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A NEW METHOD FOR THE SYNTHESIS OF NETWORKS
BY USING CUT-SET MATRICES

CHAPTER I
INTRODUCTION

As an application of graph theory, realization of
cut-set matrices plays a basic role in the synthesis of
n-port networks as well as in switching circuits.

There exist two major approaches to the synthesis
of an n-port with (n+l) nodes. The first approach is
the method of determination of port structure (1,6), and
the second approach is based on the decomposition of an

admittance matrix, Y, into the triple product

t
Y = CSYeCs

where Cq is a seg matrix (a general definition of a cut-
set matrix), Ye is the diagonal matrix with positive
elements representing edge conductances (2), and the
superscript t indicates the transpose of a matrix. Thus
the synthesis of Y is accomplished if Cg, can be realized
as a graph.

On the other hand, the synthesis of a class of
unate switching networks in minimal form is directly re-
lated to the realization of a non-oriented, connected
graph, that is, to the realization of the loop or cut-

set matrix of a connected graph.



Thus, the bilateral network synthesis problems,
whether they are RLC networks or contact networks, are
actually reduced to the realization of a graph.

Several papers related to the synthesis of cut-set
matrices have been published (3,4,7,10,12), However, some
of them are too complex for convenient use, some of them
have no algorithm, and some of them have restrictions on
the size of the given matrix.

Mayeda presented necessary and sufficient condi-
tions for the realizability of cut-set matrices (9).
First, he showed the method of forming a set of v sub-
matrices, called M-submatrices, from a given matrix con-
sisting of v-1 rows. Then it was shown that if, and only
if, all of these v submatrices are realizable as inci-
dence matrices, the given matrix is realizable as a
basic cut-set matrix. In the first step, however, we
are often obliged to use trial and error method; that is,
there is no rigorous method of obtaining a set of v sub-
matrices.

In this paper, a new algorithm for the realizability
of cut-set matrices is given. By studying the proper-
ties of the graph, and by applying Tutte's theorem (13),

we can improve Mayeda's method and obtain the new method.



CHAPTER IT

PRELIMINARY

2.1l. Definitions

As a preliminary, some definitions are given.

Definition 1. The incidence matrix, denoted by A={éij],
of a graph with n nodes and b edges, is the matrix
with n rows and b columns. Each row corresponds to
a node, and each column corresponds to an edge,

such that

aij=l, if edge j is incident at node i and
directed away from node 1i;
aij=-l, if edge j is incident at node i and
directed toward node i;
aij=0’ if edge j is not incident at node 1i.
If a graph under consideration is not oriented, then
each element of the incident matrix of the graph
will take value of 1 or O.
As an illustration of an incidence matrix, let us con-

sider a graph given in Fig. 1, where the nodes are de-

noted by numerals, and the edges are given by lower-case

letters.



Fig. 1. An oriented graph.

The incidence matrix, A, for the graph is

a b ¢ d e f

v ~

1f1r . . -1 . 1

2|1-1L 1 1 . . .
A=

3f . -1 . . =1 =1

al. .1 1 1 .

The incidence matrix is a basic one for topological
synthesis because it completely defines the geometry of

a network, that is, a matrix possessing the properties of

an incidence matrix may always be realized directly. The

incidence matrix with one row eliminated still defines
the geometry of a graph, and is called the reduced inci-
dence matrix. The node corresponding to the row that has
been deleted is the datum node.

Definition 2. A simple cut-set of a graph is a set of
edges such that the removal of the set of edges from
the graph reduces the rank of the graph by one and
no proper subset of the set of edges has the same

property. A "cut-set" implies a simple cut-set.



Definition 3. The basic cut-sets are the (n-1) simple
cut-sets in a connected graph of n nodes which are
formed by each branch of a tree and some or all
chords included in the basic loops (with respect to
the same tree) containing the branch.

As an illustration, consider again the graph shown in

Fig. 1. Some of simple cut-sets are:

{a,d,f}, {a,c,e,f}, {a,c,b}, {b,c,d,f}

If we choose a tree in the graph of Fig. 1 as {a,d,e},

which is shown in bold lines in Fig. 2, we get the basic

cut-sets as:

{a,c,b}, {b,c,d,£}, {b,e,f}

/basic cut-set {b,c,d,f}

basic cut-set _
{a,c,b}

Fig. 2. An oriented graph with a chosen tree.

Definition 4. The simple cut-set matrix Q=[q J, of a

ij
connected graph, has one row for each possible
cut-set and one column for each edge in the graph,
such that:

qij=l’ if edge j is in simple cut-set i and their

orientations are coincident;



qij=—l, if edge j is in simple cut-set i and

their orientations are opposite;

ij=0, if edge j is not in simple cut-set i.
Definition 5. A basic cut-set matrix Qf is a submatrix

gq

of a simple cut-set matrix whose rows are defined
only for the basic cut-set with respect to a tree,
and the orientation of each basic cut-set is defined
by the branch contained in the basic cut-set.
The basic cut-set matrix for the graph shown in Fig. 2
with respect to the tree (a,d,e) is

b ¢ £ a d4d e

-1 -1 . 1 . .
Qe= -1 -1 -1 . 1 .
1 .1 . . 1

2.2, A Star-like Tree

Consider the graph shown in Fig. 3, where a chosen
tree is indicated in bold lines. A tree whose branches
are all incident at a common node is said to be a star-

tree. The tree in Fig. 3 is a star-tree.



Pig. 3. A star~like tree.

From the definitions given in the preceding section,
it is clear that the basic cut-set matrix with respect
to a star-tree is equal to the incidence matrix which is
reduced a common node. We use this fact as one of the

basic ideas of our method.



CHAPTER III

MAYEDA'S METHOD

3.1. cCut of a Graph

In order to approach the star-tree, we construct
two subgraphs from the given graph G in Fig. 4(a)‘by
the following procedure ( 9), where the basic cut-set,
Si’ consists of branches bl’ b2, ..,.bk:
1) 1Insert one node at the middle of each branch in
Siwand coalesce the nodes together as shown in
Fig. 4(b), and
2) split the node as shown in Fig. 4(c). Con-
nected graphs Gi and Gé are the graphs that
result from this procedure.
Now the basic cut-set, Si’ in G becomes an incidence set
in both G; and Gé. By repeating the proceduyre, G will

be divided into star-tree structures.



Fig. 4. Cut of a graph. (a) Given graph G;
(b) producing a new node N; (c) splitting
of the node.

3.2. Partitioning of a Cut-set Matrix

Supposing Gl and G2 in Fig. 4(a) are nonseparable
when the cut-set Si is removed from G, the above pro-
cedure on G is equivalent to the following procedure on
a cut-set matrix, Q, where we suppose that Q corresponds
to the graph G:

1) Remove every column which has 1 at row i, and

then delete row i. The resultant matrix, H, is

then partitioned, after some permutations of
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rows and columns, as
H 0
H=[ 1 ] (3.1)
0 H,
2) Form new matrices, designated as Ml(i) and
Mz(i), as follows: Construct the submatrix of
(or H

Q having the rows in H and the row Si°

1 2)
This submatrix is Ml(i) (or M2(i) ).

The row 1 in Ml(i) and Mz(i) represents an incidence

set. By repeating this procedure on Ml(i) and

Mz(i), they can be made into incidence matrices.

From these incidence matrices graphs can be drawn

by inspection.

Let us consider a reverse procedure. Suppose there
exist two graphs Gi and Gé whose basic cut-set matrices
are Ml(i) and M2(i) which satisfy the following condi-
tions where Ml(i) and Mz(i) are a pair of M-submatrices

of Q with respect to row i:

1) Row i of Ml(i) represents an incidence set in

1°

2) Row 1 of M2(i) represents an incidence set in

G

G2.

The graph, G, whose basic cut-set matrix is Q, can be

formed from G.

1 and Gé by the following procedure:

and Gl

1) Join the node N in G. 2

1 as the graph shown

in Fig. 4 (b).
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2) Take off the node N (Fig. 4(a)).

Following the above procedure we can combine sub-
graphs and get the desired graph, G. The graph, G, cor-
responds to the given cut-set matrix, Q. By a very
simple example, Mayeda's method is illustrated.

Example 1.
Suppose the given matrix is

a b c d e £ g h i 3
11 1 1 . .+ 1 . . . 0

Q= 3(. 1 11 . . . 1 . . (3.2)

5¢. . 1 1 1 . . . . 1)

Removing every column which has a 1 in row 3, and then

deleting row 3, we obtain

e g i J g e 1i 3
11 . 1 . . .y 11 1 .. oy
!
2(1 . . 1 . . 201 . 1., . . H O
[}
H = = e o —— —— — = =
4. 1 . . 1 . 41. . .1 1 . 0 H,
i
5. 1 . . . 1) 5. . .11 . 1.

(3.3)

Forming the submatrix, Ml(3)’ of Q which is composed of
the rows of Hy and row 3 which was earlier deleted, we

obtain
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d £ g h
1/1 1 1 . 1 . .

Ml(3) = 21 . . 1 . 1 . (3.4)
3L 111 . . 1

Row 3 of Ml(3), which represents the cut-set, must be
considered as an incidence set on node 3. The cut-set
matrix Ml(3) is now considered as an incidence matrix,
because every column of Ml(3) has at most two l's. The
corresponding graph for Ml(3) should have a star-tree.
From Ml(3), we obtain the graph as shown in Fig. 5(a),
where node K represents a datum node.

Forming the submatrix, M2(3), which is made up of

the rows of H., and row 3 which was earlier deleted, we

2
obtain
b ¢ d e i j h
4f1 . . 1 1 . .
My(3) =5|. 1 1 1 . 1 . (3.5)
31t 11 . . . 1

Row 3 of M2(3), which represents the cut-set, must be
considered as an incidence set on node 3. M2(3) can be
considered as an incidence matrix. From M2(3), we obtain
the graph as shown in Fig. 5(b), where node B represents
a datum node. Combining graphs (a) and (b), by deleting

node 3, we get the desired graph as shown in Fig. 5(c).
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(b)

1 b 4
£ c i
a 5 45 e
g J
\ a
2 5

(c)

Fig. 5. Realization of the cut-set matrix of
Eq. (3.2).
(a) Graph for M, (3); (b) graph for
M2(3); (c) graph~ for Q.
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CHAPTER IV
METHOD OF PARTITIONS

4.1. Separable Subgraphs

In the preceding chapter we assumed that the sub-
graphs Gy and G, in Fig. 4 are nonseparable after remov-
ing the cut-set, Si' By a simple graph shown in Fig. 6,
it is clear this assumption loses generality. That is,
if we take off the cut-set Si’ which is shown in Fig.
6(a), from the graph, one of the subgraphs, Gl’ becomes

a separable graph (Fig. 6(b)).

Fig. 6. Producing a separable graph.
(a) A nonseparable graph; (b) removal
of a cut-set Si'
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For this case, the cut-set matrix corresponding to

the graph of Fig. 6(b) will have the form

H 0 0
H=|0 HZ 0 (4.1)
0 0 H

Suppose H,, H2’ and H, correspond to the graphs Gyy» G312

and G2l respectively. When we partition H of (4.1) as

H O
H = { a ] (4.2)
0 Hy

where H  consists of Hy and Hys and Hy equals Hy, we

can synthesize the given cut-set matrix according to

Mayeda's method. However, if we take other combinations,

. [Hl 0 }
a
0 Hy

Hy = [Hz]

say

(4.3)

we can not synthesize the given Q, because the matrices
(4.3) correspond to the graphs shown in Fig. 7, and the
original interconnections are changed. In the following

section the method of proper partition is given.



lé

Fig. 7. Wrong interconnection of subgraphs
for the graph of Fig. 6.

4.2. Sets of Parallel Branches and Tutte's Theorem

Consider the graph G shown in Fig. 8.

0]

jo]
IL-—-41

RIR

[

> - ~ ‘q
L )
—

p——y

I

Fig. 8. A graph G which will be separable
after removing a cut-set Si from G.
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By removing S., we get subgraphs G,, Gy, --.-Gp-.
The corresponding cut-set matrix, H, will have the follow-

ing form after some permutations of rows and columns.

H 0 0 —-—=---- -- 0
A
H = X l (4.4)
o 0 H O
(e S —— 0 0 H_)

By using Tutte's theorem, we can partition H such
that the given matrix is realizable. 1In order to use the
theorem, let us obtain the sets of parallel branches con-
tained in Si from Hj's, where j=1,2,...m, as follows:

1) Form submatrices, Mj(i), from Q, where Mj(i)

is the same as defined in Chapter III.

2) From this submatrix Mj(i), find columns which

contain 1l's at row Si° Let the matrix which is

made up of these columns be C. For example, let

a b ¢ d e £ g

®

‘_l
|—l
‘_l
|—l
-
l_.l

Mj(i) =21 . . 1 . 1 . (4.5)

and let Si = row 3.

Then the columns which contain l's at row 3 are:

b, ¢, d and g.
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Therefore we obtain

b ¢ d g
1 1 1 . .
C = 2 B (4.6)

3) In C, find columns which are the same. For
example, in C of (4.6), the columns which have
the same arrangements are:

{b.c}. {a}, {o¥

4) These sets of similar columns represent the sets

of parallel branches contained in Si'

Let the sets of parallel branches obtained from Mj(i) and
Mh(i) be
P. = S.., S. 0o
3 { j1> 32 Jk}

P

(4.7)

e 0D

h = 15h1° Sh2 hg }

Now Tutte's theorem can be stated as follows:

Theorem 1. If we can form two sets, Ha and Hb’ such that

1) H, N Hy = é and HaU Hy ={Hl, Hy» ...Hm},
and

2) SerJ Shp = 8,, for every j and h in H_ and Hy»
respectively, where Sjr and Shp are subsets of

Pj and 2% respectively,
then both H and Hy are realizable.
If the graph G corresponding to Q contains two-

terminal subgraphs, then there exist several ways to



get H_ and Hy. However, these will produce trivial

eqguivalent graphs.

19



20

CHAPTER V

REALIZATION ALGORITHM

5.1. Removal of Basic Cut-set with Respect to the

Non-tip Branch

Consider the graph G in Fig. 9. If we remove the
basic cut-set, Ti’ from G, one of the subgraphs consists
of only a node., and we can not approach a star-tree.

We can avoid this by the following considerations.

Fig. 9. A.basic cut-set T, with respect to

tip-branch.

Take a column which has at least three 1's in the
given basic cut-set matrix, Q. Then, from the definition
of the basic cut-set matrix, there are three tree
branches associated with the column. From the property
of a tree, all the tree branches must be connected.

Hence at least one of the three branches must be a non-
tip branch. From the above discussion, we have the

following property:
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Property 1. A basic cut-set with respect to non~tip
tree branch is found in rows which have 1l's at a column
having at least three l's. By the above property, we
can make our method effective. That is, when we delete
a row we should select the row as follows:

1) Find a column, say the column k, which has at
least three 1l's, 1If there is no such column,
then the given Matrix, Q, is an incidence
matrix.

2) Delete a row which has a 1 at the column k,

3) If the resultant matrix, H, is not separable,
try the other row which has 1 at the column k.

4) 1If H is still not separable after every row
which has 1 at k is deleted, then the given
matrix, Q, is not realizable? because property

1 is violated.

5.2. Manipulations on Incidence Matrices

When we get a large number of subgraphs in Mayeda's
method, synthesis of the graphs is tedious. We can do
it by manipulations on matrices as follows:

1) Add a row to each incidence matrix, Aj, such

that the resultant matrix has exéctly two 1l's
at every column. This row corresponds to a

datum node.
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Combine these matrices by deleting the same
rows. This manipulation corresponds to deleting

the same node when combining subgraphs.

5.3 Algorithm

From the foregoing discussions, the algorithm for

the realization of basic cut-set matrices is stated as

follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Find a column, k, which has at least three l's
in the given cut-set matrix, Q.

Let the first row which has a 1 at column k be
I. Delete every column which has a 1 at row I,
then remove row I.

Is the resultant matrix, H, separable? If it
is not separable, find the other row which has
a 1l at column k, then go to step 2.

If H is partitioned as the matrix (3.1), go to
step 6. If H is partitioned as the matrix (4.4),
obtain the set of parallel branches from each
submatrix Hj’ jﬁl,2,...m.

Partition H into two submatrices, Ha and Hy , by
using theorem 1.

Obtain Ma(i) and Mb(i) by the following pro-
cedure: Construct the submatrix Ma(i) (or

Mb(i) ) of Q having the row in H, (or Hb) and
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the row I which was deleted in step 2.

Step 7. 1Is Mj(i)’ j=a,b, an incidence matrix? If it
is not an incidence matrix, go to step 1, and
let Q=Mj(i).

Step 8. 1If Mj(i) is an incidence matrix, then add a
row such that every column has exactly two l's.

Step 9. Combine these matrices by deleting the same
rows.

Step 10. Draw the graph from the resultant incidence
matrix.

The above algorithm is illustrated by the following
example.

Example 2.

Suppose the given cut-set matrix is

Step 1.

Step 2.

a b ¢ d e £ g h i j k 1 m n

1@ . . . . < 1 . < . . 07

(5.1)

Column a has three l's.
Delete every column which has a 1 at row 2, and
then remove row 2. The resultant matrix, H, is

found to be



Step 3.

Step 4.

1 . . . . .1

After some permutations of columns, H is

partitioned as

h k 1 g m n
L1, . . .. . .
S L B
|
S R R
t |
41 .,1 . 1,. . .
S S I
. .o .11 .
i |
{
6l.1. . .11 . 1

/
.

In order to partition H into two parts, we

-

it

Hl 0 O
0 H2 0
0O 0 H

24

(5.2)

(5.3)

obtain the sets of parallel branches from Hy,

H2, and H, as follows.

3

First we construct the submatrix Ml(2) of Q

having the rows in H

1
moved in step 2.
a b d
l¢. 1 1 .
Ml(2) =
21 1 1 1

and row 2 which was re-

(5.4)

From Ml(2), we get the parallel branches (the

same columns containing a 1 at row 2) as



Step 5.
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s, = {{a.,d,e,£,3}, {b.c}} (5.5)
In the same way, from the rows in H2 and row 2,
we get
a c d e f£ j 1
3f. . . . . . 1 . 1 .
My(2) =4} . . . . 1 1 1 . . 1 (5.6)

21 1.1 1 1 1 . 1 . .
From M2(2), the set of parallel branches is
s, = {{a,b}, {c.d,3}, {e.f}} (5.7)
Again, in the same way, we get M3(2) as

b ¢ d e £ g j m n
O

Ul
-
.

—
—
-
—

. 1L 1 . . 1 (5.8)

=2
w
—
[\
S
1
[0)]
‘_l
®
(]

2{1 1 1 1 1 1 . 1 . .

From M3(2), the set of parallel branches is

Sy = {{a.f}, {b,c,j}, {d,e}} (5.9)
From Sl’ S, and S3 obtained in step 4, we find

S11 U S35 =85 (5.10)
where

S11 = {a,d,e,£,3}, Syp = {b,c,3}

s, = {a,b,c,d,e,f,j} (5.11)



Step 6.

Step 7.

Step 1.

Step 2.

26

Therefore H is partitioned as

H 0]
1 0 H 0
H=|{|0 H,| =[a ] (5.12)
' b

We construct the submatrix, Ma(2), of Q having
the rows in Ha and row 2 which was deleted in

step 2.

2t 1 1 1 11 . . 1 . .J

Similarly, Mb(2) is

'_l
°

'_l
'_l

371
Mb(2) =4f. . . . 1 1 1 . . 1 (5.14)

2111 1 1 1 . 1 .

°

Mb(2) has the property of an incidence matrix,
since every column has at most two l's. Ma(2)
is not an incidence matrix. Therefore we apply

the step 1 - step 7 to Ma(2)°
The column a in Ma(2) has three 1's.

Delete every column which has a 1 at row 5,



Steps 3,

Step 6.

Step 7.

Step 8.

and then
H, is

1i1

H=6]| .

211

4., H is

b

1{1

H=21|1

6 L.

remove
1
1 .

c i
1 1
1 .

row 5;
J n
. 1
1 .

|
{
|
l
1
|
|
|
)

27

the resultant matrix,

(5.15)

(5.16)

Since H is partitioned into two parts, we can

go to step 6.

Ma(S) and Mb(S) are obtained as

1

Ma(5)= 2

M, (5) = 6
5

a
1 .
1 1

a

. 1
1 1
1 .

1

1

1

‘_‘

1

£f g 1 3]
. . 1 .
1 . . 1
1 1 . .
m

. 1

1.

. (5.17)

(5.18)

Ma(S) and Mb(S) are incidence matrices.

We now construct the non-reduced incidence

matrices.

By adding a row to Mb(2), such that
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every column has exactly two l's, we get Al

where ¢ corresponds to a datum node.

In the same way, from Ma(5),

a b c d e £ g i j m
if. 1 1 . . .« . 1 . .9

where B corresponds to a datum node.

From Mb(5), we get

¥yl 11 . . 11

where ) corresponds to a datum node.

(5.19)

(5.20)

(5.21)



Step 9. Combining Al’ A2
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and A by deleting the same

rows, we get the desired incidence matrix as

c d e f
311 1 . . . R

g9

i 3 1l m
1 . .

. . 1 .

1 1 1 .

From A, the desired graph is obtained as shown

Fig. 10.

1 — }f’\
i N k
a B’ .
g m 1
6\\\; n : e 4
3

Fig. 10. The graph corresponding to the
cut-set matrix of Eg. (5.1).

in

(5.22)
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CHAPTER VI
SYNTHESIS OF BILATERAL NETWORKS

6.1l. Realization of Admittance Matrices

By the following example, realization of an admit~
tance matrix of order n as an RLC n-port with n+l nodes
is illustrated.

Example 3.
Let us consider the realization of the following

Y-matrix with an RLC network with five nodes.

- N
’2+3s+l 3s+l 3s 0
s s
3s+l 5+3s+g 3s ;
s s s
Y = (6.1)
3s -3s 1+7s -4s
1 1
) s -4s 3+4S+§

’

For real and positive values of the complex variable, s,
an RLC n-port behaves as a resistive n-port. We there-
fore arbitrarily assign a real, positive value to the

variable s. If we let s=1, the matrix becomes

s 6 4 3 0]

§=Y|s=l = | | (6.2)

. O 1 -4 8 J

where the matrix with s set equal to 1 is denoted by Y.
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By using Cederbaum's algorithm, we decompose Y into the
triple product:

= t
Y = c_D Cg (6.3)

where Cs is a seg matrix and D is a diagénal matrix with
positive elements representing edge conductances. Let

Ci] be the i-th column matrix of C_, d; be the i=-th
diagonal element in D.

Now, we choose in Y the element with the smallest
absolute value, say the element of (2,4)-position which
has the value of 1. Thus the first diagonal element,

dl’ is determined as dl=l. Next we determine the first
column Cl}of Cq by the following procedure:

1) If the smallest absolute value element, say kmn’

is at (m,n) position, then the m-th row and

n-th row of C ]should have nonzero elements, as

i
L[ :)

cﬂ = ? % (6.4)
0|4
t ]

where the element at n-th row should have the

same sign as the sign of kmn°

2) Other elements of Ci]can be obtained by the

following rule:
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If
mnkmjknj >0 for j# m,n
then the element of the j-th row of the column

is nonzero and the sign of this element is the

same as the sign of kmj’ and if
. . =< ]
kmnkmjkn] <0 for j#m,n

then the element on the j~th row of Cﬂ is zero.

By the above procedure we can obtain Ci]as

1
c]J = (6.5)
(1]
We define
_ ~1t
i =¥ 76y (6.7)
where Y. =Y if i=1 (6.8)
i-1 v

By the definitions, we obtain

(< 1(1)[- 1 . i] N
1
G, = -l (6.9)
° L2 '3 o
L1 .1 . 1)




‘6 4 -3 0) -
_ 4 10 -3 1 .
s 323 8-4| |.
0 1 -4 8] .

From §1, we choose the

and the second column,

Cz] =

G2 and ?é are found as

¢ [42] C2]t

|

G2=

=3 3 3 0
3 3 3 0
33 3 0
. 0 0 0 0
Y, =Y, -Gy, = (3 1
1 6
0 0
Lo o

Iy [6 4-3
1 4 9 -3
B R PR
1] Lo o-4

0]

0
-4

7

33

(6.10)

second diagonal element as d2=3,

Cj, of C_ is found as

-

/

-4

1

1

7

(6.11)

(6.12)

(6.13)
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In the same way, we can determine di and Ci] succes=
sively. These are tabulated together with Y, and G,y

in Table I.

TABLE I. Decomposition of Y

Y 3?1 Y, 3?3
6 4 3 0 6 4 o | 3 1 0 2 0 0 O
410 3 1 4 9 3 0 1 6 0 O 0 5 0 O
3 3 8 -4 4 3 8 -4 0O 0 5 -4 0O 0 5 -4
0 1 -4 8 0O 0 -4 7 0O 0 -4 7 0 0 -4 7
Sl Gy 3 Gy
0 0 0 O 3 3 3 0 1 1 0 0O 0 0 O
0 1L 0 1 3 3 3 0 1 1 0 0 0O 0 0 O
0O 0 0 O 3 3 3 0 0O 0 0 O 0O 0 4 -4
0O 1 o0 1 0O 0 0 O 0O 0 0 O 0 0 -4 4
cl] =) c2J= 1] Cy) = (1 c4]= 2
1 1 1 .
. 1 . 1
L1 [ . ] . -1
d, =1 d, =3 dy =1 d, = 4

(continued)




TABLE I (continued)
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Y, ?5 Y
2 0 0 0 0 0 0 0 o 0 0 0
0 5 0 0 5 0 0 0 0 0 0 0 0
0o 0 1 o 1 o 0 0 0 0 0
0 0 0 0 0 3 0 0 3 0 3
G5 G6 G‘.7
2 0 0 0 0 0 0 0 0 0
O 0 O 5 0 0 0 0 0 0 0 0
0 0 0 O 0 0 O 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 3
) =[] ) =) C7) =[] Cg) =]
. 1 . .
. ) 1 .
a =2 dg =5 d, =1 a
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Now Y is decomposed as

O (& R e (@] ™
I i
i i — O
i 1
i ] Te] |
i I I
i i o 1
¥ t 1
i | < “
o o o i
[
o ™ o o
— o [ e O\
X
r~ \
@ .‘ —
— .
. — .
— ° o
] . — ~t
1
— — J
— — —
U =i —
\ J
I
>

(6.14)

To identify the element values, let



(2 + 35 + =
3s !'-
S
3s
0
dl d2 d
(- 1
1 1
|1
1 1)
1 .
1 .
o -1
1 1

3s + =
54+ 3s + =
3s
1
s
d4 d5 d6 d
1 . .
1 .
1 . . 1
-1 .
rd2+d3+d5
d2+d3
d,
0

“

0
1
S
-4s
1
3 4+ 45 + ]
I 0
dy 0 =m=mmmmmmmmme 0
0 dj :
E dy !
i dg !
5 a, o
0 e ag
X 0
6 92 d)
d +d,+d, -4,
-4 a,+d,+dg
(6.15)

37
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From the above equation we get the element values as

&
i

=1 = = & - = -
d; = 3,4, =3s, d; =3,d, =4s, d; =2, dg =5
1

d7 = 1, d8 = 3 (6.16)

The next step is to realize

dl d2 d3 d4 d5 d6 d7 d8

ar. 1 1 . 1 . . o

P = (6.17)

afjr . . -1 . . . 1

This is a basic cut-set matrix of an oriented graph,
where the letters a, b, ¢ and d are assigned for cut-
sets (in this case these also represent ports).

Although we have developed the method of realiza-
tion of non-oriented cut-set matrix, the method is also
applicable to the oriented cut-set matrix as follows:
Ignoring the negative signs in P, we can use our algo-
rithm and get the non-oriented graph as shown in Fig.
1ll1(a). Recalling definition 5, we can orient the graph
as shown in Fig. 1ll(b).

Next we must describe the ports. From P, we know

that branches d d d., and d, correspond to tree

5? 76’ 77 8
branches. 1In the cut-set schedule, the tree branches
are considered as independent voltages (5, p. 13-17),

i.e., port voltages correspond to tree branch voltages.



39

By these considerations we get the final network as shown

in Fig. 1ll(c).

a d2 c a 2 c
d d
d5 3 7
d
0( 0 B | %
\
\ d8
dy
d
(a)
3F
a 1 c
i
) -
a ].:n_ 1H lﬂ% + c
i+ 72 -
b —— 4F
-+
'
5
1
1H §ﬂ§_ -
+
(c) d
Fig. 11. Realization of the Y-matrix of Eg. (6.1).
(b) oriented graph;

(a) Non-oriented graph;
(c) final graph.



6.2. Realization of Non-basic Cut-set‘Matrices

40

So far, we have considered the realization of basic

cut-set matrices. In practical applications, however,

we must often realize non-basic cut-set matrices.

method is illustrated by the following example.

Example 4.

The

Consider the realization of the following 5-port

Y-matrix with six nodes.

r 21 =21 -6 ~10
-21 35 7 21
Y = -6 7 25 <15

-10 21 -15 49

(-10 10 -7 26

-10)
10
-7

26

26 |

(6.18)

Again by using Cederbaum's algorithm, ¥ is decomposed as

_ t
Y = Cs D CS
where
6 1 7 8 10 5 11 9
r 1 . . . 1 1 . .
-1 1 . . =1 -1 1 .
Cs =|-1 1 1 1 . . . .
. . =-1-1-1 . 1 1
. . =1 . -1 . . 1

(6.19)

(6.20)
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6 0 0 me——mmem—————m e 0
0 1 0 ====—e e o e e o e o o o e —_——— ?
0 0 7
R 5
R §
D= |} 5 (6.21)
. T
2 .
| -
. .
(0 0 ~~~~eemee e e e 0 4

where the numbers on Cs represent the corresponding
element values.

Since CS does not have the form:
= .22
Q [QllU] (6.22)
where U is a unit matrix, Cs is not a basic cut-set
matrix (11, p. 75).

Let us augment C_ such that Cq has unit matrix of

order 5, and call this Ql'
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1. S S R KPR
-1 1 L -1 -1 1 S R
o =1 1 11 . . . . . . 1 . .| (6.23)

e +=1=-1-1 . 1 1 . . . 1 .

. . =-1 .- . , 1 . . . . 1

P

where dl and d2 represent the element values of augmented
edges.
Discarding the negative signs, we get the following non-

oriented cut-set matrix, Q.

6 1 7 810 511 9 4 2 3 4 d

arl . .. . 1 1 .. . 1 . < < ey
bfp 1 . . 1 1 1 . . 1 . . .
Q= ¢jJ1 1.1 1 . . . .. . . 1 . . (6.24)
al. 111 . 11 . . . 1 .
e{f. . 1 . 1 . . 1 . . .. .. 1

We realize Q by using our method.

Step 1. The first column (numbered 6) has three l's.

Step 2. Delete every column which has 1 at the row b,
and then remove the row b. The resultant

matrix H is
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7 8 9 dl 3 4 d2
ar. . . . . BW
cjil 1 . . 1 . .
H = (6.25)
dj1 1 1 . . 1 .
ell . . . . . 1
Steps 3,4. H is partitioned as
dl 7 8 9 3 4 d2
afl) . o . <oy
e e = _
cl.11 1 .1 . . [H, O
H = [ = (6.26)
al.i1 1 1 . 1 . 0 H
i b
[}
el.+1 . . . . 1]
We can go to step 6.
Step 6.
110 511 d4; 2
a . 1 1 1 .
Ma(b) = 1 (6.27)
b 1 1 1 1 1 . 1
6 1L 7 810 5114, 2 3 44,
crl 1 1 1 . . . . . 1 . .y
4. . 1 1 1 . 1 1 . . 1 .
e{. . 1 . 1 . . 1 . . .. 1
b2 1 . .1 1 1 . 1 . . .
Step 7. Ma(b) is an incidence matrix, but Mb(b) is not

an incidence matrix.

step 7 to Mb(b).

Therefore we apply step 1l-
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Step 1. 1In Mb(b), the column numbered 7 has three l's.
Step 2. Delete every column which has 1 at the row 4,

then remove row d.

H= e]l. . .« . . 1 (6.29)

2
erl . R . . -
e e Ha 0
H= ¢}.+*1 1 . . 1 = [ (6.30)
! 0 Hb‘
b{./1 1 1 1 .

We can skip step 5.

Step 6.

N

er(l . 1 . 1 . 1
Ma(d)= [ ] (6.31)

d(1 1 1 1 1 1
8 10 511 9 2 4
crfl 1 1 . . R . . .
Mb(d)==b 1> . . 1 1 1 . 1 . . (6.32)

Step 7. Ma(d) and Mb(d) are incidence matrices.
Step 8. From Ma(b)s Ma(d) and Mb(d), we get Al’ A2,

and A3, respectively.



Step 9.

Step 10.

6 1
afl .
b {l 1
NL, 1

8
e .
alil 1
BL. 1

6
cl 1
bl 1
af{. .
¥

Combining Al’ A

10 511 4 2
1 1 . 1 .
1 1 1 . 1
. .1 1 1

10 11 4 a,
1. .1
1 1 1 1 .
.01 . 1 1

2

1 . 1 1 . .
. 1 . 1 11
and A

3

1)

45

(6.33)

(6.34)

(6.35)

by deleting the same

rows, we get the desired incidence matrix as

6 1
arl .
x| . 1
el|l. .
Bl1. .
ctl 1
yL. .
From A,
in Fig.

7 810 511 9 4, 2

we get

12(a).

11 . . 1 .

.1 . 1 . 1

the non-oriented

3 4

graph

(6.36)

/

as shown

Considering the oriented cut-

set matrix, Ql’ of Eg. (6.23), we get the
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oriented graph as shown in Fig. 12(b).
Describing the ports, letting dl = 0 and

d2 = 0, and finally discarding the orienta-
tions of edges (since the orientations of only

the ports are important) we get the network

corresponding to Y as shown in Fig. 12(c).

10 10
1 8 8
5 3 dz dyL A3 A d2
2
¥ P 2 ﬁ
11 T

(a) (b)

11 (c)

Fig. 12. (a) Non-oriented graph, (b) oriented
graph; (c¢) network for Y.
(Vvalues in ohms)
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6.3. Synthesis of Single-contact Networks

Let us consider the realization of single-contact
networks. We assume that the state of each contact is
independent of the state of all the other contacts in the
network. Thus, the switching function of a single con-
tact network is a proper function in which none of the
variables are vacuous, and in which no variable appears
both negated and unnegated. Therefore, we can evaluate
the switching function of a two terminal single-contact
network as the Boolean sum of all the path products
between the terminal nodes. For example, the switching
function, F, of a single contact network shown in Fig.
13 is obtained as

F = ad + ace + be + bced (6.37)

Fig. 13. A single-contact network.

By the following example, the realization method is

illustrated.

Example 5.
Let us consider the following single=-contact switching

function given in a normal form,
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F = adcg + adf + ae + bcf + bcde + bg (6.38)
The path matrix is

b ¢ d e f g
-1 . 1 1 . .

I_I

P = (6.39)

The converted loop matrix corresponding to F is

B = | (6.40)

We now eliminate the dependent rows in B as follows:
Adding (mod 2) the first row to the second and third
rows, and again adding the fourth row to the fifth and

sixth rows, we obtain the resultant matrix, Bl’ as
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B. = (6.41)

In B, we add the third row to the fifth row, and then we

1
add the second row to the fourth and fifth rows; the

resultant matrix, B2, is obtained as

b ¢ d e f g
T . 1 1 . . 1 1

B, = ' (6.42)

. . 1 . . 1 1 .J

.

The fifth row in B, can be eliminated, because it con-

2
tains only 0's. The second row and the sixth row are

identical; the sixth row can therefore be deleted. The

resultant matrix, B3 is



b
1.

B3 =
. 1

.

50

(6.43)

After some permutations of columns, we obtain the loop

matrix, B4, in basic form, as

£
f1 .
. 1

B4 =

- °
e,

e

b

The above elimination

elimination procedure

(6.44)

procedure is called Jordan's

(8, p. 225-227),

The corresponding

cut-set matrix to be realized is then found to be

1(1

211
Q =

311

411

N

b

(6.45)

After deleting every. column which has a 1 in row 1, and

then removing row 1, Eqg.

(6.45) becomes
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g x d

3r1 1 . e
| ' H 0

H=4{1 . 1 :0 = (6.46)
---------- 4= 0 H
2. . .1 b
The pair of submatrices are

g x cC

Ma(l)=4 1. . 1 . 1 . (6.47)
141 1 1 . . . 1
f e c
2¢1 . 1 1 .
1]l1 1 1 . 1

Mb(l) became an incidence matrix.
From Ml(l), deleting every column which has a 1 at row 3,
we get

X C
H = o= 0@ (6.49)
L{.:1 0 Hb ,

The pair of submatrices are

f e b x g

41 . . 1 1 .Y
M_(13) = } (6.50)

i1 1 1 . 1 }
M (13) = ] (6.51)
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Ma(13) and M, (13) are incidence matrices. Adding a row

b
corresponding to a datum node to Mb(l), Ma(l3) and

Mb(l3) we get non=-reduced incidence matrices as follows.

From M2(l)

A= 111 1 1 . 1 (6.52)

A,= 311 1 1 1 . 1 (6.53)

a e b g
1/ 1 » . 1 .

Ay = 3|1 1 1 1 . 1 (6.54)
Yyl. . . 1 1 1

1° A2 and A3 by deleting the same rows we get

the resulting incidence matrix

Combining A
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21 . 1 . o 1 o N
. L . . < 1 1 . (6.55)

A=
41 . . 1 . . .1
p
¥

From A, we get the contact network corresponding to F

as shown in Fig. 14.

Fig. 14. Realization of the function
of Eq. (6.38).
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