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A NEW METHOD FOR THE SYNTHESIS OF NETWORKS 

BY USING CUT -SET MATRICES 

CHAPTER I 

INTRODUCTION 

As an application of graph theory, realization of 

cut -set matrices plays a basic role in the synthesis of 

n -port networks as well as in switching circuits. 

There exist two major approaches to the synthesis 

of an n -port with (n +l) nodes. The first approach is 

the method of determination of port structure (1,6), and 

the second approach is based on the decomposition of an 

admittance matrix, Y, into the triple product 

Y = CYC 

where Cs is a seg matrix (a general definition of a cut - 

set matrix), Ye is the diagonal matrix with positive 

elements representing edge conductances (2), and the 

superscript t indicates the transpose of a matrix. Thus 

the synthesis of Y is accomplished if Cs can be realized 

as a graph. 

On the other hand, the synthesis of a class of 

unate switching networks in minimal form is directly re- 

lated to the realization of a non -oriented, connected 

graph, that is, to the realization of the loop or cut - 

set matrix of a connected graph. 

e 



2 

Thus, the bilateral network synthesis problems, 

whether they are RLC networks or contact networks, are 

actually reduced to the realization of a graph. 

Several papers related to the synthesis of cut -set 

matrices have been published (3,4,7,10,12). However, some 

of them are too complex for convenient use, some of them 

have no algorithm, and some of them have restrictions on 

the size of the given matrix. 

Mayeda presented necessary and sufficient condi- 

tions for the realizability of cut -set matrices (9). 

First, he showed the method of forming a set of v sub - 

matrices, called M- submatrices, from a given matrix con- 

sisting of v -1 rows, Then it was shown that if, and only 

if, all of these v submatrices are realizable as inci- 

dence matrices, the given matrix is realizable as a 

basic cut -set matrix. In the first step, however, we 

are often obliged to use trial and error method; that is, 

there is no rigorous method of obtaining a set of v sub - 

matrices. 

In this paper, a new algorithm for the realizability 

of cut -set matrices is given. By studying the proper- 

ties of the graph, and by applying Tutte's theorem (13), 

we can improve Mayeda's method and obtain the new method. 



CHAPTER II 

PRELIMINARY 

2.1. Definitions 
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As a preliminary, some definitions are given. 

Definition 1. The incidence matrix, denoted by A= (aij,, 

of a graph with n nodes and b edges, is the matrix 

with n rows and b columns. Each row corresponds to 

a node, and each column corresponds to an edge, 

such that 

aij =1, if edge j is incident at node i and 

directed away from node i; 

aij = -1, if edge j is incident at node i and 

directed toward node i; 

aij =0, if edge j is not incident at node i. 

If a graph under consideration is not oriented, then 

each element of the incident matrix of the graph 

will take value of 1 or O. 

As an illustration of an incidence matrix, let us con- 

sider a graph given in Fig. 1, where the nodes are de- 

noted by numerals, and the edges are given by lower -case 

letters. 



Fig. 1. An oriented graph. 

The incidence matrix, A, for the graph is 

A= 

a b c d e f 

1 1 . -1 . 1 
2 

3 . -1 . . -1 -1 

4 

The incidence matrix is a basic one for topological 

synthesis because it completely defines the geometry of 

a network, that is, a matrix possessing the properties of 

an incidence matrix may always be realized directly. The 

incidence matrix with one row eliminated still defines 

the geometry of a graph, and is called the reduced inci- 

dence matrix. The node corresponding to the row that has 

been deleted is the datum node. 

Definition 2. A simple cut -set of a graph is a set of 

edges such that the removal of the set of edges from 

the graph reduces the rank of the graph by one and 

no proper subset of the set of edges has the same 

property. A "cut -set" implies a simple cut -set. 

. 

4. . . -1 1 1 

-1 1 1 

. 
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Definition 3. The basic cut -sets are the (n -1) simple 

cut -sets in a connected graph of n nodes which are 

formed by each branch of a tree and some or all 

chords included in the basic loops (with respect to 

the same tree) containing the branch. 

As an illustration, consider again the graph shown in 

Fig. 1. Some of simple cut -sets are: 

{a,d,f}, {a,c,e,f }, {a,c,b }, {b,c,d,f} 

If we choose a tree in the graph of Fig. 1 as {a,d,e}, 

which is shown in bold lines in Fig. 2, we get the basic 

cut -sets as: 

{a,c,b }, {b,c,d,f}, {b,e,f} 

basic cut -set 
{a,c,b} 

basic cut -set {b,c,d,f} 

basic cut -set {b,e,f) 

Fig. 2. An oriented graph with a chosen tree. 

Definition 4. The simple cut -set matrix Q =[gijl, of a 

connected graph, has one row for each possible 

cut -set and one column for each edge in the graph, 

such that: 

qii =1, if edge j is in simple cut -set i and their 

orientations are coincident; 

- 

f 
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qij = -1, if edge j is in simple cut -set i and 

their orientations are opposite; 

qij =0, if edge j is not in simple cut -set i. 

Definition 5. A basic cut -set matrix Qf is a submatrix 

of a simple cut -set matrix whose rows are defined 

only for the basic cut -set with respect to a tree, 

and the orientation of each basic cut -set is defined 

by the branch contained in the basic cut -set. 

The basic cut -set matrix for the graph shown in Fig. 2 

with respect to the tree (a,d,e) is 

b c f a d e 

Qf 

-1 -1 . 1 . 

-1 -1 -1 1 

1 . 1 . . 1 
e 

2.2. A Star -like Tree 

Consider the graph shown in Fig. 3, where a chosen 

tree is indicated in bold lines. A tree whose branches 

are all incident at a common node is said to be a star - 

tree. The tree in Fig. 3 is a star -tree. 

. . 



Fig. 3. A star -like tree. 

From the definitions given in the preceding section, 

it is clear that the basic cut -set matrix with respect 

to a star -tree is equal to the incidence matrix which is 

reduced a common node. We use this fact as one of the 

basic ideas of our method. 

7 



CHAPTER III 

MAYEDA'S METHOD 

3.1. Cut of a Graph 

In order to approach the star -tree, we construct 

two subgraphs from the given graph G in Fig. 4(a) by 

the following procedure (9), where the basic cut -set, 

Si, consists of branches b1, b2, ..,.bk; 

1) Insert one node at the middle of each branch in 

Si and coalesce the nodes together as shown in 

Fig. 4(b), and 

2) split the node as shown in Fig. 4(c). Con- 

nected graphs Gl and G2 are the graphs that 

result from this procedure. 

Now the basic cut -set, Si, in G becomes an incidence set 

in both GI and G. By repeating the procedure, G will 

be divided into star -tree structures. 

8 
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r 

(b) 

G2-- -- - -_ J 

Fig. 4. Cut of a graph. (a) Given graph G; 
(b) producing a new node N; (c) splitting 
of the node. 

3.2. Partitioning of a Cut -set Matrix 

Supposing G1 and G2 in Fig. 4(a) are nonseparable 

when the cut -set Si is removed from G, the above pro- 

cedure on G is equivalent to the following procedure on 

a cut -set matrix, Q, where we suppose that Q corresponds 

to the graph G: 

1) Remove every column which has 1 at row i, and 

then delete row i. The resultant matrix, H, is 

then partitioned, after some permutations of 

Si 
b1 
b2 

4 I 

I I 

bk i 

G 
(a) 

N N 

1 
(c) 



rows and columns, as 

H1 0 

H = 
0 H2 

10 

(3.1) 

2) Form new matrices, designated as M1(i) and 

M2(i), as follows: Construct the submatrix of 

Q having the rows in H1 (or H2) and the row Si. 

This submatrix is M1(i) (or M2(i) ). 

The row i in M1(i) and M2(i) represents an incidence 

set. By repeating this procedure on M1(i) and 

M2(i), they can be made into incidence matrices. 

From these incidence matrices graphs can be drawn 

by inspection. 

Let us consider a reverse procedure. Suppose there 

exist two graphs Gi and G2 whose basic cut -set matrices 

are M1(i) and M2(i) which satisfy the following condi- 

tions where M1(i) and M2(i) are a pair of M- submatrices 

of Q with respect to row i: 

1) Row i of M1(i) represents an incidence set in 

G1. 

Row i of M2(i) represents an incidence set in 

G2. 

The graph, G, whose basic cut -set matrix is Q, can be 

formed from G1 and G2 by the following procedure: 

1) Join the node N in G1 and G2 as the graph shown 

in Fig. 4 (b) . 

2) 
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2) Take off the node N (Fig. 4(a)). 

Following the above procedure we can combine sub - 

graphs and get the desired graph, G. The graph, G, cor- 

responds to the given cut -set matrix, Q. By a very 

simple example, Mayeda's method is illustrated. 

Example 1. 

Suppose the given matrix is 

1 

2 

Q - 3 

4 

5 

a b c d e 

1 1 1 

1 1 1 

f g h i 

Removing every column which has a 1 in row 3, and then 

deleting row 3, we obtain 

a e f g i j a f g e i j 

1 1 . 1 . .N 1 1 1 ! - 

2 1 . 1 . . 2 1 1 . 
H = 

4 1 . 1 4 . 1 1 . 0 H2 

5 1 . 1 5 . 1 . 1 

(3.3) 

Forming the submatrix, M1(3), of Q which is composed of 

the rows of H1 and row 3 which was earlier deleted, we 

obtain 

. 1 

1 1 1 

. . 3. (3.2) 

1 . 1 1 

. 1 1 1 1 

. . 

. 

= -- 
. . . 

,. ,. 



a c d f g h 

l 1 1 . 1 . 

M1(3) = 2 1 . 1 . 1 

3. 1 1 1.. 1 

12 

(3.4) 

Row 3 of M1(3), which represents the cut -set, must be 

considered as an incidence set on node 3. The cut -set 

matrix M1(3) is now considered as an incidence matrix, 

because every column of M1(3) has at most two l's. The 

corresponding graph for M1(3) should have a star -tree. 

From M1(3), we obtain the graph as shown in Fig. 5(a), 

where node o:. represents a datum node. 

Forming the submatrix, M2(3), which 4s made up of 

the rows of H2 and row 3 which was earlier deleted, we 

obtain 

b c d e i j h 

4 '1 

M2(3) = 5 > 1 1 1 . 1 

3 1 1 1 

(3.5) 

Row 3 of M2(3), which represents the cut -set, must be 

considered as an incidence set on node 3. M2(3) can be 

considered as an incidence matrix. From M2(3), we obtain 

the graph as shown in Fig. 5(b), where node ß represents 

a datum node. Combining graphs (a) and (b), by deleting 

node 3, we get the desired graph as shown in Fig. 5(c). 

b 

1 

. 1 1 

. 

. 

. . 

. 

. . . 1 
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(a) (b) 

(c) 

Fig. 5. Realization of the cut -set matrix of 
Eq. (3.2). 
(a) Graph for M1(3); (b) graph for 
M2 (3) ; (c) graph for Q. 
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CHAPTER IV 

METHOD OF PARTITIONS 

4,1, Separable Subgraphs 

In the preceding chapter we assumed that the sub- 

graphs G1 and G2 in Fig. 4 are nonseparable after remov- 

ing the cut -set, Si. By a simple graph shown in Fig. 6, 

it is clear this assumption loses generality. That is, 

if we take off the cut -set Si, which is shown in Fig. 

6(a), from the graph, one of the subgraphs, Gl, becomes 

a separable graph (Fig. 6(b)). 

L---G1 - 
(a) 

------ - 

(b) 

Fig. 6. Producing a separable graph. 
(a) A nonseparable graph; (b) removal 
of a cut -set S.. 

i 

- - 7-1 



15 

For this case, the cut -set matrix corresponding to 

the graph of Fig. 6(b) will have the form 

H = 

0 0 H3 

(4.1) 

Suppose H1, H2, and H3 correspond to the graphs G11, 
G12 

and G21 respectively. When we partition H of (4.1) as 

0 

0 Hb 
(4.2) 

where Ha consists of H1 and H2, and Hb equals H3, we 

can synthesize the given cut -set matrix according to 

Mayeda's method. However, if we take other combinations, 

say 

0 

H = 
H 

a 

[H2 

(4.3) 

we can not synthesize the given Q, because the matrices 

(4.3) correspond to the graphs shown in Fig. 7, and the 

original interconnections are changed. In the following 

section the method of proper partition is given. 

H1 0 0 

0 H 0 

= 

Hb 
= 

H 
(Ha 

1 

J 0 H3 
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Fig. 7. Wrong interconnection of subgraphs 
for the graph of Fig. 6. 

4.2. Sets of Parallel Branches and Tutte's Theorem 

Consider the graph G shown in Fig. 8. 

Fig. 8. A graph G which will be separable 
after removing a cut -set Si from G. 

- 

I Ì 

I \ 
G1:1 

I 

G 

m 
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By removing Si, we get subgraphs G1, G2, ....Gm. 

The corresponding cut -set matrix, H, will have the follow- 

ing form after some permutations of rows and columns, 

H = 

0 0 0 

0 H2 0 0 

0 0 H1 

0 0 0 

0 

(4.4) 

By using Tutte's theorem, we can partition H such 

that the given matrix is realizable. In order to use the 

theorem, let us obtain the sets of parallel branches con- 

tained in Si from Hj's, where j= 1,2,...m, as follows: 

1) Form submatrices, M.(i), from Q, where Mi(i) 

is the same as defined in Chapter III. 

2) From this submatrix M.(i), find columns which 

contain l's at row Si. Let the matrix which is 

made up of these columns be C. For example, let 

a b c d e f g 

1 1 1 1 P 1 

M.3 (i) = 2 1 . 1 (4,5) 

and let S. = row 3. 
i 

Then the columns which contain l's at row 3 are: 

b, c, d and g. 

H1 

---- 

Hm 

3 

1 

1 1 1 1 

--.,.. 

. 



Therefore we obtain 

b c d g 

! 1 1 . . 

C = 2 . 1 . 

3 ` 1 1 1 1 , 

18 

(4.6) 

3) In C, find columns which are the same, For 

example, in C of (4.6), the columns which have 

the same arrangements are: 

{b,c }, {d }, {g} 

4) These sets of similar columns represent the sets 

of parallel branches contained in Si. 

Let the sets of parallel branches obtained from M.3 (i) and 

Mh(i) be 

Pi = Sji, Sj2, ...Sjk 

Ph = 1Sh1, Sh2, ..QShq1 
(4.7) 

Now Tutte's theorem can be stated as follows: 

Theorem 1. If we can form two sets, Ha and Hb, such that 

1) Ha Hb = and Ha U Hb - {}11, H2, ...HO, 

and 

2) Sir U Shp = Si, for every j and h in Ha and Hb, 

respectively, where Sir and Shp are subsets of 

Pi and Ph respectively, 

then both Ha and Hb are realizable. 

If the graph G corresponding to Q contains two - 

terminal subgraphs, then there exist several ways to 

1 
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get Ha and Hbe However, these will produce trivial 

equivalent graphs. 
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CHAPTER V 

REALIZATION ALGORITHM 

5.1. Removal of Basic Cut -set with Respect to the 

Non -tip Branch 

Consider the graph G in Fig. 9. If we remove the 

basic cut -set, Ti, from G, one of the subgraphs consists 

of only a node., and we can not approach a star -tree. 

We can avoid this by the following considerations. 

Fig. 9. A basic cut -set Ti with respect to 
tip- branch. 

Take a column which has at least three l's in the 

given basic cut -set matrix, Q. Then, from the definition 

of the basic cut -set matrix, there are three tree 

branches associated with the column. From the property 

of a tree, all the tree branches must be connected. 

Hence at least one of the three branches must be a non - 

tip branch. From the above discussion, we have the 

following property: 

- - - G 

Ti" 
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Property 1. A basic cut -set with respect to non -tip 

tree branch is found in rows which have l's at a column 

having at least three l's. By the above property, we 

can make our method effective, That is, when we delete 

a row we should select the row as follows: 

1) Find a column, say the column k, which has at 

least three l's, If there is no such column, 

then the given Matrix, Q, is an incidence 

matrix. 

2) Delete a row which has a 1 at the column k, 

3) If the resultant matrix, H, is not separable, 

try the other row which has 1 at the column k. 

If H is still not separable after every row 

which has 1 at k is deleted, then the given 

matrix, Q, is not realizable, because property 

1 is violated. 

5.2. Manipulations on Incidence Matrices 

When we get a large number of subgraphs in Mayeda's 

method, synthesis of the graphs is tedious. We can do 

it by manipulations on matrices as follows: 

1) Add a row to each incidence matrix, A., such 

that the resultant matrix has exactly two l's 

at every column. This row corresponds to a 

datum node. 

4) 
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Combine these matrices by deleting the same 

rows. This manipulation corresponds to deleting 

the same node when combining subgraphs. 

5.3. Algorithm 

From the foregoing discussions, the algorithm for 

the realization of basic cut -set matrices is stated as 

follows: 

Step 1. Find a column, k, which has at least three l's 

in the given cut -set matrix, Q. 

Step 2. Let the first row which has a 1 at column k be 

I. Delete every column which has a 1 at row I, 

then remove row I. 

Step 3. Is the resultant matrix, H, separable? If it 

is not separable, find the other row which has 

a 1 at column k, then go to step 2. 

Step 4. If H is partitioned as the matrix (3.1), go to 

step 6. If H is partitioned as the matrix (4.4), 

obtain the set of parallel branches from each 

submatrix Hj, j =1,2,...m. 

Step 5. Partition H into two submatrices, Ha and Hb, by 

using theorem 1. 

Step 6. Obtain Ma(i) and Mb(i) by the following pro- 

cedure: Construct the submatrix Ma(i) (or 

Mb(i) ) of Q having the row in Ha (or Hb) and 

2) 

a 
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Step 8. 

Step 9 

Step 10. 

23 

the row I which was deleted in step 2. 

Is M.(i), j =a,b, an incidence matrix? If it 

is not an incidence matrix, go to step 1, and 

let Q= M.(i). 

If M.(i) is an incidence matrix, then add a 

row such that every column has exactly two l's. 

Combine these matrices by deleting the same 

rows. 

Draw the graph from the resultant incidence 

matrix. 

The above algorithm is illustrated by the following 

example. 

Example 2. 

Suppose the given cut -set matrix is 

a b c d e f g h i j k l m 

1 1 . . 1 . 

2 1 

3 1 

Q = 
4 . 

5 1 . . 

6 1 1 

Step 1. 

1 1 1 1 1. . 1 . . 

1 . . 1 . . 1 . . 

. 1 1 . 1 . . . 1 . 

1 1 1 1 . . . . 1 . 

. . . 1 1 . 1 

Column a has three l's. 

Step 2. Delete every column which has a 1 at row 2, and 

then remove row 2. The resultant matrix, H, is 

found to be 

(5.1) 

7. 

1 ( 



24 

g h i k 1 m n 

1 . . 1 . . . 

3 1 

4. 1 1 (5.2) 

5 1 1 . . 1 

6 1 o 

Step 3. After some permutations of columns, H is 

partitioned as 

1 1 

i h 

. 

k 

0 

l 

. 

g m n 

3 .; 1 1 . H1 0 0 

H = 4 1 . ; 1 . 1 ; . . . I 0 H2 0 (5.3) 

5 1 i . i 1 1 . 1 0 0 H3 

6 i 1 

Step 4. In order to partition H into two parts, we 

obtain the sets of parallel branches from H1, 

H2, and H3 as follows. 

First we construct the submatrix M1(2) of Q 

having the rows in H1 and row 2 which was re- 

moved in step 2. 

a b c d e f i j 
1 . 1 1 . 1 

M1(2) = 
2 1 1 1 1 1 1 . ]. 

(5.4) 

From M1(2), we get the parallel branches (the 

same columns containing a 1 at row 2) as 

1 

H 

1 

,. .` 

. 

= 

. i . 1 

. . 
lI 
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Si = { {a,d,e,f,j }, {b,c) } (5.5) 

In the same way, from the rows in H2 and row 2, 

we get 

M2(2) = 4 

2 1 

a b c d e f h j k 1 

1 1 . . . 1 . 1 

. . . 1 1 1 . . 1 (5.6) 

1 1 1 1 1 . 1 .. 

From M2(2), the set of parallel branches is 

S2 = { {a,b} , {c,d,j) , {e,f }} 

Again, in the same way, we get M3(2) as 

M3(2) = 6 

a b c d e f g j m n 

1 . . 1 1 1 1 . 1 . 

1 . 

2 1 1 1 1 1 1 . 1 . 

From M3(2), the set of parallel branches is 

(5.7) 

(5.8) 

Step 5. From Si, S2 and S3 obtained in step 4, we find 

S11 U S32 = Si (5.10) 

where 

511 = a,d,e,f,J°, S32 ,c,j} 

Si = {a,b,c,d,e,f,j} (5.11) 

. 

. . . 1 1 .. 1 

S3 = L{a,f }, {b,c,j }, {d,e} } (5.9) 

= 

. 

tI 

I 

.. 



Therefore H is partitioned as 

H = 

H 

0 

0 ; 

0 

H3 
3 

0 in 

[Ra 0 

0 Hb 

26 

(5.12) 

Step 6. We construct the submatrix, Ma(2), of Q having 

the rows in H and row 2 which was deleted in 

step 2. 

a b c d e f g i j m n 

1 . 1 1 . . . . 1 

5 1 . . 1 1 1 1 . 1 

Ma(2) = (5.13) 

6 1 . . . 1 1 . . 1 

2 1 1 1 1 1 1 . 

Similarly, Mb(2) is 

a b c d e f h j k l 

3 Y1 1 . . . . 1 . 1 . 

Mb(2) = 4 1 1 1 1 (5.14) 

2 1 1 1 1 1 1 . 1 ., 

Step 7. Mb(2) has the property of an incidence matrix, 

since every column has at most two l's. Ma(2) 

is not an incidence matrix. Therefore we apply 

the step 1 - step 7 to Ma(2). 

Step 1. The column a in Ma(2) has three l's. 

Step 2. Delete every column which has a 1 at row 5, 

. 

i 

'-- 

a 

1 

. . 

_ 

. . 

. 

, . 

. . . 
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and then 

H, is 

1 

remove row 5; 

b c i j n 

1 1 1 . 

the resultant matrix, 

H = 6 . (5.15) 

2 1 1 . 1 

Steps 3, 4. H is partitioned as 

b c i j n 

1 -1 1 1 

H = 2 1 1 . 1 _ (5.16) 
0 Hb 

6 

Since H is partitioned into two parts, we can 

go to step 6. 

Step 6, Ma(5) and Mb(5) are obtained as 

a b c d e f g i i m 

1 . 1 1 . . 

Ma(5) = 2 

5 

s 

1 1 (5.17) 

a d e f g m 

= 6 1 . . 1 1 . 

5 1 1 1 1 1 .1 

Step 7. Ma(5) and Mb(5) are incidence matrices. 

Step 8. We now construct the non -reduced incidence 

(5.18) 

matrices. By adding a row to Mb(2), such that 

. 

Ha 0 

1 

. 1 . 

1 1 1 1 . . 1 . 

1 1 1 1 1.. 1 

n 

. . . 1 

. 

. . J 
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every column has exactly two 

a b c d e f h 

l's, 

j k 

we get Al 

1 

3 1 1 . . . 1 . 1 . 

4 m m 1 1 1 
A1 = (5.19) 

2 1 1 1 1 1 1. 1 

OC4e . 1 1 . m 1 1 1 

where oçcorresponds to a datum node. 

In the same way, from Ma(5), 

a b c d e f g i j 

1 ( . 1 1 . . . . 1 m . 

2 1 1 1 1 1 1 .. 1 

A2 (5.20) 
5 1. 1 1 1 1 . 1 

1 1 1 1 e 

where ß corresponds to a datum node. 

From Mb (5) , we get 

a b e f g m n 

6 '1 m 1 1 . 1 

5 

11-. 1 1 . 1 1 

where y corresponds to a datum node. 

(5.21) 

. 

. 

m 

ß . . 

. 

1 1 1 1 1 1. 
. 

.. . 1 

= 
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Step 9. 

3 

4 

p( 

A = 1 

ß 

6 

From A, 

Combining Al, A2 and A3 by deleting the same 

rows, we get the desired incidence matrix 

a b c d e f g h i j k 1 m n 

1 1 . 1 . . 1 . . 

. g.. 1 1 . 1 0 . 1 . 

1 1 1 1 1 . . 

. 1 1 . . . 1 . . . 

. . . . 1 . 1 1 . . 1 

1 .. 1 1 . .. 1 

. 1 1 e . . o . . 1 1 

the desired graph is obtained as shown in 

as 

(5.22) 

Fig. 10. 

Fig. 10. The graph corresponding to the 
cut -set matrix of Eq. (5.1). 

y 

. ... 

. 

. 

1 

. 

. 
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CHAPTER VI 

SYNTHESIS OF BILATERAL NETWORKS 

6.1. Realization of Admittance Matrices 

By the following example, realization of an admit- 

tance matrix of order n as an RLC n -port with n +l nodes 

is illustrated. 

Example 3. 

Let us consider the realization of the following 

Y- matrix with an RLC network with five nodes. 

Y 

2+3s+1 3s+1 
s 

3s+1 

0 

3s 

5+3s+? 
s 

3s 0 

1+7s -4s 

-4s 3+4s+1 
s 

(6.1) 

For real and positive values of the complex variable, s, 

an RLC n -port behaves as a resistive n -port. We there- 

fore arbitrarily assign a real, positive value to the 

variable s. If we let 

6 

4 

3 

0 

s =1, the matrix becomes 

4 3 0 

10 3 1 
(6.2) 

3 8 -4 

1 -4 8. 

where the matrix with s set equal to 1 is denoted by Y. 

s 

3s 1 
s s 

= 
3s 

1 
s 

y=Y1=1 = 
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By using Cederbaum's algorithm, we decompose Y into the 

triple product: 

= C D CS (6.3) 

where Cs is a seg matrix and D is a diagonal matrix with 

positive elements representing edge conductances. Let 

Ci) be the i -th column matrix of Cs, di be the i -th 

diagonal element in D. 

Now, we choose in the element with the smallest 

absolute value, say the element of (2,4)- position which 

has the value of 1. Thus the first diagonal element, 

dl, determined as d1 =1. Next we determine the first 

column C1lof Cs by the following procedure: 

1) If the smallest absolute value element, say kmn, 

is at (m,n) position, then the m -th row and 

n -th row of Ci)should have nonzero elements, as 

Ci) 

o 

m 

n ±1 . 

(6.4) 

where the element at n -th row should have the 

same sign as the sign of ka 

2) Other elements of Ci)can be obtained by the 

following rule: 

is 

1 

1 

Y 

= 



If 

kmnkmjknj 0 for j m,n 
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then the element of the j -th row of the column 

is nonzero and the sign of this element is the 

same as the sign of kmj, and if 

kmnkmjknj Ç 0 for j # m,n mn 

then the element on the j -th row of Cil is zero. 

By the above procedure we can obtain Chas 

We define 

CI) 
1 

1 

Gi 
= ciJ 

[di 
ci) t 

Yi Yi-1 - Gi 

where Y = 

(6.5) 

(6.6) 

(6.7) 

if i =1 (6.8) 

By the definitions, we obtain 

1 

G1 

[ . 1 . 1) = 

(6.9) 

>' 

J 

= 

Y 

" 

mn 

= 
. 1 . 1 

1 
. 1 . 
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6 4 -3 0' 6 4 -3 0 

4 10 -3 1 1 1 4 9 -3 

Y1 
(6.10) 

-3 -3 8 -4 -3 -3 8 -4 

0 1 -4 8 1 1 0 0 -4 7 

From we we choose the second diagonal element as 

and the second column, ci, of Cs is found as 

d2 =3, 

1 

1 

C2) = 
1 

(6.11) 

G2 and Y2 are found as 

G2 = 
C2J C 

d2 
J 

C2` t- 1 3 
J l 1 1 1 

1 

1 

3 

3 

3 

3 

3 

3 

3 

3 

3 

0 

0 

0 

(6.12) 

0 0 0, 

Y2 = Y1 - G2 '3 1 0 0 

1 6 0 0 
(6.13) 

0 0 5 -4 

_0 0 -4 7. 

' 

0 

Y1, 

0 

.) 

. 

. 



34 

In the same way, we can determine di and C:) succes- 
i 

sively, These are tabulated together with Yi and Gi 

in Table I. 

TABLE I. Decomposition of 
- 

Y 
_ - _ ' 

Í 
2 

Í 
3 

6 4 3 0 6 4 3 0 3 1 0 0 2 0 0 0 

4 10 3 1 4 9 3 0 1 6 0 0 0 5 0 0 

3 3 8 -4 4 3 8 -4 0 0 5 -4 0 0 5 -4 

0 1 -4 8 0 0 -4 7 0 0 -4 7 0 0 -4 7 

G1 G2 G3 G4 
4 

0 0 0 0 3 3 3 0 1 1 0 0 0 0 0 0 

U 1 0 1 3 3 3 0 1 1 0 0 0 0 0 0 

0 0 0 0 3 3 3 0 0 0 0 0 0 0 4 -4 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 -4 4 

= 
l | 

.' ]=' 
31 

C]= U l C]=^^ 

1 1 1 - 

. 1 . 
'l 

l ^ , | , 
.. 

-1 

dl =l 
l 

d2 =3 
2 

d3 =l d4 =4 
4 

Y 

i . 

(continued) 
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TABLE I (continued 

Y Y5 Y6 Y7 

2 0 0 0 0 0 0 0, 0 0 0 0 0 0 

0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 

0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 

G5 G6 G7 G8 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

C51 = 1 C6) ç . 

d5 = 2 d6 = 5 d7 = 1 d8 = 3 

0 0 

' , - ' 
C8) 

= 
+ 

. 

. 1 . . 

. . 1 . 

,, .., 1. 

= _ 
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Now Y is decomposed as 

. 1 1 1 . 

1 1 1 . 1 

= 
. 1 1 1 

1 . . -1 . 

x 

1 0 o -------- 0 

0 o 

4 

2 

5 

1 

0 0 0 3, 

(6.14) 

1 

1 

1 

To identify the element values, let 

Y 

. 1 

O 3 

x 
O 0 1 

0 

1 

. 

. 

. 

1 . 

1 1 1 

1 1 

1 -1 



Y= 

dl d2 d3 d4 d5 d6 d7 d8 

1 1 1 . 1 

1 1 . 1 

1 . -1 . 

1 

1 

1 1 

1 1 

. 1 

1 

1 . 

1 

1 

-1 

1 

d2+d3+d5 

d +d 
2 

d2 

o 

1 

3s 0 

1 

s 

1 + 7s -4s 

37 

-4s 3 + 4s + 
s 

dl 0 0 

0 d2 0 

0 d3 

d4 

d5 

d6 

O 

.1 
(6.15) 

2 + 3s + 1 
s 

3s + 1 
s 

3s + 1 
s 

5 + 3s + 
2 

s 

3s 

1 
s 

3s 

. 1 1 . 1 . . 

. 

.. 

. 

x 
0 

.0 0 

0 

d7 

d2+d3 d2 0 

. d1+d2+d3+d6 d2 d1 

. . d2 d2+d4+d7 -d4 

dl -d4 d1+d4+d8 

. 

. . 

x 

. 

. . 

. 

d8 
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From the above equation we get the element values as 

dl = S , 
d2 = 3s , d3 = S , d4 = 4s d5 = 2, d6 = 5 

d7 = 1, d8 = 3 (6.16) 

The next step is to realize 

dl d2 d3 d4 d5 d6 d7 d8 

P = 

a -. 1 1 . 1 . 

b 

c 

d l -1 1 

(6.17) 

This is a basic cut -set matrix of an oriented graph, 

where the letters a, b, c and d are assigned for cut 

sets (in this case these also represent ports). 

Although we have developed the method of realiza- 

tion of non -oriented cut -set matrix, the method is also 

applicable to the oriented cut -set matrix as follows: 

Ignoring the negative signs in P, we can use our algo- 

rithm and get the non- oriented graph as shown in Fig. 

11(a). Recalling definition 5, we can orient the graph 

as shown in Fig. 11(b). 

Next we must describe the ports. From P, we know 

that branches d5, d6, d7 and d8 correspond to tree 

branches. In the cut -set schedule, the tree branches 

are considered as independent voltages (5, p. 13 -17), 

i.e., port voltages correspond to tree branch voltages. 

- 

1 1 

. 1 . 1 . . 1 

. . . 
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By these considerations we get the final network as shown 

in Fig. 11(c). 

(a) 

3F 

(b) 

Fig. 11. Realization of the Y- matrix of Eq. (6.1). 
(a) Non -oriented graph; (b) oriented graph; 
(c) final graph. 

(c) d 



6.2. Realization of Non -basic Cut -set Matrices 

So far, we have considered the realization of basic 

cut -set matrices. In practical applications, however, 

we must often realize non -basic cut -set matrices. The 

method is illustrated by the following example. 

Example 4. 

Consider the realization of the following 5 -port 

Y- matrix with six nodes. 

21 -21 -6 -10 -10 

-21 35 7 21 10 

Y = -6 7 25 -15 -7 (6.18) 

-10 21 -15 49 26 

,-10 10 -7 26 26 

Again by using Cederbaum's algorithm, Y is decomposed as 

where 

Y = Cs D CS 

6 1 7 8 10 5 11 9 2 

-1 1 . -1 -1 

Cs = I -1 1 1 1 

. -1 -1 -1 1 1 

. -1 . -1 . 1 

(6.19) 

(6.20) 

40 

- 

s s 

4 

' 1 . . 1 1 . . 

1 1 

. 1 

. 1 

. 



D = 

6 0 0 

0 1 0 

0 0 7 

0 0 

10 

5 

11 

9 

0 

0 4 
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(6.21) 

where the numbers on C 
s 
represent the corresponding 

element values. 

Since C does not have the form: 
s 

Q ^ ( Q11 u 

where U is a unit matrix, Cs is not a basic 

(6.22) 

cut -set 

matrix (11, p. 75). 

Let us augment Cs such that Cs has 

order 5, and call this Ql. 

unit matrix of 

, 

8 

2 

0` 

0 

3 

- 



= 

6 1 7 8 10 5 11 9 dl 4 d2 
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where d1 and d2 represent the element values of augmented 

edges. 

Discarding the negative signs, we get the following non - 

oriented cut -set matrix, Q. 

a 

b 

Q = c 

d 

Q1 

1 1 1 . 

1 1 

6 1 7 8 10 5 

1 . . 1 1 

1 1.. 1 1 

1 1 1 1 . 

11 9 d 2 3 

1.. 1 

o . 1 

4 d 

(6.24) 

1 

We realize Q by using our method. 

Step 1. The first column (numbered 6) has three l's. 

Step 2. Delete every column which has 1 at the row b, 

and then remove the row b. The resultant 

matrix H is 

2 3 

1 . 1 1 . . 1 . 

-1 1 . , -1 -1 1 i . . 

-1 1 1 1 . . 1 . . (6.23) 

. -1 -1 -1 . 1 1 . . 1 . 

. -1 . -1 . . 1 . 1. 

. . . 1 . . 

. 

. 1 1. . 1 

e 1 

- . 

. 



H = 

a . 

c 1 

d i 

e 
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L1. 

8 9 dl 3 4 d2 

. 1 

1 . 1 

1 . 

(6.25) 

Steps 3,4. H is partitioned as 

H 

4 d2 

We can go to step 6. 

Step 6. 

6 1 10 5 11 dl 2 

a 1. 1 1. 1 

b 
Ma(b) = I (6.27) 

1 

Pa 
0 

(6.26) 

c 

d 

Mb(b) = 
e 

b 

8 10 5 11 al 

1 . . 

1. 
1 

1 

. 

1 

1 

. 

1 

1 

4 d2 

(6.28) 

Step 7. Ma(b) is an incidence matrix, but Mb(b) is not 

an incidence matrix. Therefore we apply step 1- 

step 7 to Mb(b). 

7 

. . 

l l . 

. . i 

a'l' 

d 
1 

7 8 9 3 

. . . . . 

-'------ - ---- i - 
c 

= 
. 1 1 . 1 . 

_ 
0 

d 1 
i 

1 1 . 1 Hb 

e . ; 1 . . . 1 

1 1 1 1. 1 

6 1 7 2 3 

1 1 . 1 . e 

1 1 1.. 1 

. 1 . . . 1 

1 . 1 . 

. 

. 
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Step 1. In Mb(b), the column numbered 7 has three 1 °so 

Step 2. Delete every column which has 1 at the row d, 

then remove row d. 

c 

H = e 

b 1 1 

5 2 3 d2 

1 . 

. 1 

1 1 . 

Steps 3,4. H is partitioned as 

d2 6 1 5 2 3 

e '1 . . . 

- - - - 
c 1 1 . 1 = 

b . 1 1 1 1 

We can skip step 5. 

Step 6. 

7 8 10 11 9 4 d2 

e 1 . 1 . . 1 

Ma (d) = 
d 1 1 1 1 1 1. 

6 1 7 8 10 5 11 

c 1 ' 1 1 1 . . 

Mb(d) = b 

d 

1 

1 

1 

(6.29) 

(6.30) 

(6.31) 

Step 7. Ma(d) and Mb(d) are incidence matrices. 

Step 8. From Ma(b), Ma(d) and Mb(d), we get Al, A2, 

and A3, respectively. 

6 1 

1 1 . . 

. . . . 

., 

' 

H = . 

Ha 
a 

0 Hb 

1 

9 2 3 4 

1 1 1 1 . 1 . (6.32) 

1 1 1 . 1 

1I 

] 

: 

. 1 . 



a'1 

Al = b 

6 1 10 5 11 

1 1 . 1 

7 8 

e `1 

A2 = d 1 1 

6 1 

1 

. 1 

10 11 9 

1 . 1 

1 1 1 

1. 1. 

7 8 10 

1 1 . 

dl 2 

1 1, 

4 d2 

. 1 

1 

1 1 

5 11 9 2 3 

. . . 1 

4 

1 1 1 1 1 . 1 

45 

(6.33) 

(6.34) 

(6.35) 

Step 9. Combining Al, A2 and A3 by deleting the same 

rows, we get the desired incidence matrix as 

A = 

6 

1 

1 7 8 10 5 11 9 d1 2 3 4 d2 

. . . 1 1 . . 1 . . . 

. . . . 1 . 1 

1 1 . 1 1 

1 . . 1 1 

1 1 1 1 

1 1 

(6.36) 

Step 10. From A, we get the non -oriented graph as shown 

in Fig. 12(a). Considering the oriented cut- 

set matrix, Q1, of Eg. (6.23), we get the 

. ` 
1 1 1 1 1 1 

OC . 1 

. 

. 

P . 

c 1 

A3 = b 1 1 1 1 1 1 

d 

lT . 1. 1 1 1 1 

a 

oa 1 1 . 

e . 

. 1 . . . 

c 1 

. 1 1 1. 

. 

, 

.. . 
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oriented graph as shown in Fig. 12(b). 

Describing the ports, letting d1 = 0 and 

d2 = 0, and finally discarding the orienta- 

tions of edges (since the orientations of only 

the ports are important) we get the network 

corresponding to Y as shown in Fig. 12(c). 

10 

a 

(a) 

l 

Fig. 12. (a) Non -oriented graph, (b) oriented 
graph; (c) network for Y. 
(Values in ohms) 

11 

10 

11 (c) 

(b) 
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6.3. Synthesis of Single- contact Networks 

Let us consider the realization of single- contact 

networks. We assume that the state of each contact is 

independent of the state of all the other contacts in the 

network. Thus, the switching function of a single con- 

tact network is a proper function in which none of the 

variables are vacuous, and in which no variable appears 

both negated and unnegated. Therefore, we can evaluate 

the switching function of a two terminal single- contact 

network as the Boolean sum of all the path products 

between the terminal nodes. For example, the switching 

function, F, of a single contact network shown in Fig. 

13 is obtained as 

F = ad + ace + be + bcd (6.37) 

ad 
c b e 

Fig. 13. A single -contact network. 

By the following example, the realization method is 

illustrated. 

Example 5. 

Let us consider the following single- contact switching 

function given in a normal form, 
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F = adcg + adf + ae + bcf + bcde + bg (6.38) 

The path matrix is 

a b c d e f g 

-1 . 1 1 . . 1` 

P = 

s, 

1 1 1 

. 1 1 1 1 

1 . 1 

The converted loop matrix corresponding to F is 

a b c de f g x 

"1. 1 1 . . 1 1 

1 . . 1 . 1 . 1 

1 

B = 
1 1 

1 1 1 . 1 

1 1 1 1 1 

1 

(6.39) 

(6.40) 

We now eliminate the dependent rows in B as follows: 

Adding (mod 2) the first row to the second and third 

rows, and again adding the fourth row to the fifth and 

sixth rows, we obtain the resultant matrix, B1, as 

e . . 

. 

. 

. . . 

. 

. . . 1 1, 

1 
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a b c d e f g x 

1® 1 1.. 1 1 

1 . 1 1 . 

1 1 1. 1 1 

B1 = (6.41) 
1 1 1 1 

1 1 1 

o 0 1 1 1 

In B1 we add the third row to the fifth row, and then we 

add the second row to the fourth and fifth rows; the 

resultant matrix, B2, is obtained as 

B2 = 

a b c d e f g x 

'1 . 1 1 . . 1 1 

. . 1 . . 1 1 . 

. ® 1 1 1 . 1 . 

. 1 . . . 1 1 

(6.42) 

The fifth row in B2 can be eliminated, because it con- 

tains only 0's. The second row and the sixth row are 

identical; the sixth row can therefore be deleted. The 

resultant matrix, B3 is 

. 

. . 

. . . 
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a b c d e f g x 

1. 1 1.. 1 1' 

. . 1 1 1 . 

B3 = (6.43) 
1 1 1 . 1 . 

o 1 . . 1 1 

After some permutations of columns, we obtain the loop 

matrix, B4, in basic form, as 

B4 = 

a f e b c d g x 

1 1 1 1 

. 1 . 1 1 

1 . 1 1 1 . 

1 . 1 1 

(6.44) 

The above elimination procedure is called Jordan's 

elimination procedure (8, p. 225 -227). The corresponding 

cut -set matrix to be realized is then found to be 

a f e b c d g x 

1 '1 1 1 1 . e 

2 1 . 1 1 

4 = 
3 1 1 1 1.. 1 

(6.45) 

After deleting every column which has a. l in row 1, and 

then removing row 1, Eq, (6.45) becomes 

. 

. . 

. . 

. 

. . 

4 1 1 1 



H = 4 

2 .° 

The pair of submatrices 

a f e 

3 '1 1 1 

Ma(1) = 4 1 0 0 

a f e 

are 

0 

Hb 

b g x c 

1 1 ° 

1 m 

d c 

1 

2 1 . 1 1 

Mb(1) = 
1 1 1 1 1 

51 

(6.46) 

(6.47) 

(6.48) 

Mb(1) became an incidence matrix. 

From M1(1), deleting every column which has a 1 at row 3, 

we get 

x c 

4 1 ; ® Ha 0 
H = ---+-- = 

1 m ; 1 0 Hb 

The pair of submatrices are 

a f e b x 

4 `1 0 . 1 1 

Ma (13) = 
3 

. 
1 1 1 1 . 1 

g 

Mb(13) = 

a f e b c g 

1 1 á 1 

1 1 1 ° 1 

(6.49) 

(6.50) 

(6.51) 

b g x d 

3"1 1 . . 

1 . 1 I . 

a 

o o i 1 
0 

1 l 1 1 

f 

1 1 

3 1 

r 

Il 



Ma(13) and Mb(13) are incidence matrices. 
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Adding a row 

corresponding to a datum node to Mb(1), Ma(13) and 

Mb(13) we get non -reduced incidence matrices as follows. 

From M2(1) 

a 

2 1 

A1 = 1 1 

a 

From M1(13) 

A2 = 3 

From M2(13) 

a 

1 

1 

A3 = 3 1 

á, 

f e d c 

1 1 

1 1 m 1 (6.52) 

1 1 1 

f e b x g 

. m 1 1 

1 1 1 a 1 (6.53) 

1 

f 

1 

e b 

1 1 

c 

1 1 0 1 

1 1 1 m 1 (6.54) 

m 1 1 1 

Combining Al, A2 and A3 by deleting the same rows we get 

the resulting incidence matrix 

. 

4 

. 

a g 

1 1 



a f e b 

2 1 . 1 m 

A = v 1 o a© 
4 1® 0 1 

P 1 1 . 

á o m 1 

53 

(6055) 

From A, we get the contact network corresponding to F 

as shown in Fig. 140 

d e 

b c g 

Fig. 14. Realization of the function 
of Eq. (6.38). 

g d c x 

. 1 . . 

1 1 

0 . 1 

1 . 1 

1 1 . 

a Va\ 

f 

/ 

\ 

J 
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