overline{q} \neq 0$. Performing the necessary transformations we obtain the dimensionless form of the energy equation as follows:

$$\frac{\partial^2 \theta}{\partial r^2} + \frac{1}{r^2} \frac{\partial \theta}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \theta}{\partial \phi^2} = (1 - r^2) \frac{\partial \theta}{\partial x^2}$$
(2.16)

Satisfying the boundary conditions:

$$\theta(0, r+, \phi) = 0$$
 (2.16a)

$$\frac{\partial \theta}{\partial \mathbf{r}+} (\mathbf{x}+, \mathbf{1}, \phi) = \frac{\mathbf{q}(\phi)}{\overline{\mathbf{q}}} \frac{\pi}{2}$$
(2.16b)

$$\theta(x+, 0, \phi) = \text{finite}$$
 (2.16c)

$$\theta(\mathbf{x}+,\mathbf{r}+,\phi)=\theta(\mathbf{x}+,\mathbf{r}+,\phi+2\pi) \tag{21.6d}$$

$$\frac{\partial \theta}{\partial \phi} (\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\partial \theta}{\partial \phi} (\mathbf{x}+,\mathbf{r}+,\phi+2\pi)$$
(2.16e)

Equation (2.16) completes the formulation of the physical problem. Consideration will now be given to its solution.

2.2.2 Fully-Developed and Entry-Length-Equations and Boundary Conditions

Equation (2.16) is a linear differential equation. By experience with heat conduction problems of similar form, a solution can be obtained having the form

$$\theta + (\mathbf{x} +, \mathbf{r} +, \phi) = \theta(\mathbf{x} +, \mathbf{r} +, \phi) - \theta_{\text{fd}}(\mathbf{x} +, \mathbf{r} +, \phi)$$
(2.17)

in which $\theta_{fd}(x+,r+,\phi)$ is the asymptotic solution obtained far downstream where the temperature profile is fully developed, and $\theta+$ is the entry region solution. Combining Equations (2.16) and (2.17), we obtain two differential equations and associated boundary conditions for the two regions as follows:

$$\frac{\partial^2 \theta_{fd}}{\partial r^2} + \frac{1}{r^2} + \frac{\partial^2 \theta_{fd}}{\partial r^2} + \frac{1}{r^2} + \frac{\partial^2 \theta_{fd}}{\partial \phi^2} = (1 - r^2) \frac{\partial^2 \theta_{fd}}{\partial x^2}$$
(2.18)

$$\frac{\partial \theta}{\partial \mathbf{r}+} (\mathbf{x}+, \mathbf{1}, \phi) = \frac{\mathbf{q}(\phi)}{\overline{\mathbf{q}}} \frac{\pi}{2}$$
(2.18a)

$$\theta_{fd}(x+,0,\phi) = \text{finite}$$
 (2.18b)

$$\theta_{fd}(x+,r+,\phi) = \theta_{fd}(x+,r+,\phi+2\pi)$$
(2.18c)

$$\frac{\partial \theta}{\partial \phi} \mathbf{fd} (\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\partial \theta}{\partial \phi} \mathbf{fd} (\mathbf{x}+,\mathbf{r}+,\phi+2\pi)$$
(2.18d)

$$\frac{\partial^2 \theta_+}{\partial r_+^2} + \frac{1}{r_+} \frac{\partial \theta_+}{\partial r_+} + \frac{1}{r_+^2} \frac{\partial^2 \theta_+}{\partial \phi^2} = (1 - r_+^s) \frac{\partial \theta_+}{\partial x_+}$$
(2.19)

$$\theta + (0, r+, \phi) = -\theta_{fd}(0, r+, \phi)$$
 (2.19a)

$$\theta + (x+, 0, \phi) = \text{finite}$$
 (2.19b)

$$\frac{\partial \Theta +}{\partial \mathbf{r} +} (\mathbf{x} +, \mathbf{1}, \mathbf{\phi}) = 0$$
 (2.19c)

$$\theta + (x+, r+, \phi) = \theta + (x+, r+, \phi + 2\pi)$$
 (2.19d)

$$\frac{\partial \theta +}{\partial \phi} (\mathbf{x} +, \mathbf{r} +, \phi) = \frac{\partial \theta +}{\partial \phi} (\mathbf{x} +, \mathbf{r} +, \phi + 2\pi)$$
(2.19e)

2.3 Discussion of Solution

2.3.1 The Fully-Developed Solution

Equation (2.18) for the fully-developed portion, was solved by Inman [22] utilizing the method of analysis developed by Reynolds [49], namely, by considering an arbitrary variation of heat flux symmetrical about an axis through the center of the pipe. A solution was then obtained for the case of a tube with constant heat flux over a portion of its circumference, insulated over the remainder, and then generalized by superposition to obtain a solution for an arbitrary heat flux, $q(\phi)$. In this work, we utilize a Fourier series approach and assume $q(\phi)$ to be completely arbitrary around the circumference and expressible in a Fourier series.

For the case of a fully-developed temperature profile we have the condition

$$\frac{\partial \theta}{\partial \mathbf{x}} = \frac{d\theta}{d\mathbf{x}} = \text{constant}$$
(2.20)

An energy balance, for a tube with wall heating as shown in Figure 1.1, yields the expression

$$\pi r_0^2 \rho vc \frac{dt_m}{dx} = \int_0^{2\pi} q(\phi) r_0 d\phi \qquad (2.21)$$

Expressing Equation (2.21) in terms of dimensionless variables and combining it with Equation (2.20) we obtain

$$\frac{\partial \theta}{\partial \mathbf{x}^{+}} = \frac{d\theta}{d\mathbf{x}^{+}} = \frac{u_{\max}}{2\mathbf{v}}$$
(2.22)

The integration of Equation (2.22) for θ_{fd} yields:

$$\theta_{fd}(x+,r+,\phi) = \frac{u_{max}}{2v}x+ f+(r+,\phi)$$
 (2.23)

where $f+(r+,\phi)$ satisfies the following differential equation and boundary conditions. These results are obtained from substituting Equation (2.23) into (2.18).

$$\frac{\partial^2 f_{+}}{\partial r^{+}} + \frac{1}{r^{+}} \frac{\partial f_{+}}{\partial r^{+}} + \frac{1}{r^{+}} \frac{\partial^2 f_{+}}{\partial \phi^2} = \frac{u_{\max}}{2v} (1 - r^{+})$$
(2.24)

$$\frac{\partial f_{+}}{\partial r_{+}}(r_{+},\phi) = \frac{q(\phi)}{\overline{q}}\frac{\pi}{2}$$
(2.24a)

$$f+(0, \phi) = finite$$
 (2.24b)

$$f+(r+,\phi) = f(r+,\phi+2\pi)$$
 (2.24c)

$$\frac{\partial f+}{\partial \phi} (r+, \phi) = \frac{\partial f+}{\partial \phi} (r+, \phi+2\pi) \qquad (2.24d)$$

To eliminate the difficulty arising from the non-homogeneity in Equation (2.24) we express f+ as a sum

$$f+(r+,\phi) = F(r+,\phi) + W(r+)$$
 (2.25)

and include $\frac{u_{max}}{2v}(1-r+s)$ in the formulation of the one-dimensional, W(r+), problem. The two problems which result are now

$$\frac{\partial^2 \mathbf{F}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}^2} + \frac{\partial \mathbf{F}}{\partial \mathbf{r}^2} + \frac{1}{\mathbf{r}^2} + \frac{\partial^2 \mathbf{F}}{\partial \phi^2} = 0 \qquad (2.26)$$

$$\frac{\partial \mathbf{F}}{\partial \mathbf{r}+}(1, \phi) = \frac{\mathbf{q}(\phi)}{\overline{\mathbf{q}}} \frac{\pi}{2} - \frac{1}{4}$$
(2.26a)

$$F(0, \phi) = finite$$
 (2.26b)

$$F(r+,\phi) = F(r+,\phi+2\pi)$$
 (2.26c)

$$\frac{\partial F}{\partial \phi} (\mathbf{r} +, \phi) = \frac{\partial F}{\partial \phi} (\mathbf{r} +, \phi + 2\pi)$$
(2.26d)

and

$$\frac{1}{r+} \frac{d}{dr+} (r + \frac{dW}{dr+}) = \frac{u_{max}}{2v} (1 - r + s)$$
(2.27)

$$W(0) = finite$$
 (2.27a)

Solution to the Equation (2.26) was obtained in Chapter 1 to be

$$F(r+,\phi) = \sum_{n=1}^{\infty} r + \frac{n}{n} \left[a_n \cos n\phi + b_n \sin n\phi \right] + C1 \qquad (2.28)$$

where

$$a_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \cos n\phi \, d\phi \qquad (2.28a)$$

$$b_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \sin n\phi \, d\phi \qquad (2.28b)$$

Equation (2.27) may be solved directly with the boundary condition

(2.27a) incorporated, yielding

W =
$$\frac{u_{max}}{2v} \left[\frac{r^2}{4} - \frac{(r^2)^{s+2}}{(s+2)^2} \right] + C2$$
 (2.29)

The complete solution for $f+(r+,\phi)$ from Equation (2.24) may now be summarized by combining Equations (2.12), (2.25), (2.28) and (2.29) to yield

$$f+(r+,\phi) = \frac{s+2}{2s} \left[\frac{r+2}{4} - \frac{(r+)^{s+2}}{(s+2)^2} \right] + \sum_{n=1}^{\infty} r+n[a_n \cos n\phi + b_n \sin n\phi] + constant$$
(2.30)

where a_n and b_n are obtained from Equations (2.28a, b) and the constant is still undetermined.

We may now express the fully-developed temperature profile by combining Equations (2.23) and (2.30) to obtain

$$\theta_{fd}(x+,r+,\phi) = \frac{x/r_0}{\text{Re Pe}} + \frac{s+2}{8s}r^2 - \frac{(r+)^{s+2}}{2(s+2)s}$$

$$+ \sum_{n=1}^{\infty} r^n (a_n \cos n\phi + b_n \sin n\phi) + \text{constant}$$
(2.31)

where a and b are given by (2.28a, b) and the constant is still undetermined.

2.3.1.1 Calculation of the Average Mean Fluid Temperature.

Integration of Equation (2.22) for θ_{mean} yields

$$\theta_{\text{mean}} = \frac{x/r_0}{\text{Re Pr}}$$
(2.32)

By definition, the average mean temperature is evaluated from the following equation

$$\theta_{\text{mean}} = \frac{\int_{0}^{2\pi} \int_{0}^{1} u(r+)\theta(x+, r+, \phi)r+ dr + d\phi}{\int_{0}^{2\pi} \int_{0}^{1} u(r+)r+ dr + d\phi}$$
(2.33)

Equation (2.33) is integrated using Equations (2.13) and (2.31) to obtain

$$\theta_{\text{mean}} = \frac{x/r_0}{\text{Re Pr}} + \frac{(s+2)^2}{16(s+4)s} - \frac{1}{s^2(s+4)} + \frac{1}{2(s+2)s^2} + \text{constant}$$
(2.34)

By comparing Equations (2.32) and (2.34), we find the unknown constant to be

٦

constant =
$$\frac{-s^2 - 6s - 12}{16(s+2)(s+4)}$$
 (2.35)

We may now summarize the complete solution to the fully-developed

portion of the problem as follows:

$$\theta_{fd} = \frac{-s^2 - 6s - 12}{16(s+2)(s+4)} + \frac{x/r_0}{Re Pr} + \frac{s+2}{8s}r + \frac{2}{2(s+2)s} + \frac{r+s+2}{2(s+2)s} + \sum_{n=1}^{\infty} r + (a_n \cos n\phi + b_n \sin n\phi)$$
(2.36)

where a_n and b_n are given by the Equations (2.28a) and (2.28b).

2.3.2 The Thermal Entry Length Solution

Consideration will now be given to the problem of solving for $\theta+(x+, r+, \phi)$ as posed in Equation (2.19). We assume a series expansion of the following convenient form

$$\theta + (\mathbf{x} +, \mathbf{r} +, \phi) = \sum_{n=1}^{\infty} \sum_{p=0}^{\infty} e^{-\lambda_{np}^{2} \mathbf{x} +} R_{np}(\mathbf{r} +) [a_{np} \cos p\phi + b_{np} \sin p\phi]$$
(2.37)

Substituting Equation (2.37) into (2.19) and simplifying, we see that θ + satisfies the equation and the boundary conditions provided that $R_{np}(r+)$ is the solution of the following Sturm-Liouville system:

$$\frac{1}{r+} \frac{d}{dr+} \left(r + \frac{dR_{np}}{dr+} \right) + \left[\lambda_{np}^2 (1-r+s) - \frac{p}{r+2} \right] R_{np} = 0 \qquad (2.38)$$

with the boundary conditions

$$\frac{dR_{np}}{dr+}(1) = 0; \quad R_{np}(0) = finite$$
 (2.38a,b)

where p is an integer parameter. For p = 0 Equation (2.38) reduces to the characteristic equation for the case with no circumferential wall heat flux variation. For only certain values of the parameter λ_{np} , say $\lambda_{10}, \lambda_{20}, \dots, \lambda_{11}, \lambda_{21}, \dots$; it is possible to obtain a solution to Equation (2.38). For each such λ_{np} a solution to Equation (2.38) is obtained, say $R_{10}, R_{20}, \dots, R_{11}, R_{21}, \dots$; these particular solutions are the eigenfunctions of the problem and the corresponding λ_{np} are the eigenvalues.

2.3.2.1 Analysis of the Eigenvalue Problem. The eigenfunctions of Equation (2.38) cannot be expressed in terms of simple functions. Thus we are forced to employ a power series method to obtain

$$R_{np}(r+) = \sum_{i=0}^{\infty} b_{i;np}(r+)^{i+p}$$
 (2.39)

It is easily found that the coefficients b satisfy i;np

$$b_{i;np} = \frac{\lambda_{np}^{2} \left[b_{i-2-s}^{-b} - b_{i-2} \right]}{i(i+2p)}$$
(2.40)

Where

$$b_{i;np} = 0$$
 if [i-s-2] and [i-2] < 0
 $b_{i;np} = 1$ if i = 0

When s is even, every coefficient b is equal to zero whenever i;np is odd, so Equations (2.39) and (2.40) become:

$$R_{np}(r+) = \sum_{i=0}^{\infty} b_{2i;np}(r+)^{2i+p}$$
(2.41)
$$b_{2i;np} = \frac{\lambda_{np}^{2} \left[b_{2i-s-2} - b_{2i-2} \right]}{2i(2i+2p)}$$
(2.42)

The eigenvalues are determined by the equation

$$\sum_{i=0}^{\infty} b_{2i;np}(2i+p) = 0$$
 (2.43)

following from (2.41) and the boundary condition (2.38a).

2.3.2.2 Determination of Expansion Coefficients. Condition (2.19a) is used to determine the coefficients of the series expansion in Equation (2.37), i.e., a_{np} and b_{np} . Substitution yields

$$\sum_{n=1}^{\infty} \sum_{p=0}^{\infty} R_{np}(r+)[a_{np} \cos p\phi + b_{np} \sin p\phi]$$

$$= \frac{s^{2}+6s+12}{16(s+2)(s+4)} - \frac{s+2}{8s}r^{2} + \frac{(r+)^{s+2}}{2(s+2)s} - \sum_{n=1}^{\infty} r^{2}+n(a_{n}\cos n\phi + b_{n}\sin n\phi)$$
(2.44)

We next define the parameters

$$\hat{\theta}_{fd} = \frac{s^2 + 6s + 12}{16(s+2)(s+4)} - \frac{s+2}{8s}r + \frac{(r+)^{s+2}}{2(s+2)s} - \sum_{n=1}^{\infty} r + n(a_n \cos n\phi + b_n \sin n\phi)$$
(2.45)

$$A_0(r+) = \sum_{n=1}^{\infty} a_{n0} R_{n0}(r+)$$
 (2.46a)

$$A_{p}(r+) = \sum_{n=1}^{\infty} a_{np} R_{np}(r+)$$
 (2.46b)

$$B_{p}(r+) = \sum_{n=1}^{\infty} b_{np} R_{np}(r+)$$
 (2.46c)

Now, combining (2.44) with (2.45) and (2.46), we obtain

$$\hat{\theta}_{fd} = A_0(r+) + \sum_{p=1}^{\infty} (A_p(r+) \cos n\phi + B_p(r+) \sin p\phi)$$
 (2.47)

Equation (2.47) is a complete Fourier series expansion of $\hat{\theta}_{fd}$, therefore

$$A_0(r+) = \frac{1}{2\pi} \int_0^{2\pi} \hat{\theta}_{fd} d\phi$$
 (2.48a)

$$A_{p}(r+) = \frac{1}{\pi} \int_{0}^{2\pi} \hat{\theta}_{fd} \cos p\phi \, d\phi \qquad (2.48b)$$

$$B_{p}(r+) = \frac{1}{\pi} \int_{0}^{2\pi} \hat{\theta}_{fd} \sin p\phi \, d\phi \qquad (2.48c)$$

As the eigenfunctions R_{np} of (2.38) form a complete orthogonal set in the interval (0,1) with respect to the weight function $r+(1-r+^{s})$, we have the following orthogonal property.

$$\int_{0}^{1} r + (1 - r + {}^{s})R_{np}(r +)R_{mp}(r +)dr + = 0 \qquad np \neq mp \qquad (2.49)$$

Therefore, any arbitrary function defined in this domain may be expanded as an infinite series of these eigenfunctions. This proves the existence of expansions of the form defined in (2.48) to be permissible. Furthermore, $a_{n0}^{}$, $a_{np}^{}$ and $b_{np}^{}$ are calculated from (2.48) by the following relationships which are obtained after utilizing the orthogonal property of the eigenfunctions, i.e., Equation (2.49)

$$a_{n0} = \frac{\int_{0}^{1} r + (1 - r + {}^{s}) A_{0}(r +) R_{n0}(r +) dr +}{\int_{0}^{1} r + (1 - r + {}^{s}) R_{n0}^{2}(r +) dr +}$$
(2.50a)

$$a_{np} = \frac{\int_{0}^{1} r + (1 - r + {}^{s})A_{p}(r +)R_{np}(r +)dr +}{\int_{0}^{1} r + (1 - r + {}^{s})R_{np}^{2}(r +)dr +}$$
(2.50b)

$$b_{np} = \frac{\int_{0}^{1} r + (1 - r + {}^{s}) B_{p}(r +) R_{np}(r +) dr +}{\int_{0}^{1} r + (1 - r + {}^{s}) R_{np}^{2}(r +) dr +}$$
(2.50c)

Combining Equations (2.48) and (2.50), and simplifying, we obtain

$$a_{np} = \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + (1 - r + {}^{s})\hat{\theta}_{fd} \cos p\phi R_{np}(r +) d\phi dr +}{\int_{0}^{1} r + (1 - r + {}^{s})R_{np}^{2}(r +) dr +}$$
(2.51b)

$$b_{np} = \frac{1}{\pi} \frac{\int_{0}^{1} \int_{0}^{2\pi} r + (1 - r + {}^{s}) \hat{\theta}_{fd} \sin p\phi R_{np}(r +) d\phi dr +}{\int_{0}^{1} r + (1 - r + {}^{s}) R_{np}^{2}(r +) dr +}$$
(2.51c)

where $\hat{\theta}_{fd}$ is given by (2.45). For any arbitrary variation of circumferential wall heat flux $\hat{\theta}_{fd}$ can be obtained and Equation (2.51) may be integrated to determine a_{n0} , a_{np} , and b_{np} .

2.3.3 Complete Solution

At this point the solution to the thermal entrance region is completed. We may now add this solution to the fully-developed portion, using Equations (2.17), (2.31), and (2.37) to obtain the complete solution as follows:

$$\theta(\mathbf{x}+,\mathbf{r}+,\phi) = \frac{\mathbf{x}/\mathbf{r}_{0}}{\operatorname{Re}\operatorname{Pr}} - \left(\frac{\mathbf{s}^{2}+6\mathbf{s}+12}{16(\mathbf{s}+2)(\mathbf{s}+4)}\right) + \frac{\mathbf{s}+2}{8\mathbf{s}}\mathbf{r}^{2} - \frac{1}{2(\mathbf{s}+2)\mathbf{s}}\mathbf{r}^{2} + \frac{\mathbf{s}+2}{2(\mathbf{s}+2)\mathbf{s}}\mathbf{r}^{2} + \frac{1}{2(\mathbf{s}+2)\mathbf{s}}\mathbf{r}^{2} + \frac{1}{2(\mathbf{s}+2)\mathbf{s}}\mathbf{r}^{$$

where

$$a_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \cos n\phi \, d\phi \qquad (2.52a)$$

$$b_{n} = \frac{1}{2n} \int_{0}^{2\pi} \frac{q(\phi)}{\overline{q}} \sin n\phi \, d\phi \qquad (2.52b)$$

and a_{n0}^{n} , a_{np}^{n} , and b_{np}^{n} are given by Equation (2.51).

2.3.4 Calculation of Nusselt Number

The Nusselt number is defined as

$$Nu(x,\phi) = \frac{2h(x,r_0,\phi)r_0}{k} = \frac{k\frac{\partial t}{\partial r}(x,r_0,\phi)}{t_w - t_m} \frac{2r_0}{k}$$

or equivalently

$$Nu(x,\phi) = \frac{q(\phi)2r_0}{(t_w - t_m)k}$$
(2.53)

where $t_w(x,\phi) = t(x,r_0,\phi)$, the wall temperature, and $t_m(x)$ is
the mean fluid temperature.

It will be convenient to represent the heat flux distribution in the form

$$q(\phi) = \overline{q}f(\phi) \qquad (2.54a)$$

where \overline{q} is given by

$$\overline{q} = \int_{0}^{2\pi} q(\phi) d\phi \qquad (2.54b)$$

and $f(\phi)$ is specified angular variation. With this specification on $q(\phi)$, Equation (2.53) reduces to

$$Nu(x+,\phi) = \pi f(\phi) \left[\frac{q 2r_0/k\pi}{t_w - t_m} \right]$$
(2.54c)

Now, expressing Equation (2.52) in terms of mean fluid temperature by combining with Equation (2.32) we obtain,

$$\frac{t - t_{m}}{\overline{q} 2r_{0}/k\pi} = -\left(\frac{s^{2} + 6s + 12}{16(s + 2)(s + 4)}\right) + \frac{s + 2}{8s}r + 2 - \frac{1}{2(s + 2)s}r + s + 2$$

$$+ \sum_{n=1}^{\infty} r + n(a_{n}\cos n\phi + b_{n}\sin n\phi) + \sum_{n=1}^{\infty} a_{n0}R_{n0}(r +)e^{-\lambda_{n0}^{2}x + b_{n}}$$

$$+ \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^{2}x + b_{n}}R_{np}(r +)(a_{np}\cos p\phi + b_{np}\sin p\phi) \qquad (2.55)$$

When the wall heat flux is specified, the wall temperature is the unknown quantity that is usually of most practical interest. It is found by evaluating Equation (2.55) at r+=1 to yield

$$\frac{t_{w} t_{m}}{\overline{q} 2r_{0}/k\pi} = \frac{s^{2} + 10s + 20}{16(s+2)(s+4)} + \sum_{n=1}^{\infty} (a_{n} \cos n\phi + b_{n} \sin n\phi) + \sum_{n=1}^{\infty} a_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + \sum_{n=1}^{\infty} a_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+} + \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^{2}x+}R_{np}(1)(a_{np} \cos p\phi + b_{np} \sin p\phi)$$
(2.56)

Finally, we solve for $Nu(x+,\phi)$ by using Equations (2.54c) and (2.56) to yield

$$Nu(x+,\phi) = \pi f(\phi) \left\{ \frac{s^2 + 10s + 20}{16(s+2)(s+4)} + \sum_{n=1}^{\infty} (a_n \cos n\phi + b_n \sin n\phi) + \sum_{n=1}^{\infty} a_{n0} R_{n0}(1) e^{-\lambda_{n0}^2 x + \frac{1}{2} \sum_{n=1}^{\infty} a_{n0} R_{n0}(1) e^{-\lambda_{n0}^2 x + \frac{1}{2} \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2 x + \frac{1}{2} R_{np}(1)(a_{np} \cos p\phi + b_{np} \sin p\phi)} \right\}^{-1}$$

$$(2.57)$$

2.3.5 Axial Non-Uniform Wall Heat Flux

The temperature solution obtained for uniform axial heat input can be used to generate solutions for any arbitrary specified axial variation of wall heat flux, using superposition. This is possible because of the linearity of the energy differential equation. Using the approach used by Siegel, Sparrow, and Hallman [59], for any arbitrary heat flux variation of the form $q(x+,\phi) = \hat{Q}(x+)q(\phi)$ Equation (2.52) can be written as follows:

$$\frac{t-t_{\epsilon}}{r_0/k} = \int_0^{\infty} \left\{ \frac{2(s+2)}{s} - 4 \sum_{n=1}^{\infty} a_{n0} \lambda_{n0}^2 R_{n0}(r+) e^{-\lambda_{n0}^2(x+-\zeta)} - 4 \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} e^{-\lambda_{np}^2(x+-\zeta)} \lambda_{np}^2 R_{np}(r+) [a_{np}\cos\phi + b_{np}\sinp\phi] \right\} \hat{Q}(\zeta) d\zeta$$

2.4 Special Examples

2.4.1 Cosine Heat Flux Variation Around the Tube Periphery

As an illustrative case, a cosine circumferential heat-flux distribution of the form $q(\phi) = q_{av}(1 + b\cos p\phi)$ is considered. A functional relationship of this form is of special interest in nuclear reactor technology. Furthermore, the simultaneous effects of circumferential wall heat flux variation and non-Newtonian velocity distribution on the convection process are investigated. The following cases are considered.

<u>2.4.1.1 Asymptotic Examples</u> Letting $x + \rightarrow \infty$, Equation

(2.57) reduces to

$$Nu_{\infty}(\phi) = \pi f(\phi) \left\{ \frac{s^{2} + 10s + 20}{16(s+2)(s+4)} + \sum_{n=1}^{\infty} (a_{n} \cos n\phi + b_{n} \sin n\phi) \right\}^{-1} (2.58)$$

Solving for $a_n, b_n, f(\phi)$ using Equations (2.28), (2.54) and (2.55) we obtain the following coefficients

$$a_{p} = \frac{b}{4p}, \quad b_{n} = 0, \quad f(\phi) = \frac{1+b \cos p\phi}{2\pi}$$
 (2.59)

Combining (2.58) and (2.59) we have

$$Nu_{\infty}(\phi) = \frac{1+b \cos p\phi}{\frac{s^{2}+10s+20}{8(s+2)(s+4)}} + \frac{b}{2p} \cos p\phi$$

$$p = 1, 2, 3, ...$$
(2.60)

For p = 1

$$Nu_{\infty}(\phi) = \frac{\frac{1+b \cos \phi}{s^{2}+10s+20}}{\frac{s^{2}+10s+20}{8(s+2)(s+4)}} + \frac{b}{2} \cos \phi$$
(2.61)

which is the solution obtained by Inman [22] for non-Newtonian power-law fluids, using superposition.

For Newtonian fluids we have s = 2 and Equation (2.61) reduces to

$$Nu_{\infty}(\phi) = \frac{1+b\cos\phi}{\frac{11}{48} + \frac{b}{2}\cos\phi}$$
(2.62)

which is the solution obtained by Reynolds [49]. Finally, for the constant wall heat flux condition, b = 0, and Equation (2.61) reduces to the following asymptotic Nusselt number for non-Newtonian powerlaw fluids.

$$Nu_{\infty} = \frac{8(s+2)(s+4)}{s^2 + 10s + 20}$$

Asymptotic solutions for the following cases are:

Slug flow $(s = \infty)$: $Nu_{\infty} = 8$ Newtonian (s = 2): $Nu_{\infty} = \frac{48}{11}$

2.4.1.2 Thermal-Entry-Length Examples. Equation (2.45) is reduced to the following form by using Equation (2.59)

$$\hat{\theta}_{fd} = \frac{s^2 + 6s - 12}{16(s+2)(s+4)} - \frac{s+2}{8s}r^2 + \frac{r^2 + r^{s+2}}{2(s+2)s} - \frac{br^2 + p}{4p}\cos p\phi \qquad (2.63)$$

Now, the coefficients $a_{n0}^{,a}, a_{np}^{,and}$ and b_{np}^{b} are simplified using Equations (2.63) and (2.51) to obtain:

$$a_{n0} = \frac{\int_{0}^{1} r + (1 - r + s) \left[\frac{s^{2} + 6s + 12}{16(s + 2)(s + 4)} - \frac{s + 2}{8s} r + \frac{r + s + 2}{2(s + 2)s} \right] R_{n0}(r +) dr +}{\int_{0}^{1} r + (1 - r + s) R_{n0}^{2}(r +) dr +}$$
(2.64a)

$$a_{np} = \frac{-b \int_{0}^{1} (r+)^{p+1} (1-r+s) R_{np}(r+) dr +}{\int_{0}^{1} r+(1-r+s) R_{np}^{2}(r+) dr +}$$
(2.64b)

$$b_{np} = 0$$
 (2.64c)

The numerators of (2.64a, b) are simplified by substituting for $(r+)^{p+1}(1-r+^{s})R_{np}(r+)$ from the characteristic Equation (2.38) and integrating twice by parts to obtain the following general equations for the expansion coefficients.

$$\hat{a}_{n0} = 4 a_{n0} = \frac{-R_{n0}^{(1)}}{\lambda_{n0}^2 \int_0^1 r + (1 - r + s)R_{n0}^2(r +)dr + (1 - r + s)R_{n0}^2(r + s)R_{n0}^2($$

$$\hat{a}_{np} = \frac{4p}{b} a_{np} = \frac{-R_{np}(1)}{\lambda_{np}^2 \int_0^1 r + (1 - r + s)R_{np}^2(r +)dr +}$$
(2.65b)

The above equations were used to evaluate the expansion coefficients in this study. The integrals appearing in the denominator were obtained numerically.

For the case where heat flux varies according to $q(\phi) = q_{av}(1+b\cos\phi)$, the only non-zero coefficients are \hat{a}_{n0} , and \hat{a}_{n1} . The expressions for fluid temperature, wall temperature, and Nusselt number are obtained by simplifying Equations (2.52), (2.56) and (2.57) using (2.59).

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = \frac{4x/r_{0}}{Re Pr} - \frac{s^{2}+6s+12}{4(s+2)(s+4)} + \frac{s+2}{2s}r^{2} - \frac{2}{(s+2)s}(r+)^{s+2} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{-\lambda_{n0}^{2}x+} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{\lambda$$

+ b cos
$$\phi^{*}\left[\mathbf{r} + +\sum_{n=1}^{\infty} \hat{\mathbf{a}}_{n1}^{*} \mathbf{R}_{n1}^{*}(\mathbf{r} +) \mathbf{e}^{-\lambda_{n1}^{*} \mathbf{x} +}\right]$$
 (2.66)

$$\frac{t_{w} - t_{m}}{q_{av} r_{0} / k} = \frac{s^{2} + 10s + 20}{4(s+2)(s+4)} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}(1) e^{-\lambda_{n0}^{2} x + \frac{1}{2} - \lambda_{n0}^{2} x + \frac{1}{2} - \lambda_{n0}^{2}$$

+ b cos
$$\phi \left[1 + \sum_{n=1}^{\infty} \hat{a}_{n1} R_{n1}^{-\lambda_{n1}^{2} x+} \right]$$
 (2.67)

$$Nu(\phi, \mathbf{x}+) = 2(1+b \cos \phi) \left\{ \frac{2+10s+20}{4(s+2)(s+4)} + \sum_{n=1}^{\infty} \hat{\mathbf{a}}_{n0} R_{n0}(1) e^{-\lambda_{n0}^{2} \mathbf{x}+} + b \cos \phi \left[1 + \sum_{n=1}^{\infty} \hat{\mathbf{a}}_{n1} R_{n1}(1) e^{-\lambda_{n1}^{2} \mathbf{x}+} \right] \right\}^{-1}$$

$$(2.68)$$

For the limiting case of uniform wall heat flux, b = 0, the only non-zero expansion coefficients are \hat{a}_{n0} . Equations (2.66), (2.67), and (2.68) reduce to

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = \frac{4x/r_{0}}{Re Pr} - \frac{s^{2}+6s+12}{4(s+2)(s+4)} + \frac{s+2}{2s}r^{2} - \frac{2}{(s+2)s}r^{s+2}$$

$$+ \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r+)e^{-\lambda_{n0}^{2}x+}$$
(2.69)

$$\frac{t_{w} - t_{m}}{q_{av} r_{0}/k} = \frac{s^{2} + 10s + 20}{4(s+2)(s+4)} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}^{-\lambda} (1) e^{-\lambda_{n0}^{2} x + \frac{1}{2} (2.70)}$$

Nu(x+) =
$$\frac{2}{\frac{s^{2}+10s+20}{4(s+2)(s+4)} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(1)e^{-\lambda_{n0}^{2}x+}}$$
(2.71)

which are the expressions obtained by Bird [5]. Finally for the case of Newtonian fluids, s = 2, Equations (2.69), (2.70), and (2.71) reduce to the expressions obtained by Siegel, Sparrow, and Hallman [59] as follows:

$$\frac{t-t_{\epsilon}}{q_{av}r_{0}/k} = \frac{4x/r_{0}}{Re Pr} - \frac{7}{24} + r^{2} - \frac{r^{4}}{4} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(r)e^{-\lambda_{n0}^{2}x+}$$
(2.72)

$$\frac{t_{w} - t_{m}}{q_{av} r_{0}/k} = \frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0} R_{n0}(1) e^{-\lambda_{n0}^{2} x +}$$
(2.73)

Nu(x+) =
$$\frac{2}{\frac{11}{24} + \sum_{n=1}^{\infty} \hat{a}_{n0}R_{n0}(1)e^{-\lambda_{n0}^2 x + \lambda_{n0}^2}}$$
 (2.74)

2.5 Results

2.5.1 Numerical Determination of the Eigenvalues, Eigenfunctions, and Expansion Coefficients

Using the CDC 6400, the first 12 eigenvalues, eigenfunctions of the characteristic Equation (2.38) for p = 0, 1, 2, 3, 4, 5 and several values of the non-Newtonian fluid behavior index, s, have been obtained. The expansion coefficients were evaluated from Equations (2.65a, b). These coefficients are listed in Table C. 1. For the limiting case of a Newtonian fluid (i.e., s = 2) and the constant wall heat flux condition (i.e., p = 0), these coefficients are in excellent agreement with the corresponding values obtained by Siegel, Sparrow, and Hallman [59] and by Hsu [18]. Table 2.1 presents a comparison of these results.

For the case of pseudo-plastic fluids (s > 2) and the constant wall heat flux condition, the eigenfunctions at the tube wall, the eigenvalues and expansion coefficients reduce to Table 1 of Michiyoshi and Matsumoto [37] and Tables 4, 5, and 6 of Mitsuishi and Miyatake [39]. These coefficients are summarized and compared in Table 2.2 of the present work.

Michiyoshi and Matsumoto obtained the first five of these coefficients and Mitsuishi and Miyatake obtained the first three of the corresponding coefficients. This is because of the inherent difficulties

	Siegel, Sp	<u>parrow, and</u>	d Hallman	Hsu			Present Work		
<u>n</u>	λ_{n0}^2	R _{no} (1)	ân0	λ _{n0}	R _{n0} (1)	â n0	λ _{n0}	R _{n0} (1)	ân0
1	25.6796	492517	. 403483	5.067504	492517	. 403483	5.0675055	4925166	. 4034832
2	83.8618	. 395508	175111	9. 157609	. 395508	175110	9. 1576064	. 3955085	1751100
3	174. 167	345872	. 105594	13. 19722	345874	. 105592	13.1972247	3458737	. 1055917
4	296.536	. 314047	0732804	17. 22023	. 314046	0732824	17. 2202294	. 3140465	0732824
5	450.947	291252	. 0550357	21. 23552	291251	.0550365	21. 2355173	2912515	. 0550365
6	637.387	. 273808	043483	25.24653	. 273807	0434844	25. 2465312	. 2738070	0434844
7	855.850	. 259852	. 035597	29. 25491	259853	. 0355951	29.2540955	2598530	.0355951
8				33.26152	. 248332	.0299085	33.2615237	. 2483320	0299084
9				37.26691	238590	. 0256401	37.2669082	2385904	.0256401
10				41.27139	. 230199	0223337	41.2713893	. 2301993	0223336
11				45.27519	222863	.0197069	45.2751868	2228631	.0197069
12				49. 27846	. 216370	0175765	49. 2789682	. 2163668	0175762

Table 2.1. Comparison of eigenvalues, eigenfunctions and expansion coefficients for the Newtonian problem (s = 2) and uniform wall heat flux (p = 0) with the results of Hsu and Siegel, Sparrow, and Hallman.

Table 2.2. Comparison of eigenvalues, eigenfunctions, and expansion coefficients for pseudoplastic fluids and uniform wall heat flux with the results of Michiyoshi and Matsumoto [36] and Mitsuishi and Miyatake [39].

	Michiyoshi and Matsumato						Present Work		
n	λ_{n0}^2	R _{n0} (1)	â n0	λ_{n0}^2	R _{n0} (1)	à _{n0}	λ _{n0}	$R_{n0}(1)$	â _{n0}
s = 4									
1	20. 7623	4594		20.75621	459361	. 374948	4.5555898	4593614	. 3749484
2	67.7523	. 3684		67.67724	. 368174	162983	8. 2266127	.3681742	1629858
3	140.8654	. 3219		140.5581	321533	. 098167	11.8557713	3215268	.0981749
4	240 . 1917	. 2923	סי				15. 4706322	.2916657	0680736
5	366.0957	2667	nte				19.0787579	2703117	.0510894
6			esei				22. 6831188	. 2539907	0403443
7			$\mathbf{P}_{\mathbf{c}}$				26.2851386	2409491	. 0330107
8			lot				29. 8855920	. 2301905	0277273
9			2				33. 4849398	2211002	.0237634
10							37.0834748	. 2123750	0206940
11							40.6813927	2064372	. 0182562
12							44. 2788297	. 2003889	0162796
<u>s = 6</u>	т								
1	18.9927	4400		18.98420	439976	.362294	4. 3570857	4399761	. 3622953
2	62.2528	. 3521		62.183377	. 351922	156065	7.8856682	.3519216	1560682
3	129.5550	3072		129.2773	306845	.093787	11.3699979	3068454	.0937854
4	220. 9273	. 2782	ġ				14.8399911	. 2780651	0649429
5	338.4745	2683	nte				18. 3032563	2575228	. 0486964
6	1 d. c.		ese			· .	21.7627592	. 2418446	0384298
7			4 L		:		25.2199189	2293306	.0314287
8			Vot				28.6755081	. 2190168	0263883
9			4				32. 1299868	2103090	.0226086
10							35. 5836478	. 2028178	0196830
11							39. 0366869	1962756	.0173605
<u> </u>							42.4892407	. 1904915	0154778

associated with the numerical determination of higher eigenvalues and corresponding eigenfunctions. For special problems where axial variation of wall heat flux is present, the infinite series in the temperature solution converges slowly and the first few eigenvalues, eigenfunctions, and expansion coefficients are not sufficient. For this reason the first 12 of these coefficients were obtained in the present investigation. Another limiting problem is that of a Newtonian fluid flowing in a pipe with an arbitrary circumferential wall heat flux. The related constants for this problem are also presented in Table C. 1.

The determination of eigenvalues, eigenfunctions, and expansion coefficients for pseudo-plastic fluids flowing in a tube with an arbitrary circumferential wall heat flux is the main concern of the present work. For several values of non-Newtonian parameter, s (i.e., s = 4, 6, 8, 10, 12), and for any arbitrary variation of wall heat flux around the circumference that could be expressed in terms of a Fourier series up to fifth harmonics, the coefficients listed in Table C.1 are useful.

Finally, in Figures 2.2, 2.3, and 2.4 the first two eigenfunctions are shown for p=0, 1, 2 (i.e., $R_{00}, R_{10}, R_{01}, R_{11}, R_{02}, R_{12}$) and for several values of the non-Newtonian parameter, s. Figure 2.5 presents similar plots for the third and the fourth eigenfunctions for p = 0.

Figure 2.2. The first two eigenfunctions for different non-Newtonian fluid behavior index, s, and for p = 0.

Figure 2.3. The first two eigenfunctions for different non-Newtonian fluid behavior index, s, and for p = 1.

Figure 2.4. The first two eigenfunctions for different non-Newtonian fluid behavior index, s, and for p = 2.

Figure 2.5. The third and fourth eigenfunctions for different non-Newtonian fluid behavior index, s, and for p = 0.

2.5.2 Discussions of Results for the Special Example $\frac{q(\phi) = q_{av}(1+b \cos \phi)}{q(\phi)}$

With the numerical information obtained in the previous section, we may investigate the simultaneous effects of circumferential wall heat flux variation and non-Newtonian velocity distributions on wall temperature and Nusselt number in the entrance region of a tube. Using the obtained eigenvalues, eigenfunctions at tube wall, and the expansion coefficients, the dimensionless wall-to-bulk temperature difference and the local Nusselt numbers have been calculated for different values of the parameters s, x+, b, and ϕ from Equations (2.67) and (2.68). For the case of a Newtonian fluid (s = 2) and uniform wall heat flux (b = 0) a comparison of these results with Kays' [25] Table 8-6 is given by Table 2.3.

\mathbf{x} +	Kays' Table 8-6 Nu(x+)	Present Work Nu(x+)	
001	Not calculated	15.758	
002	12.00	12.537	
004	9.93	9.986	
010	7.49	7.494	
020	6.14	6.148	
040	5.19	5.198	
10	4.51	4.514	
∞	4.36	4.364	

Table 2.3. Comparison of local Nusselt numbers for the circular tube; constant heat rate; thermal entry length with Kays [25].

For non-Newtonian fluids there are no tabulated Nusselt values for the case of uniform wall heat flux. Table 2.4 presents the local Nusselt number for different non-Newtonian fluid behavior indices.

	non-Newtonian fluids in the thermal entrance region of a circular pipe with uniform wall heat flux where $x+ = ((2s)/(s+2)) ((x/r_0)/(Re Pr)).$							
x+	s = 4 Nu(x+)	s = 6 Nu(x+)	s = 8 Nu(x+)	s = 10 Nu(x+)	s = 12 Nu(x+)			
.001	17.927	19.590	20.947	22.095	23.089			
.002	14.238	15.534	16.583	17.463	18.220			
.004	11.335	12.350	13.163	13.838	14.411			
.01	8.507	9.255	9.842	10.320	10.717			
. 02	6.989	7.559	8.068	8.442	8.748			
.04	5.930	6.449	6.838	7.143	7.387			
. 1	5.195	5.662	6.003	6.264	6.471			
∞	5.053	5.517	5.854	6.109	6.310			

Table 2.4. Local Nusselt numbers for laminar flow of power-law,

The graphical representations of the Nusselt numbers tabulated in Tables 2.3 and 2.4 are shown in Figure 2.6. The result is in excellent agreement with the work of Michiyoshi and Matsumoto. Figure 2.6 illustrates the entrance-region local Nusselt numbers for uniform wall heat flux and for different non-Newtonian fluid behavior index, s. It is seen that the local Nusselt values increase as the flow becomes more pseudo-plastic.

Furthermore, the asymptotic Nusselt values are reached at an axial distance, $x_{+} = .1$, which is unaffected by different values of the parameter, s. Figure 2.7 shows the relationship

Figure 2.6. Entrance-region local Nusselt numbers for uniform wall heat flux and for different non-Newtonian fluid behavior index, s.

Figure 2.7. Entrance-region local wall-to bulk temperature difference for uniform wall heat flux and for different non-Newtonian fluid behavior index, s.

between dimensionless wall-to bulk temperature difference and dimensionless axial position, for the case of uniform wall heat flux and for different values of the non-Newtonian parameter, s.

For the prescribed wall heat flux $q(\phi) = q_{av}(1+b\cos\phi)$ where the dimensionless wall-to bulk temperature difference b = 1, (Equation 2.67) has been plotted in Figure 2.8 as a function of angular position ϕ at a section where fully-developed conditions exist (i.e., x + = 1.0) and for different values of the non-Newtonian behavior parameter, s. It is seen that there is a significant variation in the dimensionless wall temperature difference $\frac{t_w t_m}{q_{m} r_0/k}$ around the tube periphery in the presence of a nonuniform peripherial heat flux and non-Newtonian behavior. These results are in excellent agreement with the work of Inman [22]. Figures 2.9, 2.10, 2.11, and 2.12 present the corresponding plots for the thermal entrance region (i.e., x + = .1, .04, .02, .01) respectively. By comparison of these plots, it is seen that the effect of non-Newtonian behavior on wall temperature becomes more pronounced in the entrance region. Increased values of the heat-flux parameter, b, result in increased temperature variations around the circumference, for a given non-Newtonian velocity distribution as seen by Figures 2.13, 2.14, 2.15, and 2.16.

The local Nusselt number has been plotted in Figure 2.17 as a function of angular position ϕ , by using Equation (2.68) for different

Figure 2.8. Illustration of effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location far away from the entrance (i.e., x + = 1).

Figure 2.9. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .1.

Figure 2.10. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .04.

Figure 2.11. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .02.

Figure 2.12. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .01.

Figure 2.13.

Illustration of effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location far away from the entrance (x + = 1.0).

Figure 2.14. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .1.

Figure 2.15. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + = .02.

Figure 2.16. Illustration of entrance effect of prescribed wall heat flux variation $q(\phi) = q_{av}(1 + 2 \cos \phi)$ and non-Newtonian influence on wall-to bulk temperature difference at the location x + z = 01.

Figure 2.17. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location far away from the entrance (x + = 1.0).

values of the non-Newtonian behavior parameter, s, at a location far away from the entrance (i.e., x+ = 1). The corresponding plots for the case of the thermal entrance region (i.e., x+ = .1, .04, .02, .01) are presented in Figures 2.18, 2.19, 2.20, and 2.21. It is found that the local Nusselt values vary over a wide range around the circumference of a tube in the case of a cosine heat flux variation. Furthermore, non-Newtonian behavior has a pronounced effect on local Nusselt numbers. This effect becomes more significant in the entrance region. Also note that the Nusselt number is infinite at the point where the wall temperature is equal to the fluid mean temperature and becomes negative when the wall temperature is less than the bulk temperature.

Finally, dimensionless wall temperatures and Nusselt numbers are plotted as a function of dimensionless axial position for various values of the non-Newtonian behavior index, s, at the location of maximum wall heat flux ($\phi = 0$) in Figures 2.22 and 2.23. In comparing Figures 2.22 and 2.6, it is noted that the fully-developed Nusselt number at the location $\phi = 0$ is less than for the case where the heat flux is uniform around the circumference.

Figure 2.18.

Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .1.

Figure 2.19. Local Nusselt number variation for prescribed wall heat flux of $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .04.

Figure 2.20.

Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x+ = .02.

Figure 2.21. Local Nusselt number variation for prescribed wall heat flux $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian behavior index, s, at the location x + = .01.

Figure 2.22.

Figure 2.23. Entrance-region local Nusselt numbers for prescribed wall heat flux variation $q(\phi) = q_{av}(1 + \cos \phi)$ and for different non-Newtonian fluid behavior index, s, at the angular position $\phi = 0$ (maximum wall heat flux).

3. CONCLUSIONS AND RECOMMENDATIONS

The work contained in this manuscript is concerned with the analysis of heat transfer in a tube with forced flow under conditions of an arbitrary variation of wall heat flux both axially and circumferentially for cases of Newtonian and non-Newtonian fluids. The following significant results have been achieved:

- (1) Analytical results were obtained in such generality and completeness that many of the previously reported work in the heat transfer literature in laminar tube flow are limiting cases of the present work.
- (2) An effective new method (i.e., least squares) was presented for obtaining the coefficients of the non-orthogonal power series expansions which arise in the analysis of heat transfer problems when axial fluid conduction is present.
- (3) Two considerations were made to correct the errors made in the heat transfer literature for the limiting problem of uniform wall heat flux with the inclusion of axial fluid conduction. The first was the determination of coefficients of the non-orthogonal power series expansion and second, the inclusion of the non-vanishing axial conduction term at the tube entrance which was not included heretofore. Both of these considerations have been included in this work.

- (4) The first 12 eigenvalues, eigenfunctions, and expansion coefficients were obtained numerically for any arbitrary variation of circumferential wall heat flux that can be expressed in terms of a Fourier expansion for both Newtonian and non-Newtonian fluids.
- (5) By an illustrative example, it was concluded that the circumferential wall heat flux variation has a pronounced effect in both Newtonian and non-Newtonian heat transfer results.

An interesting extension of the work reported here would be to consider the problem presented in Chapter 1 (i.e., laminar flow with an arbitrary variation of wall heat flux both axially and circumferentially with the allowance made for the inclusion of axial heat conduction, viscous heat dissipation, and heat generation) with the following additional features:

- include the effect of temperature on fluid properties, i.e.,
 viscosity and density,
- (2) include the effect of natural convection, and
- (3) solve the coupled energy and momentum equations for the simultaneous development of thermal and velocity profiles.

4. NOMENCLATURE

Variables which are not listed in this nomenclature are defined at the appropriate location within the manuscript. Dimensions are given in mass-length-time-heat-temperature system (M-L-T-Q-t).

a n	Fourier coefficients
a _{n0} ,a _{np}	Expansion coefficients
â _{n0} ,â _{np}	Defined as $\hat{a}_{n0} = 4a_{n0}; \hat{a}_{np} = \frac{4p}{a_{np}}$
$A_0(r+), A_p(r+)$	Defined by the expansion in Equations (1.63b, c) and
	(2.46a, b)
b	Heat flux parameter for the special example
b n	Fourier coefficients
b i;np	Coefficients of the power series
b np	Expansion coefficients
$B_{p}(r+)$	Defined by the expansion in Equations (1.63d) and
	(1.48c)
С	Coefficient of Equation (1.42)
C1, C2	Constants of integration
с р	Specific heat at constant pressure, Q/Mt
c v	Specific heat at constant volume, Q/Mt
D	Coefficient of Equation (1.42)
E	Total error between the function and its power serie
	expansion

 \mathbf{s}

- $f(\phi)$ Specified angular variation for variable circumferential wall heat flux
- $f+(r+,\phi)$ Function of r+ and ϕ satisfying Equations (1.26) and (2.24)

f(r+) Function of r+ satisfying Equation (1.10)

 $F(r+,\phi)$ Function of r+ and ϕ satisfying the Laplace equation

g Gravitational constant, L/T^2

g Newton constant relating force and mass,

32.174 lbm ft/lbf sec²

h Heat transfer coefficient

- J Mechanical-to-thermal energy conversion factor, 777.66 (ft-lbf)/Btu
- k Thermal conductivity, Q/tLT
- K Defined by Equation (1.7a)
- m Constant in power-law constitutive equation
- n Exponent in the power-law constitutive equation
- n Separation constant in Equation (1.41)
- p Integer parameter in Equations (1.52) and (2.38)
- P Static pressure, M/LT^2
- $q(\phi)$ Arbitrary variation of circumferential wall heat flux, Q

$$\frac{1}{2\pi} \int_{0}^{2\pi} \hat{\Theta}_{fd} d\phi$$

$$g(r+) \quad Defined as \qquad \frac{1}{\pi} \int_{0}^{2\pi} \hat{\Theta} \cos p\phi \, d\phi$$

$$\frac{1}{\pi} \int_{0}^{2\pi} \hat{\Theta} \sin p\phi \, d\phi$$

$$q \quad Local heat flux, Q/TL^{2}$$

$$q \quad Heat flux vector$$

$$\overline{q} \quad Defined by \ \overline{q} = \int_{0}^{2\pi} q(\phi) d\phi$$

$$Q \quad Heat generation rate per unit volume, Q/L^{2}T$$

$$\hat{Q}(x+) \quad Axial variation of wall heat flux
R_{np}(r+) \quad Eigenfunctions of the characteristic Equations (1.52) or
(2.38) for the specified integer parameter p
r Radical co-ordinate from the center of the pipe, L
r_{0} \quad Pipe radius, L
s Exponent in the power-law constitutive
t(x, r, \phi) Local fluid temperature, t
u(r) Local fluid velocity, L/T
 $\vec{u} \quad Velocity vector, L/T$
v Average fluid velocity, L/T
W(r+) Function of r+ satisfying Equation (132)
x Axial co-ordinate from the inlet point, L$$

Greek Symbols

a	Thermal diffusivity constant, L^2/T
ζ	Dummy integration variable, L
θ	Local dimensionless fluid temperature
θ+	Dimensionless entrance region temperature
θ_{fd}	Asymptotic dimensionless fluid temperature
ê	Defined by Equation (2.45)
Θ	Local dimensionless fluid temperature when heat source
	and dissipation terms are neglected
Θ+	Dimensionless entrance region temperature when heat
	source and dissipation terms are neglected
⊖ _{fd}	Asymptotic dimensionless fluid temperature when heat
	source and dissipation terms are neglected
λ	Separation constant defined by Equation (1.34)
λ np	Permissible values of the characteristic Equations (1.52)
-	or (2.38)
μ	Dynamic viscosity coefficient, M/LT
ν	Kinematic viscosity, μ/ρ , L^2/T
π	3.14159
ρ	Fluid density, M/L ³
т rx	Shear stress in the x-direction
= τ	Stress tensor
ф	Angular coordinate, degs

Function of ϕ satisfying Equation (1.35) of the first problem

Weighting function ω

 $\Phi(\phi)$

Standard Dimensionless Parameters

Gz Graetz number,
$$\frac{mc_p}{kx} = \frac{\pi}{2} \frac{1}{x+1}$$

Nu(x+, ϕ) Local Nusselt number, $\frac{h^2 r_0}{r}$

Pe	Peclet number,	Re Pr
Pr	Prandtl number,	$\frac{\mu c}{p}$

Re Reynolds number,
$$\frac{\rho v^2 r_0}{\mu}$$

Dimensionless Parameter Defined in this Manuscript

K Heat dissipation term,
$$16\pi(\frac{v^2}{2g_c Jc_p})(\frac{k}{\overline{qr_0}})$$
 Pr

Q' Heat source term,
$$\frac{Qr_0}{\overline{q}} \frac{\pi}{2}$$

r+ Radial co-ordinate,
$$\frac{r}{r_0}$$

Fluid velocity, $\frac{u}{v}$ \mathbf{u} +

Axial distance, for Newtonian problem: $\frac{x/r_0}{\text{RePr}}$, for non-Newtonian problem: $\frac{2s}{s+2} \frac{x/r_0}{\text{RePr}}$ or $\frac{2v}{u_{\text{max}}} \frac{x/r_0}{\text{RePr}}$ \mathbf{x} + Non-dimensional fluid temperature, $\frac{t-t_{\epsilon}}{\overline{q} 2r_0/k\pi}$ θ

Subscripts

av Refers to average value

Refers to axial direction axial

c Refers to conversion factor

fd	Evaluated far away from the entrance
m	Evaluated at the mixed mean state
max	Refers to maximum value
p	Refers to pressure
t	Refers to solution for constant surface temperature
v	Refers to volume
w	Evaluated at wall condition
x	Refers to x (axial) direction
E	Evaluated at the tube entrance
∞	Evaluated far away from the entrance

BIBLIOGRAPHY

- Agrawal, H.C. Heat transfer in laminar flow between parallel plates at small Peclet numbers. Appl. Sci. Res., Vol. A9, pp. 177-196, (1960).
- Ash, A.L. and J.H. Heinbockel. Note on heat transfer in laminar, fully developed pipe flow with axial conduction. Z. Agnew. Math. Phys. 21(2), 266, (1970).
- Beek, W.J. and R. Eggink. Warmteoverdract near een laminaire stroming van een nietnewtonse vioeistof in een ronde buis. Ingenieur, 74 (35), 81-89 (1962).
- 4. Bird, R.B. Soc. plastic. Engineering J. 11, 35 (1955).
- Bird, R.B. Zur theorie des Warmeubergangs an nicht-Newtonsche Flussigkeiten bei laminarer Rohrstromung. Chem. Ing.-Techn., 31, 569 (1959).
- Black, A. W. and E. M. Sparrow. Experiments on turbulent heat transfer in a tube with circumferentially varying thermal boundary conditions. J. Heat Transfer, Transactions of the American Society of Mechanical Engineers, 89c, (3), 258-268 (1967).
- 7. Brinkman, H.C. Heat effects in capillary flow. Appl. Sci. Res., A2, 120 (1950).
- Brown, G. M. Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit. A.I. Ch. E., Journal 6, No. 2, 179 (1960).
- Burchill, W.E., R.D. Stein and B.G. Jones. Influence of axial heat diffusion in liquid metal-cooled ducts with specified heat flux. J. Heat Transfer, Transactions of the American Society of Mechanical Engineers, 90, 283-290 (1968).
- Eckert, E.R.G. and D.C. Peterson. Heat transfer to mercury in laminar flow through a tube with constant wall heat flux. J. Heat Transfer, Transactions of the American Society of Mechanical Engineers, 419-420 (1965).

- Emery, A.F. and D.A. Bailey. Heat transfer to fully developed liquid metal flow in tubes. J. Heat Transfer, Transactions of the American Society of Mechanical Engineers, 272-273 (1967).
- Foraboschi, F.P. and Iginio Di Federico. Heat transfer in laminar flow of non-Newtonian heat generating fluids. Int. J. Heat Mass Transfer. Vol. 7, pp. 315-325 (1964).
- 13. Gee, R.E. and J.B. Lyon. Nonisothermal flow of viscous non-Newtonian fluids. Ind. Eng. Chem. 49, 956 (1957).
- Gill, W.M. Heat transfer in laminar power-law flows with energy source. American Institute of Chemical Engineers Journal 8, 137-138 (1962).
- 15. Grigull, V. Warmeubergang an nicht-Newtonsche Flusigkeiten bei laminarer Rohrstromung. Chem. Ing. -Tech., 28, 553 (1956).
- 16. Heaton, H.S., W.C. Reynolds and W.M. Kays. Heat transfer in annual passages. Simultaneous development of velocity and temperature fields in laminar flow. International Journal of Heat and Mass Transfer 7:763-781, (1964).
- Hennecke, D.K. Heat transfer by Hagen-poiseuille flow in the thermal development region with axial conduction. Warme-und Stoffubertragung Bd., 1, 177-184 (1968).
- 18. Hsu, C.J. Heat transfer in a round tube with sinusoidal wall heat flux distribution, A.I.Ch.E.J., 11, 690-695 (1965).
- Hsu, C.J. An exact mathematical solution for entrance-region laminar heat transfer with axial conduction, Appl. Sci. Res., 17, 359-376 (1967).
- Hsu, C. J. Theoretical solutions for low-Peclet-number thermalentry-region heat transfer in laminar flow through concentric annuli. International Journal of Heat and Mass Transfer, 13, 1907-1924 (1970).
- Hsu, C.J. Exact analysis of low Peclet number thermal entry region heat transfer in transversely non-uniform velocity field, A.I.Ch.E.Jl. 17(3), pp. 732-740 (1971).

- 22. Inman, Robert M. Heat transfer to laminar non-Newtonian flow in a circular tube with variable circumferential wall temperature or heat flux. Cleveland, Ohio, 22p. (U.S. National Aeronautics and Space Administration Technical Note D-2674 (1965).)
- Johnson, H.A., J.P. Hartnett and W.J. Clabaugh. Heat transfer to lead-Bismuth and Mercury in laminar and transition pipe flow. J. Heat Transfer, Transactions of the American Society of Mechanical Engineers Vol. 76, 513-517 (1954).
- Jones, A.S. Extensions to the solution of the Graetz problem. International Journal of Heat and Mass Transfer, (14), pp. 619-623 (1971).
- 25. Kays, W. M. Convective heat and mass transfer. New York, McGraw-Hill, 387 p. (1966).
- 26. Kays, W.M. Numerical solutions for laminar-flow heat transfer in circular tubes. Transactions of the American Society of Mechanical Engineers 77:1265-1274 (1955).
- Labuntsov, D.A. Heat emission in pipes during laminar flow of a liquid with axial heat conduction taken into account. Sov. Phys. Doklady, Vol. 3, pp. 33-35 (1958).
- Loc, T.P. Transport Thermique Instationnaire En Ecoulement Laminaire A L'Entree Des Tubes Circulaires, Int. J. Heat Mass Transfer, 13, pp. 1767-1778 (1970).
- 29. Lyche, Bjorn C. and R. Byron Bird. The Graetz-Nusselt problem for a power-law non-Newtonian fluid. Chemical Engineering Science 6:35-41. (1956).
- 30. Lyon, R.N. Liquid metal heat-transfer coefficients. Chemical Engineering Progress 47, 75 (1951).
- 31. Manohar, R. Analysis of laminar-flow heat transfer in the entrance region of circular tubes. International Journal of Heat and Mass Transfer 12, 15 (1969).
- 32. Matsuhisa, S. and R. B. Bird. Analytical and numerical solutions for laminar flow of non-Newtonian Ellis fluid. American Institute of Chemical Engineers Journal 11 p. 588 (1965).

- 33. McKillop, A.A. Heat transfer for laminar flow of non-Newtonian fluids in entrance region of a tube. International Journal of Heat and Mass Transfer 7:853-862 (1964).
- 34. McMordie, R.K. and A.F. Emery. A numerical heat transfer in circular tubes with axial conduction and developing thermal and velocity fields, Trans. ASME, J. Heat Transfer, Vol. 89C, pp. 11-16 (1967).
- 35. Michiyoshi, I. Heat transfer of slurry flow with internal heat generation. Bulletin of JSME, Vol. 5, No. 18, p. 315 (1962).
- Michiyoshi, I., R. Matsumoto, and M. Hozumi. Heat transfer of slurry flow with internal heat generation. Bulletin of JSME, Vol. 6, No. 23, p. 496 (1963).
- 37. Michiyoshi, I. and R. Matsumoto. Heat transfer of slurry flow with internal heat generation. Bulletin of JSME, Vol. 7, No. 26, p. 376 (1964).
- 38. Millsaps, K. and K. Pohlhausen. Heat transfer to Hagen-Poiseuille flows, proc. of the conf. on diff. equations (J.B. Diaz and L.E. Paybe, eds.), University of Maryland Bookstore, College Park, Md., pp. 271-294 (1956).
- Mitsuishi, N. and Osamu Miyatake. Laminar heat transfer to non-Newtonian Ellis model fluids in cylindrical tubes. Kagaku Kogaku (abridged edition), Vol. 5, No. 1, p. 82 (1967).
- 40. Nelson, M.E., J.H. Rust and F.A. Iachetta. The effect of axial heat conduction on the thermal development of heat-generating fluid, Nuclear Science and Engineering, 37, 216-223 (1969).
- Pahor, S. and J. Strnad. Die Nusseltsche Zahl fur laminare Stromung im Zylindrischen Rohr mit Konstanter Wandtemperature, Z. Agnew. Math. Phys. 7, 536-538 (1956).
- 42. Pahor, S. and J. Strnad. A note on heat transfer in laminar flow through a gap, Appl. Sci. Res. Vol. A10, pp. 81-84 (1961).
- 43. Pawlek, R.A. and Chi Tien. Laminar heat transfer to non-Newtonian fluids in the entrance region of a circular conduit. The Canadian Journal of Chemical Engineering, 42 (5) 222 (1964).

- Payvar, P. Asymptotic Nusselt numbers for dissipative non-Newtonian flow through ducts. Applied Scientific Research, Ser. A., 27, 297 (1973).
- 45. Petukhov, B.S. and A.Y. Yushin. Heat exchange during liquid metal flow in the laminar and transition region, Sov. Phys. Doklady, 6(2), pp. 159-161 (1961).
- Pirkle, J.C. and V.G. Sigillito. Calcuation of coefficients in certain eigenfunction expansions, Appl. Sci. Res., 26, 105-107 (1972).
- 47. Pirkle, J.C. and V.G. Sigillito. Laminar heat transfer with axial conduction, Appl. Sci. Res., 26, 108-112 (1972).
- Poppendiek, H.F. and W.B. Harrison. Thermal entrance-region heat transfer in liquid-metal system, Chemical Engineering Progress Symposium Series, 51(17), 49-55 (1955).
- 49. Reynolds, W.C. Heat transfer to fully developed flow in a circular tube with arbitrary circumferential heat flux. Transactions of the American Society of Mechanical Engineers, Journal of Heat Transfer, Ser. C, 82:108-112 (1960).
- 50. Reynolds, W.C. Turbulent heat transfer in a circular tube with variable circumferential heat flux. International Journal of Heat and Mass Transfer 6:445-454 (1963).
- 51. Rohsenow, W.M. Developments in heat transfer, ed., the M.I.T. Press, Cambridge, Massachusetts (1964).
- 52. Samant, A.B. and W.J. Marner. Heat transfer to a Bingham plastic in entrance region of a circular tube. Nuclear Science and Engineering 43, 241-246 (1971).
- 53. Schechter, R.S. and E.H. Wissler. Heat transfer to Bingham plastics in laminar flow through circular tube with internal heat generation. Nuclear Science and Engineering 6, 371 (1959).
- 54. Schmidt, F.W. and B. Zeldin. Laminar heat transfer in the entrance region of ducts, Appl.Sci. Res., 23, 73-94 (1970).
- 55. Schneider, P.J. Effect of axial fluid conduction on heat transfer in the entrance regions of parallel plate and tubes, Transactions of the American Society of Mechanical Engineers, Journal of Heat Transfer, 79, pp. 765-773 (1957).

- 56. Sellers, J.R., Myron Tribus and J.S. Klein. Heat transfer to laminar flow in a round tube or flat conduit--the Graetz problem extended. Transactions of the American Society of Mechanical Engineers 78:441-448 (1956).
- 57. Sestak, J. and M.E. Charles. Limiting values of the Nusselt number for heat transfer to pipeline flow of non-Newtonian fluids with arbitrary internal heat generation. Chemical Engineering Progress Symposium, Ser. 64, No. 2; 212 (1968).
- 58. Shenk, J. and J. Van Laar. Heat transfer in non-Newtonian laminar flow in tubes. Applied Scientific Research 7, 449 (1958).
- 59. Siegel, R., E.M. Sparrow and T.M. Hallman. Steady laminar heat transfer in a circular tube with prescribed wall heat flux. Applied Scientific Research. Ser. A, 7:386-392 (1958).
- 60. Singh, S.N. The determination of eigenfunctions of a certain Sturm-Liouville equation and its application to problem of heat transfer. Appl. Sci. Res., A7, pp. 237-250 (1958).
- 61. Singh, S.N. Heat transfer by laminar flow in a cylindrical tube, Appl. Sci. Res., A7, 325-340 (1958).
- 62. Skelland, A.H.P. Asymptotic rates of heat or mass transfer in non-Newtonian laminar flow. Industrial Engineering Chemistry Fundamentals Vol. 6, No. 1, 143 (1967).
- 63. Sparrow, E. M. and R. Siegel. Laminar tube flow with arbitrary internal heat source and wall temperature. Nuclear Science and Engineering 4, 239 (1958).
- 64. Sparrow, E. M. and S. H. Lin. Turublent heat transfer in a tube with circumferentially varying temperature or heat flux. Int. Jour. Heat Mass Transfer, 6(9), pp. 866-876 (1963).
- 65. Taitel, Y. and A. Tamir. Application of the integral method to flows with axial diffusion. Int. Jour. Heat Mass Transfer, 15, pp. 733-740 (1972).
- 66. Taitel, Y., M. Bentwich and A. Tamir. Effects of upstream and downstream boundary conditions on heat (mass) transfer with axial diffusion. Int. Jour. Heat Mass Transfer, 16, pp. 359-369 (1973).

- Toor, H.S. Heat transfer in forced convection with internal heat generation. Journal of American Institute of Chemical Engineers 4(3) 319 (1958).
- 68. Topper, Leonard. Forced heat convection in cylindrical channels: some problems involving potential and parabolic velocity distribution. Chemical Engineering Science 5, 13 (1956).
- 69. Ulrichson, D. L. and R. A. Schmitz. Laminar-flow heat transfer in the entrance region of circular tubes. International Journal of Heat and Mass Transfer, 8, 253 (1965).
- 70. Valstar, J.M. and W.J. Beek. Warmteoverdracht naar een laminaire stroming van een niet-Newtonse vloeistof tussln twee evenwijdige platen. Ingenieur V75 n. 1 p. chi-7 (Jan. 4, 1963).
- Whiteman, L.R. and D.B. Drake. Heat transfer to flow in a round tube with arbitrary velocity distribution. Transactions of American Society of Mechanical Engineers 80, 728 (1958).
- 72. Wilson, H.A. On convection of heat. Cambridge philos. Soc. proc., 12, pp. 406-423 (1903-1904).
- 73. Wissler, E.H. and R.S. Schechter. The Graetz-Nusselt problem (with extension) for a Bingham plastic. Chemical Engineering Progress Symposium Series, 55 No. 29, 203 (1959).
- 74. Yau, Joseph and Chi Tien. Simultaneous development of velocity and temperature profiles for laminar flow of a non-Newtonian fluid in the entrance region of flat ducts. The Canadian Journal of Chemical Engineering 41:139-145 (1963).
- 75. McEachern, D. W. Axial laminar flow of non-Newtonian fluid in an analysis, A.I. Ch. E. Jl. 12, 328 (1966).

	т*	^R 10	^{-R} 20	^R 30	R40	Rso	^R 60	^R 70	Rao	[#] 90	R ₁₀₀	^R 110	R ₁₂₀
	(1) Pe	= 5, p = 0											
	0.00	1.0406	1.6000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	05	9878	.9634	.9273	.8802	.8230	•7568	.6827	.6022	.5165	.4274	.3364	.2450
		.9515	.8577	.7253	.5639	.3854	.2023	.0273	1281	2542	3438	3930	4010
	.15	8928	.6949	•4376	.1625	0883	2784	3841	3974	3270	1957	0356	.1186
~	.20	A140	.4927	.1252	1886	3717	3921	2693	0651	.1398	.2730	.2942	.2056
	.25	.7192	.2728	1490	3821	3627	1499	.1140	.2815	•2737	.1138	0953	2331
	30	6093	.0579	3348	3781	1283	.1766	.3009	.1756	0729	2399	2011	0072
	. 35	.4912	1314	4054	2132	.1511	.3003	.1213	1597	2436	0655	•1647	
-	40	.3642	-,2785	3619	.0210	.2977	.1469	1714	2260	.0216	.2150	.1007	1345
	.45	.2445	3729	2305	.2189	.2391	1163	2364	•0342	•2194	.0333	1894	
-	.50	.1240	4106	0544	.3033	•0360	2514	0277	•2193	.0230	19/1	→.0199 \	.1894
	.55	.0101	3944	•1188	.2525	1705	1570	.1927	.0785	1945	0115	.1799	0441
	.69	0942	3355	.2477	.1013	2537	.0638	.1/8/	1606	0634	•1919		1300
	. 65	1869	2342	• 3066	0793	1750	.2133	0330	*•15/2	+1649	0021	A302	•1309
-	.70	7654	1207	.2886	2150	.0039	•1727	1932	.0639	.0996	1009	.0490	•0417
	.75	3318	.0001	.2055	2569	<u>.1685</u>	0085	 1318	•1827		• UUHH	.1041	
-	- 40	3832	-1135	.0817	1972	.2242	1/16	.0682	.0454	1290	•1701	- 4540	1020
	. 25	4219	.2083	0524	0670	.1481	-,1870	.1841		.0827	- 1500		-1009
-	. 90	4450	.2785	1681	.0804	0659	0536	.1004	-+1324	.1491	-1206	•1397	- 039/
	• 95	4598	.3205	2442	1 918	1503	•1147	- 1776 -	.0540	- 1623	1443	- 1774	1314
-	1.00	4645	•3340	2701	•5351	2055	.1878	1/34	.1010	1525	•1440		• 1514
	(2) Pe	= 10 , p =	0										
	<u></u>		<u> </u>	÷ .		1 0000	1.0000	1 0000	1.0000	1-0000	1.0000	1.0000	1.0000
	0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		-5840	-4971	.4070	.3155	.2240
	.05	.9461	.9591	.9204	.8706	.8109	. 1460	- 0073	1581	2773	3584	3984	3974
	.10	.9451	. 3417	.7007	.5321	.3500		3946	- 3890	- 3028	1616	.0007	.1494
-	.15	. 2720	.6626	•3933	•1147	1343	- 3793	- 2320	0196	.1764	.2880	.2834	.1746
	. 20	.7906	•4437	.0690	2323			1593	2953	.2506	.0692	1347	2455
	.25	.5343	•5111	2017	3975	3.337	2103	-2952	1296	1197	2493	1697	.0390
	.30	.5646	0091	+.3670	3525	014		-0662	- 1983	2263	0144	.1933	.1800
-	.35	.4365	1940	- 4044	-1545	.2014	02902	-2100	- 1962	.0749	.2195	.0591	1666
	. 40	• 305 <u>3</u>	3273	1/51	.0869	• 30/344 • • • • • • • • • • • • • • • • • • •	1681	- 2103	.0894	.2116	0204	1980	0388
•	.45	.1757	4001	1580	.2010	- 0207	2501	.0323	.2175	0325	1950	.0318	.1782
	.50	.0520	4120	.0184	10.01				.0235	1987	.0408	.1676	0893
	.55	0621	3697	.1864	. 2 101	- 2444	1189	.1406	1879	0118	.1757	0949	1037
	. 50	1579	- 2452	• 2465	+0357		2244		- 1215	.1814	0496	1210	.1516
	• 55	2514	1738	.3130	- 2441	1590	-1368	2026	.1073	.0588	-,1623	.1301	.0009
	. 70	3234	0510	• 2047		-2013		0961	.1771	-,1531	.0482	•0733	1436
	.75	3811	.0588	- 1009	- 1676	2219	1936	.1044	.0088	1055	.1546	1439	.0823
	.80	4239	. 1 /44	.0094		.1224	1761	.1881	1621	.1071	0366	0344	.0922
	-,45	- 4535	• 2581	- 2074	-1110	- 0346	- 0305	.0825	1204	.1433	1512	•1448	1259
	.90	4719	- <u> </u>				.1297	0967	.0667	0393	.0141	.0088	0295
	.95	4812	- 3495	- 2001	.2457	- 2166	.1956	1796	.1670	1566	.1480	-,.1406	+1343
	1.00	4837	• 3775	-•*031	•						•		

Table A.1. Tabulation of the first 12 eigenfunctions for p = 0, 1, 2 and different Peclet numbers.

Table A, 1. Continued

r*	R ₁₀	R ₂₀	R ₃₀	R40	R.50	R ₆₀	R ₇₀	R ₈₀	R ₉₀	R ₁₀₀	R ₁₁₀	R ₁₂₀
(5)	Pe = 20, p	= 0										
0.1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
. 15	9848	9541	.9109	. 8565	.7921	.7192	.6392	•5536	•4640	.3721	.2793	.1874
	9401		.6677	.4877	.2971	•1100	0608	2042	3119	3787	4029	3862
.15	8682	6254	.3351	048A	1886	3445	4031	3673	2563	1011	.0618	•1980
	.1721	• 1483	0016	2865	4027	3458	1662	.0537	÷5560	.3005	•2526	.1136
.25	.5585	.1431	2626	4058	2324	0158	•2215	.3009	.1979	0090	1920	2493
. 30	.530A	0799	3954	3023	.0186	.2700	•2657	• 0464	1861	2448	1000	• 1138
. 35	.3957	2562	3872	0656	• 2606	.2518	0256	2408	1744	0720		
.40	.2597	3698	2639	.1720	.2863	0054	2479	1253	•1528	.1908	0291	1909
.45	.1254	4151	0775	.3000	.1096	-•5583	1431	•1663	•1681	1057		
0	\$000	3961	.1115	.2755	1239	2169	.1229	.1819	1186	+.1585	•1130	+1417
.55	1131	3246	.2525	•1292	2541	0098	•2210	0701	1/19	•1215	•1154	- 0373
. 60	2120	2171	.3156	0607	2108	.1892	•0578	2021	.0765	- 1330	- 0523	
.65	2948	0916	.2960	-•5111	0410	•2127		0420			-1610	0714
75	3511	.0352	.5093	2686	•1412	.0608	֥1900	+104/ 166E	1750	1108	.0075	-1115
.75	4116	. 1497	•0835	2242	•7336	1293		• 1445		1297	- 1556	.1246
. 80	- 4475	.2434	0509	1065	•1989	- 1451	+ 15/1	- 1603		0844	.0137	.0533
• 45	4708	.3120	1687	•05/7	•0099 				1265		1497	1405
• 76	- 4841	• 155H	2544	.1540	- 10637	•0133	- 1221	0906	- 0617	.0350	- 0105	0118
		. 3740	3028	- 2446	- 1909	-1570		.1773	- 1654	1555	1471	.1400
1.1.16	- 412	. 3840	3072	• 2046		• 2110		• • • • •	• • • • • • • • •	••••		
(4)	Pe = 30 , p	= 0						-				•
0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
.15	. 9844	.9517		.8470	.7788	.7021	.6185	•2537.	.4376	.3436	.2496	• • 1571
.15	.9386	.8142	.6482	.4594	.260A	.0705	0991	2370	3356	3907	4019	3724
.15	.8648	.607A	.3016	.0079	2252	3660	4028	3441	2150	0511	.1093	•2323
.20	.7671	.3625	0406	3163	4047	+.3152	1136	.1072	.2614	.2985	.2168	.0583
	.4.503	-1151		4029	2395	.0426	.2577	.2906	.1462	0706	_•5561	2354
. 30	-5203	1115	÷.4045	2626	.0772	.2929	•2287	0200	2243	2213	0349	.1650
. 35	.7530	2419	3688	0071	.2879	.2089	0919	2530	1169	.1341	•2155	•0547
.40	.2444	3×50	2215	·2185	·2575	0735	2539	0575	• 1970	.1534	0980	1936
.45	.1100	4164	0533	.3093	.0435	2520	0774	.2063	.1108	1615	1395	•1147
.50	0155	3827	•1613	.2413	1798	1711	•1777	.1295	1705	1056	.1623	•0842
	1284	2979	•5835	.0675	2604	.0618	.1970	1344	1226	.1675	• 0497	1715
• 50	2262	1408	•3190	1218	1645	•2210	0144	1836	•1367	.0743	1731	.0444
• 55	3073	0504	.2720	2460	•0566	•1797	1953	•0280	•1472	1624	.0167	.1333
. 76	3716	.0763	•1651	2658	•1893	0049	1564	•1894	0845	0709	•1598	1220
.75	- 4199	• 1867	•030S	1988	•2392	1749	.0383	.0994	+.1718	• 1494	0517	0648
- 49	4536	.2733	1022	0548	•1658	2121	.1870	1070	.0020	•0926	1471	.1468
- 45	- 4/49	. 3340	2103	.0879	•0228	1099	•1648	1833	•1664	1205	.0564	.0123
	4555	. 3704	2835	• 2014	1234	•0519	.0114	0544	•1055	1333	•1471	14/1
	4913	.3474	3217	.2676	2210	.1805	1446	.1121	0822	.0546	0290	.0054
1.99	4427	.3915	3350	•2873	2524	•2253	2043	•1876	- •1741	•1030	1537	• 1458

Table	A.1. Continu	ed		-							-	-
x *	R ₁₀	R20	R30	R40	^R 50 .	R60	R70	R 80	^R 90	^R 100	^K 110	P.120
(5) Pe	= 50 , p = 1	0					•					
0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
.05	9842	9498	.8996	.8364	.7623	.6796	.5901	.4960	.3991	.3014	.2047	.1108
.10	9176	. 80 70	.6292	.4258	.2172	.0212	1477	2783	3636	-,4011	3927	3437
.15	. 6627	5938	2695	0358	2652	3866	3937	3036	1507	•0554	.1742	•2726
.20	7636	3422	0767	3443	3991	2684	0411	.1743	.2918	.2762	.1485	-+0289
.25	6454	.0881	3193	3926	1821	.1133	.2903	.2563	.0621	1518	2508	1856
- 30	5134	1348	4086	2134	.1428	.3041	.1628	1078	2515	1581	.0654	-2134
. 35	3752	- 3006	3460	.0562	.3046	.1393	+.1693	23A0	0196	.1997	.1687	0530
	2356	- 1948	1773	.2603	.2063	1521	2306	.0432	•5531	.0596	1754	1386
	1006	- 4150	0289	. 3045	0388	2540	.0205	.2242	.0072	2011	0382	•1779
	- 1000		2048	.1903	2310	0913	.2215	.031R	2034	.0055	.1845	0293
	- 1376	2749	3046	0053	2425	.1455	.1301	1944	0215	.1855		1430
	- 246	- 1508	. 3121	- 1825	0402	.2304	1098	1163	.1870	0348	1450	.1360
• • • •	- 3144	- 0175	2362	- 2689	1082	.1094	2098	.1218	•0628	~.1733	.1151	.0459
		1082		- 2439	2304	0424	0809	.1840	1578	.0295	.1074	1585
75	- 4347	2144	6249	- 1338	.2222	2146	.1212	.0128	1267	.1709	1299	.0291
	- 4570		- 1521	.0122	1079	1853	.2048	1662	.0844	.0141	0992	.1462
 a =	- 4771	17489	- 2483	.1472	0458	0465	.1194	1648	.1786	1614	.1181	0579
	- 4977	1761	- 3080	.2427	1766	.1105	0472	0106	.0603	1000	.1280	1435
05	- 4977	3922	3358	2419	- 2523	.2152	1805	.1480	1177	•0892	0625	.0374
-1.00-		3947	34??		2736	.2472	2250	.2063	1908	.1777	1667	•1573
	-											
(6) Pe	= 100 , p =	0										
	·····		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0000	1 0000	1,0000	1.0000	. 1.0000	1.0000	1.0000	1.0000

				1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
0.00	1.0000	1.0000	1.0000	1.0000	7467			.4548	. 3499	.2453	.1432	.0458	
.05	.984	.9497	• 895H	.8270	• (4 7 7 7	- 0390	- 1982	+ 3205	3885	4017	3652	2884	
.10	.9371	.4031	•6162	. 3995	•1//2			- 2444	0644	.1141	.2451	.3001	
.15	.85TA	.5860	.2479	0696	2981	*• 3990	- 3126	2200	3011	2148	.0369	1425	
.26	.7420	.330.9	1003	3631	3863	2125	• 0.395	1006	0491	- 2272	2283	0702	
25	6430	N749	3351	3791	1251	.1784	. 3031	-1000	- 3750	- 0701	.1770	.2030	
20	5168	- 1475	4086	1706	.1963	.2939	.0734				0430	1731	
			1240	.1048	.3036	.0560	2304	1743	.1040	.2173	- 1945	.0102	
• • • • •	- 1/10	- 3005	- 1460	2852	.1458	2148	1653	.1504	.1857	UHC1		1/02	•
. 4 1	• • • • • • • • • • • • • • • • • • • •		1631	2892	1116	2216	.1249	.1824	1225	1604	•1120	- 1503	
. 4 5	• 11/1 = 3		220.0	1411	2575	.0056	.2192	0941	1604	.1404	.1014	-1346	
• 50	- 0,294		· 2120		2011	.2082	.0210	1983	° •1142	.1060	1700	.0038	
	[4] 9	2514	• 31 34	2026	- 0096	1978	- 1893	.0086	.1618	1564	0080	.1512	41.
.60	2395	1337	.3014				- 1677	.1916	0762	0856	.1679	1103	
- 65	3122	.0009	•5151	2178	•1(45	1723	0.324	1081	1798	.1489	0376	0871	
.70	340.6	 1256 	•0786°	7115	• 7441		1052	· 1051	00.90	.1100	1613	•1453	
.75	- 476A	. 7747	6630		+1796	6199	•1910 1705	1052	1696	1082	.0263	.0560	
- 65	- 4585	. 30.51	1846	.0705	.0348	1516	.1785	1952	1/19	- 1669	1684	1469	
	- 4780	.3567	2714	.1940	1169	.0399	+0.329	0950	- 0207	- 0178	.0593	0938	
- 00	- 4882	1432	3213	.2718	2252	.1776	1284	.0781	- 0201		- 1241	.0996	•
			- 3419	.3051	2771	.2508	2254	.2000	1745	• 1491	- 1070	1928	
• 77	- 6025	3454	- 3455	.3129	2884	• 2682	2505	.2344	2196	.2001	- 1 7 3 7	•1020	
1.00	- 49/3	• 7 7 7 4	•			A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.	and a second						

Tab.	le A.1. Contin	ued										•
1 +	. R ₁₁	R21	^R 31	^R 41	. ^R . 51	R ₆₁	R 71	^R \$1	^R 91	R ₁₀₁	R ₁₁₁	R ₁₂₁
(1)	Pe = 5 , p =	1										
0.00	0.0000	0. 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.05	• 0499	.0494	.0487	.0476	.0463	.0447	.0428	.0408	.0385	•0361	•0335	.0309
.10	.0992	.0956	.0897	.0819	.0725	.0620	.0508	.0395	.0285	.0182	.0091	.0014
.15	.1472	.1353	.1168	.0936	.0683	.0432	•0509	.0023	0106	0179	019A	0175
.20	.1935	.1662	•1565	.0808	.0377	.0035	0180	0262	0234	0137	0020	.0076
•25	.2374	•1864	.1172_	.0486_	0031	0294	0313_	0174	.0007	.0133		.0096
• 30	.2786	.1949	.0922	.0078	0349	0356	0125	.0109	.0193	.0116	0024	0113
.35	.3166	. 1918	.0562	0291	-,0444	0152	.0155	.0214	.0057	0108	0127	0019
.40	• 3511	.1777	.0156	0518	0301	.0135	.0246	.0037	0149	0105	.0053	.0109
.45	.3819	.1542	0559	0552	0021	.0290	.0085	0165	0101	.0091	•0099	
.50	.4090	.1233	0534	0405	.0240	.0216	0143	0139	.0098	.0099	0015	0075
.55	.4322	.0874	r0719	0143	.0354	0009	0209	.0059	.0127	0076	0073	.0078
. 60	.4516	.0491	0767	.0142	.0281	+.0208	0065	•0167	0042	0044	.0083	•002A
. 65	•4674	.0107	+.0684	.0360	•0073	0242	.0131	.0058	0134	.0062	.0050	0087
. 70	.4798	0254	0496	.0452	0156	0101	.0187	0115	0014	.0096	0087	.0017
.75	.4891	0576	0,243	.0401	0294	.0101	.0061	0136_		-,0047	-,0030	.0073
.80	.4956	0846	.0031	.0236	0283	.0221	0114	0009	•0065	0097	.0087	0051
.85	.4998	1054	.0284	.0014	0142	.0183	0174	.0135	0083			0046
.90	.5022	1199	.0483	0200	.0056	.0025	0071	.0094	0101	.0097	0085	00.68
.95	.5032	1585	.0607	0350	,0219	0141	.0090	0055 _	+0029	0010	0005	.0015
1.00	.50 35	1308	.0648	0402	.0280	0210	.0164	0133	.0111	0094	.0082	0071

(2) Pe = 10 , p = 1

0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.05	.04.99	.0494	.0485	.0474	.0460	.0443	.0424	.0403	•0380	.0355	.0329	-0302
.10	.0991	.0950	.0886	.0804	.0705	.0598	.0485	.0371	•0262	.0161	.0072	0002
•15	.1465	.1334	•1135	.0894	.0635	.0385	.0165	0009	0127	0187	0196	0165
• 50	.1926	.1619	.1195	.0731	.0307	0017	0207	0265	0218	0112	.0004	.0091
.25	.2357	.1788	.1066	.03R5	0098	0315	0295	0137	•0040	.0147	.0151	.0075
.30	.2756	1832	.0782	0022	0377	0324	0074	.0140	.0189	.0089	0050	0119
• 35	.3121	.1756	.0402	0359	0414	0087	.0188	.0195	.0019	0126	0112	.0007
.40	.3447	.1571	.0000	0529	0225	.0185	.0224	0009	0159	0076	.0077	.0100
.45	.3733	.1.298	0355	0500	.0062	.0285	.0029	0178	0065	.0111	.0077	0064
.50	.3978	.0963	0608	0306	.0286	.0160	0175	0101	•0122	.0072	0091	0054
•55	.4182	.0593	0729	0030	•0341	0073	0186	.0097	.0101	0099	0047	.0088
.60	.4346	.0215	0713	.0233	.0217	0232	0012	.0157	0075	0072	.0095	.0003
.65	.4474	0147	0579	.0402	0006	0213	.0160	.0017	0123	.0084	.0024	0083
.70	•4568	0474	0362	•0438	0210	0045	.0168	0134	•0019	.0077	0093	.0038
•75	•4633	0751	0105	.0344	0302	.0143	.0019	0115	.0123	0068	~.000A	.0061
.80	.4672	0971	•0151	.0161	0252	.0224	0138	.0039	.0042	0085	.0089	0062
.85	.4693	1132	.0372	0054	0096	.0158	0166	.0140	0095	.0046	~.0001	0034
.90	. 4699	1237	.0535	0243	.0090	0002	0051	.0080	0092	.0093	0085	.0071
.95	•4698	1293	.0632	0368	.0233	0153	.0100	0063	.0037	0017	.0001	.0010
1.00	.4697	1309	.0662	0410	.0284	0212	.0166	0134		0095	.0082	0072

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table	A.1. Continu	led			-	o	R	Rat	R _o ,	R ₁₀₁	R111	R
	r*	R ₁₁	R ₂₁	^R 31 •	^R 41	^K 51	~61	-71	81	31			121
$ \begin{array}{c} 0.00 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.000 & 0.000 & 0.000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 0.000 & 0.000 & 0.000 & 0.0002 & 0.0011 & 0.0002 & 0.0011 & 0.0002 & 0.0011 & 0.0012 & 0.0011 & 0.0002 & 0.0011 & 0.0012 & 0.0011 & 0.0002 & 0.0011 & 0.0012 & 0.0011 & 0.0002 & 0.0010 & 0.0000 & 0.0$	(3) Pe	a = 20 , p =	1		-								
					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{c} 13 \\ -13 \\ $	0.00	0.0000	0.0000	0.0000	.0471	.0456	.0438	.0418	.0395		.0340		
$\begin{array}{c} 10 & 117 & 104 & 1054 & 1054 & 1056 & 115 & 1056 & 10155 & 10156 & 10187 & 1017 \\ 102 & 1021 & 1021 & 1022 & 1011 & 1022 & 1011 & 1022 & 1017 \\ 102 & 1021 & 1021 & 1022 & 1011 & 1022 & 1011 & 1022 & 1017 \\ 102 & 1022 & 1020 & 1020 & 1020 & 1022 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1017 & 1018 & 1018 & 1018 & 1014 & 1018 &$	• 35		.0493	0972	.0782	.0678	.0564	.0447	.0333	•0224	.0126	.0042	0026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 10	.0490	1716	10972	.0835	.0566	.0315	.0103	0056	0155	0196	0188	
-CG -525 -0076 -0078 -0076 -0078 -0076 -0078 -0076 -0078 -0077 -0018 -0017 -0018 -0017 -0018 -0017 -0028 -0068 -0017 -0029 -0077 -0118 -0111 -0026 -0016 -0032 -0067 -0067 -0078 -0067 -0078 -0079 -0		1321	1577	-1112	.0629	.0210	0087	0239	0258	0185	0069	.0042	•0112
1716 1716 0415 -0141 -0396 -0263 0004 0176 0167 0088 -0083 -0111 155 -0079 -1569 -0220 -0.024 -0351 0019 0219 0150 -0041 -0072 0071 150 -1017 -0166 -0233 0171 -0076 -0155 -0022 0104 -0071 150 -1414 -1375 -0057 -0164 -0024 -0054 -0174 -0010 -0	• 20	• 1961	1717	.0937	.0256	0180	0330	∽. 0255	0076		0160		- 0117
135 1079 1669 .0220 .0032 .0219 .0150 .00641		2742	.1718	0615	0141	0395	0263	.0004	.0176	•0157	.0038	*•0085	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1000	.1599	.0220	0424	0351	.0008	.0219	.0150	0041	0140		0071
-1.5	40	3416	.1375	0166	0513	0110	.0236	.0171	0076	0155	0022	.0104	- 0048
1023 10213 <th1< td=""><td>45</td><td>1691</td><td>.1070</td><td>0474</td><td>0404</td><td>.0166</td><td>.0249</td><td>0054</td><td>0174</td><td>0001</td><td></td><td>.0031</td><td>- 0010</td></th1<>	45	1691	.1070	0474	0404	.0166	.0249	0054	0174	0001		.0031	- 0010
•55 •112 •0339 •.0697 •0114 •0248 •0127 •0118 •0013 •0021 •0039 •60 •2746 •0024 •0408 •0239 •0107 •0239 •0067 •0118 •0113 •0021 •0039 •60 •2747 •0443 •0144 •0162 •0053 •0045 •0035 •0045 •0065 •76 •2459 •053 •0172 •0239 •0247 •0144 •0066 •0157 •0030 •0032 •75 •2450 •0547 •0147 •0212 •0164 •0063 •0107 •0032 •0037 •0032 •0014 •75 •2454 •1175 •0476 •0173 •0164 •0014 •0053 •0017 •0038 •0017 •75 •2547 •1276 •0466 •0198 •0014 •0053 •0079 •0011 •0079 •0011 •0079 •0012 •0070 •0012 •0070 •0012 •0070 •0014 •0093 •0043 •0043 •0043 •0043 ·0043	50	1421	.0715	0657	0162	.0321	.0063	0200	0031	•0139	-0017	0103	-0087
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	4114	.0339	0697	.0114	.0288	0154	0127	•0141	•0044	0115		0039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.4264	0028	0608	.0329	.0107	0239	.0067	-0118	0113	0021	- 0070	0062
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-65	4378	0364	0421	.0423	0114	-,0144	.0182				- 0087	.0065
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	-4458	0653	0190	.0383	0265	.0043	.0118	0147	•0069	- 0003	00007	.0032
$\begin{array}{c} 160 & -0.37 & -10.54 & -0.796 & -0.013 & -0.0187 & -0.212 & -0.0164 & -0.0043 & -10002 & -0.0027 & -0.028 & -0.010 \\ 185 & -4.547 & -1.175 & -0.476 & -0.0137 & -0.0146 & -0.0046 & -0.0014 & -0.053 & -0.0174 & -0.048 & -0.012 & -0.012 \\ -0.5 & -4.547 & -1.276 & -0.0566 & -0.0398 & -0.258 & -0.0174 & -0.0118 & -0.0179 & -0.051 & -0.029 & -0.012 & -0.072 \\ -0.555 & -1.283 & -0.078 & -0.426 & -0.295 & -0.0219 & -0.0137 & -0.014 & -0.096 & -0.098 & -0.072 \\ \hline (4) Pe = 30 , p = 1 \\ \hline (4) Pe = 30 , p = 1 \\ \hline (5) & -0.490 & -0.493 & -0.4826 & -0.858 & -0.540 & -0.413 & -0.0137 & -0.014 & -0.096 & -0.098 & -0.072 \\ \hline (5) & -0.499 & -0.493 & -0.482 & -0.469 & -0.453 & -0.624 & -0.014 & -0.0137 & -0.014 & -0.096 & -0.090 & -0.000 \\ \hline 0.00 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \hline 0.5 & -0.499 & -0.048 & -0.0458 & -0.0434 & -0.043 & -0.0172 & -0.0198 & -0.0178 & -0.0126 \\ \hline 10 & -0.990 & -0.044 & -0.068 & -0.0557 & -0.024 & -0.027 & -0.0155 & -0.034 & -0.0178 & -0.0126 \\ \hline 10 & -0.990 & -0.044 & -0.069 & -0.0149 & -0.0125 & -0.025 & -0.034 & -0.0169 & -0.0178 & -0.0126 \\ \hline 20 & -1.520 & -1.560 & -0.567 & -0.126 & -0.027 & -0.025 & -0.035 & -0.016 & -0.0067 & -0.016 & -0.007 \\ \hline 20 & -1.520 & -1.560 & -0.069 & -0.182 & -0.025 & -0.023 & -0.017 & -0.016 & -0.006 & -0.0107 \\ \hline -0.002 & -0.0107 & -0.0166 & -0.055 & -0.023 & -0.024 & -0.017 & -0.016 & -0.007 \\ \hline -0.003 & -0.074 & -0.025 & -0.025 & -0.013 & -0.017 & -0.016 & -0.007 & -0.016 & -0.016 & -0.007 & -0.016 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.007 & -0.016 & -0.016 & -0.007 & -0.016 & -0.007 & -0.003 & -0.0074 &$.75	4509	0885	.0072	.0239	02A7	0191	0048	0068	•V115	- 0093	0030	0074
145 14647 -1175 0.076 -0153 -0020 .0104 .0136 -0074 .0083 -0074 .0082 .0074 95 .4540 -1276 .0596 0394 .0258 0174 .0114 0079 .0051 0029 .0012 .0000 1.01 .4536 1283 .0678 0426 .0295 0219 .0170 .0137 .0114 0029 .0083 0072 1.01 .4536 1283 .0678 0426 .0295 0219 .0170 .0137 .0114 0029 .0083 0072 1.00 .4536 1283 .0678 .0426 .0083 .0084 .0143 .0084 .0084 .0083 .0072 1.00 0.0000 0.0000 0.0000 .00000 .00000 0.0000 0.0000 0.0000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 <td< td=""><td>- 40</td><td>.4537</td><td>1058</td><td>.0298</td><td>.0043</td><td>0187</td><td>.0212</td><td>0164</td><td>.0083</td><td>- 0111</td><td>.0070</td><td>0028</td><td>0010</td></td<>	- 40	.4537	1058	.0298	.0043	0187	.0212	0164	.0083	- 0111	.0070	0028	0010
$\begin{array}{c}$	45	.4547	1175	.0476	0153	0050	.0109			- 0076	0083	0082	.0074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	4545	1244	.0596	0307	.0146	0048	0014	.0053	0074	- 0029	.0012	.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.95	4540	1276	.0660	+.0398	.0258	0174				- 0096	.0083	0072
	1.00	.4536	1283	.0678	0426	•0295	0219	•0170	÷.0137	•0114	••••		مستعدين
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1995) - 1995 1997 - 1997						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(4)	Pe = 30 , p =	-1						0 0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0364	.0338	.0310	.0282
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.05	.0499	.0493	.0482	.0469	•0453	•0434	0413	.0304	.0196	.0099	.0019	0045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.10	.0990	.0441	.0865	.0768	.0.658	.0540	.0420	- 0087	0172	0198	0178	0126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.15	. 1456	-1307	. 1071	.0798	.0541	.0700	- 0.051	- 0247	0155	0034	.0069	.0123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 50	.1920	.1560	.1068	. 0567	.0149		- 0214	0030	.0117	.0161	.0106	.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.25	.2346_	.1683	.0869	.0182	0225	- 4330	0055	.0190	.0140	0002	0107	0106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 30	.2739	.1673	.0530	0503	0395	-+0213	0226	.0107	0081	0137	0041	.0074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 35	. 3094	-1538	.0132				-0121	0116	0136	.0021	.0112	.0039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.40	.3409	.1299	0242	0487	0035	0207	- 0106	0153	.0046	.0120	0009	0094
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.45	• 3651	.0983	0521			- 0006	+.0196	.0024	.0134	0027	0098	.0027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.50	.3910	.0621	0664	~.0073	.0321	- 0105	0071	.0154	0005	0110	.0041	.0071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 55	.4098	•0246	· 0663	•0191	•V234	- 0220	.0116	.0074	0126	5500.	.0081	0065
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•,69	. 4245	0115	0538	.0.367	- 0174	- 0083	.0177	0093	0045	.0105	0055	0033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. • 55	•4355	0440			- 0282	- 0003	.0049	0138	.0098	0004	0069	.0077
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•70	•4432	0/13	0080	•0.329	- 0250	.0210	0093	0024	.0094	0101	.005H	.0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.75	.4480	0427		- 0102	- 0130	.0184	0171	.0111	0037	0028	.0067	0076
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.80	.4505	1081	.0.370	- 0036	0130	.0065	0115	.0129	0116	.0086	0048	.0011
-90 -1236 -1259 -0667 -0416 0277 -0191 0133 -0093 0063 -0040 0022 $-0008-95$ -4502 -1259 0667 -0416 0277 -0191 0133 -0093 0063 -0040 -0022 -0008	85	•451?	!IR1	• 4263	- 0245	0185	+.0084	.0017	.0028	0056	.0071	0076	.0073
•95 •4502 ••1759 •0007 ••0041 •0117 ••0098 •0084 ••0074	.90	.4509	-1236	+UO2U	- 0414	.0277	0191	.0133	0093	.0063	0040	-0055	0008
		.4502	- 1259	• 0007		.0305	0227	.0176	0141	.0117	0098	.0084	0074

Table	A.1. Continu	ed		•	_ · · · ·	-	р	. ג	R	R	R	R
r *	R ₁₁	R ₂₁	^R 31	R ₄₁	^R 51	⁸ 61	71	~81	- 191	101	111	121
(5) Pe	= 50 , p =	1				1						
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.05	0499	0492	.0482	.0467	.0449	.0429	.0406	.0381	.0354	•0326	•0297	.0268
.10	.0990	.0939	.0858	.0754	.0636	.0510	.0385	.0265		.0063	0013	0070
.15	.1466	.1301	.1051	.0760	.0469	.0212	.0011	0153	0188	0195	0157	0094
.20	.1919	.1548	.1029	.0504	.0084	0174_	0264	-•0555	0110	.0013	.0100	
.?5	.2345	.1663	.0811	.0110	0266	0318	0166	.0029	.0147	.0147	.0063	0038
. 30	.2737	.1642	.0458	0258	0381	0146	.0113	.0192	.0095	0054	0120	
.35	.3091	.1496	.0059	0461	0232	.0132	.0215	.0042	-•0155	0112	•0015	- 0014
.40	• 3404	.1247	0301	0448	•0047	•0256	•0049	0152	0090	•0074	•009H	0014
.45 -	• 3675	·0453	0553	0256	.0264	.0139	0156	0103	.0098	•0086	0062	0076
. 50	.3903	.0558	0660	.0017	•0299	0085_	0164	•00A8	•0099	0080		
•55	.4089	.01R3	0653	.0258	.0157	-•0550	•0008	•0141	0068	0074	.0081	•0024
. 60	.4734	0173	0470	.0368	0060	0172	.0159	.0003		.0075 _	•00.34	
.65	.4343	0489	0244	.0381	0231	•0000	•0142	0131	.0021	.0076	0085	•0019
.70	.4417	0751	,0006	.0258	0279	.0161	0005		•0116	0058	0022	
.75	•4454	0952	.0238	.0073	0203	.0211	0140	.0040	.0046	0089	.0082	0.040
.80	.4487	1093	.0426	0119	0052		0159	.0134	0081	0021	• 00 30	
•85	.4494	1181	•0557	0276	.0108	0000	0067	.0101	0109	•0098	0073	+4043
.90	.4490	1227	.0633	-,0379	.0231	0132_	,0063	0013			0054	• 0005
•95	.4482	1244	.0666	0429	•0298	0214	.0156	0114	•00 42	0058	•0039	
1.00	.4478	1247	.0673	0441	.0316	0238	0186	-,0149				• • • • • • • • • • • • • • •

(6) Pe = 100 , p = 1

										0 0000	0 0000	0.0000	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
.05	. 6499	.0492	.0481	.0465	.0446	.0424		•0371	.0341	•0311	.0279		
16		.0939	.0854	.0743	.0616	•0480	•0346	•0551	•0111	•0020	0050	0098	
15	1445	.1299	.1039	.0732	.0425	.0159	0038	0156	0198	0179	0121	0047	
	1010	1542	1005	.0459	.0031	0209	0262	0184	0051	•0066	.0125	.0117	
• 20	01717	1453	0775	.0059	0294	0295	0105	.0086	.0161	.0110	.0001	0083	
······	• 2394	1636	.0415	0202	0360	0080	.0159	.0170	•0024	0103	0104	0012	
• .30	• 2 1 36	• 10 CO ·	00415	- 0/43	- 0169	.0181	.0180	0032	0140	0053	.0075	.0084	
• 35	• 30 90	• 1475	• • • • • • • • • • • • • • • • • • • •			0235	=.0029	0158	0016	.0110	.0042	0072	
• 40	• 349 3	•1220	0.334	0413	0110	0064	0180	0026	.0126	.0014	0094	0012	
.45	. 3673	•0893	0565		.0200		- 0102	0134	.0025	0105	.0013	.0077	_
•50.	• 3400	•0526	0454	•0079	+0203	0140	0102	• • • • • • •	- 0113	.0003	.0083	0048	
•55	.4085	.0152	0595	•0298	.0093	-+0215		•0100	- 0053	.0000	0042	0042	
.60	.4230	0201	0426	•0391	0130	0102	+0167		0052	•0077	- 0069	0070	
.65	.4337	0513	0192	.0346	0258	.0080	.0074	0132	•0088				-,
. 70	.4411	0768	.0057	.0198	0254	.0195	0083	0056	.0091	0095	+0049	- 0072	
75	. 4457	0963	.0281	.0005	0139	.0182	0162_	.0103	0030	0033	.0070		
		1098	.0456	+.0178	.0022	.0069	0116	.0127	0111	•0077	0034	0007	
• ~ •	• • • • • • • • •	- 1190	0573	0315	.0168	0071	.0004	.0043	0071	.0084	0083	-001S	. · ·
• ??			0676	- 0307	.0265	0179	.0117	0069	.0032	0003	0019	.0035	
•90	•4461	-+1222	.0630	- 0421	0300	- 0233	0180	0141	.0111	0087	.0067	0050	
.95	.44/3		.0001	0431	0309	- 0245	4010	0161	.0134	0114	.0097	0084	•
1.00	.4469	1237	+0665	0437	•0318	~•U24J				•			

Tab 1	e A.1. Conti	nued		_	_	-	n .	n	D	D	, B	R
r + :	^R 12	^R 22	R ₃₂	^R 42	^R 52	^K 62	^K 72	^K 82	⁷ 92	^1 02	~112	-122
(1)	Po = 5 , p =	2										
-1	n nan			0.0000	0.na0g	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
-05	.0025	0025	.0024	.0024	.0924	.0023	- 2200-	.0022	.0021	.0050	.0019	.0018
	.0399			.0085	.0078	.0070	.0061	.0053	.0044	.0035	.0027	0020.
.15	.0219	5050.	.0180	.0154	.0124	.0095	.0067	.0041	.0021	.0005	0005	0011
.20	.0378	.0331	.0263	.0197	.0128.	.0068	.0023	0007	0021	0023	0017	0008
25	0572	-9463	.0327	.0192	.0040	.0005	00.31	0035	0055	0004	.0009	.0013
		0581	.0346	.0134	.0002	0050	0044	0014	.0011	.0019	.0011	0002
. 35	1032	0669	.0300	.0042	0064	0058	0010	S200.	.0021	.0002	0011	0010
-40	1290	.6713	.0712	0052	0086	0019	.0030	.0024	0005	0016	0005	-000A
.45	1529	0709	.0094	+.0115	0056	.0031	.0033	0007	0020	0001	.0012	.0004
- 50	11770		0031	0130	.0093	.0050	0000	0025	0000	.0015	.0000	0009
55	1995	0551	0137	0094	.0055	0026	0030	0007	.0018	0000	0011	.0003
	2202	.0413	4205	0025	.0070	0017	0024	.0019	.0005	0013	.0004	. 0007
-65	2382	0252	0225	.0047	.0043	0043	.0007	.0017	0015	.0001	.0009	0007
70	2535	- (3A)	9197	.0097	0007	0032	.0029	0008	0008	-001Z	0006	0002
.75	2457	34255	0130	.0107	0049	.0004	.0018	0021	.0015	0001	0005	.0009
40	2/51	5233	0042	.0078	0062	.0035	0011	0004	.0011	0012	-000A	0003
.95	2414	0354	.0049	.0024	0039	.0036	0027	.0017	0008	.0001	.0003	0006
.90	2450	3442	-0125	0036	.0003	.0010	0014	.0015	0013	.0011	0009	.0006
.95	2:31	0494	.0176	0081	.0042	0023	.0012	0006	.0003	0000	0001	.0002
1.00	.7897	0510	.0193	0097	.0057	0037	.0025	0018	.0014	0011	.000R	0007
(2)	Pa = 10 m				,			ander der annange der ann fram i				
	14-10 1 2		•			•						•
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
- 05	.0025	.0025	.0024	.0024	.0023	.0023	-0022	.0021	.0021	.0020	.0019	.0018
.10	0098	.0095	.0090	.0084	.0076	•0068	.0060	.0051	.0042	.0033	.0026	+ .0013
	715	.6199	.0176	0148	.0119	.0089	.0061	.0037	.0017	.0002	0007	0015
-20	.0373	.0322	.0256	.0184	.0116	• 0058	.0015	0011	0055	0022	0015	0006
	.0561	.0444	.0304	.0170	.0063	0005	0034	0034	0018	0001	.0011	.0013
. 30	.0771	.0547	.0304	.0106	0013	0052	0039	0008	•0014	.0018	.0008	0004
- 15	1993	.0514	.0251	.0015	0069	0050	0001	.0025	.0018	0001	0012	000A
.40	1219	.0636	.0156	0069	0077	0007	•0033	.0019	0009	0015	0005	.0009
.45	.1437	.9609	.0040	0117	0039	.0037	.0026	0013	0018	.0003	.0012	.0001
50	.1541	.0534	0072	0114	.0019	.0045	0008	0023	.0005	.0014		0009
	.1574	.5420	0154	5067	.0060	-0014	0031	0000	.0017	0004	0010	.0005
- 60	1982	.02+0	0203	.0002	.0062	0026	0017	.0021	0000	0012	.0006	.0005

-.0041

.0012

.0036 .0032 .0005

-.0024

.0027

-.0020

-.0054

-.0056

-.0030

.0010

.0043

1982 2111

.2212 .2244 .2331 .2357

.2367

-2368

.60

.70

.75 .20 .85 .90 .95 1.00

0220

-.0024

-.0169

÷.1287

-.0379

-. 0441

-.0476

-.0496

-.0203

-.0158

-.0087

-.0004

.0075

.0137

.0176

.0188

.0064

.0099

.0096

.0060

.0007

-.0046

-.0082

-.0095

.0012

-.0012

-.0019

-.0000

-.0007 -.0018

.0013

.0014

.0028

-0012

-.0015

-.0011

.0014

.0025

-.0016

-.0004

.0014

.0009

-.0009

-.0012

.0003 .0014

.0004

.0011

-.0004

-.0011

.0003

.0011 -.0001 -.0010

.0007

-.0008

-.0004

.0009

-0002

-.0009

-.0000 .0008

188

-.0008

.0007

-.0004

-.0005

.0006

.0001

-.0007

Table	A.1. Continu	led		_	-		5	B	Rea	R	R112	R122
r*	R ₁₂	R ₂₂	R ₃₂	R42	^R 52	^K 62	, *72	* 82	-92	102	112	122
(3) P	e = 20 , p =	2		•								
			·	6 6566	0.0000 T	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000
0.00	0.0909	0.0000	0.0000	0024	.0023	.0023	S200.	.0021	•0050	.0019	.0018	.0017
0.2	.0025	•0000		0082		0065	.0057	.0048	.0039	.0030	.0023	.0016
.10	•0998	• 0 0 9 4	. 0170	0141	-0110	.0080	.0052	•200°	.0011	0002	0010	0013
.15	.0/15		0361	0167	0048	-0043	.0005	0016	0023	0020	0012	0002
- 50	•0370	• 5.317	+ J C 4 J	0140	-0040	0017	0036	0029	0015	.0004	-0015	•0015
. 25		•)463			- 00 30	- 6952	0029	.0001	.0018	.0016	.0004	0007
• 30	.9754	•U50A	•973m	- 0017	- 0071	0036	.0010	.0025	.0012	0007	0012	0005
• 35	. (**54					.0010	.0033	.0009	0014	0012	.0003	.0009
•40	.1172	• • • • • • •	0096	- 0110	- 0014	.0(4)	.0015	0018	0012	.0008	.0010	0003
. 45	.1154			0110	0014	0033	0019	0017	.0011	.0010	0007	0006
.50	•1547	.0494			.0055	- 0003	0027	.0009	.0013	0009	0006	.0007
• 55	1700	.9285			0045	- 0034	0005	0020	0007	0008	.0009	.0001
• 60	.1652	•0145	*•0185	•0035	•00~5	- 0034	.0021	.0003	0014	.0008	.000S	0007
•45	1050	•2993			0036		.0023	0017	-0002	.0008	0009	.0004
.70	.196%	0130	0102	0093	- 0055		-0002	- 0014	.0014	0008	0000	-0005
.75	2025	- 1,242	0029	.0073		0025	0020	.0006	.0004	000A	.0009	0006
•••	.2041	- .0330	• 3045	• 00.11	~ 0014	0023	+.0023	.0018	0012	.0006	0001	0002
.85	.20+4						- 0005	.0009	0010	.0010	0008	.0007
.40	. 2035	9430	•0151	0054	•00cl	- 0027	.0016	0009	.0005	0002	.0001	.0001
.95	.2025	0448	.01/6	0085	•0040		.0024	0018	.0013	0010	.0008	0007
1.95	.2019	0452	•0183	0093	.0035	0033						
(4) 1	Pe = 30 . p =	- 2										
-				0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0.0000	9.9900	0.0000	0.000	.0023	-0022	.0022	.0021	0200.	.0019	.0018	
.05	.0025	.0025	.0024	.0064	.0072	0064	.0054	.0045	.0036	•0058	•0050	.0014
•10	.00.98	• 0 0 9 4	• 0075		0104	-0074	.0046	.0024	.0007	0005	0011	0013
.15	.0215	.0194	•0107	+VI30	0087	.0034	0002	0019	+.0023	0018	0009	.0000
• 20	.0344	.0307	.0737	0122	0026	0024	0036	0025	0007	.000R	.0013	.0010
.25	.0550	∎041Z	.0258	•0122	- 0030	- 0044	0022	.0007	-0019	.0013	0000	0008
.30	.0749	.0429.	• 0 ? 3 ?	.0.949	- 0069	- 0025	.0017	.0024	.0006	0010	0011	0001
.35	.0955	• 0525	.0150	- 0000	- 0048	.0019	.0030	.0002	0016	0008	.0006	.0008
.40	•1159	-0-15	.0054		0002		.0005	0020	0007	.0011	.0007	0006
.45	•134	.0452	0045	0100	00002	.0023	0023	0010	.0014	.0006	0009	0803
.50	.1514	.6353	0125		0056	- 0014		.0014	.0008	0011	0005	.000H
.55	.1662	.3221	0159	0000	• • • • • • • •	0036	.0004	.0017	0011	0004	.0009	-•000S
• 60	.1777	.0989	0169	.0051	- 0011	- 0026	.0024	0004	0011	.0010	0001	0006
.65	.1862	0047	0131	.0084	- 0011	0003	.0018	0018	.0007	.0004	0008	.0006
. 70	.1917	0168	0068	.0084	- 0044	0020	0006	0009	.0013	0009	.0003	.0003
.75	.144#	0768	.0003	.0056	0052	0027	0023	.0010	0001	0006	.0008	0007
. 80	.1957	0342	•0070	.0012	0034	•0033	0010	.0017	0013	.0008	0003	0000
.85	.1951	0391	.0122	0933	0003	- 0010	0001	.0006	0008	.0008	0008	.0007
. 90	.1938	041A	.0157	0067	-002H	0009		0011	.0006	0003	.0002	0000
.95	.1423	9424	.0174	00H7	+0048		.0024	0018	.0013	0010	.0008	0007
1.00	.1917	0471	.0179	0093	•0022	-••••	••••					

1.89

Table	e A.1. Conti	nued		-	-		n	D	D	R	R	R
r * -	R ₁₂	R22	R ₃₂	^R 42	^R 52	*62	^K 72	~82	*92	-102	-112	-122
(5)	Pe = 50 , p	2										
0.00	0.0000	5.0000	-0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
- 05	0525	.0025	.0624	.0024	.0023	S200.	.0021	•0050	.0020	.0018	.0017	.0016
.10		.0093	.0037	.0079	.0070	.0061	.0051	.0042	.0033	.0024	.0017	.0010
.15	.6215	• 41 43	.0164	.0131	•0097	.0066	.0038	•0017	.0001	0008	0013	0013
.20	136-	.5304	.0553	.0143	.0073	•0055	0009	0022	0055	0014	0004	.0004
. 25	• ¹⁶⁶ 6.2	.)404	.0242	.0103	•0012	0030	0035	0019	0000	.0011	.0012	.0007
. 30	.1744	.1475	.020H	.0028	0046	0044	0012	.0013	.0018	.0007	0005	0009
• 35	.0950	.0503	•0130	0048	0063	0012	•0053	•0019	0001	0012		- 0003
. 40	•1149	.0442	•0030	~.0095	0032	.0028	.0023	0007	0015	0002	.0004	- 0005
.45	1335	.0415		0087	.0018	.0036	0006		•0001	.0012		
•50	.1500	•0.311	0136	0043	.0050	.0009	0025	0001	•0014	0001	0004	.0002
	1638	• [] 84	0164	+0016	.0046	0024	0012	•0017		0011	.0004	- 0005
. 60	. 1747	.0049	0149	.0064	.0012	0033	•0014	-0009	0013	.0003	- 0004	- 0005
	1874	0081	0102	• 0082	0026		•0023	0011	0004	- 0010	- 0005	-0002
• 70	.1876	+ 0144	0035	.0054		• 0 0 1 5	- 0010	- 0010	0011	- 0010	-0006	0001
• 15	.1901	- 07 - 3	+ 00.32	- 00.34	- 0010	0031	0014		0006		.0005	0006
- AU SE	1305	- 0396	•0041	- 0049	0011	-0020	0013	-0014	0012	.0009	0006	.0002
	1077	- 0 000	0150	- 0075	0011			.0001	0004	.0006	0006	.0006
• 90 oc	1343		0134	- 0099	0051	0031	.0020	0013	.0008	0005	.0003	0002
	1000		0172	00084 	0055	- 0036	.0025	0018	.0013	0010	.0008	0007
	P 100 -	•										
(0)	re = 100 , p										0 0000	
0.00	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0000.0	0.0000	-0018	-0017	.0015
.95	.0025	.0025	.0024	.0024	.0023	.0022	.0021	0020	.0028	.0020	.0013	.0007
.10	.0098	.0043	.0087	.0078	.0069	.0058	.0040	-0036		0011	0013	0011
.15	.0214	-0165	.0161	.0126	.0090	.0050	- 0035	0023	0019	0009	.0001	.0007
. 20	.0367	.0301	•0518	•0133	•0052	- 0012	- 0015	+.0011	.0007	.0013	.0009	.0001
.25	.0548	.0399	.0731	.0089	- 0050	- 0035	- 0001	.0018	.0014	.0000	0009	0007
. 3'	.6744	-134F7		.0013	- 0050		0025	.0011	000B	0011	0001	.0007
• 35	0.4-4.7	0491	.0112	- 0097	- 0017	- 0032	.0014	0014	0011	.0005	.000A	0001
4 ()	.1345	-9466 		- 0074		0021	0015	0013	.0009	.0008	0005	0005
• 4 5	.1377	. •0.1455 	- 0179	0025	.0049	0005	0021	.0009	.0009	0008	0004	.0006
	.1497	-02.09 				0029	.0000	.0015	000A	0005	.000A	0001
• • • •	.15/5	•01°9. -0620	- 0134	.0070	0004	0025	0020	0005	0010	.0008	0000	0006
			- 0042	0076	0036	.0001	.0016	0015	.0005	.0004	0007	.0004
• • • •	1057	- 0206	0015	.0054	0045	.0024	0005	0008	.0011	0008	-0005	.0003
				.0015	0031	.0029	0050	.0009	.0000	0005	.0007	0005
• • • • 80	- 1 - 1 - 7		.6102	0026	0003	.0015	0017	.0015	0011	.0006	0001	0002
			.0138	0059	.0024	0007	0003	.0007	0009	.0009	0007	.0006
	1852	0347	.0154	0079	.0043	0024	.0013	0006	.0002	.0001	0002	.0003
	1715	0401	.0165	0087	.0052	0034	.0023	0016	.0011	000A	.0005	0004
1.66	1927	0401	.0166	0088	.0054	0036	.0025	0018	.0014	0011	•000A	0007
		مريدة أفكسروا المتشفي ويستعيني				A LOUGH THE MAN AND A LOUGH THE ADDRESS OF						

Figure B. l. Continued.

Figure B. l. Continued.

Figure B.1. Continued.

Figure B. 1. Continued.

Figure B. l. Continued.

Figure B.1. Continued.

Figure B.1. Continued

Figure B.1. Continued.

Figure B.1. Continued.

Figure B.1. Continued.

Figure B.1. Continued.

Figure B. l. Continued.

Figure B.1. Continued.

Figure B.1. Continued.

Figure B. I. Continued.

Figure B. l. Continued.

	(1)	s = 2 , p =	0						<u> </u>	· · · · · · · · · · · · · · · · · · ·			
	n	× _{n0}		R _{n0} ((1)	â _{n0}				•			
	1	5.06750	55	49251	66	.40348	32						
	2	9.15760	54	.39550	85	17511	00						
	3	13,19/32	47	34587	37		17						
	4	17.22622	94	•31404	6 5	07328	24						
	5	21.23551	73	29125	15	.05503	865						
	6	25.24653	12	•27380	70	04348	344						
	7	29.25490	55	- 25985	30		951						
	8	33.26152	37	.24833	20	+•02990	84						1
-	9	31.26690	32	-,23859	04	.02564	01						
	10	41.27138	43	•23019	93	-•05533	136						
	11	45.27518	68	22286	31	.01970	69						
	12	49.27846	82	•21636	88	+.01757	62						
	•			`	n	B	D	D	D	p	13	D	
	r	^K 10	^R 20	^R 30	^R 40	^K 50	K 60	* 70	^K 80	^R 90	^R 100	^R 110	^K 120
	0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	.05	. 9840	.94P3	8941	.8232	.7376	.6398	.5328	.4196	.3035	.1877	.0756	0300
	.10	.9370	.8015	.6106	. 3864	.1546	0592	2328	3496	4010	+.3871	3162	2037
	15		.5831	.2387	0859	3149	-,4036	3489	1874	.0171	.1951	•5616	•2833
	.20	.7514	.3267	+.1101	3711	3760	1728	.0967	.2771	•2799	•1229	0899	2330
	.25	.6422	.0700	3414	-,3708	0916	.2151	.2959	.1155	1428	2522	1341	.0901
	.30	.5098	1523	4080	1487	•2229	.2755	.0019	2387	1716	•0913	•2215	.0768
	. 35	.3703	3140	3197	.1276	.2959	0011	2527	÷.0915	. 1901	.1530	1150	1835
	.40	.2301	4011	1324	.2944	.1072	2419	0958	•2089	.0895	1855	0857	•1677
	45	.0948	4124	.0776	.2781	1492	1829	.1852	.1006	-,1962	0277	•1869	0.347
	.50	0319	35A1	.2412	.1148	2623	.0697	•1797	1751	0472	.1876	0782	1212
		1433	2560	.3167	0921	1679	.2293	0676	1374	•1879	0526	1211	•1624
	.60	2394	1271	.2960	2386	•0380	•1537	2123	.1165	.0500	1643	.1515	0318
	.65	3193		.1994		.2048	0563	0972	.1845	1724	.0771	.0473	
	.70	3816	.1322	.0623	1910	.2390	2077	•1177	0025	1005	.1612	1648	.1150
-		4275	2347	0792	-,0493	.1441	-,1979	.2086	-,1798	1209	0452	0321	.0950
	. 80	+.4590	.3102	1980	•0995	0124	0614	•1191	1585	.1782	1787	+1016	1299
	.85	4783	.3587	-,2804	,2155	1569	•1026	0521	.0058	•0357		•1012	
	.90	4883	.3845	3260	. 2836	2487	.2179	1897	.1630	1376	•1132	0896	.0670
		- 4920		3434	.3102	2858_	.2666	2506	.2370	-,2249	.2141	2041	
	1.00	4925	• 3955	3459	.3140	2913	•2738	2599	•2483	~. 2386	·C302	2629	• € 1 64

Table C.1. The first 12 eigenvalues, eigenfunctions and expansion coefficients for p = 1, 2, 3, 4, 5 and for several values of the non-Newtonian behavior index.

Table-Cl.	Continued
(2) = 4	. p. = 0

n	λ _{no}		R _{n0} ((1)	âno								
1 .	4-55558	94	45936	14	. 37494	84							
2	8.225512	27	.368174	42	16298	58							
3	11.85577	13	32152	68	.09817	49							
4	15.47063	22	.29166	57	06807	36							
5	19.07975	79	27031	17	.05108	94							
6	22.68311	88	.25399	07	04034	43							
7 -	26.28513	85	24094	91	.03301	07							
8	29.88559	20	.23019	05	02772	73							
9	33.48493	98	22110	02	.02376	34							
10	37.08347	48	.21327	50	02069	40							
11	40.69139	27	20643	72	.01825	62							
12	44.27882	97	.20038	89	01627	96							
					<u> </u>								
												_	
r ⁺	R ₁₀	R ₂₀	^R 30	R40	Ř ₅₀		R ₇₀	R80	^R 90	R100	R110	- ^R 120 -	
0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
05	.9871	9581	.9141	.8559	.7851	.7034	.6126	.5150	.4128	.3085	.2043	.1026	
.10	9488	.8378	.6783	.4854	.2772	.0727	1101	2561	3545	3997	3918	- .•3365	
.15	8966	6541	. 3526	.0445	2097	3647	4003	3245	1702	.0143	.1778	.2790	
.20	. 80 30	4296	.0177	2903	4028	3121 .	0909	•1441	.2848	•2769	.1388	0535	
.25	.7012	. 1915	2475	4028	2500	.0498	.2702	.2706	•0778	1512	2499	•.1594	
. 30	.5851	0320	3875	2866	.0664	.2935	.1991	0803	2478	1498	.0899	-2184	
- 35	4592	2161	3846	0386	.2827	.1887	1343	2413	0207	.2046	.1389 _	1053_	:
.40	.3284	3424	2612	.1967	.2506	1033	2388	.0308	•2193	.0280	1918	0751	
45	.1973	4014	0704	.3015	.0278	2517	0024	.2196	0159	1959	.0303	.1769	
.50	.0708	3934	.1223	.2391	1935	1193	.2136	.0168	1967	.0656	.1510	1224	
55	0469	3274	.2596	.0604	2479	.1254	.1221	1969	•0337	•1525	1413	0366	
. 60	1523	2196	.3079	1333	1145	.2230	1237	0709	.1809	1191	0434	•1532	
	- 2427	0897	.2643	2484	.0908	.0946	1947	.1604	0287	1079	.1628	1081	
.70	3165	.0427	.1521	2426	.2209	1143	0238	.1344	1757	.1380	0444	0604	
.75	3733	.1609	.0088	1344	.2037	2119	.1661	0838	0108	.0931	1434	•1515	
. 80	4137	.2540	1279	.0192	.0704	1362	.1747	1847	.1681	1297	.0765	0169	
85	- 4395	.3173	-,2319	.1586	0921	.0315	.0223	0682	.1050	1318	.1480		
.90	- 4533	.3525	2933	.2486	2105	.1760	1438	•1132	0841	.0563	0300	.0053	
.95	- 4586	.3662	3179	.2860	-,2624	.2435	2276	.2137	2013	,1899	1794	.1694	a a sanangi ²
1.00	4594	.3682	3215	.2917	2703	.2540	2409	.2302	2211	.2133	2064	•2004	

(3) S	.= 6 , p = 0						-					
n	<u>}</u>		R _R (1)	,	a _{n0}	······································						
	nu		- 43907	<u> </u>	36229	51						
1	4.35/05	5/ 02		16	- 15606	82						
	11 34000	70	- 30684	54	.09378	54						
3 4	14 830999	1 7	-27806	51	06494	29						
s.	18.30325	63	- 25752	29	.04869	64						
6	21.76275	92	.24184	46	-,03842	98						
7	25.21991	89	- 22933	06	.03142	87						
8	28.67550	81	.21901	58	02638	83						
່ງ ີ	32.12998	68	21030	90	.02260	86						
10	35.5A364	78	.20281	78	01968	30						
11	39.03668	69	19627	56	.01736	05						
12	42.48924	0.7	.19049	15	01547	78						
r+	R ₁₀	R ₂₀	R ₃₀	R ₄₀	R ₅₀	R ₆₀	R ₇₀	R ₈₀	R ₉₀	R ₁₀₀	^R 110	R ₁₂₀
	1 0000	1 0000	1 0000	1.0000	1.0000	1,0000	1.0000	1.0000	1,0000	1,0000	1,0000	1,000
A.V.V			. 9208	.8670	.8013	.7252	.6403	.5485	•4517	.3521	•2517	•152
.10	- 9531	.8505	.7020	.5207	.3223	.1236	0593	2119		3874	4017	369
.15	.8960	.6796	. 3948	.0960	1622	3362	4023	3608	2346	0628	•1087	•23A
20	.8190	4684	.0696	2490	3968	3515	1631	•0712	.2479	.2986	•2139	•042
.25	.7247	.2404	2021	3998	3023	0272	.2248	•2966	.1640	0642	-•5593	225
. 30	.6164 _	.0205	3663	3314	0100	•2644	.2570	•0140	2142	2195	0189	
.35	.4979	1684	3985	1125	•2444	.2491	0461	2474	1239	•1389	-2062	- 172
.40	.3733	30.78	3095	•1323	• 2868	0133	2489	••0752	•1940	- 1300	- 0030	
.45	.2468	3866	1396	•2830	•1140	2315	1030	•1989	.09/2	- 1/00	1704	-:001
.50	.1227	4012	.0537	.2779	1244		•1627	•1209	• 1/9n	1905	- 0373	142
• 55	.0050	3567	•5158	.1362	2491	.0361	•1908	1400	0003	0120		.170
. 50	-,1027	-,2651	.2959	0602					0755	- 1649	.1251	.003
•65	1973	1436	.2871	2122	.0108	- 1033	- 1043	1771	- 1540	.0562	0609	137
.70	2767	0113	•1983	2536	.1825	- 1020	1094		1340	.1477	+.1527	.108
• 75	3394	.1135	.0622		.2209	- 1720	1020	=.1725	. 1289	0672	0005	.062
. 80	3855	•2165	-,0813	<u>•0318</u>	11/8	- 0153	. 1001		.1385	- 1536	•1553	144
.85	4157	•2898	1984	• 1191	- 1076	0153	-,1108	.0775	0460	.0166	+0107	035
- 90	4324		2/15			<u>• 1 7 0 1</u>			1051	1731	- 1619	151
	1 204	2/02	20.21	3700	- 3/73	2284	/ / / /	.1980	10.71		••••	

1 20 1 6	CI. Continues		·							•		
(4) 5	= 6 , p = 0			• • • • • • • • • • • • • • • • • • • •					· · · · · · · · · · · · · · · · · · ·	·····	· · · · · ·	
n	λ _{n0}		R _{n0} (1) -	an0		•		·	·····		
1	4.24626	74	- 42861	17	. 15527	87						
2 -	7.70525	79.	.34078	85	15144	70						
. 3	11,11607	82	- 29667	06	.09077	59						
4	14.51207	44	.26857	43	06277	21						
5	17.90116	0.9	24855	90	.04702	64						
6	21.28638	62	.23330	47	03708	79.						
7	24.66920	57	22114	27	.03031	66				·		
8	28.05041	12	.21115	79	02544	47			•			
9	31.43047	45	20267	89	.02179	33						
10	34.80969	58	+19541	48	01896	83						
.11	38.18827	60	18907	44	.01672	64						
12	41.56635	55	•18347	13	01490	96						
			D		• D	D		Đ	D	0		p
r	^K 10	R20	^K .30	^K 40	* 50	^R 60	^R 70	*80	*9 0	~ 100	, ^R 110	⁶ 120
0.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
		,9632	. 9242	.8726		.7362		,5655	.4716	.3746	.2763	
.10	.9554	.8570	.7141	.5389	• 3457	•1504	=.0318	1871	3047	3/74	-4027	3872
	. 9011	+6479	4168	.1233	-,1359	3183	-, 3993		-,2652		.0690	
•50	.6277	•4888	.0975	2252	- 3898	3681	1990	.0303	•2209	2997	• 2454	- 20925
		•2665	•1764				1940	. 3001	•2035	- 3:49	- 0776	1016
- 30		-0443	3517 .	3513	0515	.2407	.2155	. 2220	- 1711			•1410
	•5195	1411	-,4021	1513	2105		- 2200	- 1200		1 1 2 2 2		- 1941
.40	- 3484			· 0932	.29/0	- 2050	- 1528	- 1459	-1506	-1348	- 1494	.1091
		- 4020	0126	2010	- 0777	- 2215	1171	1692	1410			.0739
. 20	•1030		1004	1760	- 2767	0207	.2126	0958		1599	.0376	1668
**********	- 0717	- 2017	2024	- 0129	- 2131	1849	.0295	-1856	1285	0592	-1663	.0855
• 50	- 1697	- 1771	2029	- 1913		1942	1769	.0246	1297	- 1659	.0669	.0772
	- 2607				. 1478	.0156	- 1469	1822	1140	0101	.1172	- 1498
. 75		. 0802	.0075	- 2026	. 2229	1666	.0621	0505	1329	.1601	- 1279	.0529
- 80	. 36.70	1893			.1471	- 1875	1869	1503	.0884	0152	0544	.1072
-85	- 4004	2696	- 1733	.0895	0152	0483	.0988	1345	.1542	1550	.1468	1229
.90	4197	.3177	2554	.2061	-1627	.1227	+ 0852	.0500	- 0172	0128	.0399	0639
- 95	- 4274	.3377	~.2910	.2599	~.2363	.2171	2007	.1860	1726	.1601	1482	,1369
1.00	- 4286	- 3408	- 2967	2686	2486	.2333	2211	.2111	2027	.1954	1891	.1835

	\$ 10 . n = 0											
n	$\frac{\lambda_{n0}}{\lambda_{n0}}$				^a n0	<u> </u>			****** <u></u>		·	
1	4.174330		42158	91	.35093	10						
2	7.591269	99	.33264	04	14817	92						
3	10.958338	39	28906	87	.08855	13						
4	14.30966	72	.26143	32	06114	81						
5	17.65380	79	24178	51	.04576	90						
6	20.99394	74	.22683	20	03607	36	. <u> </u>					
7	24.33159	57	21492	31	.02947	34						
8	27.667573	26	•20515	53	02472	78						
9	31.002350	62	19686	52	.02117	29						•
10	34.33628	69 27		78	01842	37				1. (P., 1994) (C. 1994) (C. 1994) (C. 1994)		
11	37.65954	21	1835/	61 60	- 01624	<i>C 1</i>						
14	41.90220	9 (I (01V	90								
r+	R ₁₀	R ₂₀	R ₃₀	^R 40	R ₅₀	R ₆₀	R ₇₀	^R 80	^R 90	^R 100	R110	^R 120
.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
.05	.9891	.9643	.9263	.8761	.8145	.7429	.6628	.5758	+4837	.3883	•2914	•1951
.10	.9569	.8610	.7216	•5500	.3601	.1670	0146	1712	2921	3701	4019	3886
•15	.9044	.7012	•4304	•1403	1191	3064	3960	3830	2829	1272	.0437	.1899
.20	.8332	.5016	•1150	2098	3842	3767	2203	.0046	•2019	•2968	•2616	- <u>1551</u>
•25	.7457	.2831	1597	3895	~ •3395	0936	.1729	.2986	•2251	•0190	1799	2490
		.0678_	<u>3415</u>		-,0771	2234	.2883	.0959	-,1578_	24//	<u> </u>	• 1109
• 35	.5335	1232	4028	1748	•1968	•2839	.0376	21,99	1957	-0510	- 0280	•1155
•40	.4154	2722		•0676	.2998		- 1000		1776	- 1009	- 1744	
-45	.2943	36/1	1999	.2502	.1945	1051	-1000	•1305	- 1002	- 1513	1271	1151
- 50	····· •1739					- 0573		- 0575	- 1640		0834	
• 55	•0578	3800	-1280	•2010	- 2280	1419	0600	- 1952	0930	-1016	+.1651	0387
			2001	- 157/	- 0769		- 1544	0183	1566	- 1505	.0191	
•05 70	1483	- 0700	- 2431		1200	.0522	1697	.1745	0771	0557	.1433	1382
• (0			1222	- 2175	2195	1411	.0254	.0868	-1536	1551	0967	0059
+ 73	- 3643	1494	+1667	- 0916	1661	- 1949	.1792	1273	.0538	.0241	0896	.1296
400. 46	- 3046	1000	- 1534		. 0097	0725	.1196	- 1492	.1605	1542	.1325	0987
.90		. 3065	2425	.1913	-1458	1038	0646	.0281	.0053	0353	.0615	0834
06		3290	+.2825	.2514	- 2277	-2082	1914	.1763	1623	.1493	1368	.1249
_												

(6) s	= 12, p = 0				<u> </u>	<u> </u>	···· ··· ···	• • •	<u></u>			
n	^λ n0		R _{n0} (1)	â n0	· · · · · · · · · · · · · · · · · · ·						age or your advector for the first of
1	4 12362	16	- 41701	17	.34804	47						
	7.51139	19	32652	10	14578	41						
· 2	10.84976	02	28312	51		25					~	
4	14.17140	16	.25579	98	05987	42.						
÷.	17.48549	94	23641	69	.04477	61						
	20.79543	19	.22168	71	03526	94						
. 7	24.10277	67	20996	87	.02880	31						
<u> </u>	27.40835	66	.20033	58	02415	67						
ğ	30.71276	82	19222	03	.02067	78						
10	34.01624	34	.18525	13	01798	85						
11	37.31902	82	17917	45	01585	58						
12	40.62127	30	.17380	91	01412	85						
r +	⁸ 10	^R 20	^R 30	R ₄₀	R ₅₀	R ₆₀	R ₇₀	R ₈₀	R ₉₀	R ₁₀₀	R ₁₁₀	R ₁₂₀ -
		<u> </u>	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.00	1.0000	1.0000	1.0000	9784	8178	.7474	.6686	.5828	.4919	.3975	.3016	.2060
			7267		3699	.1783	0028	1602	2833	3646	4007	3923
•10	• 95/9	•8038	4207	.1520	1075	- 2978	3932	3875	- 2944	1435	.0263	1755
				- 1989	3797	3819	2343	0131	.1880	•2933	.2711	. • 1415
• 20	• 53 (1	• 3105	- 1671	- 3856	- 3479	1107	.1577	.2961	.2385	,0408	1635	2497
	• /514 / Cac		- 7770	- 3690	0946	.2106	.2933	.1164	1397	2496	1339	.0880
. 30	• 1027		- 4025	- 1906	.1823	2899	.0594	2080	2101	.0264	.2109	•1385
• 35			- 2520	0497	. 3000	.0912	2145	1776	.1079	.2097	.0007	-,1916
•40	+42/1	- 2607	- 2153	2391	2012	1690	1964	.1173	.1923	0750	1864	.0.486
		- 4014	- 0326	2994	0240	2435	,0591	.2029	0840	1691	•1025	1388
• 50	• 1 7 7 4	- 3653	1415	-2166	2113	0819	.2179	0294	1795	.1098	•1117	152/
	0765	- 3190	-2616	.0413	2375	.1430	.0951	1965	.0647	•1272	1559	.0030
• • • 0			- 3001	1391	0983	.2146	1351	0485	.1698	- •1325	0162	•1382
······································	- 2102	- 0909	.2511	- 2420	.0981	.0779	1821	.1633	0472	0862	•1539	1201
.70	- 3001		-1403	- 2269	2143	1231	0026	,1112	-,1632_	.1440	0679	0296
<u></u>	- 2449	1524	0032	- 1103	.1790	1977	.1697	1064	.0255	.0532	1121	•1393
.80	- 3931	+ 1564 2415	-1376	0478	.0291	0908	.1343	1580	•1617	1468	•1167	
		2077	=.2320	.1789	1317	.0880	0475	.0102	.0234	0529	.0778	09/8
• 90		• 6711	2758	.2445	- 2206	.2008	1836	.1680	1536	.1400	1271	1146
		1265	- 2831	.2558	2364	.2217	2100	.2003	1922	•1853	1792	•1738
1.00	4170	• 3203		.2330	12304							

- - - مستقد بر

Table C1. Continued

Tab le	C1. Continued				·				<u> </u>			
(1) s	= 2 , p = 1											
n	[×] n1		R _{n1}	(1)	anl	- •						··
1	2.884629	57	.44656	60	-1.50013	10						
2	7.118276	,9	12336	54	.89852	12						
3	11.178901	4	•06604	88	74576	99						
4	15.209341	1	04329	79	.66235	10	<u> </u>			<u> </u>		
S	19.228190	2	•03143	96	60684	84						
6	23.241210)8	02429	20	56613	59		· · · · · · · · · · · · · · · · · · ·	·			
7	27.250838	33	.01957	13	53445	34						
8	31,258296	58	01625	01	0879	42						
9	35.264274	÷9	•01390	29	48740	53						
10	39.269197	?6	01193	44								
11	43.273321	18	•01046	13		00						
12	47.276846	58	00928	84	43950	83						
r *	R ₁₁	R ₂₁	R ₃₁	R ₄₁	R ₅₁	R ₆₁	R ₇₁	R ₈₁	R ₉₁	R ₁₀₁	R ₁₁₁	R ₁₂₁
							0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0320	-0295	.0259	.0223
•05	.0499	•0492	•0481	.0465	.0444	.0420	0373	0302	0.027	0018	0083	0120
<u> </u>	0590	+0 <u>938</u>	0852	.0738		0402		0175	+.0197	0154	0076	0006
• 15	1455	.1298	10.34	.0719	•0402	- 0226	+.0255	0149	0002	0103	.0127	.0078
	• 1919		• 0996	•0438	- 0305	- 0277		.0122	0154	.0058	0058	0100
.25	• < 344	• 1048	•0/01	- 0306		0039	.0180	.0138	0035	0120	0054	.0055
• <u>30</u>		1667		- 0462	- 0136	.0202	.0145	0082	0126	.0015	.0098	.0023
• 17	0.3089	• 1 • 1 1	- 0366	- 0305	.0140	.0213	0077	0138	.0049	.0100	0033	0076
		0883	- 0573	- 0168	.0291	.0017	0176	.0036	.0110	0056	0065	.0061
•45	1000	.0515	0650	.0106	.0238	- 0175	0048	.0139	0045	0073	•0075	. 0011
		.0141	0583	.0313	.0043	0197	.0127	.0025	0107	.0071	.0018	0069
	4228	0211	0407	.0388	+.0161	0053	.0148	0117	.0021	.0060	0081	. 0043
	4115	0521	0171	.0326	- 0264	.0122	.0015	0096	.0109	0068	+000A	•0042
.70	.4409	0775	.0077	.0168	0232	.0201	0125	.0041	.0028	0069	.0079	-,0062
.75	.4454	0967	.0298	0026	0100	.0150	0153	.0128	0088	.0044	0003	0028
.80	.4477	1099	.0467	0203	.0062	.0019	0066	.0089	0096	.0092	0080	.0063
.85	.4483	1180	.0578	~.0331	.0197	0114	.0058	0019	0008	.0027	0040	.0048
.90	-447B	1220	.0637	0402	.0278	0202	.0150	0114	.0086	0064	.0047	0033
.95	.4470	1235	.0658	0429	.0310	0238	.0190	0156	.0131	0112	.0097	0085
1.00	.4466	1234	.0660	0433	.0314	0243	.0196	0163	.0138	0119	.0105	0093

	Table (Continued 	1 1										
	(2) 5 5	= 4 . p = 1											
	<u>, 27. –</u> n	^λ nl			.)	â _{nl}							
	1	2.418072	21	.49991	21	-1.425322	24						
	2	6.338539	99	12929	29	.760256	38						_
	3	10.007466	55	+06866	98	625863	31						
	4	13.638310	00	04487	73	.554200	0						
	5	17.254963	35	.03253	22	506954	44						
	6	20.86459	32	02510	98	.47246	88						
	7	24.47017	70	.02021	53	445719	53						
		28.073199	54	01677	57	.424094	47	<u> </u>	·				
	9	31.674474	40	•01424	33	40610	10						
	10	35. 274510	30	01231	10	.39078	95						
	. 11	38.873634	44	.01079	46	3/753	18 .						
	12	42+472059	54	00957	70	. 36589	09						
	r *	R ₁₁	R ₂₁	^R 31	R41	R ₅₁	R ₆₁	R ₇₁	R ₈₁	^R 91	R101	R111	R ₁₂₁
	a monthe forgane and the state of the											0.0000	0.0000
	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000
• • • • • • • • • • • • • • • • • • •	- 05	.0499	.0494	.0485	.0471	.0455	.0435	.0412	.0387	.0359	0329	- 0011	0073
	.10	.0993	.0951	.0980	.0785	.0671	.0546	0417	.0290	01/3	- 0196	- 0158	0099
	.15	.1475	.1337	.1115	•0841	.0550	.0277	.0054	•.0101 0007	- 0103		.0101	.0129
	.20	.1942	.1624		. 0635	.0183	0124	0256	0237		.0008	.0058	0049
	•25	·2388	•1794	•0993	•0258	0204	0330	0206	.0000	0140	- 0054	+.0120	0059
		.2807	.1835	.0678	0146	0397	0211	.0076	0044	- 0103 -	0108	.0029	.0099
	• 35	•3197	.1749	.0276	0430	0314	.0077	• 0224	-0146	0090	.0093	.0086	0042
					0507_	0046	•0250	- 0161	- 0109	.0103	.0070	0081	0048
	• 45	.3870	.1251	0459	0373	.0220	. 0067	+ 0174	.0090	10086	0095	0028	.0093
	.50	.4149	0887	0657	0106	•0321	0215	0002	.0136	0088	0040	.0091	0030
	•55	•4386	.0487	0698	0178	- 0016	- 0194	0162	0022	0091	.0097	0023	0053
		•4592		+.0592		- 0014	- 0001	0120	0139	.0066	.0024	0076	.0070
	• 65	•4737	0294	0377	•0410	- 0294		0040	0059	.0104	0094	.0050	.0004
					.0303	- 0201	0206	=.0160	.0093	0024	0030	.0063	0072
	•75	•4933	→ •0886	.0166	+0104	- 00201	.0100	0129	.0130	0114	.0086	0054	.0023
	• 89		10/9		- 0201	0025		.0005	.0032	0055	.0067	0072	.0072
	• 85	.5004	1505	.0550	- 0291	+U1+0	0187	.0132	0092	.0063	0040	.0023	0009
	• 90				- 0443	0200	=.0243	0193	0157	.0131	0111	.0095	0032
	•95	• 4999	1293	•0687	0449	.0325	0251	.0202	0168	.0142	0123	.0108	0096
	1.00	*****				nen Sin		•	•				

Table	Cl. Continued											
(3) s	= 6 , p = 1					·						
n	λ _{n1}		R _{n1} (1)	â _{n1}							
1	2,241250	5	.52960	97	-1.39274	16						Ad 1999
2	6.057445	1	12948	68	.70049	67						
3	9.585848	2	.06846	95	-,57444	76						
4	13.073961	4	04465	37	.50771	00						
55	16.547017	7		105	-,46390	07						
6	20.012624	0	,02493	35	.43201	00						
7	23.473940	5	.02006	.13	40731	65				*****		
8	26.932537	3	01664	02	.38738	189						
9	30.389290	1		230	3/082	26						
10	33.844729	0	01220	34	• 330/3 + 344EE	364						
		1	- 01009	10		5 <u>2</u>						
12	49. 106917	0	00948	07	• 33303	,,,,						
r* .	^R 11	^R 21	^K 31	- ^K 41	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0469	04040	.0486	- 0474	-0458	.0440	.0419	0395	.0369	.0341	.0312	.0282
	.0994	.0955	-0889	.0801	.0695	.0576	.0452	.0329	.0213	.0110	-0022	0046
. 15	.1479	.1350	.1144	0886	.0606	.0338	.0110	0060	-,0162	0198	0180	0124
.20	1950	1655	.1212	.0714	.0262	0067	0237	0257	0172	0044	•0067	.0124
.25	.2403	1849	.1087	.0357	0141	0328_	0256	0063		0161	,0105	0005
. 30	.2834	.1921	.0801	0055	0391	0276	.0007	.0182	.0151	.0003	0109	0100
. 35	. 3238	,1869	.0413	0383	0378	0004	.0221	.0131	0072	0137	0032	.0084
.40	.3612	.1702	0002	0527	0145	.0235	•0157	0101	0139	.0027	•0111	.0017
.45	, 3952	. 1433	0367	0457	•0146	•0245	0078	0160	.0048	•0115	0031	00 <u>88</u>
.50	.4256	1087	0620	0222	.0319	•0045	0199	.0021	•0130	0048		•0059
	4522	.0692	-,0724	.0074	.0285	0176	0081		0021		-0072	.0032
• 60	.4748	.0277	0672	.0317	•0084	0227	.0120	•0053	-•0123	00002	- 0097	0050
	.4932	0125	0490	.0423	0151	0084	•01/1	- 0117		- 0017		-0053
•7,	.5076	0488	0226	•0368	-•0283	•0119	.0030	0112	•0117	- 0073	0001	- 0067
75	.5181	0791	.0063	-0188	0250	.0215	0134	+0045	•0029		0019	*•0016
. 60	.5250	1021	•0323	0042	0091	+0147	- 0035	-0064		.0087	0084	.0074
35		1175	.0517	-,0248		- 0144	-,0035	- 0071	- 0002	0019	.0002	.0011
• 90	.5301	1259	•0632	0382	0248	- 0239	.0189	0152	-0126	0106	.0090	0077
	•5301	- 1271		- 0438_	•0323	- 0230	.0201	0166	.0141	0122	.0107	0095
1.00	• 2670	1695	• 1002		+VJ23		• VL V I					

Table (Cl. Continued	L										
	λ _{n1}		R _{n1} (1)	â _{n1}							
1	2.147559	9	.54847	97	-1.37507	84						
2	5.906227	9	-12878	04	66700	72						
3	9.364343	34	•06781	10	54436	24						
4		97		18	.48028	41						
5.	16.179761	3	•03192	41	-43538	4/						
<u>q</u>		/8		13	- 38443	63						· · · ·
é	22.958509	75	- 014/8	27	76547	88		· · · · ·				
- <u>q</u>	20, 141649	7		<u> </u>	+.34973	45						
10	33.106895	52	01202	14	.33636	00						· ···
- 11	36.487014	+0	.01053	55	32479	61						
12	39.856356	50	00934	32		45						
r ⁺	R ₁₁	R ₂₁	R ₃₁	R ₄₁	R ₅₁	R ₆₁	R ₇₁	R ₈₁	R ₉₁	^R 101	R ₁₁₁	R121
			<u> </u>	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0.0000	0.0000	06.96	0475	.0460	.0442	•0422	.0399	.0374	.0347	.0319	.0290
•05	•0499	0445	- (1994	.0809	0707	.0592	.0471	.0350	.0235	.0131	.0041	0031
	1491	.1358	.1159	.0909	.0636	.0371	.0140	0036	0148	0195	0168	0141
.20	1954	.1671	.1242	.0755	.0305	0034	0222	0262		0072	•0045	
.25	.2411	.1878	.1137	.0412	0103	0321	0278	0098	•0079	.0160	.0126	.0026
.30	2847	.1967	.0868	0001	0380_	0307	-,0034	.0167	•0171	.0037	0092	-0113
.35	.3259	.1935	0491	0350	0406	0051	.0209	.0163	0038	0140	0064	00003
.40	. 3642	.1788	.0075	0529	0200	.0211_	0192	-,0066	0154	0011	.0109	- 0096
.45	• 3995	.1538	0306	0498	.0095	.0269	0034	01/5	•0008	+0125	- 0101	0028
.50	.4313	.1207	0588	0289	• 0 3 0 5	.0099		0020	.0139	0009	.0042	.0064
.55	.4595	•0920	0728	.0.005	•0317	0138	0126	•0140	0125		.0073	0075
		.0405		.0272	• 0145	0239		- 0096		.0100	0072	0003
• 55	•5043	0006	0558	•0418	0098	0134	•0101	0135	-0108	0034	0038	.0072
70		0367	0306	.0401	- 0275	0209	0105	.0005	.0065	0093	.0083	0048
•75	•5330	0713	-••0013 0345	.0012	0134	.0175	0167	.0132	0083	.0032	,0011	0042
	• 5414	- 1143	•V200	0210	.0067	.0016	0064	.0089	0098	.0095	0085	.0069
	• 3403 5497	- 1243	.0614	0363	.0230	0147	.0091	0052	.0023_	0002	0014	•0059
+		1283	.0670	0431	.0307	0232	.0182	0147	.0121	0101	.0085	0072
1.00	- 5485	1288	.0678	0441	.0319	0246	.0198	0164	•0139	0120	.0105	0093

Table (.I. Continued	1						· ·				
<u>[5] s t</u>	$10_{p} = 1$		· · · · · · · · ·									
n	×1		P _{n1} (1)) 	anl						· · · · · · ·	
1	2.08944	35	-56151	20	-1.36420	70						
	5.80411	94	• .12813	00	.64558	64						
3	9.22686	65	.06711	10	52415	74						
4	12.59849	96	04360	78	.46165	47						
5	15.95358	59	.03150	44	-,42096	19						
6	19.30056	00	02426	04	.39147	87						
7	22.64287	06	.01949	85	-,36872	36						
8	25.98222	65	01615	98	• 35040	50						
9	29.31957	85	.01370	61	33520	56	مانيوسر ديود المحموليونيون ميدين					
10	32.65550	19	01183	66	.32230	36						
11	35.99036	70	.01037	15	-,31115	52						
12	39.32442	38	00919	58	.30138							
r ⁺	R ₁₁	R ₂₁	R ₃₁	R ₄₁	R ₅₁	R ₆₁	R ₇₁	R ₈₁	R ₉₁	R ₁₀₁	R ₁₁₁	R ₁₂₁
										0.000	0.000	0.0000
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
•05	.0499	.0495	.0487	•0476	.0461	•0444	•0424	.0402	.03//		.0053	0020
.10	0995	•0958	.0897	•0814	•0714	.0601	.0482	•0363	- 0130	- 0103	- 0192	- 0150
.15	•1482	•1362	.1168	•0923	•0654		•0160	- 0364	- 0205	- 0049		.0109
.50	. 1957	.1681	•1261	•0781	•0332	0012	-+0211	- 0110	0203	0156	.0136	-0043
25	2416	1896	1168	<u> </u>			-,0270	0154	0180	.0057	0079	0118
. 30	.2855	•1996	.0911	+0034	0371	0324	0000	.0124	0015	0137	~.0083	.0047
				0120			0210	- 0043	0159	0035	.0103	.0069
40	.3661	•1844	.0125	0527	-+0234	0192	- 0003		- 0019	.0125	.0030	0091
		1507	0254	- 0320	.0001	0133	- 0191	0056	.0138	.0017	0104	.0004
•50		-1787	- 0736	- 0062	•0270	0108	0153	.0134	.0046	0115	.0018	.0079
			- 0726	0227	0182	0240	.0049	.0121	0117	0003	.0088	0062
.60	- +07h	•0494	- 0403	0237	0059		.0181	0060	0067	.0106	0053	0028
.05		.0079	- 0363	0408	- 0250	.0039	.0106	0144	.0093	0007	0060	.0078
. 70	- JE 90 54 36	- 0652	0070	.0282	0288	-0198	0079	0025	.0086	0100	.0074	0026
	- 5460	0924	.0217	.0054	0165	.0192	0170	.0122	0064	.0010	.0032	0057
		1116	.0449	0179	.0037	.0042	0086	.0105	0107	.0098	0081	•0060
. 90	- 5612	- 1229	.0597	0346	.0213	0130	.0075	0036	.0008	.0012	0027	.0037
. 95	5618	- 1275	0661	0424	.0300	0226	.0177	0142	.0116	0096	.0080	0067
	5615	- 1281	0671	0436	.0315	0243	.0195	0162	.0137	0118	•0104	0092

Table C	1. Continued				·····				·			
(6) s =	12, p = 1											
n	^λ n1		R _{n1} (1)	\hat{a}_{n1}							
1	2.049356	4	.57104	48	-1.35693	21						1
2	5.740569	0	12767	32		46	·	<u> </u>	<u> </u>			
3	9.131252	0	.06647	62	-,50956	10						
4	12.474034	8	04311	36	.44796	16						
5	15.799461	1	.03111	52	40807	49.						1
6	19.116451	5	02394	41	.37924	61						
7	22.428608	8	.01923	45	35703	05				÷		
8	_25.737705	4	01593	48	33916	30						
9	29.044726	7	•01351	10	-, 32435	19						
	_ 32.35026A	3		51		00						
12	35.654713	4	.01021	87	30094	50						
12	38,959320	8	00905	<u>Hy</u>								
r*	R ₁₁ .	R ₂₁	R ₃₁	R ₄₁	R ₅₁	R ₆₁	R ₇₁	R ₈₁	^R 91	R ₁₀₁	R _{1,11}	R ₁₂₁
		and the second secon						0.000	0 0000	0 0000	0.000	0.0000
0.90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0403	.0379	.0353	.0326	.0298
.05	•0+99	•0495	•0487	•0476	•0462	•0445	•0423	0403	0257	-0153	5000	0013
			.0899	0818		.0005	0173	- 0009	0131	0190	0194	0156
•15	.1482	•1365	•1175	•0933	•0666	•0403	- 0203	0265	0213	0100	.0019	.0103
	1958	. 1688	.1274	•0799		00004	•.0298	=.0134	.0049	.0152	.0143	.0055
• 25	-2419	.1909	•1189	.0471	- 0000	0335	0077	.0144	.0185	.0071	0068	0120
• 30						0103	.0188	+0190	.0001	0134	0095	•0034
• 35	• 3280	.2007	0141	- 0523	0257	.0178	.0222	0023	0160	0051	.0096	.0080
40		1454	- 0227	- 0534	.0035	.0285	.0018	0180	0038	-0155	•0046	0085
•45	+4035	1344	0543	-0359	.0277	.0156	0183	0076	.0134	.0036	0104	0013
	#43/C	0970	0723	0075	.0342	0086	0169	.0122	.0065	0113	0001	.0086
• 55	+40/1	0560	0750	.0211	-0210	0237	.0026	.0135	-,0107	0023	.0095	0049
OV	<u>9935</u>	.0143	0633	.0399	0030	0186	.0177	0038	0085	.0106	0037	0045
• 0 5	-5151	0254	0404	.0431	- 0235	.0012	.0126	-,0147	.0079	.0013	0074	.0077
- 75		0605	0114	.0309	0295	.0187	0057	0047	.0100	0100	.0063	- 0010
-80	5601	0889	.0179	.0086	0188	.0203	0169	.0111	0047	0009	•0048	
.85	.5669	1094	.0423	0152	.0013	.0063	0101	.0115	0112	•0097	- 0075	.0045
.90	.5704	1217	.0582	0332	.0198	0116	.0061	0023	0004	- 0001	.0075	= 0062
.95	.5713	1269	•0653	0417	•0295	0221	.0172	013/	•0111	- 0117	-0102	0091
1 00	5710	- 1277	.0665	0431	.0311	0239	.0192	0159	-0135		.0102	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table	C1. Continue	d	· .									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1) s	= 2 , p = 2						·					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		λ ₂ 2		$R_{n2}(1)$		â _{n2}	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>-</u>	5-06750	53	.18174	37	-1.29516	16						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.157606	54	03961	93	1.83562	90	·			·		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13.197224	47	.01626	05	-2.29882	196						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 	17.22022	94	00858	82	2.71636	16		<u> </u>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	21.23551	73	.00521	32	-3.10231	98						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	25.24653	12	00345	83	3.46454	95						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	29.25490	55	.00244	04	-3.80800	73						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	33.26152	37	00180	22	4.13607	65						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	37.26690	32	.00137	83	-4.45119	69						· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	41.27138	93	00108	37	4.75520	18						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	45.27515	70	.00087	15	-5.04951	30						
r^* R_{12} R_{22} R_{32} R_{42} R_{52} R_{62} R_{72} R_{82} R_{92} R_{102} R_{112} R_{122} 0.60 0.0000 0.6000 0.0000	12	49.27844	75	90071	40	5,33523	99						
r* R_{12} R_{22} R_{32} R_{42} R_{52} R_{62} R_{72} R_{82} R_{92} R_{102} R_{112} R_{122} 0.000 0.0000	•									_			в · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r*	• R ₁₂	R22	R ₃₂	R42	R ₅₂	R ₆₂	R ₇₂	R ₈₂	R ₉₂	R102	^R 112	^R 122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· · · · · · ·		0.0000	0 0000	2 0000	0.0000	010000	មុំគ្នាខ្លាក់	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0020	-0019	.0017	- 00le	- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.05	.0025	.0025	.0024	.0923	.0023	047EC	0045	-0035	-0025	.0016	110.14	• and >.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.10	.0098	0093	.0086	-007H	.0007	- 0053	.0025	.0004	0008	0013	0012	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-15	.0214	-0192	+0160	.0124	0055	00055	- 0019	0023	0014	0003.	000h .	• 9698
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.20	.0367	•0.301	.0215	.0100	- 0006	- 0036	0026	0004	-0011	.0012	.0004	0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 25	.0547	.0398	.0220	.0082	- 0053	- 0031	.0005	.0019	.0008	0006	⊷ ,000ч.	0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 30	.0744	.0454			- 0049		.0024	.0004	0012	0005	.0005	. 30.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 35	.0946	.9465	.0104	- 0059	- 0009	.0033	.0006	0016	0004	.0049	.0003	0034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1143	0300	- 0084	- 0068	0034	- 0020	0019	0006	.0012	.0000	0007	•0002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 4 7	.1321	•0.300	- 0140	0016	.0047	0013	0015	.0014	.0002	0004	•000+	• 0004
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		• 1454		- 01-0	0038	-0025	0030	.0008	.0009	0011	.0003	 000 → 	÷∎9605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• ~ ~	+ 10CH 13200	-01-75	- 0123	.0071	0012	0017	.0020	0009	0002	•000H	* •0005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ? ?	• 1779	- 0105	- 0073	.0072	0039	.0010	.000H	0013	.0010	0004	0005	•0004
000 0000 000 000 000 000 000 000 000 000 000 000 000	•07	• 1004	- 0211	- 0007	.0046	- 0042	.0027	0012	.0.001	.0005	0007	.0005	004
1010 - 0000 + 0000 0000 - 0010 - 0010 + 0000 + 0000 + 000		1872	- 0292	.0056	.0006	0021	.0024	0020	.0013	0007	•0002	.0601	
95 1973 - 0368 .0107 - 0034 .0005 .0010 .0010	• / つ 6 カ	+197C	0348	.0107	0034	.0005	.0006	0010	.0011	0010	.000H	0005	
-00 -0001 -0002 -0003 -0004 -000	• • ••	1961	- 0380	.0140	0063	.0030	0014	.0006	0001	0002	.0003	0004	•000-
-000 1842 - 0394 -0157 - 0079 -0046 - 0028 -0018 - 0012 - 0008 - 0006 - 0004 - 000	• ^ 7 7	1842	- 0394	-0157	0079	.0046	0028	.0018	0012	.000A	0006	.0004	0005
<u>95</u> 1825 -0397 -0162 -0085 -0051 -0034 -0024 -0017 -0013 -0010 -0005 -000	970	1825	0397	.0162	0085	.0051	00.34	.0024	0017	.0013	0010	.0809	0006
1.00 .18170396 .01630086 .00520035 .00240018 .00140011 .0009000	1.00	.1817	0396	.0163	0086	.0052	0035	.0024	0018	.0014	0011	.0009	0007

(3) s	= 6 , p = 2	2										
n	λ _π	12	R _{n2} (1)	â _{n2}							
1	3. 84855	04	.27128	143	-1.05631	09						
2	7.66075	70	04955	80	1.25761	26						w.,
3	11.22009	26	.01978	194	-1.53928	14						
4	14.72685	91	01034	39	1.80339	20						
5	19.21221	46	.00624	52	-2.05061	70						
6	21.68651	84	00412	44	2.28396	35				*****		
7	25.15430	76	.00290	77	-2.50589	40						
8	24.61790	91	00214	40	2.71826	98				****		
9	32.07864	75	.00163	17A	-2.92250	54						
10	35.53733	58	00128	66	3.11969	59						
11	34.99450	23	.00103	38	-3.31071	13		·				
12	42.45050	60	00084	65	3.49624	74						
r*	R ₁₂	R22	R ₃₂	^R 42	^R 52	R ₆₂	R ₇₂	^R 82	- ^R 92	^R 102	^R i12	R ₁₂₂
0.00	0.0000	9.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9900	0.0000	0.0000
.05	.0025	.0025	.0024	•0024	•0023	.0023	+0022	.0021	.0020	.0019	.0018	.0017
.10	.0099	.0095	.0090	.0083	.0075	.0066	.0057	•0047	-0038	.0029	.0050	.0013
15	.0219	.0201	.0176	.0146	.0114	-0085	.0052	.0028	.0004	0004		0013
.20	.03H1	.0327	•0526	•0179	.0106	.0046	.0005	0018	0043	00ln	6603	.0001
•25	.0578	.0455	.0304	.0159	•0049	0016	0036	0028	000A	.0008	.0011	.0609
. 30	.0804	.0554	.0301	.00.90	0026	0052	0058	.0004	.0019	.0013	0001	0004
• 35	.1050	.0638	.0?43	0002	0072	0036	.0013	.0025	.0007	0010	0010	.0001
•40	.1307	•0663	.0141	0081	0065	.0011	•0035	.0004	0016	- <u>.</u> 0007	.0005	.0007
	•1564	•0535	.0019	0115	0015	.0042	.0004	0021	0006	.0012	• 0 6 0 4	007
• >0	.1914	.0551	0094	0095	•0040	•200*	-*0053	0010	.0015	•900 3	0010	.0001
•55	.2045	.0422	0173	0034	.0062	0011	0023	.0016	• 0 0 0 5	0015	.0003	.0004
• 60	•2251	.0260	0201	•003A	.0039	0037	.0006	.0014	0013	•0001	• 0 + 0 7	90°66
• 55	.2424	.0084	0175	.0086	0009	0056	.0025	0009	0005	.0010	<u> </u>	
.70	• 25AU	0089	0108	•0093	0047	•0009	.0015	0017	•0015	0004	• = .0003	
. /5	.2656	0240	0018	.0060	0053	.0034	0015	.0001	.0007	0009	.0008	0005
.80	.2714	0358	.0070	.0005	0026	.0028	0024	.0017	0010	.0005	0000	0003
.85	.2/34	0438	.0139	0049	.0014	.0001	0008	.0010	0011	.0010	()())-	.0005
. 40	.2737	0440	.0180	0086	•0046	0050	.0015	0008	.0004	0001	00.0.)	•vuol :
	.2122	0495	.0195	0101	.0060	0039	.0027	0019	.0015	0011	<u>•0009</u>	0007
1.00	•2713	0496	•0198	0103	•0065	0041	.0024	0021	•0016	0013	•0010	0064

Table Cl. Continued

Table	Cl. Continue	d		· · · · · · · · · · · · · · · · · · ·									
(\mathbf{z}) s	= 4 , p = 2												}
n	λ _{n2}		R _{n2} (1)	•	â _{n2}								
	4.14424	54	236545	51	-1.1280Pe	52							
2	P. 644P6	35	146376	8	1.424694	<u>+S</u>							
3	11.736659	+4	.018939	7	-1.750316	50							
. 4	15 32034	43	009944	• 3	2.05356	75				· · · ·			
5	19.005999	14	.00601		-2.337044	21							
6	22.622124	52	003945	52	2.60448	92							
7	25.232514	+7	.00290	32	-2.85880	49 10							
8	29.83946	23	002072	26	1.10/16	19							
- 9	33.44 3411) H	.00158	+1	-3.3517	30							در مربوری
10	37.04636	51	001244	49	3.50/10	70							
11	40.64758	46	.001000	17	- 3.10090	70 . 66							
12	44.24778	24	00081	<u> </u>	3.991-11	40 <u></u>	······································						
r +	R ₁₂	R ₂₂	R ₃₂	R42	R ₅₂	R ₆₂	R ₇₂	R ₈₂	^R 92	R ₁₀₂	R ₁₁₂	R ₁₂₂	
				0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0010	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0022	1500.	.0020	.0019	•0°17	•0.12	
.05	.0025	.0025	.0024	.0024	002.5	-0064	0054	.0044	.0034	• () () 25	.0017		
.10	.0099	<u>. 0095</u>		0140	.0106	.0074	.0044	00200	.0003	0008	9(13)	-+0.15	
•15	.0218	.0199	01/2	.0165	.0091	.0033	0004	0021	0022	0014	000+	د معد میں اور (اور اور اور (اور	
•20	.03//		0243	.0135	0030	0025	0036	0021	0001	.0011	-0012	.0005	
• 25	• 0 7 0 7	09404	0265	-0061	0038	0049	0017	.0012	.0018	.0007			
	0/3/		0197	0027	0070	0022	.0021	.0021	0001	0013	- • 0 0 0 m	.0005	
• 15	1000		0091	0091	0047	.0024	.0026	0006	<u>0016</u>	0000		.0007	
- 40	1639	0552	0024	0105	.0006	.0040	0004	0050	•0003	.0011	0002	0007	
•45 60	1711	0455	0121	0069	.0050	.0014	0026	.0001	.0014	0005		0000	
	1002	0.120	0177	0003	.0053	0023	0012	.0018	0004	- 000B	a 0 0 0 7		
• 7 7	2075	-0161	- 0182	.0058	.0019	0035	.0016	.0005	<u>0013</u>	.0007	- 0002		
65	2208	0002	0140	.0089	0026	0012	-200	0015	.0003	.0005	0003	.0002	
- 70	2306	0153	0067	.0079	0051	0200-	.0001	0011		<u>- 8000</u>	- 0007		
- 15	2368	- 0278	.0017	.0039	0043	.0033	0020	.0008	.0000		0004	.0001	
80	2398	0371	.0092	0014	0012	.0050	0020	.0017		0000	- 0007	3005	
	.2403	0430	.0147	0059	.0023	0006	0002	.0005	0007	- 0000	.0002	- 0000	
.90	.2392	0460	.0177	-,0087	.0048	0028	.0017	0011	•0005	0011	.0009	0007	· · · · · · · · · · · · · · · · · · ·
95	.2375	0469	.0188	0098	.0059	0038	.0027	0019	+0017		.0010	000 -	
1.00	.2365	0469	.0189	0099	.0060	0040	•0028	0071	• • • • • • • •			-	

Table	Cl. Continue	d										•	
(4) s	= 8, p = 2												
n	^λ n2		R _{n2} (1))	â _{n2}							an a	
	3.66630	90	.29505	31	-1.01730	78					· · · · · · · · · · · · · · · · · · ·	n, and an a magnificant of many state of the set of the	
	7.45205	13	05067	23	1.16693	15				· · · · -			
3.	10.95195	76	.02008	73	-1.42470	20							
	14.38835	54	01046	<u>/8</u>	-1 -00/24	41		<u> </u>					
6	11.80109	19	•00630	70	2 10000	10							
	21.60356	25 4	00410	22	2.10490	10						······································	
8	24.39739	פרח וו	- 00216	10	2 50810	97							
9	21. 37447	46	00165		-2.69584	07					<u> </u>		
10	34.75414	79	00129	57	2.87709	74							
	38.14223	62	.00104	09	-3.05267	49		•			the subscription of the		
. 12	41.52408	30	00085	21	3,22321	57							
r *	R ₁₂	R ₂₂	R ₃₂	R ₄₂	R ₅₂	R ₆₂	R ₇₂	R ₈₂	^R 92	R ₁₀₂	R ₁₁₂	R ₁₂₂	
				·									·····
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0_0005	_ H_ 36.67	
.05	.0025	.0025	.0024	.0024	·0053	.0023	•0055	.0051	•0050	•6613	*u938	• Ost • 7	
.10	.0094	.0095	.0090	.0084	.0076	.0067	-005H	.0049	.00.39	. 1031	-22(0.		
•15	.0219	.0505	.0178	.0149	.0118	.0086	.0057	.0032	.0012	0995	0010	− •9913	
.20	.0382	.0331	.0262	•0186	.0114	.0053	.0010	0015	0023	0020			بجابد والالت
.25	. 0582	.0463.	.0315	.0172	.0059	-,0010	0036	0031	0012	•0005	• 9, 1 4	• • CF 1 1 ·	
• 30	.0813	.0579	•0319	.0107	001/	0053	0033	0001	001M	• 000 [5			
• 35	-1055	10052	• 0 2 5 8	+0013	- 0071	0044	•0007	.0026	- 0012	- 0011		0003	
.40	1403		•01/1	- 0118	- 0073	0003	0017	0010	- 0013	- 0010	0.000	0365	
• • • •	•1003	0609	0072	- 0109	- 0020	.0037	0019	0016	.0013	.0007	000V		
	2122	0487	- 0165	- 0053	-0063	5000	0028	-0012	.0010	0011	0001	ard a	· · · · · · · ·
. 60	2352	0327	0208	-0022	.0050	0035	0001	.0018	0011	- 0003	0.10-4	- ender .	
. 65	.2552	-0146	0195	.0080	.0004	0033	.0024	0004	0010	.0011	0004	(i.) X .	
.70	.2716	0037	0134	.0099	0042	.0000	.0018	0019	.0010	.0000		14 17	
.75	.2839	£050	0045	.0074	0057	.0031	0010	0004	.0010	0011	• 4° A 7	10° 4	
.80	.2919	0338	.0050	.0019	0035	.0033	0025	.0016	0004	.0001	.0003	<u> </u>	
.85	.7961	0432	.0129	0040	.0006	.0007	0012	.0013	0012	.0010	0004	.1004	
. 90	.2970	0486	.0178	0083	.0043	0023	.0015	0006	.0005	.0001	0002	.0003	
.95	.2960	0505	.0198	0105	.0060	0039	.0027	0019	.0014	0011	•9004 •9004	• 020 é	
1.00	.2951	0507	.0201	0105	.0063	0042	.0029	0055	.0017	0013	0/01/0		

Table	Cl. Continue	ed.									ana ang ang ang ang ang ang ang ang ang	
n (5) 5	$\frac{\lambda_{n2}}{\lambda_{n2}}$		R _{n2} (1)	â _{n2}							
- <u>-</u>	1.55228	56	31226	10	- 99314	34						
2	7.33058	<u></u>	05122	69	1.10964	45						
3	10.78599	54	.02018	38	-1.35102	95						
4	14.179839	98	01049	24	1.5793?	18						
5	17.54945	19	.00631	57	-1.79329	51						
6	20.405614	4+7	00416	79	1.94533	01						
7	24.25647	04	.00293	07	-2.18750	37 -						
8	27.601640	SO	00215	87	2.37141	00		-				
. 9	30.94361	10	.00164	77	-2.54826	78						
10	34.28329	32	00129	35	2.71902	40		•				
11	37.62127	74	.00103	RR	-2.88442	88		<u> </u>				
12	40.95796	45	00045	02	3.04508	73			·			
r+	R ₁₂	R ₂₂	R ₃₂	R ₄₂	R ₅₂	R ₆₂	R ₇₂	R ₈₂	R ₉₂	^R 102	^R 112	R ₁₂₂
										<u>. 0 0058</u>	0 0:00	<u>0.000</u>
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.019	.0017
.05	.0025	.0025	.0024	.0024	• • • • • • • • • • • • • • • • • • • •	.0073	.0076	0000	• • • • • • • • • • • • • • • • • • • •	0022	0024	- 0016
.10	.0099	.0096	.0091	.0084	.0077	.0068	.0059	•0050	+0041	- 00 %	- 0003	0013
•15	.0220	.0203	.0140	.0151	•0150	.0089	.0050	.00.34	•0014	- 0031	- 0013	0003
•50	.0383	.0333	.0266	.0191	.0119	.0054	.001.3	0013	0063	0021	0013	.0012
.25	.0585	.0467	.0323	.0120	• 0056	0005	0035			0011	00.04	• • 0 0 0 7
• 30	•0 ∺ 1∺	·C288	•0331	.0117	0011	0052	0037	0004	•0017	- 0004	- 0012	5684
. 35	.1075	.0677	.0285	.0074	0070		.0003	.0070	- 0013	- 0013	0 0 0 3	.000.9
•40	.1347	.0721	.0190	0066	0074	0003	.0033	.0014	- 0013		0000	6304
•45	.1627	.0712	•0067				- 00/21	- 0017	0014	0014		
•50	.1904	.0547	0058	0117	•0924	.0042	- 0015	0017	-0013	- 0010	0004	.0033
	.2171	.0530	0158	0065	.0053	.0005	- 00 99		- 0000	- 0006	0005	0002
. 60	.2417	0374	0210	.0010	•0057	0033	0007	.0020	- 0013		0002	0005
.65	.2635	.0192	0707	.0074	•0013	0037		- 0001		0011	- 0684	-0007
.70	.2819	.0004	0153	.0102	0036	0007	- 0000	- 0019	.0007	- 000.5	. 0005	0001
.75	.2962	0172	0065		0054				• • • • • • •	- 0001	0005	0005
. #0	• 3061	+.0318	0034	.0030	0041	.0035	- 0075	.0014	- 0005	0001		0005
.85	.3118	0424	•0119	0032	•0000	.0012	~.0016	.0015	- 0000	• • • • • • • •	- 0063	-0004
.90	.3137	0486	.0175	0079	.0040	0020	0009	0003	0000	- 0010		0005
• 95	.3132	0510	.0198	0102	.0060	00.39	.0025	0019		- 0010	0010	- 0009
1.00	.3123	0512	S020.	0105	•0063	0042	•0029	- • 0 0 <i>c</i> • •	•001*		• • • • • • •	• • • • •

Table	C1. Continued	d					ويواله ويقفا والمالة	(1,2,2) , $(1,2,2)$, $(1,2,2)$, and $(1,2,2)$, $(1,2,2)$	a gana an international and	and and a star and an advantation of the star		an a
(6) s	= 12 , p = 2			·								
n	λ _{n2}		R _{n2} (1)	â _{n2}							
1	3.474127	3	32527	39	- 97685	19						
2	7.241561	9	05156	73	1.07009	12						
3	. 10.671778	0	.02019	72	-1.29901	77						
4	14.037529	9	01047	63	1.51683	<u>53 · </u>					·	
5	17.377936	7	.00629	42	-1.72119	00 .						
6	20.705436	9 0	00415	30	1.91418	55		· · · · · · · · · · · · · · · · · · ·				
7	24.025371	7	00291	85	-2.09777	38						
8	27.340460	_1	00214	88	2.27346	<u>83</u>				· · · ·		
9	30.652240	12	.00163	96	-2.44243	0 N						
10	33.961653	17	00128	67	2.60556	21						
11	37.249311	.3	.00103	32	-2.76358	10						
12	49.575627	<u>'ن</u>	00084	54	2,91706	45						
r+	R ₁₂	R ₂₂	R ₃₂	R ₄₂	R ₅₂	R ₆₂	R ₇₂	R ₈₂	R ₉₂	R ₁₀₂	R ₁₁₂	R ₁₂₂
	0.000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.00	0.0000	0.0000	0024	0.0024	.0023	-0023	5500.	.0021	0500.	.0020	.0019	.0017
•05	.0927	0025	0024	0085	.0077	.0069	.0060	.0051	.0041	.0033	+200.	.0017
10	0720	0204	0181	.0153	.0122	.0091	5000	.0036	.0016	.0001	0008	0013
•17 50	0720	0204	0268	0194	.0122	.0061	.0016	0012	0023	0022	0014	0004
25	0597	0471	-0328	.0186	.0071	0003	0034	0033	0017	.0001	.0012	•0012
• C 0 1 20	0 9 9 1	6596	0340	0125	0007	- 0052	0039	0006	.0016	.0017	•0+0-	 .0004
	1081	0688	.0296	.0031	0068	0051	0000	.0025	.0016	→. 0004	9673	0004
	1358	0737	.0204	0061	0081	0007	.0033	.0016	0012	0014_	.0001	.0010
45	1643	-0/13	.0081	0118	0042	.0038	.0024	0015	0015	.0007	•9019	() 6 3 ()
- - - 5 - 1	1928	0674	0047	0122	.0019	.0044	0012	0021	.0009	.0011	 6207	0006
<u> </u>	2204	0562	- 0151	0074	.0062	.0010	00.31	.0005	.0015	UU0H	000-	 • ○ ○ ○ ○
	2/41	0408	- 0211	0001	0061	0030	0011	.0021	0007	0008	.0009	0001
45	2693	0226	- 0215	.0069	0500	0040	0500.	.0004	0014	.0010	.0008	0007
-0.) 70	201	+95 69 8635	- 0166	.0103	0031	0012	.0025	0018	.0005	.0005	- 0.10	. 1635
75	1049		0080	.0090	0053	.0025	0001	0011	.0014	0010	• 0 0004	• 13-11-1
- F.)	3164	0301	.0020	. 0039	0046	.0037	0024	.0012	0003		. 0605	0697
·••	3234	- 9415	-0110	0025	0005	.0016	0018	.0017	0014	.0010	0007	•000-
• ~ J 6 A	3263	- 0485	.0171	0076	.0037	0017	.0007	0001	0002	.0004		.5305
- <u></u>	3261	- 0512	0198	0101	.0059	0038	.0026	0018	.0013	0010	. 0007	− .000×
• 7 7	• J ~ 0 L	C	• • • •				0000	0021	0016	- 04114	0016	÷

Table	C1. Continue	đ					·					
(1) s	= 2, p = 3		1. A.			· · ·				•	•	
n	λ n3		R _{n3} (1))	â _n 3							
1	7.230135	6	.06923	56	-1.60418	84			· ·			
2	11.207635	58	01376	37	3.69636	R0						
3	15.221195		.00470	47	-6.23484	30						
4	19.234323	37	00510	21	9,21939	<u>. 19</u>						
5	23.244935	53	.00110	17	-12.62537	58						
6	27.253176	55	00064	21	16.42993	65						
7	31.259902	22	.00040	38	-20.61375	06						
8	35.265430	00	00026	88	25.16051	25						
9	39.270054	+5	.00018	71	-30.05629	38						
10	43.27398	38	00013	50	35.28903	03						
- 11	47.27736	74	.00010	03	-40.84813	67						
12	51.280517	72 .	00007	63	46.72116	41						
·····												
r*	R ₁₃	R ₂₃	R33	R43	R ₅₃	R ₆₃	R ₇₃	R ₈₃	R93	R ₁₀₃	R ₁₁₃	^R 123
								<u> </u>	0.0000	0.0000	0.0000	1.0000
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0001	.0001	.0001
.05	.0001	.0001	.0001	.0001	.0001	.0001	.0001	+0001	.0003	0003	-0002	.0003
.10	.0010	.0009	.0009	.0008	.0007	.0006	-0005	-0004	-0003	- 0000		0001
.15	.0031	.005H	.0024	.0050	•0015	.0010	.0007	- 0003	- 0007	0002	0000	0000
.20	.0070	.0058	.0044	.0029	.0015	.0007	.0001	- 0002	- 00002	.0001	.0001	.0000
-25	.0128	.0094	.0059	-00-CA	•0008	0002	0004	0003	0000	0000	0001	3001
.30	-0505	.0129	.0061	.0015	0005	0007	0007		- 0002	- 0001	0000	1066
.35	.028A	.0155	.0049	0003	0012	000.3	.0003	- 0007	- 0001	- 0001	.0001	0000
.40	.0.3H2	.0163	.0023	0018	0007	-0004	- 0003	- 0002	0001	.0001	0001	0000
.45	.0476	.0153	0006	0020	.0003	.0005	- 0002	0002	-0001	0001	.0000	.0001
.50	.0542	.0123	0031	0011	.0009	.0000	0003	0002	- 0001	0000	.0001	0000
.55	•0637	.0000	0043	.0003	-000A	- 0005	0000	0001	0001	.0001	0001	0000
.60	.0694	.0029	0041	.0015	.0000	0004	0003	- 0002	-0001	0000	0000	.0001
•65	.0734	0021	0028	.0018	0007	.0000	- 0002		-0001	0001	.0001	0000
.70	.0754	0066	0008	.0013		.0005	- 0001		- 0001	.0000	.0000	0030
.75	• 9759	0100	•0013	.0003	0006	0005	- 0003	.0002	0001	.0001	0001	.0000
.80	.0750	0125	.0030	0007	• 0000	-0002	0002	- 0000	- 0000		0000	.0000
.85	.0734	0134	•0040	0015	-0006	0002	0000	- 0002	.0001	0001	.0000	0000
.90	.0715	0139	.0046	0019	.0010	0005	.0003		-0002	0001	.0001	0001
.95	.0699	0139	.0047	0021	.0011		-0004	- 0003	-0002	- 0001	0001	0001
1.00	.0692	0138	.0047	0021	.0011		• M U U 4		• 90.92			

				يىر . مەمەر مىرىيە مەمەر يور .									· · · · · · · · · · · · · · · · · · ·
Tal	ble Cl. Contin	nued							<u> </u>	· · · · · · · · · · · · · · · · · · ·			
(2)) s = 4 . p =	3											
n	^λ n3		R _{n3} ()	ų — –	ân3								
- 	5.434253	1	.10640	30	-1.26307	10							
. 2	9.734277	>	01H5P	90	2.67243	11							
3	13.439503	4	.00617	53	-4.30849	60							
4	17.097182	3	00275	41	6.30276	<u> </u>							
5	20.733433	0	.00147	24	-8.58355	01							
6	24.358544	6	00082	64	11.13361	66							
7	27.975811	7	.00051	86	-13.93915	09							أحصر خذر الم
8	31.5AA114	5	00034	47	16.98876	<u>56</u>							
9	35.196936	1	.00053	97	-20.21285	00							
10	3H.R0321H	9	0001/	28	23. (0 310	20							
11	42.407590	••	-00015	83	-27.51750	20							
12	46.010487	7	00034	<u>//</u>	31.4 944	<u></u>							
		•							_		_	- ·	
r*	R ₁₃	^R 23	R ₃₃	R43	R ₅₃	R ₆₃	^R 73	^{. R} 83	^R 93	^R 103	^R 113	^R 123	
					0.0000	0.0000	0 0000	0'-0000	0.0000	0.0000	0.0000	0.0000	
.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	.0001	.0001	.0001	.0001	.0001	.0001	
.05	.0001	.0001	.0001	.0001	0001	- 0007	.0006	.0005	.0004	.0003	.0003	2000.	
10	.0010	.0009	0009	0000	-0018	.0013	.0010	.0006	.0003	.0001	.0000	0001	
.15	-9032	.00/9	+UU/5	0076	.0023	.0013	0005	.0000	0002	0005	0002	0001	
• 10			0073	0042	.0018	.0003	0004	0004	0002	0000	.0001	.0001	}
• 27	• U1 9m	-0100	0013	0033	.0003	0008	0006	0001	-0005	.0002	.0000	0001	
. 10	0225	0195	-0083	-0012	0012	0009	.0000	.0004	.0002	0001	0001	0000	•
	+9363 0665	-0222	-0058	0012	0015	0000	.0005	.0001	0005	0001	.0001	.0001	
15	0573	6227	.0022	0027	0005	.0007	.0002	0003	0001	.0001	.0000	0001	
50	.0703	.0207	0017	0026	.0007	.0006	0004	0002	-0005	.0000	0001	• 0 0 0 0	-
	0424	.0163	0047	0011	.0013	0002	0004	•0005	.0000	0001	• 0 0 0 I	- 0001	
60	.0931	.0102	0059	.000A	.0009	0007	.0001	.0005	0002	.0001	.0001		
. 65	1017	.0031	0053	\$500.	0002	0004	.0.004		0000	.0001	0001	.0000	
.76	1078	- 0039	0031	.0023	0011	.0003	.0001	0002	.0002	0001		- 1000	
.75	.1113	0399	0002	.0014	0011	.0007	0003	.0001	.0000	0001	- 0001	0001 0000	
HO	.1124	0143	.0026	0001	0004	.0005	0004	.0003	0002	.0001	- 0003		
.85	.1117	0171	.0046	0015	.0005	0001	0001	.0001	0001	-0001	0001	.0001	
.90	.1099	0184	.0058	0024	.0011	0006	.0003	0005	<u>•0001</u>	- 0000	0000	0001	
.95	.1079	0187	.0062	0027	.0014	0008	.0005	0003	.0007	- 0002	.0001	0003	
0.0	-1069	0186	.0062	0027	.0014	0008	.0005	0003	• 0 0 0 0				

Table	e Cl. Continu	ed.											
(3)	s = 6 , p = 3	i											
	•		P (1)		â								
n	^n 3		<u>`n3</u>		<u>n3</u>								
	5.426682	23	.134433	33	-1.12249	46							
	9.22471	35	02093	2?	2.21378	75							
3	12.815841	8	.006799	99	-3.62360	75							
4	16.34524	10	00297	85	5.29754	73							
5	19.846/11	11	.00154	53	-7.21311	55					·····		
6	23.33295	29 1	00089	53	9.35483	186							-
7	26.80991	16	.00056	08	-11.71080	26							an - maine in 2 - Mill - 24 - 24 anna an Anna Anna Anna A
8	30.28075	15	00037	24	14.27132	39							
9	33.747344	+9	.00025	87	-17.02829	32		· · · · · · · · · · · · · · · · · · ·					
10	37.21093	28	00018	63	19.97476	40							
11	40.67218	27	.00013	82	-23,10468	154							
12	44.13166	56	00010	51	26.41271	64							
											· · · · · ·		
					5	D	p	R	R	R	R.,.	R	·
r*	R ₁ 3	R ₂₃	^R 33	^R 43	· ^K 53	^R 63	^73	``83	93	103	- 113	115	
	0.0000	0 0000	0 0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	 0.00030 	
0.00	0.0000	0.0000	-0001	-0001	.0001	.0001	.0001	.0001	.0001	.0001	.9901		مسیده شده در ز
	.0001	0000	.000	-0008	-0008	.0007	.0006	.0005	.0005	.0004	0003	•000S	
• 10	0010	0030	0027	.0023	.0019	.0015	.0011	.0007	.0004	.0002	.0001	0000	
	0074	.0064	-0052	.0039	.0026	.0016	.0007	.0002	0001	0002	0005	0001	
- 20	.0139	.0111	.0078	.0048	.0023	.0006	0002	0005	0003	0001	.0001	-0001	
	.0228	.0163	0095	.0042	.000A	0006	0007	0003	.0001	.0002	.0001	0000	
35	0340	.0213	.0097	.0022	0010	0011	0002	.0003	<u>0003</u>	0000	0001	0001	
.40	.0472	.0250	.0078	0005	0018	0004	.0005	•0003	0001	0002	•0000	-0001	
45	-0619	.0266	.0042	0026	0015	•0006	.0005	0005	0002	•0001	<u> </u>		
.50	.0771	.0255	0001	0032	-0005	.0009	0005	0003	• 0 001	.0001		. =.00000	
55	.0922	0217	0040	0021	.0013	.0005	0005	.0001	.0002	0001	0000	- 0001	
.60	.1063	.0156	0064	.0000	.0013	0007	0001	.0003	0002	0001	- 0001	0001	
• 65	·11º4	.007B	0065	.0020	.0003	0007	.0004	0001		- 0002	- 0001	TT : 14661	
.70	.1279	0004	0047	.1500	0009	0000	.0003	0003	-0002	- 0000 -		0000	
.75	.1345	0081	0016	.0021	0013	.0007	0002	0001	.0001	0001	-0002	2000	
.80	.1380	0142	.0018	.0005	0008	.0007	0005	.0003	- 0001	.0000	0001	- 6601	
.85	.1388	01H3	.0045	0012	.0002	.0001	0002	.0002	000/	- 0001	0000	.0000	
.90	.1376	0204	.0061	0024	•0011	0005	.0003	- 0001	.0000	- 0002	-0001	0001	
.95	.1356	0210	.0067	0024	.0015	0008	.0005	- 0003	.0007	- 0007		- 1001	
1.00	.1344	0209	.0068	0030	•0015	0009	.0006	0004	•000.5	• WOVE	• • • • • •	- · · ·	

	Table	Cl. Continue	d		· · ·									and the second sec
			,						2.					
	(4) 5	* 8 , P = 3	······································				·							
	n	λ _{n3} .		$R_{n3}(1)$)	an 3		;						·
		5.151566	1	154895	51	-1.047373	32							
	2	4.961247	e, si	022144	42	2.000640								
	3	12.495104	3	.007096	59	-3.27195/	88							
	4	15.957925	7	003091	18	4.78235	53							an and the second s
	5	19.384551	6	.001595	76	-6.51038 [,]	50 ⁸							
	6	22.804386	2	000929	51	8.44190	60							
	7	26.209056	3	.000578	8 8	-10.55612	11	1						
	8	29.607072	7	000384	40	12.87429	92				<u> </u>			<u> </u>
	9	33.000481	4	.000266	56	-15.35913	58							
	10	36.390559	6	00019	19	18.01437	88		· · · · · · · · · · · · · · · · · · ·	·		and the second		
	11	34.77P148	3	.000142	23	-20.83458	43							
	12	43.163824	ti in	000100	92	23,81494	79							
								'n	n	, n	n	P	R	
	r*	R1 7	R ₂	R ₃₃	R43	^R 53	^R 63	^R 73	^R 83	^R 93	^R 103	¹¹³	``123	
		15	25											a constant a secondar a secondar
-		0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000.	0.0000	0.0000	0.0000	
U	• 00			0.0000	0000	-0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	
	.05	-0001	0001	0000	0000	.0008	.0007	.0006	.0005	.0005	.0004	.0003	.0003	·
	• 10	0022	0030	0027	0023	-0019	.0015	.0011	.0008	.0005	.0003	.0001	0000	
	20	0075	-0065	-0053	.0040	.0028	.0017	.0008	.0003	0001	0002	0002	0001	
	25	.0141			.0051	.0026	.0008	0001	0005	0004	0002	•0000	•0001	
	30	.0232	.0168	-0102	.0047	.0011	0005	0008	0004	•0000	.0005	-0005	•0000	and the second
	35	0348	0222	.0106	.0028	0008	0012	0004	.0003	.0003	.0001	0001	0001	•
	. 40	0487	.0265	.0090	0000	0019	0006	.0004	.0004	0001	0002	0000	.0001	
	.45	.0643	.0288	.0055	0024	0015	.0005	.0005	0001	0003	.0000	.0001	0000	•
	.50	.0810	.0234	.0010	0034	0001	.0010	0001	0004	.0031	• 0002			
	55	0940	.0252	0034	0026	.0012	.0004	0006	.0000	.0002	0001	0001	.0001	
	.60	.1142	.0192	0063	0006	.0015	0005	0003	.0004	0001	0001			
	65	.128H	.0113	0072	.0016	.0006	0008	.0004	.0001	0002	.0001	0090	0001 0001	
	.70	.1410	.0025	0058	·0028	0007	0002	.0005	0003	.0001	.0001			
	.75	.1502	0961	0027	.0025	-,0014	.0006	0001	0002	-0002	0002	- 000 L 		
	.90	.1559	0133	.0009	.0010	0010	.0008	0005	0002	0001	0000	- 0001	0001	
	.85	.1582	0184	.0041	0009	.0000	.0002	0003	.0003	+.0002	.0002	0001	-0001 -0000	
1	.90	.1579	0212	.0062	0024	.0010	0005	-0002	0001	.0000	• 0000	0.001	- 0023	
	.95	.1561	0221	.0070	0030	.0015	0009	.0005	0003	-0002	- 0002	0001	- 0001	
	1.00	1549	0221	.0071	0031	0016	-,0009_	.0006	0004	.0003	0002			

								and and the second second	a an an an a sa an	· · · · · · · · · · · · · · · · · · ·			
Tab 1	e Cl. Continu	ied											
						· · · · · · · · · · · · · · · · · · ·							
(5)	s = 10 , p =	3	<u> </u>										
n	λ _{n3}		R _{n3} (1)	•	a _n 3	·							
1	4.97+677	73	.17054	37	-1.00117	79							
2	A.79-41	36	02285	49	1.869129	57							
3	12.297751	13	.00725	39	-3.05418	45							
4	15.72013	33	00314	81	4.46249	34							
5	19.109294	+9	.00152	53	-6.07326	25							
6	22.48868	37	00093	89	7.87320	04							
. 7	25.841354	48	.00058	68	-9.85223	50		<u> </u>					
8	29.195025	51	00038	91	12.00224	38		1 A					
9	32.54385	36	.00027	00	-14.31642	18							
10	35.889189	57	00019	4.3	16.78895	80							
11	39.23140	59	.00014	40	-19.41479	14							
12	42.572620)	00010	95	22.18945	57							
						r .			D	D	D.	P :	
r*	^P 13	R23	R ₃₃	R43	^R 53	^R 63	R ₇₃	^R 83	⁸ 93	~ 103	~113	h123	
										0.0000	0.0000	0.0000	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
.05	.0001	.0901	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	0001	
.10	.0010	.0010	.0009	.0009	.0008 -	0007	•,0006	.0006	.0005	.0004	.0003	- 0000	
.15	.0033	.0030	.0027	.0024	.0050	.0016	.0012	.0008	.0005	00003	- 0002	- 0002	
.20	.0075	.0066	.0054	.0041	•0029	.0018	.0009	.0003	0001	- 0002		• V 202 . 5 5 3 1	
	.0142	.0114	0083	.0053	.0027	.0009	-,0001	0004		0007	0002	- 0000	
• 30	.0234	.0±71	.0105	•0050	.0013	0004	0008	0004	.0000	.0002		- 0001	
• 35	.0353	•055H	-0115	.0032	0006	0012	0005	-000 <i>c</i>	- 0003	- 0002	- 0001	.0001	
• • 40	.0496	•0274	-009A	.0003	0019	UUUR	.0004	.0004	- 0000	- 0000	20002	.0000	
45		.0302	•0064	0023	0017	•0004				0002	0000	0001	
	•0435	.0303	.0018	0036	0004	.0010	.0001	- 0004	.0000	0001	0001	0001	
.55	.1015	.0275	0028	0030	.0011	-000h	0005		- 0000	= 0002	.0001	. 9000	and a second
.60	.1194	.0218	0062	0010	•0016		0004	.0004	- 0002	-0001	.0000	0001	
•	•135 <u>8</u>		0075	.0013			0003	- 0007	0000	- 6001	0001	.0001	
.70	.1500	.0048	+.0065	•002P	0005	UUU4	.0005	0002	-0002	- 0001	0001	.0200	
.75	.1612	0043	0036		0014		- 0000	- 0002	0000	0001	.0001	0001	- ·
.80	.1687	0123	.0002	.0013	- 0012	1000A	- 0005	- 0002	0002	.0002	0001	.0001	
.85	1726	0192	.0038	0007	0002	- 0004	0004	- 0000	0000	.0000	0001	.0001	
. 40	1732	0216	.0051	0023	.1009	- 0004	0005	0003	50002	0002	0001	0001	
• 95	•1718	0228	.0071		•0015	- 0009	0004	- 0004	-0003	0002	.0001	0001	
1.00	.1705	06/9	.0073	00.51	• • 0 0 1 6	0009	• 000 h	-+ 00 V -	•.0000-0-	• · · · · · · ·			

	······											
Tabl	e Cl. Continu	ued	• •									
(6)	s = 12 n =	3										
	<u>a - 12 <u>a p</u> -</u>	<u> </u>										·····
n	λ _{n3}		R _{n3} (1	1)	â _{n3}							
1	4.958426	54	.182939	91	970134	+3						
2	8.686176	56	023314	43	1.77945	64	,					
3	12.162953	34	.007342	27	-2,90410.	35						
4	15.558389	3 8	00317	59	4.24129	26						
5	15.919104	+1	.00163	14	-5.77031	74						
6	22,261345	55	003944	48	7.47846	04						
7	25.592470	02	.000590	01	-9.35614	90						
8	28.916343	30	-,00039	10	<u>11,39567</u>	14	·					<u>`</u>
9	32.235204	44	.00027	12	-13.59058	81				•		
10	35.550444	39	00019	51	15,93539	20						
11	38.462992	??	.000144	46	-18-42529	06						
12	42,17346	19	00010	99	. 21.05605	52						
			•									
r*	•••• • • •	R ₂	R ₃₃	R43	R ₅₃	R ₆₃	R ₇₃	R ₈₃	R ₉₃	R ₁₀₃	R ₁₁₃	R ₁₂₃
	6 0000	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0.0000		0.000	-0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	•9693
105	.0001	.0001	.0001	.00.09	.0008	.0007	.0007	.0006	.0005	.0094	.0003	.0003
15	0032	0030	0027	.0024	.0020	.0016	.0012	.0009	.0006	.0003	.0001	.0000
•17	0035	0066	-0054	.0042	.0030	.0019	.0010	.0004	0000	0002	0005	0005
	0142	0115	- 0084	.0054	.0029	.0010	0000	0004	0004	0005	0000	.0001
- 6.2	0236	-0173	.0108	.0052	.0015	00.04	0008	0005	0000	-9005 -	-0005	
35	0357	. 6232	.0116	.0034	0005	0012	0005	.0002	.0003	•0091	0001	₹ ∎9001
• J J 41	0502	.0281	.0103	.0006	0019	0009	.0003	.0005	.0000	0002	0001	.0001
45	0659	0312	.0070	0021	0019	.0003	.0007	.0000	0003	0000	.0001	•0000
50	.0852	.0317	.0024	0036	0005	.0010	.0001	0004	0000	•0005	0000	0001
	. 1041	.0292	0024	0033	.0010	.0007	0005	0001	.0093	0000	0001	•0003
.60	.1230	0237	0061	- 0013	.0017	0003	-,0004	.0003	.0000	0005	.0001	.0000
.65	.1407	0159	9077	.0011	.0011	0004	.0002	.0002	0003	• • • • • • • • • • • • • • • • • • • •	.0001	0001
. 70	1564	.0067	0070	0028	0003	0005	.0005	0003	0000	.0001	0001	.0001
.75	.1697	0028	0042	.0030	0014	.0004	.0001	0003	•000S	0001	.0000	• 0000
-80	.1744	0113	0003	.0016	0013	.000H	0004	.0002	• • • • • • • • •	0001	<u></u>	
.85	.1936	0178	.0034	0004	0003	.0005	0004	.0003	0005	.0001	0001	0000
. 90	.1851	0217	.0050	0055	.0009	0003	.0001	0000	0000	.0091	0001	- 0001
					0015	0000	0005	- 0003	20002	0001	•0901	0001
.95	.1840	0235	•0072	00.30	.0019	0007	.000.5	.0003		0000	0001	- 00))

Tabl	e Cl. Conting	ued ·			_		·						
_(1)	s = 2 , p = 4	4											
n	λ 1.14		R _{n4} (1)	â _{n4}			<u>.</u>					
1	9.37921	35	.02524	01	-2.32137	76							
	17 254.90	nn		.)4	-15,81252	01			in the second				
4	21.25462	54	00147	92	28.10401	49							
5	25.25824	49	00026	RR	-44.99743	92							
6	29.26271	84	00014	SO	66.70274	61					and and the second s		,
	33.26700	66	.00007	97	-94.05989	35							
8	37.27092	08 .	00004	94	127.44523	33							
9	41.27442	42	.00003	09	-167.32563	93		-					
10	45.27754	43	00002	06	214.15136	23				· · · · · · · · · · · · · · · · · · ·			
11	49.280 33	32	.00001	42	+268.35755	56						the the set of the set	· · · ·
14	53.28345	87	00001	01	330.19441	23							
		•											
r*	R ₁₄	R24	R ₃₄	^R 44	R ₅₄	^R 64	R ₇₄	R ₈₄	^R 94	R104	^R 114	^R 124	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9.0000	
.05	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
.10	-0001	.0001	.0001	.0001	.0001	.0001	.0001	.0000	.0000	.0000	.0000	.0000	المحتد
.15	.0005	. 2004	.0004	.0003	-0005	.0005	.0001	.0001	.0000	.0000	.0000	0000	
.20	.0013	.0011	.0009	.0006	.0004	.0002	.0001	.0000	0000	0000	0001	0000	
.25	.0030	.0022	0015	.0008	.0003	.0001	0000	0001	0000	.0000	• 0002 0002	•0000	
. 30	.0055	.0036	.0019	.0007	.0001	0001	0001	0000	.0000	• 0000		- 0000	
. 35	.0088	.0044	.001B	-0005	0002	0001	.0000	.0000	•0000	0000	0100	0000	
.40	.0127	.0057	0012	0003	0003	.0000	.0001	0000	0000		- 0000	- u: 11	*·
• 45	.0170	-0058	.0003	0006	0000	-0001	0000	0000	.0000	- 0000	- 0000	0300	
.50	.0212	.0050	0006	0004	.0002	.0001	0001	0000	- 0000	0000	.0000	0000	
· • 55	.0248	.0036	0012	0001	-0002	0001	0000	- 0000	- 0000	- 2000	0000	0000	
.60	.0277	•0017	0014	.0003	• 0001	- 0001	.0001	- 0000	0000	0000	0090	.0050	
• • • •	.0295	0004	0010	.0005	- 0001	0000	- 0001	- 0000	-0000	- 0000	0000	 	
	.0304		0004	.0004	0002	-0001	- 0000	0000	0000	0000	.0000	0.00	
, ./5	0305		.0003	- 0001	- 0002	-0001		-0000	0000	.0000	0000	.0000	
	0/94	- 0050	-0009	- 0002	-0001	- 0000	.0000	.0000	0000	.0000	0000	•6946	
· • • • • •	• 0 2 5 1		• • • • • • • • • • • • • • • • • • • •	0005	.0002		.0001	0000	.0000	0000	. 0000	6669	
- 90 - QC	0257		.0015	0006	.0002	0001	.0001	0000	.0000	0000	.0000	-•96°10	
1.00	.0252	-+0049	.0015	0006	.0003	0001	.0001	0000	.0000	0000	•0000		

Table	e Cl. Contin	ued				•						
(2)	s = 4, p = 4											
n	^λ n4		R _{n4} (1	ມ	â _{n4}							
	7.67202	94	.04656	97	-1.648345	56						
2	11.42349	13	00765	50	4.805620)6						
3	15.12413	()4	.002200	24	-9.910217	71						
4	18.79422	57	00084	72	17.372316	52		_ <u></u>				
5	22.44552	62	.00038	94	-27.543778	36						
6	25.07924	37	000203	20	40.749920	58						
7	29.70400	13	.00011	44	-57.29788	37						
8	33. 32255	ές	00006	93	77.480546	59						
9	36.93654	12	.00004	42	-101.579064	48						
10	49.54749	27	00002	94	129.86457	75						
	44.1556?	35	.00002	03	-162.599565	50						
12	47.76145	99	00001	44 -	200.038778	36		····.			<u> </u>	
r *	R ₁₄	R24	R ₃₄	R44	^R 54	R ₆₄	R.74	R ₈₄	R ₉₄	R ₁₀₄	R ₁₁₄	R ₁₂₄
0 00	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	-0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	•00.30	•0050	• 0000	• 90.70
.10	.0001	.0001	-0001	.0001	.0001	.0001	.0001	.0001	.0000	.0000	•9900	.30.99
.15	-0005	.0004	.0004	.0003	.0003	.0002	-0005	.0001	.0001	.0000	.0000	.0000
20	.0014	.0012	.0010	.000A	.0005	.0003	-000S	.0001	.0000	0000	0000	0000
25	.0032	.0026	.0018	.0011	.0006	-0002	.0000	0001	0001	0000	0000	• 2000
30	-0062	.0044	.0026	.0012	.0003	0000	0001	0001	.0000	.0000	.0000	.0000
35	.0104	.0064	.0030	.000A	0001	0002	0001	.0700	.0000	.0000	0000	0099
.40	.0157	.0081	.0026	.0001	0004	0001	.0001	.0.001	0000	0000	0000	.0000
.45	. 0220	.0091	.0016	0006	0003	.0001	.0001	0000	0000	.0000	.0000	0000
.50	.0288	.0090	.0002	0009	.0000	-000S	÷.0000	0001	.0000	.0000	0000	0000
55	0355	. 3078	0012	0006	.0003	.0000	0001	.0000	• 0 0 0 •	- • 0 0 0 C	•000e	•0000
. 60	.0416	.0054	0050	.0000	•0003	0005	0000	.0001	0000	0000	.0000	0000
.65	.0465	.0023	0020	.0006	.0000	0001	.0001	0000	0000	0000	0000	-0000
.70	.0499	0009	0013	.0007	0003	.0000	.0000	0001	•0000	0000	0000	.0000
.75	.0517	0038	0003	.0005	0003	.0002	0001	•0000	.0000	0000 -	.0000	0000
.90	0518	0059	.0008	.0000	0001	.0001	0001	.0001	0000	.0000	0000	00:00
.95	.0508	0072	.0016	0004	.0001	0000	0000	.0000	0000	.0000	0000	.0600
.90	.0491	0077	.0021	0007	.0003	0001	.0001	0000		0000	.0000	•0000
	and the state of t				000/		0001	- 0001	0000		-0000	0000
.95	.0474	0077	.0022	-•0008	•0004	0002	•000t		•••••			

Tab (3)	le C1. Contin s = 6 , p =	ued 4				· · · ·						-
n	λ _{n4}		R _{n4} (1)	â _{n4}							
1	6.996792	2	.06482	43	-1.38521	33						
2	10.771024	4	00925	86	3.87098	21						
- 3	14.387911	5	.00257	07	-7.95579	99			,			and the second
4	17.939516	4	00097	42	13.95170	31						
5	21.458172	>0	.00044	42.	-22.13575	21						
6	24.95779.	12	00055	93	32.76725	23						
7	28.445380)5	.00015	95	-46.09204	43						and to the same and the second s
8	31.924854	+9	00007	82	62.34500	37						
9	35.398590	0	.00004	99	-81.75178	03						
10	38.866110) ()	00003	32	104.53010	40						
11	42.334439	99	.00002	29	-130.89078	09	· · · · · · · · · · · · · · · · · · ·					
12	45.798295	50 .	00001	62	161.03851							
r*	R ₁₄	^R 24	P.34	R44	^R 54	R ₆₄	R.74	R ₈₄	^R 94	^R 104	^R 114	R ₁₂₄
2.00	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
05	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
.10	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0000	• 00400	.0000
.15	.0005	.0004	.0004	.0003	.0003	-0005	-0005	.0001	.0001	.0001	.0000	•0000
.20	.0014	.0013	.0010	.0008	.0006	.0004	.0002	.0001	.0000	0000	0000	0000
.25	.0033	.0027	.0020	.0013	.0007	.0003	.0001	0000	0001			aaaa
• 30	.0065	.0047	.0029	.0015	.0005	.0000.	0001	0001	0000	.0000	- 0000	- 0000
.35	.0110	.0070	•0035	•0015	•0000	0005	0001	.0000	.0001	- 0000	- 0000	.0000
.40	.0171	.0093	.0034	•0004	0004	-•0005	.0000	.0001	.0000	- 0000		0000
.45	.0244	.0109	•005	0004	0005	.0000	.0001	.0000	0000		0000	
.50	•032A	.0114	.0010	0010	0001	-0002	.0000	- 0001	.0000	- 0000	0000	.0000
	.0415	.0106	0007	0009	.0003	.0001	0001	0000	- 0000	- 0000	-0000	0000
.60	.0500	.0083	-•0050	0003	.0004	0001	0001	.0001	- 0000	0000	+.0000	0000
. 55	.0575	.0049	0025	.0004	.0002	0002	.0001	- 0001		.0000	0000	.0000
.70	.0635	.0010	0051	.0009	0005	0001	•0001	- 0001	-0000	0000	.0000	0000
.75	.0575	0028	0009	.0008	0004	.0001	0000		- 0000	- 0000	.0000	0000
-90	•0693	0060	.0005	•0003	000.3	.0002	0001	-0001	- 0000		0000	.0000
.85	.0692	00H1	.0016	0004	.0000	.0000	0001	- 0000	0000	0000	0000	.0000
•90	.0677	0091	.0023	0008	0003	- 0001	-0001		-0000	+.0000	.0000	0000
.95	.0658	0093	.0026		.0004	- 0002	0001		.0000	0000	.0000	0000
1.00	.0648	0093	•0026	0010	.0004		•0001 ·					

Table	C1. Continue	a			· · · -								
<u>(4)</u> s	<u>= 8 ~ = 4</u>												
n	^n4		R _{n4} (1)	^a n4				· · ·				
	6.627773	57	.07956	66	-1.24809	03							
2	10.439225	55	-,01019	93	3.40262	94							
	14.009537	19	.00276	86	-6.99871	73							
4	17.499553	38	00103	97	12.28523	78					and a second		
5	20.951279	2	.00047	19	-19.50305	04							
6	24.391424	+H	00024	29	28.87955	15							
7	27.79-10-	15	.00013	69	-40.63075	53				1.1			
ö	31.20-790	15	0600H	26	54.96317	23							
9	34.607134	75	.00005	26	-72.0/525	02							
10	39.003454	+7	00003	50	92.15849	43							
11	41.397072	рн	.00002	4]	-115.39833	96							
12	44.78758	39	00001	71	141.97484	92							
					<u></u>								
r *	R	R	' R ₇₄	RAA	^R 54	R ₆₄	R ₇₄	R ₈₄	^P 94	R ₁₀₄	R ₁₁₄	R ₁₂₄	
	14						0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	
0.00	0.6000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0000		.0000	.0600	
.05	.0000	.0000	.0000	.0000	•0000	.0000	.0000	.0000	.0001	.0000	.0000	.0000	
.10	.0001	.0001	.0001	.0001	-0001	•0001	.0001	0001	0001	-0001	.0900	.000	
.15	.0005	.0004	.0004	•0904	.0003	.0002	.0002	0001	0000	0000	0000	0000	
.20	.0015	.0013	.0011	.0008	.0006	.0004	.0005	- 0000	- 0001	0000	0000	.0000	
.25	•00.34	.0028	.0020	.0014	-000R	.0004	.0001	- 0000	0000	.0000	.0000	.0000	
. 30	.0046	.0049	00.31	.0016	.0006	.0001	- 0001	- 0000	.0001	.0000	0000	0000	
. 35	•0114	.0074	• 0 0 3 B	.0014	.0001		0002		.0000	00.00	0000	,a600	
. 40	.017H	.0099	.00.39	• 0006	0004		0000	.0000	0001	0000	.0000	.0000	
.45	·0258	.0119	. 0031	0003	0005	0000	0001		0000	.0000	.0000 -	(00)	
.50	•0351	.0129	.0016	0010	0003	.0007	- 0001	- 0000	-0000	0000	0f00	.0000	
.55	.0452	.0124	0003	0011	.0002	-0002	- 0001	0000	- 0000	0000	.0000	.0000	
.60	.0553	.0104	0019	0005	.0005	- 0001	0001	-0000	0000	.0000	.0000	0000	
.65	•0649	0070	0027	.0003	•0003	0002	.0000	- 000)	.0000	.0000	0000	.0000	
.70	.0730	.0027	0025	.0009	0001	0001	0000	- 0000		0000	.0000	.0000	
.75	.0790	0017	0014	.0009	0004	.0001	- 0000	- 00000	0000	0000	.0000	0000	
. HO	.0825	0056	.0001	.0004	0003	.0007	- 0001	-0001	0000	.0000	0000	.0300	
.85	•0835	0083	.0015	0005	0000	.0001	0001	0000	0000	.0000	0000	•0000	
.90	.0826	0094	.0024	0008	.0003	- 0001	0001	0001	.0000	0000	.0000	0000	
. 95	.0807	0105	.0027	0010	.0004	- 0002	0001	- 0001	-0001	0000	 0000 	0000	
1.00	.0795	0102	.0028	0010	.0005	0002	.0001	0001		- م رجعة متعالم			
Tabl	e Cl. Continu	ued											
------	-----------------	--------	-----------------	--------	-----------------	--------	--------	---------	--------	--------	------------------	--	---
_(ئ)	s = 10 . p =	4		(1)	â	***							
n	^λ n4		^K n4	(i)	^a n4								
1	6.39148	57	.09152	71	-1.164929	94							
2	10.23644	99	01078	78	3.121237	76							
3	13.77802	93	.00288	49	-6.425438	36							
• 4	17.23035	79	00107	69	11.285281	31							
5	20.64123	45	.00048	72	-17.92041	17							
6	24.02401	55	00025	03	26.539046	52							
7	27.49247	32	.00014	04	-37.339099	99							,
8	30.76640	57	00008	49	50.509846	50							
- 9	34.12363	93	.00005	40	-66.2331A	27						مېر د دېږې د د د د مېر ول کې کې کې کې کې کې ول	
10	37.47598	47	00003	59	84.68465	21							
11	40.82464	58	.00002	47	-106.034234	49							
12	44.17045	75	00001	75	130.446992	23							
	R	R	ß	R	R.,	R	R.,,	Red	Rod	R104	R ₁₁₄	R ₁₂₄	
-	14	-24	- 34	. 44	54	04	/4	04	24	204			
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.0999	0.0000	
0.00	0000	. 0000	-0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0040	
10		.0001	-0001	.0001	.0001	.0001	.0001	.0001	.0001	.0000	•0000	.0000	
.15	.0005	.0004	.0004	.0004	.0003	.0003	.0002	.0005	.0001	.0001	.0000	.0000	
20	-0015	.0013	.0011	.0009	.0006	.0004	.0003	.000)	.0001	.0000	0000	0000	
- 25	.0034	.0028	.0021	.0014	.0008	.0004	.0001	0000	0001	0001	0000	0000	
30	.0067	.0050	.0032	.0017	.0007	.0001	0001	0001	0001	.0000	.0000	.0000	
35	0115	.0076	.0040	.0015	.0002	0002	0002	00-00	.0000	.0600	•0000	0000	
.40	.0183	.0103	.0042	.000B	0003	0003	0000	.0001	.0000	0000	0000	•0000	
.45	.0267	.0126	.0035	0002	0004	0001	.0001	.0000	0000	0000	•0000	.0000	
.50	.0366	.0139	.0020	0010	0003	-0005	.0001	0001	0000	.0000	•0000	0000	
-55	.0476	.0137	.0000	0012	.0001	-0002	0001	0001	.0000	.0000	0000		
-50	.0589	.0119	0018	0007	.0005	0000	0001	.0001	.0000	0000	.0000	.0000	
.65	.0699	.0085	0028	.0001	.0004	0002	.0000	.0001	0000	.0000	.0000	0000	
. 70	.0796	.0041	0028	.0008	0000	0002	.0001	0000	0000	.0000	0000	.0000	
.75	-9874	- 0007	0018	.0010	0004	.0001	.0000	0001	.0000	0000	.0000	.0000	
	.0925	0050	0002	.0006	0004	.0002	0001	.0000	•0000	0000	.0000	0000	
.85	.0947	0083	.0013	0001	0001	.0001	0001	.0001	0000	.0000	0000	.6000	
. 90	0945	0102	.0024	000A	.0003	0001	.0000	0000	0000	.0000	0000	.0000	
95	.0927	0108	.0028	0010	.0005	0002	.0001	0001	.0000	0000	.0000	0000	
		6100	0020	0011	0005	- 0003	0001	= .0001	-0001	0000	.0000	0000	

Table	e Cl. Continu	ed	·						<u> </u>			
(6) 9	s = 12 . D = 4	4										
n	^n4		R _{n4} (1	L)	â _{n4}					ан таларын балар жасар жасар балар жасар жас с		
1	6 220000		10133	0.2	-1.10950	87		·····				
. 1	10 007007	10 11	- 0133 - 01136	56	2.93262	58						
	13.620652	>/}	.00295	<u>45</u>	-6.03938	75		·····		· · · · · · · · · · · · · · · · · · ·		
4	17.047748	14	00109	94	10.61012	26						
5	20.431209	5	.00049	62	-16.84981	90						
6	23.790531	0	00025	46	24.95354	90						
7	27.134944	6	.00014	31	-35.10686	57						
8	30.469450	9	00008	62	47.44722	56				· · · · · · · · · · · · · · · · · · ·		
9	33.797014	.7	.00005	43	-62.26519	06						
10	37.119513	33	00003	64	79.60536	27						
11	40,435197	70	.00002	51	99.66713	36						
12	43.753932	20	00001	78	122,60528	57						
	•											
r+	R ₁₄	R ₂₄	R ₃₄	R44	R ₅₄	P.64	R74	R84	R94	R104	R ₁₁₄	R ₁₂₄
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.05	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	•0000	•0000	•0000
.10	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0000	•0000	•0000
.15	.0005	.0005	.0004	.0004	.0003	.0003	.0002	-0005	.0001	. . 0001	. •009 1	*4000
• 20	.0015	.0013	.0011	.0009	.0006	.0004	.0003	-0002	.0001	.0000	0000	0000
.25	.0035	.0028	.0021	.0014	.0009	.0004	.0001	0000	0001	0001	0000	0000
.30	.0068	.0050	.0033	.0018	.0007	.0001	0001	0001	0001	.0000	.0000	.0000
.35	.0118	.0077	.0042	.0016	.0003	0002	0005	0000	.0000	.0000	.0000	0000
.40	.0186	.0106	.0044	.0009	0003	0003	0000	.0001	.0000	0000	0000	0000
.45	.0273	.0131	.0038	0001	0006	0001	.0001	.0001	0000	0000	.0000	.0000
.50	.0376	.0145	.0023	0010	0004	-0005	.0001	0001	0000	• 1000	0000	0.00
•55	.0492	0146	.0003	0015	.0001	•0003	0001	0001	•0000	•0000	0000	•0000
.60	.0615	.0129	0016	0008	.0005	•0000	0001	.0001	.0000	0000	0000	
•65	•0735	.0097	0028	.0000	.0004	0002	.0000	.0001	0000		.0000	
.70	.0846	.0052	0030	.0008	.0000	0002	.0001	0000	0000	.0000	- 0000	
.75	•0937	.0005	0021	.0010	0004	.0000	.0001	0001	+0000-	- 0000	0000	- 0000
.80	.1002	0045	0005	.0007	0004	.0002	0001	•0000	- 0000		- 0000	0000
•85	.1036	0082	.0012	0000	0001	.0001	0001	.0001	0000	.0000	- 0000	.0000
. 90	. 1041	0104	.0024	0007	.0002	0001	.0000	.0000	0000	- 0000	- 0000	
.95	.1026	0115	.0029	0011	.0005	0002	.0001	0901	•0000	- 0000	+0000 00000	- 00000
1.00	.1013	0115	.0030	0011	.0005	0003	.0001	0001	<u></u>	0000		MYXX Barrier

12014	Ci. Continued	đ				· · · · · · · · · · · · · · · · · · ·		*****					
(1) 9	s = 2, p = 5			· • • • • • • • • • • • • • • • • • • •									
n	^λ n5		R _{nS} ([1]	â _{n5}							-	,
1	11.5093951	•****	.008950	17	-3.64257	19							
2	15.3489579	:	001752	23	14 94252	84							
3	19.2994476		.00048	51	-38.47630	62							
4	53.5851811	\	00017	16	79.93199	dl							
5	27.2774051		.000072	20	-145.88599	15							
6	31.2764166	•	000034	+1	243.70471	00	·····						
7	35.2772442		.00001	77	-381.49908	57							
8	39.2748365	,	00000	99	568.09125	61							
9	43.2807084	• · · ·	.00000	59	-812.98672	62							
10	47.2826429)	00000	36	1126.35090	34							• • • •
11	51.2844662		•00000	24 •	-1519.06318	76							
12	55.2983022		00000	15	1996.53483	87							
			,										
r*	R ₁₅	R ₂₅	R35	R ₄₅	R ₅₅	P ₆₅	R ₇₅	R 85	R ₉₅	R ₁₀₅	R ₁₁₅	R ₁₂₅	
	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
00		0.000	0000	- 0000	.0000	.0000	.0900	.0000	.0000	.0000	.0000	ਂ ਹੁਹੇਰਾਉ	
10	-0000	.0000	-0000	- 0000	.0000		.0000	.0000	0000	.0000	.0000	.0000	
15	0001	0001	- 0001	.0000	.0000	.0000	.0000	.0000	•0000	.0000	 0600 	•4000	
20	-0001	0001	- 0002	.0001	.0001	.0000	.0000	.0000	.0000	0000	0000	0000	
25	0007	0005	-0004	.0002	.0001	0000	.0000	0000	0000	0000	.0000	.0000	
30	0015	-0010	.0005	.0002	.0001	0000	0000	0000	.0000	.0000	.0000	0000	
15	-0027	.0015	.0006	.0001	0000	0000	0000	.0000	.0000	0000	- •9669	- •66933	
40	.0943	.0019	.0005	0000	0001	0000	.0000	.0000	0000	0000	• 00.00	.0000	
45	.0061	.0021	5000.	0001	0000	0000	.0000	0000	0000	.0000	.000-)	0000	
50	.0080	0020	0001	0002	.0000	.0000	0000	0000	.0000	0000	0000		a. 1982 - 1
55	.0097	.0015	0004	0001	.0001	0000	0000	.0000	0000	- .0000	• 9 0 (0)	0000	
60	.0111	.0008	0005	.0001	.0000	0000	.0000		0000	.0000	0000		
65	.0119	0000	0004	.0001	0000	0000	.0000	0000	.0000	.0000	0000	.0000	
70	.0122	0008	0002	.0001	0001	.0000	0000	0000	.0000	0000	.0000	0000	
75	.0120	0014	.0001	.0001	0000	.0000	0000	.0000	-+0000	0000	.0040	0000	
80	.0114	0017	.0003	0000	0000	.0000	0000	.0000	0000	•0000		.0000	
85	.0106	0019	.0004	0001	.0000	0000	.0000	.0000	-•0000	•0000	0000	.0000	
90	.0098	0019	.0005	0002	.0001	0000	.0000	0000	.0000	0000	.0.00		
95	.0092	0018	.0005	0002	.0001	0000	.0000	0000	•0000	0000	.0000	0600	
00	.0090	0018	0005	0002	.0001	0000	.0000	0000	.0000	0000	•9994	0000	

Tab 1	e Cl. Continu	ied _								and the second		
(2)	s=4,p=5											
n	λ_ ε		R _{n5} (1	L)	â _{n5}		·	<u> </u>			<u>,</u>	
1	9 400642	26	.01988	17	-2.34107	35				<u>. </u>	· · · · · · · · · · · · · · · · · · ·	
	13 105462	20	003199	97	8.79931	27						
ž	16.812747	70	.000828	80	-21.86429	27					·	
4	20.489696		000284	45	44.67027	76						
5 -	24.146106	54	.00011	75.	-80.79106	03						······
6	27.784304	+4	00005	52	134.21987	09						
7	31.420531	12	.0000285		-204.35112	15						
8	35.045565	54	00001	59	310.96367	74						
9	38.665264	43	.00000	94	-444.20616	42	· · · · · · · · · · · · · · · · · · ·					
10	42.280906	52	00000	58	614.58400	41						
11	45.8933947		.00000	37	-827.94817	89						
12	49.503380	47	00000	25	1090.48563	37					gan at dawn with a summer	
r+	^R 15	R ₂₅	R ₃₅	R ₄₅	^R 55	^R 65	R ₇₅	^R 85	R ₉₅	^R 105	R ₁₁₅	R125
0.00	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00 AE	0.0000	0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	•0000		
10	-0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	•0000	.0000	.0000
15	-0001	.0001	.0001	.0001	.0000	.0000	.0000	.0000	• 0000		• • • • • • • • • • • • • • • • • • • •	• 9000
20	.0003	2006	.0002	.0002	.0001	.0001	.0000	.0000	.0000			
25	.000H	.0006	.0004	.0003	5000.	.0001	.0000	.0000	0000	-,0000		0000
	.0917	. 00.12	.0008	.0004	.0002	.0000	0000	0000	0000	-0000	• 00000 • 0000	• Contra • 176 18
35	.0033	.0121	.0010	.0004	.0000	0000	0000	0000	•000//	• <u>0900</u>	- 0000	
.40	.0055	.0029	.0011	.0002	0001	0001	.0000	.0000	- 0000	- 0000	-0000 -0000	
.45	.0084	.0036	.0008	0001	0001	.0000	.0000	•0000			0000	0000
.50	.0118	.00.39	•0003	0003	0000	.0001	.0000		0000	+.0000	0000	.0000
.55	.0153	.0035	0002	0005	.0001	.0000	0100	0000	- 0000	- 6000	.0000	0000
.60	.0185	.0027	0007	0001	.0001	00400	0000	- 0000			0000	0000
.65	.0515	.0013	000B	.0005	.0000	0000		- 0000	- 0000	0000	0000	.0000
.70	.0230	0005	0006	.0002	0001	0000	- 0000	- 0000	.0000	0000	.0000	0000
.75	.023H	0015	0005	•0005	0001	.0000	- 0000	- 0000	0000	0000	0000	0000
. 80	.0237	0025	.0003	.0000	0001	.0000	- 0000	-0000	0000	.0000	0000	.0000
.85	.022H	003]	.0006	0001		- 0000	0000	- 0000	-0000	0000	.0000	.0000
.90	.0215	0033	.0008	+.0002	.0001	- 0000	.0000	0000	.0000	0000	.0000	0000
	0.004	~ ^ ^ 7 7 7	. 0008				A V V V V			and the second s	the state of the s	

1251	e CI. Continu	nea				www.unitedia.com	والمساحدة والمراجع والمراجع المراجع						المدارة ومساردهموم
(3)	s = 6 , p = 3	5											
	······		p (1	۰	â							and the company of the second second second	
n	^n5		n5 ⁽¹	/	n5_								
1	8.56082	91	.03061	13	-1.86042	33)
2	12.30945	42	00418	88	6.75297	28							
3	15.94510	38	.00103	04	-16.72872	86							
4 .	19.51665) ^	00034	61	34.22627	21							
.5	23.02510	57	.00014	1?	-62.00410	53 .							3
6	26.56546	55	00006	59	103.15998	38							
. /	30.06433	53	•00003	39	-161.97737	11							1
	33.55314	32	00001	88	234.45236	12							
9	37.03440	3-	.00001	11	-342.26225	12							
	40.5110.30	81	~.00000	68	473.75976	40							
11	43.98314	82	• • • • • • • • • • • • • • • • • • • •	44	-638,46407	76							
12	47.452020	2/	-,00000	29	841.15324	91			برارد در می بردند و <mark>بر است (کاراند</mark> می			·····	
r+	B	• R.	R.	R `	B	R	R		R	R		R	
	-15	25	35	45	55	65	75	85	95	105	-115	125	
0.00	0.0000	0.0000.	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	8.0000	0.0000	0.0000	0.0000	
.05	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
	.0000	.0000	.0000	,0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
•15	.0001	.0001	.0001	.0001	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
• 20	.0003	.0002	-0002	.0002	.0001	•0001	.0001	.0000	.0000	.0000	0000	0000	
.25	-000H	•0007	0005	.0003	.0005	.0001	.0000	.0000	0000	-*00 60	0000	0000	
• 30	.0019	.0013	•0009	.0005	-0005	.0001	0100	0000	0000	0000	.0000	.0000	
• 35	.0036	•0023	-001S	.0005	.0001	0000	0000	0000	.0040	•0000	.0000	0006	
. 40	.0062	.0034	.0014	.0003	0001	0001	0000	.0000	.0000	0000	-,0000	0000	
.45	.0097	.0044	.0015	0000	0005	0000	.0000	.0000	-••0000	0000	•0000	 0000 	
.50	•0139	.0050	.0007	0003	0001	•0000	.0000	0000	0000	.0000	.0000	0000	
•55	.0187	.0050	.0000	0004	.0000	.0001	0000	0000	.0000	0000	0000	.0000	
• 50	•0235	.0042	0006	0002	.0001	0000	0000	.0000	.0000	0000	.0000	. 0000	·····
	.0279	.0024	0010	0001	.0001	0001	.0000	.0000	0000		.0000	0000	
.70	.0315	.0009	0009	.0003	0000	0000	.0000	0000	.0000	.0000	000a	.0000	
• 75	.033/	0010	0005	•0003	0001	•0000	0000	0000	.0000	0000	.0000	0000	
.80	.0345	0026	•0001	.0001	0001	.0001	0000	.0000	0000	0000	.0000	0000	
- H5	.0341	0037	•9006	~.0001	•0000	.0000	0000	.0000	0000	•9000	·	.0000	
	.0328	0042	.0009	0003	.0001	0000	.0000	0000	.0000	.0000		.0000	
• 95	.0314	0043	.0010	0003	.0001	0001	.0000	0000	.0000	0000	.0000		
1.00	-0306	00:42	-0010	0003	.0001	0001	.0000	0000	.0.000	9000	•0.000	0000	

•	Tab le	e Cl. Continu	ed										
	(4)	s = 8 ; p = 5						· · ·	· · · · · · · · · · · · · · · · · · ·				•
	n	λ _{n5}		R _{n5} (1)		â _{n5}							
		8 008903		-04015	31	-1.61707	77						
		11.903373	3	00443	01	5.76663	53						
	ž	15.504453	a l	.00114	94	-14.31948	08						
	4	19.020442		00038	0.8	29.36543	45						
	5	22.492542	5	.00015	42	-53.24334	78	· <u>·</u> ··································					
•	. 6	27. 438801	5	00007	16	88,73305	96						
	7	29.368468	R	.00003	67	-138.64177	75						
	8	32.786808	3	00002	03	206.19230	66						
	9	36.197051	2	.00001	20	-294.81303	32						
	10	39.601295	4	00000	74	408.16947	65						
	11	43.000967	'8	.00000	47	-550.15638	58						
	12	46.397071	4	00000	32	724.89154	68						
- `	r*	R ₁₅	R ₂₅	R ₃₅	R45	R ₅₅	R ₆₅	R ₇₅	R ₈₅	R ₉₅	R ₁₀₅	R ₁₁₅	R ₁₂₅
			0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.00	0.0000	9.0000	0.0000	0.0000	0.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
	05	•0000	.0000	-0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0900
	. 10	.0000	.0000	.0001	0000	-0000	.0000	.0000	.0000	.0040	.0000	.0000	• A R 9 9 -
	• 1 7	• 9001	.0001		0002	.0001	.0001	.0001	.0000	.0000	•0000	*0C39	- - 06600
	. 20	.0003	0007	0005	.0004	-0002	.0001	.0001	.0000	0000	0000	0000	
		.0004	0014	.0009	.0005	-0002	.0001	0000	0000	0000	0000	.0000	.0000
	. 50	0019	0024	.0013	.0006	.0001	0000	0000	0000	.0000	.0000	.0000	0000
	- 17	0045	0037	.0016	.0004	0000	0001	0000	.0000	.0000	0000	0000	-•0000
	.40	0104	0049	-0015	.0001	0002	0000	.0000	.0000	0000	0000	.0000	<u> </u>
		0162	0058	.0010	0003	0001	.0000	.0000	0000	0000	.0000	.0000	+;0000
	- 7V CC	0136	-0060	.0003	0004	.0000	.0001	0000	0000	.0000	.0000	0000	<u></u>
	• <u>• • • • •</u>	0268	0054	0005	~.0003	.0001	.0000	0000	.0000	•0000		•0000	• 0 ° 0 °
	• ") ·/ ~ ~ ~	0.726	.0040	0010	.0000	.0001	0001	.0000	.0000	0000	• • • • • • • •	.	
•	70	- 6377 -	.0019	0011	0003	.0000	0000	.0000	0000	0000	.0000	0000	-0.000 0.000
, ·	.75	.0414	- 0004	0007	.0003	0001	.0000	.0000	0000	.0000	0000	.0000	- 0000
2	80	.0434	0025	0001	.0002	0001	.0001	0000	.0000	0000	0000	.0000	-0000
	85	0437	0039	.0006	0001	0000	.0000	0000	.0000	0000	.0000	0008	.0000
,	. 90	.0427	0047	.0010	0003	.0001	0000	.0000	0000	0000	.0000		0009.
	. 95	.0411	- 0049	.0011	0004	.0001	0001	.0000	0000	.0000	0000	.0000	0000
	1.00	.0402	0048	.0011	0004	-0005	0001	.0000	0000	.0000	0000	•0000	0030

Tab I	e Cl. Contin	uea								·		
(5)	s = 10 . p =	5				_						
n	^λ nS		R _{n5} (1)) .	â _n 5							
T	7.80395	30	.04838	7-1	-1.47198	84				- <u></u>		
2	11.65671	54	00525	75	5.18965	64						
3	15.23611	98	-00122	39	-12.91960	55						
4	18.71779	89	00040	19	26.53784	78						
5	22.15104	27	.00016	20	-48.19826	20				1.1		
5	25.55626	54	00007	50	80.3103	155				-		
	28.94366	76	.00003	84	-125.52564	58						
	32.31497	54	00002	12	186.72697	95						
9 10	35.68567	25	.00001	25	-267.01928	15	• •					
	39,04600	47	00000	17	369.72186	05				· ···· · · ··· · · · · · · · · · · · ·		
12	47.40150	58	.00000	49	-498.36151	.06						
	45.75323	31	00000	3 9	000.000 1					······································		
					<u>_</u>		· · ·			a galar	let e	
T	^R 15	^R 25	^R 35	^R 45	R ₅₅	^R 65	^R 75	^R 85	^R 95	R ₁₀₅	R ₁₁₅	R125
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
.05	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	•0000	.0000
.10	.0000	.0000	.0000	.0000	,0000	.0000	,0000	.0000	.0000	.0000	•0000	.0000
•15	.0001	.0001	.0001	•0001	.0000	.0000	.0000	.0000	•0000	.0000	.0000	∎ប់សារិធិ
.20	.0003	.0003	.0002	-0005	.0001	.0001	.0001	.0000	.0000	.0000	•0000	0000
•25	.000R	.0007	.0005	•0004	.0002	.0001	.0001	.0000	0000	0000	0000	0000
• 30	.0019	•0014	.0010	•0006	.0003	.0001	.0000	0000	0000	0000	• 0000	• 16.10
• 35	.0038	.0025	.0014	.0006	.0002	0000	0000	0000	.0000	.0000	•0000	0000
• 40	.0067	.00-19	.0017	.0005	0000	0001	0000	0000	.0000	•0000	9000	<u> </u>
•45	.0108	-0052	.0017	.0001	0002	0001	.0000	.0900	- 0000	- 0000	•0000	•2099 •2099
<u></u>	.0150	.0053	.0012	0002		.0000	.0000	- 0000			- 0000	- 0.000
• 55	• 0 ~ ~ 3	0057	.0005		0000.	.0001	0000	0000	.0000	- 0000		00000
	•0291		0004	0004	.0001	.0000	- 0000	.0000	- 0000	- 0000	0000	- 0000
-05	.0359	.0049		0001	.0001	- 0001	0000	- 0000	0000	0000	- 0000	0000
- 12-						0001_		- 0000		- 0000	- 0000	0000
. / "	-U472	- 0002	- 0009	+0004	- 0001	- 0000	- 0000		.0000			- 3000
	0516	- 0040		- 0001	0001	-0000	- 0000	.0000	0000	-0000	0000	.0000
- 90	-0510		.0030		.0001	0000	.0000	.0000	0000	.0000	0000	.0000
- 05	.0494	0053	.0012	- 0004	.0002	0001	-0000	0000	.0000	0000	.0000	0000
• • •		••••	• V V 1 G	• • • • • •								

Table	C1. Continue	d	,										
(6) s	= 12 . n = 5												
n	^λ n5		R _{n5} (1)	ân5		· · · · · · · · · · · · · · · · · · ·		ينين ۽ پي دارگريميور کيون کاري			والمعادية المراجع المراجع	
1	7 5033800		.055443	8	-1.3763512	-					<u> </u>		
	11 4895 19	3	005556	9	4.8100590								
3	15.054419	4 .	.001273	5	-11.9973410		·						
4	18,513002	>	000415	5	24.6702406								
5	21.920099	2	.000166	9	-44.8327789								
6	25.297710	2	000077	1	74.7273637							. •	
7	28.656673	5	.000039	4	-116-8214573								
8	32.003024	9	000021	8	173.7973922					1			
9	35.340417	4	.000013	A	-248.5439040					Tagend Black and Black and Street Stree			1
10	38.671203	0	000007	9	344.1488744								- 1
11	41.996968	4	.000005	1	-463-8929663								
12	45.318924	9	000003	4	611.2442014								
r*	^R 15	R ₂₅	R 35	^R 45		^R 65	R ₇₅	^R 85	Rys	R ₁₀₅	R ₁₁₅	R ₁₂₅	
	•					0.0060	0.0000	0.0000	0.0000	0.0000	0.00.19	0.0000	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	.0.000	.0000	.0000	.0000	.0900	• 66 203	
.05	.0000	.0000	.0000	. 3000	.0000	0000	-0000	.0000	.0000	.0000	.0000	•0049	
.10	•0000	.0000	.0000	.0000	•0000 0000	0000	.0000	.0000	.0000	.0000	.0000	.0000 _	
.15	.0001	.0001			0000	-0001	.0001	.0000	.0000	.0000	•0000	0000	
•50	.0003	.0003	.0002	.0002	0001	.0001	.0001	.0000	0000	0000	0000	0000	
.25	.000A	.0007	.0005	.0004	.0003	.0001	.0000	0000	0000	0000	.0000	.0000	
.30	.0020	.0015	0010	0007	.0002	0600	0000	0000	.0000	.0000	.0000	0000	·····
<u>35</u>	.0039		0019	.0005	.0000	0001	0000	.0000	.0000	.0000	0000	0090	
.40	.0069	.0040	0018	5000	0002	0001	.0000	.0000	0000	0000	<u> </u>		
		0054	0014	0002	5000-	.0000	.0000	0000	0000	• 60.50	• (10000 • 0.000	- -	
• 50	.0100	.0000	-0006	0004	0000	.0001	0000	0000	.0000	.0090			
<u>·>></u>	.1633	0068	0003	0004	.0901	.0000	0000	.0000	.0000	0000		- 0000 - 0000	
• NU 2 C	0397	-0055	0010	0001	.0002	0000	0000	.0000	0000		- 0000	- 6000	
• <u></u> ,	0457	-0034	0013	-0002	.0001	0001	.0000	0000	0000	.0000	- 0000	00-0	
. 10	0519	.0008	0010	.0004	0001	0000	.0000	0000	.0000	- 0000	<u>0000</u>	0000	
	0561	+.0018	0004	.0003	0001	.0001	0000	.0000	.0000		• • • • • • • • • •	.0000	
• 7V. 25	0581	0039	.0004	.0000	0001	.0000	0000	0000	0000	0000	- 0000	.0000	
	- 0581	0052	.0010	0003	.0001	0000	.0000	.0000	0000	0000	-0000	0000	
- 45	-0566	0056	.0013	0004	-000S	0001	.0000	0000	.0000	0000	.0000	0000	an an marine an
1.09	.0554	0056	.0013	0004	.0002	0001	•0000	0000		• • • • • • • •			
	بكثيب مستشتجهم		i								and the second	1. S.	<i>C</i>