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ABSTRACT

The study of intermediate models for barotropic continental shelf and slope flow fields initiated in Parts I
and Il is continued. The objective is to investigate the possible use of intermediate models for process and data
assimilation studies of nonlinear mesoscale eddy and jet current fields over the continental shelf and slope.
Intermediate models contain physics between that in the primitive equations and that in the quasi-geostrophic
equations and are capable of representing subinertial frequency motion over the O( 1) topographic variations
typical of the continental slope while filtering out high-frequency gravity—inertial waves. We concentrate on the
application of intermediate models to the fplane shallow-water equations. The accuracy of several intermediate
models is evaluated here by a comparison of numerical finite-difference solutions with those of the primitive
shallow-water equations (SWE) and with those of the quasi-geostrophic equations (QG) for flow in a periodic
channel. The intermediate models that we consider are based on the balance equations (BE), the balance
equations derived from momentum equations (BEM), the potential vorticity conserving linear balance equations
(LQBE), the hybrid balance equations (HBE), the near balance equation (NBE), a geostrophic vorticity (GV')
approximation, the geostrophic momentum (GM ) approximation, and the quasi-geostrophic momentum and
full continuity equations (IM). The pertodic channel provides a basic geometry for the study of physical flow
processes over the continental shelf and slope. Wall boundary conditions are formulated for the intermediate
models and implemented in the numerical finite-difference approximations. The ability of intermediate models
to represent linear ageostrophic coastally trapped waves, i.e., Kelvin and continental shelf waves, is verified by
numerical experiments. The results of numerical solution intercomparisons for initial-value problems involving
O( 1) topographic variations are as follows. For flow at small local Rossby number e, | < 0.2, where ¢, is given
by the magnitude of the vorticity divided by £, all of the intermediate models do well, while the QG model does
poorly. For flows with larger values of |¢ |, e.g., || ~ 0.5, the performance of the different intermediate
models varies. BEM and BE consistently give extremely accurate solutions while the solutions from LQBE are
almost as good. The other models are substantially less accurate with errors generally increasing in the order
NBE, HBE, GV, GM, IM. The QG solution always has the largest errors. Consistent with the results from the
studies in Part II in a doubly periodic domain, the balance equations BE and BEM, followed closely by LQBE,
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appear to be the most accurate intermediate models.

1. Introduction

We continue the study of intermediate models ini-
tiated in Part I (Allen et al. 1990) and Part II (Barth
et al. 1990). Our objective is to assess the possibility
of the use of intermediate models for the study of non-
linear, mesoscale physical oceanographic processes over
the continental shelf and slope. Intermediate models
(McWilliams and Gent 1980) contain physics between
that in the full primitive equations and that in the quasi-
geostrophic approximation. They are capable of rep-
resenting flows over O( 1) topographic variations, with
accompanying O( 1) variations in height of the density
surfaces, for which the quasi-geostrophic approxima-
tion is not formally valid. In addition, intermediate
models systematically filter out the high-frequency
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gravity-inertial waves present in the primitive equa-
tions. This may lead to simplifications, relative to the
primitive equations, in the application of intermediate
models to data assimilation studies. Examples of some
of the more widely known intermediate models are the
balance equations (Charney 1955; Bolin 1955; Lorenz
1960; Gent and McWilliams 1983a) and the geo-
strophic momentum approximation (Hoskins 1975).
The latter is frequently employed in conjunction with
a transformation to geostrophic coordinates after which
the model is referred to as the semi-geostrophic equa-
tions.

Based on the considerable success of the quasi-geo-
strophic (QG) equations as an approximate model for
mesoscale atmospheric and oceanic motion (Pedlosky
1987), it seems natural to consider the possibility that
some appropriate approximate form of the primitive
equations might be applicable to mesoscale flow fields
over the continental slope where QG is not valid. We
have in mind an approximation similar to QG that
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would be based on the assumption of a small Rossby
number and would filter out high-frequency gravity—
inertial waves, but that would extend the range of va-
lidity of QG to regions with O( 1) bottom topographic
variations. It seems to us that such a model would be
potentially of great use for the study of mesoscale
physical oceanographic processes in coastal seas.

We have pursued the above objective by proceeding
with a set of comparative studies of intermediate mod-
els for rotating fluid flows over topography. We con-
centrate in these initial studies on motion governed by
the f-plane shallow-water equations (SWE). In Part I,
we discussed the formulation for the SWE of all of the
previously developed intermediate models known to
us and we presented some new, as well as some mod-
ified, models. The ability of intermediate models to
represent linear ageostrophic coastally trapped Kelvin
and continental shelf waves was demonstrated analyt-
ically. Model accuracy as a function of Rossby number
was examined by a comparison of exact nonlinear so-
lutions that exist for the SWE (Ball 1965; Cushman-
Roisin et al. 1985) with corresponding analytical so-
lutions of the intermediate models. In addition, the
model equations were written in a form appropriate
for numerical solution in physical coordinates and a
common method of formulation was given for all of
the different intermediate models.

In Part II, we continued the assessment of inter-
mediate model accuracy by the comparison of nu-
merical finite-difference solutions of the SWE, QG and
twelve different intermediate models for initial-value
problems involving flow over O( 1) topographic vari-
ations. A doubly periodic domain was utilized there
because the methods of application of wall boundary
conditions for some intermediate models are not
straightforward and require testing in their own right.

The formulation of initial-value problems in doubly

periodic domains allowed the model solutions to evolve
strictly according to internal model dynamics isolated
from any effects of wall boundary conditions. The re-
sults clearly indicated that balance-equation-type in-
termediate models give the most accurate solutions.
In the present study, we continue the evaluation of
intermediate models through comparison of numerical
finite-difference solutions to initial-value problems in
a periodic channel. This naturally involves the for-
mulation and implementation of wall boundary con-
ditions. The periodic channel geometry allows the test-
ing of the ability of the intermediate models, and of
their finite-difference approximations, to represent lin-
ear ageostrophic Kelvin waves and continental shelf
waves. This geometry also allows the formulation of
basic geophysical fluid dynamical problems involving
the interaction of along-channel currents with topog-
raphy and the extension of that type of problem to
cases with mean across-channel bottom slope repre-
sentative of the topographic constraint of the conti-
nental margin. In fact, the periodic channel provides
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a basic geometry for process studies in idealized coastal
numerical models (e.g., Haidvogel and Brink 1986).

The eight intermediate models that we evaluate for
the periodic channel are a subset of the twelve included
in Part II. Those considered here include the balance
equations ( BE), the balance equations based on mo-
mentum equations (BEM), the potential vorticity
conserving linear balance equations (LQBE), the re-
lated hybrid balance equations (HBE) and near balance
equations (NBE), a geostrophic vorticity (GV) ap-
proximation, the geostrophic momentum (GM) ap-
proximation, and the quasi-geostrophic momentum
and full continuity equations (IM). The models LQBE,
BEM, HBE and NBE were formulated and presented
in Part 1. The selection of the particular intermediate
models included here is based on the outcome of the
comparisons in Parts I and II and on considerations
concerning wall boundary condition application. The
models that consistently performed the best in the nu-
merical solutions in Part II were BE and BEM. One of
the better models in addition to BE and BEM was
LQBE. These models are naturally considered here.
On the other hand, NBE and HBE are included because
their formulation involves momentum equations and
it was felt that consideration of methods for the appli-
cation of wall boundary conditions for HBE and NBE .
might help clarify that issue for all of the balance-equa-
tion-type models. The GM model is included because
it is one of the more well known and frequently applied
intermediate models (e.g., Hoskins 1982). Finally, GV
and IM are added because the formulations of these
models for numerical solution in physical coordinates
are perhaps the simplest of all of the intermediate
models. In addition, the governing equations for GM,
GV, and IM take the form of a generalized QG model
and reduce clearly to the QG equation in the appro-
priate limit.

The outline of this paper is as follows. In section 2,
we recall the shallow-water equations (SWE). In sec-
tion 3 we review QG and the intermediate models and
discuss the application of wall boundary conditions.
In section 4, the ability of the models to represent
ageostrophic Kelvin and topographic waves is tested
with numerical solutions. In section 5, initial-value
problems involving the interaction of uniform flow in
a channel with isolated topographic bumps, both with
and without mean across-channel bottom slopes, are
utilized for the comparison of model and SWE solu-
tions. The results are summarized in section 6. The
numerical methods are given in appendix A and ad-
ditional discussion of the BEM model is included in
appendix B.

2. Shallow-water equations

We examine rotating fluid flows governed by the
shallow-water equations (SWE) on an f-plane. Dimen-
sionless variables similar to those in Pedlosky (1987)
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are utilized so that in Cartesian coordinates (x, ) the
continuity and momentum equations are

eFn, + (hu)x + (), = 0, (2.1a)

et + e(uu, + vuy) —v=—1n,+ G™, (2.1b)

ev, + e(uv, + vvy) + u = —1,+ G, (2.1¢)
where

h=eFnp+1— hp, (2.1d)

el is the elevation of the free surface relative to the
undisturbed depth of the fluid H = 1 — Az where Az(x,
y) is the height of the bottom topography, (u, v) are
velocity components in the (x, y) directions, G is a
generic representation of horizontal friction terms with
a superscript to denote the equation, and ¢ is time.
Subscripts (x, y, t) denote partial differentiation. There
are two dimensionless parameters, the Rossby number
eand F,

e=U/(/L),

where L, D, and U are characteristic values for, re-
spectively, a horizontal scale, the undisturbed fluid
depth, and a horizontal fluid velocity, fis the Coriolis
parameter, and g is the acceleration of gravity. The
parameter F is the square of the ratio of the horizontal
length scale L to the Rossby radius of deformation &z
=(gD)'?/f. As in Pedlosky (1987), the dimensionless
variables (x, y), ¢, (u, v), hg, and n have been formed
from their dimensional counterparts by using the char-
acteristic scales L, L/ U, U, D, and eFD, respectively.

We will also utilize (2.1a,b,c) in the equivalent forms

F=f2L*/(gD), (22ab)

eFn, + (Hu), + (Hv),+ D=0, (2.3a)
e, — (1 +ef)v=—-B,+ G, (2.3b)
e, + (1 + eu=-B,+ GV, (2.3¢)

where
B=n+eK, K=%(u2 +0?), (2.3de)

H = eFn — hg,
D=u,+v,

(2.3f)
=0, — Uy, (23g,h)

B is the Bernoulli function, ¢ is the vertical component
of relative vorticity, and D is the horizontal divergence.
Equations for { and D follow from (2.3b,c):

e+ us +v8) + (e + 1)D = GO,
e[D, + uD, + vD, + D* + 2(v,u, — vyu,)] — ¢
= -V + GP,

(2.4)

(2.5)
where V2 is the horizontal Laplacian operator. The
combination of (2.1a) and (2.4) gives

O + uQy + vQ, = G'9, (2.6)
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where

0= (1+¢€)/h, (2.7)

is the potential vorticity which, when G'@ = 0, is con-
served following fluid particles moving with velocity
(u, v). The combination of (2.6 ) multiplied by #Q and
(2.1a) multiplied by Q? yields an equation for the po-
tential enstrophy density 2Q?,

(hQ?), + (uhQ?), + (vhQ?), = G@. (2.8)

An additional useful equation

O+ (uQp)x + (vQr)y, = G, (2.9a)
for
QL=¢-H, (2.9b)
where
H=H/e=Fn— ¢ 'hg, (2.9¢)

follows from the subtraction of (2.3a) from (2.4).

In the absence of dissipation (G**) = 0), the SWE
(2.1) also imply the following relation expressing the
conservation of energy,

e(hK+ % Fnz) + (uhB)x + (VhB), = 0. (2.10)
! .

Initial-boundary-value problems for (2.1) require
the specification at ¢ = 0 of u(x, y,0), v(x, y,0), and
7(x, y, 0) and the vanishing of the normal component
of velocity at rigid boundaries.

We consider motion in a periodic channel of uni-
form width. The x-axis is aligned in the along-channel
direction. The walls of the channel are at y = 0, 1, so
that the dimensionless width L’ = 1. The flow is pe-
riodic in x with period L. The boundary conditions
are

v=0, at y=0,1, (2.11)
and periodicity for all variables in x, e.g.,
n(x =0)=q(x= LX), (2.12)

An integral constraint, corresponding to the conser-

vation of mass,
L™ g
f f ndxdy = 0,
0 0

follows from the area integral of (2.1a) with boundary
conditions (2.11) and (2.12). Likewise, in the fric-
tionless case G**) = 0, integration of (2.3b) along the
channel walls gives, with (2.11),

L(X)
f u,dx = 0,

0

(2.13)

at y=0,1, (2.14)
which expresses the conservation of circulation on each
boundary.

The horizontal friction terms are biharmonic in the
x direction only (Haidvogel and Brink 1986), i.e.,
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G®W = — VUxxxxs GW = ~ VPxxxx+ (2153,b)

The friction terms are utilized to help provide some
weak dissipation of potential enstrophy at high wave-
numbers. The viscosity » is chosen to be small enough
that the energetic scales of motion are essentially un-
affected.

We choose the parameter F = 16 for the numerical
solutions presented here so that the dimensionless
Rossby radius is less than the channel width, i.e., so
F~172 = 0.25 < 1. This, of course, is not typical for
barotropic motion over the continental shelf and slope
where generally F~!/? > 1. We are primarily interested
in the ultimate application of intermediate models to
the continuously stratified case, where the internal
Rossby radii of deformation are typically smaller than
the shelf-slope width. The choice F~!/? < 1 is made
here so that the dynamics in the SWE will be closer to
that in the stratified case, i.e., so that the effects of vortex
stretching due to interface deformations will be an in-
tegral part of the flow processes studied.

The numerical finite-difference.approximations are
discussed in appendix A. Two different numerical
models for the shallow-water equations, (SWE) and
(SW2), are utilized in the numerical solution inter-
comparisons to provide a check on the reference so-
lution and to provide a measure of error introduced
by variations in finite-difference formulations.

3. Models

We are interested in approximate solutions to the
SWE (2.1) in the limiting case of small Rossby number,
e <€ 1, with F = O(1). The standard approximation in
this case is the quasi-geostrophic (QG) model (Ped-
losky 1987) which involves the assumptions that efn
= O(¢) and hz = O(€). One objective of intermediate
models is to represent small Rossby number flows with
O( 1) variations in A, i.e., with eF'p = O(1) and/or Ag
= O(1). Descriptions of the model equations, including
the formulations utilized for the application of nu-
merical solution procedures and wall boundary con-
ditions, are given in this section. The numerical finite-
difference approximations are discussed in appendix
A. All of the intermediate models considered here have
continuity equations and corresponding wall boundary
conditions such that the mass conservation integral
constraint (2.13) is satisfied. The numerical approxi-
mations are likewise formulated so that this constraint
is preserved in finite-difference form. More detailed
descriptions of the intermediate models are given in
Part L.

a. Quasi-geostrophic model (QG)

The QG model is derived in Pedlosky (1987) by
expanding the variables in an asymptotic expansion in
powers of €. The velocity components are geostrophic
to leading order, ‘

U = Ny, VG = Nx, (3.la,b)
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and the geostrophic vorticity is

$6 = Vox — Ugy = V. (3.2)

The flow is governed by the equation
Qo + uQox + 600y = G, (3.3a)

for quasi-geostrophic potential vorticity,
Qo= {c— Fn+ e 'hg, (3.3b)

which expresses (with G(% = 0) the conservation of
0O, following fluid particles moving with velocities ( #g,
vg). Written in terms of 5, (3.3a) is

(V2n — Fn) = —J(n, Vn + ¢ 'hp) + G, (3.4)

where the operator J(a, b) = a.b, — b.a, is the Jaco-
bian.

Initial-value problems require the specification at ¢
=0 of n(x, y, 0). At the wall boundaries, the no normal
flow conditions (2.12) imply -

vg=0, at y=0,1. (3.5)
In terms of n, (3.5) are
n=C(t), at y=0, (3.6a)
n==C(1), at .y=1, (3.6b)
where C, and C, are chosen so that (McWilliams
1977), '
L&
f f ndxdy = 0, (3.7a)
0 0
and '
L(X) L(X)
dxny,, = — dxe 'GH) =0
0 o
at y=0. (3.7b)
Note that (3.7a,b) and (3.4) imply
L(_X)
dxn, =0, at y=1, (3.7¢)

so the integral constraints corresponding to conserva-
tion of mass (3.7a) and to the conservation of circu-
lation on each boundary (3.7b,c), similar to (2.13)
and (2.14) for the SWE, are maintained.

b. Intermediate model (IM)

The full continuity equation (2.1a) is utilized along
with the approximate momentum equations,

UG — Gfg'UG —v= —ﬁGx + G(uG),

Vg + e(GuG +u= _zcy + G(UG),

(3.8a)
(3.8b)

where

B =1+ K, K= %(uc2 + %), (3.8¢,d)
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A single governing equation for % is obtained by sub-
stituting the expressions for # and v from (3.8a,b) in
the continuity equation (2.1a):

(hnxl)x + (hnyt)y - Fny,
=—e ' J(h, Bs) — J(n, htg) + G, (3.9)

Initial-value problems require the specification of
n(x, ¥, 0). The no normal flow boundary conditions
(2.11) are applied to (3.9) by setting v = 0 in (3.8a)
to obtain an equation involving 7 alone. These con-
ditions are straightforward to implement in finite-dif-
ference form in the governing equation for 5 (3.9) since
it is derived from the continuity equation (2.1a) (see
appendix A). The x-integral of (3.8a) along the channel
walls where v = 0 gives

YLl 2
f u(;,a‘x + f UGuGde = O,
0 0

at y=0,1, (3.10)

so that there is no analogue in IM to the conservation
of boundary circulation as in (2.14) for the SWE.

¢. Geostrophic vorticity (GV)

In GV, the continuity equation (2.1a) is utilized
along with the approximate momentum equations,

eugr — (e + 1)v = —Bg, + G, (3.11a)
Vg + (el + Du = —Bg, + G, (3.11b)

The vorticity equation that follows from (3.11a,b)
combines with (2.1a) to give

Qc: + uQgx + 0, = G99, (3.12a)

which implies the conservation of geostrophic potential
vorticity

QG = (1 + Efg)/h, (312b)

following fluid particles moving with velocities (1, v)
(3.11). The combination of (3.12) and (2.1a) yields
an equation for the conservation (with G(2%) = 0) of
geostrophic potential enstrophy density #Qg?. In gen-
eral, potential enstrophy conservation follows in the
absence of dissipation for all intermediate models that
retain (2.1a) and that have an analogue of potential
vorticity conservation on fluid particles such as (3.12).

One equation for 7 is obtained by substituting » and
v from (3.11)in (2.1a),

(hant)x + (hGﬂyt)y — Fn,
= —e ' J(hg, Bg) + G, (3.13a)
where

Initial-value problems require n(x, y, 0). The wall
boundary conditions (2.11) are applied to (3.13) by
setting v = 0 in (3.11a) from which we also obtain
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SA

f uGl dx = 0,
0

Thus, the circulation along the boundaries of the geo-
strophic velocity is conserved in analogy to (2.14) for
the SWE and similar to (3.7¢) for QG and consistent
with an area integral of the GV vorticity equation.

at0, 1. (3.14)

d. Geostrophic momentum (GM)

In GM (Hoskins 1975), advection of momentum,
represented by the geostrophic values ug and vg, by
the full ¥ and v velocities is retained so that (2.1b,c)
are approximated by

(UG + UGy + Vgy) — vV = —n, + G(u‘;), (3.15a)
(3.15b)

Separate expressions for # and v may be obtained by
algebraic manipulation of (3.15): :

u={(1+ 6g‘GM)_l['_-gGy ~ Vg,
+ €2 (Ugy Ve — Vgyti) + G9], (3.16a)
v = (1 + efom) [ Box + euc + €2 (VgeUay

— Ugx61) — G,

G(Uct + uvgy, + DUGy) +u= -y + G("G),

(3.16b)
where
$om = §¢ + eJ(ug, vg). (3.17)

An equation for {gy follows directly from (3.16) by
forming D from u and v:

e($ome + Ulamx T Viamy)

+ (efgm + 1)D = GY¥™_ (3.18)
The combination of (3.18) and (2.1a) gives
Oome + uQomx + v0cmy = G (3.19a)

which expresses, when G (%M = (, the conservation of
geostrophic momentum potential vorticity

Qom = (1 + elom)/h, (3.19b)

following fluid particles moving with velocities (u,
v) (3.16).

A single equation for 7 is obtained by substituting
(3.16a,b) in (2.1a):

(hGMnxt)x + (hGMnyt)y - Fnl + eJ(nx, hGMnyt)
— eJ(ny, homnu) = —€ ' J(hom, Bg) + G™,
(3.20a)

where
hom = h/(1 + efom). (3.20b)

Initial-value problems require #(x, y, 0). The wall
boundary conditions (2.11) are applied to (3.20) by
setting v = 0 in (3.16b). From the latter equations we
also obtain
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L(X)

L(x)
f U, dx + ef
0 0
(3.21)

which is consistent with the area integral of the GM
vorticity equation (3.18), but which is not directly
analogous to the conservation of boundary circulation
(2.14) for the SWE.

Finally, we note that with no dissipation the GM
model, (3.15a,b) and (2.1a), possesses the energy con-
servation equation

(VexUg: — UgxVa)dx = 0,

at y=0,1,

f(hKG + % F7]2) + (uthG)x + (Uhﬂ(,‘)y =0. (322)
t

e. Linear balance equations (potential vorticity con-
serving) (LQBE)

The LQBE model was formulated in Part I It is
close to the linear balance equation LBE model (Gent
and McWilliams 1983a), but in addition it possesses

an analogue of potential vorticity conservation on fluid .

particles. In Part II, LQBE was found in general to give
substantially more accurate solutions than LBE.
The continuity equation (2.3a) is approximated by

eFn, + [(ug + X, )Hx
+ [(ve + eX,)H], + eV°x =0, (3.23)
where ’
D = u, + v, = eV?X. (3.24)

As discussed in Part I, it may be assumed that LQBE
is derived from the following approximate momentum
equations,

elig, — €{c(Vg + ) — v = —Bgy + G, (3.25a)
e, + efo(ug + eX,) + u = —Bé, + G, (3.25b)
which imply the vorticity equation
Sor + (g + X} $ox + (V6 + X)) $Gy
(1 + o)V = GYD, (3.26)

Thus, LQBE is governed by (3.23) and (3.26). These
combine to give

Qg + (ug + €Xx) Qo
+ (vg + €X,)Qgy = G (3.27)

so that, when G‘9) = 0, Qg (3.12b) is conserved on
particles moving with velocities(ug + €X,; Vg + €X,).
LQBE is formulated for numerical solution by elimi-
nating VX from (3.23) and (3.26) to give

(Vi — Fn) = —J(n, $6 — H) — d{X:($6 — H)]x
= dx,(§6 — H)l, + G™, (3.28)
so that (3.28) and (3.26) are the governing equations.
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Initial-value problems require 7(x, y, 0). Boundary
conditions at the walls are applied by requiring that
both

v=0 and vg+ X, =0,
at y=0,1. (3.29a,b)

The specification of (3.29a,b) in the momentum equa-
tion (3.25a) and in the continuity equation (3.23) gives
the appropriate boundary conditions for (3.26) and
(3.28). Note that the boundary conditions (3.29a,b)
are consistent with the conservation of mass in (3.23)
and imply the satisfaction of the integral constraint
(2.13). In addition, the application of (3.29a,b) in x-
integrals of (3.25a) along the channel walls gives (3.14),
which implies the conservation of geostrophic bound-
ary circulation. This is consistent with an area integral
of the vorticity equation (3.26) and is analogous to
(2.14) for the SWE.

f. Hybrid b_alance equations (HBE)

We consider the following balance-equation—-type
models (HBE, BEM, BE, NBE) in an order that makes
the discussion of their boundary condition application
the easiest. The models HBE, BEM and NBE were
formulated in Part I and are close to the balance equa-
tions BE (Charney 1955, 1962; Bolin 1955, 1956; Lor-
enz 1960; Gent and McWilliams 1983a, 1984). In these
models, the velocity components are written as the sum
of rotational and divergent components

u=—y,+ Xy, U=yt ex,, (3.30ab)

so that

/

{=v,—u, =V, (3.31)

and D is given by (3.24). The full continuity equation
(2.1a) is utilized.

In HBE, approximate momentum balances are ob-
tained by substituting (3.30) in (2.3b,c) and retaining
O(e) terms. Using the notation

ugr = —¥y, UVr = Y, (3.32a,b)

we obtain
cup; — €§0r — v = ~Bpe + GO, (3.33a)
€Ur + €§ug + u = —Bg, + G®, (3.33b)

where
Br=n+cKp, Ke=3(u+v). (333c)

The divergence equation formed from (3.33) [with
(2.15)] reduces exactly to the equation of balance,

=V = Vi + eKr) + e(Sur)y — e({UR)x,
= Vi — 2J(¥x, %), (3.34)
as an approximation to (2.5).



DECEMBER 1990

Numerical finite-difference solutions of HBE- may
be obtained by methods similar to those used for BE
and BEM (sections 3g,h). Here we utilize an alternative
solution procedure which may be formulated by using
the momentum equations and substituting » and v
from (3.33) in (2.1a), which gives

(h\bxt)x + (h‘l/yl)y — Fy,
= — ¢V J(h, Br) — J(¥, hix) + GW. (3.35)

Equations (3.34) and (3.35) form two coupled gov-
erning equations for ¥ and n. The method employed
to solve these equations is discussed in appendix A.

For initial-value problems, y(x, y, 0) is specified
and n(x, y, 0) is found from the solution of (3.34).
The wall boundary conditions (2.11),

v =+ ex, =0, (3.36)

are applied in (3.35) by setting v = 0 in (3.33a), which
implies )

€Up, — €{Vg = —-BRX + G(MR), at y= 0, 1. (337)

Again, (3.37) is straightforward to implement in (3.35)
since that equation is derived in finite-difference form
from the substitution of # and v, as given by (3.33a,b),
in the continuity equation (2.1a). Note that boundary
condition (3.36), which is important for ageostrophic
coastally trapped wave dynamics, is formulated exactly
in terms of the approximate momentum equations.
On the other hand, the x-integral of (3.33a) gives

L(X) L(X)
f UredXx — f {vrdx = 0,
0 0

at y=20,1,

at y=0,1,

(3.38)

so that HBE, similar to IM, has no analogue of
the conservation of boundary circulation (2.14) in
the SWE.

What remains then is the specification of a boundary
condition for the balance equation (3.34). In formu-
lating a boundary condition for (3.34) it is useful to
see how this must be done in the linear inviscid limit
where (3.33) and (2.1a) are approximated by

€Ur, — V= — 1N, (3.39a)
eVp + U=~y (3.39b)
eFn, + (Hu), + (Hv), = 0. (3.39¢)

We know in this case from independent derivation of
the linear equations in the f-plane low-frequency limit
(e.g., Part I) that
U=—n=€ey U= (3.40a,b)
so that we should find
v=n X=-n=-Y. (3.41a,b)

The vorticity and divergence equations derived from
(3.39a,b) are

Nx = €My
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G+ V=0, V=V (3.42ab)

or
Vi, +x)=0, V(¢ —1n)=0. (3.42cd)

The momentum equations (3.39a,b), after substitution
of (3.30a,b), may be written

—e(Y +X)y= (¥~ s, (3.43a)
eV + X = (¥ — ). (3.43b)

It is clear, since (3.43a,b) are the Cauchy-Riemann
conditions for (¢, + X) and ( — 7), that boundary
conditions for (3.42¢,d) derived from the momentum
equations (3.43a,b) alone will not be sufficient to spec-
ify unique solutions. For example, if e(y, + X) and (¢
— 1) satisfy (3.43a,b) and (3.42c,d), then so will

eX =—ey, +alx,y,t), (3.44a)

¥ =1+b(x,y,1), ' (3.44b)

where g and b are any conjugate harmonic functions
such that

ax=b,, a,=—by, (3.45a,b)

Via=V%b=0. (3.45¢,d)

This is the same situation as the non-uniqueness of the

solutions for Y and X in a bounded region given { and

D and the no normal flow boundary condition (Gent

and McWilliams 1983a). To obtain unique solutions

for ¥ and X that agree with (3.41a,b), an additional
boundary condition, such as

=y, at y=0,1, (3.46)
along with the integral condition,
LY a1
f (¥ — n)dxdy = 0, (3.47)
0 0

must evidently be specified independently. The con-
ditions (3.46) and (3.47) imply a = b = 0 in (3.44)
and give (3.41). ‘

For HBE, we choose a condition that reduces to
(3.46) in the linear limit and specify the following ap-
proximate boundary condition for (3.34) from (3.33b):

ny =¥, — e({ur + Kgy) on y=0,1, (3.48)
along with (3.47).

g Balance equations (based on momentum equations)
(BEM)

A model very close to BE was formulated in Part I
and may be derived from (2.1a) and the following ap-
proximate momentum equations:

g, — (e + 1)V = —Bp, + GHR,
Vg, + (e + 1)u=—Bg, + GWR,

(3.492)
(3.49b)
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These are similar to (3.33) for HBE with the exception
that the full # and v are retained here in the rotation
terms. The resulting vorticity equation,

GHule+ 05+ (1+ )V =GO, (3.50)

has the same form as (2.4) for the SWE. The full con-
tinuity equation (2.1a) is retained so that (2.1a) and
(3.50) combine to give, in the absence of dissipation,
conservation of potential vorticity (2.7) following fluid
particles moving with velocity (¢, v) (3.30) as in (2.6).
The divergence or balance equation implied by
(3.49a,b) is

¢ =Vx =V + eKg) + e($Ur)y — e( {VR)x
+ e2(.§‘)(,\f)y - fz(g‘xy)x
=V — 2J(¥x, &) — €2J(E, X). (3.51)

BEM differs from BE solely due to the inclusion of the
€2J({, x) term in the divergence equation (3.51) for
BEM. The presence of x in (3.51) adds additional
complications to BEM compared to BE and these are
discussed further in appendix B.

BEM is solved here by eliminating VX from (3.50)
and (2.3a) to form

(VY — Fp), = —J(¥, § — H) — dx.(¢ — M)«
' —dx, (¢ — H)], + G¥, (3.52)

and by considering (3.50), (3.51) and (3.52) as the
governing equations. These are stepped forward in time
by using an iterative method as described in appen-
dix A.

For initial-value problems, Y(x, y, 0) is specified at
t = 0 (see appendix B). Boundary conditions for (3.50)
and (3.52) are obtained from (3.36) and the use of
(3.36) in the momentum equation (3.49a) which gives

€Up, = —Bre + G™, at y=0,1. (3.53)
The approximate boundary condition,
ny =¥, — e {ug + Kgy) — €(§X),  (3.54)

for (3.51) is formulated based on the same reasoning
as given in connection with (3.48). The x-integral of
(3.53) gives

L(X)

J

so that the circulation along the boundaries of the ro-
tational component of the velocity is conserved in
analogy to (2.14) for the SWE and consistent with an
area integral of the vorticity equation (3.50) and
boundary condition (3.36).

Uridx = 0, (3.55)

h. Balance equations ( BE)

The balance equations are derived from the SWE
by substituting # and v from (3.30) in the vorticity
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(2.4) and divergence equations (2.5) and retaining
O(1) and O(e) terms. This gives (3.34) and (3.50).
The full continuity equation (2.1a) is also utilized and
this combines with the vorticity equation (3.50) to give
conservation of potential vorticity (2.7) following fluid
particles moving with velocity (u, v) (3.20) as in (2.6).
We solve BE here by combining (2.3a) and (3.50) to
give (3.52) and by considering (3.34), (3.50) and
(3.52) to be the governing equations. For initial-value
problems, we specify y(x, y, 0).

The momentum equations that correspond to the
truncation of the vorticity (3.50) and divergence (3.34)
equations in BE do not follow directly as approxima-
tions to (2.1b,c), but involve implicitly defined force
potential correction terms and are referred to as equiv-
alent momentum equations (Gent and McWilliams
1983a). This complicates the application of wall
boundary conditions for (3.34), (3.50), and (3.52).
In addition to requiring ( 3.36), we proceed by utilizing,
as approximate boundary conditions, (3.53) and
(3.48). The errors incurred by use of (3.53) should be
of O(e?) as indicated, e.g., by the fact that BE and
BEM differ only by the additional O(e?) termsin (3.51)
compared to (3.34). The justification for (3.48) is the
same as given in connection with its use in HBE with
additional errors of O(e?) expected here. The x-integral
of (3.53) implies (3.55), consistent with the area in-
tegral of (3.50).

i. Near balance equations (NBE)

The NBE model utilizes the continuity equation
(2.1a) and approximate momentum equations similar
to (3.49a,b) for BEM with the exception that the
streamfunction is expanded as

¥ =10+ €Y, (3.56)
and we assume
etgor — (1 + €{ro)V = —Brox + G2 (3.57a)
€Vror + (1 + €fro)t = —Broy + G*, (3.57b)
where
uro = —Yoy» Uro = Yox, (3.58a,b)

Sr0 = Vo, Bro =1+ 3 ko + vho).  (3.59b)

The equation of balance,

Vo = Vi — 2J(Yox, Yop), (3.60)

which follows from approximating the divergence
equation found from (3.57) to O(e) is also assumed
to hold. The vorticity equation implied by (3.57) com-
bines with (2.1a) to give the conservation of NBE po-
tential vorticity Qro = (1 + €{ro)/h following fluid
particles moving with velocities (u, v) (3.57).
Substitution of # and v from (3.57) in (2.1a) gives
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FI1G. 1. The y-dependence of the SWE Kelvin wave solution gxw( »)
with a flat bottom for F = 16 and the first three across-channel modes
g(y)i=1,2, 3 with bottom topography (4.15) and Ay = 0.8 for F
= 16and k = 7/4.

(hRO‘POxt)x + (hRO\[/Oyl )y — Iy,

= —é—IJ(hR(), .BR()) + G(WO), (3613)

where

hro = h/(1 + €$ro). (3.61b)

Similar to (3.34) and (3.35) for HBE, (3.60) and (3.61)
form two coupled governing equations for n and .
The method used to obtain numerical solutions is dis-
cussed in appendix A.

Initial-value problems require the specification of
Yo(x, y,0). Boundary conditions at y = 0, 1 for (3.61a)
are obtained by setting v = 0 in (3.57a). An approxi-
mate boundary condition equivalent to (3.48) (with
¥ replaced by ) is utilized for (3.60). The x integral
of (3.57a) at y = 0, 1 with v = 0 implies (3.55) with
ug, replaced by ug,.

4. Linear ageostrophic waves

The importance of linear ageostrophic coastally
trapped wave motion to the behavior of continental
shelf flow fields is well known. The capability of inter-
mediate models to represent ageostrophic Kelvin and
continental shelf waves was discussed in Part I. It was

TABLE 1. Rescaled phase velocities ¢ = ec; = ew;/k for the linear
cross-channel wave modes from the solution of (4.11) with constant
bottom slope (4.15), k = =/4 and F = 16.

Phase velocity hw=0.8 hyw =03
é 0.304 0.270
é -0.143 -0.215
[} —0.062 -0.023
Ca -0.032 ~0.011
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FIG. 2. The rms error (4.18) (top) from the intermediate models
and from SW2 compared to SWE for the Kelvin wave problem. The
type of line (solid, dashed, etc.) representing the rms error for each
model is consistent in Figs. 2, 4, 9, 11, 14, and 16. The correspondence
of model and line-type may be seen clearly in Fig. 14. Also (bottom),
the (x, t) coordinates of the zero crossing of 5 (with 5, > 0) at y
=0.11 from SWE (solid line) and from BE (dashed line) for the
Kelvin wave problem.

shown there that in the linear limit the intermediate
models discussed in section 3 represent these waves
with accuracy consistent with a standard linear low-
frequency approximation. In this section, we test that
result and verify that our finite-difference formulations
of the equations and of the boundary conditions prop-
erly admit these waves. Specifically, we present nu-
merical solutions for problems involving the propa-
gation of linear Kelvin waves and the propagation of
first mode linear continental shelf waves (with the latter
represented by ageostrophic topographic-Rossby waves
in a channel). The linear solutions for waves that vary
sinusoidally in time and in the along-channel direction
are utilized to initialize, for a specified along-channel
wavenumber, all of the intermediate models and the
SWE. Solution accuracy of the intermediate models is
appraised by appropriate comparison with the results
for the SWE.

The linear inviscid shallow-water equations for mo-
tion over O( 1) topographic variations on an f-plane
are

eFn, + (Hu)x + (Hv), = 0, (4.1a)
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t=0.0
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F1G. 3. Contours of the 7 field for the Kelvin wave problem from BEat¢ =0 and at¢ = ¢
= 100e = 0.01. The contour interval is 0.2. The zero contour line is heavy. The solid (dashed)
contour lines are for positive (negative) values.

€U, — V= —1ny, (4.1b) and rg and require k* < F for accurate Kelvin wave
- _ approximation.
] €+ u - (4.1c) For the topographic waves, we assume /2p = A5(y)
It follows from (4.1b,c) that and let
Lu=—n,—eng, LV=1n—en, (42ab) n = g(y) exp(—iwt + ikx). (4.10)
where For simplicity in obtaining the cross-channel modes g,

_ 5022 we assume the low-frequency limit (ew?) < 1 in (4.3)
L=14¢e9%/a (4.2¢) and find the solutions to (4.5). In that case,
Substituting (4.2a,b) in .L (4.1a), we obtain a single )
equation for #: )
_ helf =0.0001, F=16
(e + (Hny)y = FLal = = T(n, ha). (43) g0 o :

The boundary conditions (2.12) from (4.2b) are . . - FMEE
o
ne—en, =0, at y=0,1. (44) § | &u I
For all of the intermediate models in section 3, the E /\ - léga
following single governing equation for  may be found -~ [~ -~ BEM
in the linear limit (Part I): B e — R w2
[(Hnx + (Hny), — Frl, = =€~ J(n, hg).  (45) > fme /e
In addition, the velocity components are given by
(3.40a,b), i.e., by (4.2a,b) with .L replaced by 1, so shelf wave £=0.0001, F=16 .
that the wall boundary condition is also (4.4). 0.0 <7
First, we consider Kelvin waves over a flat bottom ] N
(hg = 0) with solutions of the form BEM
-
n = Cexp(—iwt + ikx — ry), (4.6) ~201
so that there is exponential decay into the channel from = - SWE i
y = 0 and propagation toward positive x. For the SWE  * oo i
(4.3), we obtain ) J
r=re=F"? ew=ews=k/rs, (4.7a,b) i
whereas for the intermediate models, -6.0 1 -
r=r=(+F)"2, e=co=k/r. (48ab) 0. ' s0. ' 100,
time/¢

The velocity components, ‘
FIG. 4. The rms error (4.18) (top) from the intermediate models
u=-—n=ryg, v=0. (4.9a,b)  and from SW2 compared to SWE for the topographic wave problem.
. . . Also (bottom ), the (x, ¢) coordinates of the zero crossing of 7 (with
Note that the intermediate models distort the SWE n. < 0) at y = 0.48 from SWE (solid line) and from BEM (dashed

dispersion relation (4.7b) by the difference between r; line) for the topographic wave problem.
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FIG. 5. Contours of the 7 field for the topographic wave problem from BEM at 1 = 0 and
at? =ty = 100e = 0.01. The contour interval is 0.2. The zero contour line is heavy. The solid

(dashed) contour lines are for positive (negative) values.

8yt 58+ (—k*+sb™' — FH ')g =0,

where

(4.11)

s=Hy,/H, b= ew/k. (4.12a,b)
The boundary conditions for (4.11) from (4.4) are

g+bg,=0, at y=0,1. (4.13)
The velocity components are given by
(u, v) = [(—g, — ewkg), i(kg + ewgy)]
X exp(—iwt + tkx). (4.14a,b)

For these calculations we specify F = 16, k = /4,
LY =1, L™ = 8 with grid spacing Ay = 1/33 and Ax
= 24y, so that the total number of interior grid points
is equal to 32 X 128. The viscosity » = 5 X 107°. We
present one set of results for a Kelvin wave and one
set for what is essentially the first mode topographic
wave. For the topographic waves we utilize a constant
bottom slope,

hg = 2huy(y — 0.5),

where Ay = 0.8 and dhg/dy = 1.6.

The Rossby number e is chosen to be small but finite
(e = 107%), so that the motion will be nearly linear but
will be governed by the full nonlinear equations. For

(4.15)

the Kelvin waves, we initialize BE, BEM, NBE, and -

HBE by assuming the linear solution for 7, (4.6) and
(4.7), is equal to an initial streamfunction ¥;(x, ).
The initial value 7(x, y, 0) is then obtained from the
solution of the various balance equations. Since ¢
= 107* is small, ¥,(x, ») and n(x, y, 0) are nearly
equal. The models LQBE, GV, GM and IM are ini-
tialized with n(x, y, 0) from BE. The SWE and SW2
are initialized with n(x, y, 0) from BE and with velocity
components calculated from (3.30a,b) where ¥(x, y,
0) = ¥,(x, y) and X(x, y, 0) is found from the BE
solution. For the topographic waves, the initial values
are found in the same way starting with the assumption
that the linear solution for 5, with g(») obtained from
(4.11), is equal to V,(x, y).

In Fig. 1 we show the y-dependence of the initial
SWE Kelvin wave solution ggxw = exp(—F'/?y). The
rescaled propagation velocity Ckw = eckw = ew/k
= F~1/2 = (.25. For the topographic waves, we find
gi{y) and & = ec; = ew;/ k from the numerical solution
of (4.11) with boundary condition (4.13), where the
subscript i = 1, 2, « - « denotes mode number and the
modes are ordered so that the absolute values of re-
scaled wave speeds ¢; decrease as i increases. In Fig. 1,
we also plot g;(y) for the first three modes with k = =/
4, F = 16 and hj given by (4.15) with Ay, = 0.8. The
modes are normalized so that the maximum absolute
value of g;(») is equal to one. The corresponding values
of ¢; for the first four modes are given in Table 1. Also

TOPOGRAPHY
he=0.5, h,=0.0 hy=0.5, h,=0.3 hy=0.5, h,=-0.3
A 1 1 1 ] 1 —_— 1 1 1 1 J 1 A 1 1] 1 1 1
0.8 -
0.4 -
0-0 T T T T T T T T LR L T T T T T T T T
00 05 1.0 15 0.0 05 O 15 00 05 1.0 1.5

FIG. 6. Contours of the channel bottom topography used in cases 1-4 (Table 2) where L™ = 2, h,
= 0.5 and Ay = 0.0, +0.3, and —0.3. The contour interval is 0.1. The zero contour line is heavy. The
solid (dashed) contour lines are for positive (negative) values.
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TABLE 2. Parameter values for the initial-value problems involving
flow over topography. In all cases, F = 16 and v = § X 107%.

Case € ho hw
1 0.001 0.5 0
2 0.005 0.5 0
3 0.005 0.5 0.3
4 0.005 0.5 -0.3

listed in Table 1 are the values of & for the first four
modes with Ay, = 0.3, which corresponds to a geometry
utilized in some of the calculations in section S.

From Fig. 1 and Table 1, we see that the first two
modes g; and g, correspond to topographically mod-
ified Kelvin waves with one mode decaying into the
interior from each wall and with propagation for each
mode in the appropriate direction. The third mode,
which has the characteristic structure in g;(y) of a first-
mode topographic wave is used to initialize the topo-
graphic wave calculations. An examination of the y-
dependence of 7 and of v, i.e., of g3 and (g5 + &383,)
from (4.14b), shows substantial differences indicating
that the 3 g3, term in v is not small relative 10 g; and
thus that the waves are ageostrophic. For comparison,
the QG solutions for topographic wave modes in a
channel with constant bottom slope, obtained from
(4.10)-(4.14) in thelimit s <€ 1, b < 1, sb™! = O(1),
are :

gnoc(y) = Cysin(nwy) n=12,+--, (4.16)

with
—khg,
[+ (nm)* + F]~

For k = n/4, F = 16, hg, = 1.6, n = 1, (4.17) gives
¢igc = —0.047 which differs considerably from &
= —(0.062 in Table 1. Likewise the normalized struc-
ture, giqoc = sin(wy), differs from g; in Fig. 1.

To evaluate the accuracy of the model solutions we
use a measure of error based on the difference in the
free surface elevation 7 of the model and of SWE. In-
tegration over the model domain and normalization
by the root mean square of » in SWE, gives the frac-
tional measure,

Cuqc = ewn/k = (4.17)

S [n(SWE) — n)’ }'/2
% [W(SWE) — (n(SWE))12]
(4.18)

where the summation is over all grid points in the do-
main and the angle brackets indicate a spatial mean
value. We use this measure of error in Part II as well
as in all of the numerical experiments here. One dif-
ficulty in comparing the values of other variables, such
as vorticity or potential vorticity, to assess accuracy is
that these quantities have different definitions in the
different models. The free surface elevation 7, however,

rms €Iror = [
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is a variable common to all models and is related
through its derivatives to the important geostrophic
velocities. We have found by qualitative comparison
of other fields, (e.g., see section 5, Fig. 12), that (4.18)
appears to give a consistent measure of solution ac-
curacy.

We calculate the wave propagation from ¢ = 0 to ¢x
= 100e¢ so that the dimensionless time interval ¢ cor-
responds to about 16 inertial periods (in dimensionless
time ¢, the inertial period 7; = 2we). For the Kelvin
wave this gives a propagation distance of Lp = cxw tr
= 25. For the slower topographic wave Lp = cilp
= —6.2. For the model comparisons in the topographic
wave case, the solutions from SWE and SW2 are av-
eraged over an inertial period. This is the procedure
used in section 5 and in Part II. For the Kelvin wave
comparisons, the unaveraged SWE and SW2 solutions
are utilized because the relatively large propagation ve-
locities of the Kelvin waves lead to significant structure
changes when averaging is employed.

In the Kelvin wave case, the solutions from SWE,
SW2, and all of the intermediate models show essen-
tially nondispersive propagation of the initial wave
form in the correct manner. This is illustrated in Fig.
2 where we plot the (x, t) coordinates of the » zero-
crossing in x (with , > 0) at y = 0.11 from SWE and
BE. These form straight lines corresponding to edx/dt
= 0.25 for SWE, in excellent agreement with the theo-
retical value from (4.7b) éw = rs~' = F71/2=0.25,
and to edx/dt = 0.2455 from BE, which is close to &;
=r;V = (k* + F)7Y2 = 0.2453 from (4.8b). Time
series of the rms error (4.18) are also given in Fig. 2.
These rms error time series have been smoothed by
using a running average over three sampling time in-
tervals Atg, where Arg = 2.5¢™!, to suppress the effects
of the small amount of high-frequency variability pres-
ent in the unaveraged SWE and SW2 solutions. Since
éxw differs from ¢, in calculating (4.18) we adjust the

0.40

&t

0.00

-0.40 T T

t/e

FIG. 7. The maximum and minimum values of ¢, = «{ as a function
of time from SWE for case | (heavy lines) and for case 2 (light lines).
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BE
£=0.001, F=16, 128x64, hy=0.5, h,=0.0

t=0.0 t=0.02 t=0.04

8E
£=0.001, F=16, 128x64, hy=0.5, h,=0.0

t=0.0 t=0.02 t=0.04

BE
£=0.001, F=16, 128x64, hy=0.5, h,=0.0
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F1G. 8. Contour plots of the  (top), e{ (middle), and Q (bottom) fields at time intervals of 0.02 from
BE for case 1. Contour intervals are 0.1 for #, 0.05 for ¢, and 0.15 for Q. Solid (dashed) contour lines
denote values = 0 (<0). For », the zero contour line is heavy. For Q, the open contour line is Q = 1.
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£=0.001, F=186, hy=0.5, h,=0.0 128x64
0.20 1 . L 1 1

0.10 - / I

rms error

HG. 9. The rms error (4.18) from the intermediate models, QG,
and SW2 compared to SWE for case 1. The type of line representing
each model is consistent in Figs. 2, 4, 9, 11, 14, and 16. The corre-
spondence of model and line-type may be seen clearly in Fig. 14.

times so that we compare the SWE and SW2 solutions
at t' = (rs/r;)t with the intermediate model solutions
at.z. Contours of the 7 field at £ = 0 and at ¢ = ¢ from
BE are plotted in Fig. 3 and show only small changes
in the n wave structure over the time interval of the
calculations consistent with linear wave propagation.
. The time dependence of the errors in Fig. 2 indicates
that the models IM, GV, GM, LQBE, BE, and BEM
give solutions that behave similarly, as do HBE and
NBE, with slight differences between these two groups.
The errors of all the models compared to SWE, how-
ever, are small. The results show that the intermediate
models represent linear ageostrophic Kelvin wave dy-
namics and that our formulation and implementation
in finite-difference form of the wall boundary condi-
tions properly admit linear Kelvin waves. The accuracy
of the representation of nonlinear Kelvin waves by the
different intermediate models is likewise of interest.
The consideration of that question, however, would
require substantial additional work to carefully deter-
mine the correct reference SWE solutions and is not
attempted here.

The errors for the topographic wave experiment are
shown in Fig. 4 and contours of the 5 field at ¢ = 0 and
att = tr from BEM are shown in Fig. 5. We note that
the maximum value of the vorticity |e{| in the initial
shelf wave solution with € = 10™*is 0.05. The numerical
solutions from SWE and SW2 and from all of the in-
termediate models show essentially nondispersive
propagation in agreement with the linear wave ana-
lytical solutions. This is illustrated in Fig. 4 where the
(x, t) coordinates of the n zero-crossing in x (with 7,
< 0) at y = 0.48 from SWE and BEM are plotted.
These form straight lines corresponding to edx/dt
= —0.62, in agreement with & (Table 1). The agree-
ment with linear wave theory is also reflected by the
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generally small, nonincreasing errors in Fig. 4 and by
the relatively small changes in the n field of BEM from
t = 0tot = trin Fig. 5. We conclude, consequently,
that the intermediate models properly represent ageo-
strophic, linear topographic wave dynamics.

5. Flow over topography

In this section we present the results of numerical
finite-difference calculations for initial-value problems
involving the adjustment of an initially uniform, geo-
strophically balanced, along-channel flow,

u(x,y,t=0)=1, (5.1)

to a symmetric Gaussian-shaped bottom topographic
feature centered between the channel walls. This type
of initial-value flow problem might be realized, e.g., in
a laboratory experiment involving fluid motion in a
rotating annulus that contains bottom topographic
variations. Starting with the fluid in equilibrium solid-
body rotation with the annulus, a flow adjustment
similar to that described by the numerical experiments
would take place following a small, step-function
change in rotation rate of the annular container. The
bottom bump is characterized by a maximum height
hg at its center and by a width scale Ly and takes the
form

hg = hgexp{—[(x — x0)*> + (¥ — »0)*1/Ls*}, (5.2)

where xo = 0.5, yp = 0.5, and Ly = 0.2. The length of
the channel is L™ = 2. We look at cases where the
bottom bump is present in a channel with an otherwise
flat bottom and at cases where, in addition, there is a
linear across-channel bottom slope given by (4.15) with
hyw = £0.3. Contour plots of the bottom topography
for these three geometries are shown in Fig. 6. The grid
size is Ax = Ay = Y4 so that the total number of grid
points is 64 X 128.

We present the results from four cases. In all of these,
the bottom bump height is 4, = 0.5, F = 16, and v = 5
X 107%. The four cases include a low Rossby number
flow ¢ = 0.001 with a flat bottom Ay = 0 and a set of
three moderate Rossby number flows at ¢ = 0.005 with
hw = 0, hy = +0.3 and Ay = —0.3. These are sum-
marized in Table 2.

We initialize the models as follows. From (5.1) and
the assumption of geostrophic balance,

n(x, y, t=0) = —y+0.5. (5.3)

‘For BE, BEM, HBE and NBE, with (5.3) the various

balance equations imply,

Ux,y,t=0)=n(x,y,t=0). (54)

For SWE and SW2, the initial value of 7 is given by
(5.3) while the initial values of # and v are found from
(3.30), with ¢ given by (5.4) and X (x, y, ¢ = 0) ob-
tained from the solution to BE. We calculate the so-
lutions from ¢ = 0 to a final dimensionless time that
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BEM
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FI1G. 10. Contour plots of the 5 (top), ¢{ (middle), and Q (bottom) fields at time intervals of 0.1 from
BEM for case 2. Contour intervals are 0.1 for #, 0.1 for €, and 0.15 for Q. Contour lines as in Fig. 8.
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FIG. 11. The rms error (4.18) from the intermediate models, QG,

and SW2 compared to SWE for case 2.
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corresponds to approximately 16 inertial periods. For
comparison with the intermediate models, the solutions
from SWE and SW2 are averaged over an inertial pe-
riod.

For each of the four cases in Table 2, we show the
time development of 4, { and Q with contour plots of
these fields at uniform time intervals. In these plots we
show the results from BE for case 1, BEM for cases 2
and 3, and SWE for case 4. There are almost no visual
differences between the BE and BEM produced n, ¢
and Q@ fields and those from SWE. The BE and BEM
results are used to show the intermediate model solu-
tions. We also plot the time variation of the error mea-
sure (4.18) for each model compared to SWE. The
difference between SWE and SW2 from (4.18) gives
an indication of errors due to different numerical finite-
difference formulations at this grid resolution. For cases
1 and 2, we also plot in Fig. 7 the maximum and min-
imum values of ¢, = €{ as a function of time from

£=0.005, F=16, hy=0.5, h,=0.0

—t

£=0.005, F=16, hy=0.5, h,=0.0

0.25 0.75 0.25 0.75

BE LQBE]

BEM
0.8
" C/
0.0
QG

0.8 4 L
0.4 o

E -
0.0 T T T T T T T T T T T | I

T T
0.25 0.75 0.25

T
0.75

T
0.25

L T
0.75 0.25 0.75 0.25 0.75

FIG. 12. Contour plots of the n (top) and potential vorticity (bottom) fields from each model, with the potential vorticity
calculated as explained in the text, at ¢ = 7 = 0.5 for case 2. Contour intervals are 0.1 for » and 0.2 for potential vorticity.

Contour lines as in Fig. 8.
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FI1G. 13. Contour plots of the 5 (top), e{ (middle), and Q (bottom ) fields at time intervals of 0.1 from
BEM for case 3. Contour intervals are 0.1 for », 0.1 for €{, and 0.15 for Q. The n and ¢{ contour lines
as in Fig. 8. The Q contour values at x = 0 increase from Q = 0.85 for increasing y.
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SWE. This indicates the magnitude of the local Rossby
number characterizing that particular flow. From Fig.
7, we see that for case 1, —0.17 < ¢, < 0.17 while for
case 2, —0.37 < ¢, < 0.48, so that these cases may be
characterized as low and moderate Rossby number
flows, respectively. For cases 3 and 4 (not shown in
Fig. 7), we find —0.28 < ¢, < 0.5and —0.4 < ¢, < 0.38,
respectively, so that these are also moderate Rossby
number flows.

In Fig. 8 we show the time evolution of the 5, {, and
Q fields for case 1. The » and { fields show the initial
time-dependent development of two eddies, with vor-
ticity of opposite sign, over the bump. These eddies
are subsequently stretched so that by ¢ = 0.08 they
have started to wrap around themselves. The Q field
is a useful indicator of fluid particle motion since Q is
nearly conserved (with weak friction) on fluid particles
for SWE, BE, and BEM. There is evidence for some
advection of Q around the top of the hill, but during
this short (in terms of advection) total time period
there is clearly no transport of Q off the bump. Addi-
tional calculations (not shown) out to z = 0.18 indicate
that the fluid particles with the large Q values seem to
remain trapped over the hill in a Taylor column, and
show no evidence, at least to that time, of being ad-
vected off the hill.

The plot of rms error (4.18) in Fig. 9 shows that for
this low Rossby number flow all of the intermediate
models give reasonably accurate solutions, while QG
gives an inaccurate result. Additional calculations show
that as the bump height A is decreased, with the other
parameters fixed, QG gives increasingly better results
that are similar to the other models when /g = 0.1.

The #, { and Q fields for case 2 are shown in Fig.
10. Again, n and { show the initial development of two
eddies, with vorticity of opposite sign, over the hill.
However, these two eddies are distorted rapidly such
that by ¢ = 0.3 a single time-dependent anticyclonic
eddy appears to emerge and dominate the motion over
the hill. The distribution with time of the Q field shows
some evidence of anticyclonic advection around the
hill. Advection of Q off the hill by the relatively intense
positive u velocities near y = 0, indicated by the tightly
bunched »n contours there, is also clearly evident by ¢
=04. :

To provide an additional qualitative measure of
model accuracy in case 2, we plot contours of 7 and
of the relevant measure of potential vorticity from each
model at ¢ = 0.5 in Fig. 12. The potential vorticity is
given for the SWE by (2.7) with ¢ from (2.3g), for BE,
BEM, and HBE by (2.7) with { from (3.31), and for
NBE by (2.7) with (3.59a). For LQBE, GV, and IM
the potential vorticity is Qg given by (3.12b), for GM
the appropriate potential vorticity is Qgym (3.19b), and
for QG it is Qgg = 1 + €Qp, with Q, given by (3.3b).
For SWE, we plot inertial-period-averaged values

of 0.
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From Fig. 12 we can see that the visual impression
of the agreement between the n and Q fields of the
SWE and the respective  and Q fields of the models
is very similar to that provided by the quantitative error
measure (4.18) plotted in Fig. 11. It is apparent from
Fig. 11 that BEM and BE give the most accurate so-
lutions, with errors of the same magnitude as those
found for SW2. LQBE also does well with errors only
slightly greater than BEM and BE. The other inter-
mediate models have substantially larger errors and
decrease in accuracy in the order NBE, HBE, GV, GM,
and IM. The greatest error is given by QG. A striking
feature of the plots of potential vorticity in Fig. 12 is
the extremely close agreement of the highly-contorted
Q fields of BE, BEM and LQBE with those of SWE.
This good agreement is notable in the case of LQBE,
since that model involves geostrophic velocities # and
Vg In {z and Qg, whereas BE and BEM involve 1z and
vein {and Q. The difference in the accuracy of LQBE
and GV is readily apparent and of interest because
both of these models are set up to conserve Qg (with
no friction) in different ways. For LQBE, Qg is con-
served (3.27) on particles moving with velocities (g
+ €Xx, Vg + €X,) whereas in GV, Qg is conserved
(3.12a) on particles moving with (u#, v) as given by
(3.11a,b). Clearly, the LQBE method is more success-
ful. That may be related to the fact that the vorticity
{c in the conserved Qg is equal to the vorticity of the
advection velocities in the O equation for LQBE, but
not for GV. It is worthwhile noting, as mentioned in
Parts I and II, that BE and BEM are the only other
intermediate models that possess that same property
and that BE, BEM, and L.QBE give the most accurate
solutions.

Cases 3 and 4 involve the same € and 4, as in case
2, but have, in addition, uniform across-channel slopes

£=0.005, F=16, hg=0.5, h,=0.3 128x64
0.20 1 o 1 1 L

/
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/
/
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FIG. 14. The rms error (4.18) from the intermediate models, QG,
and SW2 compared to SWE for case 3.
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FIG. 15. Contour plots of the 7 (top), € (middle), and Q (bottom) fields at time intervals of 0.1 from
SWE for case 4. Contour intervals are 0.1 for 7, 0.1 for €{, and 0.15 for Q. The n and ¢ contour lines
as in Fig. 8. The Q contour values at x = 0 increase from Q = (.85 for decreasing y.
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in the bottom topography (4.15) with Ay = 0.3 and
hw = —0.3, respectively. The linear low-frequency wave
modes for constant bottom slope are discussed in sec-
tion 4. The scaled wave speeds ¢ = ec; = ew;/k for the
first four modes with k = w/4 and Ay = 0.3 are given
in Table 1. These values are very close to those obtained
with k = = /8 and thus close to the nondispersive long
wave limit. For ¢ = 0.005, the magnitudes of the wave
phase velocities are greater than the advection velocity
(u = 1) for the first five modes, which are comprised
of two modified Kelvin wave modes and three topo-
graphic modes. This situation, where |c| > |u| for
the low mode topographic waves, is similar to that for
the continental shelf off the U.S. West Coast where the
lowest coastally trapped wave modes have phase ve-
locities in the long-wave limit that are larger in mag-
nitude than typical alongshore current velocities.

In case 3, the bottom slope /5, = 0.6 > 0 and the
phase velocity of the linear topographic wave modes
isin a direction opposite to the initial advection velocity
u = 1. The time development of the 5, ¢, and Q fields
is shown in Fig. 13. For short times ¢ < 0.2, those fields
evolve in a manner similar to that for case 1, but for
larger times there are substantial variations. The most
obvious difference involves the development here for
t > 0.2 of standing topographic lee waves downstream
of the bump. These are most visible in the { field where
they appear to have a wavelength =~ 0.5. This wave-

length is similar to the value 27 (e ‘bz — 72) "2 ~ 0.6 _

that is predicted by quasi-geostrophic linear theory for
stationary topographic-Rossby waves in a uniform
current (Pedlosky 1987, section 3.18). Relatively
strong across-channel velocities are evidently associated
with these leec waves and their effects may be seen in
the evolution of the Q field downstream of the bump.

The plot of error measure (4.18) for case 3 (Fig. 14)

£=0,005, F=16, hy=0.5, h,=—0.3 128x64
i 1 1 1 1
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FIG. 16. The rms error (4.18) from the intermediate models, QG,
and SW2 compared to SWE for case 4.
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is similar to case 2 and shows the same ordering. BEM,
BE and LQBE give accurate solutions. The other in-
termediate models are less accurate with errors in-
creasing in the order NBE, HBE, GV, GM, IM. The
QG solution contains large errors.

'In case 4, the bottom slope /5, = —0.6 < 0 and the
linear topographic wave phase velocity is in the same
direction as the initial current # = 1. The initial evo-
lution of the n and ¢ fields (Fig. 15) is similar to case
2, but with stronger development over the bump here
of the anticyclonic eddy relative to the cyclonic one.
Compared with case 2, the propagation of topographic
waves in the same direction as the current appears to
lead to a weakening of the gradients in the 7 field and
to a substantially attenuated vorticity field in the vi-
cinity of the bump for ¢ = 0.4. The errors (Fig. 16) of
all models are generally smaller than in cases 2 and 3.
The conclusions are similar, however. BEM gives the
most accurate solutions, with BE, NBE, and LQBE
having errors of only slightly larger magnitude. Again,
GV, HB, GM, and IM have substantially greater errors
and the QG error is largest.

We point out again that the models BEM, BE, and
LQBE that give the most accurate solutions in these
four cases all have analogues of potential vorticity con-
servation on fluid particles. In addition, we note, con-
sistent with area integrals of their respective vorticity
equations, these models have analogues [(3.55) for
BEM and BE, (3.14) for LQBE] of the conservation
of boundary circulation in the SWE (2.14).

6. Summary

The ability of all the intermediate models considered
here to represent linear ageostrophic Kelvin and to-
pographic wave dynamics is demonstrated by numer-
ical solutions. The formulation of wall boundary con-
ditions for the intermediate models and the imple-
mentation of those conditions in finite-difference form
appear to be satisfactory.

The evaluation of model accuracy by comparison
of numerical solutions for initial-value problems in-
volving flow over O( 1) topographic variations provides
clear-cut conclusions. These are in agreement with the
results from Part II. In the case 1 flow problem char-
acterized by small values of local Rossby number, all
of the intermediate models give reasonably accurate
solutions while QG gives inaccurate results. For the
flow problems at moderate values of local Rossby
number, the performance of the different intermediate
models varies considerably. BEM and BE consistently
produce accurate solutions. LQBE also does well, with
errors generally only slightly larger than BEM and BE.
The other intermediate models have substantially less
accurate solutions with errors usually increasing in the
order NBE, HBE, GV, GM, and IM. In all these cases,
QG produces inaccurate solutions. As was found in
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Part I1, BEM and BE, followed closely by LQBE, appear
to be the most accurate intermediate models.
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APPENDIX A
Numerical Methods

The numerical finite-difference approximations uti-
lized for SWE, QG and all of the intermediate models
in section 3 are discussed in this appendix. To facilitate
the presentation of the finite-difference equations, the
operators

are defined for both x and y directions. Also, we use

4
Vi =(62+82)¢, & =¢ , (Alcd)

and J(a, b) will denote the Arakawa formulation of
the Jacobian (Arakawa 1966).

The QG and all intermediate models are formulated
on a rectangular A4 grid (Arakawa and Lamb 1977)
which has uniform grid spacing in x and in y, but allows
Ax # Ay. The walls at y = 0, 1 are centered between
grid points in y. Variables are defined along a row of
grid points a distance Ay/2 outside the boundary and
are calculated or specified there so that the appropriate
boundary condition is satisfied. The models are time-
stepped using the leapfrog-trapezoidal scheme (Ku-
rihara 1965) for QG, IM, GV, HBE, NBE and the
Adams-Bashforth scheme (Haltiner and Williams
1980) for GM, LQBE and BE. For simplicity, we will
describe those models as if they were all time-differ-
enced by the Adams-Bashforth method (or by the basic
leapfrog scheme). The change to a leapfrog—trapezoidal
scheme involves adding a second step, but that is
straightforward. We will also use the notation ¢”
= ¢(nAt) to denote time level. ’

J. S. ALLEN, J. A. BARTH AND P. A. NEWBERGER

1969

In the time integrations, the size of the time step for
SWE and SW2 was restricted by the CFL condition
(e.g., Haltiner and Williams 1980) for the Kelvin
waves, 1.€., by essentially

At < Ax/ckw = AxeF'/?; (A2a)
The intermediate models misrepresent the Kelvin
waves (section 4) so that they become dispersive. It
may be shown that for the intermediate models the
stability condition for linear Kelvin waves with x-de-
pendence (4.6) is

172
At < Axe{F+ Aixz [1- cos(kAx)]] , (A2b)

using, e.g., the leapfrog time-difference scheme. For
the Kelvin wave calculations in section 4, the At values
for SWE and SW2 and for the intermediate models
were chosen small enough to satisfy the CFL condition
(A2a). For the flow problems in section 5, the inter-
mediate models were successfully run with Az values
about 4 to 8 times as large as the limit in (A2a), evi-
dently because any Kelvin waves produced by the to-
pographic interactions had large enough x-wavenum-
bers k to give an increase in the A7 limit in (A2b) of
that magnitude. The time step used for QG was gen-
erally the same as for the intermediate models.

The spatial grid size for the computations in section
5 was taken as small as possible consistent with the
reasonable use of computer resources. The grid size
chosen seems satisfactory based on the resolution of
the vorticity and potential vorticity fields demonstrated
in Figs. 8, 10, 13 and 15. From the potential vorticity
fields in Fig. 12, we see that SWE and the more accurate
intermediate models BE, BEM and LQBE resolve the
smallest scale features in the potential vorticity better
than HBE, GV, GM, and IM. The general behavior at
the smallest scales would probably have been improved
in all models by using regular biharmonic friction in
both directions rather than (2.15). The general ade-
quacy of grid resolution was further demonstrated by
calculations with SWE, BE and QG for all the cases in
section 5 with grid spacing twice as large. The resulting
flow patterns for n were visually the same and the con-
clusions from the rms error plots were identical.

The relative computation times required by the dif-
ferent models on the NCAR Cray-XMP for the cases
in section 5 were generally in the following ranges (ex-
pressed as a ratio to the QG time): QG 1; BE, LQBE,
GV, GM, IM 5-6; SWE 8; BEM, HBE 9-10; NBE 14—
15. The accurate models BE and LQBE took less com-
putational time than SWE, but more than QG. Other
intermediate models took similar or longer times than
SWE. It is important to note, however, that for the
intermediate models in these initial studies we have
concentrated on developing stable numerical time in-
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tegration schemes and have not made an extensive ef-
fort to make the models as fast as possible. It scems
very likely that more efficient numerical schemes can
be developed.

a SWE

The SWE (2.1) are solved numerically by time step-
ping three equations for u, v and ». The finite-difference
model (SWE) is implemented on a C grid (Arakawa
and Lamb 1977) using the potential enstrophy con-
serving scheme of Arakawa and Lamb (1981). A sec-
ond formulation (SW2) uses the following spatial dif-
ference scheme (Haidvogel, personal communication )
which is also on a C grid:

eFr, + 6,[h u] + 6, v] =0,
(F 1w + o[ h(E5)2] + 8, [R5 — 0k
= —h"5.m — vk 6 u, (A3b)
(R v) + b [R7550"] + &6, [h(5")?) + Th
= —h8,n — vh 8,0, (A3c)

(A3a)

The channel wall boundary conditions v = 0 are
straightforward to implement in both C grid formu-
lations. Both SWE and SW2 use the leapfrog-trape-
zoidal time-differencing scheme.

b. QG

The following equation corresponding to (3.4),

(V> = F)np = —J(n, Vn + € 'hg) = ¢ 'v5,*V?,
(A4)
is solved with
m, =0, at y=0,1, (AS)

where ;’y(z =0)=0o0ny=0, 1. Additional variables
n; and 7,, defined as the solutions to

(V2 — F)n5 =0, (A6)

with
77=0, n3=1, at y=0, (AT7ab)
77=1 33=0, at y=1, (A7cd)

are found before starting the time integration. At each
time step, #"*! is obtained from 75" by the time-dif-
ferencing scheme and then »"*! is given by

nn+1 = n/n+l + C1n+1111 + C2n+ln2, (A8)
where C,"*! and C,"*! are chosen so that the integral
constraints (3.7a,b) are satisfied in difference form
(McWilliams 1977). For the solution of (A4) with
boundary condition (A5), 7} is specified on the exterior
row of grid pointsat y = —Ay/2and y = 1 + (Ay/2)
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‘so that (AS) is satisfied. In order for the Arakawa—

Jacobian on the right-hand side of (A4 ) to give a correct
zero contribution to a sum over the area (0 < y < 1,
0 < x < L), we use the additional “computational”
condition that, for the terms in J(n, A%y + ¢ 'hp),

8,(Vn+e'hg)=0, at y=0,1. (A9)

c¢. IM and GV

The formulations for IM and for GV are similar.
We describe that used for GV, where (3.13) is solved
with boundary conditions from (3.11a) with v = 0.
For convenience in application of the channel wall
boundary conditions, the right-hand side of (3.13a) is
kept in the divergence form it originally takes following
derivation from the substitution of (3.11a,b) in the
continuity equation (2.1a). In difference form (3.13a)
is

8x(Roxn,) + 8,(hed,m) — Fo,

y X
= —e 15 (hd, Bg )+ ¢ '0,(hed Bo )
— e o (hgdtv) + € o, (hedlug), (A10)

with boundary conditions,

X
S,m = €80, Bg + e Wolug, at y=0,1, (All)
where
Vg = 0xn, Ug = —0yn. (Al2a,b)

We solve (A10) for 5, by utilizing the fast Poisson
solver described in Part II, which is modified here to
use a Fourier transform in x and tridiagonal matrix
inversion in y. (For the wave calculations in section 4
where Ax = 2Ay a sparse matrix solver was used in
place of the fast Poisson solver for GV, IM, GM, HBE
and NBE.) The time-differencing scheme then gives
7", For the application of boundary condition (A11),
the term 5,(8,7)> /2 in ¢ '8, B¢ requires a value of ¢
along a row of exterior grid points a distance 3Ay/2
outside the boundaries. For the values of  at these grid
points, which are needed only in this term, we use ex-
trapolation, e.g., for (All)aty =0,

n(—3Ay/2) = 3n(—Ay/2)

— 3n9(Ap/2) + n(34y/2). (Al3)

d GM

For GM, (3.20a) is solved with boundary conditions
from (3.16b) with v = 0. As for GV and IM, (3.20a)
is written in divergence form. The resulting finite-dif-
ference equation from (3.20a) i§

Sl hom(1 + €8,1ig ™) o,m] + 8, igm(1

+ e6,\'65y) 6y771]
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=X e Nrere 24
= Fn = edx[hom(dyv )8yn; ]

y
- —_—X X _ —X —x
+ e, [hom(bstic )oxm) 1 — ¢ '6,(hamdy Be )

X

+ e15,(homde Bo ) — € vo,[ Homdyve)
+ e (hombdlug), (Al4)

with boundary conditions

X
(Bxtlg )oxm] + € '0xBg

at y=0,1. (Al5)
We solve (A14) for 5, with (A15) by using the fast

Poisson solver described in Part II. The time-differ-
encing scheme then gives n”*!.

e. NBE and HBE

The formulations for NBE and HBE are similar. We
describe that used for NBE, where (3.61) and (3.60)
are solved with boundary conditions for (3.61) from
(3.57a) with v = 0 and for (3.60) from (3.48). We
drop the subscript 0 on g, /e, and Bgrg, and let

n=vy + en. (A16)

Again for convenience in application of boundary
conditions, (3.61) and (3.60) are written in divergence
form. With (A16), the finite-difference form of (3.61)
is

:(Rré¥) + 8,(Rré,) — FY,

(1+ eﬁxl_))&)ﬁyn, =

+ 6—1V5x4u(;,

y X
= eFn, — ¢ '0,(hixd, Br )+ ¢ '6,(hrdxBr )
— € Wb, (Rrd S vR) + € b, (hrds*ur), (A17)

with boundary conditions, from (3.57a) with v = 0,
of

X

oW = e_‘é,‘ﬁTRy + e Wi ug, at y=0,1,

(A18)
where
VR =8¢, Ur = —08. (A19a,b)
The finite difference form of (3.60) is
V2 = —b,[ux " b,ur” + vrdyur ]

— 8,{urdsvr + Ox 78, 0x"], (A20)
with boundary condition from (3.48) of
3y = —[urdsvr Xy + ”—gxyayﬂx], at y=0,1.
(A21)
To solve (A17) and (A20) an iteration procedure is
utilized. With ¢” and 5" and values at earlier time
steps known, estimate 7" = ('" — n’*~')/ At. Use this

estimate in (A17). Solve (A17) with (A18) for ¥," in
the same manner as described for »,in (A10). Obtain
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an estimate for ¢"*! from ¥, using the time-differenc-
ing scheme. Substitute this in the right-hand side of
(A20) and solve (A20) for n'"*!. This gives a new es-
timate for #7" from an inversion of the time-difference
scheme. This value of }” is substituted in (A17) and
the cycle is repeated until convergence for y"*!' and

7'"*1 is obtained.

f BE

The governing equations are (3.52), (3.34) and
(3.50). We use the definition (A 16) so that in difference
form (3.52) and (3.50) are

(V2 = F), = eFn,— J(¥, § — H)
— b,[(F— H) 6,X] — ed,[ (¢ — H) 8,X]

— WS AV, (A22)
VX = —J(¥, §) = el §0xX] = 8,[§8,X]
— W AV — VA, (A23)
where
¢= (82 + 82y =V,
H=H/e=Fn— ¢ 'hg. (A24a,b)

The finite-difference form of (3.34), with definition
(A19), is (A20). A boundary condition on §,y, for
(A22)is obtained from (A18). The boundary condition

X

v=254 +e,Xx=0 at y=0,1. (A25)
along with the additional “computational” conditions,
8,=0, ,H=0 at y=0,1, (A26ab)

are utilized for the terms on the right-hand side of
(A22). The additional conditions (A26a,b) are similar
to (A9) for QG and are used so that the area sum of
the Arakawa-Jacobian term J(y, { — H) and the di-
vergence terms involving X are correctly equal to zero
when (A25) holds. For (A23), we apply boundary
conditions (A18), (A25), and (A26a). The boundary
condition for (A20) is (A21).

The equations (A22), (A20), and (A23) are solved

- by iteration. With ¢", #'", x"~!, ¢,"~!, 4,"~! assumed

known, use extrapolation to estimate 5" = 2n;""
— "2 x" = 2x"7! — x""2, Use these estimates in
(A22) and solve (A22) for ¥,". Find ¢"*! from ¢,” and
the time-difference scheme. Use ¢"*' and V%" in
(A20) and (A23). Solve (A20) for n'**! and find 5"
from »'"*! and inversion of the time-difference scheme.
Solve (A23) for X". Return to the step where (A22) is
solved for ¢," and repeat the cycle until convergence
for X", ", and »!" is obtained. Finally, find ¢**! and
7" from ¢," and 5", respectively, with the time-dif-
ference scheme.

g BEM

The governing equations for BEM are (3.52), (3.51)
and (3.50). These are the same as for BE, with the
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exception that (3.51) in BEM replaces (3.34) in BE.
Thus, in difference form we have (A22) and (A23),
with the same boundary conditions (A18), (A25), and
(A26) as used for BE. The finite-difference form of
(3.51), with definitions (A16) and (A19), is

X
A o . —
U2y = — 8, (R ur” + vrdyur — €£0,X |

y
— 5,[urdxvr + RO, TR + €f0,X 1, (A27)

with boundary condition from (3.54),

y
) J— —_ —X
5;,7]’ = —-[uRﬁva + vayévax + e{éxx ],

at y=0,1. (A28)

The presence of X in (A27) makes the solution pro-
cedure outlined above for BE inappropriate, since X is
needed at the same time levels as ¥ and n (see the
discussion in Appendix B). Therefore, we use a differ-
ent iteration scheme where ¢”, 7', X", ¢,", 0" are as-
sumed to be known and iteration of (A22), (A23) and
(A27) is used to provide new values for all of these
variables at the next time step (n + 1). This iteration
‘procedure is similar to that developed for BE by Norton
et al. (1986) for application to (3.50), (3.34) and an
omega equation to find X (Parts I and II). In this case,
estimate l‘0n+1 = ‘pn—l + 2At¢tn, nm+l — n/n——l
+ 2At17’tn, Xn+l = 2x" — X"_I, nltn+1 — znltn — 7];”_1~
Use these estimates in (A22) and solve (A22) for ¢,"*'.
Correct ¢! = " + At(¢,"*' + ¢/")/2. Calculate x"*!
from (A23). Use this value of X**! in (A27) and cal-
culate n"*! from (A27). Find 5;"*' = 2(5y/"*! — ")/
At — )" Finally, use "1, "', x"*! in (A22) and
solve (A22) for ¢,"*'. Return to the step where y"*'
is corrected and repeat the cycle until convergence for
Y gt x gt and 9"t is obtained. This
method may also be used for BE.

h. LOBE

The governing equations for LQBE, (3.28) and
(3.26), are the same as (2.1a) and (3.50) for BE and
BEM with ¢ = 5. Thus, for LQBE we may use the
same formulation given for BE with the simplification
that % = 0 and the balance equation (A20) is omitted.
Alternately, we may use the formulation for BEM with
7 = 0 and with (A27) omitted. We choose the latter
alternative for the solutions presented here.

APPENDIX B
BEM Model

The BEM model (section 3g), based on the conti-
nuity equation (2.1a) and the momentum equations
(3.49a,b) and governed by (3.50), (3.51) and (3.52),
has an additional complicating feature that was not
explicitly addressed in Parts I and II. The presence of
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X in the balance equation (3.51 ) leads to the possibility
of spurious time-dependent solutions and requires ad-
ditional considerations for the specification of initial
values. For BE, the time derivative of the balance
equation (3.34) involves ¥, and 5, and may be used
consistently with the equations for », (2.1a) and for
V%Y, (3.50) in the solution procedure. For BEM, the
time derivative of (3.51) involves ¥, n,, and X,, while
no other equation for X, exists. The implications of this
are most easily seen in the linear S-plane problem,
where similar behavior occurs, and it is worthwhile to
examine the equations in that case.

The linear BEM continuity and momentum equa-
tions on a flat-bottom S-plane where the dimensionless
Coriolis parameter is

f=1+4+ €By, (B1)
are
Fn, + V¥x =0, (B2a)
€U, — f = — 1, (B2b)
€Ur, + fu = —n,. (B2c)

The vorticity and divergence equations that follow from
(B2b,c) are

G+ B+ VX =0, (B2d)
fVY = V2 + eBug + 28Xy, (B2e)

so that (B2a,d,e) may be considered the governing
equations. Note that the ¢28X, term in (B2e) is identical
in form to a term that would appear in the nonlinear
fplane BEM divergence equation (3.51) in the pres-

- ence of a vorticity field if { = By. The omega equation

for (B2), obtained by substituting V> (B2a), (B2b),
and (B2d) in the time derivative of (B2a), is

VX — Ff?VX — BF(2fo — nx) = ¢?BFX. (B3)

The equations (B2a,d,e) are similar to the linear
“modified balance equations” considered by Moura
(1976) and to the linearized global balance equations
(gBE) discussed by Gent and McWilliams (1983b).
Relevant linear wave solutions for those models were
discussed in Moura (1976) and Gent and McWilliams
(1983b) and both analyses showed the existence of
spurious, high-frequency time-dependent solutions.

The nature of the solutions to (B2a,d,e) may be as-
sessed by examining modulated wave solutions for e
< 1 with a slowly varying Coriolis parameter f(B1)
(e.g., Grimshaw and Allen 1988). The results show
that modulated waves exist with approximate disper-
sion relations,

w=—Bk/(K*+ f°F) (B4a)
and
_(K*+ F)K?
- GZBkF ’ (B4b)a
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where w is the frequency, (k, /) are the wavenumbers
in the (x, y) directions, and K? = k2 + /2. The frequency
(B4a) corresponds to the expected Rossby wave solu-
tion where O(n/X) = O(¥/X) = O(1). In the Rossby
wave, the balance in (B2d) involves all three terms and
the primary balance in (B3) is between the terms on
the left-hand side. The second frequency (B4b), where
@ = O(e™?), corresponds to the spurious high-fre-
quency oscillation found in Moura (1976) and Gent
and McWilliams (1983b). For this wave, O(n/X)
= O(¥/X) = O(€?) and the primary balance in (B2d)
is between {; and fV?x. In (B3), the approximate bal-
ance is between the three terms involving X and this
leads directly to the approximate dispersion relation
(B4b). In addition, if we consider the governing equa-
tions to be (B2d,e) and (B3), we see that initial values
for both Y(¢ = 0) and X(¢z = 0) may be specified. This
differs from BE, where the ¢?8X, and ¢?8FX,, terms
- are absent from (B2c) and (B3), respectively. In BE,
only the initial value of Y(z = 0) is specified and (¢
= 0) and X(¢ = 0) are then determined by the BE forms
of (B2e) and (B3). To reduce initial excitation of the
spurious high-frequency oscillation in BEM, it appears
from (B2) and (B3) that BEM should be initialized by
specifying (¢ = 0), similar to BE, and by determining
7(¢t = 0) and X(¢ = 0) such that (B2e) and (B3) are
satisfied with X,,(r = 0) = 0 in (B3).

Behavior related to that found above for BEM in
the linear 8-plane problem, involving the possibility of
spurious high-frequency oscillations and initial-value
requirements, may be expected to occur for BEM in
the nonlinear f~plane problem in the presence of non-
zero vorticity fields. The situation is more complicated
in that case, however, because X enters (3.51) through
the nonlinear term €2J( ¢, X). In obtaining numerical
solutions to the BEM model, the method of initializa-
tion of the fields and the choice of finite-difference time
integration scheme must evidently be utilized to filter
out effects of the spurious high-frequency waves. The
initialization can be accomplished, using the above
considerations of the linear 3-plane problem as a guide,
by the specification of (¢ = 0) only, as in BE, and the
subsequent determination of n(¢ = 0) and X(¢ = 0)
using the equations (3.50), (3.51) and (3.52) and an
assumed additional initial condition of X,(¢ = 0) = 0.
Following the initialization of the fields, the variables
may be stepped forward in time using the procedure
discussed in Appendix A. Based on the high accuracy
of the BEM solutions found in sections 4 and 5 and in
Part 11, it appears that this method has been effective
in the cases studied.
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