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Spatial capture-recapture (SCR) is employed for estimating abundance and density of 

species, particularly those that are cryptic or solitary, and evaluating how population 

density varies with habitat. However, it is uncertain whether estimates are biased 

when applied to species that aggregate, such as elk (Cervus canadensis). Wildlife 

managers in the Pacific Northwest lack a reliable method to estimate abundance and 

density of Roosevelt elk (C. c. roosevelti), as that subspecies frequents dense forests 

and occurs singly or in groups sometimes exceeding 100 individuals. Hitherto, 

decision-making in elk management has relied on visual counts as population indices, 

yet such counts are potentially biased because group size influences detection and 

observers are unlikely to detect individuals in forests. We employed non-invasive 

sampling and spatial capture-recapture (SCR) modeling to estimate Roosevelt elk 

population density in two Oregon wildlife management units (WMUs), Tioga and 

McKenzie, and examined how density varied with habitat or land ownership type. We 

imposed a grid across both WMUs, basing cell size on elk home ranges that we 

estimated in these habitats from existing telemetry data, and stratified sampling by 

land ownership and nutrition quality, calculated from U.S. Forest Service Westside 

Elk Nutrition models. We randomly selected cells in each stratum and placed three, 2-

km transects within each to facilitate recaptures. We sampled transects once in March 



to June 2018 and again in 2019 by walking a pre-determined bearing and searching 

for elk feces, tracking distance to control for variation in effort. We genotyped 

samples at 9 microsatellite loci and one sex-determining marker to identify 

individuals, then created a capture history for each individual. We evaluated a suite of 

SCR models to assess the effects of covariates relating to habitat type, terrain, 

precipitation, human activity, and sampling effort on elk population density and 

probability of detection. We applied the models to the capture histories, tested for the 

influence of aggregation on density estimates, and estimated mean elk population 

density for 2018 and 2019 at 0.80 and 0.20 individuals/km2 in Tioga and McKenzie, 

respectively. Our models performed well in areas with high elk density, deviating 

from true density 16% of the time. In contrast, our models deviated from true density 

54% of the time when applied to areas with low elk density, indicating sampling 

intensity would need to be increased to obtain adequate recaptures. We did not find 

evidence that aggregation of individuals influenced our estimates of density in this 

system. Our results indicate that effort and precipitation influenced the probability of 

detecting an individual, and distance to forage/cover edge, distance to roads, percent 

slope, distance to crops, and precipitation influenced our estimates of elk population 

density. Overall, our models predicted fewer elk on federal lands, indicating that 

public recreational opportunities involving elk such as hunting and wildlife viewing 

may be more limited on public lands. Our methodology provides a framework for 

managers to develop and implement surveys to reliably estimate elk density in 

forested landscapes. 
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GENERAL INTRODUCTION 

Prior to human settlement, elk occupied much of North America. Over 

exploitation and loss of habitat resulted in the loss of most elk populations in the 

eastern United States, and reduced population sizes in the west (Bryant and Maser 

1982, Boyd 1978). From 1892-1939 a recovery effort involved the translocation of 

over 5,000 elk from Yellowstone National Park to much of their historic range. This 

effort, which sought to establish new populations and aid recovery of existing 

populations, failed in most eastern states but succeeded in regions such as the Pacific 

Northwest (Schmidt 1978, Witmer 1990).  

Three subspecies of elk occur in the Pacific Northwest: Roosevelt (Cervus 

canadensis roosevelti), Rocky Mountain (Cervus canadensis nelsonii) and Tule elk 

(Cervus canadensis nannodes); two of which occur in Oregon: Roosevelt (Cervus 

canadensis roosevelti) and Rocky Mountain (Cervus canadensis nelsoni) elk. In the 

1880s, Oregon elk populations had declined to a few small and scattered herds after a 

period of exploitation (ODFW 2003). Elk hunting was prohibited from 1909 to 1932, 

during and after which translocations and other population recovery efforts resulted in 

the reestablishment of elk in much of their former range. In 2003, when Oregon 

Department of Fish and Wildlife (ODFW) published the Oregon Elk Management 

plan still in effect, they concluded that both subspecies of elk were still increasing and 

expanding in much of their range or had stabilized or slightly decreased in small parts 

of Oregon (ODFW 2003).  

ODFW attempts to maintain elk populations at levels that maximize hunting 

while retaining ecosystem health and resolving complaints of interaction with 

livestock through monitoring and harvest quotas (ODFW 2003). Hunting Roosevelt 

and Rocky Mountain elk in Oregon is popular and benefits Oregon’s economy. In 

2011, hunters in Oregon spent approximately $83 million in trip expenditures, 88% of 

which comes from big game hunting (e.g., deer, elk, bear; USFWS et al. 2011). 

ODFW controls  hunting opportunities by establishing management objectives (MOs) 

for each wildlife management unit (WMU) in the state (ODFW 2003). Currently, 

ODFW assesses whether populations of both subspecies meet MOs with helicopter 

surveys in late winter and early spring when elk are more likely to occupy open areas. 
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However, these efforts are difficult to translate into population estimates 

(McCorquodale et al. 2013) and therefore, provide little information for managers 

when determining appropriate harvest limits.  

Using methods that cannot accurately estimate abundance can lead to a 

perpetual reduction in ODFW’s ability to meet MOs (Hagen et al. 2014), which could 

cause poor population and ecosystem health. Roosevelt elk inhabit much of the 

Oregon Coast Range and western slope of the Oregon Cascade Range. Those regions 

are comprised of forests with dense structure, resulting in a substantial reduction in 

the ability to detect elk directly from the ground and air (McCorquodale et al. 2013). 

Thus, a technique is desired that would allow generation of accurate and cost-

effective population estimates for elk, even in dense habitat. The goal of this study is 

to determine whether sampling fecal DNA in a spatial capture-recapture framework 

could meet this need. 
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INTRODUCTION 

Wildlife managers often use abundance and density estimates to assess 

whether they are meeting management goals established to aid rare species recovery, 

control nuisance species, increase ecosystem function, or promote sustainable hunting 

(Dice 1938, Williams et al. 2002, Groom et al. 2005). Animal abundance and density 

are fundamental population attributes, but are difficult to measure, particularly for 

species that are hard to observe directly. For species that are solitary with large home 

ranges, live in dense habitats, or exhibit cryptic or nocturnal behavior, methods such 

as mark-resight, distance sampling, or direct counts are often infeasible for estimating 

abundance (Durant et al. 2011, McCorquodale et al. 2013).  In these cases, capture-

recapture methods that utilize counts from indirect observations (e.g., photographic 

images, Karanth 1995; eDNA, Lacoursière-Roussel et al. 2019; or feces, Eggert et al. 

2003) of animals may be more efficient in estimating population characteristics 

(Morin and Woodruff 1996, Kohn and Wayne 1997, Waits and Paetkau 2005).  

Capture-recapture methods that estimate population density require reliable 

identification of individual animals across multiple surveys. Individual capture 

histories can then be constructed and used in mark-recapture models to estimate 

abundance and identify covariates that influence detectability and abundance (Pollock 

2002, Royle 2009). If individuals are visually or audibly unique, camera traps or 

acoustic recordings can be used to generate capture histories (e.g., jaguar spots, 

Sollmann et al. 2011; zebra stripes, Petersen 1972; tiger roars, Ji et al. 2013). 

Alternatively, when observers cannot reliably distinguish individuals of a species, 

capture histories can be created by genotyping non-invasively (e.g., hair snares or 
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feces) or semi-invasively (e.g., biopsy darts) collected samples (Waits and Paetkau 

2005). Genotypes using 5 to 15 variable neutral microsatellites, or a larger number of 

single-nucleotide polymorphisms (SNPs), typically allow reliable distinction among 

even closely-related individuals (Taberlet et al. 1996, Waits et al. 2001). Non-

invasively collected genotypes have been widely used for estimating abundance of 

cryptic species such as bears (Ursus spp.; Gardner et al. 2010, Kendall et al. 2016, 

Molina et al. 2017), eagles (Aquila heliaca; Rudnick et al. 2008), bats (Rhinolophus 

hipposideros; Puechmaille and Petit 2007), and seahorses (Hippocampus guttulatus; 

Correia et al. 2014). 

Translating abundance estimates to density with capture-recapture methods, 

however, poses additional challenges. Density estimates allow comparisons across 

sites or habitats (e.g., Miller et al. 1997, Beausoleil et al. 2016) and are thus more 

desirable for management decision-making. As density is the quotient of abundance 

and area, calculating density requires an accurate estimate of the area sampled.  

Researchers applying capture-recapture methods often attempt to do this in an ad-hoc 

approach such as by buffering the study area using estimates of animal movement and 

home range size (e.g., Trolle and Kéry 2005). The metric typically used to describe an 

animal’s scale of movement is the mean maximum distance moved (Otis et al. 1978, 

Wilson and Anderson 1985), which is based on distance between redetections of 

individuals. Alternatively, spatial capture-recapture (SCR) methods (Efford 2004) 

allow for precise estimates of density and the area sampled as well as parameters 

describing movement, resource selection, and connectivity (Royle et al. 2018). SCR 

methods can be used to estimate density of a species using a single survey and infer 
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how density varies with environmental or other covariates. SCR analyses incorporate 

spatial location (i.e., X and Y coordinates) directly into capture histories and estimate 

an activity center (i.e., center of home range) for each individual in the sampled 

population. The estimated activity centers are formalized into a statistical point 

process, a class of models that describe patterns and distributions of points, with the 

assumption in the simplest SCR models that the points (i.e., activity centers for 

individuals) are distributed uniformly across landscapes (Royle et al. 2018). 

Studies show the uniformity assumption is robust in SCR modeling (Borchers 

and Efford 2008), but it is unclear if density estimates are biased when applied to 

individuals distributed non-independently (Royle et al. 2016). Social predators such 

as wolves (Canis lupus) or gregarious ungulates such as elk (Cervus canadensis) 

aggregate routinely, but group size and cohesion (i.e., the degree of dependence 

among individual movements within a group) varies depending on season or other 

factors (Jenkins and Starkey 1982). Few studies have attempted to address this 

problem. López-Bao et al. (2018) used simulations to evaluate how grouping 

behavior by wolves influenced spatial capture-recapture estimates, and concluded that 

grouping resulted in only a slight negative bias to density estimates. However, López-

Bao et al. (2018) only considered group sizes of up to 8 individuals. Granjon et al. 

(2017) likewise found that some spatial capture-recapture models underestimated 

group and population size of eastern chimpanzees (Pantroglodytes schweinfurthii). In 

contrast, simulations conducted by Bischof et al. (2020) found high levels of 

aggregation (group sizes > 8 individuals) positively biased density estimates, 

particularly if group cohesion was low. For herd-living species such as elk, group 
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sizes can routinely exceed 100 individuals (Proffitt et al. 2012), suggesting that an 

assessment on the effects of aggregation on density is necessary when applying this 

method to social ungulates. 

Along much of the Pacific coast in the northwestern United States, Roosevelt 

elk (C. c. roosevelti) exemplify the challenge of population estimation for species that 

are difficult to directly observe and aggregate socially. Direct counts are employed at 

small scales and in relatively open habitat where this approach is feasible (e.g., 

meadows in northern California; Starns et al. 2014). However, many Roosevelt elk 

occupy dense coniferous forests and travel in groups ranging from 1 to >100 

individuals depending on sex, habitat, and time of year, making it difficult to develop 

reliable density estimates or even indices of population size. Managing agencies in 

this region rely on composition (sex, age) counts, harvest statistics, and telemetry data 

as indices of elk abundance to meet their management objectives (Oregon 

Department of Fish & Wildlife 2003, McCorquodale et al. 2013, Washington 

Department of Fish and Wildlife 2014). However, such counts are achieved by 

locating elk from the air while they are using open areas such as clear cuts, which 

may bias results if use of open habitats varies seasonally, temporally, or on the basis 

of sex, age, or individual preference.  Mark-resight models have been developed for 

many elk habitats (Unsworth et al. 1990, Leptich and Zager 1993, McIntosh et al. 

2009), but the ability to verify the accuracy of those models wanes without true 

abundance estimates, and those approaches rely on large numbers of animals with 

marks visible from the air. 
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Elk in the Pacific Northwest provide public wildlife viewing and hunting 

opportunities, but cause substantial human-wildlife conflicts through depredation on 

timber and agricultural crops (Walter et al. 2010), underscoring the need to accurately 

estimate both abundance and density at scales applicable to harvest regulation. In 

western Oregon, where land ownership often follows the “checkerboard” pattern of 

interspersed publicly and privately-owned sections (Figure 1), elk also use habitats 

with considerable variation in land management practices such as intensity of timber 

harvest. Current timber management practices create early-seral habitat at scales up to 

120 acres (48.6 ha), the maximum legal size of a clear cut defined by the Oregon 

Forest Practices Act (OAR 629). Elk are thought to use early-seral habitat extensively 

because of the increased availability of suitable forage (Cook et al. 2016), but aerial 

surveys currently used to locate elk are largely ineffective in areas with dense forest 

canopy, leading to population undercounts and bias towards animals using early-seral 

habitats. 

In this study, we employ spatial capture-recapture and non-invasive genetic 

sampling to estimate elk population abundance and density in two wildlife 

management units in western Oregon. Our method was based on walking transects, 

where we collected elk fecal pellets to identify individuals. We developed a sampling 

design intended to maximize encounters with elk fecal pellets and facilitate adequate 

recaptures of individuals using one sampling occasion. We implemented the method 

over two consecutive spring seasons in two study areas that represented different 

types of Roosevelt elk habitat in western Oregon, with expected population densities 

ranging from low to high. Our objectives were to 1) assess whether our method could 
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produce precise estimates of Roosevelt elk density for management decision-making, 

as indicated by an established threshold for relative standard error in SCR modeling 

(Evans and Boulanger 2019), and 2) evaluate the differences in elk density in areas 

subject to different land management practices which we depict by land ownership 

type. 

METHODS 

Study Area 

In Oregon, Roosevelt elk frequent the closed-canopy forest types of the Coast 

Range and western slope of the Cascade Range. The Oregon Coast Range is 

characterized by rugged terrain and a mosaic of western red cedar (Thuja plicata), 

western hemlock (Tsuga heterophylla), and Douglas-fir (Pseudotsuga menziesii) 

forests. This area is highly productive due in part to high annual precipitation 

occurring primarily from fall to spring (Thorson et al. 2003). The west side of 

Oregon’s Cascade Range maintains a moist, temperate climate supporting highly 

productive conifer forests. At low elevations, western hemlock and Douglas-fir 

forests dominate and transition, from west-east, into steep-sloped forests comprised of 

western hemlock, Douglas-fir, noble fir (Abies procera), and Pacific silver fir (Abies 

amabilis) at mid-elevations. Near the Cascade crest, high elevation subalpine 

meadows persist and forests consist of mountain hemlock (Tsuga mertensiana) and 

Pacific silver fir (Thorson et al. 2003). 

Our study took place in two wildlife management units (WMUs) in western 

Oregon, Tioga and McKenzie (Figure 1). The Oregon Department of Fish & Wildlife 

(ODFW) monitors elk population trends and sets hunting limits and management 
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objectives in each of Oregon’s 67 WMUs (Oregon Department of Fish & Wildlife 

2003). Thus, our method would be most practical to use if it produced density 

estimates at the same WMU scale. The Tioga and McKenzie WMUs differ in climate, 

geology, terrain, and land practices, allowing us to assess the relevance of this method 

to Roosevelt elk across a wider range of their Pacific Northwest habitats. 

Land ownership and uses in McKenzie and Tioga differ sharply (Figure 1) and 

may influence the amount of early-seral habitat available in these WMUs (Phalan et 

al. 2019). Located within the Oregon Coast Range, the Tioga WMU comprises 

primarily of private lands, followed by Bureau of Land Management (BLM) land, 

Elliott State Forest, and Oregon Dunes National Recreation Area. With the exception 

of the Oregon Dunes National Recreation Area, land owners and managers primarily 

use Tioga lands for high-intensity timber production, although silvicultural practices 

differ by landowner. Within the Oregon Cascade Range, ownership in the McKenzie 

WMU consists primarily of the U.S. Forest Service, followed by owners conducting 

commercial agricultural and timber operations, and the BLM. The east side of the 

McKenzie WMU is comprised of three wilderness areas totaling 1,518 km2: Mt. 

Washington Wilderness, Three Sisters Wilderness, and Lake Waldo Wilderness, 

where roads, aircraft, and extraction of natural resources are prohibited. While 

commercial timber operations continue to harvest at high intensity, the U.S. Forest 

Service and BLM reduced timber operations on public lands in 1994 with the 

adoption of the Northwest Forest Plan, largely reducing the amount of early-seral 

forage habitat by 18% on federal land and 30% on private industrial land (Phalan et 

al. 2019). 
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General Workflow 

We designed our study based on a systematic stratified sampling approach 

employed at the scale of each wildlife management unit. We used ~2 km walking 

transects, clustered in groups of 3 at a spatial scale intended to allow recapture of 

individuals across transects. We established transect cluster locations using a 

stratified grid-based design and based grid cell size on home range estimates from 

telemetered elk near the study areas. Transect clusters were placed in selected cells, 

which were stratified and randomly chosen to evenly sample across habitat types 

expected to influence elk density and to avoid sampling adjacent grid cells when 

possible. On the walking transects, we collected elk fecal pellets and genotyped them 

using microsatellite loci to identify individuals and assess recaptures across transect 

segments. We used the R-package secr (Efford 2020) to create capture histories and 

study area masks, build SCR models, and compute parameter estimates using 

maximum-likelihood estimation techniques. We used covariates describing habitat 

and sampling effort to model variation in density and detectability and employed elk 

location data from telemetered animals in each study area to inform the spatial scale 

parameter, sigma (σ), of the SCR analysis. Next, we projected our models to map elk 

population density across both WMUs. Finally, we used our projections to evaluate 

how elk population density varied by land ownership. Each step is described in detail 

below. Unless indicated otherwise, all analyses and formatting were conducted in 

ArcGIS version 10.3.1 (ArcGIS 2015) and R-version 3.6.3 (R Core Team 2020). 
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Sampling Design  

To facilitate adequate detections of unique and redetected individuals for SCR 

analysis using one sampling occasion, we adopted a clustered sampling design 

informed by estimates of sigma. Sigma (σ) is the spatial scale parameter and 

describes the spatial scale over which the probability of detecting a given individual 

in a particular location declines (Efford 2004). In SCR modeling, σ can be estimated 

directly from the capture-recapture data (Efford 2004), or can be informed by other 

data on animal movement such as telemetry or home range estimates (Paterson et al. 

2019). With unlimited resources (i.e., technician time, equipment), it is ideal to 

sample for individuals with a detection device (e.g., live trap, camera trap, transect, or 

hair snare, referred to hereafter as a trap) in every potential home range within the 

study area. However, wildlife management resources are usually limited. Sun et al. 

(2014) found that a clustered design, where two or more traps are grouped in 

strategically selected home ranges, requires less resources and produces accurate 

estimates of abundance. Ideally, clusters are spaced 2σ apart. When spacing exceeds 

2σ, clusters require additional traps as the distances between clusters increase.  

We approximated σ for our sampling design with GPS collar locations and 

created a grid for each study area. We calculated σ as: 

𝜎 = √
95% ℎ𝑜𝑚𝑒 𝑟𝑎𝑛𝑔𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒/𝜋

q2,α
, 

(Eqn. 1) 

where q2,α represents the critical value of a Chi-square with two degrees of freedom 

(α = 0.05, q2,α = 5.99; Royle et al. 2014). To determine the 95% home range estimate, 

we calculated home range sizes from locations of five GPS collared female elk 
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collected by ODFW in western Oregon from 2015 to 2017. First, we cleaned and 

clipped data to include locations collected in March - June, the desired sampling 

period. To estimate home range size (Worton 1989) for each individual elk during 

that period, we calculated a 95% kernel density estimate (KDE) from points for each 

collared individual in the Geospatial Modelling Environment (Beyer 2015). Then, we 

overlaid a grid on the study areas with a cell size equal to the median 95% KDE. 

Next, we randomly picked an initial cell, then systematically selected additional cells 

spaced two cells apart to the unit boundary.  

To examine whether elk density varied by land ownership type, we adjusted 

the placement of some cells to better reflect the variation in land ownership and 

nutrition quality of forage in the study areas. We estimated nutrition quality for each 

cell by averaging the values of a raster map of predicted dietary digestible energy 

(DDE) that classified forage quality from 1 (poor) to 6 (excellent). DDE is a nutrition 

metric informed by structural characteristics (e.g., ecological site potential, canopy 

cover) that are extracted from a detailed vegetation composition map computed using 

gradient nearest neighbor (GNN) imputation, which we obtained from Oregon State 

University’s Landscape Ecology, Modeling, Mapping, and Analysis team (see full 

description below; Cook et al. 2016, LEMMA 2018; Rowland et al. 2018). Land 

ownership type was determined by the majority land ownership of the cell from a 

layer compiled by Oregon Department of Forestry (ODF 2017). Finally, we adjusted 

our cell selection to equally represent each DDE/ownership combination while 

retaining the spacing from the previous step as much as possible. Within each 

selected cell we placed our traps: three transects that were 2 km in length and spaced 
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1 km apart (Figure 2), with the expectation that technicians would spend no more 

than 3 hours searching on one transect. 

Implementation and Analysis of Genetic Samples 

We collected fecal samples from transects in late March – June 2018 and 

2019, during one sampling occasion each year. We sampled in spring so that density 

estimates would reflect elk that survived through winter and to avoid collecting 

pellets from newborn calves, satisfying the demographically closed population 

assumption of SCR models (Royle et al. 2014). With one to three observers (typically 

2), we accessed the most northern or southern endpoint of each transect and followed 

animal trails and elk sign towards the opposite endpoint while staying within 500 m 

of the transect line. We searched for pellets for approximately 2 km of search effort or 

as far as terrain allowed within a 3-hour time limit. We tracked distance by recording 

where we walked on each transect with the track-logging function on a Garmin GPS 

inReach Explorer®+ (Part number: 010-01735-10), which recorded our location 

every minute. When we encountered pellets, we recorded their location and 

determined whether a mucosal layer was present. We collected samples with a 

mucosal layer into 50mL falcon tubes and submerged pellets in 95% ethanol. If 

pellets were dry, we placed them in envelopes. We stored samples at room 

temperature until processed. 

We placed 3 to 4 pellets from each sample into a weigh boat and allowed 

them to dry overnight before using a razor blade to scrape 0.025-0.03g of exterior 

material. We extracted DNA from scrapings using a modified version of the 

Aquagenomics Soil and Stool Kit protocol (MultiTarget Pharmaceuticals LLC, 



 

 

17 

Colorado Springs, CO). Modifications included the addition of 450 µL of 

AquaGenomic solution to pellet scrapings, a fifteen minute bead-beating step with 1.0 

mm silica/zirconium beads (BioSpec Products Inc., Bartlesville, OK) for cell lysis, 

and the addition of 12 mAU proteinase K (Qiagen Inc., Valencia, CA). Lastly, we 

added 150 µL of AquaPrecipi solution (MultiTarget Pharmaceuticals LLC) to cell 

lysate to remove PCR inhibitors present in fecal samples. We rehydrated DNA 

samples with 100 µL of 1xTE buffer and did not quantify them before use.   

We amplified nine microsatellite primers and one primer for sexing in two 10 

µL multiplex PCR reactions. Each reaction consisted of 1x Qiagen Multiplex PCR 

master mix, 0.2 µM of each primer except for RT1 which had 0.4 µM, 10 µg of 

bovine serum albumin, and 0.5-1 µL DNA; reactions were brought to volume with 

nuclease-free water. We added the higher amount of DNA for samples that were clear 

or light-colored, while samples that were darker colored or opaque were diluted 1:1 to 

counteract the presence of PCR-inhibitors (i.e., 0.5 µL DNA and 0.5 µL of nuclease-

free water). For each locus, we fluorescently tagged one primer on the 5’ end with 

NED, PET, VIC, or 6-FAM (Applied Biosystems, Carlsbad, CA). We replicated 

samples three times. Because preliminary results showed that a large number of 

samples did not amplify well, we genotyped samples at one panel initially to reduce 

costs, and then genotyped successful samples at the second panel. We conducted 

PCRs on a Bio-Rad C1000 or MyCycler thermocycler with the following cycling 

conditions: initial denaturation of 15 minutes at 95 °C, followed by 35 cycles of 

95 °C for 30 seconds, 59 °C for 90 seconds, 72 °C for 60 seconds, and a final 
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elongation of 30 minutes at 60 °C. We included one positive and one negative control 

on each PCR plate to align our calls and monitor for contamination, respectively.   

Amplification was verified on a 2% agarose gel with GelRed nucleic acid 

stain (Biotium; Fremont, CA), and amplicons were diluted depending on band 

brightness to avoid excessive DNA concentration for genotyping. After dilution, 1 µL 

of PCR product was precipitated to remove unincorporated dNTPs and excess salts, 

and submitted to the Oregon State University Center for Genome Research and 

Biocomputing for fragment analysis on an ABI 3730 DNA Analyzer with GeneScan 

500LIZ sizing standard (Applied Biosystems, USA). Genotypes were scored 

manually using GeneMapper™ Software v4.1 (Applied Biosystems, USA). To 

generate a consensus call, we considered a genotype verified if both alleles in a 

heterozygote were seen at least twice, and the single allele for a homozygote was seen 

in all three replicates, otherwise we conducted an additional 3-6 replicate PCR 

reactions. Any sample with three or more unique alleles at any locus in all three 

replicates was considered contaminated and removed from the data set.   

To distinguish individuals and identify recaptures from sample genotypes in 

each study area, we used Program CERVUS (Kalinowski et al. 2007) to conduct 

allele frequency analyses and estimate two metrics that establish confidence in our 

ability to reliably distinguish individuals: probability of identity (PID) and probability 

of identity among siblings (PIDsibs; Waits et al. 2001). Datasets that contain many 

genotypes of the same individual result in biased allele frequencies. Therefore, we 

conducted this analysis in two phases. In the first phase, we identified and removed 

duplicate genotypes as follows. First, we conducted an allele frequency analysis on all 
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genotypes from both years and multiplied the resulting PID and PIDSibs estimates from 

each locus together to calculate the cumulative values of PID and PIDSibs. To sustain 

confidence in our ability to distinguish individuals in the worst-case scenario that a 

sample genotypes at loci with the least amount of power to distinguish individuals, 

we established a threshold of PID < 0.001 and PIDSibs < 0.05. We removed the loci with 

the most power from the product, one at a time, until we determined the minimum 

number of loci required to meet the threshold. We then removed from the data set any 

samples that amplified at fewer than this number of loci. We conducted an identity 

analysis in CERVUS to compare the remaining genotypes, allowing for mismatches 

at up to 2 loci. We examined pairs of genotypes with mismatches to determine 

whether a mismatch could be explained by allelic dropout (i.e., if no more than two 

alleles were present across both samples at the same locus). After we identified and 

matched individuals, we deleted duplicate individuals from the original genotype file 

and began the second phase of analysis. There, we conducted an allele frequency 

analysis on the new dataset and recalculated PID and PIDSibs to confirm that our results 

from the first phase were not affected by any bias in allele frequency estimates from 

duplicate genotypes present in the initial dataset. If we determined a different 

minimum number of loci in the second phase, we removed samples and conducted an 

identity analysis, again. After the second phase, we assigned individuals a unique 

identifier. 

Compiling Data and Estimating Density 

For each year of data collection, we constructed detection histories (typically 

referred to as capture histories) and a trap file comprised of the traps’ identifiers, 
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spatial locations, and probability of detection covariates. We defined traps by 

dividing transects into four equal segments and used the median location of each 

segment as the trap location. For each trap, we created a unique identifier and 

extracted the probability of detection covariates: Julian day, effort, and average daily 

precipitation two weeks prior to collection date. We used distance walked on each 

transect as a measure of effort, which can influence density estimates by positively 

affecting probability of detection (Russell et al. 2012). We included average daily 

precipitation over the 14-day period prior to each sample’s collection date because 

high rainfall and humidity may cause DNA in feces to degrade more quickly, thus 

influencing densities of fecal samples that can be successfully genotyped (Harestad 

and Bunnell 1987, Barnes et al. 1997, Brinkman et al. 2011).  Finally, we calculated 

Julian day for each collected sample to evaluate potential linear trends in detection, 

caused by factors such as decreasing precipitation over the course of the study season, 

or temporary emigration of individuals at the start of the calving period (early May to 

early July; Jenkins and Starkey 1982, Johnson et al. 2019). To create capture 

histories, we determined the closest trap to each sample, defined as the trap with the 

smallest Euclidean distance from the sample, and assigned the trap to the sample’s 

individual ID. 

For each study area, we combined 2018 and 2019 data, entered the capture 

histories and trap file into secr to create capthist objects, and added telemetry data to 

inform σ while estimating density. To improve precision in our density estimates, we 

combined data from both years by specifying each year as a separate session in the 

trap file and capture histories (Royle and Converse 2014, Morin et al. 2018). This 
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yielded separate density estimates for each of the two years but using both years 

together increased power to estimate the probability of detection, sigma, and the 

influence of covariates on density. We used secr’s read.capthist() function to create a 

capthist object from the trap file and capture histories, specifying the detector type as 

“count.” To further inform the estimates of σ while estimating density, we included 

telemetry data from female elk in our study areas. Informing σ with spatial locations 

such as telemetry data can allow SCR models to estimate density more accurately and 

precisely (Sollmann et al. 2013, Ruprecht et al. 2020). We obtained the spatial data 

from GPS collars affixed to 18 and 8 female elk by ODFW in Tioga and McKenzie, 

respectively, in early 2019. Although male and female elk have different home range 

sizes and movement patterns (Long et al. 2009, Bliss and Weckerly 2016), we chose 

not to estimate σ separately for males and females, because our genetic data did not 

allow us to distinguish yearling males traveling in female groups from bulls traveling 

alone or in bachelor herds, which presumably have different movement patterns and 

distances. We included locations collected during the sampling period only. To make 

the file size secr compatible, we reduced the number of locations by selecting 150 

points each across all individuals for 2018 and 2019 and added them to the capthist 

object, using the read.telemetry() and addTelemetry() functions, specifying type = 

‘independent’, indicating the data were not collected simultaneously with our study. 

We created a habitat boundary layer and generated a habitat mask for each 

study area by removing portions of the study area we deemed unlikely to be a 

Roosevelt elk activity center: bays and estuaries, cultivated crops, lava, open water, 

pasture or hay, suburban, and urban (2018 Oregon Statewide Habitat Map). Then, we 
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made the habitat mask, a spatial grid of squares containing the density covariate 

values. When creating the habitat mask, we specified a 1,500 m buffer around trap 

coordinates because we assumed elk are no longer detectable from a trap beyond this 

distance. Subsequently, we extracted the values of the density covariates to the mask. 

We identified six environmental covariates to include as predictors of spatial 

variation in elk density. We used four covariates identified by Rowland et al. (2018) 

as predicting summer habitat use by elk in western Washington and northwest and 

west-central Oregon: dietary digestible energy (DDE), percent slope, distance to 

nearest road with public motorized access, and distance to cover/forage edge. We 

used a toolbox developed by Rowland et al. (2018) to compute rasters of each of the 

four covariates. We did not have access to a roads layer that adequately classified 

roads with public motorized access so we used a roads layer from Oregon Department 

of Transportation (ODOT 2017), likewise included in the Rowland et al. (2018) 

toolbox. Our fifth covariate was average daily precipitation throughout the sampling 

period. We included this variable because we predicted that rainfall might be linked 

to productivity of spring vegetation consumed by elk, because DDE is predicted for 

summer usage, not spring. We obtained daily 4 km resolution precipitation maps from 

Oregon State University’s PRISM Climate Group (PRISM 2020) to calculate average 

precipitation over the sampling periods. Because elk are commonly persecuted 

because of their damage to crops, we included a final covariate, distance to crops, 

using CropScape (USDA 2020). We clipped the layer to only include crops that 

wildlife managers identified as most commonly depredated by elk: spring and winter 

wheat, other hay/non-alfalfa, sod/grass seed, other tree crops, grassland/pasture. This 
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covariate was not applied to the Tioga analysis as commercial agriculture was not a 

prominent land use in that WMU. 

We fit models in stages to estimate and assess covariate relationships with 

density. All models were fit using maximum likelihood estimation in the secr.fit() 

function and assumed detections between transect segments were independent (Royle 

et al. 2014). Further, to compare results on the same scale, we centered and scaled all 

covariate values with their mean and standard deviation values. When we included 

telemetry data, we were constrained to fit a hazard half-normal detection function; 

otherwise, we fit a half-normal detection function and assumed constant density. For 

each study area, we identified the best covariates for the probability of detection 

function using Akaike’s Information Criteria (AIC; Akaike 1973) with the small-

sample bias adjustment (AICc; Hurvich 1989) and Akaike weights (Burnham et al. 

2002) before identifying the best covariates for the density component of the model. 

We identified a candidate top model when it had the lowest AICc and highest weight; 

models within two ΔAICc of the candidate top model were regarded as competing. To 

identify the top detection model, we first fit a univariate model for each probability of 

detection covariate, and selected the best model as the candidate top model. Next, we 

created a new set of models by adding one covariate to the candidate top model. In a 

stepwise fashion, we repeated the selection process to select the new candidate top 

model at that step. We continued this process until adding covariates to the final 

model did not result in a different candidate top model from the previous step. In the 

second stage, we used the best detection model and conducted the same selection 

process for the density component of the model. 
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To quantify and adjust for the effects of aggregation among individuals 

biasing our density estimates, we calculated Fletcher’s ĉ and applied an adjustment 

when we detected overdispersion in our data. We used outputs from the derived() 

function on the top model to calculate ĉ and apply the adjustment as described by 

Bischof et al. (2020). A ĉ close to 1 indicate the data are not overdispersed and an 

adjustment is not needed.  

To assess the differences in elk density on different land ownership types, we 

estimated and predicted density across the study areas. We generated the top model’s 

prediction of realized abundance and 95% confidence intervals with the region.N() 

function. Next, we created a density surface using predictDsurface() on the top 

models and associated habitat masks. In ArcGIS, we summed the predicted density by 

landownership type and multiplied them by the cell size of the density surface to get 

predicted elk abundance in each WMU. Finally, to assess the performance of our 

models we calculated the relative standard error (RSE) of each density estimate. RSE 

is a metric used to assess how likely our density estimate will deviate from the true 

population density, where a RSE value above a given threshold indicates poor model 

performance. When evaluating the performance of SCR models, a threshold of 0.2 is 

adequate (Efford and Boulanger 2019). 

RESULTS 

Home range estimates from GPS collar locations of five female elk ranging 

from 9.33 km2 to 214.28 km2 yielded a median home range size of 15.48 km2. 

Therefore, we used a grid with cell size 15.48 km2 for our sampling design (Figure 2). 
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We collected 1,084 (542 in 2018; 542 in 2019) fecal samples from 200 (96 in 

2018; 104 in 2019) transects in the Tioga WMU, and 168 (82 in 2018; 86 in 2019) 

fecal samples from 234 (119 in 2018; 115 in 2019) transects in the McKenzie WMU 

(Table 1). Unbiased PID and PIDSibs were 5.0×10-6 and 3.7×10-3 in Tioga and 5.8×10-7 

and 1.7×10-3 in McKenzie, respectively (Table A2). In both study areas, we 

determined that amplification at four loci was required to meet our thresholds of PID < 

0.001 and PIDSibs < 0.05 for reliable distinction of individuals. In Tioga, the four least 

informative loci (T193, TE167, NVHRT01, C143) yielded cumulative PID and PIDSibs 

estimates of 8.1×10-4 and 4.6×10-2, respectively (Table A2). In McKenzie, cumulative 

estimates of PID and PIDSibs were 2.8×10-4 and 3.3×10-2 from the four least informative 

loci (T193, TE167, TE182, C143; Table A2). We genotyped 41% (506) of 1,252 total 

samples genotyped at 4 or more loci (Table 1; Table 2). We identified 289 (122 in 

2018; 167 in 2019) and 38 (24 in 2018; 14 in 2019) individuals and redetected 96 (41 

in 2018; 55 in 2019) and 12 (8 in 2018; 4 in 2019) individuals in Tioga and 

McKenzie, respectively (Table 2). Redetections occurred on the same transect or 

between neighboring transects within a cell, with the exception of one individual that 

we detected in two cells in Tioga. We censored that individual because the large 

distance between its detections was an outlier and artificially inflated sigma, causing 

model misbehavior. 

We used GPS collar locations from 17 and 4 female elk in Tioga and 

McKenzie respectively to inform σ in our SCR analyses (Figure 3). McKenzie 

models that included telemetry data failed to converge. However, in the Tioga 

models, estimates of σ increased from 637 m (95% CI: 562 - 721) to 1,059 m (95% 



 

 

26 

CI: 1003 - 1117) when telemetry data were included. We detected little to no signs of 

overdispersion in our data sets: in Tioga, we estimated Fletcher’s ĉ = 1.01 in 2018 

and Fletcher’s ĉ = 1.01 in 2019; in McKenzie, we estimated Fletcher’s ĉ = 1.04 in 

2018 and Fletcher’s ĉ = 1.00 in 2019. We calculated the RSE of the best Tioga model 

to be 0.16 (2018) and 0.15 (2019) and 0.54 (2018; 2019) for the best McKenzie 

model. 

In both WMUs, the best models suggested probability of detecting and 

successfully genotyping a sample was negatively associated with effort (β: -0.50 95% 

CI: -0.65 to -0.34 in Tioga; β: -0.59 95% CI: -1.01 to -0.17 in McKenzie; Table 5; 

Table 6) but positively associated with average daily precipitation two weeks prior to 

collection date (β: 0.19 95% CI: 0.08.01 to 0.31 in Tioga; β: 0.26 95% CI: -0.05 to 

0.57 in McKenzie; Table 5; Table 6). The best Tioga model suggested distance to 

nearest road (β: -11.81 95% CI: -19.97 to -3.65) and distance to cover/forage edge (β: 

-0.49 95% CI: -0.75 to -0.22) were negatively associated with density, while average 

daily precipitation, which ranged from 2.4 to 5.7 mm/day in 2018 and 5.5 to 15.8 

mm/day in 2019, was positively associated with density (β: 0.22 95% CI: 0.10 to 

0.33; Table 7). We estimated elk density to be 0.80 individuals/km2 (95% CI: 0.61 – 

1.05), resulting in abundance estimates of 3,023 (95% CI: 2317 – 3958) and 3,005 

(95% CI: 2302 – 3941) individuals in 2018 and 2019, respectively. The best model 

predicted lower elk density on federal lands (0.63 individuals/km2 in 2018; 0.64 

individuals/km2 in 2019; 1,011 km2), followed by private (0.84 individuals/km2 in 

2018; 0.82 individuals/km2 in 2019; 2,385 km2) then state (0.91 individuals/km2 in 

2018; 0.96 individuals/km2 in 2019; 361 km2) lands. The best McKenzie model 
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suggested distance to crops (β: -87.98 95% CI: -152.14 to -23.83) and percent slope 

(β: -0.89 95% CI: -1.50 to -0.27) were negatively associated with density (Table 8). 

We estimated elk density to be 0.2 individuals/km2 (95% CI: 0.08 – 0.52), resulting in 

abundance estimates of 1,224 (95% CI: 481 to 3172) and 1,214 (95% CI: 471 to 

3162) individuals in 2018 and 2019, respectively. The best model predicted few elk 

on state lands (0 individuals/km2 in 2018 and 2019; 7 km2), followed by federal (0.04 

individuals/km2 in 2018 and 2019; 3,953 km2) then private (0.51 individuals/km2 in 

2018 and 2019; 2,138 km2) lands.  

DISCUSSION 

We demonstrated that SCR methods can be used to estimate density of 

gregarious ungulates in closed-canopy forests, although the precision of estimation 

varied. We estimated density of Roosevelt elk populations in two Oregon wildlife 

management units representing different habitats and expected densities of elk, but 

only achieved an acceptable level of precision in one of the two areas, suggesting this 

method is most applicable for management in areas that support moderate or higher 

densities of elk at this level of sampling. In both study areas, we predicted lower elk 

densities on federal lands relative to predicted elk density on lands in private or state 

ownership. 

As demonstrated by the RSE estimates, our sampling achieved good precision 

in the Tioga WMU where higher elk densities led to numerous spatial recaptures 

(Table 4). In the McKenzie WMU, however, low elk density resulted in few (2018) or 

no (2019) spatial recaptures. This may have occurred because the number of transects 

placed per cell was insufficient for this density of elk. To increase redetections in 
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areas of low density, sampling intensity could be increased by using multiple 

sampling occasions or placing more transects per selected cell (Efford and Boulanger 

2019). However, greatly increasing sampling effort in areas where samples are 

unlikely to be encountered may be inefficient. Eliminating sampling in areas where 

elk are very unlikely to occur may be more appropriate and cost effective. Such an 

approach would, however, confine estimates of density to the sampled area, such that 

density estimates could not be applied to the entire WMU. 

In Tioga, models with distance to nearest road, distance to cover/forage edge, 

and precipitation best explained density. In contrast to findings by Rowland et al. 

(2018), our analysis predicted more elk near roads. However, we expect that 

relationship would change if we classified our roads layer by human use levels. In the 

field, we commonly observed elk sign on rarely-used, logging roads on public land, 

particularly in steep areas. However, many studies have observed elk avoiding roads 

open to the public (Witmer and deCalesta 1985, Cole et al. 1997, Rowland et al. 

2018). Therefore, separately considering distance to roads open to the public and 

distance to roads closed to the public likely would improve modeled estimates. In 

agreement with Rowland et al. (2018), we predicted more elk in close proximity to 

cover/forage edges. We expect that the relationship with distance to cover/forage 

edge in our analysis might strengthen once remote sensing imagery from 2018 and 

2019 become available: in this landscape, distance to cover/forage edges in a given 

location can change quickly due to high rates of timber harvest, suggesting that the 

data available for this study (2016 and 2017) could be less representative of actual 

conditions during the study. Our top model predicted high elk density in areas with 
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higher precipitation rates. We suggest that higher elk densities in areas with higher 

precipitation in the two weeks prior to sampling reflects the influence of precipitation 

on availability of green forage in spring, when elk transition from conifers to grass as 

a major food source (Leslie 1982, Jenkins and Starkey 1991).  

In the McKenzie WMU, our best density model predicted lower elk density on 

steep slopes and higher density close to fields planted with crops commonly 

depredated by elk (e.g., wheat, hay, and grass of various types). We expected a 

negative relationship between percent slope and density, but suggest that this 

relationship was amplified because most steep slopes occurred on the Willamette 

National Forest, where low levels of early seral habitat remain after the 

implementation of the Northwest Forest Plan (Phalan et al. 2019). In the McKenzie 

WMU, flat areas consisted of commercial agricultural fields, timberlands, high-alpine 

meadows, and high-alpine forests, which provide more foraging opportunities. We 

also predicted higher elk density close to habitats classified by CropScape as spring 

and winter wheat, other hay/non alfalfa, sod/grass seed, other tree crops, or 

grassland/pasture, of which 82% was classified as sod/grass seed and 

grassland/pasture in McKenzie. Our model predicted elk in the wilderness portion of 

McKenzie WMU, an area that ODFW has been unable to monitor due to aircraft 

restrictions. We found few viable samples in our transects there, although older 

samples were observed; therefore, density predictions in this region were largely 

influenced by covariate relationships described in areas with higher elk densities 

farther to the west in the WMU. To improve density estimates for wilderness areas, 
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we recommend further investigation into relationships between elk densities and 

covariates in high-alpine habitats. 

In both WMUs, recent precipitation and transect length influenced our 

probability of detecting an individual. We expected an increase in average daily 

precipitation would decrease the density of viable samples as observed by Barnes et 

al. (1997), thus reducing our probability of detecting a sample with a mucosal layer 

for genetic analysis. However, we suspect that the positive relationship we observed 

occurred because rain quickly degrades signs of freshness (e.g., smell, temperature, 

color, texture), making samples that were recently defecated, and more likely to have 

a mucosal layer, easier to detect. Moreover, although we expected a positive 

relationship between transect length and probability of detecting an individual, we 

observed the opposite. A possible explanation for this results from the aggregation of 

individuals into herds: when we encountered elk sign, we often encountered sign 

from many individuals, and therefore walked shorter distances because of the 

increased time spent examining pellets and collecting viable samples.  

While the aggregation of individuals may affect the probability of detecting 

elk, our calculations of Fletcher’s ĉ suggest that aggregation was not high enough to 

influence our density estimates. Bischof et al. (2020) found instances of bias when 

simulated groups were greater than 8 individuals and cohesion among individuals was 

low. Aerial surveys conducted in our study areas indicate average herd size is above 8 

individuals (ODFW, unpublished data); however, detections in such visual surveys 

are biased towards larger herds (McCorquodale et al. 2013), suggesting that true 

average herd size could be lower. Additionally, the simulations conducted by Bischof 
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et al. (2020) used equal group sizes, and did not explore the effects of variation in 

group size on density estimates and Fletcher’s ĉ. Although SCR analyses have been 

used to estimate density of gregarious species that display different levels of 

aggregation and cohesion of individuals, including wolves (López-Bao et al. 2018), 

giraffes (Giraffa camelopardalis; Muneza et al. 2017), chimpanzees (Granjon et al. 

2017) and now elk, the effects on density estimates of aggregation of individuals and 

non-independence among redetections requires further exploration. 

As predicted, we estimated fewer elk on federal lands and more elk on lands 

where commercial timber harvest occurs. Previous studies in this region recognize 

that elk can access herbaceous forages more easily in meadows and clear cuts, 

particularly in deep snow, and indicate elk select early-seral habitats, which active 

timberlands consistently provide (Harper et al. 1967, Harper 1985, Cook et al. 2016). 

Although our estimates vary in precision, we observed clear differences in elk density 

between public and private land, presumably due to their timber harvest practices. 

Further research that investigates how different land practices or logging methods 

affect available early-seral habitat, elk habitat use, and elk vital rates could elucidate 

the mechanisms behind this difference. 

Previous studies that have attempted to monitor forest-dwelling ungulate 

populations face a variety of biases and limitations. Fecal pellet surveys (i.e., counts 

or estimates of pellet density) could detect whether a population is increasing or 

decreasing over time and are inexpensive and feasible in the Pacific Northwest 

(Lehmkuhl et al. 1994, Plumptree and Harris 1995, Rowland et al. 2006), but it is 

difficult to assess whether the assumptions required to translate those estimates to 
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abundance are met when true density is unknown (Mills et al. 2005). Mark-resight 

methods reveal population trends and are less time-intensive, but their detections are 

biased toward large group sizes, use invasive capture methods, increase safety risks, 

and are expensive (McCorquodale et al. 2013). Capture-recapture analyses on 

individuals identified from fecal samples (Eggert et al. 2003, Brinkman et al. 2011) 

produce abundance estimates successfully but do not reliably translate to density if 

SCR methods are not employed. Our non-invasive method, at the level of sampling 

effort described, produced density estimates at an acceptable level of precision for 

management in areas with moderate to high elk density. However, our method 

required intensive sampling on lands with restricted access and challenging terrain, 

and incurred additional costs for genotyping and field time compared to costs of a 

helicopter survey. 

MANAGEMENT IMPLICATIONS 

In the Pacific Northwest, management of Roosevelt elk populations is tied to a 

variety of financial and recreational interests and generates high public attention. 

Attempts to maximize hunting opportunities and reduce human-wildlife conflict 

would be aided by accurate and precise estimates of elk population density. However, 

individual elk are visually indistinguishable and frequent dense habitats, making most 

methods for estimating abundance and density of cryptic species infeasible. Spatial 

capture-recapture using non-invasive collection and genotyping of fecal pellets 

allowed us to estimate elk density and identify spatial and non-spatial factors that 

influenced density, probability of detection, and movement. Employing this method 

in areas with low elk density would require greater sampling intensity to achieve 
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adequate numbers of spatial recaptures or stronger assumptions about which areas are 

not possible activity centers. We consistently estimated higher elk density on lands 

with more timber harvest, most of which occurs on private property. This suggests 

that public recreational opportunities involving elk (hunting, wildlife viewing) may 

be more limited on public lands due to lower elk density.   
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Table 1 Summary of fecal samples collected from walking transects in 2018 and 

2019 to estimate Roosevelt elk density in two western Oregon wildlife management 

units, Tioga and McKenzie. Genotyping success indicates the percent of samples that 

genotyped at the minimum number of loci required to be included in SCR analyses. 

 Tioga  McKenzie  

Year Transects 

Sampled 

Samples 

Collected 

Genotyping 

success 

Transects 

Sampled 

Samples 

Collected 

Genotyping 

success 

2018 96 542 37% 119 82 46% 

2019 104 542 46% 115 86 23% 

Total 200 1084 41% 234 168 35% 
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Table 2 Summary of unique and redetected individuals that were detected after genotyping fecal samples of Roosevelt elk. Samples 

were collected in 2018 and 2019 from two western Oregon wildlife management units, Tioga and McKenzie, to estimate Roosevelt 

elk density. Samples were sexed using a sex-determining marker. The number of samples sexed female (F), male (M), and unknown 

(U) are indicated. In 2019, one male was censored to eliminate inflation of sigma. 

 Tioga McKenzie 

 2018 2019 2018 2019 

 Total F M U Total F M U Total F M U Total F M U 

Unique 122 81 27 14 167 106 32 29 24 11 11 2 14 9 3 2 

Redetected 41 28 12 1 55 39 12a 3 8 2 6 0 4 4 0 0 

a- censored individual 
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Table 3 Number of unique Roosevelt elk detected at a given number of transect 

segments in a study estimating elk density in western Oregon from collected fecal 

pellets in 2018 and 2019.  

# 

segments 

detected 

Tioga McKenzie 

2018 2019 2018 2019 

1 90 129 20 19 

2 25 31 3 0 

3 4 4 1 0 

4 1 2 0 0 

5 0 0 0 0 

6 1 0 0 0 
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Table 4 Model selection for probability of detection and density models for 

spatial capture-recapture analysis fitted to genetic capture-recapture data 

collected in 2018 and 2019, used to estimate density of Roosevelt elk in 

western Oregon in the Tioga Wildlife Management Unit, including number of 

parameters (K), ΔAICc scores, and ΔAICc weights. Models were fitted using a 

hazard half-normal function in the R-package secr (Efford 2020). Average 

daily precipitation2 weeks prior was calculated from daily precipitation maps, 

obtained from PRISM Climate Group, Oregon State University. Effort was 

based on the distance technicians searched for fecal pellets on transects. 

Distance to cover/forage edge and dietary digestible energy (DDE) were 

calculated using methods described by Rowland et al. (2018) and average DDE 

and percent slope were calculated with a buffer with a 350 m radius. 

Analysis WMU Model Structure K ΔAICc ΔAICc 

weight 

Probability 

of 

detection 

Tioga Effort + average daily precipitation2 

weeks prior 

5 0 0.65 

 Effort + average daily precipitation2 

weeks prior  

+ Julian day 

6 2.07 0.23 

  Effort + Julian day 5 3.91 0.09 

  Effort 4 6.74 0 

  Julian day 4 57.45 0 

  Average daily precipitation2 weeks prior 4 58.90 0 

  Year 4 59.11 0 

  Null 3 61.87 0 

 McKenzie Effort + average daily 

precipitation2 weeks prior 

5 0 0.66 

  Effort + average daily 

precipitation2 weeks prior + Julian 

day 

6 1.63 0.29 

  Effort 4 6.50 0.03 

  Effort + Julian day 5 7.56 0.02 

  Average daily precipitation2 weeks 

prior 

4 10.16 0 

  Year 4 13.05 0 

  Null 3 14.59 0 

  Julian Day 4 17.06 0 
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Density Tioga Distance to nearest road + Distance 

to cover/forage edge + 

average daily precipitation 

8 0 0.99 

  Distance to cover/forage edge + 

average daily precipitation 

7 9.59 0.01 

  Distance to nearest road + Distance 

to cover/forage edge 

7 11.19 0 

  Distance to nearest road + average 

daily precipitation 

7 15.65 0 

  Distance to nearest road 6 19.63 0 

  Distance to nearest road + percent 

slope 

7 20.80 0 

  Distance to nearest road + Distance 

to cover/forage edge 

7 21.09 0 

  Distance to cover/forage edge 6 30.57 0 

  Average daily precipitation 6 37.11 0 

  DDE 6 47.55 0 

  Percent slope 6 47.63 0 

 McKenzie Distance to crops + percent slope 7 0 0.86 

  Distance to crops 6 5.51 0.06 

  Distance to crops + percent slope + 

Distance to cover/forage edge 

8 5.80 0.05 

  Distance to crops + Distance to 

cover/forage edge 

7 7.30 0.02 

  Distance to crops + distance to 

roads 

7 8.36 0.01 

  Distance to crops + DDE 7 10.76 0 

  Distance to crops + average daily 

precipitation 

7 10.90 0 

  Percent slope 6 43.60 0 

  Distance to cover/forage edge 6 50.79 0 

  Distance to roads 6 56.54 0 

  DDE 6 64.77 0 
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Figure 1. Wildlife management units in western Oregon, USA, including (a) Tioga and (b) McKenzie, where population density of 

Roosevelt elk was estimated in spring 2018 and 2019. Tioga (3,797 km2) is managed by private (white; 33%), state (light grey; 10%), 

and federal (dark grey; 25%). McKenzie (6,847 km2) is managed by private (white; 39%), state (light grey; <1%), and federal (dark 

grey; 61%).  
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Figure 2 Sampling schematic for estimating density of Roosevelt elk in two western Oregon wildlife management units, including (a) 

Tioga and (b) McKenzie. A grid of 15.48 km2 cells classified by majority land ownership type and average dietary digestible energy 

(DDE) overlay each unit. An initial cell was randomly identified and cells selected for sampling (outlined in black) were subsequently 

spaced 2σ apart. Selected cells shifted to reflect each combination of ownership type and DDE present while attempting to maintain a 

spacing of 2σ. 
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Figure 3 Locations of 17 and 4 female elk in Tioga (a) and McKenzie (b), collected from GPS collars during the 2019 sampling 

period. Locations were used to inform the spatial scale parameter, sigma (σ), in spatial capture-recapture analyses. 
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Figure 4 Predicted density map of Roosevelt elk in the Tioga wildlife management unit, western Oregon, for 2019. Predictions 

were produced from spatial capture-recapture models fit to capture histories constructed from non-invasively collected DNA. 

In 2018 and 2019, 542 and 542 fecal pellets were collected, of which 37% and 46% of samples successfully genotyped. 

Genotypes considered successful amplified at no less than four loci, the minimum number of loci required to reliably 

distinguish individuals while satisfying thresholds of PID < 0.001 and PIDSibs < 0.05 
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Figure 5 Predicted density map of Roosevelt elk in the McKenzie wildlife management unit, western Oregon, for 2019. Predictions 

were produced from spatial capture-recapture models fit to capture histories constructed from non-invasively collected DNA. In 2018 

and 2019, 82 and 86 fecal pellets were collected, of which 46% and 23% of samples successfully genotyped. Genotypes considered 

successful amplified at no less than four loci, the minimum number of loci required to reliably distinguish individuals while satisfying 

thresholds of PID < 0.001 and PIDSibs < 0.05.
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GENERAL CONCLUSION 

The goal of this study was to determine whether sampling fecal DNA in a 

spatial capture-recapture framework could provide wildlife managers in the Pacific 

Northwest with a dependable and precise method to monitor Roosevelt elk 

populations. The sampling design employed in this study not only produced point 

estimates of density and 95% confidence intervals for wildlife management units 

(WMUs), but also identified covariate relationships among density, environmental 

factors, and land practices. In WMUs where elk are sparsely distributed, sampling 

intensity must be high to obtain adequate redetection rates to conduct analysis with 

spatial capture-recapture models. 

Agencies such as Oregon Department of Fish and Wildlife and Washington 

Department of Fish and Wildlife may use this study as a framework to estimate elk 

density and better assess whether management objectives are being met in dense 

habitats. However, before implementation, biologists must consider how much 

sampling needs to occur to obtain a desired level of precision. Both agencies 

contribute to ongoing research efforts to improve our understanding of how elk use 

and move through habitats at coarse and fine scales. As demonstrated in this study, 

such information will help explain the relationships among elk density and covariates 

when employing spatial capture-recapture models. 
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Appendix 1. – Supplemental information on genotyping methods. 
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Table A.1 Primers used to amplify nine microsatellite loci and one sex-determing marker in a 2018-2918 study to estimate Roosevelt 

elk density from fecal pellets in western Oregon, USA. The direction (forward, F; revers, R) of each primer is indicated as well as the 

size range (base pairs; bp) for each amplicon. 

Locus Direction Primer sequence # alleles 

range 

(bp) dye panel Reference 

C143 F AAGGAGTCTTTCAGTTTTGAGA 4 158-170 vic 1 Meredith et al. (2005) 

C143 R GGTTCTGTCTTTGCTTGTTG     Meredith et al. (2005) 

TE83 F CAGATGCTACAGTGAAGACCA  4 98-108 fam 1 Sacks et al. (2016) 

TE83 R GTTTTTTGTGTCAAACAGAGCGGTGAG      Sacks et al. (2016) 

TE167 F TGCTCCTTGTTTTACATTAAGCTG  7 230-256 pet 1 Sacks et al. (2016) 

TE167 R GTTTCTTAAGCAGAGTCTGTGGAAGACC      Sacks et al. (2016) 

TE179 F TCAGTTCCAGGCATTACTTTGC  4 218-224 vic 1 Sacks et al. (2016) 

TE179 R GTTTATTGCAAGTTGTGTGCTTCG      Sacks et al. (2016) 

T172 F AGCATCTCCCCTTTCAACA 6 172-196 pet 2 Jones et al. (2002) 

T172 

R 

GTTTCTTCCCAACCCAAGTATCG  

    

Sacks et al. (2016), 

pigtailed version of 

Jones et al. (2002) 

T193 F AGTCCAAGCCTGCTAAATAA 8 177-213 vic 2 Jones et al. (2002) 

T193 

R 

GTTTCTGCTGTTGTCATCATTACC  

    

Sacks et al. (2016), 

pigtailed version of 

Jones et al. (2002) 

TE182 F GTCAAAGACCCCTCCGTTC  4 216-226 pet 2 Sacks et al. (2016) 

TE182 R GTTTCTAGTGCAGATGATCAAGGAGC      Sacks et al. (2016) 

NVHRT21 F GCAGCGGAGAGGAACAAAAG 5 141-153 fam 2 

Røed and Midthjell 

(1998) 

NVHRT21 R GGGGAGGAGCAGGGAAATC     

Røed and Midthjell 

(1998) 
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RT1 F TGCCTTCTTTCATCCAACAA  4 215-229 ned 2 Wilson et al.  (1997) 

RT1 R CATCTTCCCATCCTCTTTAC     Wilson et al.  (1997) 

SE47* F GTGGATGGCTGCACCACCAA 

n/a 

206 (Y),  

258 (X) ned 

1 Yamamoto et al. 

(2002) 

SE48 R CCCGCTTGGTCTTGTCTGTTGC     

Ennis and Gallager 

(1994) 

*Sexing locus 
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Table A.2 Locus-specific estimates of probability of identity (PID) and probability of 

identity among siblings (PIDSibs) from genotypes extracted from fecal DNA of 

Roosevelt elk in two western Oregon wildlife management units (Tioga and 

McKenzie). Fecal pellets were collected to estimate density of elk populations in 

2018 and 2019. The cumulative calculation of PID and PIDSibs represent the probability 

of incorrectly distinguishing one individual from another and among all individuals 

and siblings, respectively. The loci are ordered from least informative to most.  

 Tioga   McKenzie 

Locus PID PIDSibs  Locus PID PIDSibs 

TE179 0.48 0.71  RT1 0.38 0.60 

TE83 0.35 0.71  TE83 0.35 0.58 

TE182 0.35 0.61  TE179 0.28 0.56 

RT1 0.34 0.58  NVHRT01 0.24 0.52 

T172 0.31 0.56  T172 0.23 0.51 

C143 0.26 0.52  C143 0.19 0.47 

NVHRT01 0.21 0.49  TE182 0.16 0.45 

TE167 0.13 0.43  TE167 0.10 0.40 

T193 0.11 0.42  TE193 0.10 0.40 

Cumulative  5.0×10-6 3.7×10-3   5.8×10-7 1.7×10-3 
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